D3.2 Version 1.0 Confidentiality Level: PU

HORIZON 2020

Testing Cyber-Physical Systems under
Uncertainty: Systematic, Extensible, and
Configurable Model-based and Search-
based Testing Methodologies

Report on Uncertainty Testing Framework V.2
D 3.2

Project Acronym | U-TEST Grant Agreement H2020-ICT-2014-1. 645463
Number
Document Version | 1.0 Date 2017-05-05 Deliverable No. 3.2
Contact Person Martin Schneider | Organisation Fraunhofer FOKUS
Phone +49 30 3463 7383 | E-Mail martin.schneider@fokus.fraun
hofer.de

2017-05-05 U-TEST Page 1 of 30

D3.2

Version 1.0

Confidentiality Level: PU

Document Version History

Version No. |Date Change Author(s)
0.1 2017-01-24 |Initial document outline FF
0.2 2017-04-24 | Contribution from SRL SRL
0.3 2017-04-25 | Contributions from TUW, FF TUW, FF
0.9 2017-04-26 |Integrating all contributions for FF
review
0.9.1 2017-05-02 | Revision based on review comments | FF
1.0 2017-05-05 [Revision based on review comments | SRL, TUW
Contributors
Name Partner Part Affected Date
Martin Schneider FF Sections 1, 2.1, 2.2, 3.1 2017-04-25
Man Zhang SRL Sections 2.3, 3.3, TR4.1.pdf, 2017-04-24
TR7.pdf
Shaukat Ali SRL Sections 2.3, 3.3, TR4.1.pdf, 2017-04-24
TR7.pdf
Tao Yue SRL Sections 2.3, 3.3, TR4.1.pdf, 2017-04-24
TR7.pdf
Ivan Pavkovic TUW Sections 2.3,3.2, TR1 2017-04-25
Luca Berardinelli TUW Sections 2.3,3.2, TR1 2017-04-25
Hong-Linh Truong TUW Sections 2.3,3.2, TR1 2017-04-25
Reviewers
Name Partner Part Affected Date
Robert Magnusson NMT All 2017-05-02
Karmele Intxausti IKL All 2017-04-28
Fabien Peureux EGM All 2017-05-01
2017-05-05 U-TEST Page 2 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Table of Contents

EXECULIVE SUMIMIATIY 1ottt e e ettt e e e e e et s e e e e eetaa e e e e eeaatbaseeeeaesssasseesanranannns 4

R [0} oo (¥ Lot i o1 N T TP OO TP U PP UPOUPRRROPI 5
1.1 Objectives of the DeliVErable........ ..o e e e e e e eanes 5
1.2 Relationship to other U-TEST Deliverables ... ittt 5
1.3 Structure of the DeliVerable........co i e 6

2 Uncertainty TesSting FramEWOTKcuiiei ittt e e e e e e e ettt r e e e e e e e e e e e nnbraaaeseaaaaeeas 7
2.1 Overview of Uncertainty Testing Framework ...t 7
2.2 Uncertainty Testing at Application LEVE!uueeeiiiii ittt 7
2.2.1 Uncertainty Model Evolution at Application Levelccoceeveeiiiiiicciiiiiiieeeee e, 7
2.2.2 FItness EVAlUGLION c..ceiiiiiiiiie ettt ettt et st e st s 12
D T =15] 1 - 1 (=Y < 1T PSP 13
2.2.4 Test Data GeneratioN....ccccoiiiiiiiiiiiiiit e 13

2.3 Uncertainty Testing at INfrastructure LeVElcocooeiiiiiiiieeeee et 13
2.3.1 Uncertainty Model Evolution at Infrastructure Level.......ccccccooviiiiiiiieeeieeeeeecieeee, 14

D T A =15 B 1 -] (=Y < 1T PP 17
2.3.3 Test Data Generation....ccccueiiiiiiiiiiiiiiite e 19

2.4 Uncertainty Testing at INtegration LEVEL.........ueev e 19
2.4.1 Uncertainty-wise Model EVOIUTIONuuiiiiiiiiii it 22
2.4.2 Uncertainty-wise Test Case GENErationcivceiiiiiiiiiiiini et eee s eee s 24
2.4.3 Uncertainty-wise Test Case Minimizationcccoviiiiiiiiiiniiiiiiiien e 24
2.4.4 Uncertainty-wise Test Case Prioritization....ccccccovi i 24

3 SUMMArY and CONCIUSIONuuiiiiiiiiiie e ettt e e e e e e e e e e e e e s e e eaab bbb e e e eeeaaeeeessantssrsaaeeeaaaaaans 25
3.1 UTF at the APPliCation LEVE ...ttt e e e e e e e an e e 25
3.2 UTF at the INfrastructure LEVEIoouii it s 26
33 UTF at the INTegration LEVEL.......ee ittt e et e e e e e e e e e e aaneraae e 26
FAY o] 01T e 1 U RUPUR 27
Technical Report 1: Implementation Recommendations for Rule-based Uncertainty Discovery and
MOEl EVOIUTION Srat@EY ...uuviiiiiiiiieiei ittt e e e e e ettt e e e e e e e e e e e et bbreeeeeaeeeeeeesenabasbasaseeaaaeesssnansnes 27
Technical Report 2: Uncertainty-Wise Evolution of Test Ready Models...........ccccccciiiiieeeeieeeeeiccnnns 27
Technical Report 3: Uncertainty-Wise and Time-Aware Test Case Prioritization with Multi-Objective
Y= (o] DT U PSP PSP UPTTUPPOUPPOPRO 28
21 o] [ToT={ =T o] o)V UUUUR 29

2017-05-05 U-TEST Page 3 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Executive Summary

This deliverable presents the Uncertainty Testing Framework (UTF) V.2 with model evolution
algorithms and test strategies. It extends the works from V.1 of the Uncertainty Testing Framework
and extends its focus to discovery of unknown uncertainties in addition to coverage of known
uncertainties. Model evolution has been developed for uncertainty testing of Cyber-Physical Systems
(CPS) at the three levels (application, infrastructure, and integration) of CPS. More specifically, the UTF
takes the test-ready models specified with the Uncertainty Modelling Framework (UMF) as input, and
(automatically) produces abstract test cases and executable test cases as output. This deliverable
shows that we have successfully achieved Milestone 4 with the UTF V.2 for uncertainty testing at the
three levels of CPS. The UTF V.2 provides a concrete foundation for achieving Milestone 5, in which we
finalize the testing framework and apply it exhaustively to the pilot cases.

2017-05-05 U-TEST Page 4 of 30

D3.2 Version 1.0 Confidentiality Level: PU

1 Introduction

This report describes the second version of the UTF. We are still making possible improvement on the
UTF. The further iteration and refinements of UTF will be included in the next U-Test reports.

1.1 Objectives of the Deliverable

The goal of this deliverable is to present improvements of the UTF that we have developed since its
version developed at M3. Our UTF supports for testing uncertainties and uncertain behaviours of
Cyber-Physical Systems (CPS) at three levels: application, infrastructure, and integration. We
developed and integrated different model evolution algorithms and testing strategies in the UTF. These
model evolution algorithms cover different part of the problem to efficiently test cyber-physical
systems for known and unknown uncertainties. All the model evolution algorithms and test strategies
take the test-ready models specified in the UMF as inputs for uncertainty testing.

As reported in the previous deliverables, we developed the Uncertainty Taxonomy (U-Taxonomy) [1]
and Uncertainty Modelling Framework (UMF) [2]. We used U-Taxonomy and UMF for specifying and
modelling different uncertainties of CPS, at three levels, i.e., application, infrastructure, and
integration. In this deliverable, we show how our UTF (V.2) is based on the U-Taxonomy and the UMF.
We developed UTF on the state of the art of Model-Based Testing (MBT) techniques, and especially
customized for uncertainty testing at the three levels (application, infrastructure, and integration) of
CPS. Moreover, this deliverable reports the definition of search-based approaches for searching
unknown uncertainty behaviours. The searching is based on known uncertainty behaviours at the three
levels of CPS. Technical reports presenting details of approaches are completing this deliverable.

