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Abstract—Accurate confidence measures for predictions from
machine learning techniques play a critical role in the deployment
and training of many speech and language processing applications.
For example, confidence scores are important when making use
of automatically generated transcriptions in training automatic
speech recognition (ASR) systems, as well as down-stream applica-
tions, such as information retrieval and conversational assistants.
Previous work on improving confidence scores for these systems has
focused on two main directions: designing features correlated with
improved confidence prediction; and employing sequence models to
account for the importance of contextual information. Few studies,
however, have explored incorporating contextual information more
broadly, such as from the future, in addition to the past, or making
use of alternative multiple hypotheses in addition to the most likely
one. This article introduces two general approaches for encapsu-
lating contextual information from lattices. Experimental results
illustrating the importance of increasing contextual information
for estimating confidence scores are presented on a range of limited
resource languages where word error rates range between 30% and
60%. The results show that the novel approaches provide significant
gains in the accuracy of confidence estimation.

Index Terms—Attention, confidence, graph structures, recurrent
neural network, speech recognition.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) accuracy has seen
a gradual but consistent improvement across a wide range

of domains in recent years. The use of transcriptions as is,
however, typically leads to a poor performance in applications
utilising ASR technology (downstream tasks) as mistakes can-
not be flagged and acted upon. If a measure indicating the
likelihood of a mistake occurring can be provided along with
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each transcribed word1, then ASR technology could be applied
to a wider range of domains where near-perfect transcriptions
are not possible. Such measures are also very useful for the
development of ASR technology itself (upstream tasks). For
instance, semi-supervised training [3], speaker adaptation [4],
system combination [5] and the transcription process itself [6]
can all benefit from the knowledge of transcription mistakes.

Confidence scores, which are often presented as a numeric
value between 0 and 1 for each word, have been widely used in
this role since the 1990 s. A number of schemes have been pro-
posed for estimating these confidence scores. These range from
simple schemes based on word posterior probabilities [7]–[9] to
more complex schemes that utilise powerful sequence models,
such as conditional random fields [10] and recurrent neural
networks (RNN) [2], [11]–[13]. Amongst them, the approaches
based on word posterior probabilities have become the most
commonly used, and successful, schemes. Despite significant
research into finding more accurate alternatives, these word
posterior probabilities have proven to be a very challenging
baseline to improve upon.

This article demonstrates that context plays a critical role
in accurate confidence estimation. It introduces two novel ap-
proaches that provide two different systematic ways for incorpo-
rating information from more general than sequences graph-like,
lattice, data structures. The first approach extends RNNs from
sequences to lattices by means of an attention mechanism [14]
that enables information from multiple paths to be combined
and propagated, which is impossible with standard RNNs2. The
second approach leverages the flexibility offered by attention to
combine information more generally, such as from all overlap-
ping in time path segments, an entire lattice, or a set of lattices.
Both approaches lead to a significant increase in the amount
of contextual information available for confidence predictions
and yield significant improvements over word posterior proba-
bilities, as illustrated by an extensive evaluation in challenging
limited resource conditions.

The rest of this article is organised as follows. Section II relates
the proposed approaches to other work in the audio, speech
and language processing area. The following Section III pro-
vides an overview of conventional confidence score estimation
approaches. Section IV introduces the proposed recurrent and

1For simplicity, this article excludes handling deletion errors. Approaches
for taking deletion errors into account have been proposed [1] and can be
incorporated into all of the models described in this article following [2].

2A short summary of this approach has been previously presented in [15].
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attention methods for extracting contextual information for con-
fidence estimation from lattices. Experiments with the proposed
methods are presented in Section V. Finally, conclusions drawn
from this work are given in Section VI.

II. RELATION TO PRIOR WORK

The importance of context in confidence estimation has been
appreciated for a long time. Even the conventional methods
discussed in Section III make use of the whole hypothesised
transcript to estimate confidence. Furthermore, the accuracy of
some of those methods have been long linked with the number
of alternative transcripts used in their estimation [7]. Alternative
transcripts have so far been exploited only for extracting new
types of features. These range from a hypothesis density [16],
[17], which represents the quantity and/or diversity of alternative
hypotheses, to learnt fixed or variable length lattice embed-
dings [18]–[21]. The recurrent and attention methods proposed
in this work differ from this line of research by learning embed-
dings and confidence scores of individual arcs in a single fully
integrated framework.

The context itself can be viewed more broadly than just
alternative transcripts generated by a single ASR system. It is
common for high-performing ASR systems to combine multiple
diverse sub-systems using approaches such as ROVER [5] and
confusion network (CN) combination (CNC) [22] to reduce
transcription error. The proposed attention method applied to
multiple hypotheses or CNs can be viewed as a more general
trainable solution. Furthermore, unlike the dynamic program-
ming algorithms used by ROVER and CNC, the attention method
can be generalised to more general graph structures, such as
lattices, as will be illustrated in Section V.

