
Tradeoffs using Binary and Multiclass
Neural Network Classification

for Medical Multidisease Detection
Tor Jan Derek Berstad1,3, Michael Alexander Riegler1,3

Konstantin Pogorelov2,3, Håkon Kvale Stensland2,3, Pål Halvorsen1,3
1Simula Metropolitan Center for Digital Engineering, Norway

2Simula Research Laboratory, Norway
3University of Oslo, Norway

Abstract—The interest in neural networks has increased sig-
nificantly, and the application of this type of machine learning
is vast, ranging from natural image classification to medical
image segmentation. However, many users of neural networks
tend to use them as a black box tool. They do not access all
of the possible variations, nor take into account the respective
classification accuracies and costs. In our work, we focus on
multiclass image classification, and in this research, we shed
light on the trade-offs between systems using a single multiclass
classification and multiple binary classifiers, respectively. We have
tested the these classifiers on several modern neural network
architectures, including DenseNet, Inception v3, Inception ResNet
v2, Xception, NASNet and MobileNet. We have compared several
aspects of the performance of these architectures during training
and testing using both classification styles. We have compared
classification speed and several classification accuracy metrics.
Here, we present the results from experiments on a total of
99 networks: 11 multiclass and 88 individual binary networks,
for an 8-class classification of medical images. In short, using
multiple binary classification networks resulted in a 7% increase
in the average F1 score, a 1% increase in average accuracy, a
1% increase in precision, and a 4% increase in average recall.
However, on average, such a multi-network style performed the
classification 7.6 times slower compared to a single network
multiclass implementation. These collective findings show that
both approaches can be applied to modern neural network
structures. Several binary networks will often give increased
classification accuracy, but at the cost of classification speed and
resource consumption.

Index Terms—Multiclass classification, accuracy, system per-
formance

I. INTRODUCTION

In recent years, interest in and research on machine learning
have skyrocketed [4]. There are many potential applications
of machine learning, with researchers constantly envisioning
new applications and solutions. One of the most promising
applications of many types of machine learning is in the area
of analyzing images. The hope is that computers will be able
to assist humans in many types of image-related task such as
classification, segmentation and 3D reconstruction.

The most common task is classification of images, which
presents the challenge of finding the best approach for a given
classification problem. Many use neural networks as a black
box tool and are concerned only with accuracy. However, the

problem is complex as there are multiple approaches, and
accuracy is just one part of the entire system performance. In
our research, we try to balance the performance of the entire
system and evaluate the trade-offs of various solutions in a
multi-class detection scenario [13], [15], [16]. In this paper,
as shown in figure 1, we compare the performance of multiple
binary classifiers, also known as one-vs-the-rest (OvR), to
recently used multiclass classifiers in a (medical) multiclass
classification scenario. The OvR approach means that we have
one classifier per class and combine the output of all of the
binary classifiers to create a multiclass classifier.

Thus, the open question is whether it is beneficial to apply
and combine the OvR technique with several binary classifiers
into one classifier, or use a large complex multiclass classifier.
Our assumption is that the binary classifiers could become bet-
ter at learning the specific features of the class in question, and
that the classification performance of the combined classifier
is better than one large multiclass system. However, we also
believe that these single-class binary classifiers could be more
robust against poor hyperparameter selection and un-optimized
network structures. Nevertheless, running multiple instances
of a classifier may require more system resources. To the best
of our knowledge, very little research has been undertaken to
investigate these trade-offs. Whenever OvR has been applied,
it has tended to use more traditional binary classifiers that
support regularization, e.g., support vector machines (SVMs),
where the OvR approach seems to generate promising results
for some multiclass networks [8] [17] [19]. However, we are
not aware of any application of OvR for common advanced
neural networks or comparisons.

As a multiclass classification problem, we use disease
detection in the gastrointestinal (GI) tract as a case study, for
which the classifier should detect images (or video frames)
that contain specific GI landmarks or anomalies. In this area, a
significant challenge is that important anomalies are missed [9]
and there are large inter- and intra-clinician variations [14],
[18].

The aim is to develop a computer-assisted diagnosis tool that
can be of benefit in endoscopic examinations. In this type of
real-life system, the entire system performance is important: i)

(a) Conventional neural network classifier (b) OvR neural network classifier

Fig. 1: Different classifier setups used, conventional neural network and OvR ensemble

high accuracy is required to classify both normal and abnormal
tissues correctly; and ii) the resource consumption on the
computers used should be low in order to enable real-time
diagnosis feedback to the medical experts, as well as saving
resources in terms of both cost and scalability.

In this paper, we use an 8-class medical dataset [12] called
Kvasir to shed light on the trade-offs between a single multi-
class classification system versus multiple binary classifiers
(OvR). We have researched transfer learning using several
modern classifiers of well-known neural network architectures,
i.e., DenseNet, Inception v3, Inception ResNet v2, Xception,
NASNet and MobileNet. We have compared several aspects
of their performance during training and testing using both
classification methods. We have analyzed resource consump-
tion, classification speed, and several classification accuracy
metrics. We have trained 186 different networks, resulting in
16,029,806 metric data points relating to both classification
and system performance. In particular, we present the results
from a total of 99 networks, i.e., 11 multiclass and 88
individual binary networks, for an 8-class classification of
medical images.

In summary, our experimental results show that the OvR
style does provide satisfactory classification performance at
the expense of higher resource use and slower classification
speed. We observed a 7% increase in the average F1 score, a
1% increase in average accuracy, a 6% increase in Matthews
correlation coefficient (MCC), a 1% increase in precision,
and a 4% increase in average recall. Specificity remained
relatively unchanged. In addition, the median values for all
of these metrics increased significantly in the OvR style,
with the median F1, MCC and recall scores increasing by
over 15%. The results from the most improved network in the
OvR configuration indicated an increase in F1 of 45% and an
MCC increase of 40%. However, on average, running several
binary networks was 7.6 times slower than a single multiclass
network implementation. These collective findings show that
both approaches can be applied to modern neural network
structures. Several binary networks will often give increased
classification accuracy, but at the cost of classification speed
and resource consumption.