1.2 Relationship to other U-TEST Deliverables

This deliverable presents the results of U-Test’s Work Package 3 that has relationships with other U-
Test deliverables and work packages. In particular, the specification of the uncertainty requirements
from

e two U-Test use cases (D1.1),

e the U-Taxonomy (D1.2), and

e the UMF (D2.2)
are the prerequisites of the UTF. In addition to that, UTF is also built on the state of the art of MBT
techniques and standards, e.g., UML Testing Profile (UTP) and ISO/IEC/IEEE 29119 Software Testing
Standards. With the test-ready models specified with the UMF as inputs, UTF has implemented
different test strategies and MBT techniques for uncertainty testing at the three levels (application,
infrastructure, and integration) of CPS. In other words, the output of the UMF is the main input of UTF.
We modelled the test-ready models of the use cases by using UMF. These test-ready models are used
in the UTF for test case generation.

The results of UTF will be used for U-Test’s next active work packages such as Tool(s) Demonstrator
(D4.3), Report on test case executions (D5.2), Dissemination (D6.4), and Exploitation (D7.3).

Figure 1 shows again the overall workflow of the methodology in our U-Test project and more
specifically where the UTF is located in the workflow of U-Test project.

2017-05-05 U-TEST Page 5 of 30

D3.2 Version 1.0 Confidentiality Level: PU

State of the art Un:ertamtv h:ogezlmg Standards
(Literature)) | Framework (02) _ UML SysML, UTP, ISO/IEC/
| plication based on IEEE 29119 Software Testing
\ [#E Application Api —
use develop Standard,
State of the practice [Integration Infrastructure oments confomsto
impiemen'
L Infrasructure —— P (Application/Infrastructure/
i Researchers e Integration Level Models
. implemented as user
provide ’»‘:9
implements 3

implements i

U-Taxonomy
Ecore Metamodel

conforms to

MDE Standard
MetaObject Facility (MOF)

provide Validated model

using

Case Study
Providers

ModelBus, FokusIMBT, CertifyiT |/ “*** Known Uncertainty and

% Functional Models

input } J/
-

N n|
| [N outputs input evolved into
s

Modeling Environment

B

Use Cases

|

derived from

Mode! Evolution

Test Case Generator

Evolved Application/

input Infrastructure/Integration Level
Uncertainty Testing implements Models
| F k (04)
Icyber-l’hvsical Systems ramework (5@ ‘ Q * ?
£=2 1 Model Evolution (03) 5 »
Handling Systems E | k\ v
' JISst Case Generator Executable Test Cases [5)
GeoSports ;4 Unknown Uncertainty Models
Figure 1. U-Test Workflow
Input:

e All previous Deliverables

Consumers of D3.2 (that are currently active)

e DA4.3 (EGM, FF): Tool(s) Demonstrator

e D5.2 (FPX and ULMA): Report on test case executions
e D5.3 Validation with or without U-Test

e D6.3 Dissemination

e D7.2 (For Exploitation): Value Opportunities

1.3 Structure of the Deliverable

The deliverable consists of this main document and its appendix (as technical reports). The main
content of this document gives the condensed presentation of the UTF. More details of some specific
key results of the UTF can be found in the technical reports. The technical reports provide more
detailed technical aspects of the UTF.

The remainder of this deliverable is organized as follows. An overview of the UTF is given in Section
2.1. UTF, which supports uncertainty testing at the application level, infrastructure level, and
integration level of CPS, is presented in Sections 2.2, 2.3, and 2.4 correspondingly. Aiming at the
comprehensiveness of this document, for presenting technical details on some specific topics, we
organized them into technical reports (TRs). TR1, which provides more technical details for Section 2.3,
are included in the Appendix. TR4.1 and TR7, which provide more technical details for Section 2.4, are
in forms of two separate PDF files attached with this document. We summarize the whole deliverable
and give our conclusions in Section 3.

2017-05-05 U-TEST Page 6 of 30

D3.2 Version 1.0 Confidentiality Level: PU

2 Uncertainty Testing Framework

Section 2.1 gives an overview of the UTF. Next, Section 2.2 presents the details of UTF for supporting
uncertainty testing at the application level of CPS. Similarly, Sections 2.3 and 2.4 present the details of
UTF for supporting uncertainty testing at the infrastructure and integration levels of CPS
correspondingly.

2.1 Overview of Uncertainty Testing Framework

Figure 2 shows a high-level overview of the UTF with its input and output. The main input of UTF are
the test-ready models that we have created by using the UMF.

Test Generation Strategies

- Uncertainty Test Models Evolution
- I Uncertainty Measurement Calculator '

Test-ready models Prototype for Test Case Execution
created by using UMF

Execut

Uncertainty Testing Framework

Unified Modeling UML Testing

Language Profile
MARTE | ‘ SysML
Standards

Figure 2. An Overview of Uncertainty Testing Framework

Our UTF is composed of the model-based test generation strategies that take as input the test-ready
models above. These test-ready models cover the use cases for generating test cases for known
uncertainties at the application level, infrastructure level, and integration level of CPS. On the other
hand, UTF also integrates the uncertainty model evolution strategies aiming at discovering unknown
uncertainties. The uncertainty measurement process can drive the test generation strategies with the
support from the Uncertainty Measurement Calculator. Eventually, executable test cases are
generated by the Uncertainty Testing Framework. The details of UTF for supporting uncertainty testing
of CPS at the three different levels are presented in the following sections.

2.2 Uncertainty Testing at Application Level

This section describes the second version of the Uncertainty Testing Framework aiming at discovering
uncertainties at the application level.

2.2.1 Uncertainty Model Evolution at Application Level

As indicated in D3.1, mutations to state machines are the atomic piece of information we deal with.
Therefore, the evolution of state machines is focused on introducing mutations into state machines.
These state machines describe valid interaction with the system under test. The problem we would
like to solve is to find those sets of mutations to a state machine that reveal (the most unknown)
uncertain behaviours.

2017-05-05 U-TEST Page 7 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Therefore, we consider the set of mutations associated with a state machine as an individual. One or
more mutations are representing uncertainty in the environment of the CPS that may lead to an
uncertain behaviour. Hence, as described in D3.1, the starting point for model evolution are state
machines that describe the expected interaction of the environment of the CPS. Evolution is done by
introducing mutations to this state machine. We implement the evolution of state machines by
employing a genetic algorithm. The basic idea is to use uncertainties, modelled in test-ready models,
to guide the mutation of state machines. Thus, to reduce the size of the search space whilst enabling
to cover the different scenarios in which an uncertainty may occur.

In D3.1, an initial set of mutation operators were described that cover mainly mutations on transitions

itself. Based on the literature, we extended this set of mutations as described in the following table:

Table 1. Mutation Operators (adapted from [3])

Mutation Operator

Description

Constraints/Comments

Add Transition

Adds a new transition by
duplicating an existing one and
setting a new source and
target state.

Remove Transition

Completely removes the
transition.

Transitions having an initial
state as source or a final node
as target must not be removed.

Equivalent to ‘Change Guard:
replace expression with false’.

Remove Transition (with State
Merge)

Completely removes the
transition.

Merges the source and target
state if the removed transition
is the only one connecting
them (optional: with the same
direction). This avoid mutilated
state machines which inhibit
generating test cases.

Transitions having an initial
state as source or a final node
as target must not be removed.

Equivalent to ‘Change Guard:
replace expression with false’.

Reverse Transition

Swaps source and target of the
transition.

Transitions having an initial
state as source or a final node
as target must not be reversed.

Optional: Transitions being the
only one that connect source
and target state must not be
removed (optional: with the
same direction). This avoid
mutilated state machines
which inhibit generating test
cases.

Change Source/Target

Move the source or the target
of the transition to any other
state.

In case the target state of the
transition is changed, the
target must not be the initial
state.

2017-05-05

U-TEST

Page 8 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Mutation Operator Description Constraints/Comments

In case the source state of the
transition is changed, the
source must not be the final

node.

Remove Trigger Transforms the transition to a

completion transition.
Remove Guard Removes the guard of a Equivalent to ‘Change Guard:

transition completely. replace expression with true’
Remove Effect Removes the effect of a

transition completely.
Change Trigger Operation Changes the operation to

another one of the same

interface of the original

operation.
Change Guard/ - replace expression with Guards and effects are written
Change Effect true/false in CH.