Alternative ASR systems and features such as hypothesis
density provide important information about how consistent
or stable any prediction is. The notion of stability gave rise
to alternative language model assessment criteria [23], data
augmentation methodologies [24] as well as confidence esti-
mation approaches [16]. The proposed attention method can be
viewed as a more general form of acoustic stability [16], where
lattices rather than one-best hypotheses are used and a trainable
attention mechanism replaces counting how many alternative
words emerged by perturbing acoustic and/or language model
scales. This novel form of acoustic stability offers a range of
advantages. In particular, the attention mechanism provides
for a more nuanced definition of stability that can take into
account temporal (e.g. overlap), topological (e.g. location and
connectivity), and semantic (e.g. word) information.

The generality of graph-like data structures makes them a
popular choice of data representation in many other areas of
audio, speech and language processing. Recurrent neural net-
works with such a complex input have been previously examined
by a number of authors [19], [25]–[27]. The key difference
between those extensions and the proposed recurrent method
is the use of attention for computing history states, rather than
averaging, pooling or gating. A broader application of atten-
tion to graph-like data structures has been explored in [28],
[29], where various generalisations of adjacency (connectivity)

Fig. 1. Example of a lattice (HMM case).

matrices were examined for encoding topologies of machine
translation (MT) lattices into a matrix format. The proposed
attention method extends that line of work to ASR lattices, which
contain information not present in MT lattices such as time. The
new information enables novel forms of adjacency matrices and
attention to be explored as will be described in Section IV.

III. CONVENTIONAL METHODS

This section will focus on hidden Markov model (HMM)
based ASR systems as the problem of miscalibrated predictions
of multi-class (softmax) classifiers employed by alternative end-
to-end (E2E) approaches [30]–[32] has a long history in machine
learning and have been extensively covered elsewhere [33], [34].
Furthermore, some of the approaches discussed here can be used
with E2E systems.

A. Word Posterior Probabilities

Word posterior probabilities emerged as a popular approach
for obtaining confidence scores at the end of the 1990s [16].
One of the key reasons for their popularity is the simplicity of
computing word posterior probabilities from lattices generated
by HMM-based recognisers. A lattice, illustrated in Fig. 1, is a
popular encoding format used in HMM-based ASR to retain a
vast number of hypothesised transcriptions. Similar structures
have been explored for E2E speech recognition [35], [36]. Given
a lattice, a forward-backward algorithm [37] can be applied to
estimate posterior probabilities of lattice arcs, or edges [9], [16].
The forward and backward probability associated with lattice arc
ei can be computed recursively by

αi =
∑

j∈−→N (1)
i

αjsi and βi =
∑

j∈←−N (1)
i

βjsj (1)

where
−→N (1)

i and
←−N (1)

i is the set of arcs which are direct left
and right neighbours of ei respectively and si is an arc score.
Given a pair of forward αi and backward βi probabilities, the
arc posterior probability pi can be computed by

pi =
1

[[L]]αiβi = P (ei|O) (2)

where [[L]] is a lattice weight (forward probability of the final
arc or backward probability of the initial arc3). Lattice arc

3Multiple initial/final arcs can be handled either by summing over their
probabilities or adding new preceding/following arcs to ensure that only one
initial/final arc exists.
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Fig. 2. Example of a confusion network (HMM case).

posterior probabilities are not the same as word posterior proba-
bilities [9]. A number of different schemes have been proposed
for deciding how to optimally combine and normalise arc pos-
terior probabilities to yield accurate estimates of word posterior
probabilities [7]–[9]. In particular, the confusion network (CN)
approach [7], [8] clusters lattice arcs first based on time and then
based on their word labels. The time clustering creates a chain
like structure, where consecutive nodes, or bins, Ci−1 and Ci
are connected by one or more lattice arcs. The word clustering
then merges any arcs with identical word labels. Fig. 2 shows
an example of a confusion network produced from the lattice in
Fig. 1. The probability of word w in bin Ci is computed by

pi,w =

∑
j∈Ci pjδ(w,wj)∑

j∈Ci pj
= P (w|Ci,O) (3)

where δ(w,wj) = 1 if w = wj and 0 otherwise. These proba-
bilities are used as estimates of word posterior probabilities.

