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Abstract—We propose a localized Peer-to-Peer (P2P) electricity
trading model for locally buying and selling electricity among
Plug-in Hybrid Electric Vehicles (PHEVs) in smart grids. Unlike
traditional schemes, that transport electricity over long distances
and through complex electricity transportation meshes, our pro-
posed model achieves demand response by providing incentives
to discharging PHEVs to balance local electricity demand out
of their own self-interests. However, since transaction security
and privacy protection issues present serious challenges, we ex-
plore a promising consortium blockchain technology to improve
transaction security without reliance on a trusted third party.
A localized P2P Electricity Trading system with COnsortium
blockchaiN (PETCON) method is proposed to illustrate detailed
operations of localized P2P electricity trading. Moreover, the
electricity pricing and the amount of traded electricity among
PHEVs are solved by an iterative double auction mechanism
to maximize social welfare in this electricity trading. Security
analysis shows that our proposed PETCON improves transaction
security and privacy protection. Numerical results based on a real
map of Texas indicate that the double auction mechanism can
achieve social welfare maximization while protecting privacy of
the PHEVs.

Index Terms—Energy Internet, plug-in hybrid electric vehicle,
decentralized energy trading, consortium blockchain, security
and privacy, double auction.

I. INTRODUCTION

ITH rapid development of energy harvesting and infor-

mation communication technologies, more and more
distributed renewable energy sources are integrated into smart
grids [1]. On one hand, nodes in smart grids can harvest
energy from different renewable energy sources to promote
greener smart grids [2]. On the other hand, smart girds utilize
sensors with energy harvesting ability to form wireless sensor
networks for long-term monitoring and remote control [3],
[4]. In smart grids, Plug-in Hybrid Electric Vehicles (PHEVs)
play key roles in distributed renewable energy transportation
and management. PHEVs can not only charge electricity from
home grid with renewable energy sources [5], but can also
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get electricity from other PHEVs to shift peak load through
vehicle-to-vehicle trading [6].

In social hotspots, e.g., parking lots or charging stations,
PHEVs with bidirectional chargers can trade electricity in a
localized Peer-to-Peer (P2P) manner (e.g., vehicle-to-vehicle)
[6]. In a conventional power grid, the generated electricity
is transported through a complex energy transportation mesh
resulting in high losses in the T&D network and correspond-
ingly low efficiency [5], [7]. Unlike so, PHEVs with surplus
energy can discharge energy to satisfy electricity demand of
local charging PHEVs, thus balancing electricity supply and
demand locally in hotspots [6].

However, PHEVs with surplus electricity may be not willing
to participate as energy suppliers in a localized P2P electricity
trading market due to their concerns either over the lifetime
of the battery or about privacy [5]. In this case, electricity
supply and demand are unbalanced among PHEVs. Moreover,
traditional centralized electricity trading relying on a trusted
third party suffers from problems such as single point of
failure and privacy leakage [8]. Therefore, it is necessary to
encourage more PHEVs to perform discharging by designing
proper incentives. In addition, it is important to design a secure
decentralized electricity trading system such that the privacy
of the PHEVs can be preserved during the trade [8].

Recently, a promising blockchain technology with advan-
tages of decentralization, security and trust has been in-
troduced for electricity trading. The blockchain is a P2P
distributed ledger technology, that enables electricity trading
to be executed in decentralized, transparent and secure market
environments. A digital currency named ‘“NRGcoin” based
on blockchain protocols was presented for renewable energy
trading in smart grids [9]. A demonstration platform for
renewable energy exchange using NRGcoin was proposed
in [10]. Authors in [6] utilized a general blockchain with
multi-signature to address transaction security problems in
decentralized smart grids. However, the existing methods do
not work well in localized P2P electricity trading among
PHEVs because of the disadvantage of high cost associated
with establishing a blockchain in energy-limited PHEVs.

Motivated by these developments, in this paper, we exploit
the consortium blockchain technology to develop a secure
localized P2P electricity trading system. The consortium
blockchain is a specific blockchain with multiple authorized
nodes to establish the distributed shared ledger with moderate
cost. Here, the authorized nodes are local aggregators (LAGs).



A consortium blockchain is established on LAGs to publicly
audit and share transaction records without relying on a trusted
third party. Energy transaction records among PHEVs are
uploaded to the LAGs after encryption. The LAGs run an
algorithm to audit the transactions and record them into the
shared ledger. This ledger is publicly accessed by PHEVs
and LAGs connected to the consortium blockchain. Moreover,
since electricity pricing along with the amount of traded
electricity among PHEVs need to be optimized, an iterative
double auction mechanism is presented to maximize social
welfare in the system.

