
Programmable Subsystems:
A Traffic Shaping & Packet Prioritizing Case Study

P. Halvorsen1,2, Ø.Y. Sunde1, A. Petlund1 and C. Griwodz1,2

1Department of Informatics, University of Oslo, Norway2Simula Research Lab., Norway
e-mail:{paalh, oysteisu, andreape, griff}@ifi.uio.no

Abstract

Due to a faster speed increase of networks than processors, we have today a trend towards the distribution of
functionality and workload for network processing on several processing units. For this purpose, network proces-
sors are being developed which are special processor architectures aimed for demanding networking tasks such
as backbone routing and switching. In this paper, we investigate the possibility of improving the scalability of
intermediate nodes by offloading the packet processing workload on the host, and in particular, we present a traffic
shaper and packet prioritizer implemented on the Intel IXP2400.

Keywords

IXP2400, workload distribution, intermediate nodes

1 Introduction

Since its beginning as an experimental network, the Internet has had a huge development. Espe-
cially in the last ten or fifteen years, it has become a common property, and a variety of services
is now available to the public. With the emergence of modern applications, like high rate, time
dependent media-on-demand and latency restricted online games, we must support a large va-
riety of traffic classes and face an increasing need for packet processing power. However, we
now see that CPU speed development does not keep pace with Moore’s law and the network
bandwidth increases faster (Comer, 2004), i.e., the data rates achievable on modern network
links are larger than what a state of the art processor can manage.

Network processing units (NPUs) are special processor architectures aimed for demanding net-
working tasks such as backbone routing and switching. A typical NPU has several small, sym-
metric processing units working concurrently. The parallel structure of the packet processing
enables the tasks to be performed in a pipeline, with each functional unit performing a special
task. In this case, since the communication services can be offloaded to a separate device, the
bottleneck of single CPU processing where processing capacity has to be scheduled between
various tasks on the host can be removed with respect to packet processing.

Companies such as Agere, IBM and Intel are manufacturing NPUs for different platforms and
purposes. All these are more or less based on the same offloading ideas, but their implemen-
tations vary greatly. As the NPUs come with a large amount of resources, we are currently
investigating how to improve the scalability of intermediate nodes in which the NPU offloads
the host with operations ranging from low level packet processing to application specific pro-
cessing (Hvamstad et al., 2005). In this paper, we evaluate an NPU based on Intel IXP2400
in general, i.e., with respect to its capability to offload a host machine, and we describe a case

Figure 1: IXP2400 block diagram (Intel Corporation, 2004)

study of how traffic shaping and packet prioritizing can be implemented using NPUs. The ex-
periments using our prototype show that the IXP2400 can offload networking tasks from the
host and that shaping and prioritizing can be efficiently performed on the network card.

The rest of this paper is organized as follows. Section 2 gives a small overview of examples
on related work with respect to network processors, and in section 3, we describe and evaluate
the Radisys ENP2611 IXP2400 NPU. Then, section 4 presents and gives an evaluation of our
implementation of the traffic shaper and packet prioritizer. Finally, we give a conclusion and
directions for future work in section 5.

2 Related Work

On-board network processing units have existed for some time with the initial goal of moving
the networking operations that account for most CPU time from software to hardware. Most
existing work on network processors concentrates on traditional networking operations like
routing (Kalin and Peterson, 2001; Spalink et al., 2001) andactive networking (Kind et al.,
2003), while only a few approaches have been proposed to additionally perform application
specific operations for which the modern NPUs have resources. One example is the booster
boxes from IBM (Bauer et al., 2002) which try to give network support to massive multi-player
on-line games by combining high-level game specific logic and low-level network awareness
in a single network-based computation platform. Another example is the NPU-based media
scheduler (Krishnamurthy et al., 2003) where a media streamcan go through the system without
involving the host CPU.

Thus, distribution of functionality to NPUs is becoming more common, but the few existing
examples have used old hardware. However, as the new generation of NPUs like the IXP2400
have more resources, one can offload more functionality to the network processor. In our work,
we therefore look at how to scale intermediate nodes better using NPUs where the NPU addi-
tionally perform application specific operations.

3 Intel IXP2400

The IXP2400 chipset (Intel Corporation, 2004) is a second generation, highly programmable
NPU and is designed to handle a wide range of access, edge and core applications. The major

IXP2400IXP2400

receive (RX) block

microengines

application block(s)

XScale application

XScale

transmit (TX) block

to host

Figure 2: Block layout

functional blocks of the IXP2400 chipset are shown in figure 1. The basic features include
an 600 MHz XScale core running Linux, eight 600 MHz special packet processors called mi-
croengines (µEngines), several types of memory and different controllers and busses. With
respect to the different CPUs, the XScale is typically used for the control plane (slow path)
while µEngines perform general packet processing in the data plane(fast path). The three most
important memory types are used for different purposes according to access time and bus band-
width, i.e., 256 MB SDRAM for packet store, 8 MB SRAM for meta-data, tables and stack
manipulation, and 16 MB scratchpad (on-chip) for synchronization and inter-process commu-
nication among different processing units. Moreover, the physical interfaces are customizable
and can be chosen by the manufacturer of the device on which the IXP chipset is integrated.
The number of network ports and the network port type are alsocustomizable.

