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Abstract. In this paper we propose Fasta, a stream cipher design op-
timised for implementation over popular fully homomorphic encryption
schemes. A number of symmetric encryption ciphers have been recently
proposed for FHE applications, e.g. the block cipher LowMC, and the
stream ciphers Rasta (and variants), FLIP and Kreyvium. The main de-
sign criterion employed in these ciphers has typically been to minimise
the multiplicative complexity of the algorithm. However, other aspects
affecting their efficient evaluation over common FHE libraries are often
overlooked, compromising their real-world performance. Whilst Fasta
may also be considered as a variant of Rasta, it has its parameters and
linear layer especially chosen to allow efficient implementation over the
BGV scheme, particularly as implemented in the HElib library. This
results in a speedup by a factor of 25 compared to the most efficient
publicly available implementation of Rasta. Fasta’s target is BGV, as
implemented in HElib. However the design ideas introduced in the ci-
pher could also be potentially employed to achieve improvements in the
homomorphic evaluation in other popular FHE schemes/libraries. We
do consider such alternatives in this paper (e.g. BFV and BGVrns, as
implemented in SEAL and PALISADE), but argue that, unlike BGV
in HElib, it is more challenging to make use of their parallelism in a
Rasta-like stream cipher design.
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1 Introduction

Fully homomorphic encryption (FHE) is a relatively new and active research
area in cryptography. FHE schemes allow arbitrary operations to be performed
on ciphertexts, to produce some encrypted result, which when decrypted results
in data that would be obtained if we had decrypted the ciphertexts first and
then performed the operations on the plaintexts.

FHE opens up for new and exciting secure applications, in particular in cloud
computing. The party doing the operations on the ciphertexts does not need to



have the decryption key. One can therefore upload FHE-encrypted ciphertexts
to the cloud and have the cloud provider perform the necessary operations on
the ciphertexts. Since the cloud does not need the decryption key, there is no
need to place any trust in the cloud provider. This gives a higher level of security
as the cloud provider does not have the ability to read the plaintext information.

The main drawback of FHE is that it is very computationally demanding.
Since Gentry demonstrated the first FHE scheme [Gen09] in 2009 many improve-
ments in efficiency have been made [CIM16,DM15,CHK20], but the most useful
applications still struggle with being practical. This impracticality comes not
least because clients of a cloud need to perform FHE encryptions themselves.
One notices however that the computing power of a cloud is much higher than
that of a typical client, so research has gone into finding ways to transfer most
of the burden of doing FHE encryptions from the clients to the cloud.

A solution for achieving this goal is to let the client encrypt its data using
a symmetric cipher, which is computationally very cheap, and upload the sym-
metrically encrypted ciphertexts to the cloud. The cloud also receives the key
used for the symmetric encryption, but only as a ciphertext encrypted under the
FHE scheme. The cloud is then in a position to homomorphically remove the
symmetric encryption and end up with the FHE encryption of the client’s data.

A number of symmetric ciphers designed for use together with FHE have
been proposed, e.g. the block cipher LowMC [ARS+15], and the stream ci-
phers Kreyvium [CCF+16], FLIP [MJSC16], and Rasta [DEG+18] (and variants
[HL20,HKC+20,DGH+21b]). Their main design criterion has been to minimise
the multiplicative complexity of the algorithms since homomorphic multiplica-
tions are the most expensive operations in FHE. However, as a rule they have
mostly overlooked an important aspect for their application target: how suit-
able they are for their homomorphic evaluation over existing FHE schemes, as
implemented in the main libraries. For example, the HElib and PALISADE li-
braries [HS20,PAL] implement the BGV scheme [BGV12], which offers a good
degree of parallelism by utilising slots in BGV ciphertexts. The BFV scheme,
implemented in PALISADE and SEAL [SEA20], also offer the same kind of par-
allelism. Since these are some of the most popular FHE implementations, one
may argue that a symmetric encryption design should – in addition to min-
imising multiplicative complexity – also select its components and parameters
to take advantage of the libraries’ features to allow their efficient homomorphic
evaluation.

In this paper we propose Fasta, a stream cipher design optimised for imple-
mentation over HElib. Fasta may be considered as a variant of Rasta, but has its
parameters and linear layers especially chosen to allow efficient implementation
over the BGV scheme. The selected parameters utilise the parallelism offered
by BGV, where the slots in ciphertexts are packed to achieve full parallelisation
when evaluating the non-linear layer. However the packing is inefficient when
the linear layer consists of random matrices (as with Rasta). Thus Fasta also
features a new BGV-friendly linear layer. These changes result in Fasta running
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more than 6 times faster than a corresponding (modified) Rasta instance, and
25 times faster than the original Rasta, when evaluated homomorphically.

Whilst Fasta’s target is BGV, as implemented in the HElib library, we also
look into the BFV scheme implemented in PALISADE and SEAL, and the vari-
ant of BGV called BGVrns that is implemented in PALISADE. We consider the
implementation features in these libraries and explain why it is more challenging
to make good use of their parallelism in Rasta-like stream ciphers.

The paper is organised as follows. In Section 2 we give an overview of the
main concepts and schemes discussed in the paper. Section 3 focuses on the
design of symmetric key linear layers for efficient FHE evaluation. We specify
the Fasta stream cipher in Section 4, and provide a security analysis in Section 5.
We describe the homomorphic implementation of Fasta in Section 6, and close
with our conclusions in Section 7.

2 Preliminaries

In this section we briefly recall a main use case for using symmetric ciphers with
homomorphic encryption schemes. We also review the Rasta stream cipher and
the BGV scheme, in particular how the latter is implemented in popular FHE
libraries.

2.1 FHE Hybrid Encryption: Combining Symmetric Ciphers with
Fully Homomorphic Encryption

The concept of Fully Homomorphic Encryption (FHE) was first described in
[RAD78]. However no actual FHE schemes were found before Gentry proposed
a construction in 2009 [Gen09]. Since then much work has been invested in this
field, not least because FHE gives strong solutions to privacy problems related to
cloud computing. The problem that FHE faces today concerns computational ef-
ficiency. Significant improvements have been made in recent years, but efficiency
is still a bottleneck for deploying practical and useful FHE applications.

One approach to address the efficiency issue is to combine FHE schemes with
symmetric ciphers as shown in Figure 1. This is often referred to as FHE hybrid
encryption. The idea is that clients in a cloud system, who typically have much
less computational power than the cloud provider, rather than homomorphi-
cally encrypting a (potentially large) plaintext P , will instead encrypt P using
a symmetric cipher E under a secret key K, and then only homomorphically en-
crypt K under the FHE scheme HE using a public key pk. Both the ciphertext
C = EK(P ) and the FHE-encrypted key K∗ are uploaded to the cloud.3 The
cloud will now encrypt the bits in C using HE under the public key pk, and
homomorphically run the decryption circuit of E on the inputs C∗ = HE(C, pk)

3 To avoid confusion between symmetric and FHE ciphertexts, we will normally use
an asterisk “*” as a superscript on any literal denoting a FHE ciphertext.
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Fig. 1: FHE hybrid encryption: the client only needs to encrypt the key K with an
FHE scheme HE; the plaintext P is encrypted with symmetric algorithm E . The cloud
gets the bits of K encrypted under HE, it encrypts the ciphertext bits ci with HE,
and homomorphically evaluates the decryption circuit of E to obtain HE(P, pk).

and K∗ = HE(K, pk). The homomorphic properties of HE ensure that the out-
put from doing this is HE(P, pk).4 In other words, the effect of the symmetric
cipher can be removed, and the cloud is now left with a pure FHE encryption of
P , which may then be used for further processing. The benefit of this construc-
tion is that the client side only needs to encrypt K using HE – in fact it needs
not be the same device that encrypts the plaintext P with E , and K with HE.
All other homomorphic encryptions and evaluations are done by the cloud.

The basic homomorphic operations performed in a circuit are additions and
multiplications, corresponding to the bit-wise XOR and AND operations when
the plaintext space is F2. Both of these operations have a cost in terms of the
growth of noise, and multiplication is by far the most expensive. Thus, to sup-
port such FHE hybrid encryption construction, there has been much research
effort in designing symmetric ciphers that minimise the multiplicative complex-
ity – the number of bit-wise AND-gates, both in the total number and in a
critical path (i.e. the AND-depth) – of their decryption circuit. Examples in-
clude LowMC[ARS+15], FLIP [MJSC16], Kreyvium [CCF+16], and Rasta and
its variants Dasta, Masta and Pasta [DEG+18,HL20,HKC+20,DGH+21b].

2.2 The Rasta stream cipher

Rasta is a family of stream ciphers proposed by Dobraunig et al. [DEG+18]. The
target application for the ciphers is the use as a component in secure computa-

4 Strictly speaking, the result will be in fact a ciphertext which will decrypt to P
under the FHE private key sk.
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Fig. 2: The r-round Rasta keystream generator construction (from [DEG+18]).

tion constructions based on MPC and FHE schemes, particularly the latter. In
these applications, symmetric key algorithm designs will seek to minimise mul-
tiplications as much as possible. In the Rasta construction, the designers aimed
to minimise two multiplicative metrics of interest: AND-depth and ANDs per
encrypted bit. Rasta uses a cryptographic permutation based on a public and
fixed substitution layer, and variable affine layers (which are derived from public
information), iterated for d rounds. The construction achieves AND-depth d,
while requiring only d ANDs per encrypted bit.

