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Abstract. Hermes8 [0l[7] is one of the stream ciphers submitted to the
ECRYPT Stream Cipher Project (eSTREAM [3]). In this paper we
present an analysis of the Hermes8 stream ciphers. In particular, we
show an attack on the latest version of the cipher (Hermes8F), which
requires very few known keystream bytes and recovers the cipher secret
key in less than a second on a normal PC. Furthermore, we make some
remarks on the cipher’s key schedule and discuss some properties of ci-
phers with similar algebraic structure to Hermes8.
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1 Introduction

Hermes8 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT
Stream Cipher Project [3]. The cipher has a simple byte-oriented design, con-
sisting of substitutions and shifts of the state register bytes. Two versions of the
cipher have been proposed. Originally, the cipher Hermes8 [6] was submitted as
candidate to eSTREAM. Although no weaknesses of Hermes8 were found dur-
ing the first phase of evaluation, the cipher did not seem to present satisfactory
performance in either software or hardware [4]. As a result, a slightly modified
version of the cipher, named Hermes8F [7], was submitted for consideration dur-
ing the second phase of eSTREAM. In this paper we present an analysis of the
Hermes8 stream ciphers. In Section 2] we present an alternative description of
the Hermes8 ciphers. Section B describes an attack against the latest version
of Hermes8. Section [4] contains some remarks on the key schedule of HermesS,
while we discuss some algebraic properties of the ciphers in Section
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2 Description of Hermes8F

According to [7], Hermes8F is a stream cipher based on the Substitution— Per-
mutation network principle. Hermes8F is defined for two different key lengths:
Hermes8F-80 uses 80-bit keys, while Hermes8F-128 uses 128-bit keys. The ci-
pher uses two byte-oriented registers: a 17-byte state register and a 10-byte key
register (16 bytes for Hermes8F-128). Additionally, there is a single byte register
Accu, which seems to have the use of a memory register (Figure [[l). The diffu-
sion is provided by moving pointers through both registers, while non-linearity
is provided by the AES S-Box [2].
The main operation of the cipher consists of the following steps:

1. XOR the value stored at Accu with a byte from the state register and a byte
from the key register;

2. Use the previous result as input for the AES S-Box;
3. Replace the state register value used in step 1. by the output of the S-Box;
4. Store the output of the S-Box also in Accu;

5. Increment both the state and key register pointers (denoted by pl and p2,
respectively).

Plain Text Cipher Text

Fig. 1. Hermes8F stream cipher [7]

The steps above are performed at each clocking. A round of the cipher consists of
17 clockings. At every 7 clockings, two bytes of the key register are updated. The
updating function is also based on the AES S-Box (Section H)). In the cipher’s
initialization, the encryption key is loaded into the key register, and the IV is
loaded into the state register. The register Accu starts with the zero byte as
contentl]. The initialization process consists of five rounds (i.e. 85 clockings),
and so all the state registers are updated five times before the cipher enters

! In Hermes8, the initial value of Accu is key-dependent; see Section Hl
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the normal mode of operation. The first bytes of the keystream are produced
after two further rounds. The output consists of 8 bytes from the state register,
taken from alternating positions of the register. Further bytes of the output are
produced at every two rounds. More details of the algorithm can be found in [7].

2.1 Alternative Description of Hermes8F

We note that it follows from the description above that during the cipher oper-
ation, the contents of the registers Accu and state[pl — 1] are always the same.
Thus a more natural description of Hermes8F is given in Figure 2l It consists of
the state register R, which is represented as a feedback shift register of length
17, defined as
st = state[pl +i] , 0<i <16,

where state[p1] is the byte addressed by pointer pl at time ¢. This FSR is updated
according to the following relations:

sf“ =st, , 0<i<15,

s16° = S(sh @ sfe & k),
where the byte k! is the output of the key register K at time ¢ (that is, k[p2]),
and S represents the AES S-Box.

