A High-Precision, Hybrid GPU, CPU and RAM Power Model
for Generic Multimedia Workloads

Kristoffer Robin Stokke, Hakon Kvale Stensland, Carsten Griwodz, Pal Halvorsen
Simula Research Laboratory & University of Oslo, Norway
{krisrst, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT

Energy efficiency of multimedia processing is a hot topic in
modern, mobile computing where the lifetime of battery-
powered devices is low. Authors often use power models as
tools to evaluate the energy-efficiency of multimedia work-
loads and processing schemes. A challenge with these mod-
els is that they are built without sufficiently deep hardware
knowledge and as a result they have the potential to mis-
predict substantially depending on hardware configuration.
Typical rate-based power models can for example mispredict
up to 70 % on the Tegra K1 SoC. Inspired by multimedia
workloads, we introduce a modelling methodology which can
be used to build a generic, high-precision power model for
the Tegra K1’s GPU and memory. By considering hardware
utilisation, rail voltages, leakage currents and clocks, the
model achieves an average accuracy above 99 % over all op-
erating frequencies, and has been rigorously tested on several
multimedia workloads. Our method exposes detailed insight
into hardware and how it consumes energy. This knowledge
is not only useful for researchers to understand how power
models should be built, but also helps to understand what
developers can do to minimise power usage. For example,
experiments show that for a DCT benchmark, 3 % power
can be saved by utilising non-coherent caches and smaller
datatypes.
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1. INTRODUCTION

Energy consumption is an important topic in mobile com-
puting. Today’s battery-powered mobile devices such as
smart phones, tablets, laptops or even drones have limited
uptime due to a combination of small battery capacity and
power-intensive hardware. As such, research in multimedia
systems have in the past decade focused on trying to un-
derstand the power requirements of hardware to aid energy
optimisation efforts. For example, Hosseini et al. [6] attempt
to save energy in a game streaming scenario by selectively
downloading and processing more important textures over
less important ones, and Sharrab et al. [16] propose a power
model for MPEG-4, MJPEG and H.264 and shows the effect
in terms of power usage under various H.264 compression
parameters.

Unfortunately, researchers’ view of how modern mobile
devices consume energy is limited. To evaluate energy us-
age of for example multimedia systems, they use power mod-
els which are too simple to justify the complex mechanisms
that govern the power usage of hardware. Hosseini et al. [6]
employ a smart phone power estimation tool called Power-
Tutor [21] to estimate the power of an HTC 3D evo phone
under their game streaming scenario. However, inspecting
the source code from PowerTutor we can see that the esti-
mates are actually based on a power model from the HTC
Dream. This leads to inaccurate estimates that give a false
impression of how hardware consumes energy.

Powertutor [21] and other authors [6, 4, 20] implement
rate-based power models, where for example power of a pro-
cessor is assumed to grow linearly with the processor’s utili-
sation level. Figure 1 shows prediction error for three types
of power models running a motion estimation workload on
the Tegra K1’s GPU, where la is the commonly-used rate-
based model. While the accuracy of this model type can
be close to 100 %, the misprediction can also be substantial
up to 70 % depending on the GPU and memory operat-
ing frequency. Thus the accuracy of such models is entirely
dependent on the operating frequencies selected by the Dy-
namic Voltage and Frequency Scaling (DVFS) algorithms
running on the platform at the time of the verification. The
inaccuracy of rate-based models is not only limited to fre-
quency settings. They also ignore many other mechanisms
that have non-negligible effects on power usage such as core
and rail power gating, frequency scaling and variations in
rail voltage levels [15], variable cost of executing different in-
structions (see Figure 12), different software workloads and
contention of hardware resources such as caches [1].

Some authors, such as Sharrab et al. [16] attempt to model



more accurately the effects of power saving mechanisms such
as frequency scaling. Their processor power model is based
on the work by He et al. [22] and suggests that processor
power is proportional to the cube of the number of cycles
required to finish processing. However, this assumes that
performance is inversely proportional to processor frequency.
This has been shown to be an incorrect assumption for the
Tegra K1, where performance scales sublinearly with fre-
quency due to contention for resources [15]. The model will
therefore mispredict on our platform.

In this paper, we propose a methodology to build high-
precision, generic power models for the Tegra K1 SoC with
special focus on its CUDA-capable GPU and main mem-
ory. We use several multimedia workloads intended for post-
processing a live, raw video feed as a case study and demon-
strate an average accuracy above 99 %. The model has been
more rigorously tested than related work by running all ex-
perimental benchmarks over all possible GPU and memory
frequencies. The accuracy is never below 96 %. Our method
is based on estimating swithing capacitance of captureable
hardware events, such as integer, floating point and con-
version instructions, clock cycles and leakage currents by
running a set of synthetic workloads stressing the various
hardware components . It also takes into account mea-
sured voltage levels on the rails supplying the SoC. Com-
pared to related modelling efforts, the increased accuracy
of our model does not compromise performance in power
estimation. Our contributions are as follows:

e An accurate power model which gives good insight into
power usage of a modern platform and can be used
for evaluating energy efficiency of generic multimedia
workloads.

e Our methodology shows other authors in the field how
accurate power models should be built and validated
for modern SoCs.

e By estimating the switching capacitance of various hard-
ware events, our model shows how developers can be
more energy-efficient by utilising local cache better or
using smaller datatypes.

e We demonstrate a 3 % power saving for the DCT mul-
timedia workload without compromising performance.

Our outline is as follows. Section 2 gives a short introduc-
tion to two common types of power models, and as a mo-
tivation compares the estimation accuracy of these and our
model. Section 3 introduces our GPU multimedia workloads
used to verify our model. In Section 4 and 5 we introduce the
GPU, memory and CPU model predictor, and we derive the
power model and the methodology to build it. The model
is verified and discussed in Section 6, where we also discuss
some preliminary energy-optimisation approaches. Finally,
we conclude our work in Section 7.

