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Abstract: While the importance of automatic image analysis is continuously increasing, recent
meta-research revealed major flaws with respect to algorithm validation. Performance metrics are
particularly key for meaningful, objective, and transparent performance assessment and validation
of the used automatic algorithms, but relatively little attention has been given to the practical
pitfalls when using specific metrics for a given image analysis task. These are typically related
to (1) the disregard of inherent metric properties, such as the behaviour in the presence of class
imbalance or small target structures, (2) the disregard of inherent data set properties, such as the
non-independence of the test cases, and (3) the disregard of the actual biomedical domain interest
that the metrics should reflect. This living dynamically document has the purpose to illustrate
important limitations of performance metrics commonly applied in the field of image analysis. In
this context, it focuses on biomedical image analysis problems that can be phrased as image-level
classification, semantic segmentation, instance segmentation, or object detection task. The current
version is based on a Delphi process on metrics conducted by an international consortium of image
analysis experts from more than 60 institutions worldwide.
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AP Average Precision
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AUROC Area under the Receiver Operating Characteristic curve
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DSC Dice Similarity Coefficient

FN False Negative

FP False Positive

FPPI False Positives per Image

FPR False Positive Rate

FROC Free-Response Receiver Operating Characteristic
HD Hausdorff Distance

HD95 Hausdorff Distance 95% percentile
IoU Intersection over Union

MCC Matthews Correlation Coefficient
NPV Negative Predictive Value

NSD Normalized Surface Distance
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ROC Receiver Operating Characteristic
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2 PURPOSE

Validation of biological and medical image analysis algorithms is of the utmost importance for
making scientific progress and for translating methodological research into practice. Validation
metrics!, the measures according to which performance of algorithms is quantified, constitute a core
component of validation design. While metrics can measure various quantities of interest, including
speed, memory consumption or carbon footprint, most metrics applied today are reference-based
metrics, which have the purpose of measuring the agreement of an algorithm prediction with a
given reference. The reference, in turn, serves as an approximation of the (typically unknown)
ground truth.

Knowing the properties of metrics in use and making educated choices is essential for meaningful
and reliable validation in image analysis. Although several papers highlight specific strengths and
weaknesses of common metrics [13, 25, 26, 31, 50], an international survey [30] revealed the choice
of inappropriate metrics as one of the core problems related to performance assessment in medical
image analysis. Similar problems are present in other imaging domains [10, 16]. Under the umbrella
of the Helmholtz Imaging Platform (HIP)?, three international initiatives have now joined forces
to address these issues: the Biomedical Image Analysis Challenges (BIAS) initiative®, the Medical
Image Computing and Computer Assisted Interventions (MICCAI) Society’s special interest group
on challenges?, as well as the benchmarking working group of the MONAI framework®. A core
mission is to provide researchers with guidelines and tools to choose the performance metrics
in a problem- and context-aware manner. This dynamically updated document aims to illustrate
important pitfalls and drawbacks of metrics commonly applied in the field of image analysis. The
current version is based on a Delphi process on metrics conducted with an international consortium
of medical image analysis experts. A Delphi process is a multi-stage survey process designed to
pool the knowledge of several experts to arrive at a consensus decision [4].

The Delphi consortium focused on problems reporting biomedical research that can be phrased
as image-level classification, semantic segmentation, instance segmentation or object de-
tection (Figure 1). Essentially, these can all be interpreted as a classification task at different scales
and thus share many aspects in terms of validation (Figure 2). For example, an object detection task
can be interpreted as an object-/instance-level classification task, while a segmentation task can
be interpreted as a pixel-level classification task. We will refer to these four different task types
as problem categories. Please note that we will use the term "pixel" even for three-dimensional (or
n-dimensional) images for increased readability instead of referring to "pixels/voxels". Most of the
examples are shown for two-dimensional images and can be translated to the n-dimensional case.

The manuscript is structured as follows. As a foundation, we first review the most commonly
applied metrics for the problem categories addressed in this paper (Sec. 3). Since a common problem
in the biomedical image analysis community is the selection of metrics from the wrong problem
category, Sec. 4 highlights pitfalls relevant in this context. The following sections then present
pitfalls for image-level classification (Sec. 5), image segmentation, including semantic and instance
segmentation (Sec. 6), and object detection, including instance segmentation (Sec. 7). Finally, cross-
topic pitfalls are highlighted (Sec. 8). An overview of all figures is presented in Table 1.

Inot to be confused with distance metrics in the strict mathematical sense
2https://www.helmholtz-imaging.de/
3https://www.dkfz.de/en/cami/research/topics/biasInitiative.html
4https://miccai.org/index.php/special-interest-groups/challenges/
Shttps://monai.io/
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Problem categories addressed by this paper

Fig. 1. Problem categories covered in this paper and illustrated for three different application domains:
radiology (left), cell biology (middle), surgery (right). The common denominator of the underlying
research problems is the fact that they can be interpreted as classification tasks. The classification
occurs at various scales, image level, object level and/or pixel level. Each of these tasks assigns a
class label to the image or (multiple) components of it. (A) The image-level classification task
involves assigning a class label to the whole image. (B) The semantic segmentation task involves
assigning a class label to each individual pixel. (C) The object detection task assigns a class label to
identified objects. (D) The instance segmentation task assigns a label to identified objects made
up of multiple pixels. Gray boxes show the predicted class probabilities on image level, pixel level
or object level. The class with the highest probability is shown in bold. Further abbreviations: Red
Blood Cell (RBC), White Blood Cell (WBC).
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Table 1. Overview of figures on pitfalls related to metrics classified into (1) pitfalls due to category-metric
mismatch, (2) category-specific pitfalls and (3) cross-topic pitfalls. For each illustration, the corresponding
figure and page number is given. Please note that the pitfalls are typically illustrated for only one or two
problem categories but often also apply to other problem categories, as indicated in the table.

Source of potential pitfall Figure(s)
Pitfalls due to category-metric mismatch

Mismatch: Semantic segmentation <> object detection Fig. 14 (Page 28)

Mismatch: Semantic < instance segmentation Fig. 15 (Page 29)

Mismatch: Image-level classification <> object detection Fig. 16 (Page 31)

No matching problem category Fig. 17 (Page 32)

Pitfalls in image-level classification
High class imbalance
More than two classes available
Unequal importance of classes
Interdependencies between classes
Stratification based on meta-information
Missing prevalence correction
Upper bound in Cohen’s k not equally obtainable
Multi-threshold metric-related properties (here: pitfalls illustrated for object detection problems)

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

18 (Page 34)
19 (Page 35)
20 (Page 37)
21 (Page 38)
22 (Page 39)
23 (Page 40)
24 (Page 42)
45 (Page 71)
46 (Page 72)
47 (Page 73)

Pitfalls in semantic segmentation
Small size of structures relative to pixel size
(here: pitfall illustrated for object detection problems)
High variability of structure sizes
Complex shape of structures
Particular importance of structure volume
Particular importance of structure center
Particular importance of structure boundaries
(here: pitfall illustrated for object detection problems)
(here: pitfall illustrated for object detection problems)
Possibility of multiple labels per unit
Noisy reference standard
Possibility of outliers in reference annotation
Possibility of reference or prediction without target structure(s)
Dependency on image resolution
Over- vs. undersegmentation
Choice of global decision threshold
High class imbalance (here: pitfall illustrated for image-level classification problems)
More than two classes available (here: pitfall illustrated for image-level classification problems)
Unequal importance of classes (here: pitfall illustrated for image-level classification problems)
Interdependencies between classes (here: pitfall illustrated for image-level classification problems)

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

25 (Page 45)
41 (Page 66)
26 (Page 46)
27 (Page 48)
. 28 (Page 49)
. 29 (Page 50)
. 30 (Page 52)
. 41 (Page 66)
. 42 (Page 67)
. 31 (Page 53)
. 32 (Page 54)
. 33 (Page 55)
. 34 (Page 57)
. 35 (Page 58)
. 36 (Page 59)
37 (Page 60)
18 (Page 34)
19 (Page 35)
20 (Page 37)
21 (Page 38)

Pitfalls in object detection
Mathematical implications of center-based localization criteria
Mathematical implications of JoU-based localization criterion
Type of the provided annotations
Effect of small structures on localization criterion
(here: pitfall illustrated for semantic segmentation problems)

Perfect Boundary IoU for imperfect prediction

Fig.
Fig.
Fig.

Fi
Fi
Fi

[

g
g

e
a

38 (Page 62)
39 (Page 64)
40 (Page 65)
. 41 (Page 66)
. 25 (Page 45)
. 42 (Page 67)



Possibility of reference or prediction without target structure(s)
(here: pitfall illustrated for semantic segmentation problems)

Average Precision vs. Free-response ROC score

Multi-threshold metric-related properties

High class imbalance (here: pitfall illustrated for image-level classification problems)

More than two classes available (here: pitfall illustrated for image-level classification problems)
Unequal importance of classes (here: pitfall illustrated for image-level classification problems)
Interdependencies between classes (here: pitfall illustrated for image-level classification problems)
Particular importance of structure center (here: pitfall illustrated for semantic segmentation problems)
High variability of structure sizes (here: pitfall illustrated for semantic segmentation problems)
Complex shape of structures (here: pitfall illustrated for semantic segmentation problems)
Possibility of multiple labels per unit (here: pitfall illustrated for semantic segmentation problems)
Noisy reference standard (here: pitfall illustrated for semantic segmentation problems)

Possibility of outliers in reference annotation (here: pitfall illustrated for semantic segmentation
problems)

Choice of global decision threshold (kere: pitfall illustrated for semantic segmentation problems)

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
g.
Fig.
Fig.
Fig.
Fig.
Fig.

Fi

[

Fig.
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43 (Page 69)
34 (Page 57)
44 (Page 70)
45 (Page 71)
46 (Page 72)
47 (Page 73)
18 (Page 34)
19 (Page 35)
20 (Page 37)
21 (Page 38)
29 (Page 50)
26 (Page 46)
27 (Page 438)
31 (Page 53)
32 (Page 54)
33 (Page 55)

37 (Page 60)

Pitfalls in instance segmentation
Small size of structures relative to pixel size

High variability of structure sizes

Complex shape of structures

Particular importance of structure volume
Particular importance of structure center
Particular importance of structure boundaries

Possibility of multiple labels per unit

Noisy reference standard

Possibility of outliers in reference annotation

Possibility of reference or prediction without target structure(s)

Dependency on image resolution

Over- vs. undersegmentation

Choice of global decision threshold

Mathematical implications of center-based localization criteria
Mathematical implications of JoU-based localization criterion
Effect of small structures on localization criterion

Perfect Boundary IoU for imperfect prediction
Average Precision vs. Free-response ROC score
Multi-threshold metric-related properties

High class imbalance (here: pitfall illustrated for image-level classification problems)

More than two classes available (here: pitfall illustrated for image-level classification problems)
Unequal importance of classes (here: pitfall illustrated for image-level classification problems)
Interdependencies between classes (here: pitfall illustrated for image-level classification problems)

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

25 (Page 45)
. 41 (Page 66)
. 26 (Page 46)
. 27 (Page 48)
. 28 (Page 49)
. 29 (Page 50)
. 41 (Page 66)
. 42 (Page 67)
. 30 (Page 52)
. 31 (Page 53)
. 32 (Page 54)
. 33 (Page 55)
. 34 (Page 57)
. 43 (Page 69)
. 35 (Page 58)
. 36 (Page 59)
. 37 (Page 60)
. 38 (Page 62)
. 39 (Page 64)
. 41 (Page 66)
. 25 (Page 45)
42 (Page 67)
44 (Page 70)
45 (Page 71)
46 (Page 72)
47 (Page 73)
18 (Page 34)
19 (Page 35)
20 (Page 37)
21 (Page 38)
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Cross-topic pitfalls

Uninformative visualization Fig. 48 (Page 75)
Metric aggregation for invalid algorithm output (e.g. NaNs) Fig. 49 (Page 76)

Fig. 50 (Page 77)
Hierarchical data aggregation Fig. 51 (Page 78)
Aggregation per class Fig. 52 (Page 79)
Metric combination Fig. 53 (Page 80)

3 FUNDAMENTALS

The present work focuses on biomedical image analysis problems that can be interpreted as a
classification task at image, object or pixel level. The vast majority of metrics for these problem
categories is directly or indirectly based on epidemiological principles of True Positive (TP), False
Negative (FN), False Positive (FP), True Negative (TN), i.e. the cardinalities of the so-called confusion
matrix, depicted in Figure 2. The TP/FN/FP/TN, from now on referred to as cardinalities, can occur
at image (segment), object or pixel level. They are typically computed by comparing the prediction
of the algorithm to a reference annotation. Modern neural network-based approaches typically
require a threshold to be set in order to convert the algorithm output comprising predicted class
probabilities® (also referred to as continuous class scores) to a confusion matrix, as illustrated in
Figure 2. For the purpose of metric recommendation, the available metrics can be broadly classified
as follows:

¢ Single-threshold counting metrics operate directly on the confusion matrix and express
the metric value as a function of the cardinalities (see Figures 3, 4 and 6). In the context of
segmentation, they have typically been referred to as overlap-based metrics [47]. Popular
examples are Sensitivity, Specificity, Precision, Accuracy, Dice Similarity Coefficient (DSC) and
Intersection over Union (IoU).

e Multi-threshold metrics operate on a dynamic confusion matrix, reflecting the conflicting
properties of interest, such as high Sensitivity and high Specificity. Popular examples include
the Area under the Receiver Operating Characteristic curve (AUROC) (see Figure 5) and Average
Precision (AP) (see Figure 11).