II. METHODOLOGY

We decided to benchmark 11 neural network architectures
ending in a total of 99 tested network configurations. Given
that it can take up to 29 hours to train a single network, as
we have configured them, this would not have been possible
without a specific framework as it would have been too
time-consuming. Therefore, we developed an open-source test
suite1. Furthermore, to run the necessary experiments, we used
a system configuration with an Intel Core i5-4590, 16GB
memory and a single NVIDIA GeForce GTX 1080 Ti GPU.
The system should be capable of adequate performance for
our use, in addition to being representative of modern high-
performance hardware. Our GPU had compute compatibility
of 6.1 [6], which was the highest available at the time of
writing for a consumer GPU. Note that the system is only
equipped with a single GPU, while TensorFlow is able to use
several GPUs in parallel [3].

To evaluate the system, we used the Kvasir medical image
dataset [12], which contains 8,000 images in total. We chose
to divide the images into three sets using a seeded random
process, which creates symlinks to existing data in a pseudo-
random manner. The training set is used for training directly.
The validation set is used for the validation phase of training,
in which the validation accuracy is calculated and is used
primarily for our early-stopping function. Finally, we have
the test set, which is not used for training at all and is not
seen by the network until the final testing phase. This process
uses numpy’s random selection. We selected a 50-25-25 split,
as suggested by Marsland [10]. Thus, we had 4,000 training
images, 2,000 validation images and 2,000 test images. The
images were selected proportionally per class, i.e., each set
had the same number of images for each class.

III. EXPERIMENTS

In order to properly assess the final classification perfor-
mance of both binary and multiclass networks, we chose a
selection of metrics that together created a decent summary.
Some of these metrics are better for assessing the performance
of multiclass networks, and some are better for binary prob-
lems. If we look at the multiclass problem as a series of

1https://github.com/Berstad/TFmetrics

binary problems, both styles can be helpful. The metrics are
based primarily on Marsland’s book [10], and are also defined
in [12]: true positive (TP), true negative (TN), false positive
(FP), false negative (FN), recall (REC, also frequently called
sensitivity), precision (PREC), specificity (SPEC), accuracy
(ACC), Matthews correlation coefficient (MCC), F1 score (F1)
and frames per second (FPS). The metrics are then macro-
averaged for each class, for both the OvR networks and the
multiclass network. Macro-averaging was deemed acceptable
because our classes were balanced for the test data.

As our trained networks have the potential for use in a
clinical setting [12], it is helpful for us to define a threshold for
all, or at least several, of our metrics that show us whether or
not the resulting classification is suitable for diagnostic work.
The threshold for a network becoming a good classifier is dif-
ficult to define precisely, as such thresholds vary based on the
data in question and the application. Moreover, some metrics
might be more important than others in a medical scenario, and
particularly metrics that place a high value on avoiding false
negatives. Metrics in which false negatives heavily reduce the
score are more suitable to optimize. One such metric is recall
or sensitivity. Research suggests that a reasonable threshold
for a network to be used for diagnostic purposes is for recall
to be greater than 0.85 [11], and specificity should be higher
than 0.85.

In addition, we set the goal that our networks should be
able to process data in real time. This means that they should
be able to process frames at least as quickly as the equipment
is able to produce them. After searching for several different
types of endoscopic equipment, we found that the number of
frames per second varied considerably. Some wireless pill-
type cameras produced as few as 3 FPS [2], whereas high-end
wired equipment produced up to 60 FPS [1]. Thus, the higher
frame rate is important to support high-end cameras, but some
standard medical equipment feature a 30 FPS output [7], so
we use this as the minimum FPS threshold.

Table I presents a summary of the chosen built-in architec-
tures of Keras, detailing the number of parameters, the number
of layers, the depth, and the size on disk. There is a large
variety of complexities and network sizes. Interestingly, this
shows one of the first issues with a binary implementation,
which requires one fully trained model per class. The number
of classes and the network size mean that, in the case of
NASNet Large, for example, we require approximately 8 GB
of storage for eight networks. These models must be stored on
disk and, perhaps even more importantly, must be loaded into
video memory during the classification operations. The large
size of these models poses a challenge for systems in which
video memory is limited.

Keras offers us the ability to import networks with pre-
trained weights; in other words, this is an easy way to
implement transfer learning. We decided to use this ability and,
as our problem is an excellent example of image classification
based on features, we decided to use available networks that
were already trained on the ImageNet dataset. This allows us
to train our networks much faster and more efficient.

Network
Parameters
(millions) Depth

Number of
Layers

Size on
disk

VGG16 138.35 [5] 21 21 115.6 MB
VGG19 143.6 [5] 24 24 155.7 MB
Inception v3 23.85 [5] 159 313 177.1 MB
DenseNet 121 8 [5] 121 428 81.3MB
DenseNet 169 14.3 [5] 169 596 69.0 MB
DenseNet 201 20.242 [5] 201 708 94.4 MB
Xception 22.9 [5] 126 134 121.9 MB
Inception RN v2 55.87 [5] 572 782 261.3 MB
MobileNet 4.25 [5] 88 98 32.4 MB
NASNet Large 88.9 [20] 768 1021 1002.0 MB
NASNet Mobile 5.3 [20] 384 751 54.8 MB

TABLE I: The chosen architectures with specifications, depth
and layers adjusted to match our actual implementation. Size
is based on the size of trained models.

In our implementation, we do not include the top of the
pre-defined networks and, instead, build our own top layers:
a pooling layer and a fully connected layer with two or eight
outputs, depending on the configuration. Then, during the
initial training, we freeze all weights other than those in our
top layers. This allows us to quickly gain a degree of accuracy
while retaining much of the pre-trained information. After
this, we unfreeze a certain number of blocks at the top of
the imported network and ”fine tune” with a lower learning
rate. Unfreezing more of the weights allows the network to
learn more about the data.

Table II presents the selected hyperparameters for each
architecture. As we can observe, the hyperparameters for the
binary networks (our OvR structure) are the same as for our
multiclass architectures. Hyperparameters were chosen based
on tests of different combinations using grid search.