The contributions of this paper are summarized as follows.

o Unlike existing blockchain-based energy trading system,
we establish a consortium blockchain based on LAGs to
audit and verify transaction records among PHEVs.

e We design a localized P2P Electricity Trading system
with COnsortium blockchaiN (PETCON) to achieve trust-
ful and secure electricity trading.

o To optimize electricity pricing and the amount of traded
electricity among PHEVs in PETCON, an iterative dou-
ble auction mechanism is proposed to maximize social
welfare while protecting privacy of PHEVs.

The rest of this paper is organized as follows. We introduce
core system components of PETCON in Section II. Detailed
operations of PETCON are illustrated in Section III. The prob-
lem definition and the solution for localized P2P electricity
trading are proposed in Section IV and Section V, respectively.
Security analysis and numerical results are shown in Section
VI before the paper is concluded in Section VII.

II. CORE SYSTEM COMPONENTS FOR LOCALIZED
PEER-TO-PEER ELECTRICITY TRADING

A. Entities for PETCON

The model for localized P2P electricity trading among
PHEVs includes the following entities as shown in Fig. 1.
1) PHEVs: The PHEVs play different roles in localized P2P
electricity trading at hotspots: charging PHEVs, discharging
PHEVs, and idle PHEVs. Each PHEV chooses its own role
according to current energy state and driving plan. 2) LAGs:
LAGs work as energy brokers to provide access points of
electricity and wireless communication services for PHEVs
[11]. Each charging PHEV sends a request about electricity
demand to the nearest LAG. The energy broker does a statistics
of local electricity demand and announces this demand to local
PHEVs. PHEVs with surplus electricity submit selling prices
to the broker. The energy broker acts as an auctioneer to carry
out an iterative double auction among PHEVs, and matches
electricity trading pairs of PHEVs. (Details on this auction will
be given in Sections IV and V.) 3) Smart meters: Each charging
pole with a built-in smart meter calculates and records the
amount of traded electricity in real time. The charging PHEVs
pay to the discharging PHEVs according to the records in the
smart meters.

B. Consortium Blockchain for PETCON

Blockchain is an emerging P2P technology for distributed
computing and decentralized data sharing among network n-
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Fig. 1: Localized P2P electricity trading among PHEVSs.

odes. There is an important transaction audit stage, named con-
sensus process, before transaction records form a blockchain.
This stage is executed by all nodes in a traditional blockchain
with high cost. In this paper, we use a consortium blockchain
that is a special blockchain to perform consensus process by
pre-selected LAGs. These authorized LAGs have right to con-
trol the consensus process and write the consortium blockchain
with transactional data during localized P2P electricity trading.
The consortium blockchain consists of three main components.

1) Transactions: Electricity trading information and digital
asset records are stored in a consortium blockchain. The trad-
ing information includes PHEVs’ pseudonyms used for privacy
protection, data type, metadata tags for raw transactional data,
complete index history of metadata, an encrypted linked to
transaction records, and a timestamp of transaction generation.
The information is encrypted and signed with digital signatures
to guarantee authenticity and accuracy. Here, we will present a
new digital cryptocurrency, named energy coin, as the digital
asset to trade electricity.

2) Blocks about transactional data: All raw data of elec-
tricity transaction is stored, shared, and audited among autho-
rized LAGs. Due to limitation of computation and storage,
PHEVs store an index of metadata indicated a location of the
metadata for decreasing system cost. The LAGs collect and
manage their own local transaction records. These transaction
records are encrypted and structured into blocks after being au-
dited by all the authorized LAGs (i.e., the consensus process).
Each block contains a cryptographic hash to the prior block
in the consortium blockchain for traceability and verification.
The blocks are added in a linear chronological order in the
consortium blockchain. After the transaction records have been
added to the consortium blockchain, the data becomes publicly



accessible to PHEVs and LAGs in smart grids.