¢ Distance-based metrics have been designed for semantic and instance segmentation tasks.
They operate exclusively on the TP and rely on the explicit definition of object boundaries
(see Figures 7 and 8). Popular examples are the Hausdor{f Distance (HD) and the Normalized
Surface Distance (NSD) (see Figure 8).

Depending on the context (e.g. image-level classification vs. semantic segmentation task) and the
community (e.g. medical imaging community vs. computer vision community), identical metrics are
referred to with different terminology. For example, Sensitivity, True Positive Rate (TPR) and Recall
refer to the same concept. The same holds true for the DSC and the F1 score. The most relevant
metrics for the problem categories in the scope of this paper are introduced in the following.

Most metrics are recommended to be applied per class, meaning that a potential multi-class
problem is converted to multiple binary classification problems, such that each relevant class serves
as the positive class once. This results in different confusion matrices depending on which class is
used as the positive class.

%Please note that we refer to pseudo-probabilities.
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Relationships between metric families

Fig. 2. Most popular metric families and their relationships relevant for the problem categories
addressed by this paper. The vast majority of metrics is directly or indirectly based on the cardinalities
of the confusion matrix. The available metrics can be broadly classified into single-threshold
counting metrics that operate directly on the confusion matrix generated for a fixed threshold,
multi-threshold metrics that operate on a dynamic confusion matrix (depending on threshold) and
distance-based metrics that take into account the structure contour(s) or other spatial information,
such as the structure center. Further abbreviations: Area under the Receiver Operating Characteristic
curve (AUROC), Average Precision (AP), Dice Similarity Coefficient (DSC), False Positives per Image
(FPPI), False Positive Rate (FPR), Hausdorff Distance (HD), Intersection over Union (loU), Normalized
Surface Distance (NSD), Positive Predictive Value (PPV), True Negative Rate (TNR), True Positive
Rate (TPR).
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3.1 Image-level Classification

Image-level classification refers to the process of assigning one or multiple labels, or classes
to an image. If there is only one class of interest (e.g. cancer vs. no cancer), we speak of binary
classification, otherwise of categorical classification. Modern algorithms usually output predicted
class probabilities (or continuous class scores) between 0 and 1 for every image and class, indi-
cating the probability of the image belonging to a specific class. By introducing a threshold (e.g.
0.5), predictions are considered as positive (e.g. cancer = true) if they are above the threshold or
negative if they are below the threshold. Afterwards, predictions are assigned to the cardinalities
(e.g. a cancer patient with prediction cancer = true is considered as TP) [11]. The most popular
classification metrics are single-threshold counting metrics, operating on a confusion matrix with
fixed threshold on the class probabilities, and multi-threshold metrics, as detailed in the following.

Single-threshold counting metrics

Figures 3 and 4 present the most common binary single-threshold counting metrics used for
image-level classification. Please note that these metrics are also commonly used in segmentation
and object detection tasks. For segmentation tasks, they are often referred to as overlap-based
metrics. Each of the presented metrics covers specific properties.

The Sensitivity (also referred to as Recall, TPR or Hit rate) focuses on the actual positives (TP
and FN) and represents the fraction of positives that were correctly detected as such. In contrast,
Precision (or PPV) divides the TP by the total number of predicted positive cases, thus aiming to
represent the probability of a positive prediction corresponding to an actual positive. A value of 1
would imply that all positive predicted cases are actually positives, but it might still be the case
that positive cases were missed. Please note that the term Precision has multiple meanings. In the
context of computer assisted interventions, for example, it typically refers to the measured variance.
Hence, the usage of its synonym PPV may be preferred.

In analogy to the Sensitivity for positives, Specificity (also referred to as Selectivity or TNR)
focuses on the negative cases by computing the fraction of negatives that were correctly detected
as such. Similarly to the Precision, the Negative Predictive Value (NPV) divides the TN by the total
number of predicted negative cases and measures how many of the predicted negative samples
were actually negative. Specificity and NPV require the definition of TN cases, which is not always
possible. In object detection tasks, for example (see Sec. 3.3), TN are typically ill-defined and not
provided. Therefore, these measures can not be computed in those cases.

As illustrated in Figure 18, reporting of a single metric like Sensitivity, Precision or Specificity can
be highly misleading because, for example, non-informative classifiers can achieve high values on
imbalanced classes. The F1 score (also known as DSC in the context of segmentation), overcomes
this issue by representing the harmonic mean of Precision and Sensitivity and therefore penalizing
extreme values of either metric [15], while being relatively robust against imbalanced data sets [46].
The F1 score is a specification of the Ff score, which adds a weighting between Precision and
Sensitivity, or more specifically a weighting between FP and FN samples. All of the metrics presented
so far are bounded between 0 and 1 with 1 representing a perfect value and 0 the worst possible
prediction of this metric. However, all of them rely on the definition of the positive class, which may
be straightforward in some cases but can be based on a rather arbitrary choice in others. Notably,
metric values may be completely different depending on the choice of positive class.

To overcome the need for selecting one class as the positive class, other metrics have been
suggested that can be based on all entries of a multi-class confusion matrix, in which each class
is assigned a row and a column of the matrix. The Accuracy is one of the most commonly used
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metrics and measures the ratio between all correct predictions (TP and TN) and the total number of
samples. Accuracy is not robust against imbalanced data sets (see Figure 18), and is therefore often
replaced by the more robust Balanced Accuracy that averages the Sensitivity over all classes [14].
The Matthews Correlation Coefficient (MCC), also known as Phi Coefficient, measures the correlation
between the actual and predicted class. The metric is bounded between -1 and 1, with high positive
values referring to a good prediction which can only be achieved when all cardinalities are good, i.e.
with a low number of FP/FN and high TP/TN. Another popular metric is Cohen’s Kappa x, which
calculates the agreement between the reference and prediction while incorporating information on
the agreement by chance. It is therefore a form of chance-corrected Accuracy. Similarly to MCC, it
incorporates all values of the confusion matrix and is bounded between -1 and 1. In contrast to
MCC, negative values do not indicate anti-correlation, but less agreement than expected by chance.
Cohen’s Kappa k can be generalized by introducing a weighting scheme for the cardinalities in the
Weighted Cohen’s Kappa k metric. For those three metrics, a value of 0 refers to a prediction which
is not better than random guessing. All of the presented binary single-threshold counting metrics
can be transferred to the multi-class case [14, 17], where MCC and (Weighted) Cohen’s Kappa k
have explicit definitions, whereas the others become the implicit result of an aggregation across a
rotating one-versus-the-rest binary perspective for each of the classes.

Multi-threshold metrics

The classical single-threshold counting metrics presented above rely on fixed thresholds to be set
on the predicted class probabilities (if available), resulting in them being based on the cardinali-
ties of the confusion matrix. Multi-threshold metrics overcome this limitation by calculating
metric scores based on multiple thresholds. For instance, to emphasize how well a prediction
distinguishes between the positive and negative class, the AUROC can be utilized. The Receiver
Operating Characteristic (ROC) curve plots the FPR, which is equal to 1 — Specificity, against the
Sensitivity for multiple thresholds of the predicted class probabilities, contrarily to just choosing one
fixed threshold. For computation of the ROC curve, the class scores can be ordered in descending
order and each score regarded as a potential threshold. For each threshold, the resulting Sensitivity
and Specificity are computed, and the resulting tuple is added to the ROC curve as one point (cf.
Figure 5); note that the lower the threshold, the higher the Sensitivity but the lower (potentially)
the Specificity. This leads to a monotonic increase of the curve. To interpolate between all points,
meaning to approximate the values between the calculated Sensitivity and Specificity tuples, a
simple linear interpolation can be employed by drawing a line between each pair of points [11].
An optimal classifier would lead to Sensitivity and Specificity of 1 (1-Specificity of 0), therefore
corresponding to a single point (0, 1) on the ROC curve. In contrast, a classifier with no skill level
(random guessing) would result in a diagonal line from (0, 0) to (1, 1) (dashed line in Figure 5). The
area under the ROC curve is referred to as AUROC, also called AUC ROC or simply AUC.

AUROC comes with two advantages: threshold and scale invariance. AUROC measures the
quality of the predictions regardless of the threshold, as it is calculated over a number of thresholds.
Furthermore, AUROC does not focus on the absolute values of predictions, but rather on how well
they are ranked. However, those properties are not always desired. If a specific penalization of
FP or FN is desired (cf. Figure 20), AUROC is not the best metric choice as it is invariant to the
threshold. If the predicted class probabilities are desired to be well calibrated, the scale invariance
feature will prevent from doing so.

Per definition, AUROC measures the complete area under the ROC curve. If only a specific range
is of interest, a partial or ranged AUROC can also be computed [29]. Similarly, metrics can be
assessed at a certain point of the ROC curve, for example the Sensitivity value at a specific score of
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the Specificity (e.g. 0.9), also referred to as Sensitivity@Specificity. This approach can similarly be
used for other curve measures, e.g. the Precision-Recall (PR) curve, introduced in Sec. 3.3.

Common binary classification metrics: Single-threshold counting-based (part 1)

Confusion matrix
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Fig. 3. Overview of the most commonly used binary classification measures that are based on the
cardinalities of the confusion matrix, i.e. the true (T)/false (F) positives (P)/negatives (N).
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mon binary classification metrics: Single-threshold counting-based (part 2)
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Fig. 4. Overview of the most commonly used binary classification measures that are based on the
cardinalities of the confusion matrix, i.e. the true (T)/false (F) positives (P)/negatives (N).
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Common classification metrics: Multi-threshold-based

Fig. 5. Principle of multi-threshold metrics. Rather than being based on a static threshold (e.g. for
generating the confusion matrix), multi-threshold-based metrics integrate over a range of thresholds.
Prominent examples are the Area under the Receiver Operating Characteristic curve (AUROC) (also
known as Area under the curve (AUC) or AUC Receiver Operating Characteristic (ROC)) and the Area
under the Precision-Recall (PR) curve (AUC PR). Cardinalities, i.e. the true (T)/false (F) positives
(P)/negatives (N), are computed based on a threshold (e.g. 0.5) of predicted class probabilities (left).
Based on those values, Sensitivity and 1 - Specificity/ Precision are calculated and plotted against each
other (right). The procedure is repeated for several thresholds, resulting in the ROC/PR curve. The
area under the ROC/PR curve is referred to as AUROC/AUC PR. The latter is often interpolated by
the Average Precision (AP) metric as detailed in Figure 11. The dashed gray lines refer to a classifier
with no skill level (random guessing).
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3.2 Semantic Segmentation

Semantic segmentation Semantic segmentation is commonly defined as the process of partition-
ing an image into multiple segments/regions. To this end, one or multiple labels are assigned to
every pixel such that pixels with the same label share certain characteristics. Semantic segmentation
can therefore also be regarded as pixel-level classification. As in image-classification problems,
predicted class probabilities are typically calculated for each pixel deciding on the class affiliation
based on a threshold over the class scores [2]. In semantic segmentation problems, the pixel-level
classification is typically followed by a post-processing step, in which connected components are
defined as objects, and object boundaries are created accordingly. Semantic segmentation metrics
can roughly be classified into three classes: (1) single-threshold counting metrics or overlap-based
metrics, for measuring the overlap between the reference annotation and the prediction of the
algorithm, (2) distance-based metrics, for measuring the distance between object boundaries, and
(3) problem-specific metrics, measuring, for example, the volume of objects.