Accu State Register 2
v s \
> S16 S15 S14 S13 S12 S11 S0 S9 S8 ST S¢ S5 Sa  S3  S2 S1 So

(O

p2

S

Key Register

Fig. 2. Hermes8F as a feedback shift register

In our attack, we need to consider the reverse cipher (clocking the genera-
tor backwards, and so generating the keystream blocks in reverse orderé). The
relation of the feedback register of the reverse cipher is given by

sh=S5"1s15)) & sl ® &'
=56 el e k.
The inverse cipher is depicted in Figure

2 As pointed out by one of the anonymous referees, the backward keystream was also
used in the attack described in [5].
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Fig. 3. The inverse of Hermes8F

3 Cryptanalysis of Hermes8F

The attack we describe exploits two features of Hermes8F":

1. In contrast to the forward cipher, the reverse cipher has slow diffusion. (In
the forward cipher, the new byte s14 contributes to the feedback in the very
next clock. But in the reverse cipher, the new byte sy has no influence on
the feedback until it has shifted all the way along to the s15 position.)

2. The IV does not affect the key register.

Let us consider the keystream produced by Hermes8F under a secret key and a
random IV, and let B; be the 7 set of 8 bytes output by the cipher. Thus, if
we define T'= 34 - j + 85, we have

T T . T T T T T T
B; = 5052554, 56+ S8 5 S10» 5125 S14]-

Consider the first two sets of B; and Bsy, for which T is equal to 7 x 17 = 119
and 9 x 17 = 153 respectively. Suppose that in addition to the last two bytes of
By (that is, 513 and s133), we also know the values of 5133, k150 and k14°. Then
we have

153 153 150 _ 151 151 150 _ 150
S7THs13)) @ s13° @K = 57 (s16") @ 513t @K = 570
Likewise, we have that
153 153 149 17,150 150 149 149
ST s13%) @s13” @ k' = 57 (s1g”) @ 5130 @ kY = 5™
Now, assuming that we also know k'33, we have
—1/.150 149 133 _ q—1/,134 134 133 _ 133 _ 119
S (SO )@80 @k —S (816 )@515 @k = Sy = S14 -

We note however that s11? is the last byte of Bj.
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k'133 k.149 k150

Thus consider an attack where we guess on the values of and

and verify against the known byte s11°. The equation we have is

SIS & sl £ KT & 57 I 6 sl £ B @ K = o, (1)
where the key bytes and s13% are unknown. By setting ¢; = S~1(s133) @ k150

and ¢y = 5133 @ 5112 @ k149 @ k133 the equation can be more simply written as
ST IP @) @ SN (1) = o (2)

That is, a particular guess of the three key bytes is possible if and only if an
input difference of ¢; to S~! can lead to an output difference of c,. We know that
S~ is affinely equivalent to the inverse mapping in GF(28), and thus it is rather
close to being APN [9]. This means that just under one half of all (¢1, ¢2)-values
are possible, or equivalently that one half of the guesses of the three key bytes
remains as possible after checking them against ().

Note that since co depends on the sum k'*” @ k'33 we can never learn the
individual values of k' and k'3 this way, only the sum of them. Hence we are
not guessing on 3-byte values but only on 2-byte values, and the complexity of
guessing once is 2'6 and not 224. By repeating the guessing for several IVs we
can remove all wrong guesses, and find two bytes of information - the values of
k150 and k149 D k.133.

The process above can be repeated using the output bytes s15% and s}
obtain k48 and k147 @ k'3, and so on, until we have 14 (or 30 in the case of
Hermes8F-128) bytes of information about the key register at times 121 < ¢ <
150. It is then not too hard to find the content of the key register at a specific
time t, and we can run the key register back to obtain the original encryption
key.

The attack requires no more than 16 bytes of output under a few (about
16) distinct IVs. In general, the complexity of the attack is of the order of
7x16x 216 < 223 very simple operations for Hermes8F-80 (and 15x 16 x 216 < 224
for Hermes8F-128). The attack (for Hermes8F-80) has been implemented on a
normal workstation, and succeeds in recovering the key in less than a second.

153 to

3.1 Analysis of Hermes8

We have considered extending the attack presented above to the original Hermes8
cipher. The main differences between Hermes8 and Hermes8F are the length
of the state register (23 bytes and 37 bytes for Hermes8-80 and Hermes8-128,
respectively, against 17 bytes for Hermes8F'), and the number of rounds between
each output of the cipher (three rounds for Hermes8 against two rounds for
Hermes8F). Some of the features that we have exploited in our attack, such as
the simpler representation of the generator as a shift register, slow diffusion of the
reverse clocking cipher, and the fact that the key register is not IV-dependent,
apply also to Hermes8. The main difficulty in extending the attack to Hermes8
is the number of rounds between output of the cipher. With three full rounds in
Hermes8 between each output, the relations obtained contain a larger number of
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unknown key and state register bytes. As the state register values are expected to
be different for each IV used, we have not been able to obtain a simple equation
such as (@) to derive key bits. Therefore a simple extension of the attack does
not seem to work against Hermes8. We note however that the increase in the
length of the state register alone would in no way have strengthened the cipher
against our attack.