Word posterior probabilities derived from lattices are of-
ten criticised for providing overly optimistic estimates of
confidence. This problem exists with both Gaussian mixture
model [7] as well as neural network based HMMs (e.g. [2]).
One of the major contributing issues is the limited number of
arcs generated by speech recognisers, which leads to smaller
than expected denominator terms in (2). Another issue is the
underlying statistical models themselves [33], [38]. The problem
of poor confidence estimates in neural network based classifiers
is the subject of active research [33], [39]. Approaches for
rectifying this problem can be divided into two groups. The first
group comprises approaches that make changes to the model
architecture [33], [40] and/or modify the standard parameter
estimation methodology [41], [42]. Popular examples included
temperature scaling [33], ensembles [39], and data augmen-
tation [21]. The second group comprises post-hoc calibration
approaches that transform predictions such that they exhibit a
more favourable behaviour [34], [43], [44]. This last group of
approaches is more general, as it supports both HMM and E2E
ASR systems. Common approaches in this group also include
(piece-wise) linear mappings [7], feed-forward [45] and more
complex [46] neural network models.

B. Sequence Models

One critical issue with the post-hoc calibration schemes
mentioned in the previous section are strong independence as-
sumptions, which disregard the sequential nature of speech and
confidence estimation. Discriminative graphical models [47]
emerged as a powerful alternative to HMMs for modelling
posterior probabilities of word sequences given observation
sequences [48]–[50]. Many such approaches are based on condi-
tional random fields (CRF) [51] which enable computing word

posterior probabilities using the efficient forward-backward al-
gorithm. These probabilities then can be used as confidence
scores [10]. Even though CRFs theoretically enable arbitrary
long dependencies in observations to be modelled, it is not
obvious how to extract and model them. The recent revival
of interest in neural network approaches has led to exploring
recurrent neural networks (RNN) for confidence prediction. The
key element of an RNN is a recursively updated history state

hi = φ(hi−1,xi) (4)

where hi−1 and hi are the past and current history state, xi are
features associated with the current position in a sequence, φ is
a non-linear transform, such as [52], [53]. The recursive nature
of history states, where any state depends on all past features,
provides an opportunity for capturing long-range dependencies.
It is also possible to extend this approach to capturing future
dependencies using a bi-directional RNN [54], where an addi-
tional, future, state is employed. In either case, confidence scores
can be predicted by learning a suitable non-linear transformation
of RNN history states. Both uni- and bi-directional RNNs have
been explored for predicting confidence scores [2], [11], [13],
[55]. RNNs have also been exploited within energy-based mod-
els to yield sequence-level, or utterance, confidence scores [56].

The ability of CRFs and RNNs to yield accurate confidence
scores also critically relies on the availability of informative
features. The long history of confidence scores in ASR has led
to the development of a large number of features that have been
found useful for confidence estimation.

1) Acoustic Features: Given a segment of speech, the sim-
plest kind of features that can be extracted are duration [17],
speaking rate and signal-to-noise ratio [57], the first and higher
order statistics, HMM likelihoods [17], [57] and other dynamic
kernels [50], [58], [59]. Powerful approaches from deep learning
include various forms of encoders [14], [53], [60] that enable
general mappings from variable length observation sequences
to a fixed length to be learnt.

2) Language Features: Similar approaches have been
adopted with word features. These include count-based and
n-gram order features [45], [57] and simple generative kernels,
such as language model log-probabilities [17], [45]. Popular
features from representation learning and the deep learning area
include word embeddings [61].

3) Lexicon Features: These features aim to extract infor-
mation at a finer, subword, level. There are a number of possible
subword units to consider, such as graphemes, phonemes, sylla-
bles, morphs andn-gram extensions of these units. Each unit can
benefit from all of the features discussed above (both acoustic
and language features, e.g. [62]).

4) Graph Features: Features examined so far were fo-
cused on deriving information at a local segment/word level.
Given a sequence or graph output representation, it is possible
to extract features that reflect the global context. The word
posterior probabilities discussed in this section are examples
of graph features [45]. Other examples include arc/node density
and stability of hypothesised word with respect to the acoustic
or language model scale, or acoustic stability [16], [17].
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C. Training and Evaluation

Confidence prediction models are commonly trained by min-
imising (binary) cross-entropy (CE)

H(c, c∗) = − 1

T

T∑
t=1

c∗t log(ct) + (1− c∗t) log(1− ct) (5)

where c and c∗ are predicted and reference confidence scores
respectively. The reference confidence scores are not immedi-
ately available and must be inferred. Given a hypothesis w and
reference wref word sequence, the alignment between these
sequences can be obtained using a Levenshtein algorithm [5]