- negate expression

- replace subexpression with
true/false

- negate subexpression

- change logical operator

- change relational operator

- change arithmetic operator
- change set operator

- change quantifier

- replace operand

guard/effect mutation
operators

- remove statement

- move statement

- fix parameter/property of a
called method or sent signal

- change called method or sent
signal

- change operator

- fix operand (replace it with a
literal)

- change operand (replace with
variable, call parameter or
signal property of the same
type)

- replace result: replace right-
hand-side (RHS) expression
with default value of left-hand-
side (LHS)

These mutation operators are employed to introduce mutations based on modelled uncertainties.

Depending on the values of the properties of a modelled uncertainty, different mutation operators are
applied to elements of the UML state machine. The following paragraphs discuss which mutation

2017-05-05 U-TEST Page 9 of 30

D3.2 Version 1.0 Confidentiality Level: PU

operators and elements of a state machine are selected based on different properties of an
uncertainty. Eventually, a set of mutation operator is aggregated based on the different properties to
apply different kind of mutations to a state machine.

Concept of UncertaintyNature::Epistemic

Uncertainty Taxonomy

Mutation Operators Depends on the other properties of the uncertainty
Selection Criterion Depends on the other properties of the uncertainty

We perform a systematic mutation of selected elements supported according to the other properties
of the uncertainty.

Concept of UncertaintyNature::Aleatoric

Uncertainty Taxonomy

Mutation Operators any

Selection Criterion Depends on the other properties of the uncertainty

Aleatoric uncertainties are those where we are not aware of any systematics. Therefore, mutation is
completely random while the elements to be mutated depend on the other properties of uncertainty.
This will override the selection of mutation operators based on other properties of an uncertainty.

Concept of Location::InputParameters

Uncertainty Taxonomy

Mutation Operators Change Guard

Selection Criterion Guards of transitions whose trigger operation has an in parameter
referred by InputParameters

Uncertainty w.r.t. the in parameters of an operation called by trigger. Changing a guard will eventually
result in changed input parameters, i.e. stimuli, when test cases are generated from the mutated state
machine.

Concept of TechnologicalProcess::Timinglssues

Uncertainty Taxonomy

Mutation Operators Change Trigger

Selection Criterion Triggers that have a TimeEvent and a corresponding TimeExpression

By changing the time expression, uncertain behaviour that may result due to unexpected timing may
be observed. The change of the trigger leads to generation of test cases reflecting the changed time
expression.

Concept of TechnologicalProcess::Protocollssues::Interoperabilitylssue
Uncertainty Taxonomy
Mutation Operators Change Guard
Change Target of Transition
Selection Criteria Guards of transitions whose trigger operation has an in parameter
referred by Interoperabilitylssue
Transitions referred by this Interoperabilitylssue

Interoperability issues may arise from ambiguous or misinterpretation of requirements and
specifications. By changing guards and input parameters as well as transitions, corresponding
mutations resulting in different (behaviour originating from different interpretations) is achieved.

Concept of TechnologicalProcess::Protocollssues::FaultyProtocollmplementation
Uncertainty Taxonomy
Mutation Operators Any

2017-05-05 U-TEST Page 10 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Selection Criterion Elements referred by this FaultyProtocollmplementation that are
related to a computer interface (i.e. the cyber environment)
Mutations will result in any modifications related to the digital interfaces, i.e. would reflect uncertainty

from the cyber environment related to protocols.

Concept of TechnologicalProcess::Resourcelssues
Uncertainty Taxonomy
Mutation Operators Change Effect

Change Transition Source

Change Transition Target

Selection Criteria Transitions whose effect has an expression in which a resource is
referred by ResourceCompetition

Elements that store resources based on the assignments in an effect to a
property of the state machine that is referred by ResourcelLocation
Resources accessed by SUT that were assigned to a resource location
within an effect

Mutation Operators Change Guard

Selection Criterion Transitions whose effect has an expression in which a resource is
referred by ResourceCompetition, which is indirectly influenced by a
guard, e.g. where the control flow that leads to reading or writing a
resource is influenced by a variable that is read by the guard

This is basically a union of all possible mutations based on the sub concepts of Resourcelssues.

Concept of TechnologicalProcess::Resourcelssues::ResourceCompetition
Uncertainty Taxonomy
Mutation Operators Change Effect

Change Transition Source
Change Transition Target

Selection Criterion Transitions whose effect has an expression in which a resource is
referred by ResourceCompetition

Mutation Operators Change Guard

Selection Criterion Transitions whose effect has an expression in which a resource is

referred by ResourceCompetition, which is indirectly influenced by a
guard, e.g. where the control flow that leads to reading or writing a
resource is influenced by a variable that is read by the guard
Resource competition can be distinguished in direct and indirect resource competition.

Direct resource competition occurs if the very same resource is accessed by one instance while being
accessed by a second one. This is known as resource contention in computer science.

Indirect resource competition occurs if one instance would like to access resource A but requires
accessing a resource B first, and second instance is trying to access B. This may be the case for resources
that aren’t directly accessible, such as stacks, either in the physical or the cyber world.

Concept of TechnologicalProcess::Resourcelssues::ResourceLocation

Uncertainty Taxonomy

Mutation Operators Change Effect

Selection Criteria Elements that store resources based on the assignments in an effect to a

property of the state machine that is referred by ResourcelLocation
Resources accessed by the system under test that were assigned to a
resource location within an effect

2017-05-05 U-TEST Page 11 of 30

D3.2 Version 1.0 Confidentiality Level: PU

The aim of applying the Change Effect mutation operator is to change the assignment of a resource to
a location in a wider sense, that is with respect to its physical location or its virtual location (in case of
virtual resources, such as data representing physical entities).

Concept of TechnologicalProcess:: Applicationlssues::InsufficientResources

Uncertainty Taxonomy

Mutation Operators Change Effect

Selection Criterion Elements that store resources based on the assignments in an effect to a
property of the state machine that is referred by InsufficientResources

Mutations to effects introduced by applying the Change Effect mutation operator are applied such that
the cyber resources, e.g., memory, or physical resources, e.g., goods, aren’t available anymore, for
instance by removing the resources or assigning them to other entities.

Concept of TechnologicalProcess:: Applicationlssues::FunctionalFault
Uncertainty Taxonomy

Mutation Operators n/a

Selection Criterion n/a

Functional faults are an outcome when the system under test is stimulated with correct values but did
not respond to it with the expected behaviour. Hence, this will not be addressed in the Uncertainty
Testing Framework because no uncertainty in the environment is involved.

Concept of TechnologicalProcess::Resourcelssues::HumanBehavior
Uncertainty Taxonomy
Mutation Operators Any

Selection Criterion Any transitions with operations or any operation of an interface referred
by HumanBehavior as a trigger

This reflects any mutation that may result due to human behaviour.

Concept of TechnologicalProcess::Resourcelssues::NaturalProcess
Uncertainty Taxonomy
Mutation Operators Any

Selection Criterion Elements referred by this NaturalProcess that are related to a physical
(i.e. the physical environment)

Mutations will result in any modifications related to the digital interfaces, i.e. would reflect uncertainty
from the cyber environment related to protocols.

2.2.2 Fitness Evaluation

In addition to the fitness factor framework described D3.1, we extended this framework to enable
detection of uncertain behaviour that would manifest in non-continuous values in a data row. Non-
continuous values are below an acceptable deviation. However, the difference between two data
points is higher than the acceptable threshold, leading to “jumps” between data points point. Such
uncertain behaviours, e.g., non-continuous data values, are depicted in Figure 3.

2017-05-05 U-TEST Page 12 of 30

D3.2 Version 1.0 Confidentiality Level: PU

non-continuous values:
deviation from outlier (detected values within acceptable

expected value because above deviation but
1 / threshold) |x%; = x;41| > threshold
; 3ol

acceptable
deviation: o . . J » time

expected
+ threshold °

Figure 3. Outliers and Non-Continuous Values

2.2.3 Test Strategies

No update for this milestone. Initial versions of test strategies were proposed in Section 4.2.1 of D3.1.

2.2.4 Test Data Generation

Test data generation is realized by facilities of MS SpecExplorer.

