Programmable Subsystems:
A Traffic Shaping & Packet Prioritizing Case Study

P. Halvorseh?, @.Y. Sundé, A. Petlund and C. Griwodz?

!Department of Informatics, University of Oslo, NorwadSimula Research Lab., Norway
e-mail: {paalh, oysteisu, andreape, gf@ifi.uio.no

Abstract

Due to a faster speed increase of networks than processerbave today a trend towards the distribution of
functionality and workload for network processing on sav@rocessing units. For this purpose, network proces-
sors are being developed which are special processor ectini¢s aimed for demanding networking tasks such
as backbone routing and switching. In this paper, we ingattithe possibility of improving the scalability of
intermediate nodes by offloading the packet processinglaadion the host, and in particular, we present a traffic
shaper and packet prioritizer implemented on the Intel XXRR

Keywords

IXP2400, workload distribution, intermediate nodes

1 Introduction

Since its beginning as an experimental network, the Intdraghad a huge development. Espe-
cially in the last ten or fifteen years, it has become a commopgaty, and a variety of services
is now available to the public. With the emergence of modeplieations, like high rate, time
dependent media-on-demand and latency restricted ordimeg, we must support a large va-
riety of traffic classes and face an increasing need for igukeessing power. However, we
now see that CPU speed development does not keep pace witte®ltaw and the network
bandwidth increases faster (Comer, 2004), i.e., the d&s echievable on modern network
links are larger than what a state of the art processor caagean

Network processing units (NPUSs) are special processoitaothires aimed for demanding net-
working tasks such as backbone routing and switching. AcgtpilPU has several small, sym-
metric processing units working concurrently. The palataicture of the packet processing
enables the tasks to be performed in a pipeline, with eaattibmal unit performing a special
task. In this case, since the communication services catffloaded to a separate device, the
bottleneck of single CPU processing where processing dgpaas to be scheduled between
various tasks on the host can be removed with respect to paickeessing.

Companies such as Agere, IBM and Intel are manufacturingdNiBudifferent platforms and
purposes. All these are more or less based on the same dfifpiias, but their implemen-
tations vary greatly. As the NPUs come with a large amounesburces, we are currently
investigating how to improve the scalability of intermediaodes in which the NPU offloads
the host with operations ranging from low level packet pssgay to application specific pro-
cessing (Hvamstad et al., 2005). In this paper, we evaluatdRl based on Intel IXP2400
in general, i.e., with respect to its capability to offloadastmachine, and we describe a case

DRAM

Media Switch| |Scratchpad SRAM SRAM
Controller

Fabric (MSF) Memory Controller 0 || Controller 1

r 3 r F 3 F 3 F 3

v v v v v
F Y Fy F 3 r 9 » A -~

v v L 4 4 L 4 v

Hash PCI ME ME

r Intel XScale g ®
- ME ME Intel XScale
unit | |Controlier|| CAP ol <—| OxOl | oxrobF " ox core core
Peripherals
* (XPI)
0x2 0x3 0x13 0x12 Performance

Monitor

ME Cluster 0 ME Cluster 1

Figure 1: IXP2400 block diagram (Intel Corporation, 2004)

study of how traffic shaping and packet prioritizing can b@lemented using NPUs. The ex-
periments using our prototype show that the 1XP2400 canauffieetworking tasks from the
host and that shaping and prioritizing can be efficientlyqgrened on the network card.

The rest of this paper is organized as follows. Section 2sgavemall overview of examples
on related work with respect to network processors, anddtise3, we describe and evaluate
the Radisys ENP2611 IXP2400 NPU. Then, section 4 presedtgiaas an evaluation of our

implementation of the traffic shaper and packet prioritiZenally, we give a conclusion and

directions for future work in section 5.