2. BACKGROUND AND RELATED WORK

There is a plethora of work that attempts to model the
power usage of various types of computing devices, such as
smart phones, embedded development systems, laptops and

!Source code and trace files are available at http://folk.uio.
no/krisrst/mmsys16/

stationary computers. These generally describe power or en-
ergy as linear systems where the cost of executing various
types of instructions, accessing different cache hierarchies,
disks or network interfaces is found using different method-
ologies. While some authors have used neural networks to
estimate these costs [7, 10] the vast majority use multivari-
able, linear regression. The typical way of describing for
example the power usage of GPUs [5, 9, 18] and CPUs [14,
19] is of the form:

Np
Piot = Bo + szﬂi (1)
i=1

In Equation 1, B is the power of idle components with
constant power draw, p; is a predictor with units of accesses
per second, (; is the cost in Watt-seconds per access and N,
is the number of predictors. Note that some works [5, 9] have
slightly different interpretations of Equation 1. For example,
B; can be replaced with the maximum power of a hardware
component P; maq, and p; can be replaced with the utilisa-
tion of that component (p; € [0,1]). The general form of
the expression remains the same and viable to solution with
regression. During the past five years several researchers
have extended these modelling efforts out of the laboratory,
where such models are built on-line on smart phones using
various types of power measurement sensors [4, 20, 21].

A liability with modelling power using Equation 1 is that
it does not consider the physical rules that govern energy
consumption. Modern SoCs such as the Tegra K1 (see Fig-
ure 6) are complex platforms featuring several rails powering
the various components within the SoC. Figure 6 shows four
of these: the GPU, memory and CPU cluster rails. Kim et
al. [8] describes the rate of energy consumption for logic
CMOS circuits as the sum of dynamic and static power.
These equations can be readily applied to individual power
rails [3, 15]. Static power is the product of the circuit’s
leakage current IR jcqr and rail voltage Vg:

PR stat = IR lcak VR (2)

Dynamic power is caused by switching activity and is gov-
erned by both hardware and software. For example, as a
processor executes instructions, loads data from cache, or
the memory chip spends cycles serving memory read and
write requests, dynamic power is being used:

Pr.ayn = arCrVE fr (3)

In Equation 3, Cr is a potential maximum switching ca-
pacitance per cycle (with a unit of coloumbs per volt per
cycle) and ar € [0,1] is a workload-specific factor which
decides how much switching capacitance Cr is being con-
sumed per cycle. fr is the operating frequency in cycles per
second.

The take-away point from Equations 2 and 3 is that the
cost of executing instructions (dynamic power) and using
hardware (static power) varies with voltage. The voltage
on a rail Vg further depends on the operating frequency
on that rail fr [8], and is regulated by DVFS algorithms
(see Figure 2). When building rate-based power and energy
models using Equation 1, it is therefore reasonable to expect
that, depending on the frequency operating point where the
model was built, the estimated costs 8; will vary.

We now conduct an experiment to find out how inaccu-
rate power estimations (; can be if rail voltage is not taken



[9%] Joi2 3reWns3
[9%] Jo.i 3rewns3

600 ey
gy, /900 800 Gpu Freque

(a) Rate-based model.

(b) Modelling switching capacitance aC'.

800 o0

(¢) Our hybrid model.

Figure 1: Prediction error for a motion estimation kernel.
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Figure 2: GPU voltage versus frequency.

into account. The details around this experiment is simi-
lar to the method presented in Section 5.2. We use Equa-
tion 1 and multivariable, linear regression to build a simple
power model based on our synthetic benchmarks listed in
Table 2 and our predictors in Table 1 (excluding memory,
clock and leakage predictors which are not typically used
but rather a part of our contributions). We verify the model
with a motion estimation filter for videos running on the
GPU (see Section 3.2). The result can be seen in Figure 1la,
where model accuracy is plotted versus memory and GPU
frequencies. As expected, we see that accuracy is very vari-
adic depending on operating frequency because Equation 1
does not consider rail voltages. The resulting planes show a
gradual increase in accuracy which for some frequency com-
binations is very close to 100 % (green and blue area). Our
hypothesis is that some of these areas show better accuracy
because they reflect better the frequency levels that were set
in the model training phase by the memory and GPU DVFS
algorithms. At high frequency levels the model underesti-
mates up to 60 %. In the opposite case (low frequencies),
the model overestimates by up to about 60 %. This is a
direct effect of the fact that rail voltage is not considered.
There are few works which attempt to incorporate rail
voltages into power models. Hong and Kim [5] model static
power considering both rail voltage and temperature, but
have a rate-based dynamic power model. Castagnetti et
al. [3] model the power of an Intel XScale CPU. Pathania
et al. [13] model power of a 4+4 ARM CPU in big. Lit-
tle configuration as well as a PowerVR GPU for gaming
workloads. Both take into account rail voltages as shown
in Equations 2 and 3. However, they are based on find-
ing the dynamic power coefficient arCr either directly or
through the processor hardware utilisation level, similarly
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Figure 3: Video stream rotation.

to the work by Stokke et al. [15]. The error of such a model
built for the Tegra K1 can be seen in Figure 1b. While the
error rate of such a model is better than a pure rate-based
one it can still be very high up to 50 %. The methodology
also has two disadvantages. First, arCr changes depending
on the workload characteristics and must be subsequently
re-estimated for any workload combination. Secondly, in-
creasing frequencies in various domains (GPU or CPU) in-
evitably increases hardware utilisation ar in other parts of
the platform. In this aspect, we provide an entirely generic
model which takes as inputs the various utilisation levels
of different components in the Tegra K1 SoC as well as rail
voltages, and achieve a much better accuracy close to 100 %,
as shown in Figure 9c.

3. WORKLOADS

Our workload represents video processing operations in-
tended for post-processing raw video streams stored in the
YUV format. These have been implemented in CUDA for
the Tegra K1 GPU. In our benchmarks, these workloads
process 80 full-HD video frames.