L
j
i = min

{
L
j−1
i−1 + Lj−1,j

i−1,i , L
j
i−1 + Li−1,i, L

j−1
i + Lj−1,j

}
(6)

where L
j
i is a cumulative loss incurred on reaching position

i in the first sequence and position j in the second sequence,
Li−1,i and Lj−1,j are losses incurred on making a single step
transition from one position to the next in either the first or the
second sequence, Lj−1,j

i−1,i is a loss incurred on making single step
transitions in both sequences. These losses are given by

Li−1,i = κ(i), Lj−1,j = κ(d), (7)

Lj−1,j
i−1,i = κ(s)(1− δ(wi, w

ref
j )) (8)

where κ(i), κ(d) and κ(s) are the costs of insertion, deletion
and substitution errors. Backtracking along the path with the
smallest loss enables each hypothesised word to be marked as
either correct or incorrect and thus obtain reference values.

There are two primary modes for evaluating confidence pre-
dictors: intrinsic and extrinsic. The intrinsic evaluation assesses
confidence scores themselves, whereas the extrinsic evaluation
assesses their usefulness in external applications. A number
of intrinsic criteria have been proposed, such as normalised
cross-entropy (NCE) [63]

NCE(c, c∗) =
H(Pc · 1, c∗)−H(c, c∗)

H(Pc · 1, c∗) (9)

which provides a relative measure of gain in cross-entropy
compared to a baseline that randomly predicts correct confi-
dence with probability Pc =

1
T

∑T
t=1 c

∗
t (the average number of

correctly transcribed words). It is possible to have positive (better
than baseline) and negative (worse than baseline) NCE values.
NCE values, however, obfuscate where any gain in performance
comes from. An easier to interpret metric can be obtained by
choosing a threshold ρ such that any score above that becomes
correct and incorrect otherwise. The performance of both the
confidence scores and the choice of threshold can be assessed
using the standard outcomes of binary detection (true/false posi-
tives/negatives) or their derivatives (e.g. accuracy [9], precision,
recall, rates). By varying threshold ρ, it is possible to plot either
a receiver operating (ROC) or precision and recall (PR) curve
respectively, which are useful when deciding an appropriate
operating point to use. It is also possible to compute areas under
those curves (AUC) to provide a single measure of prediction
performance [15], [64].

In order to assess how well confidence scores are calibrated it
is common to use reliability diagrams [33]. A reliability diagram
is a plot of predicted confidence scores against true confidence
scores across the full range of confidence scores. Such plots
are created by partitioning predicted confidence scores into
bins (e.g. 0-0.2, 0.2-0.35,..., 0.9-1.0) and plotting the average
predicted confidence score against the average true confidence
score. A confidence estimation model would be considered
calibrated if these values are the same across the full range of
confidence scores.

IV. LATTICE CONTEXT MODELLING

Most speech recognisers provide a significantly richer output
than the most likely transcription. For example, lattices have one
start and one end node associated with the beginning and end
of speech and a large number of intermediate nodes that serve
as both source and target for one or more arcs. When multiple
arcs are connected to the same node then decisions need to be
made about how to propagate information forward. Sequence
models, such as those described in Section III, cannot directly
handle those structures.

This section describes two approaches that enable features
to be derived from, and confidences predicted for, all alterna-
tive transcriptions and the underlying words. The first is based
on lattice recurrent networks where lattice paths are modelled
using recurrent network. The second approach uses attention
mechanisms over the complete lattice structure.

A. Lattice Recurrent Networks

The key issue to extending RNNs from simple sequences in
(4) to handling lattices is to address the problem that multiple
incoming arcs to a particular arc are present in lattices and CNs.
One solution, and the one adopted in this work, is to make use
of an attention mechanism to combine all information directly
available to a given arc

h−→N (1)
i

=
∑

j∈−→N (1)
i

αi,jhj (10)

before propagating it to any connecting arc

hi = φ(h−→N (1)
i

,xi) (11)

where the set of arcs directly preceding arcei is denoted by
−→N (1)

i ,
αi,j is an attention weight associated with arcs ei and ej , hi is
a history state associated with arc ei. As with RNNs and FNNs
before that, the confidence score ci can be predicted by learning
a non-linear transformation of history state hi. Fig. 3 provides
an illustration of dependencies between features, history states
and confidence predictions. Similar to RNNs, it is possible to
extend this approach to modelling future information. Such bi-
directional lattice RNNs will be examined in Section V.