2.3 Uncertainty Testing at Infrastructure Level

In this section, we describe our strategies for testing CPS at the Infrastructure level

Testing the infrastructure of CPS brings its particular challenges due to the run-time uncertainty
associated to the infrastructure. Infrastructure failures can appear due to incorrect infrastructure
operation, such as unexpected infrastructure behavioural transitions. Failures can also appear at run-
time in correctly operating infrastructures due to various causes, as captured in the infrastructure
uncertainty taxonomy in Deliverable D1.2. Uncertainties at infrastructure level may appear due to
heterogeneity of CPS and data transmissions in it, i.e. physical units, sensors, actuators, networks,
protocols, cloud services and other parts of the CPS. Additionally, means of discovery of possible
unknown uncertainties from a potentially infinite domain of unknown uncertainties are necessary.
Thus, to correctly test and identify uncertainties in the infrastructure of CPSs, we focus on:

e Testing the correctness of the infrastructure state transitions according to the CPS state
transition belief model captured as state diagrams in D2.2.

e Testing at run-time if specific uncertainty-affected properties of CPSs still hold, indicating if an
uncertain CPS behaviour has occurred or not.

e Testing for particular properties of a CPS, both at design-time and run-time, in order to test
and discover unknown uncertainties in the system and provide possible recommendations
for model evolution

Figure 4 shows an overview of uncertainty testing at the infrastructure level of CPS. For testing
uncertainty at infrastructure level, we use as input the UML Model as obtained from the U-Test
Uncertainty Modelling Framework. The UML Model contains Classes and StateMachines to model the
overall system architecture and behaviours, depicted on Class and StateMachine Diagrams,
respectively. UML StateMachines are the input to the State Machine Transition Correctness Testing
Strategies (see D3.1). The Transition Correctness are transformed in 11 test plans and then in concrete
test plans. In turn, the SUT architecture depicted on UML Class diagrams where SUT components and
connectors types are defined. Different test configurations can be obtained by instantiating Classes (as
InstanceSpecifications), their Properties (as Slots), and their Relationships (as Links). The SUT

2017-05-05 U-TEST Page 13 of 30

D3.2 Version 1.0 Confidentiality Level: PU

architecture (at the type level) and test configurations (at the instance level) are used to generate test
cases by U-CertifylT (D4.2) and run-time tests descriptions by TUW Platform for Run Time Testing of

Cyber-Physical Systems (D3.1).

Artifacts/Models

Hm Extensions
EVOLUTION MODELING RSA U-TEST UML PROFILES
UML Model y oamvAUs — - - - U-TESTUMLLIBRARIES
(test ready models) QA UML METAMODEL
Rule-based Uncertainty Discovery | RULEEXECUTION Uncertaint.ies and PAPYRUS — — — - ocL
and Model Evolution Strategy Evolution
recommendations o
Run-time Test Strategy ECLIPSE - - - - JAVA
comMoT4u
State Transition Correctness Test RSA JAVA
Strategies ABSTRACT TEST ECLIPSE
l QA CASE
GENERATION
Uncertainty-
All-paths affected paths Abstract Test Case
Hm Strategy Strategy ECLIPSE
QMl IMPLEMENTATION SW ENGINEER - - = = JAVA
EVOLUTION U-CertifylT
WIEELRE Concrete Test Case
Machfne Learn]n.g based QA l e
Uncertainty Analysis Strategy U-CeritfylT
Test Output FER T L Y
ECLIPSE
Feeressssassssassssarsssssasaararnnnanann : | l
H H v
:| Artefact Operation : Tl
Uncertainty Data D3.3 S D3.3
: > 1*loop LIA - automatic : o Analysis 1 Analysis
i -=- connection {}M-manual BEHS

Figure 4. Uncertainty Testing at Infrastructure Level Overview

In this deliverable, we focus on Rule-based Uncertainty Discovery and Model Evolution Strategy, which
takes the UML Model annotated with CPS Infrastructure Profile and applies a set of predefined rules
(i) to discover potential unknown uncertainties and (ii) to suggest model evolution recommendations
as an output.

2.3.1 Uncertainty Model Evolution at Infrastructure Level

The Rule-based Uncertainty Discovery and Model Evolution Strategy uses rules to detect the potential
unknown uncertainties in CPS on UML Model and suggests model evolution actions intended as
additions/deletions/updates of structural and/or behavioural model elements. Whereas previously
developed test strategies (D3.1) aimed at testing the known uncertainties, the Rule-based strategy
aims at detecting unknown uncertainties in proactive manner to prevent and then reduce the possible
unknown uncertainties in the SUT in the later stages of the U-Test engineering process.

As depicted in Figure 5 the Rule-based Uncertainty Discovery and Model Evolution Strategy takes a
UML Model as input, suitably annotated with stereotypes from the CPS Infrastructure profile.

Rules consist of queries on model elements of a test-ready UML Model, define conditions that
determine the detection of potential unknown uncertainty over the collected model elements,

generate Boolean result (true = detected, false = not detected), and suggest potential

2017-05-05 U-TEST Page 14 of 30

D3.2 Version 1.0 Confidentiality Level: PU

changes/evolutions on the source UML model. If these recommendations are realized on the source
UML Model (i.e. addition/deletion/update of model elements and/or stereotype applications), a new
evolved version of the source UML Model is obtained.

The envisaged Rule-based Uncertainty Discovery and Model Evolution Strategy is iterative. At any
iteration of the proposed strategy a new evolved version of a UML Model can be obtained by realizing
the suggested recommendations from a non-empty set of rules applied to the whole model (e.g., all
system components and all test configurations) or a subset of it (e.g., only to selected components and
test configurations). Currently, it is up to the modeller deciding the needed iterations, i.e. which rules
(out of a set of predefined ones) to apply, their scope (the whole model or only a subset of it), and the
order of their application. It is worth noting that the modeller can decide to completely skip the Rule-
based Uncertainty Discovery and Model Evolution steps or ignore suggested recommendations and
proceed with the next U-Test engineering steps requiring the UML Model.

l . String:: dati
t UML Model — UML.‘:echvedModiE(a,M EVOlUt|on \ang recommendations

(test ready models) A MOdenIng)‘

true

Apply Rule Based A Model Recommendations? false
Uncertainty Strategy? OCL::evolutionRules
A
true OR le E ti Discovered uncertainties
N ule £xecution and model evolution
UML::model Bool::detected recommendations
false String::recommendations I:

- Is Uncertainty Detected? T

UML::model

LA
Test Strategies [D3.1]

Figure 5. Rule-based Uncertainty Discovery and Model Evolution strategy overview

The evolution rules required to perform the Rule Execution step in Figure 5 have been first specified in
a tabular with the following template.

Every defined rule has the following attributes:

e Rulelevel

e Rule aspect

e Rule element (from profile)

e Rule description

e Rule condition (algorithm)

e Model evolution recommendation

e Model evolution recommendation domain
e Non-functional property (quality) affected
e Source or justification

e Rule-specific attribute (optional)

2017-05-05 U-TEST Page 15 of 30

D3.2 Version 1.0 Confidentiality Level: PU

e Rule-specific attribute execution period (optional)

Rules are categorized in different levels (application, infrastructure, integration) as per division in U-
Test project. Rule aspects are categorized as per division proposed by NIST CPS Framework [4] - data,
functional, business, human, trustworthiness, timing, boundaries, composition, lifecycle, plus security,
as intrinsic to all aspects of CPS. Rules reference the profile, which they are using as a basis for
uncertainty detection and a specific profile element. Each rule has a verbal description and the
accompanying algorithm, with the conditions, which must be met. Each rule provides a possible
recommendation for model evolution, while stating the possible domain for further research. Each
rule affects one or more non-functional properties (qualities) of a CPS. Each rule has to be backed up
by at least one source (paper, best practice recommendation, existing standards, etc.), or in
experimental research domains, if there are no sources, it needs to have a justifiable clarification. If
there is no attribute in referenced profile to apply the rule, we define them as rule-specific attributes.
In such case, we define if the attribute value represents the design-time (expected) or run-time
(measured) value.

Initial set of 20+ defined rules are located in an open source TUW U-Test GitHub' code repository,
together with other test strategies implemented. Further definition of rules is an on-going work. Rules
currently mostly cover aspects of data (since uncertainties at infrastructure level appear due to
heterogeneity of CPS and data transmissions in it), security aspect, and current trends in CPS evolution
(e.g. CPS to Fog/Edge evolution, CPS Elasticity, etc.) across multiple aspects. An example of data aspect
rule, security aspect rule and CPS elasticity rule is shown in Table 2. Additionally, table shows
FPX/ULMA use cases where particular unknown uncertainty can be discovered with the usage of the
specific rule. However, the full effectiveness of the Rule-based strategies, as well as other previously
implemented strategies, and full evaluation based on project-defined metrics (e.g., number of
previously unknown uncertainties identified by the reporting system for use case x) will be provided
as output of empirical evaluation task in D5.4.