Single-threshold counting metrics

The most frequently used segmentation metrics are single-threshold counting metrics. In the
context of segmentation they are also referred to as overlap metrics, as they essentially measure
the overlap between a reference mask and the algorithm prediction. According to a comprehensive
analysis of biomedical image analysis challenges [30], the DSC [12] is the by far most widely used
metric in the field of medical image analysis. As illustrated in Figure 6, it yields a value between 0
(no overlap) and 1 (full overlap). The DSC is identical to the FI score and closely related to the IoU,
which is identical to the Faccard Index:

_ DsC ) Dsc - 20U )

~ 2-DSC M ~ 1+1oU @
Distance-based metrics
Overlap-based metrics are often complemented by distance-based metrics that operate exclu-
sively on the TP and compute one or several distances between the reference and the prediction.
Apart from a few exceptions, distance-based metrics are often boundary-based metrics which fo-
cus on assessing the accuracy of object boundaries. According to [30], the HD and its 95% percentile
variant (Hausdorff Distance 95% percentile (HD95)) [18] are the most commonly used boundary-based
metrics. The HD calculates the maximum of all shortest distances for all points from one object
boundary to the other, which is why it is also known as the Maximum Symmetric Surface Distance
[53]. The HD95 calculates the 95% percentile instead of the maximum, therefore disregarding out-
liers. Another popular metric is the Average Symmetric Surface Distance (ASSD), measuring the
average of all distances for every point from one object to the other and vice versa [51, 53] (see
Figure 7). For the HD(95) and ASSD metrics, a value of 0 refers to a perfect prediction (distance of 0
to the reference boundary), while there exists no fixed upper bound.

IoU

A major problem related to boundary-based metrics are the error-prone reference annotations
(see Figures 32 and 33). In fact, domain experts often disagree on the definition and annotation
of objects and their boundaries [22]. While the HD(95) and ASSD are not robust with respect to
uncertain reference annotations, the NSD was explicitly designed for this purpose as a hybrid metric
between boundary-based and counting-based approaches. Known uncertainties in the reference
as well as acceptable deviations of the predicted boundary from the reference are captured by a
threshold 7 [38], as shown in Figure 8. Only boundary parts within the border regions defined by
are counted as TP. The metric is bounded between 0 (no boundary overlap) and 1 (full boundary
overlap), so that it can be interpreted similarly to the classical DSC (though restricted to the
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boundary). Please note that 7 is another important hyperparameter which should be chosen wisely,
based on inter-rater agreement, for example. Another option for addressing inter-rater variability
is the Boundary IoU (cf. Figure 9). It measures the overlap of boundaries while capturing tolerable
uncertainties with a distance parameter d (see Sec. 3.3 for details) and is similarly bounded between
0 and 1.

Problem-specific segmentation metrics

While overlap-based metrics and distance-based metrics are the standard metrics used by the
general computer vision community, biomedical applications often have special domain-specific
requirements. In medical imaging, for example, the actual volume of an object may be of particular
interest (for example tumor volume). In this case, volume metrics like the Absolute or Relative
Volume Error and the Symmetric Relative Volume Difference can be computed [35]. However, they are
less common than overlap metrics, as the location of objects is not considered at all (see Figure 29).
If the structure center or center line is of particular interest (e.g. in cells or vessels) connectivity
metrics come into play, which measure the agreement of the center line between two objects. This
is of special interest if linear or tube-like objects are present in a data set. For this purpose, the
center line Centerline Dice Similarity Coefficient (cIDice) [44] has been designed.

Common segmentation metrics: Overlap-based

Fig. 6. Most commonly used overlap-based segmentation metrics: (a) the Dice Similarity Coefficient
(DSC) and (b) the Intersection over Union (loU), with |A| denoting the cardinality of set A, AN B the
intersection between sets A and B, and A U B the union of sets A and B. The DSC can furthermore
be computed as the harmonic mean of Precision and Sensitivity. Note that the DSC is equivalent to
the F1 score and the loU is equivalent to the Jaccard index.
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Common segmentation metrics: Boundary-based

Fig. 7. Most commonly used distance-based segmentation metrics: (a) the Hausdorff Distance (HD),
(b) the 95% percentile (denoted as x95) of the HD, Hausdorff Distance 95% percentile (HD95) and (c)
the Average Symmetric Surface Distance (ASSD), with d(x, y) denoting the Euclidean distance between
boundary pixels x and y. Only True Positive (TP) are considered.
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Common segmentation metrics: Normalized Surface Distance (NSD)

Fig.8. (a) The Normalized Surface Distance (NSD) is an uncertainty-aware segmentation metric that
measures the overlap between two boundaries. The parameter 7 represents the tolerated difference
between the prediction and the reference boundary S and defines the border regions B(7) for each
structure, i.e. the pixels within the range of 7 from the boundary. They are defined as all pixels within
distance 7 from the boundary S. The threshold can be based on the domain-related requirements
and/or the inter-rater variability, for example. (b) Example showing how the NSD can handle outliers
in the prediction by adjusting the tolerance value to = 2 pixels. The Dice Similarity Coefficient (DSC)
and other metrics (Intersection over Union (loU), Hausdorff Distance (HD)(95), Average Symmetric
Surface Distance (ASSD)), in contrast, penalize these tolerated errors.
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3.3 Object Detection

Object detection refers to the detection of one or multiple objects (or: instances) of a particular
class (e.g. lesion) in an image [28]. The following description assumes single-class problems, but
translation to multi-class problems is straightforward, as validation for multiple classes on object-
level is performed individually per class. Notably, as multiple predictions and reference instances
may be present in one image, the predictions need to include localization information, such that a
matching between reference and predicted objects can be performed. Important design choices
with respect to the validation of object detection methods include:

(1) How to represent an object? Representation is typically composed of location information and
a class affiliation. The former may take the form of a bounding box (i.e. a list of coordinates),
a pixel mask, or the object’s center point. Additionally, modern algorithms typically assign a
confidence value to each object, representing the probability of a prediction corresponding
to an actual object of the respective class. Note that a confusion matrix is later computed for
a fixed threshold on the predicted class probabilities.”

(2) How to decide whether a reference instance was correctly detected? This step is achieved by
applying the localization criterion. This may, for example, be based on comparing the object
centers of the reference and prediction or computing their overlap (Figures 38 and 39).

(3) How to resolve assignment ambiguities? The above step might lead to ambiguous matchings,
such as two predictions being assigned to the same reference object. Several strategies exist
for resolving such cases.

The following sections provide details on (1) applying the localization criterion, (2) applying the
assignment strategy and (3) computing the actual performance metrics.

Localization criterion

As one image may contain multiple objects or no object at all, the localization criterion or
hit criterion measures the (spatial) similarity between a prediction (represented by a bounding
box, pixel mask, center point or similar) and a reference object. It defines whether the prediction
hit/detected (TP) or missed (FP) the reference. Any reference object not detected by the algorithm is
defined as FN. Please note that TN are not defined for object detection tasks, which has several
implications on the applicable metrics, as detailed below.

There are multiple ways to define the localization or hit criterion (see Figures 6, 9 and 38).
Popular center-based localization criteria are (a) the center-cover criterion, for which the reference
object is considered hit if the center of the reference object is inside the predicted detection, (b)
the distance-based hit criterion, which considers a TP if the distance d between the center of the
reference and the detected object is smaller than a certain threshold 7 and (c) the center-hit criterion,
which holds true if the center of the predicted object is inside the reference bounding box or mask.

The most commonly used overlap-based hit criterion is determined by computing the IoU [19]
(cf. Figure 6b). The prediction is considered as TP if the overlap is larger than a certain threshold
(e.g. 0.3 or 0.5) and as FP otherwise. If bounding boxes are considered, the IoU is computed between
the reference and predicted bounding boxes (Box IoU). For more fine-grained annotations in form
of a pixel mask, the IoU may be computed for the complete mask (Mask IoU). The Mask IoU is less
sensitive to structure boundary quality in larger objects (cf. Section 6). This is due to the fact that
boundary pixels will increase linearly while pixels inside the structure will increase quadratically

"Please note that we will use the term confidence scores analogously to predicted class probabilities in the context of object
detection and instance segmentation.
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with an increase in structure size. The Boundary IoU measures the IoU of two structures for mask
pixels within a certain distance d from the structure boundaries [8], as illustrated in Figure 9.

Common localization criterion: Boundary Intersection over Union (Boundary IoU)

Fig. 9. The Boundary Intersection over Union (Boundary loU) is an uncertainty-aware metric that
measures the overlap between two boundaries. The overlap is computed for the structures A and B
for mask pixels within a certain distance d from the structure boundaries (A4 and By), by computing
the loU between A; and By.

The localization criterion should be carefully chosen according to the underlying motivation and
research question and depending on the available coarseness of annotations. However, it should
be noted that annotations of a lower resolution will result in an information loss, as illustrated
in Figure 10. For example, the Box IoU is sometimes used although pixel-mask annotations are
available because algorithms are expected to output rough localization in the shape of boxes. Such
a simplification might cause problems if structures are not well-approximated by a box shape, or if
structures can overlap causing multi-component masks (cf. Section 7, Figure 40). Lastly, it should
be noted that the decision for a cutoff value on the localization criterion leads to instabilities in
the validation (e.g. see Figure 39). For this reason, it is common practice in the computer vision
community to average metrics over multiple cutoff values (default for IoU criteria: 0.5, 0.6, 0.7, 0.8,
0.9). Generally speaking, the cutoff values should be chosen according to the driving biomedical
question. For example, if a particular interest lays on the exact outlines, higher thresholds should
be chosen. On the other hand, for noisy reference standards, a low cutoff value is preferable.
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Discarding information of provided annotations

Information loss Information loss
%
Mask/Boundary loU Box loU Center point criterion

Fig. 10. Selection of a localization criterion that discards spatial information should be well motivated
by the given task.

Assignment strategy

The localization criterion alone is not sufficient to extract the final confusion matrix based on a
fixed threshold for the predicted class probabilities (confidence scores), as ambiguities can occur. For
example, two predictions may have been assigned to the same reference object in the localization
step, or vice versa. These ambiguities need to be resolved in a further assignment step.

This assignment and thus the resolving of potential assignment ambiguities can be done via
different strategies. The most common strategy in the computer vision community is the Greedy
by Score strategy. All predictions in an image are ranked by their predicted class probability and
iteratively (starting with the highest probability) assigned to the reference object with the highest
localization criterion for this prediction. The selected reference object is subsequently removed
from the process since it can not be matched to any other prediction (unless double assignments
are allowed). The Hungarian Matching [27] is associated with a cost function, usually depending
on the localization criterion, which is minimized to find the optimal assignment of predictions and
reference. In the biomedical domain, more sophisticated matching strategies are often avoided by
setting the localization criterion threshold to IoU > 0.5 and only allowing non-overlapping object
predictions (which inherently avoids matching conflicts). In the case of a high ratio of touching
reference objects and common non-split errors, meaning that one prediction overlaps with multiple
reference objects, the Intersection over Reference (IoR) [32] might be considered as an alternative
to IoU [32].



Common Limitations of Image Processing Metrics: A Picture Story 23

Metric computation

Similar to image-level classification and semantic segmentation algorithms, object detection algo-
rithms are commonly assessed with single-threshold counting metrics, assuming a fixed confusion
matrix, (cf. Figures 3 and 4). However, one of the most popular object detection metrics is the
multi-threshold metric Average Precision (AP) [28], which is the area under the Precision-Recall (PR)
curve for a certain interpolation scheme. The PR curve is computed similarly to the ROC curve by
scanning over confidence thresholds and computing the Precision and Recall (Sensitivity) for every
threshold (cf. Figure 5). Note in this context that the popular ROC curve is not applicable in object
detection tasks because TN are not available. Also, while the ROC curve is monotonically rising,
this behaviour may not be expected from the PR curve, which typically features a zigzag shape, as
illustrated in Figure 11. Specifically "as the level of Recall varies, the Precision does not necessarily
change linearly due to the fact that FP replaces FN in the denominator of the Precision metric."
[11]. A linear interpolation would therefore be overly optimistic, which is why more complex
interpolation is needed, as detailed in [11].