3.1 Image Rotation

In the image rotation tests, each frame of a video stream
is being rotated by a continuously increasing angle 6 (see
Figure 3). The algorithm treats each frame as a cartesian
coordinate space centered in the middle of the frame. Ref-
erence pixel positions (u,v) are calculated by multiplying
each original pixel coordinate (z,y) by the rotation matriz

as follows:
u| _ cgs—@ —sin — 0| |x (4)
v sin—0 cos—0 | |y
Subsequently, each reference pixel at position (u,v) is put
at its corresponding frame location (z,y).

3.2 Motion Vector Search

In the second test, we apply motion vector search (MVS)
on the raw video stream. MVS is a common technique in
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Figure 4: An illustration of the operation of the diamond
search algorithm.

video encoding to reduce the amount of information that
has to be stored with each frame. In our case, it works by
dividing each frame into a set of macroblocks of 8x8 pixels,
and then attempting to estimate each block’s displacement
(the vector) relative to the previous frame.

We have implemented the diamond search algorithm [23].
Diamond search estimates the displacement of each mac-
roblock by computing the sum of absolute difference (SAD)
of the current macroblock and the eight surrounding mac-
roblocks in the previous frame (as shown in Figure 4). At
every step, as long as the macroblock with the lowest SAD
is not in the center of the “search window”, the window will
be re-centered at the macroblock with the lowest SAD. Af-
ter three iterations, the pattern changes to a smaller dia-
mond with only four surrounding macroblocks, where the
one block with the lowest SAD is estimated to be correct.

3.3 Compression

The third and final test is MJPEG video compression. In
this test, the video is compressed by removing high-frequency
components from each frame. The image compression algo-
rithm transforms each macroblock of 8x8 pixels into the fre-
quency domain using the discrete cosine transform (DCT):

7 7
Mo = 3(7(0) 30 37 mayeosl =@+ Duleos 2w+ 3)el (5)
2=0 y=0
In Equation 5, u, v € [0, 7] are the DCT output coordinates,
My, are the frequency components, m, , are the original
pixel values in the macroblock, and y(w) is a normalising
function.

3.4 Debarreling

Barrel distortion is an effect that occurs with different
lenses [17]. Our “debarreling” workload computes a constant
debarreling map for one type of lens. This map only needs
to be calculated once and is subsequently applied to each
frame. The debarreling filter is the least compute-intensive
filter we consider.

4. ENERGY CONSUMING ENTITIES ON
THE TEGRA K1 SOC

To build a power model for the Tegra K1, it is important
to have solid understanding of the relevant parts of the ar-
chitecture (see Figure 6) which consumes energy under our
workloads. In this section, we describe these components,
the Hardware Performance Counters (HPCs) they expose to
our power model as predictors, and why we use them (see
Table 1 for an overview of the predictors).

(a) GPU is off

(b) GPU is on and idle

Figure 5: Power usage depending on whether the GPU is off
or not.

4.1 Memory

The Jetson-TK1 is equipped with off-chip DDR3 Random
Access Memory (RAM) and two Embedded Memory Con-
trollers (EMC) [11]. The EMCs arbitrate memory accesses
from the CPU complexes (EM Cep., 32-bit accesses) as well
as the GPU (EMCypy, 64 bit accesses). The Tegra K1 is
thus capable of executing both CPU and GPU memory-
intensive programs at the same time. Carroll and Heiser [2]
show in their analysis of the OpenMoko Freerunner smart-
phone that RAM can account for a substantial amount of
total power depending on the type of workload, even with-
out an active GPU. Despite this, RAM power is usually not
directly accounted for in literature.

4.1.1 Dynamic Power for RAM

The possibility to monitor memory activity is not trivial.
Not accounting for two CPU HPCs that can count L2 cache
misses and writebacks there are few predictors which can
be used to trace memory utilisation. The CPU HPC im-
plementation only allows for collection of a maximum of six
counters simultaneously, so these should be avoided. The
GPU is also equipped with set of HPCs which can be read
during program execution, but these do not provide access
to the total number of bytes read or written to memory by
the GPU.

The Tegra K1 instead implements a hardware activity
monitor (ACTMON) which is intended to guide the memory
DVFS algorithm [11]. The ACTMON is capable of counting
the following:

e The total number of memory cycles spent serving CPU
memory requests.

e The total number of memory cycles spent serving any
memory requests (including GPU and other sources).

We wrote a modified kernel driver for the ACTMON, en-
abling us to count these variables in any time interval above
one ms. While this solution is not able to distinguish be-
tween memory reads and writes, it has several advantages.
For example, it provides a fine-grained measure of hardware
activity created by the GPU and the CPU. The method
is also able to count all accesses to memory, for example
caused by GPU driver overhead and memory accesses from
other sources, and avoid occupying HPC space.

4.1.2 Clock Power

The memory bank is continuously spending energy to main-
tain its consistency. In Figure 5a), the total power of the



Jetson-TK1 is plotted versus memory and GPU frequency.
In this example, the GPU rail is off. Therefore, there is
no change in power as GPU frequency increases. However,
the total power usage increases linearly with memory fre-
quency. We assume that this is due to increased self-refresh
frequency. The power model must take this factor into ac-
count.

At memory frequencies 204 and 300 MHz, we see that
there is an inconsistency in our assumption. Despite the
linear trend at other frequencies, power drops slightly at
204 MHz and increases at 300 MHz. We do not know the
reason for this, but some PLL clocks are activated in the core
domain at these frequencies. We take the drop and increase
of power usage (relative to the “linear” increase in power
at the other frequencies) into consideration in our model as
simple offsets.

42 GPU

The Kepler-based GK20A GPU on the Tegra K1 is a more
parallel architecture than the CPU, capable of running 128
threads in parallel. The GK20A contains a single SMX. An
SMX implements four warp schedulers, each of which is ca-
pable of concurrently running groups of 32 threads called
warps. Two independent instructions per warp can be exe-
cuted at the same time [12]. The threads utilise 192 CUDA
cores which provide arithmetic and floating point function-
ality and various other units such as code, data and texture
caches (see Figure 6). The Special Function Units (SFUs)
implement special functions such as sin and cosine. They
are out of scope for this paper.