Network BS Image dimensions Optimizer LR (Train) LR (Tune) BMLBLN Epochs (Max)

M
U

LT
I

VGG16 64 224x224 Nadam 0.002 1e-06 15 200
VGG19 64 224x224 Nadam 0.002 1e-06 17 200
Inception v3 64 299x299 Nadam 0.002 1e-05 249 200
DenseNet 121 64 224x224 Nadam 1e-04 1e-05 394 200
DenseNet 169 16 224x224 Nadam 1e-04 1e-05 530 200
DenseNet 201 64 224x224 Nadam 1e-04 1e-06 642 200
Xception 16 299x299 Nadam 0.002 1e-05 126 200
Inception RN v2 64 299x299 Nadam 0.002 1e-05 64 200
MobileNet 64 224x224 Nadam 1e-03 1e-04 762 200
NASNet Large 8 331x331 Nadam 1e-05 1e-06 100 100
NASNet Mobile 64 224x224 Nadam 1e-05 1e-06 0 200

B
IN

A
RY

VGG16 64 224x224 Nadam 0.002 1e-06 15 25
VGG19 64 224x224 Nadam 0.002 1e-06 17 25
Inception v3 64 299x299 Nadam 0.002 1e-05 249 25
DenseNet 121 64 224x224 Nadam 1e-04 1e-05 394 25
DenseNet 169 16 224x224 Nadam 1e-04 1e-05 530 25
DenseNet 201 64 224x224 Nadam 1e-04 1e-06 642 25
Xception 16 299x299 Nadam 0.002 1e-05 126 25
Inception RN v2 64 299x299 Nadam 0.002 1e-05 64 25
MobileNet 64 224x224 Nadam 1e-03 1e-04 762 25
NASNet Large 8 331x331 Nadam 1e-05 1e-06 100 25
NASNet Mobile 64 224x224 Nadam 1e-05 1e-06 0 25

TABLE II: Chosen hyperparameters for each network includ-
ing batch size (BS), image dimantions, optimizer, learning rate
(LR), based model last block layer number (BMLBLN), and
number of training epochs.

IV. CLASSIFICATION PERFORMANCE AND SPEED
DISCUSSION

In this section, we will look at how all the networks
performed during classification. Of particular importance is
how quickly each style and architecture was able to process
and classify frames. In addition, the classification accuracy
shows how OvR performs regarding overall accuracy, even

when the hyperparameters are not optimized for the individual
binary networks.

In total, we collected data on the training, fine tuning and
testing sessions of 186 networks. Fifty of these were multiclass
and 136 were individual binary networks. In our final test
selection of 99 networks (11 multiclass and 88 binary), the
metrics logged and calculated resulted in 16,029,806 total data
points collected.

A. System Performance

To test the frame throughput, or FPS, of each network, we
ran an experiment using the 2,000 frames in our test set. In
the OvR case, this mean that the frames were run through
the eight networks in parallel. We observed a slight variance
in FPS and decided to run the test ten times sequentially to
correct for this. Effectively, we were testing our network on its
ability to process 20,000 frames quickly, which is equivalent
to approximately 11.1 minutes of video with a framerate of 30
FPS. We did, however, log the FPS achieved for each 2,000-
frame test. The summary of these tests can be seen in Figure 2.

0 100 200 300 400 500 600 700
FPS

VGG16

VGG19

Inception v3

DenseNet 121

DenseNet 169

DenseNet 201

Xception

Inception RN v2

Mobilenet

NASNet Large

NASNet Mobile

Average

Ap
pl

ica
tio

n

Type
Multi
OVR

(a) FPS bar plot.

Application Multi OvR SDF

VGG16 341.62 44.49 7.68x
VGG19 299.49 38.52 7.77x
Inception v3 260.18 31.33 8.30x
DenseNet 121 160.89 20.67 7.78x
DenseNet 169 232.91 29.97 7.77x
DenseNet 201 183.31 23.59 7.77x
Xception 163.27 21.08 7.75x
Inception RN v2 139.86 17.72 7.89x
MobileNet 692.59 95.79 7.23x
NASNet Large 47.56 6.03 7.89x
NASNet Mobile 486.83 66.75 7.29x

Average 273.50 35.99 7.60x

(b) Raw FPS averages.

Fig. 2: FPS test summary for all networks, including all 10
tests and average value. The slowdown factor (SDF) shows
how many times slower the OvR network is than the multiclass
equivalent. From the averages, we can see that using single
multiclass networks is approximately 7.6 times faster than
using the OvR style.

From the figure, we clearly see that the OvR network style
has a notable negative impact on frame throughput. Every
architecture is consistently faster in the multiclass configu-
ration; this is not surprising given the resource allocation
characteristics we observed in the previous chapters. We can
see that the slowdown experienced, on average, is almost pro-
portional to the number of classes. We interpret this to mean
that our binary networks are saturating what little resources
are left over from a single multiclass network, and all of the
additional resources required are causing the performance to
decrease proportionally. This means that, for a dataset with
more classes, such as ImageNet with over 20,000 classes, it
would not be an appropriate strategy as the time needed to
perform the analyzis would be too long.

However, there are two interesting points to note here. As
we can see, the slowdown factor (SDF) is higher for Inception
v3. The delay reduces the average FPS rather dramatically for

this architecture in the OvR style. In addition, we note that
the SDF appears to be lessened for the two high-efficiency
architectures (MobileNet and NASNet Mobile). This is an
expected outcome, but it shows the effect of their initial
resource usage not being as high as the other architectures
in the multiclass style. We can also see that our fastest
networks, both MobileNet, experienced the least amount of
relative slowdown of all our architectures. This confirm that,
if a network is using fewer resources in a typical configuration,
the consequences of using it in an OvR configuration will be
lessened, at least from a performance standpoint.

We can also see from Figure 2 that there is a significant dif-
ference in the architectures in terms of frame throughput. Our
fastest architecture, MobileNet, is over ten times faster than
our slowest, NASNet Large. In the tools and implementation
section, we detailed our goals for the achieved FPS to enable
real-time performance. We set a minimum FPS of 30 and a
goal of 60. From the numbers, we can see that all but one of
our architectures achieved 60 FPS or higher in the multiclass
configuration, and even this architecture achieved at least 30
FPS.

However, considering OvR, we can see that the numbers are
not as promising. Only two of our chosen architectures were
able to achieve above 60 FPS; unsurprisingly, these were the
two high-efficiency architectures. A further three architectures
were able to achieve over 30 FPS, which means that six of
our 11 architectures fell below our minimum 30 FPS goal, and
some by quite substantial amounts. Thus, the current networks
are not likely to be suitable for real-time operation. The most
substantial feasibility decrease was for NASNet Large, which
achieved only 6 FPS.

On the other hand, MobileNet was still able to achieve 95
FPS in the OvR configuration, which is surprisingly useful
and almost twice as fast as the slowest multiclass classifier.
To summarize, there is a substantial performance penalty
associated with choosing an OvR style. These penalties are
so substantial that they will render some of our networks
unable to classify in real-time. The choice of architecture is
also critical, and a good takeaway from this section is not
to choose an architecture that is more complex and resource
hungry than required.