3) Proof-of-work: 1) Proof-of-work for LAGs about data
audit: Similar to Bitcoin, before a new data being inserted
into immutable data storage, a consensus process carried by
authorized LAGs should be reached by a mechanism named
proof-of-work. The proof-of-work for LAGs about data audit is
similar to traditional proof-of-work in Bitcoin, which generates
a unique hash value with a certain difficulty for each block in
the blockchain. The hash value is used to link a new block
to the prior block. Each authorized LAG in the consortium
blockchain competes to create a block by finding a valid proof-
of-work. The fastest LAG is rewarded by a certain amount
of energy coins. The LAG audits the transaction records and
structures them into a new block for verification by other
LAGs during consensus process. ii) Proof-of-work for PHEVs
about energy contributions: The discharging PHEV with the
most contribution on electricity supply in every LAG is also
rewarded by energy coins, which is an incentive to encourage
them to discharge electricity. The total amount of discharged
energy is measured and recorded by smart meters, which is the
specific proof-of-work for PHEVs about energy contributions.

ITI. LOCALIZED PEER-TO-PEER ELECTRICITY TRADING
SYSTEM WITH CONSORTIUM BLOCKCHAIN

A. An Overview of PETCON

As shown in Fig. 2, there are three entities in an LAG,
i.e., a transaction server, an account pool, and a memory pool.
The transaction server collects energy request from charging
PHEVs and matches electricity trading pairs of PHEVs. The
transaction server also controls switches of charging poles to
finish localized P2P energy transportation. Each PHEV has an
energy coin account that stores all transaction records, and a
corresponding wallet to manage energy coins in the account.
Here, we use random pseudonyms as public keys of PHEV’s
wallet named wallet addresses to replace the true address of the
wallet for privacy protection. The mapping relationships about
wallet addresses and the corresponding energy coin account
are stored in the account pools.

During a localized P2P electricity trading, PHEVs first
choose their own roles according to electricity demand and
energy states. Charging PHEVs request energy from local
discharging PHEVs. LAGs work as energy brokers for PHEV's
to execute energy bidding and transaction through an iterative
double auction mechanism. After that, the charging PHEVs
pay to the discharging PHEVs using energy coins. With the
help of proof-of-work for LAGs about data audit, transaction-
related data in every LAG is audited and verified through a
consensus process among authorized LAGs.

B. Operation Details of PETCON

1) System initialization and key generation: In PETCON,
we utilize elliptic curve digital signature algorithm and asym-
metric cryptography for system initialization [8]. Each PHEV
becomes a legitimate entity after registration on a trusted
authority, such as a government department. A PHEV V; with
true identity ID; joins the system and gets its public/privacy
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Fig. 2: Localized P2P electricity trading using energy coins.

key and certificate (denoted as PK;, SK; and Cert;, respec-
tively). Cert; can be used to uniquely identify the PHEV
through binding registration information of the PHEV (e.g.,
license plate number). V; requests a set of v wallet addresses
{WID, \}{_, from the authority. The authority generates
a mapping list {PK;, SK;, Cert;, {WID; ;}%_,}. When V;
executes system initialization, V; uploads wallet addresses
being used to the account pool of its nearest LAG. V; checks
the integrity of its wallet, and downloads the last data about
its wallet through a memory pool. The memory pool stores all
transaction records in the consortium blockchain.

2) Choosing different roles in electricity trading: During
electricity trading, PHEVs are divided into two groups (i.e.,
charging PHEVs and discharging PHEVs) according to their
current energy states and future driving plans. PHEVs with
surplus electricity may become discharging PHEVs to meet
local electricity demands of charging PHEVs.

3) Selling and buying energy: Charging PHEVs send elec-
tricity requests including the amount of electricity and ex-
pected serving time to the transaction server of an LAG.
The transaction server works as a controller to count the
total electricity demands and broadcasts this demand to local
discharging PHEVs. The discharging PHEVs determine their
selling electricity and give responses back to the controller.
The controller matches the electricity supply and demand
among PHEVs. Here, we use a double auction mechanism to
execute energy bidding, negotiation and transactions among
PHEVs. More details on the double auction mechanism will
be given in Sections IV and V.

4) Paying and earning energy coins: After electricity trad-
ing, a charging PHEV pays for the energy transaction through
a wallet address of a discharging PHEV as shown in Fig. 2.
The charging PHEV transfers energy coins from its wallet
to the given wallet address. The discharging PHEVs obtain
the last blockchain from the memory pool of LAGs to ver-
ify the payment. The charging PHEVs generate transaction
records, and the discharging PHEVs verify and digitally sign
the transaction records and thus upload them to LAGs for



audit. To balance electricity demand and supply, by providing
incentives, we stimulate discharging PHEVs to meet local
demand. During a certain period, the discharging PHEV with
the most contribution on electricity supply in every LAG is
rewarded by energy coins according to the proof-of-work for
PHEVs about energy contributions.

