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Abstract— Huge amounts of data are collected every mil-
lisecond all around the world. This ranges from images and
videos to an increasing amount of sensor data. Thus, it gets
difficult for humans to decide on the most important features
anymore. But reducing the feature vector is an important and
necessary task to achieve higher precision in classification tasks.
Detecting anomalies and classifying data points is crucial for
a variety of objectives in many domains. Therefore, this work
focuses on feature selection for binary decision problems (e.g.
anomaly detection, binary classification). We propose a novel
graph-based feature selection filter, which takes into account both
the importance and correlation of features at the same time.
The graph-based feature selection filter recommends a subset
by applying a rating function onto the maximal cliques of the
graph. The evaluation is based on a comparison of the accuracy
of multiple machine learning algorithms and datasets between
different baseline feature selection approaches and the proposed
approach. Results show that the proposed approach delivers the
highest accuracy in about 69% of the cases compared to existing
approaches, while reducing the number of features.

Index Terms—{feature selection; filter method; machine learn-
ing

I. INTRODUCTION

Classification problems are ubiquitous in many different do-
mains such as medicine[1], anomaly detection [2], or resource
management [3]. In practice, it is often difficult to choose a
combination of features to describe an underlying problem
in such a way that classifiers deliver highly accurate results.
Therefore, in many cases all features that appear relevant are
taken into account. This can lead to the existence of irrelevant
or redundant features. Irrelevant features are by definition
not related with the target concept but affect the classification
process [4] and redundant features have intrinsically equal
meaning, making it difficult to deliver high accurate results for
a given classification algorithm. If datasets contain irrelevant
or redundant features, performance, training time, precision
and memory usage may be affected and over-fitting can be
caused. For these reasons, it is important to eliminate irrelevant
or redundant features. Such a task is called feature selection.
More precisely feature selection is the process of selecting
a subset of features with significant impact on a prediction
result. As the number of all possible combinations of features
within a subset is exponentially high, it is obvious that brute
force is not an appropriate approach to solve this problem.

Furthermore, feature selection is suited for supervised [5]
or unsupervised [6] learning. In this work, we consider fea-
ture selection for supervised learning, which can be further
distinguished into three main categories [7], [8]: Wrapper
methods, filter methods and embedded models. Wrapper meth-
ods employ a classification algorithm results to determine
suitable features with most accurate prediction results [7]. Here
in many cases, the classification algorithm is similar to the
aimed classifier. Consequently, results are often optimized for
this particular classifier. Filter methods examine a dataset’s
intrinsic properties prior to the classification [9]. This means
feature selection and classifiers are separated and therefore,
feature selection bias is reduced towards specific classification
algorithms. Embedded models combine wrapper and filter
methods. They interact with a classifier but also filter and are
therefore less complex to compute than wrapper methods [4].

In summary, filter methods can be applied within a wide
range of different fields and problem spaces, while wrapper
methods focus on an individual machine learning approach.
In this paper, we present a framework for developing filter
methods for feature selection on binary classification problems
based on graph structures. The key idea is to represent the
importance of individual features as well as the redundancy
of pair-wise features within a single graph structure. Based
on this data structure, we provide a graph-based filtering ap-
proach, selecting a subset of features. The proposed approach
combines feature selection and graph theory and thus enables
a new perspective on feature selection in general.

Our paper makes the following key contributions:

o Definition of a generic graph-based feature selection
framework.

o Description of a reference implementation and hyperpa-
rameter selection.

o Evaluation on four different datasets using four different
classification approaches to validate the accuracy of
the recommended feature sets. Furthermore, we evalu-
ate against two reference approaches from the machine
learning framework WEKA [10] and additionally brute
forced optimal feature sets.

The rest of the paper is organized as follows. Section II
provides information about related work. Afterwards, we
continue to present our generic graph-based feature selection



framework in Section III. Section IV provides information
about the specific configurations for the previously introduced
framework which is evaluated and discussed in Section V.
Finally, Section VI concludes this paper.

II. RELATED WORK

The graph-based feature selection approach, discussed
within this work assumes labeled training data for any binary
classification problem. As described above, we focus on filter
based methods also within the related work. In the past, several
different filter based feature selection approaches were pro-
posed. We highlight some within this section, mostly related
and relevant for this work. For further reading, we recommend
to look at the extensive review of Tang et al. [4].

In the area of statistical subset selection for binary decision
problems, Christ et al. introduced FRESH, an algorithm for
time series classification and regression including feature
selection [11]. The significance of each feature vector for
classification is individually determined. This results in a
vector of p-values of the Kolmogorov-Smirnov test (KS-
test) [12], which is evaluated on basis of the Benjamini-
Yekutieli procedure [13] to decide on the most important
features.