To determine the effect that network complexity has on
performance, we can examine the same table we presented
in the tools and implementation section, but with the FPS
values from our tests included. In Table III, the basic net-
work complexity details and the achieved FPS are presented.
However, the table does not tell the whole story as it does not
include the not detail exactly which layer types are chosen
in the architecture and how they are connected. However, it
is still interesting to examine the relationships between the
different specifications and their performance.

We can see, for example, that the VGG architectures have
an enormous number of trainable parameters, by far the most
of the architectures we tested. However, they are also the two
shallowest networks. Both VGG networks achieved above av-
erage performance (>273.5 FPS). The DenseNet architectures

Network Parameters (M) Depth Layers Size FPS (Multi) FPS (OvR)

VGG16 138.35 [5] 21 21 115.6MB 341.62 44.49
VGG19 143.6 [5] 24 24 155.7MB 299.49 38.52
Inception v3 23.85 [5] 159 313 177.1MB 260.18 31.33
DenseNet 121 8 [5] 121 428 81.3MB 160.89 20.67
DenseNet 169 14.3 [5] 169 596 69MB 232.91 29.97
DenseNet 201 20.242 [5] 201 708 94.4MB 183.31 23.59
Xception 22.9 [5] 126 134 121.9MB 163.27 21.08
Inception RN v2 55.87 [5] 572 782 261.3MB 139.86 17.72
MobileNet 4.25 [5] 88 98 32.4MB 692.59 95.79
NASNet Large 88.9 [20] 768 1021 1002MB 47.56 6.03
NASNet Mobile 5.3 [20] 384 751 54.8MB 486.83 66.75

TABLE III: A list of the chosen architectures with spec-
ifications, depth and layers adjusted to match our actual
implementation, in addition to the achieved FPS in our tests.
Size is based on actual trained models.

have far fewer trainable parameters but achieved below average
performance. The two fastest networks also have the fewest
trainable parameters, but it seems evident that the number
of trainable parameters does not provide full details of the
performance.

Network depth does not seem to affect the achieved FPS
either. In Table III, we can see that NASNet mobile is the third-
deepest network, but the second fastest. Conversely, DenseNet
121 is the fourth-shallowest network, yet also the third slowest.
In fact, after attempting regression analysis on the test runs
for each architecture, none of these specifications seemed to
correlate with the total performance. It is more likely that the
types of layer, block and connection have an effect on the total
performance. In future research, a more in-depth analysis of
the relationship should be carried out.

B. Classification Accuracy

While the frame throughput is important, it is of little
consequence if the resulting classification accuracy does not
meet our expectations. Thus, we need to determine how well,
or poorly, our networks were able to classify the test data.

Network style FN FP TN TP F1 ACC MCC PREC REC SPEC

M
ul

ti

VGG16 35.38 35.38 1714.62 214.62 0.86 0.96 0.84 0.86 0.86 0.98
VGG19 35.50 35.50 1714.50 214.50 0.86 0.96 0.84 0.86 0.86 0.98
Inception v3 81.50 81.50 1668.50 168.50 0.62 0.92 0.63 0.77 0.67 0.95
DenseNet 121 113.50 113.50 1636.50 136.50 0.50 0.89 0.52 0.76 0.55 0.94
DenseNet 169 111.88 111.88 1638.12 138.12 0.51 0.89 0.51 0.69 0.55 0.94
DenseNet 201 148.12 148.12 1601.88 101.88 0.34 0.85 0.35 0.66 0.41 0.92
Xception 82.12 82.12 1667.88 167.88 0.65 0.92 0.63 0.72 0.67 0.95
Inception RN v2 79.62 79.62 1670.38 170.38 0.66 0.92 0.64 0.72 0.68 0.95
MobileNet 98.88 98.88 1651.12 151.12 0.56 0.90 0.55 0.74 0.60 0.94
NASNet Large 42.50 42.50 1707.50 207.50 0.83 0.96 0.81 0.83 0.83 0.98
NASNet Mobile 31.38 31.38 1718.62 218.62 0.87 0.97 0.86 0.88 0.87 0.98

Average 78.22 78.22 1671.78 171.78 0.66 0.92 0.65 0.77 0.69 0.96

O
vR

VGG16 46.62 46.62 1703.38 203.38 0.81 0.95 0.79 0.82 0.81 0.97
VGG19 44.38 44.38 1705.62 205.62 0.82 0.96 0.80 0.83 0.82 0.97
Inception v3 58.50 58.50 1691.50 191.50 0.76 0.94 0.74 0.79 0.77 0.97
DenseNet 121 109.50 109.50 1640.50 140.50 0.53 0.89 0.53 0.69 0.56 0.94
DenseNet 169 94.12 94.12 1655.88 155.88 0.60 0.91 0.59 0.71 0.62 0.95
DenseNet 201 146.25 146.25 1603.75 103.75 0.39 0.85 0.39 0.65 0.41 0.92
Xception 91.12 91.12 1658.88 158.88 0.65 0.91 0.63 0.77 0.64 0.95
Inception RN v2 64.12 64.12 1685.88 185.88 0.74 0.94 0.72 0.79 0.74 0.96
MobileNet 45.62 45.62 1704.38 204.38 0.81 0.95 0.80 0.86 0.82 0.97
NASNet Large 33.00 33.00 1717.00 217.00 0.87 0.97 0.85 0.87 0.87 0.98
NASNet Mobile 51.25 51.25 1698.75 198.75 0.79 0.95 0.77 0.80 0.80 0.97

Average 71.32 71.32 1678.68 178.68 0.71 0.93 0.69 0.78 0.71 0.96

Average Difference -6.90 -6.90 +6.90 +6.90 +0.05 +0.01 +0.04 +0.01 +0.03 0.00

TABLE IV: Metric averages for all network styles and archi-
tectures.

In Table IV, we have created an extensive summary of how
well our networks were able to classify the data. In the table,

we have highlighted the best results achieved for each metric
in both the multiclass and OvR styles. Of immediate interest
here is that the best-performing multiclass architecture is not
the best-performing OvR architecture. It is also interesting to
note that the best-performing OvR architecture is very similar
to the best multiclass in terms of classification performance,
with only 1 TP and 1 TN difference between them on average.
We can also see, with the help of the average difference fields,
that the OvR classifiers perform slightly better than multiclass
classifiers in total.