In more detail, the Rasta keystream generator is based on a n-bit permutation
featuring the A(SA)d structure, where S is the χ-transformation (prominently
also used in Keccak [BDPA11]), and the jth-round affine layers Aj,N,i are gen-
erated pseudorandomly based on a nonce N and a counter i. To produce the
keystream, it applies the permutation in feed-forward mode, with the n-bit se-
cret key K as input. Figure 2 shows a diagrammatic representation of the Rasta
keystream generator.

The generation procedure for the affine layers Aj,N,i results in pseudoran-
domly generated n × n invertible binary matrices and n-bit round constants,
which since they are based on unique (N, i), are unlikely to be re-used during
encryption under the same key. To ensure S is invertible, we require n to be odd.
If the permutation has d rounds, it is straightforward to show that the Rasta
construction achieves AND-depth d and requires d ANDs per encrypted bit.

In [DEG+18], the authors suggest several parameter sets for 80-, 128- and
256-bit security. For example, Rasta with a 6-round permutation with block/key
size of 219 bits should provide 80 bits of security. Same for a 4-round permu-
tation with 327-bit block/key. On the other hand, Rasta based on a 6-round
permutation with block/key size 351 bits is expected to provide 128 bits of se-
curity (see Table 1 of [DEG+18] for other proposed parameters). In general, the
authors suggest the number of rounds to be between 4 and 6, while the key size
will typically be at least three times larger than the security level. However they
also propose a more “aggressive” version of the cipher (Agrasta), for which the
block size coincides with the security level (plus one, to ensure n is odd). For
example, Agrasta based on an 81-bit, 4-round permutation, claims 80 bits of
security.
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In order to derive and justify Rasta’s parameter choices, the authors provide
a detailed security analysis of the construction in [DEG+18]. To our best knowl-
edge, the only other publicly available cryptanalysis of Rasta5 (and variants) is
the recent work [LSMI21], proposing algebraic attacks that contradict some of
the security claims in [DEG+18].

Rasta’s designers also discuss a few areas for future work, in particular how
to improve the cipher’s affine layer. They state in [DEG+18] that “[n]ew ideas
for linear-layer design are needed which impose structure in one way or another
which on one hand allows for significantly more efficient implementations while
at the same time still resist attacks and allows for arguments against such at-
tacks.” A variant of Rasta, called Dasta [HL20] was later proposed, considering a
particular efficiency aspect: it features a more efficient generation procedure for
the linear layer, which does not make use of a XOF algorithm. In this paper we
consider another implementation efficiency aspect: the evaluation of Rasta-like
ciphers over popular FHE schemes and libraries.

We note that, in [DEG+18], the designers did describe a few experiments
for the main use case for Rasta – namely, the homomorphic evaluation of the
cipher in a hybrid symmetric/FHE construction. However these experiments,
using BGV as implemented in HElib, appeared to have been carried out mainly
to “validate” the Rasta design approach, as well as a means to compare it with
other prominent ciphers, e.g. FLIP, Kreyvium and LowMC. In particular, there
appeared to be no efforts to take advantage of features of BGV/HElib in a more
efficient implementation, which in turn might have fed into more efficient design
choices for the cipher (beyond simply minimising AND-depth and AND per
bit). More recent variants of Rasta [HKC+20,DGH+21b] do take into account
FHE schemes’ features in their design, and come accompanied by comprehensive
experiments. However they feature more distinctive structures, e.g. they are
defined over fields of prime characteristic p > 2. In contrast, in this paper we
propose Fasta as a closer variant of Rasta, also defined over the binary field,
in which however we carefully consider the features of BGV in the design of its
keystream generator.

2.3 The BGV scheme

The BGV homomorphic encryption scheme [BGV12] was proposed by Braker-
ski, Gentry and Vaikuntanathan in 2012 and is implemented in the HElib and
PALISADE libraries. BGV is a levelled FHE scheme, which means that the mul-
tiplicative depth of the circuit one wants to evaluate must be known at the time
the parameters of the cipher are chosen.

The starting point for the BGV scheme is the m-th cyclotomic polynomial
over the integers Φm(X). Plaintexts in BGV can be seen as elements of the
quotient ring Zpr [X]/(Φm(X)), where p is a prime and Φm(X) is the image

5 The designers also mention in [DEG+18] the technical report “Algebraic cryptanal-
ysis of RASTA”, by Bile, Perret and Faugère. However we were unable to publicly
locate this work.
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of Φm(X) in Zpr [X]. In this paper we are only interested in encrypting bits
as plaintext, i.e. p = 2 and r = 1, and so in fact our plaintexts can be seen
as polynomials over F2 of degree less than φ(m), where φ(·) is Euler’s totient
function. A very useful feature of BGV is that one ciphertext may encrypt several
plaintext bits. The notion is that one ciphertext contains multiple slots. The
number of slots in a ciphertext is denoted by s, which is understood differently
in HElib and PALISADE. In HElib the number of slots is given as s = φ(m)/d,
where d is the multiplicative order of the size of the plaintext space (in our case,
2) modulo m. In PALISADE the number of slots is given as s = φ(m). In both
cases we use the notation

c∗ = {(b1, b2, . . . , bs)}

to indicate that the ciphertext c∗ encrypts the plaintext bits b1, . . . , bs.

The homomorphic properties of BGV apply slot-wise. If c∗a = {(a1, . . . , as)}
and c∗b = {(b1, . . . , bs)} are two ciphertexts, then

c∗a + c∗b = {(a1 ⊕ b1, . . . , as ⊕ bs)},
c∗a × c∗b = {(a1 · b1, . . . , as · bs)},

where ⊕ and · denote the bit-wise XOR and AND operations, respectively.

BGV in HElib. If we have φ(m) = s · d as above, it follows from the structure
of the ring F2[X]/(Φm(X)) that the plaintext space in HElib can be understood
to be instead in F2d , and multiplications and additions work homomorphically
in this field (see [HS20]). As F2 ⊂ F2d , we can use HElib for our purpose, and
ciphertexts will encrypt s plaintext bits.

HElib contains functions to manipulate the slots in a ciphertext, and two of
these will be important to us. The first is mul(c∗,M), where c∗ is a ciphertext
and M is a binary s×s matrix. The function6 returns a ciphertext that encrypts
the slots in c∗ multiplied with M , and so when c∗ = {(b1, . . . , bs)}, we have

mul(c∗,M) = {((b1, . . . , bs) ·M)}.

The second function we would like to highlight is rotate(c∗, a). This function
returns a ciphertext that encrypts the slots of c∗ cyclically rotated by a positions
to the right. We also use the notation (c∗ >> a) for the rotate operation, so for
c∗ = {(b1, . . . , bs)} we have

rotate(c∗, a) = (c∗ >> a) = {(bs−a+1, . . . , bs, b1, . . . , bs−a)}.

We note that both rotate and additions of ciphertexts are computationally very
cheap to do, while mul is not.

6 The mul function was optimised in HElib in March 2018, the earlier name for the
same function was matMul [HS18].
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BGV in PALISADE. PALISADE implements the BGV scheme using residue
number systems, and works in a different fashion from HElib. This particular
scheme is denoted by BGVrns.7 As noted above, the number of slots in PAL-
ISADE is s = φ(m), and will therefore always be an even number. In PALISADE
v.1.11.4 (the latest version at the time of writing [PRRC21]), the plaintext space
of BGVrns can only be integers modulo a chosen plaintext modulus p. Addition
and multiplication in the slots will be performed as integer additions and mul-
tiplications modulo p. As we are only interested in doing operations in F2 and
not in any extension field, this is again sufficient for our purpose. In BGVrns the
plaintext modulus needs to be odd, but by selecting p to be high enough that
our computation never reaches it, the computations will simply be done over the
integers. After decryption we then only need to reduce the plaintext returned by
PALISADE modulo 2 to get the desired result.

PALISADE does not yet implement a function similar to HElib’s mul. It does
however have a function that cyclically rotates a ciphertext by a given number
of positions, called evalAtIndex. Like HElib, both evalAtIndex and additions are
computationally cheap to do in BGVrns, but the number of slots in PALISADE’s
BGVrns is much higher.

3 Linear layers in symmetric ciphers for FHE hybrid
encryption

The purpose of the linear layer in a symmetric cipher is to provide “diffusion”.
The concept of diffusion is often not precisely formalised, but intuitively we
would like a linear layer to provide an avalanche effect, i.e. that any single bit
of the cipher state at a particular point of the encryption process quickly influ-
ences as many bits in the cipher state as possible after a few rounds. Deploying
linear layers with good diffusion – together with good non-linear layers – in iter-
ated constructions should ensure that, for the entire cipher, the output bits are
described via complex expressions in all input bits.

The notion of optimal diffusion for symmetric encryption linear layers was
introduced in [Dae95,RDP+96], together with a metric to quantify the diffusion
of a linear layer L. The branch number of L is defined as the minimum of the
sums of the weights of inputs and corresponding outputs of L. For matrices of
dimension n over F2r (r > 1), it was shown how maximum distance separable
(MDS) codes of length 2n and dimension n can be used to construct invertible
linear transformations providing optimal diffusion.