5) Building blocks and finding proof-of-work: LAGs collect
all local transaction records in a certain period, and then
encrypt and digitally sign these records to guarantee authen-
ticity and accuracy. The transaction records are structured into
blocks as shown in Fig. 3. Each block contains a cryptographic
hash to the prior block in the consortium blockchain. Similar
to Bitcoin, the LAGs try to find their own valid proof-of-
work (i.e., a hash value which meets a certain difficulty).
An LAG calculates the hash value of its block based on a
random nonce value x and the previous block hash value,
timestamp, transactions’ merkle root and so on (denoted as
p_data) [12]. Namely, Hash(z + p_data) < Dif ficulty.
Here, Dif ficulty is a number controlled by system to adjust
the speed of finding out a specific x.

6) Carrying out consensus process: The fastest LAG with
a valid proof-of-work (i.e., ) becomes a leader of the cur-
rent consensus process. The leader broadcasts block data,
timestamp and its proof-of-work to other authorized LAGs
for verification and audit. These LAGs audit the block data
and broadcast their audit results with their signatures to each
other for mutual supervision and verification. After receiving
the audit results, each LAG compares its result with others
and sends a reply back to the leader. This reply includes the
LAG’s audit result, comparison result, signatures, and records
of received audit results. The leader does statistics of received
replies from LAGs. If all the LAGs agree on the block data,
the leader will send records including current audited block
data and a corresponding signature to all authorized LAGs
for storage. After that, this block is stored in the consortium
blockchain in a chronological order, and the leader is awarded
by energy coins. Once the authorized LAGs formation is
complete and remains almost constant, the total time needed
for reaching consensus of one new block is about 1 minute
regardless of the network size [13]. If some LAGs don’t
agree on the block data, the leader will analyze the audit
results, and send the block data to these LAGs once again for
audit if necessary. Moreover, according to audit results and
corresponding signatures, compromised LAGs will be found
out and held accountable.

IV. PROBLEM DEFINITION FOR ELECTRICITY TRADING

In this section, we present the problem definition about
electricity pricing and the amount of traded electricity among
PHEVs to maximize overall social welfare (i.e., the sum of
nonlinear utilities of PHEVs). In each hotspot region, an
LAG can communication with any local PHEVs to establish a
real-time electricity trading market. LAGs facilitate electricity
trading between any charging PHEV and any discharging
PHEV in the network [14]. A local aggregator LAG,, acting as
an energy broker manages local PHEVs to execute electricity
trading operations. A set of LAGs (denoted as ¢) is indexed
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Fig. 3: Structure of our proposed consortium blockchain.

by n, where n € ¢ 2 {1,2...n}. Let us denote a set of
charging PHEVs in LAG,, as v = (CVMieCmner),C=
{0,1,2,..., I'}. The discharging PHEVs in LAG,, are denoted
as £ (DVj € Z,n € 1),Z ={0,1,2,..., J}. ™ and

c;”™* are the minimum and maximum of electricity demand
for CV* € R in LAG,, respectively. LAG,, must provide
¢ energy to C'V;* for normal driving.

Here, ¢}; is the electricity demand of C'V;" for discharging
PHEV DV} in LAG,. The electricity demand vector of C'V;"

is Cf! 2 {cilj € Z}. In LAG,, the total electricity demand

of all charging PHEVs is C" 2 {C{'li € C}. We define the
energy state of C'V;" before charging as STO!. EV/* is the
battery capacity of C'V;". The satisfaction function of C'V;" is

J
Ui(CH=wiln(n > ¢y — ™™ + 1), (1)
j=1

where 17 is average charging efficiency from discharging
PHEVs to CV". w; = 575+ is the charging willingness of
CV;®, and 7 is a constant. ’

For the discharging PHEVs, d7; is the amount of electricity
supply from discharging PHEV DV to CV;" in LAG,,. The
electricity supply vector of DV is Dj 2 {d};li € R}. In
LAG,, the total electricity supply of all discharging PHEVs
is D" 2 {Dj'|j € Z}. The maximum of electricity supply for
a discharging PHEV in LAG,, is D} In LAG,, the cost
function of DV} is

I I
LiD])=h Y (d})* +12 ) df;, )
=1 i=1

where [; and [, are cost factors. Here, {1 > 0.