Figure 2 shows a typical application setup. The gray boxes are components included in the
SDK and the application programmer can do whatever he wants in between. The receive (RX)
microblock receives a data packet from a ports, and passes a reference to the data packet on
a scratch ring1. An application onµEngines or XScale can dequeue the reference, find and
process the data, and when the packet is ready for transmission, a buffer handle is put on a
scratch ring read by the transmit (TX) block.

3.1 Experiments

To test the general performance of the IXP2400, we have performed several tests on a Radisys
ENP2611 network card, which uses the IXP2400 chipset. Our first test is an IP header switch
application to see the forwarding latency of the NPU compared to a Pentium4 3 GHz box2

running Suse Linux 9.3 (kernel 2.6.11). Figure 3(a) shows the round trip times of packets in
a point-to-point network using 1) the IXPµEngines only, 2) the IXPµEngines and XScale, 3)
the host kernel and 4) a user-space process on the host. Data was collected usingtcpdump. The
results show that, when using the low-levelµEngines, the system has a 11-12% improvement,
which means that the IXP2400 is an efficient means to distribute functionality and perform
packet processing operations at a low level.

1A scratch ring is a hardware assisted ring with atomic operations that is used for interprocess communication.
2Note that the host CPU hasfivetimes the clock frequency compared to the NPU.

 0

 50

 100

 150

 200

 250

1497 Bytes98 Bytes

P
ro

ce
ss

in
g

tim
e

(m
ic

ro
se

co
nd

s)

Packet size

Host-User mode
Host-iptables
IXP-XScale

IXP-Microengines

(a) Average time for IP header switching

 0

 20

 40

 60

 80

 100

 120

 140

 160

SysUserReal

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Average load times

No extraordinary load
User mode IP header switch

Iptables IP header switch
IXP IP header switch

(b) Time spent on atar process.

Figure 3: General offloading effects using an NPU

Furthermore, to show the effect of offloading, we performed aCPU intensive task (tar -z,
i.e., tar and gzip, on an 870 MB file) on the host concurrently with the IP header switching
application running on either the host or the NPU. Figure 3(b) shows the average time to perform
thetar operation with respect to the used data path. As one can see, the consumed time is
reduced (by approximately 8-9%) when our low rate network traffic is offloaded to the IXP
card, and the packet forwarding time also similarly increases when performing the networking
operations on the host.

3.2 Discussion

Offloading network functionality toµEngines will, in other words, not only free host resources,
but also improve the processing and forwarding speed compared to what the host would be able
to handle. Additionally, the offloading effect shown above is marginal as the IP header switch
application is far less resource demanding compared to several existing Internet applications to-
day like HTTP video streaming. Thus, with the emergence of high rate, low latency applications
the importance of workload distribution will increase.

4 Traffic Shaping and Packet Prioritizing

In the Internet today, several applications require some notion of quality of service (QoS) sup-
port, and it is important to optimize or guarantee performance. To deal with concepts like
classification, queue disciplines, enforcing policies, congestion management, and fairness, both
traffic shaping and packet prioritizing are important means. However, while giving better con-
trol of network resources, these operations impose a higherload on the intermediate nodes with
respect to processing. We have therefore implemented a prototype of these mechanisms using
the IXP2400 NPU.

Figure 4 shows an overview of the implemented prototype which for now is targeted for a video
streaming scenario. The shaper and prioritizer is meant to be deployed on an intermediate node
at the ingress to a network with flow control or reserved resources. It is meant to be used with
a layered video codec where each layer has a separate priority. On the XScale, we have a small
component initializing the system and loading the microblocks onto the microengines. All the
real work is performed by theµEngines where we have pipelined the functionality using three

receive (RX)

block

microengines

shaper

XScale application

XScale

transmit (TX)

block

priority

sorting

priority

selector

Figure 4: Prototype blocks for shaping and prioritizing

different microblocks which can use one or moreµEngines according to the resource demands
of a task.

4.1 The Shaping Microblock

To be able to control the volume of traffic being forwarded by and sent from our intermedi-
ate node to the network (bandwidth throttling and rate limiting), a microblock running on the
µEngines debursts the traffic flows, i.e., smoothes the peaks of data transmission.