2 Related Work

On-board network processing units have existed for some with the initial goal of moving
the networking operations that account for most CPU timenfemftware to hardware. Most
existing work on network processors concentrates on tosdit networking operations like
routing (Kalin and Peterson, 2001; Spalink et al., 2001) aaiive networking (Kind et al.,
2003), while only a few approaches have been proposed tdi@ually perform application
specific operations for which the modern NPUs have resourCege example is the booster
boxes from IBM (Bauer et al., 2002) which try to give netwodpport to massive multi-player
on-line games by combining high-level game specific logid kxw-level network awareness
in a single network-based computation platform. Anotheanegle is the NPU-based media
scheduler (Krishnamurthy et al., 2003) where a media steango through the system without
involving the host CPU.

Thus, distribution of functionality to NPUs is becoming raarommon, but the few existing
examples have used old hardware. However, as the new genesdiNPUs like the 1XP2400
have more resources, one can offload more functionalityegmétwork processor. In our work,
we therefore look at how to scale intermediate nodes besiagINPUs where the NPU addi-
tionally perform application specific operations.

3 Intel IXP2400

The 1XP2400 chipset (Intel Corporation, 2004) is a seconuegggion, highly programmable
NPU and is designed to handle a wide range of access, edg@endpplications. The major

to host

XScale v

XScale application

microengines

—7) D om0 (R —

Figure 2: Block layout

functional blocks of the IXP2400 chipset are shown in figureThe basic features include
an 600 MHz XScale core running Linux, eight 600 MHz specialkeh processors called mi-
croengines f(Engines), several types of memory and different contrelird busses. With
respect to the different CPUs, the XScale is typically usadttie control plane (slow path)
while ;Engines perform general packet processing in the data @astgpath). The three most
important memory types are used for different purposesrdoupto access time and bus band-
width, i.e., 256 MB SDRAM for packet store, 8 MB SRAM for medata, tables and stack
manipulation, and 16 MB scratchpad (on-chip) for synchration and inter-process commu-
nication among different processing units. Moreover, thesgcal interfaces are customizable
and can be chosen by the manufacturer of the device on whechXth chipset is integrated.
The number of network ports and the network port type are@lstomizable.

Figure 2 shows a typical application setup. The gray boxesamponents included in the
SDK and the application programmer can do whatever he warkistiveen. The receive (RX)
microblock receives a data packet from a ports, and passefermce to the data packet on

a scratch rin§ An application onEngines or XScale can dequeue the reference, find and
process the data, and when the packet is ready for tranemjssibuffer handle is put on a
scratch ring read by the transmit (TX) block.

3.1 Experiments

To test the general performance of the IXP2400, we have paed several tests on a Radisys
ENP2611 network card, which uses the IXP2400 chipset. Qatrtést is an IP header switch
application to see the forwarding latency of the NPU comgpdcea Pentium4 3 GHz béx
running Suse Linux 9.3 (kernel 2.6.11). Figure 3(a) shovesrtdund trip times of packets in

a point-to-point network using 1) the IXPEngines only, 2) the IXR:Engines and XScale, 3)
the host kernel and 4) a user-space process on the host. Baiteollected usingcpdump The
results show that, when using the low-ley#ingines, the system has a 11-12% improvement,
which means that the IXP2400 is an efficient means to didgilfwnctionality and perform
packet processing operations at a low level.

LA scratch ring is a hardware assisted ring with atomic oparatthat is used for interprocess communication.
°Note that the host CPU héisetimes the clock frequency compared to the NPU.

Average load times
250

Host-User modexsas

160 | No extraordinary loads==zs 1

Host-iptablesessszs .
IXP-XScale m— User mode IP header switc#zasss
200 - IXP-Microengines =iz A 140+ Iptables IP header switcimm—— -

IXP IP header switck::

RS
120t |
150 100 | &

80 | ¢

o5
oo

100 -

%
2%

60| |

XXX
oo
o0

XX
Elapsed time (seconds)

X5
3
5%
%S

KX
5%
5%

00
=
<55

Processing time (microseconds)
o5z
=

50 | 40}

e
0K
095!