Since the local charging PHEVs want to maximize their
utilities while the local discharging PHEVs try to minimize
their cost, LAG,, working as the energy broker not only tries
to meet the demand of charging PHEVs, but also maximize
electricity allocation efficiency. From a social perspective,
the localized P2P electricity trading should maximize social
welfare and achieve effective market equilibrium [15]. The



energy broker addresses the social welfare maximization prob-
lem (denoted as SW) to allocate energy between discharging
PHEVs and charging PHEVs. Here, the objective function of
social welfare problem is expressed as follows:

J
. (C™M) — (D
SW:maxd Ui(C) = 3 L;(D}). 3)
J
nmln SUZC?J SC?’nlaX,ViGC,

Zd” <DV Vjez, &
d" _c”,Vz'e(C,VjeZ,
¢ >0,VieC,Vj€Z

Here, p is average electricity transmission efficiency of the
local electricity trading. The objective function in Eq. (3) is
strictly concave with compact and convex constraints, so there
exists a unique optimal solution using Karush-Kuhn-Tucker
(KKT) conditions [16]. We carry out relaxation of constraints
yielding the following Lagrangian L;:
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Here, o, Bi, i, Aij, and p;; are Lagrange multipliers for the
constraints in Eq. (4). The corresponding sets are «, 3, v, A,
and p. From the stationary conditions, the optimal solution of
SW meets following conditions:
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For the social welfare maximization problem, it is necessary
for the energy broker to obtain true and complete information
of all PHEVs’ utility and cost functions, and thus to solve
the problem using Eqgs. (6) and (7). The complete information
of PHEVs includes current energy state, battery capacity and
so on, which is private information for PHEVs. However,
the PHEVs may not be willing to provide the above private
information to the energy broker. To address the issue, the
energy broker needs to design a mechanism to extract hid-
den information from the PHEVs. As each PHEV tries to

maximize its own utility, the PHEVs are price taking entities
that make the electricity trading market competitive. A double
auction is efficient to elicit the hidden information in a real and
competitive electricity trading market with enough PHEVs,
which is individually rational and weakly budget balanced
[17]. The individually rational and weakly budget balanced
characteristics of double auction mean that the PHEVs bid
truthfully according to privacy information and the energy bro-
ker would not lose money to conduct the auction, respectively.

V. ITERATIVE DOUBLE AUCTION MECHANISM

In this section, an iterative double auction mechanism is
proposed to elicit hidden information about PHEVs to energy
brokers in order to maximize social welfare. In a hotspot, an
energy broker acts as an auctioneer to perform an iterative
double auction according to buying prices from charging
PHEVs and selling prices from the discharging ones. In this
way, the auctioneer determines the final trading prices and the
amount of traded electricity, which is useful to avoid directly
revealing private information of PHEVs during electricity
trading. More specifically, each charging PHEV C'V; submits
a bid price b;; > 0 for each discharging PHEV DV} to the
auctioneer. And each discharging PHEV DV also submits
a bid price s;; > 0 for each charging PHEV CV; to the
auctioneer. After receiving these bid prices, the auctioneer
solves an optimal energy allocation problem based on the bids
from PHEVs, and thus allocates electricity for every PHEV to
achieve effective market equilibrium [17].

A. Entities in the Double Auction Mechanism

1) Charging PHEVs: The bid price vector of CV; for
buying energy in LAG,, is B} = {b |7 € Z}. All bid prices of

charging PHEVs in LAG,, are denoted as B 2 {BP|i € C}.
CV,; needs to solve the following optimal electricity buying
problem (E'B, buyer) to determine its optimal bid price:

EB : Tr]%c;_x[Ui(C?) — pay;(BY)], ®)

where pay;(B}') is the payment function of C'V; given by the
auctioneer.
2) Discharging PHEVs: The bid price vector of DV} for

selling electricity in LAG), is denoted as S} = {s i € C}.

The bid price matrix of selling electricity is S™ = {Sj'li € Z}.
DV solves an optimal electricity selling problem (ES, seller)
to determine its optimal bid price as follows:

ES : maz[Rew; (Sj') — L;(D}))], 9)

where Rew;(S}') is a reward function of DV} given by the
auctioneer.