The expected outputs of the rules are:

(i) Textual recommendation to modellers displayed as uncertainty warning messages (e.g.,
via Console view in Eclipse-based environment) with traceability links among applied rules,
checked model elements, and model evolution recommendations.

(ii) Application(s) of stereotypes defined in the CPS Uncertainty profile to model element(s)
with detected uncertainty.

One goal of the Rule-based Uncertainty Discovery Strategy is to decouple its realization from modelling
guidelines and tools required by EGM and FF.

In order to decouple the proposed strategy from specific modelling guidelines proposed by EGM and
FF, we decided to realize a CPS Infrastructure Model Library, which can be imported? in U-Test ready
models, where the discovery rules are applied. Moreover, being decoupled from U-Test ready model,

L TUW U-Test GitHub, https://github.com/tuwiendsg/COMOT4U

’The import step can be realized “by reference” or “by value”. In the first case, the model library is read only
while in the latter the imported library can be modified.

2017-05-05 U-TEST Page 16 of 30

D3.2 Version 1.0 Confidentiality Level: PU

the model library can evolve independently from U-Test models to accommodate refinements of
existing discovery rules or definition and implementation of new ones.

Concerning tool support, two Eclipse-based UML modelling tools are adopted to create U-Test ready
models, i.e., RSA and Papyrus, both implemented on top of Eclipse UML. Both tools provide support to
OCL, the OMG standard query language for MOF-based artefacts, that we choose to implement the
rule specifications given in a tabular form in Table 2.

In order to produce the expected outputs, rules will be implemented in OCL [5] (Object Constraint
Language) using the Eclipse OCL plugin. Since OCL is a side-effect free query language for artefacts
serialized as OMG XMI documents, any model evolution (i.e., change on the test ready model like
stereotype application) are planned to be implemented via external Java-based routines with support
of the Eclipse UML APL.

2.3.2 Test Strategies
Infrastructure level test strategies are currently divided in four categories, as previously shown in
Figure 4:

e State Machine Transition Correctness Testing Strategies (Test Correctness of State Transitions
in All Test Paths Strategy and Test Correctness of State Transitions in Uncertainty-affected Test
Paths Strategy),
e Run-Time Testing Strategies (periodic testing, event-based testing, direct testing, indirect
testing)
e Rule-based Uncertainty Discovery and Model Evolution Strategy and
e Machine Learning based Uncertainty Analysis Strategy, aimed at analysis of uncertainty
patterns related to particular infrastructure elements (ongoing work, to be reported in D3.3).
For the Rule-based Uncertainty Discovery and Model Evolution Strategy, Figure 6 shows an example
where we start from the initial model with applied referenced profiles and run the strategy over the
model elements. The strategy discovers three possible uncertainties with model recommendations,
which modeller implements. Over the three evolved models, strategy is run again. Rule-based strategy
finds no uncertainties in first evolved model. In the second, one new unknown uncertainty is
discovered, model is again evolved, and test strategy ran again, and no new unknown uncertainties
are found. Additionally, rule-based testing strategy finds one more unknown uncertainty in the third
evolve model, however, the stakeholders of that particular CPS under test are unable to evolve the
model. The reasons for inability for model evolution are specific for each particular CPS (e.g., lack of
API, change requires too much effort, change does not fit with business plan, etc.). However, this newly
discovered unknown uncertainty transitioned from an unknown uncertainty domain to a known
uncertainty domain can be further tested and observed with previously developed testing strategies,
e.g., Run-time Test Strategy or State Machine Transition Correctness Testing Strategies.

2017-05-05 U-TEST Page 17 of 30

D3.2 Version 1.0 Confidentiality Level: PU
Table 2. Example of data, security and CPS elasticity rule
Data rule Security rule CPS elasticity rule
Rule Name Check Timestamp Mechanism Availability Check If Safety Critical Actuator Check Data Management
Mechanism Availability

Rule level CPS Infrastructure CPS Infrastructure CPS Infrastructure

Rule aspect Data Security Data, Lifecycle

Rule element CPSProfile::Unit CPSProfile::Actuator CPSProfile::CPS

Rule description Sensor data should be timestamped, to | If an actuator is safety-critical (e.g., | Sensors may produce too much data
monitor the latency between the following | centrifuge in chemical plant, that may | (e.g., if sensors are activated by
event occurrences, i.e. the measurement | cause harm to a CPS), consider adding | certain events) which the CPS
event occurrence and the data availability to | new physical controls over the CPS (e.g., | cannot handle due to its limitations.
Unit event occurrence. manual valves) to reduce possible harm | Please test the system with both

in case of misuse. maximum and minimum workload
of sensors to find out its limitations.
Additionally, please ensure the
g elasticity of the CPS in such
o occasions.
§ Rule algorithm IF Unit. timestampMechanism== IF Actuator. IF
g notImplemented safetyCritical== TRUE SensorDataManagementMech
8 anism== FALSE

Model evolution Please implement the timestamp mechanism. | Please consider adding new physical | Please test and evolve the system as

recommendation controls over the CPS. instructed.

Model evolution domain Data timestamping Physical safety Elasticity

Non-functional property Latency Safety Elasticity

Source or justification NIST CPS Framework [4], page 4 NIST CPS Framework [4], page 79 DSG TU Wien, SYBL [6]

Rule-specific attribute CPS Infrastructure stereotype: Unit CPS Infrastructure stereotype: Actuator | CPS Infrastructure stereotype: CPS
attribute: hasTimestampMechanism attribute: isSafetyCritical attribute:hasSensorDataMngmtMec
values: true, false values: true, false hanism

values: true, false
Attribute execution period Design-time Design-time Design-time
Uncertainty found: ULMA UC2_INFR_2.1 ULMA UC2_INFR_1.2 FPX UC1_INFR_8
2017-05-05 U-TEST Page 18 of 30

D3.2 Version 1.0 Confidentiality Level: PU

UML Model

(with applied profiles)

|

Rule-based Strategy: OA
3 new unknown

uncertainties discovered

E Evolved E i Evolved i E Evolved E

f model : . model : . model :

. ' [T P : [R |
/ 1 \

‘, QA v OA \4 QA
Rule-based Strategy: Rule-based Strategy: Rule-based Strategy:
0 new uncertainties 1 new uncertainty 1 new uncertainty

1
L iam
i Evolved .
i model '
TR]______}
o DA

Rule-based Strategy:
0 new uncertainties

Figure 6. Example of an Iterative Application of Rule-based Strategy

2.3.3 Test Data Generation

Our approach relies on three data sources used in infrastructure testing:

a. Information captured as UML Profiles, Class Diagrams, and State Diagrams during the CPS
modelling phase, as described in D2.1 and D2.2. This information is used in generating the
abstract transition correctness tests, run-time test descriptions, discovery of new unknown
uncertainties and model evolution.

b. Expert knowledge brought by CPS owner/user used in the implementation of the concrete
tests according to particularities of the tested CPS.

c. Test data generation as implemented in U-CertifyIT together with test strategies.

2.4 Uncertainty Testing at Integration Level

This section presents the overview of the work related to UTF at the integration level from the
following four perspectives, as shown in Figure 7: 1) Uncertainty-wise Model Evolution, 2) Uncertainty-
wise Test Case Generation, 3) Uncertainty-wise Test Case Minimization, and 4) Uncertainty-wise Test
Case Prioritization. In this section, we only provide an overview of each of these activities and all the
technical details are provided in the form of two technical reports, i.e. Technical Report 2: Uncertainty-
Wise Evolution of Test Ready Models [7] and Technical Report 3: Uncertainty-Wise and Time-Aware
Test Case Prioritization with Multi-Objective Search [8]. The short summaries of these two technical
reports can be found in the Appendix. The full technical reports are attached with this deliverable as
two separate documents (TR4.1.pdf and TR7.pdf).

2017-05-05 U-TEST Page 19 of 30

D3.2

Version 1.0 Confidentiality Level: PU

Uncertainty-wise Model Evolution (C1) will be described in Section 2.4.1, Uncertainty-wise Test Case
Generation (C2) in Section 2.4.2, Uncertainty-wise Test Case Minimization (C3) in Section 2.4.3, and
Uncertainty-wise Test Case Prioritization (C4) in Section 2.4.4. Comparing with D3.1, UncerPlore in
uncertainty-wise model evolution (C1.2) and uncertainty-wise test case prioritization (C4) are newly
proposed in this deliverable, and the description for the rest (C1.2, C2, C3, and C4) only highlights the
updates.