Attention weights play a critical role in deciding what infor-
mation will be taken into account. To ensure that weights are
non-negative and sum to one, a softmax normalisation

αi,j =
exp(zi,j)∑

j∈Ni
exp(zi,j)

(12)
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Fig. 3. Example of lattice recurrent NN.

is applied to the unnormalised weights or energies zi,j . The
energy computation is often discussed in information retrieval
terms of queries qi,j and keys ki,j , which are used to decide
which weight to apply to values, such as states hj or features
xj . A number of approaches have been proposed for computing
energies. For instance, additive attention energies can be com-
puted by [14]

zi,j = φ(w(z)Tφ(W (k)ki,j +W (q)qi,j)) (13)

as well as [65]

zi,j = φ(w(z)Tφ(W (kq)[kT
i,j qT

i,j ]
T )) (14)

where different choices of non-linearities φ and φ provide for
more options. On the other hand, multiplicative attention [65]

zi,j = kT
i,jW

(kq)qi,j (15)

includes scaled dot-product [60] and self-attention [60] as spe-
cial cases. It is also possible to concatenate outputs from multiple
(not necessarily the same) attention mechanisms, or heads, to
extract diverse kinds of information [60]. This approach will be
exploited in Section V to combine different types of contextual
information. To find useful information, the attention mecha-
nism relies on the key to provide a snapshot of the information
available and the query to express what is being searched. There
are numerous options possible for choosing both. For instance,
when deciding if an incoming arc is useful for confidence
prediction it is reasonable to use an arc’s state as the query

qi,j =
[
hj

]
(16)

and distributional information about word posterior probabilities
as the key

ki,j =
[
pj μi σi

]T
(17)

where μi and σi are the mean and standard deviation of word
posterior probabilities of all incoming arcs. This combination
of keys and queries provides the attention mechanism with the
content (query) and impact (key) based information.

B. Attention Mechanisms

The recurrent method makes use of an attention mechanism
to combine information from neighbouring states. Each of the

Fig. 4. Example of lattice attention NN.

combined states in turn relies on the attention mechanism to ex-
tract information from their respective, direct, neighbourhoods.
An alternative approach is to bypass such a repeated process
and apply an attention mechanism directly over a large enough
neighbourhood4

hNi
=

∑
j∈Ni

αi,jxj (18)

where Ni is a set of sequence or graph elements that may be
useful for predicting the confidence of the i-th element. Fig. 4
shows a simple example of the proposed attention models that
makes use of directly connected left neighbours to extract infor-
mation. In contrast to the recurrent models illustrated in Fig. 3,
attention models, such as in Fig. 4, can be efficiently trained.
Furthermore, attention models enable efficient computation of
confidence scores for a subset of arcs, which may be useful in
information retrieval and other applications.

In addition to direct left and right neighbours, there are other
options for choosing neighbouring arcs. These include left and
right reachable arcs similar to the recurrent method discussed in
this section and time-overlapped arcs similar to CNs. It is also
possible to extend the notion of neighbouring arcs to include all
or some of the arcs from complementary graphs that can be pro-
duced using a number of approaches, such as alternative acoustic
models, language models and likelihood scales. The flexibility
offered by an attention mechanism makes it easy to incorporate
other kinds of information, such as topology. When arcs other
than direct neighbours are being combined, the simplest example
of topological information that can be incorporated into the keys
in (17) are distances di,j between the arcs as expressed in terms
of the number of arcs [28], binary or probabilistic connectivity
masks [29] or time, which can generalise to sets of graphs. Many
of these options will be examined in Section V.

C. Network Parameter Training

The recurrent and attention models proposed in this section
can be trained by minimising binary cross-entropy with respect
to the reference confidence scores. In the simplest case, only

4Although attention mechanisms have previously appeared in confidence
prediction models [66]–[68], their use have been constrained to extracting
information from encoder/decoder states of ASR systems and hypothesised
one-best sequences.
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those confidence scores that are linked with the most likely
transcripts can be predicted. Such an approach eliminates the
need to obtain reference confidence values for a large number
of competing transcripts but may be suboptimal if confidence
scores linked with them are required. Alternatively, it is possible
to predict confidence scores for all arcs of confusion networks
or lattices provided reference values are available.

1) Confusion Networks (CN): Given a hypothesis CN C and
a reference word sequence wref, the Levenshtein algorithm can
be adopted to mark CN arcs with substitution loss set to

Lj−1,j
i−1,i = κ(s)(1− P (wref

j |Ci,O)) (19)

When references are provided in the form of CNs, the poste-
rior probability above is replaced by

P (Crefj |Ci,O) =
∑

wref
j ∈Crefj

P (wref
j |Ci,O)P (wref

j |Crefj ,O) (20)

to yield CN alignment or combination (CNC) [22]. Similar to
sequences in Section III, references for CNs can be obtained by
backtracking along the path with the smallest loss.