In this work we are interested in large, invertible linear transformations over
F2, which can offer good diffusion. Given our parameters, the use of the MDS
construction is not possible, and measuring the branch number of individual
matrices seems infeasible. Similar to the approach in [ARS+15,DEG+18], we will
instead define a family of linear transformations which we will argue offer good
diffusion properties. Fasta’s iterated construction will then use linear layers that

7 See [HPS18] for a discussion on the very similar BFVrns scheme.
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are pseudorandomly generated from this family. We claim that the construction
should then provide strong diffusion after just a few rounds.

Most existing work on quantifying diffusion have focused on features of one
particular linear transformation used multiple times in a cipher. Our case is dif-
ferent: we will make use of a family of linear transformations, from which we
will draw transformations to be used only once during encryption. We therefore
introduce the notion of “balanced diffusion” which we will use in our construc-
tion.

Definition 1. Let L be a family of invertible n×n matrices over F2, where |L|
is a large even number. Let e0, . . . , en−1 be the canonical basis of (F2)n. Then
we say that L offers balanced diffusion if, for all 0 ≤ i, j ≤ n− 1, we have

Pr
L∈L

[〈eiL, ej〉 = 1] = 1/2.

Intuitively it means that if L is a member of a family of matrices offering
balanced diffusion, then if w = v · L, we expect that every bit of v influences
each bit of w with probability 1/2. In cryptographic applications, we expect that
the iteration of randomly generated members of L should maximise the diffusion
of the entire construction.

Some designers of FHE-friendly symmetric ciphers, e.g. in [ARS+15,DEG+18],
have adopted a similar approach, using L = GL(n,F2) the family of all invertible
n× n binary matrices. The ciphers’ round linear transformations are then ran-
domly generated from L. This seems in principle to make sense: designers mainly
focused on minimising the number of AND gates and the AND-depth of the de-
cryption circuit, under the argument that linear operations on FHE ciphertexts
are almost for free compared to multiplications. Moreover, with no particular
structure in the linear layer that a cryptanalyst can exploit in an attack, this
approach also simplifies the arguments in the security analysis. However this
approach seems also to indicate that little attention was paid to how the struc-
ture of the linear layer may affect the performance of the ciphers’ homomorphic
evaluation in practice.

While it is true that addition of homomorphic ciphertexts is cheap compared
to multiplication, a tacit assumption is that ciphertexts only encrypt a single
bit each. As discussed in Section 2.3, popular FHE libraries have the ability to
pack multiple plaintext bits into a single FHE ciphertext, and operate on all bits
encrypted into each ciphertext in parallel. Packing the full state of a symmetric
cipher into a few, or perhaps only one, FHE ciphertexts can give big speed-ups
when processing the non-linear layer of a symmetric cipher. For example, an S-
box layer of LowMC that covers 3/4 of the state can be processed with only three
FHE multiplications, while the χ transformation used in Rasta (Section 2.2) can
be performed with only one homomorphic multiplication.

However, when packing the state of a symmetric cipher into few FHE cipher-
texts, the additions carried out in a linear layer will now fall into two categories:

1. additions of elements in the same slot positions from two FHE ciphertexts;
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2. additions of elements from two FHE ciphertexts in different slots, or addition
of elements from different slots inside a single FHE ciphertext.

The first type is in fact the addition of two FHE ciphertexts, and is therefore
quick and easy to perform. The second type is however slower and more involved,
as it mixes elements inside a single FHE ciphertext, or moves elements inside
a ciphertext to make them line up in the same slot. Type 2 additions are thus
not homomorphic additions per se. For a randomly generated linear layer, most
additions will be of type 2; that in turn will outweigh much of the gains that
packed ciphertexts give in the non-linear layer. A natural question is then to
investigate whether we can find another family of linear transformations, which
only uses additions of type 1, but is still expected to offer balanced diffusion.

We now describe the design of a family of linear layers that only use rotations
and additions of type 1, which we employ in Fasta. Of course, linear transfor-
mations drawn from this family are no longer random, and some structure may
be found in them. Nevertheless, we aim to construct linear transformations that
are still expected to provide balanced diffusion, as per Definition 1, and which in
respect to the diffusion at least, behave as randomly generated binary matrices.

3.1 Rotation-based linear layers

In Fasta, we follow the principle introduced in Rasta to (pseudorandomly) draw
linear transformations from a large family L, to be used only once in a particular
instantiation of the cipher. Below we describe a general method for constructing
a family of FHE-friendly linear transformations, with the aim of providing bal-
anced diffusion. In Section 4 we use this method to construct the specific class
of linear transformations used in Fasta. In the following explanation we use
the notation v[i] to indicate bit number i in a bit-string v, and v[i, j], i < j to
indicate the sequence of bits from position i up to and including position j in v.

The linear transformations we produce are based on column parity mixers
[SD18]. Let the cipher state consist of bs bits, split into b words w0, . . . , wb−1 of
s bits each. A column parity mixer works by first computing u = w0⊕ . . .⊕wb−1
and then applying a simple linear transformation Θ to the sum to compute
v = Θ(u). The word v is added back onto the input words to form the output
words w′i of the column parity mixer, as w′i = wi+v. See Figure 3 for a schematic
description. In the following we also refer to one application of the column parity
mixer as an iteration.

We are concerned with constructing a class of linear transformations L of
dimension bs over F2 that provides close to balanced diffusion. Let x0, . . . , xb−1
be the input words to any L ∈ L, and y0, . . . , yb−1 be the output words. For any
0 ≤ i, k < b and 0 ≤ j, l < s, we want xi[j] to appear in the linear expression for
yk[l] for approximately half of the linear transformations in L. As we will only
use rotations of words and the column parity mixer construction, we can without
loss of generality focus on x0[0] and ensure this bit will appear in approximately
half of the linear combinations giving output bits yk[l]. We say that a bit in any
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w0 w1 . . . . . . wb−1

⊕
⊕
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... ⊕

⊕
. . .

Θ
. . .

w′0 w′1 . . . . . . w′b−1

Fig. 3: One iteration of a column parity mixer used to construct rotation-based
linear layers (Step 1). Gray areas indicate affected bits.

word wi during the computation of the linear transformation is affected if it has
a non-zero probability of depending on x0[0]. We propose the following general
strategy for constructing a family of rotation-based linear layers:

1. Define a column parity mixer based on a transformation Θ that uses rota-
tions of low amounts compared to s, in such a way that all bits in a small
neighbourhood of w0[0] will be affected in all words output from the column
parity mixer (see Figure 6 in Section 4 for an example of such Θ, as used in
Fasta).

2. Rotate the words wi between applications of the column parity mixer such
that the affected parts are spread to larger portions of the cipher state.

3. Iterate applications of column parity mixers interleaved with word rotations
as many times as required until the whole cipher state is affected.

We note that if b is even the column parity mixer (step 1 above) is an in-
volution; if b is odd, the column parity mixer operation is invertible iff (Θ + I)
is invertible [SD18]. Moreover, let w′0, . . . , w

′
b−1 be the cipher state after the

application of the column parity mixer. Then Θ should be designed such that
w′i[0, a − 1] is affected for all 0 ≤ i < b and some value of a relatively small
compared to s. This is shown in Figure 3.

After the first iteration the a least significant bits of each output word w′i
will be affected. More generally, assume that in the output of any one iteration
of the column parity mixer, the A least significant bits of each output word are
affected, for some A ≥ a. Here we will denote these words as wi, as the input
to the word rotation operation (step 2). For these rotations, we choose to have
the word w0 left unchanged, while wi for 1 ≤ i < b are rotated as follows: every
word wi is rotated by i ·A/2 + ri positions, where ri ∈ [0, A/2− 1]. The output
of step 2 is denoted as w′0, . . . , w

′
b−1. See Figure 4 for an illustration of how each

word is rotated.
These rotation amounts ensure three properties. First, the affected parts of

wi−1 and wi will overlap in at least one bit when added together in the next
iteration, for i = 1, . . . , b − 1. So there cannot be any “gap” where some bit
in a word will not be affected. Second, after rotations the least significant bit
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(i)

(ii)

(iii)

A/2 A/2

wi 0 ≤ i ≤ 3

w′0 = w0

w′1 = w1 << (A/2 + r1)

w′2 = w2 << (A+ r2)

w′3 = w3 << (3A/2 + r3)

⊕
w′i 0 ≤ i ≤ 3

≥ 5A/2

Fig. 4: Word rotation operation (step 2), applied between two iterations of the column
parity mixer, acting on states with b = 4 words. The output words of the previous
the column parity mixer, each with A least significant bits affected, are represented
in region (i). The word rotation operation itself is shown in region (ii). Region (iii)
represents the initial sum operation in the next iteration of the column parity mixer,
with at least 5A/2 affected bits in the input to next iteration’s Θ. The block of affected
bits can be anywhere in the light grey areas, depending on the values of ri.

of the affected part of wi−1 cannot overlap with the affected part of wi, for
i = 1, . . . , b− 1. In other words, the affected parts of wi and wj may not overlap
exactly when i 6= j, for any choice of ri and rj . Two neighboring wi-words may
therefore not cancel out when added together in the input to the next iteration.
Third, the input to Θ in the next iteration will then be affected in (at least) all
bits in positions 0, . . . , (b + 1)A/2. Hence the size of the block of affected bits
will increase by a factor of at least (b+ 1)/2 from one iteration to the next.