Besides the KS-test, Biesiada and Duch [14] showed the
applicability to combine the KS-test with correlation mea-
surements. Thus, the correlation is used to describe the
symmetrical uncertainty as a first stage filter, followed by
a KS-test filter to remove redundancy and to determine the
relevance of features. Our method also combines the positive
properties of correlation and statistical relevance tests like KS-
test, while extending the technique to use graph-based filtering
as a single filtering step. Nie et al. [15] proposed a graph-
based feature selection technique which provides an automatic
solution to generate a redundancy matrix. They also showed
the applicability of graph-based methods in the field of feature
selection. Thus, we aim to combine those methods.

Furthermore, feature selection approaches are nowadays
highly relevant for e.g. the area of AutoML, where automatic
optimization of machine learning algorithms are performed
and feature selection is a relevant part of it [16]-[18].
Therefore, we focus on applied techniques from the machine
learning framework WEKA [10], which is used within the
WEKA-AutoML [16] and includes widely used feature select
techniques, which are used as baseline methods to evaluate
our proposed approach against.

ITI. GRAPH-BASED FEATURE FILTERING

The central idea of the proposed approach is to choose
a representation that allows to combine the importance of
individual features along with the redundancy of feature pairs.
As shown in Figure 1, the algorithm is organized in the three
phases: Graph Building, Graph Filtering and Graph Selection.
Furthermore, Figure 2 depicts an example of the procedure
described in the following paragraph.

A. Graph Building

During the Graph Building phase, a complete weighted
undirected graph G = (V, F) is created, where V' is the set
of vertices and E denotes the set of edges. Here, each vertex
v € V represents a feature along with its importance for an
arbitrary binary classification problem which is defined by a
weighting function g : V' — R. In addition, eachedge e € E
connects two vertices {v;,v;} , where v; # v;,v;,v; € V.
Here, we define an edge weight, representing the redundancy
of the connected feature vertices, by a similarity function
s:E — R

B. Graph Filtering

Throughout the Graph Filtering a function fg = (fro fv)
reduces the graph size by applying a filter criteria to the edges
fE and vertices fiyr of G. This separation allows independent
removal of nodes that are less important or removal of edges
that connect redundant nodes.

C. Graph Selection

The final Graph Selection consists of three steps. First, the
Bron-Kerbosch-Algorithm is applied to find all cliques within
the filtered graph. Thereby, a clique is defined as a complete
subgraph C' C G [19]. Second, a set C’ of maximal cliques
C7*** is determined, whereby a maximal clique is a complete
subgraph C; C G which is not a proper subset of another
complete subgraph C; C G [19].

Third, whenever there is |C***| > 1, where C"** € (',
a rating function r : C7"** — R, VC™** ¢ C' is applied
and the maximal clique with the highest score is selected.

IV. REFERENCE IMPLEMENTATION AND
HYPERPARAMETER CONFIGURATIONS

Next, the definition and functionality of the graph-based
feature selection framework is explained.

A. Graph Building

Here, an optimized version [20], [21] of the KS-distance
that returns the maximum distance between the cumulative
distributions for each class was chosen for the weighting
function g.

Furthermore, the Pearson correlation

_ cov(vy, vs) 0

Ov,0vy

is used as redundancy function s. For a pair of vertices vy, vy €
V' the covariance is determined and divided by the product of
their standard deviations. This means that the resulting Pearson
coefficient p € R lies in the interval of [—1, 1]. Here, zero
indicates that the features represented by v1, vy are not related
to each other. The larger the absolute value of the correlation,
the higher the correlation between those two features. Thus, we
assume that a Pearson coefficient close to zero is an indicator
for good combinations of features or contrary a measurement
for the redundancy of features.
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Fig. 2. Shows an example of a graph-based feature selection life cycle (see Figure 1). Here, a shows the dataset followed by the composite graph after the
Graph Building phase (b). Figures c and d depict the node and edge filter. In this example only one maximal clique is found (e).

B. Graph Filtering

As stated in Section III-B the filter functions fr and fy
have to be defined as parameters.

One possibility is to evaluate the chosen parameters on a
part of the dataset, the validation dataset, but this data needs
to be collected first and held back for validation. This comes
with the cost of a bias due to the fact that the classification
algorithm influences hyperparameters to deliver better results
and therefore leads to a different set of hyperparameters for
each application. Therefore, a lightweight alternative in form
of a heuristic was introduced. The heuristic filters the vertices
of the graph with the resulting computational complexity as a
goal. Therefore, all vertices with an assigned KS-distance
k < 0.1 are filtered out in order to only retrieve features
with meaningful additions to the binary classification problem.
Afterwards, the heuristic ensures a limit of 19 vertices with
the highest KS-distances. This limit ensures fast computation
as well as a remaining set of meaningful features regarding to
the corresponding classification problem.