4 Equivalent Keys in Hermes8

The key schedule for Hermes8 is described in detail in [6] and is illustrated in
Figure [ (Hermes8F features a similar key scheduling method [7]). The cipher’s
designer presents a brief analysis of the key schedule and remarks the existence
of weak keys for Hermes8. More precisely, keys with equal byte patterns lead to
a repetition of byte values in the output of the key scheduling method [6]. In an
extreme case, the key defined as k; = 63pex, for 0 < i < 9, is invariant by the
key schedule, and it therefore always outputs the byte value 63peyx (this follows
from the fact that S(00hex) = 63hex)-

Fig. 4. Hermes8 key schedule

A further property of the Hermes8 key schedule that seemed to have been
overlooked by the designer is the existence of equivalent keys. These are keys that
for a given I'V result in the same keystream. This is an immediate consequence of
the structure of the key scheduling method and the key-dependent initialization
of the pointers p1, p2, src, and the Accu register [6].

Consider a key k*, which results from the byte-wise rotation of the key k.
In order to get the same keystream we have to ensure that for both keys, the
pointers p1, src, and the register Accu have the same value, that is p1, = pi1,.,
sreg = sreg«, and Accuy, = Accug+. Additionally, we require that the pointers py,
and po,. address the key register in such a way that the key scheduling method
produces the same output for both keys. For instance, consider the 80-bit version
of Hermes8 and assume the 10-byte cipher key is given by k = kg, ..., k9. The
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rotated key k* = ko, ko, ..., ks is equivalent to k if the following conditions are
satisfied:

cond. pl : (ko @ k1 ® k2) mod 23 = (ko @ k1 @ kg) mod 23
cond. src: (ko ® ks ® ko) mod 7 = (ko @ ks ® ko) mod 7

cond. Accu : ke @ k7 @ kg =ks @ ke D k7
cond. p2: (k2 @ ks ® ka) mod 10 = ((ks @ k4 @ k5) mod 10) + 1

Condition (@) ensures that the output of the key schedule is the same for k& and
k*. If, in addition, the remaining conditions (@)-(l) are satisfied, then the key
stream generation is equivalent for both keys k and k*. There are approximately

980—(8—loga ([ 55 1)) —(8—loga ([ 23° 1)) —8—(8—loga ([ %5 1)+10g2(1.109)) . 961

keys k satisfying the conditions above, which are therefore essentially equivalent
to the key k* obtained by a simple cyclic shift of its bytes. A similar analysis
can be done for other rotation values of the key k, giving us approximately
5 x 261 a 263 pairs of equivalent keys. Although this represents a very small
fraction of an 80-bit key space, the above argument shows however that Hermes8-
80 does not reach the theoretically expected entire 80-bit key space. In fact, if
we assume that 80-bit encryption keys are randomly generated, we have that
approximately 2% keys effectively occur with twice the expected probability,
while 293 keys do not occur at all.

5 Algebraic Structure

Given the highly algebraic structure of Hermes8, it is natural to consider the
feasibility of algebraic attacks against the cipher. The only two operations in
Hermes8 are the S-Box operation (which is based on the inversion over GF(2%))
and XOR. Thus at each clocking, we can express the resulting register updated
through a relation over GF(2%) (which in turn can be described as a set of
multivariate quadratic equations over GF(2)). After a number of rounds we
should have enough equations to solve the system of equations and therefore
recover the secret key. In our estimates however the size of the resulting system
appears to be too large to be solved in practice. This is due to the large number
of clockings between the cipher output. However it may be possible that one can
simplify some of the relations, or exploit this rich algebraic structure in some
other way.