Using this strategy, the number of affected bits in w0, . . . , wb−1 will grow
exponentially with the number of iterations, and after dlog(b+1)/2(s)e iterations
we are guaranteed the whole cipher state will be affected.

3.2 The structure in rotation-based linear layers

One can imagine many other ways of designing a linear transformation acting
on a state consisting of s-bit words, using only rotations within the words and
XOR additions of whole words. We show below that any linear transformation
within these constraints will have a particular structure.

Assume that the state consists of w0, . . . , wb−1, where each wi is a word of
s bits. We let the state block w be a binary vector of length bs, given as the
concatenation of the words: w = (w0|| . . . ||wb−1). Let M be the bs × bs matrix
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over F2 that realises a rotation-based linear transformation L, such that the
output of L is given as L(w) = wM .

Proposition 1. The matrix M can be decomposed into b2 sub-matrices Mi,j for
0 ≤ i, j ≤ b−1 of size s× s each. Let Mi,j [r] be row r in Mi,j, for 0 ≤ r ≤ s−1.
Then Mi,j [r] = Mi,j [0] << r.

Proof. Let the state ei be given as the state where bit number i in ei is 1, and
all others are 0, for 0 ≤ i ≤ bs − 1. Then the top row of M is given as L(e0).
Whatever bits are set in L(e0), they are all a result of the single 1-bit in e0 being
added multiple times onto the words, with rotations of the words in between.

The second row of M is given as L(e1). The exact same additions and rota-
tions that produced L(e0) from the single set input bit will also produce L(e1),
except everything happens shifted by one position to the left, modulo s. Hence
every word in L(e1) will be equal to the same word in L(e0), but shifted by one
position. This repeats for every row of M , so M0,j [r] = M0,j [r − 1] << 1.

Row s of M is produced as L(es). The single set bit in the input then jumps
from appearing in w0 of the state to w1. The word w1 is rotated independently
of w0, so the cancellations and additions from the single set bit in es that occurs
when producing L(es) are different from those that produced L(es−1). Hence
row s of M , and the top row of each M1,j , will be unrelated to row s− 1 of M .
However, each row M1,j [r] will be rotations of M1,j [0] by the same reason given
above. This argument repeats every time the single set bit in ei jumps from one
word to the next, and the result follows.

Proposition 1 essentially states that M can be decomposed into b2 circulant
matrices. This can also be observed by noticing that M may be considered as the
binary representation of a linear transformation over the module Rb, where R
is the ring F2[X]/(Xs + 1). We provide more details in Appendix A. Also in the
Appendix, Figure 9 gives an example of a matrix realising a rotation-based linear
layer with b = 5 and s = 329 (as used in Fasta). For comparison, it also shows a
matrix realising five parallel applications of Rasta (with same parameters). The
block structure is clearly visible in the rotation-based linear transformation,
whilst the comparable matrix for Rasta is a block diagonal matrix with random
blocks.

4 Specification of FASTA

In this section we define Fasta, a stream cipher whose circuit for generating the
keystream has been designed to be efficiently evaluated homomorphically. As
the name suggests, Fasta is based on Rasta and is fast to execute when imple-
mented in HElib using the BGV levelled homomorphic encryption scheme (see
Section 2.3). We define a single instantiation of Fasta, with parameters selected
to give 128 bits of security, both as a stand-alone symmetric cipher and when
used in tandem with a specific instantiation of the BGV scheme it is designed
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for. It is of course possible to make variants of Fasta with higher or lower se-
curity claims, but one should then also find instances of FHE schemes with the
same security level and with a number of slots that matches the given variant
of Fasta. Finding matching combinations of FHE parameters and symmetric
designs is a study in itself, so we limit ourselves to focus on only one particular
variant here. We follow Rasta’s approach for setting the data limit, that at most
264/1645 calls to Fasta with the same key can be made.8

⊕ ⊕ ⊕ ⊕ ⊕

K K << 1 K << 2 K << 3 K << 4

keystream keystream keystream keystream keystream

Aα0

Aα5

Aα6

χ

χ

χ

χ

χ

χ

χ

χ

χ

χ

K K K K K

Fig. 5: High-level description of Fasta.

4.1 High-level overview

Fasta takes a 329-bit secret key K and produces 1645 bits of keystream at each
call. The cipher state consists of five words w0, . . . , w4 of 329 bits each that are
initialised as wi = (K << i), for the secret key K. The choice of word length (329
bits) follows a search for values of m as an instatiation of BGV, that provided
128 bits of security (as FHE scheme) and gave a large, odd number of slots s.
The value selected was the prime m = 30269, so that φ(m) = 30268 = 329× 92,
giving s = 329 slots (see Section 2.3). The number of state words (five) provided
a good trade-off between the size of the state and the number of iterations
required to generate invertible rotation-based linear layers which are expected
to offer balanced diffusion.

8 Since Fasta has a 1645-bit state, this sets the maximum length of the keystream
generated under the same key to 264 bits.
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Each application of Fasta takes in 7 · (63 + 1645) = 11956 pseudo-random
bits for specifying the particular permutation that produces a keystream block.
These bits are labelled α = (α0, . . . , α6), where each αj is a 1708-bit value. In
the same way as Rasta, the contents of α are pseudorandomly generated based
on a counter and a nonce N which are fed into a XOF (see Figure 2).

The keystream generation applies a round function 6 times. The round func-
tion consists of an affine layer Aαj

, indexed by αj for 0 ≤ j ≤ 5, followed by
a non-linear transformation of the cipher state. The keystream generation ends
with a final affine layer Aα6

and a feed-forward of the secret key XORed onto
each of the words. The resulting output is taken as 1645 bits of keystream. The
cipher is shown in Figure 5.

4.2 The non-linear layer

The non-linear layer uses the χ-function proposed in [Dae95], which is also used
in Rasta and Keccak. It is applied on each of the five words of the state in
parallel as shown in Figure 5. If we label the input bits to χ as x0, . . . , x328, the
output bits yi are given by

yi = xi+1xi+2 + xi + xi+2,

where all indices are computed modulo 329.

4.3 The affine layer

Affine layers in Fasta consist of a rotation-based F2-linear transformation, fol-
lowed by the addition of a round constant. The linear transformation is con-
structed as described in Section 3.1, with b = 5 and s = 329, and will consist
of four iterations. A guiding principle in Rasta, which we also follow in Fasta,
is that every linear transformation is pseudorandomly generated from a large
family of transformations and is used only once in an instantiation of Fasta.
The affine transformation we use is parameterised by a 1708-bit value αj , which
will select instances from the class of linear mappings from Section 3.1, as well
as selecting the constant to be added after the linear transformation.

The Θ-function in each iteration is shown in Figure 6. It ensures that the
number of affected bits in the output is increased by 9 from the number of
affected bits in the input. Moreover, as b is odd, the possible choices for rotation
values ensure that the resulting column parity mixer operation, and therefore
the entire affine layer, is invertible.

Recall that the affected part of each word at any point is defined as the
bits that may depend on the bit x0[0] at the input of the linear transformation.
After the first iteration, the number of affected bits in each word will be 10. The
rotations before the next iteration are therefore given as:

w1 = (w1 << 5 + i1), w3 = (w3 << 15 + i3)
w2 = (w2 << 10 + i2), w4 = (w4 << 20 + i4)

, where 0 ≤ i∗ ≤ 4.
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Fig. 6: The Θ-function used in Fasta’s linear layer. The values of r1 and r2
are generated randomly from the nonce N , and the value given for r3 ensures
invertibility of the resulting column parity mixer operation.

The number of affected bits in the block going into the second Θ will therefore
be at least 20 + 10 = 30, and the number of affected bits in each word after the
second iteration will be at least 39. The words w1, . . . , w4 are then rotated by

w1 = (w1 << 19 + j1), w3 = (w3 << 57 + j3)
w2 = (w2 << 38 + j2), w4 = (w4 << 76 + j4)

, where 0 ≤ j∗ ≤ 18.

The affected part of the word going into Θ in the third iteration will then cover at
least the 39+76 = 115 least significant bits, and the output will have at least 124
affected bits. The output is added onto every word, so the 124 least significant
bits of every wi will be affected. The words w1, . . . , w4 are then rotated by the
following amounts before going into the fourth and last iteration:

w1 = (w1 << 62 + l1), w3 = (w3 << 186 + l3)
w2 = (w2 << 124 + l2), w4 = (w4 << 248 + l4)

, where 0 ≤ l∗ ≤ 61.

Note that the most significant bits of the affected part of the word w4 (located
in positions 123, 122, . . .) wraps around when rotated by 248 positions, as the
words have length 329. This means that the entire input block to Θ in the last
iteration will be affected, and after adding the output of Θ onto each wi the
entire cipher state is affected. The complete linear transformation is depicted in
Figure 7.