To see the changes for each metric for each architecture,
Table V presents the differences from multiclass to OvR,
making the differences between the OvR and multiclass ar-
chitectures more apparent. For example, we can see that both
VGG architectures performed worse in the OvR style, and by
approximately the same amount. The Inception architectures
performed better in OvR, as did NASNet Large. Xception
performed slightly worse, and NASNet Mobile performed
significantly worse, showing the most significant detriment to
accuracy from switching to the OvR style.

The DenseNet styles performed better, on average, with
OvR, except in terms of precision in the case of 121 and
201, where they performed worse. This seems odd and is
discussed further, below. Finally, we can see that MobileNet
saw a significant improvement in performance, from being one
of the worst classifiers to becoming one of the better classifiers
by switching from single-network multiclass to OvR.

Network style FN FP TN TP F1 ACC MCC PREC REC SPEC

VGG 16 +11.25 +11.25 -11.25 -11.25 -0.05 -0.01 -0.05 -0.05 -0.05 -0.01
VGG 19 +8.88 +8.88 -8.88 -8.88 -0.04 -0.01 -0.04 -0.03 -0.04 -0.01
Inception v3 -23.00 -23.00 +23.00 +23.00 +0.14 +0.02 +0.11 +0.02 +0.09 +0.01
DenseNet 121 -4.00 -4.00 +4.00 +4.00 +0.03 0.00 +0.01 -0.07 +0.02 0.00
DenseNet 169 -17.75 -17.75 +17.75 +17.75 +0.09 +0.02 +0.08 +0.03 +0.07 +0.01
DenseNet 201 -1.88 -1.88 +1.88 +1.88 +0.05 0.00 +0.04 -0.02 +0.01 0.00
Xception +9.00 +9.00 -9.00 -9.00 -0.00 -0.01 0.00 +0.05 -0.04 -0.01
Inception RN v2 -15.50 -15.50 +15.50 +15.50 +0.08 +0.02 +0.08 +0.07 +0.06 +0.01
MobileNet -53.25 -53.25 +53.25 +53.25 +0.25 +0.05 +0.25 +0.11 +0.21 +0.03
NASNet Large -9.50 -9.50 +9.50 +9.50 +0.04 +0.01 +0.04 +0.03 +0.04 +0.01
NASNet Mobile +19.88 +19.88 -19.88 -19.88 -0.08 -0.02 -0.09 -0.08 -0.08 -0.01

Average Difference -6.90 -6.90 +6.90 +6.90 +0.05 +0.01 +0.04 +0.01 +0.03 0.00
Average Difference (%) -8.82 -8.82 +0.41 +4.02 +7.02 +0.79 +5.99 +1.06 +4.11 +0.38
Median Difference (%) -28.22 -28.22 +1.38 +13.65 +16.92 +2.17 +17.46 +3.95 +14.93 +2.11

TABLE V: Metric average differences from multiclass to OvR
for all network styles and architectures.

1) Failure analysis: To understand performance differ-
ences, we provide a closer examination of a case in which
the OvR performed worse and another in which it performed
better. As we can see, NASNet Mobile achieved the worst
result using the OvR style. First, we examine the raw figures
for each class, which are seen in Table VI. Reviewing the table,
the problem is clear: every class is classified less accurately,
almost irrespective of which metric we choose. There are a
few small exceptions, such as class 5 having higher precision
in the OvR style and class 2 having higher recall.

Inspecting the confusion matrix in Figure 3, we can see
the effect more clearly. Our true positives, indicated on the
diagonal, are fewer for each class, except class 2. Likewise,
our false positives are higher for each class, except class 5.
We also get an indication from this plot that classes 2 and 5

Style Class FN FP TN TP F1 ACC MCC PREC REC SPEC

M
U

LT
I

class 0 46 31 1719 204 0.84 0.96 0.82 0.87 0.82 0.98
class 1 27 41 1709 223 0.87 0.97 0.85 0.84 0.89 0.98
class 2 95 18 1732 155 0.73 0.94 0.72 0.90 0.62 0.99
class 3 15 18 1732 235 0.93 0.98 0.92 0.93 0.94 0.99
class 4 2 10 1740 248 0.98 0.99 0.97 0.96 0.99 0.99
class 5 20 92 1658 230 0.80 0.94 0.78 0.71 0.92 0.95
class 6 16 33 1717 234 0.91 0.98 0.89 0.88 0.94 0.98
class 7 30 8 1742 220 0.92 0.98 0.91 0.96 0.88 1.00

Average 31.38 31.38 1718.62 218.62 0.87 0.97 0.86 0.88 0.87 0.98

B
IN

A
RY

class 0 86 53 1697 164 0.70 0.93 0.67 0.76 0.66 0.97
class 1 32 87 1663 218 0.79 0.94 0.76 0.71 0.87 0.95
class 2 85 55 1695 165 0.70 0.93 0.66 0.75 0.66 0.97
class 3 41 25 1725 209 0.86 0.97 0.85 0.89 0.84 0.99
class 4 24 20 1730 226 0.91 0.98 0.90 0.92 0.90 0.99
class 5 58 73 1677 192 0.75 0.93 0.71 0.72 0.77 0.96
class 6 50 58 1692 200 0.79 0.95 0.76 0.78 0.80 0.97
class 7 34 39 1711 216 0.86 0.96 0.83 0.85 0.86 0.98

Average 51.25 51.25 1698.75 198.75 0.79 0.95 0.77 0.80 0.80 0.97

Average Diff. +19.88 +19.88 -19.88 -19.88 -0.08 -0.02 -0.09 -0.08 -0.08 -0.01

TABLE VI: Accuracy for NASNet mobile.

are often confused with each other, and the same with classes
0 and 1.

0 1 2 3 4 5 6 7
Predicted label

0

1

2

3

4

5

6

7

Tr
ue

 la
be

l

204 38 0 0 0 0 7 1

27 223 0 0 0 0 0 0

0 0 155 0 4 91 0 0

0 0 0 235 0 0 10 5

0 0 0 0 248 1 1 0

0 0 17 0 3 230 0 0

4 1 1 6 2 0 234 2

0 2 0 12 1 0 15 220
0

50

100

150

200

(a) Multiclass confusion matrix

0 1 2 3 4 5 6 7
Predicted label

0

1

2

3

4

5

6

7

Tr
ue

 la
be

l

164 64 1 3 0 0 17 1

25 218 1 2 0 1 0 3

3 7 165 0 6 67 0 2

0 2 0 209 0 0 20 19

4 1 8 1 226 4 6 0

1 1 45 0 10 192 1 0

19 5 0 8 3 1 200 14

1 7 0 11 1 0 14 216
0

50

100

150

200

(b) Binary confusion matrix

Fig. 3: Confusion matrices for NASNet Mobile.

