Export 9 results: 
Search results for 7409
Filters: 1 is biblio_type:PhD Thesis and Author is Håvard D. Johansen [Reset Search]
Filters: 1 is biblio_type:PhD Thesis and Author is Håvard D. Johansen [Reset Search]
 "A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging." Medical Image Analysis 70 (2021): 102007. 2.pdf (3.22 MB)
 2.pdf (3.22 MB)
 "A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation." IEEE Journal of Biomedical and Health Informatics 25, no. 6 (2021): 2029-2040. 09314114.pdf (6.16 MB)
 09314114.pdf (6.16 MB)
 DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation In 25th International Conference on Pattern Recognition.  Springer, 2021. endotect_segmentation_debesh.pdf (4.12 MB)
 endotect_segmentation_debesh.pdf (4.12 MB)
 DeepSynthBody: the beginning of the end for data deficiency in medicine In The International Conference on Applied Artificial Intelligence (ICAPAI). IEEE, 2021.
 Kvasir-Instrument: Diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy In 27th International Conference on Multimedia Modeling. Vol. LNCS, volume 12573. Springer, 2021. mmm.pdf (648.64 KB)
 mmm.pdf (648.64 KB)
 Kvasir-SEG: A Segmented Polyp Dataset In International Conference on Multimedia Modeling. Daejeon, Korea: Springer, 2020. mmm_2020_kvasir_seg_debesh.pdf (4.04 MB)
 mmm_2020_kvasir_seg_debesh.pdf (4.04 MB)
 LightLayers: Parameter Efficient Dense and Convolutional Layers for Image Classification In The Joint International Conference PDCAT-PAAP 2020.  Springer, 2020. pdcat_paap_springer_debesh.pdf (288.65 KB)
 pdcat_paap_springer_debesh.pdf (288.65 KB)
 Medico Multimedia Task at MediaEval 2020: Automatic Polyp Segmentation In Medico MediaEval 2020. CEUR, 2020. 2020_automatic_polyp_segmentation_challenge_debesh.pdf (1.49 MB)
 2020_automatic_polyp_segmentation_challenge_debesh.pdf (1.49 MB)
 The Medico-Task 2018: Disease Detection in the Gastrointestinal Tract using Global Features and Deep Learning In MediaEval 2018. Nice, France: MediaEval, 2018. mediaeval_team_dv_10.pdf (374.73 KB)
 mediaeval_team_dv_10.pdf (374.73 KB)