Due to the high number of concurrently active threads,
memory pressure (and power usage) is substantial. The
SMX features a complex memory hierarchy to improve mem-
ory access latency and bandwidth. Read accesses from mem-
ory are performed through the Tegra K1’s 64 bit EMC2 in-
terface. Accesses are cached in a L2 cache with size 128 kB,
which is global to all threads running on the SMX. Memory
read accesses can also be stored in a warp-local 64 kB L1
cache, either implicitly on RAM loads or directly through
the use of shared memory (in which case it can also be writ-
ten).

When considering the power usage of the Tegra K1’s GPU
it is important to have the best control over hardware util-
isation of the different parts of the Kepler architecture. In
this section, we outline the HPCs used to collect this infor-
mation using NVIDIA’s profiling tool, nvprof.

4.2.1 Memory Hierarchy

Any memory access can result in hardware utilisation on
three different components of the Tegra K1. In the worst
case, the memory is fetched or stored off-chip in RAM. Data
can also be cached in L2 and L1.

An easy misconception is that the global memory (RAM)
throughput HPCs, gst_throughput and gld_throughput re-
flect actual amount of data stored and loaded from RAM.
However, we found in our experiments that these counters
do not separate between actual RAM accesses and L2/L1
cached accesses. Instead, we use the ACTMON activity
monitor to track the GPU’s utilisation of RAM.

The 12_subpO_total_read_sector_queries HPC counts
the number of 32 B read accesses to the L2 cache. In our
attempts to train the model, we also used the 12_subpO_to-
tal_write_sector_queries, but we were unable to estimate

a meaningful coefficient to it. We suspect this is because L2
writes are directly written to RAM, and that the power us-
age related to such events is instead captured by our RAM
activity counter.

The L1 cache utilisation is more difficult to trace accu-
rately because there is no single counter (as for the L2 cache)
which enables us to trace the raw number of read and write
transactions. L1 is used for caching thread-local memory
accesses, global memory accesses, and finally, it can be con-
figured for shared memory access between threads. To accu-
rately trace L1 cache utilisation, we need to trace all these
types of accesses.

Thread-local data consists of for example function param-
eters. This memory is allocated in RAM and automatically
cached in L1. Accesses to local memory via the L1 cache is
traced by the 11_local_{store/load}_hit HPCs, which in-
crement by one for each 128-bit transaction. Memory reads
from RAM may also be stored in L1, and are traced with
the 11_global_load_hit HPC. Memory stores to RAM are
not cached in L1 because L1 caches are not coherent, but
are instead directly written to L2 cache or RAM.

L1 utilisation that occurs as a result of shared memory
usage is harder to trace. These transactions are counted by
the HPCs 11_shared_{load/store}_transactions. How-
ever, shared memory accesses are often broadcasted to all or
several of the threads running in a warp, because all threads
access the same memory location. In this case, the num-
ber of transactions is still counted for each thread-initiated
share memory load or store. Therefore, the number of trans-
actions reported by these HPCs is much higher than what
is actually read or written in hardware. To estimate the
actual utilisation, we found that it is possible to use the
shared_efficiency HPC. This counter gives the ratio of re-
quested (actual) shared memory throughput to the required
(thread-initiated total) throughput. The actual L1 shared
access utilisation can be estimated as follows:

Llshr act (1/sy = L1 gpr g1/} X shared_ef ficiency  (6)

Note that the estimate can be inaccurate because shared_-
efficiency does not separate between reads and writes.

4.2.2 Functional Units

Running GPU threads utilise various hardware units to
perform additions, control operations, register loads and
stores etc. NVIDIA provides fine-grained accounting over
which types of instructions have been executed over time,
which are specified in several groups. The grouping allows
for more accurate tracking of hardware utilisation. For ex-
ample, it is to be expected that floating point operations
cost more power compared to pure integer operations. The
groupings of HPCs are as follows:

e inst_fp_32 / inst_fp_64 counts floating point oper-
ations on different datatypes (32-bit or 64-bit opera-
tions).

e inst_integer counts integer operations.
e inst_bit_convert counts bit conversion instructions.

e inst_control counts control flow instructions, such as
branching and jumps.

e inst_misc counts miscellaneous instructions, such as
register moves and NOP instructions.
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Figure 6: Overview of the Tegra K1 and the Kepler SMX architecture.

4.2.3 Clock Power

In addition to dynamic power caused by application util-
isation in the GK20A’s memory hierarchies and functional
units, there is some power usage which is related to the
GPU’s own clock (clock power). This is visible when the
GPU is on (GPU rail is powered), but idle. Consider for
example Figure 5b. Here, we have set the GPU’s inactiv-
ity timer (the time before the GPU rail is powered off after
for example a kernel launch) to a few seconds, and logged
the average power usage of the Jetson-TK1 in this period
over all GPU and memory frequencies. Comparing with Fig-
ure 5a, where the GPU is off, we can clearly see that there is
non-negligible additional switching activity when the GPU
is powered and idle. Furthermore, we can see that the ad-
ditional overhead scales linearly with frequency until GPU
rail voltage starts to increase (at 400 MHz, see Figure 2).
From these point, power scales linearly with fgp. V.. This
confirms that the additional overhead is an effect of dynamic
power on the GPU rail.

4.2.4 Static Power

Static power usage is caused by leakage currents in the
GPU’s circuitry (for example transistors). For the GK20A,
we have found that the estimated leakage current on the
GPU rail has higher standard deviation than the other pre-
dictors. This is likely due to power gating inside the cir-
cuitry.

4.3 LP CPU Core

The Tegra K1’s CPU is not the main target of this study,
but its power usage is non-negligible for several reasons. It
is for example running the operating system and all its sys-
tem services and drivers, as well as launching CUDA ker-
nels through our benchmark programs. It also utilises RAM
through its own EMC, in particular to fetch and store pro-
cessed frames. For these reasons, one cannot assume that
the power usage caused by CPU activity is negligible.