X
9%
o0

XXX

20 + ¢
o%%s

o
%

98 Bytes 1497 Bytes 0
Packet size

(a) Average time for IP header switching (b) Time spent on &ar process.

Real User Sys

Figure 3: General offloading effects using an NPU

Furthermore, to show the effect of offloading, we performe@Pd intensive taskt@r -z,
i.e., tar and gzip, on an 870 MB file) on the host concurrentihwhe IP header switching
application running on either the host or the NPU. Figuré@ 8(lows the average time to perform
thet ar operation with respect to the used data path. As one canlseephsumed time is
reduced (by approximately 8-9%) when our low rate netwoalffitr is offloaded to the IXP
card, and the packet forwarding time also similarly incesashen performing the networking
operations on the host.

3.2 Discussion

Offloading network functionality taEngines will, in other words, not only free host resources,
but also improve the processing and forwarding speed cadparwhat the host would be able
to handle. Additionally, the offloading effect shown aboserarginal as the IP header switch
application is far less resource demanding compared toaexeasting Internet applications to-
day like HTTP video streaming. Thus, with the emergencegth hate, low latency applications
the importance of workload distribution will increase.

4 Traffic Shaping and Packet Prioritizing

In the Internet today, several applications require sonti®nof quality of service (QoS) sup-
port, and it is important to optimize or guarantee perforoganTo deal with concepts like
classification, queue disciplines, enforcing policiesiggstion management, and fairness, both
traffic shaping and packet prioritizing are important meatswever, while giving better con-
trol of network resources, these operations impose a highadron the intermediate nodes with
respect to processing. We have therefore implemented atppet of these mechanisms using
the IXP2400 NPU.

Figure 4 shows an overview of the implemented prototype wfocnow is targeted for a video
streaming scenario. The shaper and prioritizer is meard tteployed on an intermediate node
at the ingress to a network with flow control or reserved reseal It is meant to be used with
a layered video codec where each layer has a separateyprnithe XScale, we have a small
component initializing the system and loading the microk#oonto the microengines. All the
real work is performed by theEngines where we have pipelined the functionality usingehr

XScale

XScale application
microengines
] priority priority —1T>
*Dm —|I|I|'> sorting TP selector MCJ

Figure 4: Prototype blocks for shaping and prioritizing

different microblocks which can use one or mgiengines according to the resource demands
of a task.

4.1 The Shaping Microblock

To be able to control the volume of traffic being forwarded g @ent from our intermedi-
ate node to the network (bandwidth throttling and rate limgif, a microblock running on the
nEngines debursts the traffic flows, i.e., smoothes the pdakata transmission.

The implementation is based on token buckets, where eadefstceam (initialized using the
RTSP DESCRIBE and SETUP messages and the servers’ respioribese) is given a token
rate and bucket depth according to the requested or negptiate. With respect to packet
dropping in case of bucket underflow (exceeding the assigae), we have implemented a
gueue head-drop, i.e., packets with the shortest or exdeadline will be dropped.

To test the shaper we made some basic experiments by stiggdata with and without using
the traffic shaper. The stream had an average reservatiodOoKBps using the shaper, and
the sender sent 1024 bytes packets. For different tests,se different sending rate fluc-
tuations (switching rate for each 100th packet). Figure @wshthe results of three different
measurements. Figure 5(a) shows a scenario where the gdrathidwidth fluctuates between
1100 Kbps and 800 Kbps. As we can see, the uncontrolled sti@eas more resources than
allowed, and the rate oscillates with large peaks. The shsgpeam, however, has a smooth out-
put stream slightly below the 800 Kbps limit and drops paslesicording to the implemented
dropping scheme. Reducing the lower sending rate (largetutitions) makes the average
closer to the allowed rate, but the peaks without a shapehnigheer as the plot in figure 5(b)
indicates. Finally, in figure 5(c), the lower rate is dropped00 Mbps, and in this case, we
also have some fluctuations in the shaped output stream dubuidd-up of available tokens.
In conclusion, our prototype on the NPU gives a shaped straathsince it is independent of
the host load, the experienced latency has much smallextiars.