We note that the attack presented in section [3] can also be mounted using a
more algebraic approach. Due to the algebraic structure of the S-Box, the ex-
pressions considered when describing the attack can also be written as a simple
system of multivariate equations. If we solve the system (e.g. by computing the
corresponding Grobner basis under the appropriate monomial ordering), requir-
ing that the equations have solutions in GF(2%), we obtain relations between
the key bytes. This corresponds to the bit of information we derived from the
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relation ([2)). If we repeat this procedure for a number of IVs, we should obtain
enough such relations to allow us to solve the resulting system and recover the
respective key bytes. Again, this approach does not seem to work with Hermes8,
as we have not been able to obtain relations on the key bytes alone (they always
involve at least one unknown register value, which as noted in section[3.1], should
change with each different IV). Moreover, this algebraic approach does not seem
to be more efficient than the attack described early in this paper.

5.1 Algebraic Structure of a Variant of Hermes8

In this section we consider a slightly modified version of Hermes8, to illustrate
how its highly algebraic structure may be exploited. In this modified version, we
remove the final affine transformation from the Sbox, so that the variant uses as
S-Box the modified inversion in the Rijndael field only, that is S :  +— x2°*. We
note that the only two operations of the cipher (SBox and XOR) correspond to
the exponentiation and addition in the Rijndael field F = GF(28), respectively.
We also know that the original AES S-Box is affinely equivalent to the inversion,
and so this variant of Hermes8 should share much of the security properties with
the original Hermes8 cipher.

However the new cipher presents a very interesting property. Let 7 : F — K
be any isomorphism from F to a field K =2 GF(2®) (in particular, we may have
K = F so that 7 is an automorphism of ). Then we have

S(r(x)) =7(S(z)) and 7(z ®y) =7(x) ®7(y), Vo,y € F.

If we assume the simplified version of initialization of the cipher’s pointers
(as with Hermes8F), we can then use these relations to construct a very simple
chosen-key algebraic distinguisher against the cipher. Let K.S = E(k,IV') rep-
resent the keystream (of length m) generated by the cipher using initialisation
vector IV and encryption key k. Then we have

E(r(k), 7(IV)) = 1(KS),

where 7(k) denotes the application of 7 on each byte of the encryption key k
(similar for 7(IV) and 7(K.S)).

This property is called self-duality [I], and is similar to the complementation
property of DES []]. In particular, it allows us to construct a simple method
that reduces the key space when performing exhaustive key search, as following.

Let k£ be the secret encryption key to be searched, so that an attacker has
access to the encryption operation £(k,-), and can generate the keystream for
any I'V. Let 7 be an automorphism of F.

Prior to performing the exhaustive search, the attacker partitions the key
space into equivalence classes

k1 =ky < ko= ’I'T(kl)7
and given an IV, computes the set of initialisation vectors

{IV,7(IV),72(IV),..., 7" Y (IV)},
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where n is the order of 7. It can now compute the set of keystreams of length m
(for m long enough)

KS; =7 " E(T V), k) = EAV, 77 (k))

fori=0,...,n—1.

To perform the exhaustive key search, for each equivalence class of encryption
keys, the attacker selects a key k' and computes the keystream of length m K =
E(IV,K'). If K = KS; for some 4, then 7¢(k’) is a candidate for the encryption
key k. Otherwise k is not in the equivalence class of k’. This method should
reduce the complexity of exhaustive key search by a factor of about n, and is
similar to the method that exploits the complementation property of DES (which
uses the complementation map of order 2).

For a concrete example, let us consider the Frobenius automorphism defined
as 7 : & — x2. Since the order of 7 is 8, this method should reduce the complexity
of exhaustive key search to the order of 277 operations (enabling key recovery on
average in the order of 27 operations). From the many isomorphisms of fields
of order 2% [10], this map seems to provide the best reduction for the key space
search.

We note however that this property and method of attack does not apply
to the original Hermes8 cipher, since the affine operation in the SBox does not
commute with the field isomorphisms.

6 Conclusion

We presented in this paper an analysis of the Hermes8 [6] stream cipher, and
some of its variants. In particular, we showed how to mount an attack to recover
the secret key for the latest version of the cipher (Hermes8F-80) with complexity
of around the order of 223 operations, requiring a very small number of known
keystream bytes. Although we have not been able to extend the method of attack
used to the original version of Hermes8, we note that many of the features that
we have exploited - the simpler representation of the generator as a shift register,
slow diffusion of the reverse clocking cipher, and the fact that the key register
is not IV-dependent - apply also to Hermes8. An interesting topic for further
research is whether there are other stream ciphers that may have their security
compromised by analysis of the reverse cipher, as with Hermer8F.
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