The area under the PR curve is typically calculated as the AP implying a conservative simplifica-
tion of curve interpolation,

AP = Z(Rn - Rn—l)Pru (3)

with R, and P, denoting the Recall and Precision at the nth threshold® (cf. dashed gray line in
Figure 11). For the PR curve, an optimal model would lead to Recall (Sensitivity) and Precision of 1,
therefore being the point (1, 1) on the PR curve. Conversely, a model with no skill level (random
guessing) would result in a horizontal line with a precision proportional to the portion of positive
samples (dashed line in Figure 5). For computation of the metric (for a given class), the predictions
are sorted in descending order of the confidence for each prediction (for that class). For each possible
confidence threshold, the cardinalities are computed and the resulting tuple of Recall (Sensitivity)
and Precision is added to the curve (cf. Figure 11).

In contrast to drawing the PR curve and computing the AP, Free-Response Receiver Operating
Characteristic (FROC) curve is often favoured in the clinical context due to its easier interpretability.
It operates at object level and plots the average number of FPPI (in contrast to the FPR) against
the Sensitivity [7]. The area under the FROC curve, however, is not bounded between 0 and 1 and
the employed FPPI scores vary across studies, such that there exists no standardized definition
of an area under the respective curve. Overall, the decision between the two metrics often boils
down to a decision between a standardized and technical validation versus an interpretable and
application-focused validation.

8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
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Common object detection metrics: Average Precision (AP)

Fig. 11. Exemplary computation of the Average Precision (AP) in object detection tasks. Predictions
are ranked according to their predicted class probabilities, represented by the confidence (conf.).
Based on the Intersection over Union (loU) or a similar localization/hit criterion, it is determined
whether the prediction is a True Positive (TP) or False Positive (FP) (here: loU > 0.3). For the creation
of the Precision-Recall (PR) curve, Precision and Recall are computed for the accumulated TP and FP
for every confidence score (conf.). The AP interpolates the points of the PR curve as shown by the
dashed gray line.
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In image-level classification problems, validation is naturally performed on the entire data set,
while segmentation typically relies on computing metrics for each image and then aggregating
metric values. This latter approach is not applicable in object detection in a straightforward manner
because of the relatively small amount of samples per image (typically a few objects rather than
thousands of pixels). Figure 12 illustrates the per-image and the per-data set validation of objects.

In the per-image aggregation approach, special care needs to be taken in the case of an empty
reference or prediction, as detailed in Sec. 7 (Figure 43).
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Validating objects per data set vs. validating objects per image

Fig. 12. Validation on object-level can be performed per data set (left) or per image (right). For the
per-data set validation of objects, the cardinalities are calculated over the whole data set. For the
per-image validation of objects, metric scores are computed per image and aggregated afterwards. @
refers to the average F1 score.

3.4 Instance Segmentation

In contrast to semantic segmentation, instance segmentation problems distinguish different in-
stances of the same class (e.g. different lesions). Similar as in object detection problems, the task
is to detect individual instances of the same class, but detection performance is measured by
pixel-level correspondences (as in semantic segmentation problems). Optionally, instances can be
applied to one of multiple classes. Validation metrics in instance segmentation problems often
combine common detection metrics with segmentation metrics applied per instance. It should be
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noted that instance segmentation problems are often phrased as semantic segmentation problems
with an additional post-processing step, such as connected component analysis [41]. In practice,
predicted class probabilities, yielded by modern segmentation algorithms, are often discarded in
the post-processing step and are thus not available for subsequent validation. Figure 13 illustrates
how to overcome this potential problem.

Retaining class scores when extracting instances from semantic segmentation output

Two-class segmentation
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Fig. 13. Retaining class scores when extracting instances from semantic segmentation output. Often,
semantic segmentation methods are used for instance segmentation problems by post-processing
the segmentation output (e.g. via connected component analysis). Predicted class probabilities are
often lost during this process and therefore not available for further validation processes. However,
instance-wise class scores can be retained by taking the maximum or average over all pixel-wise
class scores of every instance.




28 A. Reinke, et al.

4 PITFALLS DUE TO CATEGORY-METRIC MISMATCH

Performance metrics are typically expected to reflect a domain-specific validation goal (e.g. clinical
goal). Previous research, however, suggests, that this is often not the case [43]. Before choosing
validation metrics, the correct problem category needs to be defined. In the following, we will
describe pitfalls related to metrics not being applied to the appropriate problem category.

Mismatch semantic segmentation < object detection. A common problem is that segmenta-
tion metrics, such as the DSC, are applied to object detection tasks [6, 21], as illustrated in Figure 14.
From a clinical perspective, for example, the algorithm producing Prediction 2 and covering all
three structures of interest (e.g. tumors) would be clinically much more valuable compared to
the one producing a highly accurate segmentation for one structure but missing the other two in
Prediction 1. This is not reflected in the metric values, which are substantially higher for Prediction
1. In general, the DSC is strongly biased against single objects, therefore not appropriate for the
detection of multiple structures [24, 53].

Pitfall: Mismatch semantic segmentation < object detection

Fig. 14. Effect of using a segmentation metric for object detection. In this example, the prediction of
an algorithm only detecting one of three structures (Prediction 1) leads to a higher Dice Similarity
Coefficient (DSC) compared to that of another algorithm (Prediction 2) detecting all structures.
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Mismatch semantic < instance segmentation. In segmentation problems, the driving re-
search question should decide whether semantic or instance segmentation should be chosen for
validation. This is particularly relevant when multiple objects within one image overlap or touch,
as often occurring in cell images. For semantic segmentation problems, overlapping or touching
objects may end up merged into a single object without clear boundaries or distinction between
the single objects. Instance segmentation problems, on the other hand, ensure that the borders of
touching or overlapping structures can be accurately assigned and that objects can be differentiated.
If instance segmentation is preferred, the labels need to be chosen accordingly. An example is
shown in Figure 15: The desired annotation consists of two different instances, but only semantic
labels are available (middle). A prediction will only be as accurate as the reference, hence detecting
only one instance but yielding a perfect metric score although the desired task is not solved.

Problem: Mismatch semantic < instance segmentation

Fig. 15. Effect of using a semantic segmentation metric for instance segmentation. When only the
presence of a certain class (e.g. tumor) is labeled, and instance information is not provided in the
reference, a common means for assessing performance is to regard each connected component as
one instance. This may yield misleading results.
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Mismatch image-level classification < object detection. Tasks that should be validated at
image level are sometimes erroneously approached with object detection models instead of image-
level classification models [20]. Object detection models are designed to handle different objects in
an image rather than the complete image and will naturally introduce problems in a validation
setting on image level. Object detection tasks are dependent on choosing a proper localization
criterion, which is not needed for an image-level classification problem. For example, a ROC curve,
typically used for assessing the performance of image-level classification algorithms, does not
consider the localization step needed in object detection tasks, as it was designed to validate at
image rather than object level. It therefore does not take into account whether a detected object
is at the correct location in the image. Moreover, when validation on image level is conducted
by using an object detection model, the detection with the largest class probability (confidence
score) of all detections in one image is usually taken, neglecting all other predictions. This does
not capture the performance of the model accurately. Figure 16 illustrates some of the resulting
problems:

(1) The image-level ROC curve does not measure the localization performance. As can
be seen from Figure 16a, the validation is done per image, not per object, therefore not
considering whether an object is actually hit (see Prediction 2).

(2) The image-level ROC curve is invariant to the number of annotated objects. As can be
seen from Figure 16b, the curve can not discriminate between a model detecting all objects
in an image (Prediction 1) or just detecting one object (Prediction 2), as long as the largest
score is the same across predictions.

(3) The image-level ROC curve is invariant to the number of detected objects. As can be
seen from Figure 16c, the curve can not discriminate between a model detecting many FP
objects in an image (Prediction 2) or only detecting one FP (Prediction 1), as long as the largest
score is the same.



Common Limitations of Image Processing Metrics: A Picture Story 31

Pitfall: Mismatch image-level classification <> object detection
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Fig. 16. When image-level classification metrics like the area under the Receiver Operating Character-
istic (ROC) curve are used to validate object detection models, (1) information on the object matching
(localization, number of objects etc.) is lost and typically (2) only one detection per image (the
one with the highest confidence) is considered. This leads to several problems: (a) The image-level
ROC curve does not measure the localization performance. Both Prediction 1and 2 are considered
as True Positive (TP) due to their score being very high, although Prediction 2 is not hitting the
annotated object. (b) The image-level ROC is invariant to the number of annotated objects in an
image. The curve does not discriminate between a model detecting all positives (Prediction 1) and a
model detecting only one of the positives (Prediction 2), as long as the maximum score is the same.
(c) The image-level ROC is invariant to the number of detections in an image. The curve does not
discriminate between a model with many False Positive (FP) (Prediction 2) and a model with just one
FP (Prediction 1), as long as the maximum score is the same. The class probabilities are represented
by confidence scores (conf.).
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No matching problem category. Metrics should reflect a domain-specific validation goal. This
goal may not align with commonly used technical measures like the DSC. Figure 17 shows an
example with the property of interest being the accuracy of the ratio between two structure volumes,
indicating, for example, the percentage of blood volume ejected in each cardiac cycle [3]. Both
predictions will result in similar averaged DSC scores, although the ratio of the volumes vastly
differs. A common segmentation metric thus does not reflect the actual research question in this
case.

Pitfall: Metrics may be poor proxies for computing properties of interest

Fig. 17. It may not always be possible to find a common metric that ideally captures the domain
interest. In this example, accuracy of the ratio between two volumes is the property of interest.
Predictions 1and 2 result in similar averaged Dice Similarity Coefficient (DSC) metric values although
both predictions result in a different ratio between structure volumes, which is the parameter of
interest.
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5 PITFALLS RELATED TO IMAGE-LEVEL CLASSIFICATION

Most issues related to classification metrics are related to one of the following properties of the
underlying biomedical problem:

e High class imbalance (Figure 18)

e Presence of more than two classes (Figure 19)
e Unequal importance of classes (Figure 20)

e Interdependencies between classes (Figure 21)
e Lack of stratification (Figure 22)

e Missing prevalence correction (Figure 23)

Furthermore, metric-specific limitations may arise (Figure 24) Please note that all of these also
apply to semantic/instance segmentation or object detection problems, as summarized in Table 1.
The discourse focuses on the most commonly used image-level classification metrics, as presented
in Figures 3, 4 and 5. For most of the problems, it focuses on the Accuracy, Sensitivity or Precision,
because those are the most common metrics for image-level classification in biomedical image
analysis. Please note that we do not recommend their indiscriminate use, as they come with
limitations (discussed in the following paragraphs), but rather wish to spotlight the problems and
pitfalls of those most commonly used metrics.

To preserve the clarity of the illustrations, the most important of the presented metric values
may be highlighted with color. Green metric values correspond to a "good" metric value (e.g. a high
Sensitivity score), whereas red values correspond to a "bad" value (e.g. a low Sensitivity). Green
check marks indicate desirable behaviour of metrics, red crosses indicate undesirable behaviour.
Please note that a low metric value is not automatically a "bad" score. A metric value should always
be put into perspective and compared to inter-rater variability. For simplicity, we still use the terms
"good" and "bad/poor" throughout the section. Finally, our illustrations do not provide the concrete
class probabilities of the presented classifiers.

High class imbalance. Accuracy is one of the commonly applied metrics in classification
problems, presumably because it is particularly straightforward to interpret. However, the metric
is not designed to handle imbalanced data sets, which often occur across all domains. Figure 18
provides an example in which the positive class (orange circle) is heavily underrepresented. While
Prediction 1 gives a reasonable separation of the classes, Prediction 2 results in the same Accuracy
value (0.97) although the algorithm only provides the majority vote as a result. In this specific
example, Sensitivity, Precision and F1 score reveal the issue, as does Matthews correlation coefficient
(MCC), a metric designed to handle class imbalance which reflects that Prediction 2 is not better
than a random guess (0.00) [9]. As many classification measures are easily computable using the
number of TP, TN, FP and FN samples, it is highly recommended to report these TP, TN, FP and
FN values explicitly and then compute multiple metrics [15].