As shown in Figure 7, the initial input of the UTF at Integration Level, i.e. belief test ready model (BM),
is the output of the UncerTum (CO) (presented in the deliverables of WP2, D2.2 and D2.3). The overall

workflow is:

1. Belief test-ready models are evolved based on the uncertainty-wise model evolution
component (C1);

2. The uncertainty-wise test case generation component (C2) takes (evolved) belief test-ready
models as input to generate abstract test cases;

3. By taking generated abstract test cases as input, the uncertainty-wise test case minimization
component can be optionally used to minimize the number of abstract test cases when needed
(C3);

4. The uncertainty-wise prioritization component (C4) takes abstract test cases and test results
as input and prioritizes the sequence to execute test cases in a cost-effective way;

5. The uncertainty-wise test case generation component (C2) takes the (minimized/prioritized)
belief test-ready models as input to generate executable test cases;

6. The uncertainty-wise test case execution component (C5) takes the (minimized/prioritized)

test cases to execute on test infrastructure.

2017-05-05 U-TEST Page 20 of 30

D3.2 Version 1.0 Confidentiality Level: PU

(T T === b coToTTSOTTTTSTTTTTTTTTTTTTTTTo T T TTTTTTTTTTTTTTTTTTTTTTTT \
produced by «CSV» | UncerTum I |' UncerTest I
Real Operation Data | [- - PP I
| [Profiles | [ModelLibraries | | | Uncertainty Measurement Uncertainty-wise Test Case Minimization | |
| Iy Calculation |
| [Modeling and Validation Guideli]: | |- UM in Uncertainty Theory Multi-Objective Search Algorithm :

- T T T T T T T T T s | _ - Frequency in Probability Theor 1: i 9 iti
|| Uncertainty-wise Model Evolution : _______________ : q Y y Y Pro.1: #TCJ #Uncertainty I %Transition T | |
| T = | uses | Tuses Pro.2: #TC, %Uncertainty Space*%TransitionT |
| ncerTolve T |) . |

A Pro.3: #TC, %Uncertainty M %Transition T

: I Model Validation by Model Execution | ! «Uncertum» : Test Case Generation «EMF» Pro.4: #TC, Uncertainty Measure M %Transition :

. .4: b
| - — | Belief Test Ready Models | Abstract Test Case Generation Abstract Test Cases !
State Invariant && Guard Condition A ° > |

I Evolution by Invariant Detector | (BCDs, BSMs, BODs) | [7GS1: All Simple Path (Measurement)
! | e el i |
: - o : : g; :f;ratnsmon €2: % Uncertainty Uncertainty-wise Test Case Prioritization |
ncerPlore : % State
| «Java» | Multi-Objecti i I
X N N jective Search Algorithm
: | Terminal & Function Set Generation | | Executable 'I_'est Cases . | Executable Test Case Generation Pro.1: EC #ObUPMUMM%Transition :
| (Test Configuration & Seeded |« T H -
- - ! (Mapping with Test APIs) |
: | GPSolution Interpretation | Indeterminacy Sol | |
T ———— \ - Z
Test APIs L d
«Test Log» egenas
) control/monitor Uncertainty-wise Test Results T files/data —3{] input
control/monitor Test Execution (Occurrence of Uncertainties) -
Test Infrastructure — — framework > output
Cyber-Physical System (Physical Infrastructures, Test] artifact D
Simulators/Emulators)
Figure 7. Overview of Uncertainty Testing Framework at Integration Level
2017-05-05 U-TEST Page 21 of 30

D3.2 Version 1.0 Confidentiality Level: PU

The rest of this section describes more details about each component.

2.4.1 Uncertainty-wise Model Evolution

This section presents the uncertainty-wise model evolution (C1 in Figure 7), which contains two
methodologies: UncerTolve (C1.1, Section 2.4.1.1) and UncerPlore (C1.2, Section 2.4.1.2)

2.4.1.1 UncerTolve

This section presents updates of UncerTolve (C1.1 in Figure 7), comparing with D3.1. A summary of our
work on UncerTolve is provided in Technical Report 2: Uncertainty-Wise Evolution of Test Ready
Models [7]. The corresponding technical report (TR4.1.pdf) is also attached.

In general, the main updates in the technical report (TR4.1.pdf) include:

1. Scientific challenges, objectives, context, scope and contribution are clearly described in
Section 1, and Figure 1 is updated to clarify the context and scope of UncerTolve;

2. The presentation of the UncerTolve framework is restructured in Section 5.1. Figure 9 is newly
added to describe the high-level components of UncerTolve and Table 2 discusses the
rationale behind the selection of techniques/languages/tools for the implementation.

2.4.1.2 UncerPlore

This section presents the UncerPlore framework, which evolves test-ready models by using genetic
programming (GP) [9] [10] and benefiting from runtime test ready model execution on the dedicated
test infrastructure (physical infrastructure or Simulators/Emulators). The overview diagram is shown
in Figure 8. The UncerPlore framework is implemented on the ECJ tool [11].

As shown in Figure 8, we formalized a belief state machine as the basic input of GP (Section 2.4.1.2.1):
1) a state is formalized as a terminal that is evaluated based on the runtime status of the system; 2) a
transition is formalized as a function with two arguments that indicate the two statuses before/after
executing this transition. Note that required data for executing events of transitions can be generated
by the OCL Solver (EsOCL [12]). In addition, we define an algorithm to interpret tree structure results
produced by GP, which will be described in Section 2.4.1.2.2.

"~ Belief State Machine | OCL Solver (EsOCL) ‘
|
I Terminal & Function Tuse
: Set Generation request (runtime)
| &output) |
| r————————————=Y————— | input
| Terminal set: sTo(). sTa(u), STuk }—> . .
I b (U} STnll), 5T "nput| Uncertainty-wise Model
| q
| { Function Set: TRo..TRm,
b " | Evolution Test Infrastructure
| e m e — — . (Genetic Programming)
t
|_ Fitness Measure (FM): Observed Py Tool Support: ECJ
| Uncertainties, Unknown Uncertainty
| input <4 — — — —- -
I_ [Termination Criterion (TC): State && feedback (runtime)
Transition Coverage

outeut l output
input -
GPSolution P GPSolution R Evolved Bel.lef State
Interpretation g Machine

Figure 8. Overview of UncerPlore (C1.2)

2017-05-05 U-TEST Page 22 of 30

D3.2 Version 1.0 Confidentiality Level: PU

2.4.1.2.1 Problem Representation
In [10], Koza defined five key steps to enable Tree-based GP evolution of programs. These steps

include: 1) Specification of set of terminals, e.g., external inputs, 2) A set of functions, 3) A fitness
measure, 4) parameter settings, 5) Termination criteria [13]. To evolve belief state machine in our
context, we defined the formalization shown in Table 3. The terminal set and function set are the basic
ingredients for GP to create programs [13], so we further defined the generation rules (Table 3) to
automatically generate terminal set and function set from the belief state machine.