4.2 The Prioritizer and Packet Scheduler Microblocks

A priority-based scheduling of packets is necessary to letalprovide different service classes
and some notion of guarantees. To support this, we have mgpiged a packet prioritizer on our
NPU. For now, our system handles four different prioriteasg in our video streaming context,
the priorities are set in the RTP headers.

In the current implementation of the prototype, the funwaiity is distributed on tw@Engines.
The first sorts packets according to the priority and plabesntonto the respective priority
gueue. The queues are implemented using the hardware $egbgoratch rings, so the sorted

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time Time Time

(a) 1100 and 800 Kbps (b) 1100 and 700 Kbps (c) 1100 and 600 Kbps

Figure 5: Packet rate with and without the traffic shaper using different rate fluctuations

1 1 1

0.8 0.8 0.8

06 § 06 § 06

0.4

Time miliseconds

0.4

Time milisect

0ar

Time miliseconds

02 02 } I 02

. R . T —— S i e e]

0 0 0
10000 15000 20000 25000 30000 35000 40000 45000 50000 10000 15000 20000 25000 30000 35000 40000 45000 50000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Sequence number Sequence number Sequence number

(@) IXP (b) Host, no load (c) Host, disk I1/0 & zip load

Figure 6: Time gap between first priority packets (100 Mbps video stream)

packets are directly available to the nggngine running the priority scheduler. The scheduler
then transmits packets based on the priorities and the gaswurce assignment, and in the
case where a queue is empty or does not utilize its resergednees, the scheduler is work-
conserving and proceeds with the next round at an earlier. tim

In order to test the prioritizer, we have performed sevampte tests on an intermediate node
using a prioritizer either on the NPU or in the Linux kerneltba host (using ¢ qdi sc), i.e.,

no fairness. The measurements are performed on an 80 Mlypsdth video stream. Addition-
ally, we had a background traffic load of 80 Mbps and had séwernkloads appropriate for a
multimedia proxy, i.e., reading and writing data from diile(copy operations) and processing
data using the CPWgi p). Our NPU implementation is unaffected by host workload,the
host mechanisms battle with the rest of the system for ressuaind the jitter is thus greatly
affected.

The effects of offloading the prioritizer to an NPU are showrfigures 8, 7 and table 1.
Figure 6 plots an arbitrary window of the 150.000 first ptyppackets sent, figure 7 and ta-
ble 1 show the average time gap between packets and the tieepeciance. While the jitter
(measured as the time gap between packets) of the firsttgrpmckets using the NPU-based
prioritizer is usually small (see figure 6(a)), the host iempéntations show much more jitter.
Figure 6(b) shows the system with no extra workload whergjittex and the variation are
larger than on the NPU. When we additionally add a light wathke or VoD like workload on
the host the problems further increase (see figure 6(c))mnelasion, the NPU implementation
has by far the lowest variance (shown by the standard dewiatitable 1 and the plots), and it
is independent of the varying host workload.

3The clear horizontal lines in the figure are due to the cloakgrarity. The other (lower) priority packets have
similar results compared to best-effort traffic.

Host with disk I/O
Host with gzip
Host with gzip and disk I/O
1 Host with no load

15 + IXP

Average time in miliseconds

0.5

00 200 400 100
1. priority 2.priority

Figure 7: Average time gap with error bars

IXP host IXP host
load no disk 110 zip disk & zip no disk 110 zip disk & zip
maximum | 0.856 | 43.511| 200.008 | 364.494 123.908 | 20.390 | 56.459 | 829.084 | 49.370 662.014
minimum | 0.000 | 0.000 0.000 0.004 0.007 | 0.000 | 0.003 0.000 | 0.003 0.003
average 0.320 | 0.321 0.322 0.328 0.321| 0.129 | 0.139 0.159 | 0.154 0.154
median 0.351 0.349 0.348 0.348 0.348 0.088 0.089 0.174 0.174 0.174
stdev 0.085 0.189 0.859 1.145 0.652 0.071 0.153 1.552 0.427 1.494
100 Mbps video stream 400 Mbps video stream