In order to filter the edges, which correspond to the
correlation between features, a second heuristic has been
implemented. This heuristic sorts the edge set according to
their corresponding correlation and rejects the 10% with
the lowest correlation value. In addition to that, only edges
with correlation values in [—0.9,0.9] remain in the edge set,
ensuring all edges representing highly correlating features are
removed.

Thus, the heuristic is able to reduce the size of the graph

by applying at least a proportional reduction. If necessary, the
heuristic is capable of reducing the size of the graph further by
checking for very high correlating features. In a dataset, where
a lot of features correlate, this can lead to a strong reduction.

C. Graph Selection

After reducing the graph size during the Graph Filtering, a
set of maximal cliques C, ;. is calculated. Throughout Graph
Selection, the rating function r is applied to select the most
valuable maximal clique ¢pqr € Cinge and thus the most
valuable set of features.

Figure 4 depicts the Pearson correlation, KS-distance and
accuracy for the classifier Naive Bayes on the shuttle dataset.
Here, the coloration corresponds to the precision, whereby red
indicated more accuracy and blue less. It is obvious that both
Pearson correlation as well as KS-distance influence precision,
but also the combination induces higher accurate results.

Since we received similar outcomes for the remaining
datasets and classifiers, we assume that correlation and dis-
tance in general influence the accuracy. Therefore, we choose
the selection function s to be

$(Crmaz) =1—|c|+k, )

where |c’ € [0,1] is the absolute correlation average and
k € [0, 1] the distance average. Values towards 2 indicate more
recommendable results. Finally, the maximal clique ¢ with the
highest value for s(c) is selected.



Fig. 3. gives an example for the Graph Selection. The three graphs are the
return of the Graph Filtering phase. Graph c is not a maximal clique and is
therefore not considered. For s(a) ~ 1.17 while s(b) ~ 1.21 meaning that a
will be the selected maximal clique and therefore the selected set of features
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Fig. 4. Correlation and KS-distance to accuracy for Naive Bayes on Shuttle
data. It can be seen that both correlation and distance influence precision. This
observation is the reason to choose a $(Cmaz) in which both correlation and
distance play a role.

V. EVALUATION

In this section, the evaluation setup, the parameter selection
as well as the results of the evaluation will be discussed.

A. Evaluation Setup

[ Datasets H Feature SelectionH ML algorithms H Evaluation ’

Fig. 5. Flow diagram of evaluation setup.

The evaluation setup is a classic machine learning pipeline
as can be seen in Figure 5. Several datasets will be in-
vestigated, on which our feature selection approach will be
applied in comparison with other approaches. The focus of this
work lies on the feature selection. Thus, neither the machine
learning algorithms nor their parameters have been modified or
optimized. In addition to that, no preprocessing was applied.

The main measurement for the quality of the chosen feature
subset will be the accuracy of the resulting machine learning
models.

In order to achieve meaningful comparison results, several
approaches have been investigated. For each dataset the base-
line contains the anomaly rate of the dataset, the full set of
features as well as the optimal solution (identified through
exhausted search). The anomaly rate of the baseline corre-
sponds to a classifier, which labels every data point as normal,
the full feature set uses all features when evaluating the ML
algorithms. The optimal solution could only be computed on
smaller datasets, where all possible subsets of features were
investigated in terms of their resulting accuracy. For larger
datasets, Monte Carlo methods were used to estimate the
optimal solution. In addition to that, we compare our approach
against two established feature selection methods from the
widely used WEKA machine learning framework, namely the
Information Gain Attribute Ranking and a Correlation-Based
Feature Selection with a Greedy Stepwise Search [22].

For each measurement a 10-fold cross-validation has been
conducted. Therefore, the average accuracy among all runs
has been calculated and an overfitting could be prevented.
Additionally, the number of features within the selected feature
set was measured. The smaller the number of features in the
resulting subset is, the faster machine learning algorithms can
train and predict as their runtime depends on the input data.

B. Datasets

Overall, four datasets from the UCI machine learning repos-
itory have been used, which contain labeled data divided into
two classes using the transformations from the Stonybrook’s
Outlier Detection Datasets [23], [24]. The datasets were cho-
sen with respect to different properties like number of data
points, number of features and complexity of the classification
task. In the following, a short description for each of the
datasets will be given.