While the Tegra K1 has a complex, dual-cluster CPU with
a High-Performance (HP) quad-core cluster in addition to
the LP companion core, we restrict processing to the LP
core because the main target of this study is the GPU. Ide-
ally, it should only be necessary to model dynamic power of
the LP core by disabling the HP cluster and fixing proces-
sor frequency to 1092 MHz. This causes static power to be
estimated as part of the base power, because the core rail
voltage (and static power contribution) will not vary. How-
ever, in our experiments, we observed that the estimated
dynamic CPU power coefficients give more precise values if
the static power usage is also modelled.

The Tegra K1’s CPU has an HPC implementation which
can be queried with the perf Linux framework. Compared
to the GPU HPC implementation, the CPU has less fine-
grained instruction counting, with only one global (total)
instruction counter. It does, however, have better account-
ing for L1 and L2 cache accesses, which are able to separate
between hits and misses for both data and instruction cache
reads and writes. Only seven counters can be monitored
simultaneously, and one of these is always occupied by the
active cycle counter. Because we do not expect the dynamic
CPU power to be substantial, we ignore the CPU cache hier-
archy and variation in costs of different types of instructions.
We define a new metric, pepu,ipe, which is defined as the ra-
tio between the instruction count over the active cycle count
which accounts for CPU dynamic power caused indirectly by
software execution:

Ncpu,inst

(7
Intuitively, pepu,ipc Will decrease estimated CPU dynamic
power when the CPU is stalling more. We let this counter
represent the software workload.
GPU and RAM have a clock-dependent dynamic power

cost which is basically an estimated cost per clock cycle.
This is also the case for the CPU, but the number of cy-

Pcpu,ipc =
Ncpu,cycles



cles per second is not the raw frequency point for the CPU
(1092 MHz), as for RAM and the GPU. This is evident be-
cause attempting to use the raw frequency point to estimate
the dynamic clock power completely breaks the regression
results, severely reducing the accuracy of the model and
causing several negative coefficient estimates. We believe
that the CPU is power gating the clock aggressively when
it is idle, and therefore, the actual cycles per second is the
active cycle counter itself.

S. A HIGH-PRECISION POWER MODEL

In this section, we derive the power model used to esti-
mate power usage of our GPU multimedia workloads. The
main idea behind our methodology is that dynamic power is
modelled in terms of measurable hardware activity, and that
we compensate for variations in rail voltages. We describe
in detail the methodology used to build the model, where we
have implemented specialised benchmarks to stress the rele-
vant parts of the Tegra K1 in such a way that the regression
results become accurate.

5.1 Derivation

The total power usage of the Jetson-TK1 is the sum of
power usage on each rail Pr and base power Ppgse. The
Tegra K1 has 21 power rails, but only three are being used
in our scenario: the core, memory and GPU rails (see Fig-
ure 6). All other rails are assumed to be idle with constant
power usage as a part of Pyase. The total power usage be-
comes:

Ptotal = Pcore + P’mem + ngu + Pbase (8)

The total power usage on a rail is the sum of static and
dynamic power (see Equation 2 and 3). However, the dy-
namic power equation only gives a crude average of the
switching activity (instructions executed, memory requests,
caching operations etc). As mentioned in Section 2, the
dynamic power coefficient arCr can be estimated using re-
gression [15], but the process is prone to error because ar
is not always constant over all frequency combinations. For
example, when increasing memory frequency, switching ac-
tivity (agr) in other architectural units such as the CPU
or GPU can also increase, leading to misprediction. The
core improvement of our model is that we express dynamic
power in terms of measurable hardware activity while also
accounting for changes in rail voltage. By doing this, our
hypothesis is that power usage can be more accurately esti-
mated for any workload on any operating frequency point.
We model dynamic power on a rail R as:

Nr

PR ayn = Z Cr,ipr,iVi (9)

=1

In the equation above, for rail R, pr,; is a hardware activ-
ity predictor in occurrences per second, N is the number of
predictors, and Cg,; is the switching capacitance (coloumbs
per volt) per occurence of event pr ;. The total power usage
of the Jetson-TK1 becomes the sum of power usage on each
of the three active rails R € R and base power Ppgse:

ReR
Pjetson - Z(PR,dyn + PR,sta.t) + Pbase (10)

Note that static power of the memory rail is not possible
to model because the voltage on that rail does not vary, as
per our discussion in the next section.

5.2 Methodology

By extension of Equation 10, the unknown variables are
the switching capacitances Cr,;, leakage currents Ir jcqr and
base power Pyase. Our methodology to find these terms is
based on multivariable linear regression and is summarised
as follows. We create twelve spesialised benchmarks de-
signed to stress different hardware blocks of the Tegra K1
(see Table 2). Each of these are run over all possible combi-
nations of processor and memory frequencies (see Table 3)
for a total of 1830 samples. In each run, we log the predictors
PR,i, voltages Vi and operating frequencies. The predictors
must now be processed to account for the rail voltage:

e All dynamic power predictors pr,; must be multiplied
by V# (see Equation 9).

e The static power predictor is just the rail voltage Vg
(see Equation 2).

The resulting “final” predictors are then passed to the re-
gression solver and produces the coefficients seen in Table 1.
Note that while related works often use multivariable regres-
sion with non-negative coefficients [19] we simply use normal
regression without ending up with negative coefficients?.

Running each benchmark over all possible frequency com-
binations has several advantages.

1. It creates natural variation between the model predic-
tors (access rates). When memory frequency is low
and GPU frequency is high, the memory access rate
is lower while the GPU hardware utilisation is higher,
and vice-versa. This is also helps test the full range of
model predictors (rates), which is extremely important
for regression to estimate accurately.

2. Rail voltages vary depending on operating frequency.
This also increases diversity in the training dataset’s
predictors.

3. Increasing frequency like this also helps estimate clock
power and leakage currents (which would be impossible
otherwise) because higher rail voltage is higher at high
GPU frequencies.