Looking at the Receiver Operating Characteristic (ROC)
curves in Figure 4, we can see that the results are very
good for the multiclass case, as several of the curves have
an AOC ≥ 0.99. Both the micro- and macro-averaged AUC
values are 0.99. Unsurprisingly, this is our best classifier in
the multiclass configuration. In the OvR case, however, the
results are diminished slightly. Specifically, classes 0, 2, 5 and
6 are a little worse. However, AUC values of 0.95 or higher
are still usually an indication of functional classification, and
we should also examine the PR curves.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e class 0 (AUC: 0.99)
class 1 (AUC: 0.99)
class 2 (AUC: 0.98)
class 3 (AUC: 1.00)
class 4 (AUC: 1.00)
class 5 (AUC: 0.98)
class 6 (AUC: 0.99)
class 7 (AUC: 1.00)
micro-avg (AUC: 0.99)
macro-avg (AUC: 0.99)

(a) Multiclass ROC curves

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e class 0 (AUC: 0.95)
class 1 (AUC: 0.97)
class 2 (AUC: 0.96)
class 3 (AUC: 0.99)
class 4 (AUC: 0.99)
class 5 (AUC: 0.96)
class 6 (AUC: 0.96)
class 7 (AUC: 0.98)
micro-avg (AUC: 0.97)
macro-avg (AUC: 0.97)

(b) Binary ROC curves

Fig. 4: ROC curves for NASNet Mobile.

From the PR curves, seen in Figure 5, the effect of our
poorest classes is much more apparent. The difference between

Style class FN FP TN TP F1 ACC MCC PREC REC SPEC

M
U

LT
I

class 0 89 111 1639 161 0.62 0.90 0.56 0.59 0.64 0.94
class 1 201 0 1750 49 0.33 0.90 0.42 1.00 0.20 1.00
class 2 248 0 1750 2 0.02 0.88 0.08 1.00 0.01 1.00
class 3 29 34 1716 221 0.88 0.97 0.86 0.87 0.88 0.98
class 4 0 337 1413 250 0.60 0.83 0.59 0.43 1.00 0.81
class 5 89 202 1548 161 0.53 0.85 0.45 0.44 0.64 0.88
class 6 48 99 1651 202 0.73 0.93 0.70 0.67 0.81 0.94
class 7 87 8 1742 163 0.77 0.95 0.77 0.95 0.65 1.00

Average 98.88 98.88 1651.12 151.12 0.56 0.90 0.55 0.74 0.60 0.94

B
IN

A
RY

class 0 9 104 1646 241 0.81 0.94 0.79 0.70 0.96 0.94
class 1 125 0 1750 125 0.67 0.94 0.68 1.00 0.50 1.00
class 2 128 5 1745 122 0.65 0.93 0.66 0.96 0.49 1.00
class 3 17 15 1735 233 0.94 0.98 0.93 0.94 0.93 0.99
class 4 0 117 1633 250 0.81 0.94 0.80 0.68 1.00 0.93
class 5 40 107 1643 210 0.74 0.93 0.71 0.66 0.84 0.94
class 6 26 10 1740 224 0.93 0.98 0.92 0.96 0.90 0.99
class 7 20 7 1743 230 0.94 0.99 0.94 0.97 0.92 1.00

Average 45.62 45.62 1704.38 204.38 0.81 0.95 0.80 0.86 0.82 0.97

Average Diff. -53.25 -53.25 +53.25 +53.25 +0.25 +0.05 +0.25 +0.11 +0.21 +0.03

TABLE VII: Accuracy for Mobilenet.

the multiclass and OvR styles is clearly visible. It also shows
us a more realistic picture of how good the multiclass classifier
is. The AUC is no longer almost perfect, and the differences
between classes become more easily visible as well. Classes
2 and 5 can be seen here reducing the average AUC, and they
are a fairly significant amount below average. Interestingly,
although some of the values for classes 2 and 5 seem to
improve in the main chart, we can see that they are also worse
if we take into account both precision and recall.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on class 0 (AUC: 0.929)

class 1 (AUC: 0.950)
class 2 (AUC: 0.885)
class 3 (AUC: 0.982)
class 4 (AUC: 0.997)
class 5 (AUC: 0.862)
class 6 (AUC: 0.971)
class 7 (AUC: 0.978)
micro-avg (AUC: 0.953)

(a) Multiclass PR curves

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on class 0 (AUC: 0.702)

class 1 (AUC: 0.804)
class 2 (AUC: 0.742)
class 3 (AUC: 0.933)
class 4 (AUC: 0.967)
class 5 (AUC: 0.695)
class 6 (AUC: 0.796)
class 7 (AUC: 0.844)
micro-avg (AUC: 0.810)

(b) Binary PR curves

Fig. 5: PR curves for NASNet Mobile.

In contrast to NASNet Mobile, MobileNet seems to perform
much better in the OvR style. The results for the multiclass
are quite weak (certainly below our desired goals), while the
OvR style meets many of our goals. We can see the overall
raw figures for each class in Table VII. We can see that, in the
OvR case, the numbers are better across the board, with very
few exceptions. We can also see how poorly our multiclass
classifier seemed to perform on the test set, with some classes
showing remarkably few true positives; for example, class 2
has only two true positives. Interestingly, this class also has
very few false positives, so the precision and specificity are
very high for this class.

If we look at the confusion matrix in Figure 6, the difference
is very clear. The multiclass MobileNet demonstrates an unac-
ceptable performance for almost every class, except perhaps
for class 3, which has a good number of true positives and
few false positives. Class 4, on the other hand, is a significant
problem, as it has a perfect score for true positives but a very

large amount of false positives.