Pseudorandomly generating the rotation-based affine layers Aαj . The
rotation values of the linear transformations and the constant part of the affine
layers Aαj are defined based on 1708-bit values αj generated pseudorandomly
(using a XOF). We take 1645 bits from αj to define the constants value. The
remaining 63 bits are used to define 24 rotation values (three used in each of
the four instances of Θ and four in each of the three word rotations between
Θ-iterations). Details on how this is done are given in Appendix B.

4.4 Comparing FASTA with other ciphers for hybrid encryption

Rasta is a family of stream ciphers, with the benefit of having a low and constant
multiplicative depth regardless of how much keystream is produced (Section 2.2).
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w0 w1 w2 w3 w4

Θ-iteration

Θ-iteration

Θ-iteration

Θ-iteration

<< 5 + i1 << 10 + i2 << 15 + i3 << 20 + i40 ≤ i∗ ≤ 4

<< 19 + j1 << 38 + j2 << 57 + j3 << 76 + j40 ≤ j∗ ≤ 4

<< 62 + l1 << 124 + l2 << 186 + l3 << 248 + l40 ≤ l∗ ≤ 4

Fig. 7: The linear transformation of Fasta. The exact rotation amounts i∗, j∗, l∗
and in the Θ-iterations are determined by αj .

As discussed, Fasta is a variant of Rasta with a dedicated design for the efficient
evaluation over FHE schemes. In fact, as shown in Figure 5, Fasta could be seen
as five parallel calls of Rasta (with block size s = 329 and 6 rounds), but with one
main difference. In the 5-parallel Rasta calls, the combined affine transformations
Ai would be represented by a block diagonal matrix, with each 329× 329 block
being generated pseudorandomly. On the other hand, in Fasta the Ai are 1645×
1645 rotation-based transformations, essentially tying the transformations of the
five blocks together. Motivation for the choices for the value of s and the structure
of Ai were given early in this section. As shown in Section 6, this structure and
parameter choices will allow Fasta to be homomorphically evaluated much more
efficiently in BGV/HElib, when compared to five parallel calls of Rasta.

Another drawback from Rasta is the inefficiency of requiring many random
linear transformations, which need to be generated and stored. Other variants
have also been proposed to address this feature. Dasta [HL20] simplifies the
generation of the linear layers, by using a single fixed matrix composed with a
permutation of the bits in the cipher block. These permutations are constructed
by cyclically rotating smaller bit sequences that are part of the cipher block.
This means much less randomness is needed from the XOF. However, rotating
only part of a cipher block is difficult to achieve in a packed FHE implementation
of Dasta. Thus Fasta presents the same advantages when evaluated homomor-
phically compared to Dasta.

Masta [HKC+20] abandons Fs2 as the native plaintext space, and can be seen
as a Rasta variant with plaintext elements in Fp for a prime p > 2. The linear
transformations of Masta are then simply chosen as a multiplication with an
element chosen pseudo-randomly from Fps , where s is the number of slots in
the FHE ciphertext. The designers state that this speeds up the homomorphic
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evaluation of the cipher by a factor of more than 3000 compared to Rasta.
However, this comparison should be done with caution as Masta is tailored
to computations on integers and Rasta (and Fasta) was designed for binary
circuits.

The most recent Rasta variant proposal is called Pasta [DGH+21b]. In con-
trast to Fasta, Pasta has the plaintext elements taken from the field Fp, where
p is a large prime. The linear layers in Pasta are chosen in a structured way,
requiring only the sampling of s random elements from Fp to generate an s× s
matrix. All together, this leads to Pasta being up to 6 times faster than Masta
in certain scenarios.

Other symmetric key ciphers proposed for hybrid encryption include LowMC
[ARS+15], FLIP [MJSC16] and Kreyvium [CCF+16]. LowMC is a family of block
ciphers, with multiplicative depth at least 12, while Kreyvium is a stream cipher
based on Trivium. Kreyvium has the drawback that the multiplicative depth
for producing keystream increases with the output length. For comparison with
Fasta, producing 1645 bits of keystream with Kreyvium requires multiplicative
depth of at least 17 (compared to 6 for Fasta). FLIP is also a stream cipher,
with the benefit that the multiplicative depth for producing the keystream is held
constant at 4. However, FLIP requires a much larger number of AND operations
per bit; moreover, the successful cryptanalysis of its original version [DLR16]
called for the selection of more conservative parameters. Finally, we also mention
Ciminion [DGGK21], a recent proposal oriented around a large field Fq, which
aims to minimise the number of field multiplications in its design. However, while
the total number of field multiplications in Ciminion might arguably be small
(at least 56), they all appear sequentially. This leads to a multiplicative depth
of Ciminion of at least 56, making it very unsuitable for hybrid encryption in
the FHE setting.

Overall, among the ecosystem of FHE-friendly stream ciphers, Fasta has
been specifically designed to improve on the efficiency of both Rasta and Dasta,
while keeping the original plaintext elements as bits in F2.

5 Security Analysis

Fasta is a Rasta variant, which introduces a new idea for a FHE-friendly linear-
layer design. Like Rasta, it also uses the A(SA)d structure, with the non-linear
layer S based on the χ-transformation, and affine round transformations drawn
from a large family of affine mappings. Moreover, as discussed above, Fasta
can be seen as five parallel calls of a particular Rasta instance, however un-
der the operation of different enlarged linear layers – Fasta’s composed of a
rotation-based transformation and the 5-parallel Rasta a block diagonal matrix,
in both cases pseudo-randomly generated. As a result of these design choices, we
claim that we can leverage most of the analysis originally performed for Rasta
in [DEG+18] to assess the security of Fasta. For example, like Rasta we also dis-
allow related-key attacks, and thus differential-type attacks should likewise not
apply to Fasta. In this section we will therefore only discuss a subset of attacks
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considered in [DEG+18], indicating when required how to adapt the original dis-
cussion to Fasta’s setting. We first consider the properties of the rotation-based
linear transformations introduced earlier, and used in Fasta. We also discuss the
feasibility of attacks based on the algebraic structure of the cipher, and of lin-
ear approximation based attacks, again leveraging the corresponding discussions
from [DEG+18].

5.1 On the structure of FASTA’s linear transformation

Balanced diffusion of FASTA’s family of linear transformations. The
Θ function used Fasta’s linear layer has the property that every input bit in
position i, for 0 ≤ i ≤ 328, will affect the output bits in positions i, . . . , i + 9
mod 329. As explained in Section 4.3, the influence of x0[0] will spread to the
entire cipher state after applying the linear transformation once. By rotational
symmetry, this applies to every bit in the input words, so every bit in the out-
put of the linear transformation may have any of the input bits in its linear
expression.

When adding words together at the start of every iteration, some of the af-
fected parts of the input words will overlap. As an input bit to Θ is spread to
approximately half of the bits in its neighbourhood of the output, this makes
approximately half of the affected part of the cipher state depend on approxi-
mately half of the input bits it depends on. In total, we therefore expect balanced
diffusion for the linear layers in our family.

To confirm this, we have generated 10000 matrices appearing as linear trans-
formations in Fasta, and considered their statistics compared to rotation-based
random matrices. Figure 8a shows the distribution of the percentage of set bits
in these matrices. The distribution is well approximated by a normal distribu-
tion with mean 50%, but have a slightly higher variance of set bits than random
invertible rotation-based matrices.

In Figure 8b we have measured how well a sample of 10000 matrices satisfies
balanced diffusion according to Definition 1. More precisely, for a given pair of
numbers (i, j), 0 ≤ i, j ≤ 1644 we measured Pr[〈eiL, ej〉 = 1] across the 10000
matrices. We did this for all 1645 × 1645 = 2706025 different pairs (i, j), and
counted the frequencies of probabilities seen. The plot is shown in Figure 8b,
and compared against the same experiment for random invertible rotation-based
matrices. As we can see, all probabilities are normally distributed around 0.5,
and there is no significant difference between the matrices used in Fasta and
those generated at random.

Pairwise dependence/independence of entries in the linear transfor-
mation. The Fasta state consists of 5 words with 329 bits each. Proposition
1 decomposes the linear transformation matrix M into 25 submatrices, each of
size 329 × 329. Each of these 25 submatrices are defined in terms of their re-
spective top row. Looking at each submatrix in isolation, each of its rows is a
cyclic rotation by 1 of the row above. Let D be a submatrix of M , and Di,j be
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(a) Distribution of the percentage of set
bits in the matrices.

(b) Distribution of measured values of
Pr[〈eiL, ej〉] across the matrices, for all
0 ≤ i, j ≤ 1644.

Fig. 8: Statistics for 10000 matrices used in Fasta and 10000 rotation-based
invertible matrices with 5× 5 blocks and random top row in each block.

an entry in D. It follows from the row rotation property that Di+1,j+1 = Di,j ,
which generalizes to D0,j = Da,j+a, for 0 ≤ a, j ≤ 328 and where indices are
computed modulo 329.

As M displays random behaviour and is expected to provide balanced diffu-
sion, we will make the reasonable assumption that pairwise entries are indepen-
dent, for any of the 25 submatrices in M . Furthermore, two entries from different
submatrices are also treated as independent.