4. Increased dataset size.

Note that our method consists of a high number of runs
(1830) to complete the model training phase because each
of the benchmarks listen in Table 2 is run over all possible
GPU and memory frequency levels. The number of runs can
be reduced by including fewer frequency levels and should
not affect the accuracy of the model, but care must be taken
to force variation in rail voltages. For example, most of the
GPU frequencies below 400 MHz are not needed because rail
voltage does not vary (see Figure 2). We leave it to future
work to investigate the impact in terms of model accuracy
resulting from a reduced number of training frequencies.

In our initial attempts to train our model, we found that
trivially using example code (for example CUDA examples)

2The only exception is our memory offset “tweak” at
204 Mhz, which is expected.



Rail Number Predictor Description Coefficient Value
0 Vapu GPU voltage Tgpu,leak 0.27A
1 Pgpu,clock Total clock cycles per second Cypu,clock 2_10%
2 Pgpu,L2R L2 cache 32B reads per second Cypu,L2R 10.79 %%
3 Pgpu,L1R L1 cache 4B reads per second Cypu,L1R 8.90%
GPU 4 Pypu,L1W L1 cache 4B writes per second Cypu,L1W 8.43%
5 Pgpu,INT Integer instructions per second Cypu,INT 41.11%
6 Pypu, F32 Float (32-bit) instructions per second Cypu,F32 38.15%
7 Pgpu,F64 Float (64-bit) instructions per second Cypu,F6a 115.33%
8 Pypu,CNV Conversion instructions per second Cypu,CNV 72.42%
9 Pgpu,MSC Miscellaneous instructions per second Cypu,MSC 28.36%
0 Pmem,clock Total clock cycles per second Crem,clock 258.66%
Memory 1 Brmem,204 Power offset at 204 MHz Prem,204 —0.03W
2 Bmem,300 Power offset at 300 MHz Prem,300 0.06W
3 Pmem,CPU CPU busy memory cycles per second Chrem,cpu 2.25%
4 pmem,orTH | Other (GPU) busy memory cycles per second Cinem,oth 21725
Core 0 Vepu CPU voltage Tepu,leak 0.79A
1 Pepu,cpi CPU instructions per cycle Cepu,cpi 3.7212%
2 Pepu,acl CPU active cycles per second Cepu,acl 166.62%
Other Prase Base power - 0.78W
Table 1: Overview of energy model predictors and coefficients.
Benchmark Description — Compon};}gtl\s/[/ instructions under explicit stress
CPU (CPU) GPU (GPU) L2 L1 INT | F32 | F64 | Conv. | Misc.
Idle CPU GPU off, CPU in idle state. v’
CPU-workload GPU off, CPU processing. v’
Idle GPU GPU on and idle, CPU in idle state. v’ v’
L2 Read Stresses L2 cache reads only. v’ v’ v’
L1 Read Stresses L1 cache reads. \/ / \/ v’
L1 Write Stresses L1 cache writes. v’ v~ v’ v’
RAM Stresses RAM activity (GPU EMC). v’ v’ v~
Integer Stresses integer arithmetic unit. v’ N v’ v’
Float32 Stresses floating point unit. v’ N v’ v’ v’
Float64 Stresses floating point unit. v’ v’ v’ v’ v’
Control Stresses conversion instructions. v’ v’ v’ v’ v’
Misc Stresses miscellaneous instructions. v’ v’ v’ v’ v’

Table 2: Overview of benchmarks and components under stress.

Frequency

Clock Rail Description (e Voltage

cpulp | Core LP core 9 [51, 1092] 0.80, 1.05
eme Core Memory 10 [40, 924] 0.80, 1.01
gpu GPU LP core 15 [72, 852] 0.79, 1.05

Table 3: The Tegra K1 clocks, voltage and frequency ranges.

has two major drawbacks. First, the measured model pre-
dictors are not diverse enough for the regression to esti-
mate meaningful coefficients. For example, L1 and L2 read
throughput will remain virtually the same independently of
operating frequencies and benchmarks, as data passes both
stages anyway. Secondly, only using benchmarks which are
actively processing result in poor estimations. This is be-
cause some coefficients, such as leakage currents, clock and
base power are independent of the workload. Much better
estimations can be achieved by also profiling the power for
an idle system.

Ideally, each benchmark should stress just one architec-
tural unit of the system (memory writes, L2 reads, etc.).
This is hard, and in some cases impossible, to achieve in
practice. For example, attempting to only read 100 MB of
data from memory to L2 cache results in no data being read
at all, because the CUDA driver is very good at optimising

code and detects that the data is not actually used. This op-
timisation happens at a driver level and can not be disabled.
Furthermore, as mentioned above, at some points it is im-
possible to stress just one architectural unit. An example
is stressing the L1 cache. Stressing the L1 cache inevitably
results in stressing L2 cache and memory, because of cache
eviction policies and the internal workings of the GPU.

We have written twelve spesialised different benchmarks,
which can be seen in Table 2. Due to the limitations de-
scribed above, these are written in a "pyramid” fashion where
we stress the (possible) small groups of hardware units first,
before adding units on top. For example, it is possible to
stress L2 cache reads only, without stressing memory or any
other hardware units, by reading the same data from mem-
ory over and over without L1 caching, and then conditionally
writing it back in an if-condition which never evaluates to
true. Then, the process can be done again, but this time
forcing the GPU to cache the global reads in L1 as well.
The regression will now have diversity in both predictors to
accurately estimate their coefficients.

The results of the regression can be seen in Table 1. Note
that there is no coefficient for L2 writes. The reason for
this is that the estimated coefficient is very small compared
to the others, and has very high standard deviation. We



believe this is because L2 writes are not actually cached
there, but immediately written back to memory. The power
usage related to this event is thus instead part of the active
memory cycles.

6. EXPERIMENTS AND DISCUSSION

In this section, we perform extensive verication of our
power model using generic multimedia workloads. We show
that our model is able to predict power with high accuracy,
discuss the model coefficients and finally look at possible
ways to save power by exploiting local caches and shorter
datatypes.