2) Lattices: Marking lattice arcs with reference confi-
dence scores is significantly more challenging. Instead, ap-
proximate marking schemes based on time overlap can be
adopted [69]. Given a hypothesis arc ei and reference arc e∗j
with start times t(s)i and t(s)j , end times t(e)i and t(e)j , and identical
word labels, the time-overlap can be estimated by

νi,j = max

{
0,
|min(t

(e)
j , t

(e)
i )| − |max(t

(s)
j , t

(s)
i )|

|max(t
(e)
j , t

(e)
i )| − |min(t

(s)
j , t

(s)
i )|

}
(21)

Given a fixed threshold ν, any hypothesis arc ei with νi,j ≥ ν
will be marked as correct with respect to the reference arc e∗j .

V. EXPERIMENTS

This section describes experiments that were conducted with
recurrent and attention-based neural network approaches for
predicting confidence scores for the most likely transcriptions
generated by Cambridge University submissions to IARPA Ba-
bel competitions. OpenKWS [70] and their successor Open-
CLIR [71] public competitions challenge participants to develop
robust speech recognisers for limited resource languages to
support information retrieval tasks. Word error rates for those
languages commonly range between 20-60% [72] and necessi-
tate the use of error mitigation approaches, such as confidence
scores, to achieve high performance.

A. Setup

Most of the evaluation was conducted using the Georgian
full language pack (FLP), which consists of approximately 40
hours of transcribed training data for building speech recognisers
and 10 hours of development data for testing them. All speech
data are telephone conversations recorded at 8 kHz, mostly over
mobile phone networks. The speech recogniser is a complex
acoustic model that combines 4 diverse acoustic models [72].
The diversity is accomplished through the use of different model
architectures (hybrid and tandem) and different multilingual

TABLE I
BASELINES FOR CONFIDENCE ESTIMATION APPROACHES

bottleneck features. The multilingual features were estimated
by IBM and RWTH Aachen on a collection of 28 languages
packs released by IARPA and LDC. All acoustic models are
based on graphemic lexica which were derived using automatic
approaches [73]. The language model used in this article is
a simple trigram language model estimated on training data
transcripts and web data. The speech recogniser was used to
produce a set of lattices using a default grammar scale factor (20)
and 4 perturbed factors (12, 16, 24 and 28). The default factor
was selected based on a broad range of other IARPA Babel
languages. Lattices were converted into confusion networks
(CN) using confusion network decoding [7]. The most likely
transcripts were obtained from the output of CN decoding that
corresponds to the default grammar scale factor.

The available development data were partitioned into a train-
ing, development and evaluation set with a ratio of 8:1:1 for
training, validating and testing confidence estimation schemes.
The most likely transcription of the evaluation set contains 6063
words of which 4137 or 68.2% words are correctly predicted.
Three baseline schemes were examined: 1) a random classifier,
2) word posterior probabilities, 3) a decision tree. Table I pro-
vides a snapshot of their performance on the evaluation set.The
NCE for posterior probabilities (-0.1978) is negative, which
suggests that uncalibrated posteriors are less informative than
the random classifier that predicts confidence of 1 with prob-
ability Pc = 0.682. The decision tree, as expected, improves
calibration of posterior probabilities (0.2755). Areas under the
precision-recall curves, where AUC(0)

PR treats incorrect words

as positives and AUC(1)
PR treats incorrect words as negatives,

provide additional information. Unlike NCEs, AUCs clearly
show that given an appropriate threshold to map posterior prob-
abilities to either 0 or 1 a significantly better performance than
the random classifier can be achieved. Furthermore, it appears
that determining which predictions are incorrect is a significantly
harder problem. Given a smaller number of incorrect predictions
in the most likely transcriptions, it will be more challenging
to improve accuracy of determining incorrect predictions. In
common with other work in this area, all results are initially
presented in terms of NCE. Section V-D will discuss all major
results in terms of other performance criteria.

B. Sequences

The first set of experiments examined the possibility of
learning accurate confidence scores using information available
only within the most likely transcriptions. Both recurrent and
attention-based models were examined.
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TABLE II
RECURRENT SEQUENCE MODELS

The recurrent models are bidirectional and make use of 128-
dimensional long short-term memory (LSTM) units [52]. A
range of word and sub-word (grapheme) features have been
examined. Word features comprise 50-dimensional fast-
Text [74] word embeddings and 1-dimensional duration, un-
calibrated and decision tree calibrated posterior probabilities.
The first horizontal block in Table II shows how NCE changes
as more word features are used.Simple features, such as word
embeddings and duration, offer a limited gain over the random
baseline. The use of word posterior probabilities, unsurprisingly,
brings a very large gain in NCE. Despite having access to word
embeddings and duration information the use of more powerful
BiRNNs has led to a small improvement over decision tree
calibration (0.2755→ 0.2765). However, when BiRNNs make
use of calibrated word posteriors instead then the gain over de-
cision tree calibration becomes significant (0.2755→ 0.2911).
A similar observation was made in the context of E2E ASR
systems [46].