Plotting the ROC and PR curves (Figure 18b and c) also reveal the limitations of Prediction 2,
which yields an AUROC of 0.52 and AP of 0.04, indicating that the prediction is not better than
random guessing.
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Pitfall: Class imbalance

Fig. 18. Effect of class imbalance. Not every metric is designed to reflect class imbalance (e.g.
Accuracy). In the case of underrepresented classes, such a metric yields a high value even if the
classifier performs very poorly for one of the classes (here: Prediction 2). Multi-threshold metrics, such
as the Area under the Receiver Operating Characteristic curve (AUROC) and the Average Precision (AP),
reveal the weakness, indicating that Prediction 2 is not better than random guessing. For comparison,
a no skill classifier (random guessing) is shown as a black dashed line. For the Precision-Recall (PR)
curves, the interpolation applied to compute the AP metric is shown by a dashed grey line. Thresholds
used for curve generation are provided as small numbers in the curve. Further abbreviations: Negative
Predictive Value (NPV), Matthews Correlation Coefficient (MCC), Cohen’s Kappa k.
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More than two classes available. Many binary metrics can directly be translated to the multi-
class case by expanding the confusion matrix to all classes. These classes are often hierarchically
structured, for example in the shape of one negative class (e.g. no pathology) and multiple positive
classes (e.g. different types of pathologies). Figure 19 shows an example of a classification into
triangles and circles, for which the circle class is further separated into two distinct classes (green
and orange). The binary performance into triangle vs. circle, shown in the middle, is good (Accuracy
of 0.88). But when considering the three classes separately, the prediction struggles to identify the
color of the circles, causing their per-class accuracy scores to drop significantly (0.63 each).

Pitfall: Hierarchical structure of classes

Reference Prediction (binary) Prediction (multi-class)
[. Class | Class2 A Class 3 } A Prediction of circle/trianige class O O A Prediction class 1/2/3
X Incorrect prediction % Incorrect prediction

AAA‘. AAx AAQO
A A A Q
A A A

Prediction Prediction

A OlOA
0
I

21 O2]2

S’ g 3|0

O

<Al AT Tol7
Accuracy = 0.88 ® Accuracy = 0.63

Accuracy = 0.63
A Accuracy = 0.88

Fig. 19. Classes in categorical classification may be hierarchically structured, for example in the
shape of multiple positive classes and one negative class. The phrasing of the problem as binary vs.
multi-class hugely affects the validation result. Binary classification (middle), differentiating triangles
from circles, yields a good Accuracy, while per-class validation yields a poor score because the two
circle classes cannot be distinguished well. Incorrect predictions are indicated by a red cross.
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Unequal importance of classes. In biomedical applications, classes are often not equally im-
portant. Consider the task of colon polyp detection in the gastrointestinal tract, for example. To
provide the patient with the best care, it is crucial to detect all of these precancerous lesions. This
requires a particular penalization of those samples containing a polyp which have been marked as
‘no polyp’ (FN), and the metrics need to be chosen accordingly. The Precision, for example, does
not include the FN in its definition, hence would not be appropriate for this research question.
Sensitivity, on the other hand, would show the desired poor performance in the presence of many
FN predictions, as seen in the top row of Figure 20a.

For image retrieval, the task of finding images for a specific content, it is not important to find
every single existing image, but the images found should be correct. In this setting, the FP (assigning
an incorrect image as correct) need to be penalized. Since it includes the computation of FP, in this
case, the Precision would be a good metric. In contrast, Sensitivity does not consider FP, therefore
being inappropriate in this context (see bottom row of Figure 20a). Penalization in both cases is
especially important in cases of imbalanced data sets (see Figure 18).

When it comes to multi-class problems, different approaches may be chosen to compute the
metric values. One possibility is to first compute the metric values per class and aggregate them
subsequently. Special care has to be taken in the case of unequal importance of the different classes.
For example, identifying whether a patient harbors a pathology in general might be more important
than identifying the specific type of pathology. In this case, one should not just average over all
class metric scores, but instead apply a sufficient weighting scheme. In the example of Figure 20b,
the triangle class is the most important class but also the one with the lowest per-class Accuracy.
Simple averaging, so-called macro-averaging, would ignore that property and thus result in a higher
aggregated Accuracy than merited. This effect can be compensated with the Weighted Accuracy.
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Pitfall: Unequal importance of classes or misclassifications

Fig. 20. Effect of unequal importance of classes. (a) Effect of using metrics that are not suitable for
penalizing False Negative (FN)/False Positive (FP). The definition of the Precision metric does not
incorporate FN and is therefore not well-suited for penalizing FN, as required in cancer screening
tasks, for example. Analogously, the Sensitivity is not well-suited for penalizing FP, as required in
many retrieval tasks, for example. (b) Simple averaging (macro-averaging) of the Accuracy ignores
the unequal importance of classes, given by pre-defined weights of classes. Incorrect predictions are
indicated by a red square.
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Interdependencies between classes. If multiple classes are visible in the data set, one should
carefully account for interdependencies between the classes. Interdependencies can happen in
cases of multi-colinearities in which two classes are correlated, either inherently, such as for the
body mass index (BMI) and the body fat percentage, or in the case of dependent data settings,
for example multiple images per patient or the presence of confounders. An algorithm aiming to
classify the dark blue triangle class in Figure 21 may result in a nearly perfect Accuracy of 0.94, but
only because the dark blue triangle almost always appears in conjunction with the orange square.
Computing the Accuracy for those images individually without the square class would lead to a
much lower performance.

Pitfall: Interdependencies between classes

Fig. 21. Effect of interdependencies between classes. A prediction may show a near-perfect Accuracy
score of 0.94 for the dark blue triangle as it frequently appears in conjunction with the orange square.
By calculating the Accuracy in the presence and absence of the square class, it can be seen that the
algorithm only works well in the presence of the orange class. Incorrect predictions are indicated by
a red cross.
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Stratification based on meta-information. Different kinds of meta-information may be avail-
able for a data set, including the presence and relevance of artifacts or artificial structures (e.g.
metal artifacts in CT images or text overlay in endoscopic data) as well as specifics of acquisition
protocols (e.g. acquisition angle or viewpoint) or grid size (cf. Figure 35). Another typical example
is the gender of a patient, as shown in Figure 22. In this case, the Accuracy is computed over twelve
cases, disregarding the available meta-information (gender). Stratification based on gender will
reveal that the prediction performs much worse for women compared to men.

Pitfall: Meta-information ignored

Fig. 22. Effect of disregarding relevant meta-information (here: gender). Ignoring the available meta-
information of the patient’s gender per image, the Accuracy does not reveal that the algorithm
performs much better for men compared to women.
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Missing prevalence correction. The Positive Predictive Value (PPV), also known as Precision, and
the Negative Predictive Value (NPV) are common measures to validate classification performances.
In many cases, binary classification is considered, for example presence or absence of a disease. In
contrast to Sensitivity and Specificity, in case-control studies, PPV and NPV should be seen as the
conditional probability of a disease being present based on a test result and the prevalence in a
general population.

Sensitivity - Prevalence
PPV = — 0 (4)
Sensitivity - Prevalence + (1 — Specificity) - (1 — Prevalence)

Specificity - (1 — Prevalence)

NPV

~ Specificity - (1 — Prevalence) + (1 — Sensitivity) - Prevalence ©)

However, PPV and NPV are frequently used incorrectly. This is due to the fact that many prac-
titioners assume the same prevalence in an analysed case-control study group as in the general
population. However, a study group is often heavily biased, either due to the study design or due
to the observation of patient groups from specialized clinics. Thus, the assumed disease prevalence
in scientific literature is often higher than that found in the general population (cg. Figure 23). This
problem is amplified by default implementations (e.g. in scipy [52]) which disregard wider popula-
tion prevalence and calculate prevalence from the study group. Without prevalence correction, this
can lead to misleading results, confusion among patients and ill-informed policy-making.

Pitfall: Missing prevalence correction

Fig. 23. Effect of missing prevalence correction. For case-control studies, the Positive Predictive
Value (PPV) and Negative Predictive Value (NPV) are required to apply prevalence correction based
on the general population. Falsely used case-control prevalence leads to incorrect metric scores
compared to using the general population prevalence (which is often significantly lower).
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Upper bound in Cohen’s k calculation. Cohen’s k measures the agreement between ratings
while incorporating information on the Accuracy by chance. It therefore investigates how well a
prediction follows the distribution of the actual class. The maximum Cohen’s k helps interpreting
the calculated k score by symbolizing the corner case in which either the FP or FN are equal to 0
[49]:

pmax_pe
Kmax = —/——»
1-pe
. TP+FN TP+ FP
Pmax = M o o FP+ FN TP+ TN + FP + FN (©)
. TN + FN TN + FP
+ min 5
TP+TN+FP+FN TP+TN + FP + FN

The maximum Cohen’s k score will be lower as the distribution of the prediction and the actual
classes diverge. This is shown in Figure 24 with two predictions. Prediction 1 achieves lower
Accuracy and Cohen’s k scores compared to Prediction 2, as it only predicts a very low number of
TP. However, the predicted distribution in Prediction 1 is more similar to the actual distribution
(13 circle predictions vs. 15 actual circles and 87 triangle predictions vs. 85 actual triangles). The
distribution of Prediction 2 differs more from the actual distribution, yielding a lower Cohen’s k45
value’.

“https://www.knime.com/blog/cohens-kappa-an-overview
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Pitfall: Upper bound not equally obtainable in Cohen’s k
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Fig. 24. Effect of different prediction distributions compared to target distribution. A prediction with
a distribution similar to the actual distribution (Prediction 1) reaches higher maximum Cohen’s k
values compared to a prediction with a dissimilar distribution (Prediction 2), although the overall
Accuracy and Cohen’s k is lower. Incorrect predictions are indicated by a red cross.
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6 PITFALLS RELATED TO SEGMENTATION

All pitfalls compiled for this work and relevant for semantic or instance segmentation are summa-
rized in Table 1. This section focuses on limitations for semantic segmentation, but some of them
are also transferable to other problem categories, as indicated in the table. Limitations of metrics
are typically related to the following properties:

e Small size of structures relative to pixel size (Figure 25)

e High variability of structure sizes (Figure 26)

e Complex shapes of structures (Figure 27)

e Particular importance of structure volume (Figure 28)

o Particular importance of structure center (Figure 29)

e Particular importance of structure boundaries (Figure 30)
e Possibility of multiple labels per unit (Figure 31)

e High inter-rater variability (Figure 32)

e Possibility of outliers in reference annotation (Figure 33)
e Possibility of reference or prediction without the target structure (Figure 34)
e Preference for over- vs. undersegmentation (Figure 36)

Further pitfalls are related to technical peculiarities, such as the choice of global decision threshold
for creating the confusion matrix (Figure 37) and the image resolution (Figure 35).

The limitations are presented for the most commonly used overlap segmentation metrics, namely
DSC, IoU, and the most common boundary-based metrics, namely HD, HD95, ASSD and NSD. The
NSD calculation is based on a user-defined threshold (cf. Figure 8). Results differ for different
thresholds. Unless stated otherwise, we set the threshold to 7 = 1.

To preserve clarity of the illustrations, specific values may only be highlighted for one metric
from each metric family, if the other metrics share similar properties (e.g. DSC and IoU share the
same properties). Green metric values correspond to a "good" value (e.g. a high DSC or a low HD
score), whereas red values correspond to a "bad" value (e.g. a low DSC or a high HD score). Green
check marks indicate metric scores reflecting the research question, red crosses show those that
do not. Please note that a low DSC value (or similar) is not automatically a "bad" score. A metric
value should always be put into perspective and compared to inter-rater variability. We only use
the terms "good" and "bad/poor” for simplicity.
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Small size of structures relative to pixel size. Segmentation of small structures, such as brain
lesions or cells imaged at low magnification, is essential for many image processing applications.
In these cases, the DSC or IoU may not be appropriate metrics, as illustrated in Figure 25 (cf. [8]). In
fact, a single-pixel difference between two predictions can have a large impact on the metric values.
Given that the correct outlines (e.g. of pathologies) are often unknown and taking into account the
potentially high inter-observer variability related to generating reference annotations [22], it is
typically not desirable for few pixels to influence the metrics as much. This problem is particularly
amplified in cases of large variability of structure sizes (cf. Figure 26). This pitfall also applies to
object detection tasks. It should be noted that once a data set exclusively contains only very tiny
structures, one may consider it an object detection rather than a segmentation problem.
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Pitfall: Small structures

Reference Prediction | Prediction 2

(Sufficiently)
large structure

DSC=0.99 > DSC = 0.97

loU = 0.97 = loU = 0.95

HD = 1.00 = HD = 1.00
HD95=0.00 < HD95 = 0.80

N ASSD =0.02 | < I ASSD = 0.07
NSD =1.00 | = NSD = 1.00
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Small
structure
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NSD =1.00 | = NSD = 1.00

Fig. 25. Effect of structure size on the Dice Similarity Coefficient (DSC). The predictions of two
algorithms (Prediction 1/2) differ in only a single pixel. In the case of the small structure (bottom
row), this has a substantial effect on the corresponding metric value (similar for the Intersection
over Union (loU)). The effects are considerably lower for the boundary-based metrics (Hausdorff

Distance (HD), Hausdorff Distance 95% percentile (HD95), Average Symmetric Surface Distance (ASSD)
and Normalized Surface Distance (NSD).
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High variability of structure sizes. The size of target structures may vary substantially, both
within an image and across images. For example, in medical instrument segmentation in laparoscopic
video data, an image frame may contain full-sized instruments as well as only the tip of an instrument
just entering the scene [42]. In these cases, metrics need to be chosen carefully. As shown in the
example above (Figure 25), metrics like the DSC or IoU are typically not well-suited for very small
structures. Furthermore, size stratification - the aggregation of metric values for objects of similar
sizes to uncover differences between them — should be employed. Figure 26 shows an exemplary
data set of four images, containing three large structures and one small structure. When aggregating
over all DSC values, the average DSC is 0.82. Computing the average for large and small structures
separately, however, shows that the performance is much lower for the small structures compared
to the large ones, demonstrating the large influence of the low metric values of small objects. This
pitfall also applies to object detection tasks and other metrics.