Table 3. Formalizing the uncertainty-wise evolution problem as a GP problem

GP Definition Description
Terminal TS = {STy ... ST, STy} Each state (ST) is converted into a terminal, whose data type
Set is Boolean. ST, is a state that all existing states are not
satisfied.
ST extends Node{
data:Boolean
// return true when «BeliefElement»State
contains uncertainty.
isUncertain () :Boolean
// operation to evaluate the state invariant
based on runtime status
evaluateStateInvariant () :Boolean
// operation to evaluate occurrence of
indeterminacy source if it has
evaluateIndSpecification () :Boolean
}
Function FS ={TRy ..TRy} U {TRInS, ...TRInS,} | Each transition (TR) or each transition with specified
Set indeterminacy input (TRInS) is converted into one function
with two arguments and a Boolean return value, represented
as TR (al,a2) = al A a2 under the execution al—»>TR—a2
true result indicates the valid program.
TR extends Node({
children[2] :Node
//execute event of transition, OCL Solver is
used when guard condition exits
execute () :void
// optionally specify the precondition to
execute this transition
evaluatePrecondition () :Boolean
}
TRInS extends TR{
//execute the trigger to enable indeterminacy
source
enableInSInput () :void
}
Fitness _ #0bUny, POU is the percentage of observed uncertainty comparing
Measure POy = #Uny, with specified uncertainty, where #0bUny,, indicates the
_ 1 #Uny, number of observed uncertainties, and #Un,, indicates the
FM=1- E(POU + #Uny, + 1) number of specified uncertainties. FM is fitness measure to
evaluate the solution, which is related to POU and observed
unknown uncertainties.
Termination | (isValid) and An evolution is terminated when the corresponding GPTree
Criterion (coverage yntime >= COVEragespecified) is valid (with the true result) and involved elements are more
than specified ones.
Parameter Crossover Operator: Subtree Crossover [9] | Default parameter setting.
[10]
Mutation Operator: Point Mutation [9]
[10]
Population size: 50
Maximum Generations: 1000
2017-05-05 U-TEST Page 23 of 30

D3.2 Version 1.0 Confidentiality Level: PU

2.4.1.2.2 Interpretation of GP Solution
This section describes the interpretation of the Tree-based GP solution to generate evolved belief state

machines. Based on the formalizations of the GP problem in Table 3, 1) each transition is presented
as non-leaf node, 2) each state is presented as the leaf node in the tree, 3) the source and target of
the transition are presented as the previous and next visiting node based on inorder traversal, and 4)
the incomings and outgoings of the state are presented as the previous and next visiting node based
on inorder traversal. The pseudocode of the algorithm to generate evolved belief state machines is
shown in Figure 9, and a simple example describing the traversal process is presented in Figure 10.

Algorithm GenerateBSM(node:Node, sm:BSM, list:list<Node>)
Input node is the root of GPTree
list records the traversal sequence
Output sm is the evolved state machine

Begin

1 if (node.children != null)

2 generateBSM (node.children[0], sm, list)

3 if(node is kind of ST)

4 state = getState(node, sm)

5 sm.update (state)

6 if(list.last != null)

7 state.incomings.add (getTransition(list.last,sm))
8 getTransition(list.last,sm).target = state

9 if(node is kind of TR)
10 transition = getTransition (node, sm)
11 sm.update (transition)
12 transition.source = getState(list.last, sm)

13 getState(list.last, sm).outgoings.add(transition)
14 1list.add(node)

15 if (node.children != null)

16 generateBSM (node.children([1l], sm, list)

End
Figure 9. The algorithm to generate evolved belief state machines based on GP solutions

Figure 10. An example of generating belief state machines from GPTree

2.4.2 Uncertainty-wise Test Case Generation
No Specific Update. The final version will be provided in D3.3.

2.4.3 Uncertainty-wise Test Case Minimization
No Specific Update. The final version will be reported in D3.3.

2.4.4 Uncertainty-wise Test Case Prioritization

As shown in Figure 7, the key inputs of uncertainty-wise test case prioritization are abstract test cases
that contain uncertainty information, e.g. Uncertainty Measure, the number of uncertainty, and
execution results that contain the execution time and observed uncertainty for each run. Based on

2017-05-05 U-TEST Page 24 of 30

D3.2 Version 1.0 Confidentiality Level: PU

these two key inputs, we formalized our uncertainty-wise, time-aware, multi-objective test case
prioritization problem as a search problem and solved it using the well-known multi-objective search
algorithm NSGA-II [14]. Corresponding to the four objectives, we defined four cost-effectiveness
measures: 1) the total execution time of prioritized test cases (to minimize); 2) the average uncertainty
measure (adopted from Uncertainty Theory [15]) of the prioritized test cases (to maximize); 3) the
average number of observed uncertainties of prioritized test cases (to maximize); and 4) the transition
coverage (to maximize). Based on these objectives and measures, we define a fitness function to guide
the algorithm towards finding optimal solutions.

We evaluated NSGA-Il and compared it with Greedy and Random Search (RS), with an industrial case
study (Quuppa by FPX) requiring prioritizing 336 test cases. We further evaluated the performance and
scalability of the algorithm with 72 simulated problems, carefully constructed based on a test case
repository containing 2085 test cases. Results show that NSGA-Il achieved significantly better
performance than RS and Greedy for solving the uncertainty-wise and time-aware test case
prioritization problem for the industrial case study and the 72 simulated problems. Please refer to the
online technical report [8] and also attached as TR7.pdf in the deliverable, for more details. A summary
of our work in TR7.pdf is provided in the Appendix under the Technical Report 3: Uncertainty-Wise and
Time-Aware Test Case Prioritization with Multi-Objective Search [8].

3 Summary and Conclusion

3.1 UTF at the Application Level

Achievements of M4

The fourth milestone was achieved by the improvements of the genetic algorithm with mutation
operators for guards and effects in form of UML activities that are exploiting further information from
modelled uncertainty. It was specified which concepts of the Uncertainty Taxonomy (implemented by
the Uncertainty Modelling Framework) are used to select mutation operators and to which elements
they are applied. Furthermore, refinements of the fitness function framework were introduced that
allow to detected further kinds of uncertain behaviour related to non-continuous behaviour of a CPS
application.

Plan for achieving M5

For the fifth milestone, we will focus on test strategies aiming at discovering unknown uncertain
behaviours, also by improving the genetic algorithm. This will be done by

e investigating further improvements of the existing crossover operators and new options for
them,

e extending the genetic algorithm with configuration points for random variation (i.e. decreasing
the amount of information taken from modelled uncertainties used to guide the mutation)
and

o feeding back first results from the evaluation of the model evolution algorithm on the pilots.

2017-05-05 U-TEST Page 25 of 30

D3.2 Version 1.0 Confidentiality Level: PU

3.2 UTF at the Infrastructure Level

Achievement of M4

The fourth milestone was achieved through the introduction of Rule-based Uncertainty Discovery and
Model Evolution Strategy. The strategy aims at discovery of new unknown uncertainties as well as
providing recommendations for model evolution, while making use of profiles created in WP2. Initial
version of model evolution algorithm was achieved as a set of rules, documented and implemented in
OCL. Rules aim at discovery of new realistic (unknown) uncertainties, evolve the model and provide
recommendations for further model evolution. The evolved models can be used as an input to
previously developed test strategies, as well as an input to strategies implemented in U-CertifylIT, to
generate new test cases.

Plan for achieving M5

For the fifth milestone, we will focus on extension of the initial set of rules (with emphasis towards
current generic evolution of CPS towards Edge/Fog/10T), as well as on provision of a methodology for
further profile and rule creation for different aspects of CPS (data, functional, business, human,
trustworthiness, timing, boundaries, composition, lifecycle and security) centred around the core CPS
profile. Additionally, we plan to investigate the Machine Learning based Uncertainty Analysis
approach, aimed at analysis of uncertainty patterns related to particular infrastructure elements, i.e.
to investigate whether particular types of uncertainties can be linked to specific CPS elements

3.3 UTF at the Integration Level

Achievements of M4

We have successfully reached the milestone M4 regarding the UTF V.2 for uncertainty testing at the
Integration level of CPS. More specifically, the main improvements for uncertainty testing at the
Integration level as compared to the UTF V.1 include:

1) The update of UncerTolve for supporting the evolution of test-ready models using real
operation data (Section 2.4.1.1);

2) The development of an initial version of the new model evolution framework (UncerPlore),
which evolves test-ready models using genetic programming (GP) [9] [10] and benefiting from
runtime test ready model execution on the dedicated test infrastructure (Section2.4.1.2);

3) An uncertainty-wise test prioritization solution to optimize the order of executing test cases in
the cost-effective way (Section 2.4.4).

Plan for achieving M5
For the fifth milestone, we will work on

1) Providing the recommendation of how to configure the proposed test strategies for the test
case generation;

2) Developing additional uncertainty-wise problems for test case minimization and prioritization,
and conducting experiments with additional search algorithm;

3) Finalizing the new model evolution framework UncerPlore and performing experiments.

2017-05-05 U-TEST Page 26 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Appendix

Technical Report 1: Implementation Recommendations for Rule-based
Uncertainty Discovery and Model Evolution Strategy

The Rule-based strategy algorithm iterates through each test path entry containing a state and the
transition to the next path state. It traverses through all states, not only uncertainty-affected ones.
Unlike with test path generation, this should not cause an overhead problem as described in D4.2,
since this strategy checks on properties of only the current state at particular moment without
consideration of another state. During the path traversal, it checks on the properties of particular state
or transition, as shown in Listing 1.