5.2 Algebraic attacks

Given the keystream Z = (z0, . . . , z1644) produced on a call to Fasta’s keystream
generator for an unknown key K = (k0, . . . , k328), it is possible to express the
keystream bits as polynomials in k0, . . . , k328 to get a set of polynomial equations
over F2:

f0(k0, . . . , k328) + z0 = 0
f1(k0, . . . , k328) + z1 = 0

...
f1644(k0, . . . , k328) + z1644 = 0

(1)

The attacker may repeat calls to the keystream generator to gather more
such equations. The fact that new linear layers will be applied for each repetition
means that new functions fi will be used to define these fresh equations, up to
264 due to the cipher’s data limit. We therefore consider algebraic attacks to be
the most promising cryptanalytical technique against Fasta, and consider its
feasibility below.

Standard linearization-based attack. The equation system (1) forms the
foundation of the standard linearization attack. In such an attack, given a system

20



of non-linear multivariate polynomial equations, all monomials are substituted
with a new “variable”, and the resulting set is considered as a system of linear
equations over these variables. To fully solve this system, an attacker needs to
collect as many equations as there are variables, which then allows for a unique
solution to be found through Gaussian elimination. Thus, the complexity of
solving such a system based on this method is directly dependent on the number
of monomials in the original system.

The maximum number of different monomials we can get is dependent on
the algebraic degree of each fi. For Fasta, the algebraic degree of fi is upper
bounded by 26 = 64, since the degree doubles with every application of χ and
Fasta has six rounds. Thus the size of the linearized system will be at most∑64
i=0

(
329
i

)
≈ 2535.

This value is computed by only considering χ in the forward direction. It is
well known that the inverse of χ has high degree, but through careful study of
the relationships between input and output bits to the χ operation, the authors
of [LSMI21] derived further equations arising in the last round of Rasta, Dasta,
and in fact Fasta. There are two important consequences of this result. Firstly,
5 × 1645 = 8225 equations can be derived per application of Fasta, instead
of only 1645. Secondly, the last round can effectively be peeled off since the
equations describing χ in the last round do not multiply inputs together, only
inputs and outputs. The outputs of χ in the last round can be described as linear
polynomials in k0, . . . , k328, and the inputs will be polynomials of degree 32. So
the number of monomials in the generated equations is reduced to at most

U =

33∑
i=0

(
329

i

)
≈ 32933 ≈ 2276. (2)

Under the assumption that all U monomials of degree up to 33 over the 329
variables are present in the system of equations, the complexity of such attack
(solving a system of linear equations of size ≈ 2276) is way higher than the
security level claimed for Fasta (128 bits of security). This is the behaviour we
may expect for large random systems. However, for Fasta (and Rasta) we are
not guaranteed that U is the number of monomials which will actually occur
in the system. We explore this question in Appendix C, and conclude that the
expected number of monomials appearing in the algebraic equations linking the
unknowns k0, . . . , k328 to the keystream bits is indeed approximated by U . Thus,
similar to Rasta, linearization-based attacks are not a threat to Fasta.

Other algebraic approaches The maximum number U of monomials could
be reduced by guessing g key bits, at the cost of increasing the complexity of
the linearization attack by a factor of 2g. This implies a cut-off for guessing bits
at g = 128, where the complexity increase alone will equal the claimed security
level.

Even when guessing 128 of the bits inK, we are still left with U =
∑33
i=0

(
201
i

)
≈

2252 monomials to linearise. As the data complexity is limited to 264/1645 ≈ 254
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calls to Fasta for a given key K, the maximum number of equations we can
generate, taking [LSMI21] into account, is 5 · 1645 · 264/1645 ≈ 266.3. We can
therefore conclude that an attacker will not be able to generate enough equations
for a linearization attack to succeed.

A more advanced form of algebraic attacks is based on Gröbner basis algo-
rithms. In this case, the cipher’s non-linear system is considered in its original
form, and attempted to be solved using, e.g. Faugère’s F5 algorithm [Fau02].
The complexity of Gröbner basis algorithms is not fully understood for systems
arising from cryptographic algorithms. Although they have been applied suc-
cessfully in cryptanalysis, given the sizes involved in the Fasta system, we do
not consider GB-based attacks a threat to Fasta.

5.3 Attacks based on linear approximations

To assess the feasibility of attacks based on linear approximations against Fasta,
we refer to the discussion in [DEG+18, Section 3.2]. There, the authors of Rasta
derive upper bounds for the correlation of linear approximations after d = 2r
rounds based on the properties of the χ transformation. This is done by estimat-
ing the number of active bits in the input/output of applications of χ, under the
assumption the linear layers are randomly generated. For example, they conclude
that Rasta with block n = 351 and d = 6 rounds is not susceptible to attacks
based on linear approximations.

For Fasta, the transformations in the linear layer are not random, but rather
pseudo-randomly generated among the rotation-based matrices defined in Sec-
tion 3. More importantly however, the non-linear layer in Fasta consists of
five parallel applications of the χ transformation. Given the diffusion properties
that the linear layer is expected to feature, we expect that any linear trail over
two rounds of Fasta will have a correlation of much lower magnitude than for
Rasta (which would consist of six applications of χ, compared to 5× 6 = 30 for
Fasta). Our conclusion is therefore that, as with Rasta, attacks based on linear
approximations are not feasible against the parameters chosen for Fasta.

5.4 Other classical attacks

Differential attacks, higher-order differential attacks, cube attacks, and integral
attacks all try to exploit the structure of a cipher in one way or another. A
differential attack looks for advantageous characteristics present in the structure,
before attempting to find pairs of plaintexts which satisfy these characteristics.
Higher-order attacks and cube attacks exploit the algebraic degree of the output
bits of a primitive, while integral attacks make use of curated sets of plaintexts.
They all have in common a need to evaluate the cryptographic primitive more
than once and with different inputs. With Fasta, the circuit generating a block
of keystream is only used once. Furthermore, the attacker does not have the
freedom to choose different inputs to Fasta’s keystream generation function, as
it is always the secret key. We therefore conclude that these attacks are infeasible
to execute against Fasta.
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6 Homomorphic implementation of FASTA

Software libraries implementing FHE or levelled homomorphic encryption (LHE)
schemes have gone through extensive development over the last years. They
now appear as quite robust, well documented, and user friendly. The libraries
and schemes we have considered during the design of Fasta were: HElib and
PALISADE with their implementations of the BGV scheme; SEAL and PAL-
ISADE with the BFV scheme; TFHE with the torus-based FHE scheme; and
PALISADE’s FHEW scheme. HElib, PALISADE, and SEAL also implement the
CKKS scheme, but as CKKS is an approximate LHE scheme with real numbers
as the plaintext space, it is not suitable for implementing Boolean circuits.

We have designed Fasta to be fast when evaluated homomorphically, while
also being based on a dedicated symmetric cipher for FHE, namely Rasta. In
order to ensure fast evaluation, the parallelism offered by multiple slots in the
FHE scheme is used to pack many bits of the cipher state into one FHE cipher-
text. The TFHE library does not yet support such parallelism, and has therefore
not been a target for the design of Fasta.

Both the BFV and BGV schemes provide ciphertexts with multiple slots, but
BFV needs the number of slots to be a power of 2. Also, the BGVrns scheme
will always have an even number of slots. As we use the χ-transformation in
Fasta’s non-linear layer, this makes BFV and BGVrns less suitable since χ is
only invertible when the cipher state words going through χ have an odd number
of bits. Implementing Fasta (or Rasta for that matter) in BFV using packing
will then have to use dummy slots, i.e. slots in the FHE ciphertext that are not
used, but still need to be accounted for when doing rotations, as discussed below.
A symmetric cipher suitable for the BFV scheme should be designed differently,
and use a set of small S-boxes in a bit-sliced fashion instead of χ as the non-linear
transformation.

As the number of slots in BFV and BGVrns is much higher than 329, typically
in the range 213 to 216 for parameters giving 128-bit security, we will only use the
329 first slots of a ciphertext c∗ = {(c1, c2, . . . , c329, 0, 0, . . . , 0)}, and need to do
cyclic rotations over only these slots. A natural way to rotate c by a positions in
the 329 first slots is to first rotate c by a positions to the right, c∗r = (c∗ >> a),
then by 329 − a positions to the left, c∗l = (c∗ << (329 − a)), and add the two
ciphertexts:

c∗r = {(
329 first slots︷ ︸︸ ︷

0, . . . , 0, c1, c2, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0)}

c∗l = {(
329 first slots︷ ︸︸ ︷

c329−a+1, . . . , c329, 0, . . . , 0, 0, . . . , 0, c1, . . . , c329−a)}

c∗l + c∗r = {(
329 first slots︷ ︸︸ ︷

c329−a+1, . . . , c329, c1, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0, c1, . . . , c329−a)}

This effectively does a cyclic rotation of the first 329 slots, but leaves non-
zero plaintext values in the dummy slots, which need to be zeroed out to prevent
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them from being shifted back in on subsequent rotations. This can be done by
masking, multiplying with a plaintext that is 1 in the 329 first slots and zero
elsewhere. Unfortunately, a plaintext-ciphertext multiplication is only somewhat
cheaper in terms of noise growth than a ciphertext-ciphertext multiplication, so
making a customized rotation in BFV or BGVrns to accommodate for dummy
slots is simply too costly in a practical implementation.