Pitfall: High variability of structure sizes

Fig. 26. Effect of high variability of structure sizes across images. As shown in Figure 25, Dice
Similarity Coefficient (DSC) scores penalize errors in small structures much more, leading to large
and small structures influencing the overall averaged performance to different extents. Only by
computing the average for small and large structures separately can it be seen that the prediction in
the present example is much poorer for the small structure. @ refers to the average DSC values.
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Complex shapes of structures. Metrics measuring the overlap between objects are not designed
to uncover differences in shapes. This is an important problem in many applications such as
radiotherapy, for which identifying and treating all parts of the tumor is essential to avoid recurrence
[5]. Figure 27 illustrates that completely different object shapes may lead to the exact same DSC
and JoU values. Boundary-based measures are able to detect the changes in shapes [47]. Note that
this pitfall also applies to object detection tasks.
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Pitfall: Shape unawareness

Reference

Prediction |

DsC loU HD HD95 ASSD NSD

DSC=0.6 loU=04 HD=14 HD95= 13 ASSD =0.9 NSD = 1.0

Prediction 2

DSC=0.6 loU=04 HD=36 HD95=3.1 ASSD=1.0 NSD = 0.7

Prediction 3

DSC=0.6 loU=04 HD=3.0 HD95=20 ASSD =0.7 NSD = 0.8

Prediction 4

I:E:I DSC=0.6 loU=04 HD=22 HD95=20 ASSD=0.7 NSD = 0.8

Prediction 5

DSC=0.6 loU=04 HD=20 HD95=1.2 ASSD =0.8 NSD = 0.9

Fig. 27. Effect of different shapes. The shapes of the predictions of five algorithms (Predictions 1-5)
differ substantially, but lead to the exact same Dice Similarity Coefficient (DSC) and Intersection
over Union (loU), while boundary-based metrics (Hausdorff Distance (HD), Hausdorff Distance 95%
percentile (HD95), Average Symmetric Surface Distance (ASSD) and Normalized Surface Distance (NSD))
consider the shape differences.
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Particular importance of structure volume. Depending on the domain focus, a surgeon,
radiologist or similar may be especially interested in the volume of a segmented structure. The most
commonly used metrics may, however, result in predictions at entirely wrong locations if boundary
or overlap are not considered. Figure 28 shows two predictions of a 3x3 square structure, both of
them being at the wrong position. While the volume difference is correct for both predictions, the
overlap is zero. Only boundary-based metrics will indicate the magnitude of mislocalization of the
predicted objects.

Pitfall: Ignoring structure location when focusing on volume

Reference Prediction | Prediction 2

DSC = 0.0 DSC = 0.0

Fig. 28. Effect of only focusing on the volume of an object. Both Predictions 1and 2 result in the
correct volume difference of 0, but do not overlap with the reference (Dice Similarity Coefficient (DSC)
and Intersection over Union (loU) of 0). Only the boundary-based measures (Hausdorff Distance (HD),
Hausdorff Distance 95% percentile (HD95), Average Symmetric Surface Distance (ASSD) and Normalized
Surface Distance (NSD)) recognize the mislocalization.
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Particular importance of structure center. The structure center point or center line may be
more important than an accurate boundary or overlap of the structure, as for example in nerve
segmentation [34]. In these cases, the accuracy of the center point or line should be examined via
an additional metric to make sure the center is correct for the prediction. Figure 29 shows two
predictions yielding the same DSC values, as they have the same overlap to the reference annotation.
However, only Prediction 1is centered around the same point as the reference, while Prediction 2 is
shifted slightly towards the upper left corner and thus centered incorrectly. This pitfall also applies
to object detection tasks. It should be noted that once the center location is of particular importance
to the task, one may consider it an object detection rather than a segmentation problem.

Pitfall: Center unawareness of overlap metrics

Reference Prediction | Prediction 2

% ®,

Center = (4.5, 4.5) Center = (4.5,4.5) » Center = (3.5, 3.5)
DSC = 0.6 = DSC = 0.6

Fig. 29. The most common counting-based metrics are poor proxies for the center point alignment.
Here, Predictions 1and 2 yield the same Dice Similarity Coefficient (DSC) value although Prediction 1
approximates the location of the object much better.
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Particular importance of structure boundaries. While boundary-based metrics like the
HD(95), ASSD and others can help to detect shape differences between the reference and the pre-
dicted object, they do not focus on the object itself. As shown in Figure 30(top), the boundary-based
metrics do not recognize a prediction with a large hole inside as poor (Prediction 2). Furthermore,
in Figure 30(bottom) [47], those metrics do not punish the spotted pattern within the object. It
should be noted that this behaviour may also be desirable. For example, it may be highly difficult to
decide whether a necrotic core (hole) is present in a tumor or not. A boundary-based metric would
not punish errors resulting from such annotation uncertainties.
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Pitfall: Holes in the segmentation ignored by boundary-based metrics
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Fig. 30. Boundary-based metrics commonly ignore the overlap between structures and are thus
insensitive to holes in structures. Upper part: Here, Predictions 1and 2 feature holes within the object.
The boundary-based metrics (Hausdorff Distance (HD), Hausdorff Distance 95% percentile (HD95),
Average Symmetric Surface Distance (ASSD), Normalized Surface Distance (NSD)) do not recognize this
problem, yielding very good or even perfect metric scores of 0.00 for the HD(95)/ASSD and 1.00 for the
NSD (Prediction 2), whereas the overlap-based metrics (Dice Similarity Coefficient (DSC), Intersection
over Union (loU)) reflect the fact that the inner area is missed by the predictions. Lower part: Here,
Predictions 1and 2 feature a spotted pattern within the object. Although the boundary of Prediction 2
is perfect, the holes are penalized by the boundary-based metrics compared to Prediction 1. Prediction
1shows an imperfect boundary. Depending on the surface-based metric used, slight deviations in
the boundary (here in Prediction 1) may be tolerated, reflected by calculating the NSD for 7 = 1.
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Possibility of multiple labels per unit. In several biomedical imaging scenarios, multiple
labels per pixel may be possible. A prominent example would be the tumor core inside the tumor
[33]. Often, however, prior knowledge related to such scenarios (e.g. a tumor core cannot lie
outside the tumor) is not reflected by common metrics, which simply calculate the agreement of the
reference and prediction per class. Figure 31 shows two predictions for a multi-label example. The
DSC value of Label 2, which is required to be inside of Label 1, is higher for Prediction 2 although
Label 2 is also found outside the Label 1 area. For simplicity, we only show the results for the DSC
metric. This pitfall also applies to object detection tasks.

Pitfall: Multiple labels per pixel

Required: Label 2 is inside of Label |

Reference Prediction | Prediction 2
¥ Label | M Label 2 Label | [ Label 2 Label | [ Label 2
M Label | and 2 Label | and 2 Label | and 2

TN\
E@
DSC( / .00 DSC 1.00
DSC, = 0.66 < DSC, = 0.69

Label 2 not inside Label |

Fig. 31. Effect of multiple labels per pixel. The requirement of Label 2 being inside of Label 1 is
violated by Prediction 2. Nevertheless, Prediction 2 shows a higher Dice Similarity Coefficient (DSC)
score compared to Prediction 1, which adheres to the requirement.
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Noisy reference standard. A high quality reference annotation is crucial to determine the
performance of a supervised learning algorithm. A prediction can be almost perfect, but low quality
reference images will still result in a bad metric score. Especially in the medical domain, the
inter-rater variability is often very high as domain knowledge is required and experts themselves
often disagree [22]. Figure 32 shows two masks from different annotators approximating the same
structure. Although the annotations differ only slightly at the boundary, the DSC score is 0.7. With
such inter-rater variability, a DSC score of 1 would not be achievable in practice. To address this
issue, the NSD metric can be applied as an alternative or additional metric, as it is designed to allow
a certain tolerance of outline pixels based on the threshold 7. This pitfall can also be translated to
object detection and image-level classification tasks.

Pitfall: Inter-rater variability

Fig. 32. Effect of inter-rater variability between two annotators. Assessing the performance of
Annotator 2 while using Annotator 1 for creating the reference annotation leads to a low Dice
Similarity Coefficient (DSC) score because inter-rater variability is not taken into account by common
overlap-based metrics. In contrast, the Normalized Surface Distance (NSD), applied with a threshold of
7 = 1, captures this variability. It should be noted, however, that this effect occurs primarily in small
structures as overlap-based metrics tend to be robust to variations in the object boundaries in large
structures. Further abbreviations: Intersection over Union (loU), Hausdorff Distance (HD), Hausdorff
Distance 95% percentile (HD95), Average Symmetric Surface Distance (ASSD).
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Possibility of outliers in reference annotation. The presence of spatial outliers, such as noise
or reference annotation artifacts, may severely impact performance metric values. Figure 33 demon-
strates how a single erroneous pixel in the reference annotation (or the prediction) leads to a
substantial decrease in the measured performance, especially in the case of the HD. Using the
95% percentile instead of the maximum (HD95) to compute the distance significantly improves the
metric score as it can handle outliers. Please note that the presented example may also be seen vice
versa, with a prediction including single pixel errors. It should further be noted that whether or
not outliers should be considered depends on the respective research question.

Pitfall: Noise and artifacts

Fig. 33. Effect of annotation errors/noise. A single erroneously annotated pixel may lead to a large
decrease in performance, especially in the case of the Hausdorff Distance (HD) when applied to
small structures. The Hausdorff Distance 95% percentile (HD95), on the other hand, was designed to
deal with spatial outliers. Further abbreviations: Dice Similarity Coefficient (DSC), Intersection over
Union (loU), Average Symmetric Surface Distance (ASSD), Normalized Surface Distance (NSD).
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Possibility of reference/prediction without target structure(s). A given data set may contain
reference annotations without the target structure(s). For example, the data set may consist of
healthy and sick patients. A healthy patient will not have a tumor in the image, yielding an empty
reference if the tumor is the targeted structure. An algorithm should be careful not to classify a
healthy patient as tumourous as this may lead to unnecessary medical interventions. Similarly, a
patient with a tumor should not be classified as healthy (empty prediction). These cases require
special care to be taken in the validation, because some metrics may be undefined due to division
by zero errors or similar. It is necessary to either choose appropriate metrics that consider empty
references (or predictions) or account for it in the metric implementation. For example, boundary-
based metrics such as the HD(95) and ASSD will be NaN if one of the structures is empty. Figure 34
shows three examples, for which several counting- and boundary-based metrics were computed.
The top row depicts the case of an empty reference and a prediction of an object. Given the number
of TP and FN being 0, this will result in a division by zero in the Sensitivity calculation, yielding
a NaN score. A similar case is given in the second row, showing an empty prediction for a given
target structure in the reference annotation, yielding an undefined Precision. When both reference
and prediction are empty (bottom row), all scores will be undefined. Please note that this example
is shown for a validation per image, as done for segmentation tasks. For classification and object
detection tasks, the validation is typically performed over the whole data set, which would possibly
preclude this problem. The presented pitfall also applies to object detection tasks.
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Pitfall: Reference or prediction without target structure(s)

Fig. 34. Effect of empty references or predictions when applying common metrics per image (here
for semantic segmentation). Empty images lead to division by zero for many common metrics as the
numbers of the true (T)/false (F) positives (P)/negatives (N) turn zero.
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Technical peculiarities. Several technical peculiarities also have an impact on metric behaviour.
For example, the image resolution and pixel sizes highly influence the reference annotation and
the predicted shapes in image processing tasks. Figure 35 illustrates how the reference annotation
differs between a low resolution image (top) and a high resolution image (bottom) compared to
a circle. The latter is more exact. A prediction of the same size will therefore lead to different
corresponding metric values, independent of the type of the metric. This pitfall also applies to
object detection tasks.