3) Auctioneer: The bid price matrices from charging and
discharging PHEVs are submitted to the auctioneer for per-
forming an iterative double auction mechanism with multiple
iterations. The buyers and sellers respectively solve their
own optimal electricity buying and selling problems at each
iteration to update bid price vectors according to the auction-
eer’s newly allocated demand and supply, respectively. The



auctioneer solves the following optimal allocation problem A
to calculate the amount of traded electricity [18]:

I J
: ” no_ gt dh
A Jnax. E [bi; Incly — s3;d3;],

i=1 j=1

(10)

subject to the same constraints in Eq. (4). From Eq. (10), if the
bid prices of charging and discharging PHEVs are given, the
auctioneer can solve Problem A. Note that both Problems A
and SW have the same constraints. Problem A is also strictly
concave, which ensures that there exists a unique optimal
solution for A. For Eq. (10), we carry out constraint relaxation
through Lagrangian L,. To ensure that the optimal solution
of Problem A also solves Problem SW, it is necessary that
all KKT conditions along with the stationary conditions are
matched for both Problem A and Problem SW . Therefore,
Ly and L; have the same Lagrange multipliers. Applying the
stationary conditions yield

b
VC%LQ(CH7Dn7a7ﬁ7’Y7)‘HU’)zﬁ_nai—‘rnﬁi (11)
]

—Aij — pij =0,
vd;‘iLQ(Cnv Dnv a7ﬂ377 >‘) = 78;'12' + Vi + )\Up = 0. (12)

As the KKT conditions are the same, clearly, from Eqgs. (6),
(7), (11), and (12), it is known that

T

o nrey
v n,min ’ (13)
(n> e =+ 1)STO?
j=1
S;LZ = 2[16[?1- + 5. (14)

Note that, if the bid prices of charging and discharging PHEVs,
respectively, satisfy Eqgs. (13), and (14), both the optimal
solution of Problem A and Problem SW are the same.

B. Pricing Rules

The payment function of C'V; and the reward function of
DV are, respectively, expressed as

J
payi(BY) = > b, (15)
J
n d (S]n’b)2 min
Rewj(Sj):Z i, + (16)

min

For stimulation, r;™™ is a minimum reward for a discharging
PHEYV owing to the participation in local electricity trading.
Theorem 1: The pricing rules based on Egs. (15), and (16)
make the optimal buying price and optimal selling price satisfy
Egs. (13), and (14), respectively.
Proof: For CV;, the optimal buying price satisfies the
following condition from Eq. (8),

oU;(CY) B Opay;(BY') 0
oy, obr

a7

According to Eq. (15), we obtain, 6({5155?) - aUaf") ng B
%{?) = 1. Hence,
o O, — "
iy 80?- E J mymin |
] (13 ey = ™" + 1)STO;
i=

Here, Eq. (18) and Eq. (13) are the same.
For DV}, the optimal buying price satisfies the following
condition from Eq. (9),

ORew;(S})  9L;(Dy)

DsT a7, =0 (19)
According to Eq. (16), we obtain, ‘%‘;ig? ) —
SL(;;?) gj% = aRe(;Z;ES; ) = ;Z Thus, we have J
gjﬁ: - 211(2z1552. i) 20)
ij ji

Based on the Eq. (20), we consider that there exist linear
correlations between s7; and d7;. We can easily obtain that,

S?i = 2l1d§lz + 12. (21)

Eq. (21) and Eq. (14) are also the same. It is known that the
pricing rules based on Eq. (15) and Eq. (16) can make optimal
prices satisfy Eq. (13) and Eq. (14), respectively.

C. Algorithm Implementation

According to the proposed mechanism, the charging PHEVs
and the discharging PHEVs submit initial bid price vectors
(i.e., B™ and S™) based on their preferences to the auctioneer
in the first iteration. Through these initial bid prices, the
auctioneer solves Problem A to allocate the electricity demand
and supply based on their individual bids. The auctioneer
broadcasts a new allocation solution to the charging and dis-
charging PHEVs. Then these PHEVs solve their own Problem
ES and Problem EB in order to obtain optimal bid prices
for the next iteration. The auctioneer checks a termination
condition of Algorithm 1 based on newly submitted bid
prices from the PHEVs. Here, the termination condition is that
whether the newest bid prices satisfy the convergence criteria
(i.e., RDB < € and RDS < ¢) or not. If not, the entities in
this algorithm repeatedly execute the above steps. Problems
EB, ES, and A can be solved through multiple iterations.
Here, ¢ determines the execution time of Algorithm 1 and
accuracy of final results. When £ becomes smaller, the final
results will get closer to the optimal values but increase time
and iterations of the algorithm. Selection of the value of ¢ is
a tradeoff between time and accuracy of the algorithm.