Table 1: Time gap statistics between first priority packets two selected tests)

4.3 Discussion

As we can see from the tests, the NPU has no problems of perfgrthe shaping and pri-
oritizing in an efficient manner. The advantage of using tfRJNo perform these operations
is that the application specific evaluations of each paciethe executed in a network-aware
environment without the need to move the packet up to theagin itself running in user
space on the host. Thus, we save a lot of data transfersupterand context switches which
greatly influence the performance and the experienceddiggnOur prototype shows that we
can achieve a shaped, prioritized stream independent didbeload, i.e., less variations in
latency. This is for example beneficial in the context of groaches both forwarding data from
the origin server and servicing clients from the cache’allstorage on the host.

However, with respect to the implementation, there arersé@gture issues. For example, the
operation of dropping packets in the shaper should be peddwith respect to both deadlines
and priorities, e.g., dropping a base layer packet in a &yeideo stream implicitly invalidates
the corresponding enhancement packets. Additionallyntimaber of priority levels is now
restricted to the number of available rings. In total, thare 16 scratch rings, but these are
shared for the whole system. Our current prototype usesatiitiee available scratch rings. To
support more priority levels than we have scratch ringdabhd, a different queuing mechanism
must be implemented. Furthermore, yet another task is teerather experiments to see
how to best utilize the resources on-board (we still havefulbt utilized all resources) and
efficiently pipeline the functionality.

5 Conclusion and Future Work

In this paper, we have investigated the possibility of uangNPU to improve scalability of
intermediate nodes. In general, the evaluation of our pypeoshows that offloading network
functionality to xEngines will both free host resources and improve the peiegsand for-
warding speed compared to what the host would be able to éaimdbur case study prototype
performing traffic shaping and packet prioritizing, ourtseshow that the NPU can efficiently
perform such operations on behalf of the host and that wdnatik a lot of resources to perform
more (application level) operations.

With respect to ongoing work, we are currently performingenextensive tests and evaluations,
and we are working on several components in the context geseand intermediate nodes.
These include caching functionality support for proxy @scnd a cube architecture for a media
server - both being currently implemented on the IXP2400aly, we aim at integrating all of
our components in order to make a scalable, high-performemermediate node.

References

Bauer, D., Rooney, S. and Scotton, P. (2002), Network itrinagire for massively distributed gamés;Proceed-
ings of the Workshop on Network and System Support for GalNeS GAMES)’, pp. 36—43.

Comer, D. E. (2004N\Network Systems Design using Network Processors - IntevéXston Prentice-Hall.

Hvamstad, @., Griwodz, C. and Halvorsen, P. (2005), Offlogdaultimedia proxies using network processars,
‘Proceedings of the International Network Conference (IN@p. 113-120.

Kalin, S. and Peterson, L. (2001), Vera: An extensible noartehitechturein ‘Proceedings of the IEEE Conference
on Open Architectures and Network Programming (OPENARCpH}): 3—14.

Kind, A., Pletka, R. and Waldvogel, M. (2003), The role ofwetk processors in active networks, Proceedings
of the IFIP International Workshop on Active Networks (IWXNop. 18-29.

Krishnamurthy, R., Schwan, K., West, R. and Rosu, M.-C. 80@n network coprocessors for scalable, pre-
dictable media servicedEEE Transactions on Paralell and Distributed Systerisl. 14, No. 7, pp. 655-670.

Intel Corporation (2004), ‘Intel IXP2400 network processlatasheet’. URL: ftp://download.intel.com/design/-
network/datashts/30116411.pdf

Spalink, T., Kalin, S., Peterson, L. and Gottlieb, Y. (20@yilding a robust software-based router using network
processordn ‘Proceedings of the ACM Symposium of Operating Systemsdiyies (SOSP)’, pp. 216-229.