Grapheme features provide one of many possible options
for extending available features and comprise 4-dimensional
word2vec [61] grapheme embeddings, 1-dimensional dura-
tion and 10-dimensional encoder output based on bi-directional
gated recurrent units. Grapheme features were combined with
word features by learning an attention mechanism to map a vari-
able number of grapheme features to fixed length as described
in [62]. The second horizontal block in Table II shows how NCE
changes as richer grapheme features are extracted. Overall, the
use of grapheme features provides a significant increase in NCE
(0.2911→ 0.2978). Due to the increased complexity of learning
grapheme encoders to extract features and attention mechanisms
to combine them, the rest of this section will focus on word
features only.

The attention models can make use of one or more attention
mechanisms to combine information across the most likely word
sequence. There are a number of possible context spans to choose
from: one or more left neighbours, one or more right neighbours,
left reachable words, right reachable words, all reachable words.
In common with other work in this area, the positional informa-
tion has been encoded into the keys using discrete distances
equal to the number of arcs that need to be traversed to connect
any two arcs with positive distances representing following arcs
and negative distances representing preceding arcs. All attention
models in this article transform combined features using three
64-dimensional ReLU layers prior to mapping features to [0,1]
range using a sigmoid non-linearity.

TABLE III
ATTENTION MECHANISMS FOR SEQUENCES

TABLE IV
ATTENTION MECHANISM OPTIONS

Table III shows how NCE changes as the context of infor-
mation available to attention models increases from no contex-
tual information (0.2895) to all left and right reachable words
(0.2920). It is interesting that the former performance is only
slightly worse than the performance of a BiRNN that has access
to all past and future words (0.2911 in Table II). Comparing the
model that has access to only past information (left-reachable) to
the model with both the past (left-reachable) and future (right-
reachable) information, it appears that the future information
provides only a limited improvement (0.2917 vs. 0.2920). This
observation suggests that accurate confidence estimates can
be obtained in streaming applications where access to future
information may not be possible. The final row shows that the
use of dedicated attention heads to incorporate past and future
information separately offers little gain over a single attention
mechanism that has access to all reachable words.

As discussed in Section IV, there are many possible ways to
compute attention weights. The experiments in Table III made
use of the additive attention in (14), where W (kq) is a 57×57
parameter matrix (53-dimensional features and 4-dimensional
keys). Table IV explores (a) multiple additive attention heads
and (b) alternatives to additive attention, such as multiplicative
and scaled dot product attention. The NCE results suggest that
both directions can bring substantial gains. For simplicity the
following sections will focus on the additive attention mecha-
nism with one head.

C. Confusion Networks

The recurrent and attention models examined so far have been
constrained to extract information from most likely sequences.
The second set of experiments examined incorporating addi-
tional contextual information from alternative transcriptions.
The set of CNs that yielded the most likely transcriptions was
used to train recurrent and attention models. Table V provides a
side-by-side comparison between recurrent and attention mod-
els.As discussed in Section IV graph-based models offer an
opportunity to evaluate and optimise loss over a subset of arcs,
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TABLE V
FEATURE EXTRACTION AND LOSS COMPUTATION BASED ON CONFUSION

NETWORKS

TABLE VI
CONFUSION NETWORK ATTENTION OPTIONS

TABLE VII
ATTENTION MECHANISMS FOR CONFUSION NETWORKS

e.g. arcs that form the most likely transcriptions. The NCE results
in Table V suggest that attention models benefit significantly
more from optimising loss on all arcs than recurrent models.

The positional information has so far been represented by
discrete arc-based distances. As mentioned in Section IV-B it
is possible to measure distances using other approaches, such
as time, that provide a more nuanced distance estimate. Using
duration information available to each CN arc enables a con-
tinuous estimate of distance to be obtained. Table VI (a) shows
that time-based distances offer a clear advantage over arc-based
distances. Furthermore, making use of both these distances as
expected yields a marginal gain in NCE performance.

The set of reachable arcs used by recurrent and attention
models to make a confidence prediction excludes competing
arcs. For instance, word AN in Fig. 2 is just one of four possible
words within that CN bin. It is expected that the knowledge of
competing words should help to predict confidence scores more
accurately. To verify this hypothesis, a second attention head was
introduced where the context span was limited to arcs present
only within the respective CN bin. Table VI (b) shows that merg-
ing competing, time-overlapped, arcs into the set of reachable
arcs yields small gains in NCE (0.2962→ 0.2967). However,
larger gains can be obtained if competing arcs are modelled by
a separate attention mechanism (0.2962→ 0.3001).