In addition, auctioneers monitor localized P2P electricity
trading in real time. When some unexpected events happen,
e.g., abrupt disconnection of scheduled PHEVs, a trigger will
be activated. Then the auctioneers may restart Algorithm
1 and reinitialize parameters on demand. A new electricity
trading procedure is executed in time. Besides, similar to that
in [6], we consider that few PHEVs suddenly leave from
scheduled trades in parking lots during a specified scheduling



Algorithm 1 Iterative Double Auction Algorithm
(t) (t—1) (t)

/I RDB = by — by /b" , RDS =
n® nE=D |,
Sji T 55 Sji

1: Input: €,7n, 7, STO™;
2. Tnitialization: B* ,S»"
0;
3: while flag and ~ trigger do
4:  if Participating PHEVs of current localized P2P elec-
tricity trading change then

st <0, flag < 1, trigger <

5: trigger < 1, and the auctioneer terminates the
procedure and prepares to restart Algorithm 1.

6: else

7: Based on B™®) and S™®) the auctioneer solves

Problem A to get C“(t) and D“(t), and then broad-
casts the optimized results to charging PHEVs and
discharging PHEVs resPectlvely

8: Based on C*" and D™ chargmg PHEVs compute
their optimal bid prices g through solving
Problem EB, and submit them to the auctioneer;

9: Based on C* " and D" , discharging PHEVs com-
pute their optimal bid prices S“(Hl) through solving
Problem ES, and also submit them to the auctioneer;

10: t+—t+1;

11: if RDB < ¢ and RDS < ¢, then
12: flag <+ 0,t +t—1.

13: end if

14 end if

15: end while
16: Output: C»() Dr(®) Bn(t+1) gn(t+1)

time period. The abruptly disconnected PHEVs will be held
accountable and will be made pay for a penalty of disconnec-
tion. This algorithm is performed with acceptable overheads
in practice with low frequency of restart. More details on the
iterative double auction are given in Algorithm 1.
According to Egs. (18) and (21), it is known that each PHEV
will bid truthfully and maximize their own utilities through
solving Problems EB and ES. Each PHEV’s utility is non-
negative. Our proposed auction is weakly budget balanced be-
cause the auctioneer does not suffer any loss while conducting
the iterative double auction. Therefore, our proposed auction
is truthful, individually rational, weakly budget balanced. This
auction can achieve an optimal energy allocation solution
with optimal social welfare in the energy market, where the
auctioneer does not have complete information about PHEVs’
utility and cost functions for privacy protection [14], [17].

VI. SECURITY ANALYSIS AND NUMERICAL RESULTS
A. Security Analysis

PETCON has defense ability against many traditional se-
curity attacks through standard cryptographic primitives in-
cluding asymmetric and symmetric key-based encryption.
Meanwhile, the adversary cannot simulate an entity or forge
messages of an entity due to its attached digital signatures in
the messages.
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Fig. 4: Distribution of parking lots in the real map of Texas.

PETCON can also satisfy the following blockchain-related
security requirements: 1) Without reliance on the only trusted
third party: PHEVs trade electricity in a P2P manner without
a third party to make system robust and scalable. 2) Privacy
protection: Due to the iterative double auction mechanism,
PHEVs only submit bid prices to the auctioneer without
private information during trading. All energy coin accounts
of PHEVs are pseudonymous by multiple wallet addresses, it
is useful to protect identity privacy and account security. 3)
Wallet security: Without corresponding keys and certificates,
no adversary can open a PHEV’s wallet and steal energy
coins from the wallet. 4) Transaction authentication: With the
help of proof-of-work, all transaction data is publicly audited
and authenticated by authorized LAGs. It is impossible to
compromise all entities in our system due to overwhelming
cost. 5) Data unforgeability: The decentralized nature of
consortium blockchain combined with digitally-signed trans-
actions ensure that an adversary cannot pose as the user or
corrupt the network, as that would imply the adversary forged
a digital signature, or gained control over the majority of
system resources. 6) No double-spending: Energy coin relies
on digital signatures to prove ownership and a public history
of transactions to prevent double-spending.