The implementation is based on token buckets, where each packet stream (initialized using the
RTSP DESCRIBE and SETUP messages and the servers’ responsesto these) is given a token
rate and bucket depth according to the requested or negotiated rate. With respect to packet
dropping in case of bucket underflow (exceeding the assignedrate), we have implemented a
queue head-drop, i.e., packets with the shortest or expireddeadline will be dropped.

To test the shaper we made some basic experiments by streaming data with and without using
the traffic shaper. The stream had an average reservation of 800 Kbps using the shaper, and
the sender sent 1024 bytes packets. For different tests, we used different sending rate fluc-
tuations (switching rate for each 100th packet). Figure 5 shows the results of three different
measurements. Figure 5(a) shows a scenario where the sending bandwidth fluctuates between
1100 Kbps and 800 Kbps. As we can see, the uncontrolled streamtakes more resources than
allowed, and the rate oscillates with large peaks. The shaped stream, however, has a smooth out-
put stream slightly below the 800 Kbps limit and drops packets according to the implemented
dropping scheme. Reducing the lower sending rate (larger fluctuations) makes the average
closer to the allowed rate, but the peaks without a shaper arehigher as the plot in figure 5(b)
indicates. Finally, in figure 5(c), the lower rate is droppedto 600 Mbps, and in this case, we
also have some fluctuations in the shaped output stream due toa build-up of available tokens.
In conclusion, our prototype on the NPU gives a shaped stream, and since it is independent of
the host load, the experienced latency has much smaller variations.

4.2 The Prioritizer and Packet Scheduler Microblocks

A priority-based scheduling of packets is necessary to be able to provide different service classes
and some notion of guarantees. To support this, we have implemented a packet prioritizer on our
NPU. For now, our system handles four different priorities,and in our video streaming context,
the priorities are set in the RTP headers.

In the current implementation of the prototype, the functionality is distributed on twoµEngines.
The first sorts packets according to the priority and places them onto the respective priority
queue. The queues are implemented using the hardware supported scratch rings, so the sorted

 90

 95

 100

 105

 110

 115

 120

 125

 130

 10 20 30 40 50 60

pa
ck

et
s

Time

with shaping
without shaping

(a) 1100 and 800 Kbps

 90

 95

 100

 105

 110

 115

 120

 125

 130

 10 20 30 40 50 60

P
ac

ke
ts

Time

with shaping
without shaping

(b) 1100 and 700 Kbps

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60

P
ac

ke
ts

Time

with shaping
without shaping

(c) 1100 and 600 Kbps

Figure 5: Packet rate with and without the traffic shaper using different rate fluctuations

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
m

ili
se

co
nd

s

Sequence number

(a) IXP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
m

ili
se

co
nd

s

Sequence number

(b) Host, no load

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
m

ili
se

co
nd

s

Sequence number

(c) Host, disk I/O & zip load

Figure 6: Time gap between first priority packets (100 Mbps video stream)

packets are directly available to the nextµEngine running the priority scheduler. The scheduler
then transmits packets based on the priorities and the givenresource assignment, and in the
case where a queue is empty or does not utilize its reserved resources, the scheduler is work-
conserving and proceeds with the next round at an earlier time.

In order to test the prioritizer, we have performed several simple tests on an intermediate node
using a prioritizer either on the NPU or in the Linux kernel onthe host (usingtc qdisc), i.e.,
no fairness. The measurements are performed on an 80 Mbps (layered) video stream. Addition-
ally, we had a background traffic load of 80 Mbps and had several workloads appropriate for a
multimedia proxy, i.e., reading and writing data from disk (file copy operations) and processing
data using the CPU (gzip). Our NPU implementation is unaffected by host workload, but the
host mechanisms battle with the rest of the system for resources and the jitter is thus greatly
affected.

The effects of offloading the prioritizer to an NPU are shown in figures 63, 7 and table 1.
Figure 6 plots an arbitrary window of the 150.000 first priority packets sent, figure 7 and ta-
ble 1 show the average time gap between packets and the respective variance. While the jitter
(measured as the time gap between packets) of the first priority packets using the NPU-based
prioritizer is usually small (see figure 6(a)), the host implementations show much more jitter.
Figure 6(b) shows the system with no extra workload where thejitter and the variation are
larger than on the NPU. When we additionally add a light web-cache or VoD like workload on
the host the problems further increase (see figure 6(c)). In conclusion, the NPU implementation
has by far the lowest variance (shown by the standard deviation in table 1 and the plots), and it
is independent of the varying host workload.

3The clear horizontal lines in the figure are due to the clock granularity. The other (lower) priority packets have
similar results compared to best-effort traffic.