The final experiment examined incorporating information
from a set of CNs. As mentioned at the beginning of this section,
the diversity of CNs in this article was achieved by varying
language model scale. Table VII shows that a simple approach
of aggregating all arcs across 5 CNs does not yield any gain

TABLE VIII
PERFORMANCE SUMMARY OF BASELINE AND NEURAL NETWORK CONFIDENCE

ESTIMATION APPROACHES

Fig. 5. Reliability diagrams for selected confidence estimation approaches.

in NCE performance (0.2967→ 0.2962).On the other hand, a
large gain in NCE performance is observed when a separate
attention mechanism is introduced to model competing words
across all 5 CNs (0.2967→ 0.3035).

D. Detailed Performance Analysis

As discussed in Section IV, the use of attention models pro-
vides a highly flexible framework for incorporating information
across a wide range of commonly used representations. The
current section has so far presented empirical evidence to support
those claims based on the NCE criterion. Table VIII provides
a summary of NCE values of all major confidence estimation
models examined in this article. Although attention models yield
significant gains in NCE performance over the decision tree
approach (0.2755→ 0.3035), care is required using only NCE
criterion. Table VIII also compares performance in terms of the
area under precision-recall curves, which confirm that advanced
neural network approaches enable more incorrect (AUC(0)

PR ) and

correct (AUC(1)
PR ) arcs to be correctly classified compared to

the decision tree-based approach. As was expected classifying
incorrect arcs as incorrect appears to be more challenging than
classifying correct arcs as correct. Furthermore, it appears that
the neural network approaches improve more in the former case
which will benefit applications focused on detecting errors.

Reliability diagrams in Fig. 5 provide additional confirmation
by showing a significantly better calibration of neural network
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TABLE IX
PERFORMANCE SUMMARY OF BASELINE AND NEURAL NETWORK CONFIDENCE

ESTIMATION APPROACHES ON 4 DIVERSE LANGUAGES

approaches over the decision tree for low values (0-0.3) of
predicted confidence scores. These diagrams provide a clear
illustration of poor calibration offered by word posterior prob-
abilities and the impact that simple, such as decision trees, and
complex, such as attention models, schemes have on calibration.
The neural network approaches offer a significantly better con-
sistency but visibly under/over predict confidence near 0.3 and
0.8.

E. Other Limited Resource Languages

Georgian is one of dozens of limited resource languages
examined in the IARPA Babel and, its successor, MATERIAL
programmes. Those languages were carefully selected by the
MIT Lincoln Laboratory to provide a representative and diverse
sample of languages. Recogniser accuracy for those languages
is typically lower than what can be achieved for English and
varies in the range of 30-60% WER, which poses a significant
challenge in developing accurate solutions that utilise ASR
technology. Three languages were selected from that range:
Swahili, Javanese and Igbo (see [72] for setup). As shown in
Table IX, WERs for these languages are substantially higher
than for Georgian. Confidence score quality, as measured by
the decision tree calibrated NCE values and AUC(1)

PR , appears
to be negatively correlated with WER. On the other hand,
the correlation to AUC(0)

PR is weaker. The decision tree yields
lower than expected NCE values for the two most challenging
languages. The attention models bring gains over decision trees
for all languages. In particular, substantially larger gains for
the two most challenging languages address the limitations of
simpler decision trees. A similar picture can be observed in terms
of AUC values, where substantially larger gains are observed for
more challenging languages. These observations suggest that
confidence estimation approaches may provide a substantial
performance improvement in situations where ASR systems
exhibit poor performance.

VI. CONCLUSION

Confidence scores play an important role in the development
and adoption of speech and language technology, and their
applications. A wide range of approaches have been developed

over the years with the aim to improve over the simplest form
of confidence scores – word posterior probabilities. This article
argues that context plays a key role in the assessment of ASR
system prediction accuracy, and shows how neural network
approaches, such as RNNs and attention, can be extended to
combine diverse types (word and subword level) of information
from varied sources (sequences, graphs and sets of graphs).
In particular, the article shows how to devise high-performing
recurrent and attention models over complex sources, such as
confusion networks, for confidence prediction. Experimental
validation was performed using the IARPA OpenKWS 2016
challenge Georgian language. The experimental results show
that the proposed approaches provide higher accuracy and better
consistency than word posteriors and simple calibration schemes
across the full range of confidence scores. These findings were
further corroborated on three other challenging IARPA Babel
programme languages.
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