Pitfall: Grid size resolution

Reference Prediction |
5 7 N B DSC=084
s loU = 0.72
2 HD = 1.00
; Ij HD95 = 1.00
8 N / ASSD = 0.42
NSD = 1.00
+
5 DSC =0.82
'g loU = 0.70
3 HD = 1.4
g HD95 = | 41
o = ASSD = 1.05
I NSD = 0.96

Fig. 35. Effect of different grid sizes. Differences in the grid size (resolution) of an image highly
influence the image and the reference annotation (dark blue shape (reference) vs. pink outline (desired
circle shape)). A prediction of the exact same shape (Prediction 1) leads to different metric scores
due to the different resolution. Abbreviations: Dice Similarity Coefficient (DSC), Intersection over
Union (loU), Hausdorff Distance (HD), Hausdorff Distance 95% percentile (HD95), Average Symmetric
Surface Distance (ASSD), Normalized Surface Distance (NSD).
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In some applications such as radiotherapy, it may be highly relevant whether an algorithm tends
to over- or undersegment the target structure. The DSC metric, however, does not represent over-
and undersegmentation equally [53]. As depicted in Figure 36, a difference of a single layer of pixels
in the outline yields different DSC scores (oversegmentation preferred) [47]. Other boundary-based
performance values such as the HD are invariant to these properties.

Pitfall: Oversegmentation vs. undersegmentation

Fig. 36. Effect of undersegmentation vs. oversegmentation. The outlines of the predictions of two
algorithms (Prediction 1/2) differ in only a single layer of pixels (Prediction 1: undersegmentation,
Prediction 2: oversegmentation). This has no (or only a minor) effect on the Hausdorff Distance
(HD)/(95%), the Normalized Surface Distance (NSD) and the Average Symmetric Surface Distance (ASSD),
but yields a substantially different Dice Similarity Coefficient (DSC) or Intersection over Union (loU)
score.

Another technical peculiarity is the choice of global decision threshold. Most methods in modern
image analysis output continuous class scores. While it is quite common to provide those scores
in image-level classification and object detection tasks, segmentation architectures often do not
output class probabilities per pixel. However, fuzzy segmentation masks are getting more and
more common (for instance, see [1, 23, 37]) and the choice of a global decision threshold 7 is very
important for the algorithm’s result. Figure 37 (cf. [36]) shows the predicted class probabilities for
a reference annotation. For a binarization typically required for segmentation outputs, a threshold
needs to be defined based on which a pixel is assigned to a class (here: a pixel with class probability
< 7 corresponds to the background class and to the foreground class otherwise). The resulting
segmentation masks are shown for the thresholds 0.2, 0.5 and 0.8. It can be seen that the respective
masks completely differ across the thresholds. Consequently, metric values will also vastly change.
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Pitfall: Choice of global decision threshold
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Fig. 37. Effect of the choice of a global decision threshold for binarization in segmentation problems.
The results and metric values for three decision thresholds (0.2, 0.5 and 0.8), from which predicted
class probabilities per pixel are translated into a segmentation mask, are provided. Based on the
threshold chosen, the predicted objects and resulting metric values change dramatically.
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7 PITFALLS RELATED TO OBJECT DETECTION

All pitfalls compiled for this work and relevant for object detection are summarized in Table 1.
Note that these pitfalls equally apply to instance segmentation problems. While most issues related
to the actual metric selection have already been mentioned in the previous paragraphs, this section
is primarily dedicated to technical peculiarities related to the localization and assignment criteria.
These include:

e Mathematical implications of center-based localization criteria (Figure 38)

e Mathematical implications of JoU-based localization criteria (Figure 39)

o Effect of the provided annotations (Figure 40)

o Effect of small structures on localization criterion (Figure 41)

e Perfect Boundary IoU for imperfect prediction (Figure 42)

e Possibility of reference or prediction without the target structure and NaN handling (Figure 43)
o Average Precision vs. Free-response ROC score (Figure 44)

o Effect of predicted class probabilities on multi-threshold metrics (Figures 45, 46 and 47)

Mathematical implications of center-based localization criteria. Before calculating metrics
for object detection tasks, it is necessary to define what qualifies a detection as a hit (TP) or miss
(FP). There are multiple ways to define a hit, all of which come with their specific limitations. Below,
the most commonly used center-based localization criteria are presented!’.

e For the center-cover criterion, the reference object is considered a hit if the center of the
reference object is inside the predicted detection. Figure 38a shows how this criterion can be
fooled by a model outputting very large boxes to maximize the chance of a correct detection.

e In the case of the distance-based hit criterion, a prediction is considered a hit if the distance
d between the center of the reference and the detected object is smaller than a certain threshold
7. In Figure 38b, both predictions have the same distance to their corresponding reference
object centers. However, the prediction on the top right shows no overlap with the reference
and should therefore not be counted as a hit.

o The center-hit criterion holds true if the center of the predicted object is inside the reference
bounding box or contour. Given this definition, large reference objects are more likely to be
hit, as shown in Figure 38c. The left prediction is defined as a missed object (FP), the right
detection as a hit because of its larger size.

19For more details, please refer to the blogpost "Evaluation curves for object detection algorithms in medical images":
https://medium.com/lunit/evaluation-curves-for-object-detection-algorithms-in-medical-images-4b0@83fddce6e.
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Pitfall: Mathematical implications of center-based localization criteria

(a) Center-cover criterion (b) Distance-based criterion

d<t
b4 & %

TP D ¢ TP D ¢

(c) Center-hit criterion

M3 | g

FP 1D 4

. Reference Prediction ~ % Reference center 38 Prediction center

Fig. 38. Pitfalls for several center-based hit criteria in object detection. Reference objects are shown
in dark blue, predictions in orange. The object centers are shown as blue/orange crosses. (a) The
center-cover criterion, which requires the center of the reference to be inside the detection, can
be fooled easily by predicting a very large bounding box/object. (b) Both predictions have the same
distance to their corresponding reference center. The distance-based criterion, which requires the
distance between center points not be exceeded, does not take into account the overlap between
objects. However, the right prediction does not overlap with the reference and should, thus, not
be considered a True Positive (TP). (c) The center-hit criterion, which requires the center of the
prediction to be located inside the reference, favors large reference objects, as they are easier to
detect. The left prediction is considered a False Positive (FP), as the reference center was not hit. The
right prediction is considered a TP because of the larger size of the object.
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Mathematical implications of IoU-based localization criteria. The most commonly used hit
criterion is determined by computing the JoUbetween the predicted and the reference mask/bounding
box/boundary. Pitfalls related to JoU-based criteria are mainly related to the setting of the threshold
(Figure 39). Many biomedical applications involve 3D rather than 2D images. When working with a
higher dimension, it should be kept in mind that metrics may be affected. The additional dimension
will lead to overlap errors being punished even more. Figure 39a shows a comparison of the IoU for
two rectangles (or bounding boxes) in 2D and 3D. Being mistaken by one voxel in the z-dimension
will lead to a much lower IoU score in 3D compared to the 2D case.

As JoU-based criteria take the overlap between regions into account, it is only possible to cheat
with very large boxes if the IoU threshold is set to a very small value (here: 0), as shown in Figure 39b.
However, special care should be taken when applying the Box IoU in the presence of highly concave
or elongated structures, as illustrated in Figure 39c. This is because bounding boxes may quickly
grow for narrow and diagonally placed objects, such as medical instruments, and result in FP
although visual inspection would indicate a correct prediction.
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Pitfall: Mathematical implications of JoU-based localization criteria

Fig. 39. The Intersection over Union (loU) is a commonly used localization criterion in object detection.
It comes with several limitations: (a) The image dimension should be considered when setting the
loU (here: Box loU) threshold for object detection. In 3D settings, the additional z-dimension results
in a cubical increase in erroneous pixels. (b) Effect of a loose loU criterion for object detection. When
defining a True Positive (TP) by an loU > 0, the resulting localizations may be fooled by very large
predictions. (c) Effect of defining TP based on the loU (here: Box loU) threshold of the reference
and predicted bounding boxes. Especially for diagonal, narrow objects, the number of bounding box
pixels may change quadratically. Although Predictions 1and 2 are very similar, their bounding boxes
diverge and lead to one of them being defined as TP, the other as False Positive (FP).
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Possibility of disconnected structures. The Box IoU is sometimes employed despite access to
pixel-mask annotations. A possible explanation is that researchers want to phrase their problem as
an object detection problem and then apply the most commonly used validation methods. Such
simplification might cause problems, if structures are not well approximated by a box shape, or
if structures yield multi-component masks, appearing to be disconnected. This may occur in the
case of a tubular structure shown in a 2D tomographic image or a medical instrument occluded by
tissue in an endoscopic image, for example. Figure 40 provides examples of a complex diagonal
(top) and a disconnected structure (bottom). Both box predictions yield a Box IoU larger than 0.3,
and are thus counted as TP because of the chosen localization threshold. Nevertheless, Prediction 1
is not hitting the actual object at all. This is due to the fact that the target structures are not well
approximated by the bounding box, leaving many empty pixels in the boxes.

Pitfall: Effect of annotation type

Box loU > 0.3: True positive (TP)
Box loU < 0.3: False positive (FP)
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Fig. 40. Bounding boxes are not well-suited for representing complex (top) and disconnected (bottom)
shapes. Specifically, they are not well-suited for capturing multi-component structures. Predictions 1
and 2 would both end up in a True Positive (TP) detection, as the Box Intersection over Union (loU) is
larger than the threshold 0.3. However, Prediction 1is not hitting the real objects at all, as the given
annotation does not represent them well.
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Effect of small structures on localization criterion. Box IoU and Mask IoU are not sensitive
to structure boundary quality in larger objects (cf. Section 6). This is due to the fact that boundary
pixels will increase linearly (quadratically in 3D) while pixels inside the structure will increase
quadratically (cubic in 3D) with an increase in structure size. In consequence, the IoU-scores tend
to be higher for large objects compared to small objects. For this reason, localization criteria such
as the Boundary IoU were designed.

Figure 41 shows an example of Mask IoU and Boundary IoU for a large (top) and a rather
small structure (bottom). In the case of the Mask IoU, the score drops substantially for the small
structure, while the scores are more consistent for the Boundary IoU when comparing small and
large structures. This pitfall also applies to segmentation problems in which the (Mask) IoU and
Boundary IoU are applied as overlap-based metrics.

Pitfall: Effect of small structures on localization criterion

Fig. 41. Comparison of Mask and Boundary Intersection over Union (Boundary loU) localization
criteria in the case of particular importance of structure boundaries. Overlapping pixels from the
reference and prediction are shown in light blue. The Mask loU (second column) is less sensitive to
boundary errors for large objects. The Boundary loU (third and fourth column) especially considers
contours and (1) leads to smaller metric scores, thus penalizing errors in the boundaries and (2) is
more invariant to structure sizes, as it leads to very similar values for large and small structures
(fourth column).

It should further be noted that the Boundary IoU is highly dependent on the chosen distance d,
as illustrated in Figure 41 (third vs fourth column). Similarly to the example provided in Figure 30,
the Boundary IoU can be fooled to result in a perfect value of 1.0. A prediction with a hole in the
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middle of the structure may result in a perfect metric score if the distance is chosen in a way that it
incorporates all pixels of the predicted mask, as shown in Figure 42 [8]. The Mask IoU, however, will
be able to recognize the problem, as it completely measures the overlap between both structures.
[8] propose to use the min(BoundaryloU, MaskIoU) to resolve this issue. Please note that the same
limitations also affect other distance-based measures, such as the NSD or HD metrics. This pitfall
also applies to segmentation tasks.