 0

 0.5

 1

 1.5

 2

400200100400200100

A
ve

ra
ge

 ti
m

e
in

 m
ili

se
co

nd
s

1. priority 2.priority

Host with disk I/O
Host with gzip

Host with gzip and disk I/O
Host with no load

IXP

Figure 7: Average time gap with error bars

IXP host IXP host

load no disk I/O zip disk & zip no disk I/O zip disk & zip

maximum 0.856 43.511 200.008 364.494 123.908 20.390 56.459 829.084 49.370 662.014

minimum 0.000 0.000 0.000 0.004 0.007 0.000 0.003 0.000 0.003 0.003

average 0.320 0.321 0.322 0.328 0.321 0.129 0.139 0.159 0.154 0.154

median 0.351 0.349 0.348 0.348 0.348 0.088 0.089 0.174 0.174 0.174

stdev 0.085 0.189 0.859 1.145 0.652 0.071 0.153 1.552 0.427 1.494

100 Mbps video stream 400 Mbps video stream

Table 1: Time gap statistics between first priority packets (two selected tests)

4.3 Discussion

As we can see from the tests, the NPU has no problems of performing the shaping and pri-
oritizing in an efficient manner. The advantage of using the NPU to perform these operations
is that the application specific evaluations of each packet can be executed in a network-aware
environment without the need to move the packet up to the application itself running in user
space on the host. Thus, we save a lot of data transfers, interrupts and context switches which
greatly influence the performance and the experienced latencies. Our prototype shows that we
can achieve a shaped, prioritized stream independent of thehost load, i.e., less variations in
latency. This is for example beneficial in the context of proxy caches both forwarding data from
the origin server and servicing clients from the cache’s local storage on the host.

However, with respect to the implementation, there are several future issues. For example, the
operation of dropping packets in the shaper should be performed with respect to both deadlines
and priorities, e.g., dropping a base layer packet in a layered video stream implicitly invalidates
the corresponding enhancement packets. Additionally, thenumber of priority levels is now
restricted to the number of available rings. In total, thereare 16 scratch rings, but these are
shared for the whole system. Our current prototype uses nineof the available scratch rings. To
support more priority levels than we have scratch rings available, a different queuing mechanism
must be implemented. Furthermore, yet another task is to make further experiments to see
how to best utilize the resources on-board (we still have notfully utilized all resources) and
efficiently pipeline the functionality.

5 Conclusion and Future Work

In this paper, we have investigated the possibility of usingan NPU to improve scalability of
intermediate nodes. In general, the evaluation of our prototype shows that offloading network
functionality toµEngines will both free host resources and improve the processing and for-
warding speed compared to what the host would be able to handle. In our case study prototype
performing traffic shaping and packet prioritizing, our tests show that the NPU can efficiently
perform such operations on behalf of the host and that we still have a lot of resources to perform
more (application level) operations.

With respect to ongoing work, we are currently performing more extensive tests and evaluations,
and we are working on several components in the context of servers and intermediate nodes.
These include caching functionality support for proxy caches and a cube architecture for a media
server - both being currently implemented on the IXP2400. Finally, we aim at integrating all of
our components in order to make a scalable, high-performance intermediate node.

References
Bauer, D., Rooney, S. and Scotton, P. (2002), Network infrastructure for massively distributed games,in ‘Proceed-
ings of the Workshop on Network and System Support for Games (NETGAMES)’, pp. 36–43.

Comer, D. E. (2004),Network Systems Design using Network Processors - Intel IXPversion, Prentice-Hall.

Hvamstad, Ø., Griwodz, C. and Halvorsen, P. (2005), Offloading multimedia proxies using network processors,in
‘Proceedings of the International Network Conference (INC)’, pp. 113–120.

Kalin, S. and Peterson, L. (2001), Vera: An extensible router architechture,in ‘Proceedings of the IEEE Conference
on Open Architectures and Network Programming (OPENARCH)’, pp. 3–14.

Kind, A., Pletka, R. and Waldvogel, M. (2003), The role of network processors in active networks,in ‘Proceedings
of the IFIP International Workshop on Active Networks (IWAN)’, pp. 18–29.

Krishnamurthy, R., Schwan, K., West, R. and Rosu, M.-C. (2003), ‘On network coprocessors for scalable, pre-
dictable media services’,IEEE Transactions on Paralell and Distributed Systems, Vol. 14, No. 7, pp. 655–670.

Intel Corporation (2004), ‘Intel IXP2400 network processor datasheet’. URL: ftp://download.intel.com/design/-
network/datashts/30116411.pdf

Spalink, T., Kalin, S., Peterson, L. and Gottlieb, Y. (2001), Building a robust software-based router using network
processors,in ‘Proceedings of the ACM Symposium of Operating Systems Principles (SOSP)’, pp. 216–229.