On the other hand, the BGV scheme as implemented in HElib have instances
with an odd number of slots in each ciphertext. We have therefore designed
Fasta to take advantage of these features, and thus enable particularly efficient
homomorphic evaluation with BGV in HElib. The basis for the BGV scheme is
the cyclotomic polynomial Φm, where m is chosen by the user. The parameter
m decides the number of slots, and together with the noise budget in fresh
ciphertexts, a parameter denoted by bits in HElib, also decides the estimated
security level for the instance of BGV. Searching for suitable values of m we
found that m = 30269 gives 329 slots in HElib and a security level of just over
128 bits when bits = 500 (if bits is lower, the security level increases). Hence
we designed Fasta to give 128-bit security in itself, and to be used with the
particular instance of BGV where m = 30269. Running Fasta in HElib with
m = 30269 consumes approximately 260 bits , leaving up to 240 bits more for
further computations in an actual use case.

Implementing Fasta in HElib starts by encrypting the 329-bit key K five
times into five different HElib ciphertexts w∗0 , . . . , w

∗
4 with 329 slots each. Five

copies of w∗i are then made for the feed-forward of the key at the end of Fasta.
The initial rotations are done by setting w∗i = (w∗i << i), before the first affine
layer is executed using only rotations and additions of the five ciphertexts. The
χ-transformation works on each w∗i individually, and is done by making two
copies of w∗i that are rotated by 1 and 2 positions respectively: u∗1 = (w∗i << 1)
and u∗2 = (w∗i << 2). The output of χ is then computed as u∗1 × u∗2 + w∗i + u∗2,
using only a single ciphertext-ciphertext multiplication. The rest of Fasta is
executed homomorphically in the same way, using only rotations, additions and
a single multiplication for each word in the non-linear layer of each round. Finally
the initial copies of w∗i are added to the five ciphertexts in the end to produce a
block of 1645 bits of key stream encrypted under FHE.

6.1 Timings of implementations

We have made both packed and bit-sliced implementations of Fasta and Rasta
in some of the libraries, and timed the execution times. The code is available
at https://github.com/Simula-UiB/Fasta. The packed version of Rasta used
mul when multiplying with random matrices in the linear layer, and the block
size was modified from 351 to 329 to make the block fit exactly in the BGV
ciphertext (we denote this version as Rasta∗ in Table 1). In addition we also
ran 6-round Rasta implementations published at [DGH+21a]. Parameters in the
BFV and BGV schemes used were chosen to give roughly 500 bits in noise budget,
for equal comparison. The timings were done on a MacBook Pro with a 2.3 GHz
Intel Core i5 processor and 16 GB RAM. The results are given in Table 1.
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Table 1: Amortized time (in seconds) to produce one bit of key stream when
executing homomorphic implementations of Rasta and Fasta.
(Rasta∗ denotes the cipher with a 329-bit block.)

Library(Scheme) Cipher FHE time χ time time
encoding lin. trans. total

Implementations TFHE Rasta (6 r.) bit-sliced 0.3640 13.902 14.266
from HElib(BGV) Rasta (6 r.) bit-sliced 3.079 0.510 3.589

[DGH+21a] SEAL(BFV) Rasta (6 r.) bit-sliced 0.6122 0.1918 0.8040
HElib(BGV) Rasta (6 r.) packed 0.0956 1.0083 1.1039

PALISADE (FHEW) Rasta (6 r.) bit-sliced 15.73 1197.8 1213.6
Our own TFHE Rasta (6 r.) bit-sliced 0.2296 11.331 11.56

implementations HElib(BGV) Rasta∗ (6 r.) packed 0.0166 0.2670 0.2836
HElib(BGV) Fasta (6 r.) packed 0.0166 0.0260 0.0427

Unsurprisingly, the packed implementations are faster than the bit-sliced ones
encrypting only a single bit in each ciphertext. The bit-sliced implementations
were all optimized with ”the method of the four russians” in the matrix multi-
plication. In the user manual of PALISADE [PRRC21, Sec. 9.3] it is noted that
both the XOR and AND gates take the same amount of time in that library’s
implementation of FHEW. Hence the very large number of XOR gates in the
matrix multiplication of Rasta explains the extremely high execution time. Note
that the packed implementation from [DGH+21a] uses the 351-bit block size
specified for Rasta, and therefore needs to use masking in its operations. This
explains the faster run times we have for Rasta with 329-bit block.

For the packed versions, we find that Fasta is 25 times faster than Rasta,
and more than 6 times faster than the ”optimized” version of Rasta where the
block size fits the FHE ciphertext. The difference in runtimes for Rasta with
329-bit block and Fasta is entirely due to the linear layer of Fasta having been
designed for fast execution in HElib.

7 Conclusions

The design of symmetric ciphers for use with FHE has so far focused primarily
on minimising multiplicative complexity. However the libraries implementing
various FHE schemes have matured over the last years, with some attractive
implementation features, and are now more robust and user friendly than the
early versions. This motivated us to study the implementation and homomorphic
evaluation of a prominent family of FHE-friendly ciphers, Rasta, on the most
well-known FHE libraries.

We found that the parameters of Rasta make it difficult to efficiently use
the parallelism offered by some of the FHE schemes, namely BGV and BFV.
The reason for this is that these schemes are quite inflexible when it comes to
the number of slots available in a single FHE ciphertext. In the case of BFV
and BGVrns, the number of slots becomes much larger than we need when these
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schemes are instantiated with parameters giving 128-bit security. On the other
hand, for BGV in HElib the number of slots in a single ciphertext is more in
line with the block size of a symmetric cipher, but it is still determined by the
m-parameter and cannot be chosen freely by the user. This led us to propose
Fasta.

Our research showed that when packing the bits of the symmetric cipher
state into single FHE ciphertexts, only two operations are cheap to perform:
additions of full FHE ciphertexts, and cyclic rotations. Multiplications, both be-
tween two ciphertexts and between plaintext and ciphertext, are expensive and
should be kept to a minimum. Moreover we also found that for efficient imple-
mentations, it is important to fit the cipher block exactly into FHE ciphertexts.
Otherwise, excessive slots need to be zeroed out after rotations, which invokes
multiplications with a plaintext mask.

Typical FHE-friendly symmetric designs, focusing primarily on low multi-
plicative complexity, appear to assume bit-sliced implementations of the cipher,
where we only encrypt a single bit into each FHE ciphertext and do not need
to worry about slots. They are indeed easy to implement, but these choices lead
to a high run-time when evaluated homomorphically. As computational com-
plexity is the major bottleneck for FHE it is crucial that implementations can
take advantage of packing features in the main FHE libraries. Our proposal
Fasta demonstrates that by taking into account the features of FHE libraries
and schemes in the design process we may achieve a secure and efficient FHE-
friendly symmetric cipher.

Acknowledgements. We wish to thank Joan Daemen for helpful advice and
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vances in Cryptology – EUROCRYPT 2016, volume 9665 of Lecture Notes
in Computer Science, pages 311–343. Springer Berlin Heidelberg, 2016.

[PAL] PALISADE –An Open-Source Lattice Crypto Software Library. https:

//palisade-crypto.org/.
[PRRC21] Yuriy Polyakov, Kurt Rohloff, Gerard W. Ryan, and Dave Cousins. PAL-

ISADE Lattice Cryptography Library User Manual (v1.11.2), 2021. https:
//eprint.iacr.org/2018/117.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On Data Banks and Privacy
Homomorphisms. Foundations of Secure Computation, Academia Press,
pages 169–179, 1978.

[RDP+96] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers, and
Erik De Win. The cipher SHARK. In Dieter Gollmann, editor, Fast Soft-
ware Encryption, Third International Workshop, Cambridge, UK, Febru-
ary 21-23, 1996, Proceedings, volume 1039 of Lecture Notes in Computer
Science, pages 99–111. Springer, 1996.

[SD18] Ko Stoffelen and Joan Daemen. Column Parity Mixers. IACR Transactions
on Symmetric Cryptology, 2018(1):126–159, Mar. 2018.

[SEA20] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL,
November 2020. Microsoft Research, Redmond, WA.

28



A Matrix structure of rotation-based linear
transformations

To observe and study the structure of rotation-based linear transformation ma-
trices introduced in Section 3.1, we recall the steps for constructing a rotation-
based linear transformation acting on b s-bit words w0, . . . , wb−1.

1. Define a column parity mixer based on a Θ operation using rotations of low
amounts (compared to the word length s; see Figure 3).

2. Apply rotations to the words wi between applications of the column parity
mixer.

3. Iterate applications of column parity mixers with rotations in between, as
much as needed until the entire cipher state is affected.

To describe the structure of (binary) matrices defined as above, it is helpful
to consider rotation-based linear transformations as operations over the module
Rb, where R is the ring F2[X]/(Xs + 1). In this case, each wi can be considered
as a polynomial wi(X) = as−1X

s−1 + . . .+a2X
2 +a1X+1, where aj ∈ F2. Note

that the XOR operation of two words wi, wj corresponds to addition in R, while
the rotation operation wi << r corresponds to the multiplication of wi(X) by
Xr.