1) Glass Identification: This dataset is the result of the
chemical examination of different kinds of glass and contains
data of their chemical ingredients [25]. There are 9 metrics
for 214 data points of which 9 are outliers (4.2%).

2) Wine: This dataset has arisen from the comparison of
chemical components within several wines from 3 different
cultivars from which one is chosen as the outlier. There are
13 metrics for 178 data points of which 10 are outliers (7.7%).
The glass and wine dataset have been chosen to show that the
approach works generally.

3) Shuttle: This dataset contains metrics recorded by a
shuttle. There are 9 metrics for 49097 data points of which
3511 are outliers (7%). Here, we can see how the approaches
behave, when investigating a dataset containing larger sets of
data points.

4) Ionosphere: This dataset contains radar data about the
ionosphere [26]. There are 34 metrics for 351 data points of
which 126 are outliers (36%). By investigating this dataset
more insights on the behavior of the different algorithms can
be gained, when larger sets of metrics are present.



C. ML algorithms

Four machine learning algorithms have been evaluated in
order to receive an accuracy result from a variety of dif-
ferent machine learning approaches. Therefore, Naive Bayes
(NB), K-Nearest-Neighbors (KNN), Support Vector Machines
(SVM) and Logistic Regression (LR) have been chosen, as
they represent some of the major kinds of classification
algorithms. As stated previously, standard implementations of
these algorithms from the WEKA library (version 3.8.3) were
used without further optimization [10].

D. Results

The resulting tables show the number of features (#F) in the
resulting feature subset together with the accuracy (Acc) for
the different machine learning algorithms. For each accuracy
value, the Root Mean Squared Error (RMSE) is given as well,
arising from the 10-fold cross validation. In addition to that,
for each ML algorithm the best accuracy values are marked
boldly in order to show which feature selection algorithm
performed best.

Table I and Table II show the results of the evaluation for
the Glass Identifiaction and the Wine dataset. These datasets
have small sizes of data points and metrics and were chosen in
order to show how the approach compares to other approaches.

It can be seen that the proposed approach outperforms or
performs equivalent on these two datasets for almost all ML
algorithms, the only exception being the LR algorithm applied
to the Wine dataset. Remarkably, the WEKA-based Greedy-
stepwise search failed for the glass dataset as no feature after
the first one could directly add value to the accuracy. Only
considering multiple features at once leads to improvements in
the accuracy for this dataset. Here, the graph-based approach
could outperform the existing approach as it considers all
features at the same time.

Table III visualizes the result for the shuttle dataset. Here,
the optimal solution was marked as it was estimated. This was
needed as the dataset was too large to be fully investigated. The
graph-based approach achieved similar results to the existing
approaches. It was not able to outperform the other approaches
but also achieved high accuracy results while maintaining a
low number of features. It can be noted that no approach for
itself was able to achieve dominant results for this dataset.

The result for the 4th dataset can be seen in Table IV.
Because this dataset had a very large feature vector, there is
a large search space for feature subsets. Hence, the optimal
solution was also estimated using Monte Carlo methods. For
this dataset the proposed approach shows very good results as
it outperforms or performs similarly as the existing approaches
for almost every ML algorithm. In addition to that, the feature
subset utilizes only 12 features which is the smallest value of
all the approaches and favorable.

All experiments were performed on a 2.3 GHz Intel Core i5
processor (7360U) with the computation time of the approach
depicted in Figure 6. Here, the complete approach from
receiving all features until receiving the selected feature subset
has been evaluated. The parameter which limits the maximum
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Fig. 6. Mean Computation times of 10 runs with their standard deviation.

number of vertices in the Node Filtering phase has been
used to evaluate the capability of the approach. As expected,
computation time grows exponentially due to the fact that the
maximal clique problem is NP-hard. However, the approach
is applicable with low computational costs for datasets with
a dimension vector of size 19 or lower without any further
optimizations.

Overall, it could be shown that the proposed approach
delivers strong results, which can oftentimes outperform ex-
isting approaches while reducing the number of features in
the feature subset. For the ML algorithms NB, KNN and
SVM the algorithm performed best in 3 out of 4 datasets,
for the algorithm LR best in 2 out of 4. In summary, the
approach performed best in 11/16 ~ 69% of the examined
cases. This shows that this approach is a valid alternative to
existing approaches. Compared to the results of the complete
feature set, it can be seen that the evaluation supports the
assumption that reducing the feature subset consistently leads
to better results in terms of accuracy. Compared to the optimal
solutions, the graph-based approach achieves almost as high
accuracy as the global optimum, but never less than 2.81% for
all ML algorithms and datasets.