0 1 2 3 4 5 6 7
Predicted label

0

1

2

3

4

5

6

7

Tr
ue

 la
be

l

161 0 0 7 11 9 60 2

111 49 0 9 7 60 11 3

0 0 2 0 114 133 0 1

0 0 0 221 23 0 5 1

0 0 0 0 250 0 0 0

0 0 0 0 89 161 0 0

0 0 0 5 42 0 202 1

0 0 0 13 51 0 23 163
0

50

100

150

200

250

(a) Multiclass confusion matrix

0 1 2 3 4 5 6 7
Predicted label

0

1

2

3

4

5

6

7

Tr
ue

 la
be

l

241 0 0 0 2 1 6 0

104 125 1 5 4 11 0 0

0 0 122 0 33 94 0 1

0 0 0 233 14 0 0 3

0 0 0 0 250 0 0 0

0 0 4 0 36 210 0 0

0 0 0 7 15 1 224 3

0 0 0 3 13 0 4 230
0

50

100

150

200

250

(b) Binary confusion matrix

Fig. 6: Confusion matrices for Mobilenet.

On the other hand, the OvR classification is much more
acceptable. We still have a slightly high number of false
positives for classes 0, 4 and 5. Classes 1 and 2 also have
a number of false negatives; however, the results are much
more in line with our expectations for a classification problem
like this. This effect can also be seen in the PR curves in
Figure 7. Here, we see that classes 0 and 2 are the most
difficult for our classifier. In summary, we have examined
an example in which the OvR style made a great classifier
worse, and another in which it made a very bad classifier
much better. Judging by the table of average differences, the
latter case seems to be slightly more common, and in the cases
in which the classifier performed worse, it was usually not by
an unacceptable amount.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on class 0 (AUC: 0.692)

class 1 (AUC: 0.920)
class 2 (AUC: 0.567)
class 3 (AUC: 0.963)
class 4 (AUC: 0.975)
class 5 (AUC: 0.562)
class 6 (AUC: 0.848)
class 7 (AUC: 0.950)
micro-avg (AUC: 0.685)

(a) Multiclass PR curves

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on class 0 (AUC: 0.868)

class 1 (AUC: 0.954)
class 2 (AUC: 0.803)
class 3 (AUC: 0.991)
class 4 (AUC: 0.982)
class 5 (AUC: 0.737)
class 6 (AUC: 0.961)
class 7 (AUC: 0.982)
micro-avg (AUC: 0.872)

(b) Binary PR curves

Fig. 7: PR curves for Mobilenet.

2) Discussion: It is interesting to examine the raw numbers,
but it is difficult to intuit how using an OvR strategy effects the
accuracy metrics based on them. In Figure 8, we present two
plots that should help us with this. The first, a bar plot with
error bars, shows us the small improvements to the average
values we saw in the previous sections. We also see that the
error bars are quite large for some of these metrics, which
makes sense as there is little data.

However, the second plot tells an exciting story. The box
plot shows us one of the effects that the action of switching to
an OvR strategy has on accuracy. We can see that this changes
the distribution of the accuracies significantly. The majority of
the observed values fall into a smaller range on the OvR side of
the plot, both in the positive and negative senses. This means

that the best performers in the multiclass style have become
slightly worse, and the worst performers have become slightly
better. This seems to reflect our previous observations on the
effects. We can see that, specifically, the second quartile (or
median) in the box plot has become much higher for many of
the metrics.

F1 ACC MCC PREC REC SPEC
Metric

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Type
Multi
OVR

(a) Bar plot of average metrics
on the test set for both OvR and
multiclass network styles

F1 ACC MCC PREC REC SPEC
Metric

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lu

e

Type
Multi
OVR

(b) Box plot of metrics on the test
set for both OvR and multiclass
network styles

Fig. 8: Summary plots of the testing metrics.

C. Goals and Recommendations

At the beginning of the experiment section, we discussed
some of the requirements in terms of accuracy and speed
for the medical scenario. In Table VIII, we have outlined
which networks achieved which requirements for the medical
scenario. The same effect is visible here as in the previous
section, that the best networks from multiclass now fail
to achieve some of the same classification goals. However,
overall, the number of classification goals not met has reduced
from 34 in the multiclass case to 31 in the OvR case. A
few of the cases in which we met only the minimum goals
have also changed to meet the desired goals in the OvR case,
particularly for specificity. Unfortunately, fewer architectures
meet our minimum goals for recall in the OvR style, with
only one classifier achieving this. In our specific case, the
best classifier was a multiclass style network, NASNet Mobile,
which met all of our goals, in addition to being extremely fast.
We aimed to have high F1 and MCC scores in our results, and,
as we can see, the number of architectures that met our goals
increased for both of these scores in the OvR style. In terms
of speed, the effect of the OvR style becomes apparent, i.e.,
from almost all networks exceeding the desired FPS goals,
only two reach this this goal now, and six do not meet our
requirements for real-time processing. The best classifier in
the OvR configuration was NASNet Large, which was able to
achieve only 6 FPS during testing. MobileNet in the multiclass
style is over 100 times faster by comparison, although it is not
a particularly good classifier.

Giving direct recommendation on when to use which type of
system depend on many paramenters, but based on our results
discussed above, we can at least recommend that:

• If your application requires as high classification accuracy
as possible (tuning the last persentages), you achieve

Goals F1 ACC MCC PREC REC SPEC FPS

M
U

LT
I

VGG16 Des. Des. Des. Des. Des. Des. Des.
VGG19 Des. Des. Des. Des. Des. Des. Des.
Inception v3 N/A N/A N/A Des. No Min. Des.
DenseNet 121 N/A N/A N/A Des. No Min. Des.
DenseNet 169 N/A N/A N/A N/A No Min. Des.
DenseNet 201 N/A N/A N/A N/A No Min. Des.
Xception N/A N/A N/A N/A No Min. Des.
Inception RN v2 N/A N/A N/A N/A No Min. Des.
Mobilenet N/A N/A N/A N/A No Min. Des.
NASNet Large Des. Des. Des. Des. No Des. Min.
NASNet Mobile Des. Des. Des. Des. Des. Des. Des.

O
vR

VGG16 Des. N/A Des. Des. No Des. Min.
VGG19 Des. Des. Des. Des. No Des. Min.
Inception v3 Des. N/A Des. Des. No Des. Min.
DenseNet 121 N/A N/A N/A N/A No Min. No
DenseNet 169 N/A N/A N/A N/A No Min. No
DenseNet 201 N/A N/A N/A N/A No Min. No
Xception N/A N/A N/A Des. No Min. No
Inception RN v2 N/A N/A Des. Des. No Min. No
Mobilenet Des. N/A Des. Des. No Des. Des.
NASNet Large Des. Des. Des. Des. Des. Des. No
NASNet Mobile Des. N/A Des. Des. No Des. Des.