ALGORITHM rule based uncertainty discovery and model evolution strategy
INPUT: test paths
OUTPUT: textual or console output

FOR EACH test path IN test paths DO

1
2
3 IF ANY state in test path.entries HAS RuleCondition

4 textual or console output.add(ruleOutput)

5 IF ANY transition in test path.entries HAS RuleCondition
6 textual or console output.add(ruleOutput)

-

8

-- rest in similar state machine diagram iteration sense as

generate transition correctness tests in D3.2

Listing 1: Test strategy 2 — Checking particular state property during path traversal

RuleCondition refers to rule condition attribute of rules (as described in Section 2.3), e.g.
state.timestampMechanism==notImplemented. RuleOutput refersto textual output of
a rule, i.e. rule description, model evolution recommendation, model evolution recommendation
domain, source or justification (as described in Section 2.3), and the name of a state or transition
where an unknown uncertainty is discovered.

Additional set of implementation recommendations includes:

e ability to categorize rules in different aspect (e.g. a set of data rules, behavioural rules etc.
defined as different documents)

e ability to select a set of rules to execute

e ability of run-time addition or removal of rules (e.g. rules defined in specific document with
Java syntax, which are then imported into the path traversal code. This feature would also
remove the need of recompilation of the implemented plugin every time a new rule is defined)

e instant output in console view

Technical Report 2: Uncertainty-Wise Evolution of Test Ready Models

The details of this technical report [7] can be found in a separate self-contain document (TR4.1.pdf)
attached with this deliverable. This technical report paper describes our detailed approach for the

2017-05-05 U-TEST Page 27 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Uncertainty-Wise Evolution of Test Ready Models (UncerTolve), which we have briefly presented in
Section 2.4.1.1. An summary of this technical report is given as follows.

Context: Cyber-Physical Systems (CPSs), when deployed for operation, are inherently prone to
uncertainty. Considering their applications in critical domains (e.g., healthcare), it is important that
such CPSs are tested sufficiently, with the explicit consideration of uncertainty. Model-based testing
(MBT) involves creating test ready models capturing the expected behaviour of a CPS and its operating
environment. These test ready models are then used for generating executable test cases. It is,
therefore, necessary to develop methods that can continuously evolve, based on real operational data
collected during the operation of CPSs, test ready models and uncertainty captured in them, all
together termed as Belief Test Ready Models (BMs)

Objective: Our objective is to propose a model evolution framework that can interactively improve the
quality of BMs, based on operational data. Such BMs are developed by one or more test modellers
(belief agents) with their assumptions about the expected behaviour of a CPS, its expected physical
environment, and potential future deployments. Thus, these models explicitly contain subjective
uncertainty of the test modellers.

Method: We propose a framework (named as UncerTolve) for interactively evolving BMs (specified
with extended UML notations) of CPSs with subjective uncertainty developed by test modellers. The
key inputs of UncerTolve include initial BMs of CPSs with known subjective uncertainty and real data
collected from the operation of CPSs. UncerTolve has three key features: 1) Validating the syntactic
correctness and conformance of BMs against real operational data via model execution, 2) Evolving
objective uncertainty measurements of BMs via model execution, and 3) Evolving state invariants
(modelling test oracles) and guards of transitions (modelling constraints for test data generation) of
BMs with a machine learning technique.

Results: As a proof-of-concept, we evaluated UncerTolve with one industrial CPS case study, i.e.,
GeoSports from the healthcare domain. Using UncerTolve, we managed to evolve 51% of belief
elements, 18% of states, and 21% of transitions as compared to the initial BM developed in an
industrial setting.

Conclusion: UncerTolve can successfully evolve model elements of the initial BM, in addition to
objective uncertainty measurements using real operational data. The evolved model can be used to
generate additional test cases covering evolved model elements and objective uncertainty. These
additional test cases can be used to test the current and future deployments of a CPS to ensure that it
will handle uncertainty gracefully during its operations.

Technical Report 3: Uncertainty-Wise and Time-Aware Test Case
Prioritization with Multi-Objective Search

The details of this technical report [8] can be found in a separate self-contain document (TR7.pdf)
attached with this deliverable. This technical report paper describes our detailed work in uncertainty-
wise test case prioritization, which we have presented in Section 2.4.4. An summary of this technical
report is given as follows.

2017-05-05 U-TEST Page 28 of 30

D3.2 Version 1.0 Confidentiality Level: PU

Context: Complex systems (e.g., Cyber-Physical Systems) that interact with the real world, behave in
an unstipulated manner while operating in uncertain environments. Testing such systems in
uncertainty is a big challenge. Devising uncertainty-wise testing solutions can be considered as a
mandate for dealing with this challenge. Though uncertainty-wise testing is gaining attention in the
last few years, industry-strengthening solutions are still missing.

Objective: Our objective is to propose an uncertainty-wise test case prioritization approach that can
significantly improve the cost-effectiveness of test case execution to maximize the occurrence of
uncertainty.

Method: In this paper, we propose an uncertainty-wise, search-based, multi-objective test case
prioritization approach, with a fitness function defined based on four cost-effectiveness measures: one
subjective and one objective uncertainty measures, execution time, and transition coverage.

Results: We evaluated the well-known multi-objective search algorithm NSGA-II by comparing it with
Greedy and Random Search (RS), with a real industrial case study. In addition, we created 72 additional
simulated problems of varying complexity based on the real case study. Results show that NSGA-II
achieved significantly better performance than RS and Greedy for both the real industrial case study
and the simulated problems. On average, NSGA-Il improved prioritization by 18% and 22% as
compared to RS and Greedy respectively.

Conclusion: This paper presented an uncertainty-wise and time-aware test case prioritization, which
was specifically developed to improve the cost and effectiveness of test case execution and at the
same time maximizing the occurrence of uncertainties.

Bibliography

[1] U-Test Consortium, “U-Test Deliverable D1.2: Report on Taxonomy.”
[2] U-Test Consortium, “U-Test Deliverable D2.2: Report on Uncertainty Modelling Framework V2.”

[3] G. Weissenbacher and (editor), “D 3.1b - Fault Models (Final Version),” 2008. [Online]. Available:
https://www.mogentes.eu/public/deliverables/MOGENTES_3-
09 1.0r_D3.1b_Fault_Models_Mutations.pdf.

[4] NIST — National Institute of Standards and Technology, “CPS PWG Cyber-Physical Systems (CPS)
Framework Release 1.0.” 2015.

[5] Object Management Group (OMG), “Object Constraint Language.” .

[6] G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “SYBL: An Extensible Language for Controlling
Elasticity in Cloud Applications,” in 2013 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, 2013, pp. 112—-119.

[7] M. Zhang, S. Ali, T. Yue, and R. Norgren, “Uncertainty-wise evolution of test ready models,”
Information and Software Technology, 2017. [Online]. Available:
http://dx.doi.org/10.1016/].infsof.2017.03.003. [Accessed: 26-Apr-2017].

2017-05-05 U-TEST Page 29 of 30

D3.2 Version 1.0 Confidentiality Level: PU

[8] S.Ali,Y.Li,T.Yue, and M. Zhang, “Uncertainty-Wise and Time-Aware Test Case Prioritization with
Multi-Objective Search,” Technical report 2017-03, Simula Research Laboratory. [Online]. Available:
https://www.simula.no/publications/uncertainty-wise-and-time-aware-test-case-prioritization-multi-
objective-search.

[9] J. R. Koza, Genetic Programming Il: Automatic Discovery of Reusable Programs. Cambridge, MA,
USA: MIT Press, 1994.

[10] J. R. Koza, Genetic programming: on the programming of computers by means of natural selection.
MIT Press, 1992.

[11] S. Luke et al., “ECJ: A Java-based Evolutionary Computation Research System.” [Online]. Available:
https://cs.gmu.edu/~eclab/projects/ecj/.

[12] S. Ali, M. Z. Igbal, A. Arcuri, and L. C. Briand, “Generating Test Data from OCL Constraints with
Search Techniques,” IEEE Trans. Softw. Eng., vol. 39, no. 10, pp. 1376-1402, Oct. 2013.

[13] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field Guide to Genetic Programming.
Lulu.com, 2008.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182—-197, Apr. 2002.

[15] B. Liu, Uncertainty Theory. Springer, 2015.

2017-05-05 U-TEST Page 30 of 30