TABLE 1
GLASS DATASET RESULTS
Algorithm #F NB KNN SVM LR
Acc. | RMSE | Acc. | RMSE | Acc. | RMSE | Acc. | RMSE
Baseline 95.79
All-Features 9 96.26 | 0.19 97.20 | 0.17 95.79 | 0.21 98.13 | 0.13
Optimal div. | 98.13]0.14 99.07 | 0.10 95.79 | 0.21 99.53 | 0.08
Weka-Ranker 3 87.85 ] 0.30 96.26 | 0.19 95.79 | 0.21 95.33]0.17
Weka-Greed 1 88.32 0.21 95.79 | 0.18 95.79 | 0.21 95.79 | 0.17
Graph-Based 7 96.26 | 0.19 98.13 | 0.14 95.79 | 0.21 98.60 | 0.10
TABLE II
WINE DATASET RESULTS
Algorithm #F NB KNN SVM LR
Acc. | RMSE | Acc. | RMSE | Acc. | RMSE | Acc. | RMSE
Baseline 66.85
All-Features 13 95.51 | 0.17 97.75 | 0.15 96.63 | 0.18 97.19 | 0.16
Optimal div. | 99.44]0.10 98.88 | 0.11 98.31 | 0.13 100.00 | 0.00
Weka-Ranker | 13 95.51 ] 0.17 97.75 | 0.15 96.63 | 0.18 97.19 | 0.16
Weka-Greed 10 97.75 | 0.14 97.19 | 0.17 95.51 | 0.21 98.31 | 0.13
Graph-Based 9 99.44 | 0.09 97.75 | 0.15 96.63 | 0.18 97.19 | 0.16




TABLE III
SHUTTLE DATASET RESULTS

Algorithm #F NB KNN SVM LR
Acc. | RMSE | Acc. | RMSE | Acc. | RMSE | Acc. | RMSE
Baseline 92.849
All-Features 9 99.295 | 0.08 | 99.943 | 0.02 | 99.603 | 0.06 | 99.648 | 0.05
Optimal** div. | 99.666 | 0.06 | 99.945 | 0.02 | 99.631 | 0.06 | 99.648 | 0.05
Weka-Ranker | 9 99.295 [ 0.08 | 99.943 | 0.02 | 99.603 [ 0.06 | 99.648 | 0.06
Weka-Greed 2 99.540 | 0.07 | 99.884 | 0.03 | 99.631 | 0.06 | 99.627 | 0.07
Graph-Based 5 99.401 | 0.07 | 99.845 | 0.04 | 99.605 | 0.06 | 99.648 | 0.06
TABLE IV
IONOSPHERE DATASET RESULTS
Algorithm #F NB KNN SVM LR
Acc. | RMSE | Acc. | RMSE | Acc. | RMSE | Acc. | RMSE
Baseline 64.10
All-Features 34 82.62 | 0.40 87.75 | 0.35 86.61 | 0.37 87.18 | 0.32
Optimal** div. 92.59 | 0.27 92.88 | 0.27 90.03 | 0.32 90.02 | 0.30
Weka-Ranker | 33 82.62 ] 0.40 87.75 1 0.35 86.61 | 0.37 87.18 [ 0.32
Weka-Greed 14 91.45 | 0.27 90.31 | 0.31 87.75 | 0.35 89.17 | 0.29
Graph-Based 12 91.45 | 0.27 90.60 | 0.31 87.75 | 0.35 88.89 | 0.30

VI. CONCLUSION

We proposed a novel generic graph-based feature selection
filtering method for binary classification problems, which com-
bines importance- and redundancy evaluations with maximal
clique search in order to find a suitable subset of features.
Based on the defined generic approach, we showed a refer-
ence implementation of all relevant parts including Pearson
correlation and KS-distances as statistical functions in order
to build the weighted graph. Furthermore, we evaluated the
given method against open source available feature selection
techniques from the WEKA machine learning framework
and exhausted search to find the optimal solution on several
different datasets. The results show that the proposed approach
achieves high accuracy, while reducing the number of features
on all given datasets. Compared to related methods, the graph-
based feature selection outperforms on many datasets or shows
similar qualitative results using less number of features. All
in all, we showed the applicability of the graph-based filtering
framework for feature selection.

As future work, we like to concentrate on unsupervised
threshold identification for the graph-based filtering and the
usage of further statistical information to enlarge the infor-
mation diversity of the graph structure. Additionally, a greedy
based implementations for finding maximal weighted cliques
may avoid the problem of NP-complete runtime. Thus, the
given approach can be applied to big data. Ongoing work are
also an extension of the evaluation in both further datasets
and related methods to provide practical guidance of selecting
suitable feature selection methods in applied domains.
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