TABLE VIII: Summary of which requirements were achieved
for each network style and architecture. Green cells (Des.) met
our desired goals, yellow cells (Min.) met our minimum goal,
red cells did not meet any goals, and cells labeled N/A did
not meet our desired goal but did not have a minimum goal
specified.

better results using an OvR type of system, i.e., muliple
binary classification pipelines in parallel.

• If you have any type of system requirements in addition to
high accuracy, e.g., real-time feedback, a single multiclass
classification system still gives you a high accuracy, but
at a lower resource consumption.

ph: Any other recommendations we can give?

V. CONCLUSION

We have provided a comprehensive comparison of a sin-
gle multiclass versus OvR classifiers using different deep
learning architectures, evaluating both classification accuracy
and system resource consumption and speed. Based on our
final results, we observe that the performance impact of
using the OvR style is rather significant. On average, our
classification slowed almost proportionally to the number of
classes. However, for the classification experiments, the results
showed that the classification accuracy increased on average
and that the best networks of both styles achieved almost the
same performance, meeting the goals for our medical use case
scenario.

REFERENCES

[1] Endoscopic camera — vimex endoscopy. http://vimex-endoscopy.com/
aparatura-endoskopowa/kamera/?lang=en. (Accessed on 05/11/2018).

[2] Mirocam capsule endoscope camera offers a broder field of
170 degrees which enables a more through diagnosis of the
small bowel. http://www.reyyanmedical.com/index.php?yazigoster=
mirocam-endoscopic-camera&dil=en. (Accessed on 05/11/2018).

[3] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 265–283, 2016.

[4] Robbie Allen. Nips accepted papers stats machine learning in
practice medium. https://medium.com/machine-learning-in-practice/
nips-accepted-papers-stats-26f124843aa0. (Accessed on 05/20/2018).

[5] François Chollet et al. Keras. https://keras.io, 2015.
[6] Nvidia Corporation. Geforce gtx 1080 ti graphics cards —

nvidia geforce. https://www.nvidia.com/en-us/geforce/products/10series/
geforce-gtx-1080-ti/. (Accessed on 05/07/2018).

[7] Juerg Haefliger, Yves Lehareinger, Patrick Blessing, Peter F. Niederer,
Daniel Doswald, and Norbert Felber. High-definition digital endoscopy.
In Proceedings of SPIE 3595, Biomedical Diagnostic, Guidance, and
Surgical-Assist Systems, 1999.

[8] Jin-Hyuk Hong and Sung-Bae Cho. A probabilistic multi-class strat-
egy of one-vs.-rest support vector machines for cancer classification.
Neurocomputing, 71(16-18):3275–3281, 2008.

[9] Michal F. Kaminski, Jaroslaw Regula, Ewa Kraszewska, Marcin
Polkowski, Urszula Wojciechowska, Joanna Didkowska, Maria Zwierko,
Maciej Rupinski, Marek P. Nowacki, and Eugeniusz Butruk. Quality
indicators for colonoscopy and the risk of interval cancer. New England
Journal of Medicine, 362(19):1795–1803, 2010.

[10] Stephen Marsland. Machine Learning: An Algorithmic Perspective,
Second Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[11] K. Pogorelov, O. Ostroukhova, A. Petlund, P. Halvorsen, T. de Lange,
H. N. Espeland, T. Kupka, C. Griwodz, and M. Riegler. Deep learning
and handcrafted feature based approaches for automatic detection of
angiectasia. In Proceeding of the IEEE EMBS International Conference
on Biomedical Health Informatics (BHI), pages 365–368, March 2018.

[12] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz,
Sigrun Losada Eskeland, Thomas de Lange, Dag Johansen, Con-
cetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter Thelin
Schmidt, Michael Riegler, and Pål Halvorsen. Kvasir: A multi-class
image dataset for computer aided gastrointestinal disease detection. In
Proceedings of the ACM Multimedia Systems Conference (MMSYS),
pages 164–169, 2017.

[13] Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland,
Thomas de Lange, Dag Johansen, Carsten Griwodz, Peter Thelin
Schmidt, and Pål Halvorsen. Efficient disease detection in gastrointesti-
nal videos–global features versus neural networks. Multimedia Tools
and Applications, 76(21):22493–22525, 2017.

[14] Rees, CJ. et. al. Narrow band imaging optical diagnosis of small col-
orectal polyps in routine clinical practice: the detect inspect characterise
resect and discard 2 (discard 2) study. Gut, 66, 2017.

[15] Michael Riegler, Konstantin Pogorelov, Sigrun Losada Eskeland, Pe-
ter Thelin Schmidt, Zeno Albisser, Dag Johansen, Carsten Griwodz,
Pål Halvorsen, and Thomas De Lange. From annotation to computer-
aided diagnosis: Detailed evaluation of a medical multimedia system.
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), 13(3):26:1–26:26, May 2017.

[16] Michael Riegler, Konstantin Pogorelov, Pål Halvorsen, Thomas
de Lange, Carsten Griwodz, Peter Thelin Schmidt, Sigrun Losada
Eskeland, and Dag Johansen. Eir - efficient computer aided diagnosis
framework for gastrointestinal endoscopies. In Proceedings of the IEEE
Workshop on Content-Based Multimedia Indexing (CBMI), pages 1–6,
2016.

[17] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classifica-
tion. Journal of machine learning research, 5(Jan):101–141, 2004.

[18] van Doorn, SC. et. al. Polyp morphology: an interobserver evaluation for
the paris classification among international experts. Am J Gastroenterol,
110, 2015.

[19] Jianhua Xu. An extended one-versus-rest support vector machine for
multi-label classification. Neurocomputing, 74(17):3114–3124, 2011.

[20] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learn-
ing transferable architectures for scalable image recognition. CoRR,
abs/1707.07012, 2017.

http://vimex-endoscopy.com/aparatura-endoskopowa/kamera/?lang=en
http://vimex-endoscopy.com/aparatura-endoskopowa/kamera/?lang=en
http://www.reyyanmedical.com/index.php?yazigoster=mirocam-endoscopic-camera&dil=en
http://www.reyyanmedical.com/index.php?yazigoster=mirocam-endoscopic-camera&dil=en
https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0
https://medium.com/machine-learning-in-practice/nips-accepted-papers-stats-26f124843aa0
https://keras.io
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/

	Introduction
	Methodology
	Experiments
	Classification performance and speed discussion
	System Performance
	Classification Accuracy
	Failure analysis
	Discussion

	Goals and Recommendations

	Conclusion
	References