Pitfall: Perfect Boundary IoU for imperfect prediction

Fig. 42. Effect of a perfect Boundary Intersection over Union (Boundary loU) score for an imperfect
prediction. Overlapping pixels from the reference and prediction are shown in light blue. For a
prediction with a hole in the middle, the Boundary loU may result in a score of 1.00 if the distance to
border contains all mask pixels (here: distance = 2). However, the Mask loU spots the problem and
results in a lower score.
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Possibility of reference/prediction without the target structure and NaN handling. When
validating an object detection problem per image rather than per data set, a reference or prediction
image without the target structure(s) may become problematic as some metric values will turn
into NaN due to division by zero errors (cf. Figure 34). Figure 43a shows potential scenarios for a
validation per image categorized by the presence and absence of TP, FP and FN. Four occurrences
of NaN are presented. To proceed with the validation, namely aggregating metric values for every
image over the entire data set, a NaN strategy needs to be defined for every use case.
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Pitfall: NaN handling for empty reference/prediction

Fig. 43. Effect of handling a NaN caused by reference or prediction without target structure(s) in
object detection/instance segmentation problems validated per image. (a) Demonstration of how and
when NaN can occur. Each column represents a potential scenario for per-image validation of objects,
categorized by whether True Positive (TP), False Negative (FN), and False Positive (FP) are present
(n > 0) or not present (n = 0) after matching/assignment. The sketches on the top showcase each
scenario when setting "n > 0" to "n = 1". For each scenario, Sensitivity and Precision are calculated.
(b) Effect of different NaN handling strategies based on different conventions for the aggregation
across multiple images. Four examples are shown for the NaN scenarios from (a) (NaN 1-4). NaN 1 and
4: The intuitive penalization for FPs in "empty" images is already established by means of Precision
scores (see NaN 4) and further penalization by means of Sensitivity is neither required nor appropriate.
Instead, images without reference objects should be ignored when averaging Sensitivity scores over
images. NaN 2: The intuitive penalization for FP in "empty" images is established when assigning a
Precision of 1. NaN 3: The intuitive penalization for FP is established when removing images with FN
and no FP from the aggregation of Precision scores.
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Average Precision vs. Free-response ROC score. While the AP constitutes the standard metric
for object detection and instance segmentation in the computer vision community, the FROC score
is often favoured in the clinical context. In contrast to the AP, the FROC score takes into account
the total number of images in the data set. As can be seen from Figure 44, both data sets D1 and
D2 will yield the same AP score, although data set D1 contains two images and D2 contains four
images. The FROC score, however, will reflect that the number of images is different for both data
sets and that data set D2 contains two images that do not contain any FP. Thus, the FPPI will be
lower in data set D2, yielding in a higher FROC score.

Pitfall: Average Precision (AP) disregards total number of images

Fig. 44. Effect of the number of images per data set on the metric scores. The Average Precision (AP)
metric does not take into account the total number of images, yielding the same score for data sets
D1 and D2. The Free-Response Receiver Operating Characteristic (FROC) curve plots the average
number of False Positives per Image (FPPI) against the Sensitivity, therefore accounting for the
number of images. The FPPI is lower for D2, yielding a higher FROC score.
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Multi-threshold metric-related properties. In the next paragraphs, we highlight some limita-
tions of the multi-threshold metrics, exemplarily for the AP metric, which can be transferred to
other multi-threshold metrics, such as the AUROC [39]. By definition, multi-threshold metrics are
ranking metrics, which rank the predicted class probabilities or confidence scores (cf. Figure 11).
They are not designed to reflect the calibration of confidence or class scores, as shown in the
following examples. Please note that we disregard the concrete choice of the localization criterion
here for simplicity.

Predicted class probabilities. The PR curve and the resulting metric score AP highly depend on
the ranking of predictions, based on their predicted class probabilities or confidence scores. Small
changes in the scores can therefore significantly change the metric value, as shown in Figure 45. On
the other hand, as long as the ranking remains unchanged among predictions, the predicted class
probabilities themselves are not important for the result, although they should be (see Figure 46).

Pitfall: Large effects of small changes in predicted class probabilities

Fig. 45. Effect of small changes in predicted class probabilities. Reference bounding boxes are shown
in dark blue. Predictions Tand 2 detect the exact same bounding boxes with minor variations in their
predicted class probabilities (represented by the confidence scores (conf.)). This leads to a different
ranking and therefore varying Precision-Recall (PR) curves, curve interpolations (dashed grey lines)
and resulting Average Precision (AP) scores.
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Pitfall: Predicted class probabilities neglected within ranking

Fig. 46. Effect of neglecting (the absolute values of) predicted class probabilities within the ranking.
Reference bounding boxes are shown in dark blue. Predictions 1and 2 detect the exact same bounding
boxes with variations in their predicted class probabilities (represented by the confidence scores
(conf.)) that do not affect the ranking. Therefore, the Precision-Recall (PR) curves, curve interpolations
(dashed grey lines) and resulting Average Precision (AP) scores are the same; the predicted class
probabilities are hence unimportant within the ranking.
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FP with low predicted class probabilities. False positive predictions with lower predicted class
probabilities than the last correctly predicted reference, corresponding to the end of the PR curve,
do not affect the AP scores. Figure 47 shows two examples that are very similar, only differing in
the number of wrongly predicted objects. Prediction 2, with two FP, performs worse than Prediction
1 with only one FP. Nevertheless, the AP scores are the same for both models, given the low
confidence of the second FP of Prediction 2.

Pitfall: FP with low predicted class probabilities

Fig. 47. Effect of False Positive (FP) predictions with low predicted class probabilities (represented by
the confidence scores (conf.)). Reference bounding boxes are shown in dark blue. Prediction 1and 2
predict the exact same bounding boxes, but Prediction 2 shows one additional FP detected box with
low predicted class probabilities. This is not reflected in the AP score, as the FP is located at the tail
of the Precision-Recall (PR) curve and does not change the curve interpolation (dashed grey lines).
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8 PITFALLS RELATED TO ANALYSES AND POST-PROCESSING

A data set typically contains several hundreds or thousands of images. When analyzing, aggregating
and combining metric values, a number of factors need to be taken into account. Pitfalls in this
step are primarily related to the following aspects:

e Uninformative visualization (Figure 48)

e Metric aggregation for invalid algorithm output (e.g. NaN) (Figures 49 and 50)
e Hierarchical data aggregation (Figure 51)

o Aggregation in the presence of multiple classes (Figure 52)

e Combination of related metrics (Figure 53)

Uninformative visualization. Relying on only reporting aggregated metric scores may result
in missing essential information on algorithm performance. Therefore, raw metric values (e.g. per
image) should always be shown, for example in the shape of boxplots, as depicted in the top left
of Figure 48. However, boxplots will only provide information on some key descriptive statistics,
like median or 1st and 3rd quartiles. Another choice can be violin plots, which further visualize
the raw data distribution. The top right of Figure 48 illustrates the multimodal distribution of
the underlying data, invisible in the boxplot. Furthermore, using a violin plot and/or plotting the
raw metric values for each data point on top (Figure 48, top right and bottom left) will reveal the
complete data distribution. In the example below, many values lie below the 3rd quartile, although
the box looks tight. Nevertheless, even these two visualizations may hide important information.
Assume a data set with metric values of four different videos. Color- or shape-coding the metric
values by the video type (Figure 48 bottom right) reveals a huge cluster of extremely low DSC
values only affecting Video 4 (pink), which would have been hidden by the other two types of
visualization.
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Pitfall: Uninformative visualization
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Fig. 48. Effect of different types of visualization. A single boxplot (top left) does not give sufficient
information about the raw metric value distribution (here: Dice Similarity Coefficient (DSC). Using
a violin plot (top right) or adding the raw metric values as jittered dots on top (bottom left) adds
important information. In the case of non-independent validation data, color/shape-coding helps
reveal data clusters (bottom right).
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Metric aggregation for invalid algorithm output (e.g. NaN). In challenges or benchmarking
experiments, metric values are often aggregated over all test cases to produce a challenge rank-
ing [30]. Missing data plays a crucial role when aggregating metric values and occurs primarily
due to two reasons: Invalid output of the algorithm or metric routine output resulting in NaN,
non-submission of single cases (by accident or even for cheating [40]). Figures 49 and 50 illustrate
why a strategy on how to handle missing values may be crucial.

In the case of metrics with fixed boundaries, such as the DSC or the IoU, missing values can easily
be set to the worst possible value (here: 0). For spatial distance-based measures without lower/upper
bounds, the strategy of how to treat missing values is not trivial. In the case of the HD, for example,
one may choose the maximum distance of the image or normalize the metric values to [0, 1] and
use the worst possible value (here: 1). Another possibility is to employ a case-based ranking scheme
[30] and assign the last rank for every missing submission. Furthermore, aggregating with the mean
may not be a good choice as results are unlikely to be normally distributed. Crucially, however,
every choice will produce a different aggregated value (Figure 50), thus potentially affecting the
ranking. Another way of handling missing values would lie in rejecting the entire submission in a
challenge.

However, metric values may also be undefined (NaN)) if either reference or prediction or both are
empty. In the case of empty reference and prediction, an undefined metric value (e.g. DSC) may be
a desirable outcome and should therefore not necessarily be penalized.

Pitfall: Missing values for metrics with fixed upper/lower bounds

Fig. 49. Effect of missing values when aggregating metric values. In this example, ignoring missing
values leads to a substantially higher Dice Similarity Coefficient (DSC)) compared to setting missing
values to the worst possible value (here: 0).
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Pitfall: Missing values for metrics without fixed upper/lower bounds

Fig. 50. Effect of missing values when aggregating metric values for metrics without fixed boundaries
(here: Hausdorff Distance (HD). In this example, ignoring or treating missing values in different ways
leads to substantially different HD values.
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Hierarchical data aggregation. Nowadays, most data sets are inherently hierarchically struc-
tured, meaning that the test cases are not independent. Data may, for example, come from several
centers or hospitals, and for every center or even within one, different devices may be used for
image acquisition, and images may be drawn from different subjects or patients. This should be
kept in mind when visualizing and aggregating data points, especially if the individual tree nodes
end in a large variation in the size of images. Figure 51 shows an example of five patients with an
unequal number of images associated with them. Just averaging all metric values for every image
would result in a high average DSC of 0.8. Averaging metric values per patient reveals that the
DSC values are much higher for Patient 1, overruling the other patients given the high number of
samples for this patient. Aggregating per patient first and averaging subsequently will resolve this
issue.

Pitfall: Non-independence of validation data

Fig. 51. Effect of non-independence of validation data, here caused by unequal numbers of data
points per subject. The number of images taken from Patient 1is much higher compared to those
acquired from Patients 2-5. Averaging over all Dice Similarity Coefficient (DSC) values results in a
high averaged score. However, aggregating metric values per patient reveals much larger scores for
Patient 1 compared to the others, which would have been hidden by simple aggregation. @ refers to
the average DSC values.
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Aggregation per class. Similar approaches should be chosen in the presence of multiple classes
in a data set. The performance may differ significantly for the individual classes, as shown in
Figure 52. The background class in particular will result in a nearly perfect averaged DSC value,
whereas the average scores for classes 2 and 3 are much lower. Aggregating over all values, not
considering the class, would hide this information. An alternative approach to the problem lies in
the application of metrics that explicitly handle class balance, such as using the Generalized DSC

[45].

Pitfall: Ignoring multiple classes when aggregating

Image | Image 2 Image 3 Image 4

g e EH

|| Class |

g Class 2 @

= I Class 3 -

0

: ' .

=) Class |

gz - [

= -

: = £

Average over Average per class
all values @
X &J bsc, =030
& psc, =053

@:Average
Fig. 52. Effect of ignoring the presence of multiple classes when aggregating metric values. The
overall average of all Dice Similarity Coefficient (DSC) scores for the four images results in a DSC
score of 0.7. Averaging per class reveals a very low performance for classes 2 and 3. @ refers to the
average DSC values.
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Metric combination. A single metric typically does not reflect all aspects that are essential
for algorithm validation. Hence, multiple metrics with different properties are often combined.
However, the selection of metrics should be well-considered as some metrics are mathematically
related to each other [47, 48]. A prominent example is the IoU — the most popular segmentation
metric in computer vision — which highly correlates with the DSC - the most popular segmentation
metric in medical image analysis. In fact, the IoU and the DSC are mathematically related (see
Sec. 3.2) [47].

Combining metrics that are related will not provide additional information for a ranking. Figure 53
illustrates how the ranking can change when adding a metric that measures different properties.

Pitfall: Related metrics

Fig. 53. Effect of using mathematically closely related metrics. The Dice Similarity Coefficient (DSC)
and Intersection over Union (loU) typically lead to the same ranking, whereas metrics from different
families (here: Hausdorff Distance (HD) may lead to substantially different rankings.

9 CONCLUSION

Choosing the right metric for a specific image processing task is a nontrivial undertaking. With
this (dynamic) paper, we wish to raise awareness about some of the common flaws of the most
frequently used reference-based validation metrics in the field of image processing and provide
guidance of their use, encouraging researchers to reconsider common workflows.
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