B. Numerical Results

We evaluate the performance of the proposed iterative
double auction mechanism based on a real dataset [19] in a
real urban area of Texas [20]. The latitude of observed area
is from 30.256 to 30.276, and the longitude is from -97.76 to
-97.725. The observed area is approximately 2.22 x 3.88 km?
including 58 parking lots (Fig. 4). We formulate electricity
consumption behavior of PHEV as recorded in [19] and real
data analysis in [6]. Therefore, we set the battery capacity
of the PHEVs to 24 KWh. The minimum and maximum of
electricity demand for charging PHEVs are [5,10] KWh and
[12, 18] KWh, respectively. The maximum of electricity supply
for discharging PHEVs is [10,20] KWh. The cost factors of
cost function, i.e., Iy and Iy in Eq. (2), are set to 0.01 and
0.015, respectively. The average charging efficiency 7 is 0.8
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and the average electricity transmission efficiency p is 0.9.
The minimum reward for a discharging PHEV r;-ni“ randomly
ranges from 1 to 2 dollars. The convergence threshold ¢ is
0.001. We take a parking lot with 35 charging PHEVs and 45
discharging in LAG; as an example.

Fig. 5(a) shows the convergence evolution of social welfare
achieved by our Algorithm 1. Note that the social welfare
rapidly converges close to the optimal one (i.e., the dotted
line) after 12 iterations. Fig. 5(b) shows iteration convergence
comparison between Algorithm 1 used for PETCON and the
P2P energy trading algorithm in [6]. After 1000 experiments of
electricity trading with different energy demands from PHEVs,
the average converged iterations of Algorithm 1 is 11.9, which
is 36.7% less than that in [6]. From the figures, it is clear that
our proposed Algorithm 1 is faster than the algorithm in [6].

Fig. 6 shows performance comparison between our PET-
CON and a hybrid energy trading model in [7]. In the
hybrid energy trading model, energy buyers can not only
trade electricity with local energy seller but also with the
smart grid. Unlike so, we focus on localized P2P electricity
trading between charging PHEVs (i.e., energy buyers) and
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Fig. 6: (a) Average buying price and transmitted electricity,
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discharging PHEVs (i.e., energy sellers) with 90% electricity
transmission efficiency [21]. While there exist high energy
transmission losses between the smart grid and energy buyers
and sellers resulting in low transmission efficiency (only 70%)
[21]. Fig. 6(a) shows that when the sell-out price of the
smart grid for energy buyers is smaller than that of local
discharging PHEVs, the energy buyers obtain more benefits in
[7] because of lower average buying price. However, because
of high transmission losses, the average amount of transmitted
electricity from both energy sellers and the smart gird is higher
than that of PETCON. If the sell-out price of the smart grid
is too high, the energy buyers will buy electricity from local
energy sellers instead of the smart grid in [7], then obtain the
same benefits as our PETCON. Similar results can be found in
Fig. 6(b). Although the average selling price of energy sellers
increases with the increasing buy-back price given by the smart
grids in [7], the average available electricity for energy buyers
is decreasing because of higher energy losses during electricity
transmission. Therefore, compared with the trading model in
[7], our PETCON has less energy loss and higher electricity
utilization efficiency from the system’s perspective.
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Fig. 7(a) shows the convergence evolution of charged elec-
tricity and discharged electricity among PHEVs. Here, we
randomly choose a charging PHEV (C'V7) and a discharging
PHEV (DV;) to observe their convergence evolution. The
amount of C'V;’s charged electricity from all the discharging
PHEV converges when the number of iterations is 25, while
DV, also finally converges after 30 iterations. Fig. 7(b) shows
the convergence evolution of average payment for 35 charging
PHEVs and average reward of 45 discharging PHEVs. The
average payment of charging PHEVs for discharging PHEVs
finally converges to 2.50 dollars. And the average reward of
discharging PHEVs converges to 2.04 dollars after a few itera-
tions. The difference between payment of charging PHEVs and
reward of discharging PHEVs is the benefit of the auctioneer.

VII. CONCLUSION

We have proposed a localized P2P electricity trading model
for PHEVs in smart grids. A consortium blockchain has
been exploited to design a localized P2P electricity trading
system, where charging and discharging PHEVs can trade
electricity without reliance on a trusted third party. In this
model, an iterative double auction mechanism for charging and

discharging PHEVs is presented to maximize social welfare.
The LAGs work as auctioneers to carry out the double auction
among PHEVs according to their bid prices, which does not
require private information about PHEVs. Security analysis
shows that our proposed method can improve transaction
security and privacy protection. Numerical results based on a
real map indicate that the iterative double auction mechanism
maximizes the social welfare.
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