Then let w = (w0, . . . , wb−1) ∈ Rb be the input of a rotation-based linear
transformation L defined as above. The application of a column parity mixer
based on a Θ operation using rotations/XORs (step 1) corresponds to:

(i) (w0, . . . , wb−1) 7→ (w0 + . . .+ wb−1) = w ∈ R
(ii) w 7→ w · pΘ, where pΘ ∈ R is a polynomial defined by the rotations and

XOR operations in Θ.
(iii) w · pΘ 7→ (w0 + w · pΘ, . . . , wb−1 + w · pΘ) ∈ Rb.

Thus application of a column parity mixer operation on w = (w0, . . . , wb−1) ∈
Rb can be represented as a matrix over R given by

PΘ =


pΘ + 1 pΘ . . . pΘ
pΘ pΘ + 1 . . . pΘ
. . . . . . . . . . . .
pΘ pΘ . . . pΘ + 1


Likewise, the application of rotations << ri to the individual words wi of

the state (step 2) can be represented as a matrix

Rv =


Xr0 0 . . . 0

0 Xr1 . . . 0
. . . . . . . . . . . .
0 0 . . . Xrb−1

 ,

where v = (r0, r1, . . . , rb−1). These two operations are then iterated n times,
using different Θi and word rotations vi = (r0, . . . rb−1) (step 3). It follows that
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the matrix M representing a rotation-based linear transformation over Rb can
be defined as

M = PΘ1 ·Rv1 · PΘ2 ·Rv2 · . . . ·Rvn−1 · PΘn

Every entry of M is a univariate polynomial of degree at most s− 1. Note that
the multiplication of wi ∈ R by a polynomial p ∈ R, when considered as a F2-
linear transformation, can be represented as a binary circulant matrix. It follows
that, when considered as a F2-linear transformation acting on the state block
w ∈ (F2)bs, the bs×bs matrix M realising a rotation-based linear transformation
L, with L(w) = wM , can be decomposed into b2 sub-matrices as described in
Proposition 1.

For example in Fasta, we have b = 5 and s = 329. Moreover, Θ can be
realised by multiplication by the polynomial pΘ = Xr3 +Xr2 +Xr1 + 1 (where
1 ≤ r1 ≤ 3, 4 ≤ r2 ≤ 6, and 7 ≤ r3 ≤ 9; refer to Figure 6), and the word rotation
operations Rv are defined as given in Figure 7. Four iterations are required to
generate the matrix M . As discussed in Section 4, these choices ensure that the
matrices PΘ, Rv, and as consequence M , are invertible. An example of such a
matrix M generated following this method can be seen in Figure 9a. Each of the
25 blocks is a 329× 329 circulant matrix over F2.

For the purpose of comparison, we also include the matrix for a linear trans-
formation realising five parallel calls to Rasta with same parameters (Figure 9b).
In this case, the resulting linear transformation can be represented as a block
diagonal matrix, with random 329 × 329 sub-matrices in the diagonal, and all
zero matrices elsewhere.

(a) Matrix realising a rotation-based lin-
ear transformation with 5 words of length
329.

(b) Matrix for linear layer tying five par-
allel applications of Rasta together.

Fig. 9: Structure of matrices for Fasta and five parallel calls to Rasta. Black
pixels indicate 1-bits and blue pixels are 0-bits.
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B Mapping αj to rotation values and round constants

Let r
(t)
1 , r

(t)
2 and r

(t)
3 be the rotation amounts used in Θ in iteration t, for

1 ≤ t ≤ 4. There are then 24 rotation amounts that need to be decided from αj .

The r
(t)
1 and r

(t)
2 can take 3 values each, and r

(t)
3 is computed from these, for a

total of nine different instances of Θ. Each of the four i∗, j∗, l∗ can take 5, 19,
and 62 values each, respectively. There are therefore T = 38 ·54 ·194 ·624 ≈ 262.78

different instances in the class L of rotation-based linear transformations we have
defined.

We split αj into αj = (αrj , α
c
j), where αrj is 63 bits and αcj is 1645 bits. The

24 rotation values are computed from αrj , as in Algorithm 1. Apart from the r
(t)
3

values, what we are essentially doing is first computing B = αrj mod T , and
then writing B in a mixed base: the eight least significant digits in base 3, the
next four digits in base 5, the next four in base 19, and the four most significant

digits in base 62. Keeping in mind that r
(t)
1 and r

(t)
2 will have 1 and 4 added to

them, the rotation amounts can then be read out as the digits of B, written in
this mixed base:

B = k3 · 623 · 194 · 54 · 38 + k2 · 622 · 194 · 54 · 38 + . . .

+r
(2)
2 · 35 + r

(1)
2 · 34 + r

(4)
1 · 33 + r

(3)
1 · 32 + r

(2)
1 · 3 + r

(1)
1 .

After applying the linear transformation, the 1645-bit value αcj is XORed onto
the state to produce the affine layer output.
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Algorithm 1: Determining rotation amounts from αrj .

Result: Rotation amounts for linear transformation are fixed.
B ← αrj mod T
for t = 1 to 4 do
r
(t)
1 ← 1 + (B mod 3)
B ← bB/3c

end for
for t = 1 to 4 do
r
(t)
2 ← 4 + (B mod 3)

r
(t)
3 ← 7 + (2r

(t)
1 + r

(t)
2 + 1 mod 3)

B ← bB/3c
end for
for t = 1 to 4 do
it ← B mod 5
B ← bB/5c

end for
for t = 1 to 4 do
jt ← B mod 19
B ← bB/19c

end for
for t = 1 to 4 do
lt ← B mod 62
B ← bB/62c

end for
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C Standard linearization-based attack against FASTA

We examine the question of the number of monomials actually occurring in an
algebraic description of Fasta, following a similar discussion from [DEG+18].

LetM be the matrix over F2 that realises one of Fasta’s rotation-based linear
transformations, let x = (x0, . . . , x1644) be the input state and A(x) = M ·x+ c.
From the description of χ in the non-linear layer S, one round S ◦A(x) of Fasta
can be described by the following equations (from [DEG+18]):

S ◦A(x)i =

k−1∑
j=0

k−1∑
l=j+1

aij,l · xj · xl +

k−1∑
j=0

bij · xj + gi, (3)

where i denotes the polynomial representing the i-th bit in the cipher block after
S ◦ A(x). As the word size is 329, i + 1 and i + 2 “wrap around”, i.e. they are
calculated as i−328 and i−327 when i mod 329 = 328 and 327. The coefficients
of S ◦A(x)i are given by

aij,l = Mi+1,j ·Mi+2,l +Mi+2,j ·Mi+1,l,

bij = Mi,j + ci+2 ·Mi+1,j + (1 + ci+1) ·Mi+2,j ,

gi = ci + ci+2 + ci+1 · ci+2.

We can see that the term containing the coefficient aij,l contains the only multi-
plication, meaning it is the only place where the algebraic degree may increase.
We only need aij,l = 1 for at least one i for the corresponding monomial to be

present in the output. We first find the probability that each coefficient aij,l is 0.
From the above equations we get

P [aij,l = 0] = P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 0]+P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 1]
(4)

In Section 5.1, we found when two entries in M are equal with certainty, due to
the rotational structure in M , and when they are considered independent. Put
into context of Equation 4, we have that two entries Mi+1,j and Mi+2,l are equal
when

l =

{
j + 1 for j 6= 328 mod 329

j − 328 for j = 328 mod 329

Otherwise, Mi+1,j and Mi+2,l are considered as independent in our analysis.

The equal entries are split into two cases, depending on whether j or l are
crossing from one sub matrix to another or not, i.e., to handle “wrap-around”
of sub-matrices.

We expect each entry in M to be present with probability one half, following
the discussion in Section 5.1. This allows us to calculate P [aij,l = 0]. We begin
with the case where the two entries from M are equal, i.e, in general when
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l = j + 1:

P [aij,j+1 = 0] = P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 0]

+ P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 1]

=
1

2
· 3

4
+

1

2
· 1

4
=

1

2
.

For all independent entries, we get instead:

P [aij,l = 0] =

(
3

4

)2

+

(
1

4

)2

=
5

8
.

This last result is the same as expected for any two entries in a random matrix.
It follows that the probability that all the coefficients for the product xj · xl are
equal to 0 can be estimated as

P [aij,l = 0, ∀i = 0, . . . , 328] ≤
(

5

8

)329

.

In other words, at least one of these coefficients are 1 with probability at least

1−
(
5
8

)329
.

If we consider the monomials of degree 2, it follows that we can expect an
average number of monomials in each word wi of degree 2 to be at least(

329

2

)
·

(
1−

(
5

8

)329
)
'
(

329

2

)
.

We can use the same reasoning we used for monomials of degree 1, resulting
in an expected number of these monomials to be 329 · (1 − 2−329) ≈ 329. This
argument can also be applied for monomials of higher degrees. We therefore
conclude that the expected number of monomials appearing in the algebraic
equations linking the unknowns k0, . . . , k328 to the keystream bits is approxi-
mated by U , the maximum possible number of monomials.
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