6.1 Setup

To verify our model, we have developed four different GPU
benchmarks for video processing (debarreling, DCT, motion
estimation and rotation). We let these process a full-HD
video stream for 80 frames, over all possible GPU and mem-
ory frequency combinations. Figure 7 shows a simplified flow
diagram for a single test run. Before power can be estimated,
the GPU HPCs must be collected. This is challenging for a
number of reasons:

e HPC collection for GPU kernels takes a substantial
amount of time, slowing down the kernels. We must
therefore log HPCs on a per-kernel basis to be re-used.

e HPC values vary not only based on the kernel exe-
cuted, but also on launch configuration and (possibly)
function parameters.

e Depending on the set of HPCs to collect, several runs
over one kernel is needed.

To solve these issues, we implement callback functions to
track kernel launches and kernel exits. On entry to these
functions, a hash is computed based on the kernel’s symbol
name and execution configuration. We ignore variance in
HPCs that result as changes in function parameters, which is
only relevant for the rotation workload. On kernel launches,
we initiate HPC collection as needed (in total three runs
per hashed kernel). On kernel exits, if HPC collection is
complete, we estimate power of the GPU, CPU and memory
using the counters. GPU execution time is measured by
reading the total elapsed GPU cycles for a hashed kernel
(the elapsed_cycles_sm HPC, e.) and dividing it with the
frequency of the GPU:

€c

(11)

The experimental setup is based on a Keithley K2280S
power source and monitoring unit using an external machine
to avoid overhead on the Tegra K1 [15]. The power estima-
tion phase is low-overhead which involves straightforward
calculation of power using model coefficients and predictors
collected with PERF and CUPTI APIs and equations from
Section 5.

Thern = —5—
ern fGPU

6.2 Accuracy

Figure 8 shows an example the measured and estimated
power components in a single DCT frame encoding interval.

For each frame

ASYNC CUPTI
callback

Process Frame

GPU Kernel e Kernel Exit__]
GPU Kernel ‘

Done collecting . _
HPCs? HPCs?

GPU Kernel [ No [ No

Done collecting—__YeS

] ( Estimate Power ]

(Start HPC collection) ~ (___Log HPCs.
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Figure 7: Per-Frame Benchmark flow.
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Figure 8: Power plot over time for the DCT kernel.

The peaks in the plot represent kernel launches. There are
six kernel launches per DCT frame because the Y frame is di-
vided into four subregions with the same size as a UV frame.
We see that the estimation is very accurate over time, close
to 100 %. This represents a substantial improvement from
state-of-the-art methods that do not consider rail voltages
(see Section 2). The total power estimate appears less pre-
cise between frames. This is because power estimation only
occurs after each kernel launch, and there is a non-negligible
kernel launch overhead before the first kernel launch at the
beginning of each frame. This overhead is represented as
an average since the exit of the last kernel of the previous
frame.

Figure 9 shows the model error in % for a total of 70
processed frames over all GPU and memory frequency com-
binations, for the debarreling, DCT and rotation workloads.
The estimation is very accurate. Not considering the motion
estimation filter, the accuracy of our model is over 99 % on
average and always above 96 %. This demonstrates that our
model, which is built using entirely synthetic benchmarks,
is able to consisely capture the power usage of kernels com-
prised of a more complex mix of instructions and branches.

We now study Figure 10a, which shows a closed-up plot
of prediction error for the motion estimation filter. We see
that, in general, estimation is good (between 99 to 100 %)
at low GPU frequencies. Moving towards the lowest mem-
ory and GPU frequency, estimation accuracy tends to de-
grade towards its lowest point. This is true for all the fil-
ters, but hard to see in Figure 9. Furthermore, we see that
at 756 MHz GPU frequency, estimation accuracy shows a
significant drop across all benchmarks. It is here important
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Figure 10: Motion estimation error over all frequencies.
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Figure 11: Power over time for a single motion estimation
Y-frame processing at 756 MHz (GPU) and 924 MHz (mem-
ory).

to note that there is a substantial amount of time where
the GPU is not actively processing, but the CPU is busy
reading the next frame or writing results in memory (see
Figure 8). When error starts increasing, we see that the
power estimation during this period tends to be larger than
when the GPU is active. Consider for example Figure 11,
where a single peak (Y-frame motion estimation kernel) is
shown. For this test, the error was 4 %. It is clear that the
estimation during the kernel launch is very accurate. How-
ever, in the period between frames, the estimation is worse.
This indicates that either the CPU or memory estimate is
inaccurate.

To test the accuracy of the CPU and memory model, we
run a differential test on the motion estimation benchmark.

No GPU kernels are executed, but frames are read and re-
sults written as normal. To avoid compiler optimisations,
we conditionally execute the motion estimation kernel in an
if-statement which never evaluates to true. The result can
be seen in Figure 10b. We see that the error over CPU-
only execution can vary about the same amount as when
the GPU kernels are also being run. We believe that a bet-
ter power model for the LP core is needed to further increase
the accuracy of the model.

The motion estimation filter has a lower accuracy than
the rest of the filters. On average, it is 97 %, and the esti-
mation accuracy decreases more with GPU frequency than
for the other filters (at the lowest 95 % accurate). The mo-
tion estimation kernels stresses shared memory more, and
each kernel runs for 5 to 26 times longer than for the other
filters. We found that the CUPTI counters for shared mem-
ory transactions do not appear to be reliable, which can
cause our model to mispredict more than the other filters.
For the U and V frames, CUPTI is for example not able
to count shared memory transactions at all. Only shared
memory transactions for the Y frames are actually counted.
Furthermore, the implementation used to run the motion
estimation kernels is slightly different than for the filters. It
is therefore also possible that the CPU model is causing the
misprediction.

6.3 Model Coefficients and Power Breakdown

Table 1 shows all estimated model coefficients. Looking at
the leakage currents and base power, we see that the CPU
(LP core) leakage is estimated to be 0.79 A, and the base
power 0.82 W. This is very similar to our previous work [15]
where a different methodology is used to find dynamic, static
and base power. GPU leakage is estimated to 0.27 A, which
is much smaller than the CPU. Possible reasons for this is
that the GPU is implemented using a smaller number of
and/or another type of transistors. Related work has shown
that the leakage of the HP cluster varies between 0.38 to
0.80 A [15] depending on the number of online HP cores.
Given a choice between running a workload on any of these
processors, the GPU therefore seems like a better choice,
given that its static power dissipation will be much lower.
However, dynamic power must also be taken into account to
find the most energy-efficient alternative.

Figure 12 shows most of the dynamic power coefficients
from Table 1 in coloumbs per volt. Ccpu,cpi is not shown
because it has units of coloumbs per volt per second. Con-
sidering clock power (Cl ciock), we can see that the memory
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Figure 12: Model coefficients.

Energy Cost

Source per Transaction per Byte

v _ [ HV v [ HV
Memory 3.96nW's 0.49nW's
L2 Read | 6.73nWs [ 11.89nWs | 0.42nWs [ 0.74nWs
L1 Read | 5.55nWs [ 9.81nWs 1.38nWs [ 2.45nWs

Table 4: Energy cost for reading from various cache and
memory hierarchies (excluding static and clock energy).

and LP core clock coefficients are similar, i.e., the capaci-
tance load per active clock cycle are the same. For example,
at the highest operating frequencies (see Table 3), the LP
core and memory clock power is estimated to be 0.20 and
0.43 W, respectively. The GPU clock capacitance is an order
of magnitude higher than for the CPU and memory. At the
highest frequency, the GPU clock power is estimated to be
1.97 W. From Section 4.2.3, we argue that clock power is in-
dependent of the workload. As a processor, the GPU there-
fore incurs a substantial overhead in terms of clock power
compared to the LP core.

The capacitance load per active memory cycle, Crmem,x,
is the same independently of the source. For example, if
the CPU initiates a single memory active cycle, it will cost
the same as one initiated by the GPU. Since the GPU EMC
has a higher bandwidth than the CPU EMC (64-bit vs. 32-
bit), it may be possible to save energy in this way. We
wrote some simple programs to read and write memory from
the GPU, and found that regardless of operation (read or
write) the CPU EMC is capable of delivering 4 B per active
memory cycle, and the GPU EMC is capable of delivering
8 B per active cycle. This means that reading and writing
through the GPU EMC is twice as energy-efficient than the
CPU EMC. Other factors must of course also be taken into
account, such as the processing done on the data and cache
hierarchies.

Studying the workload-relevant GPU coefficients in Fig-
ure 12, we see that the capacitance load per transaction on
the cache hierarchies (Cgpu,r«) is larger than the cost for
active memory cycles (Crmem,apv). However, the actual en-
ergy cost depends also on the GPUs rail voltage (see Equa-
tion 9), as well as the number of bytes read or written per
transaction (see Table 4). Interestingly, memory transac-
tions appear to be more energy-efficient than reading from
L1 and L2 GPU cache in most cases (except for the lowest
GPU operating voltage). However, leakage and clock power
also play important factors. If memory is only read through
memory, memory fetches will take longer time, and so the
contribution from leakage and clock power will be larger.
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Figure 13: Difference in power usage when using different
floating-point datatypes and cache strategies for the DCT.

6.4 Energy-Efficient Programming

In Section 6.3, we have seen that the cost of various in-
structions differ. For example, the model coefficients hint
that loading memory through the L1 cache is cheaper than
loading it through the L2 cache. 32-bit floating point in-
structions are also estimated to have a smaller switching
capacitance (see Figure 12). We now attempt to energy-
optimise some of our workloads using this information as a
preliminary experiment.

We run the DCT benchmark at the highest GPU and
memory operating frequencies where we study the impact
in terms of performance and power when caching in L1 over
L2 and using 32- and 64-bit floating point datatypes (see
Figure 13). In these tests, we target a rate of five FPS. This
is not because five FPS is very good, but only to equalise
the contribution to power usage from the EMCs, CPU and
other components. The variation in power usage will reflect
only a change in the GPU power usage. At this framerate,
the processing finishes within a window of 200 ms, and sleeps
for the remaining time before starting processing of the next
frame.

Studying Figure 13, we see through our model that using
64-bit floating point operations consumes above three times
as much power as using 32-bit operations. Furthermore,
a substantial amount of power is saved in bit conversion
instructions. With L2 caching, changing the datatype to
32-bit saves 2.4 % power on average. Additionally caching
in L1, we see that we are able to save 3.2 %. Our model
indicates two main reasons behind this. Although the com-
bined L1 and L2 read energy remains approximately the
same, caching in L1 can reduce energy usage because it re-
duces GPU EMC hardware activity. We believe that this
is because the L2 cache is coherent, and maintaining this
coherency involves some activity in memory. Note that this
is a system-wide measure with much idling between frames,
and that the actual saving will vary depending on workload
and framerate.

7. CONCLUSION

Power models commonly used for evaluation of multime-
dia systems in literature are very basic and have the po-
tential for serious misprediction. This is because they do
not take into account the physical phenomena which gov-



ern energy usage on modern platforms. In this paper, we
have shown that the evaluation of such systems mandates
more hardware insight than what is typical. Our method to
model power usage achieves an average accuracy above 99 %
for several GPU multimedia workloads on the Tegra KI1.
Our method achieves better accuracy than traditional power
models by estimating the power costs of hardware utilisation
on the Tegra K1’s GPU, memory and CPU (for example in-
structions per second or active memory cycles) as well as
clock and leakage power using measured rail voltages. The
estimates are based on entirely synthetic benchmarks de-
signed to stress specific hardware blocks. The model has also
been more rigorously tested than normal, over all possible
operating frequencies and with different, complex multime-
dia workloads that excersise more hardware components at
the same time. Our model shows not only that it is pos-
sible to estimate power of workloads in a generic way (for
any GPU multimedia workload) using available HPCs on
the Tegra K1, but also helps us to understand better how
software can optimise energy usage of multimedia workloads
from a hardware point of view. Preliminary experiments
show that 3 % power can be saved by using shorter datatypes
(for example 32-bit floating point over 64-bit) and by ex-
ploiting local, non-coherent caches which do not consume
power to maintain consistency with other memory hierar-
chies.
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