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Abstract. Gastrointestinal (GI) pathologies are periodically screened,
biopsied, and resected using surgical tools. Usually the procedures and
the treated or resected areas are not specifically tracked or analysed dur-
ing or after colonoscopies. Information regarding disease borders, devel-
opment and amount and size of the resected area get lost. This can lead to
poor follow-up and bothersome reassessment difficulties post-treatment.
To improve the current standard and also to foster more research on the
topic we have released the “Kvasir-Instrument” dataset which consists
of 590 annotated frames containing GI procedure tools such as snares,
balloons and biopsy forceps, etc. Beside of the images, the dataset in-
cludes ground truth masks and bounding boxes and has been verified by
two expert GI endoscopists. Additionally, we provide a baseline for the
segmentation of the GI tools to promote research and algorithm develop-
ment. We obtained a dice coefficient score of 0.9158 and a Jaccard index
of 0.8578 using a classical U-Net architecture. A similar dice coefficient
score was observed for DoubleUNet. The qualitative results showed that
the model did not work for the images with specularity and the frames
with multiple instruments, while the best result for both methods was
observed on all other types of images. Both, qualitative and quantita-
tive results show that the model performs reasonably good, but there
is a large potential for further improvements. Benchmarking using the
dataset provides an opportunity for researchers to contribute to the field
of automatic endoscopic diagnostic and therapeutic tool segmentation
for gastrointestinal (GI) endoscopy.
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1 Introduction

Minimally Invasive Surgery (MIS) is a commonly used technique in surgical
procedures. The advantage of MIS is that small surgical incisions are made in
the patient for endoscopy that causes less pain, reduced time of the hospital
stay, fast recovery, reduced blood loss, and less scaring process as compared
to the traditional open surgery. The nature of the operation is complex, and
the surgeons have to precisely tackle hand-eye coordination, which may lead to
restricted mobility and a narrow field of view [5].

However, unlike the treatment of accessory organs such as liver and pan-
creas, no incision is required for GI tract organs (oesophagus, stomach, duode-
num, colon, and rectum). GI procedures also includes both, minimally invasive
surveillance and treatment (including surgery) procedures. A varied number of
tools are used as per the requirement of these procedures. For example, balloon
dilatation to help open the GI surface, biopsy forceps for tissue sample collection,
polyp removal with snares and submucosal injections.

A computer and robotic-assisted surgical system can enhance the capability
of the surgeons [9]. It can provide the opportunity to gain additional information
about the patient, which can be useful for decision making during surgery [6].
However, it is difficult to understand the spatial relationship between surgical
instruments, cameras, and anatomy for the patient [12]. In GI tract endoscopy,
it is vital to track and guide surgeons during tumor resection or biopsy collection
from a defined site, and help to correlate the biopsied samples and treatment
locations post-diagnostic and therapeutic or surgical procedures. While most
datasets and automated-algorithm developments for instrument segmentation
are mostly focused on laparoscopy-based surgical removal, automatic guidance
of tools for GI tract surgery has not been addressed before.

New developments in the area of robot-assisted systems show that there is
potential for developing a fully automated robotic surgeon [15]. The da Vinci
robot is a surgical system that is considered the de-facto standard-of-care for
certain urological, gynecological, and general procedures [4]. Thus, it is criti-
cal to have information regarding the intra-operative guidance, which plays an
essential role in decision making. However, there are specific challenges, such
as limited field of view and difficulties with the surgeons handling the instru-
ments during surgery [14]. Therefore, image-based instrument segmentation and
tracking are gaining more and more attention in both robotic and non-robotic
minimally invasive surgery. Previous work targeting instrument segmentation,
detection, and tracking on endoscopic video images failed on challenging images
such as images with blood, smoke, and motion artifacts [14]. Other reasons that
make semantic segmentation of surgical instruments a challenging task are the
presence of images containing shadows, specular reflections, blood, camera lens
fogging, and the complex background tissue [15]. The segmentation masks of
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these images can be useful for instrument detection and tracking. Similarly, in
the GI tract procedures, from tissue sample collection to surgical removal of
pathologies is performed in low field-of-view areas. Visual clutter such as arti-
facts, moving objects, and fluid, hinders the localisation of the target site during
surgical procedures. Additionally, currently, there is no way of correlating the
tissue sample collection with biopsied location and assessing surgical procedure
effectiveness or even post-treatment recovery analysis. Automated localisation
and tracking of instruments can help guide the endoscopists and surgeons to
perform their tasks more effectively. Also, post-procedure video analysis can be
done using these automated methods to track such tools, thus enabling improved
surgical procedures or surveillance and their post-assessment. Currently, this is
an open problem in the research community, where most procedures are not
automated in GI tract endoscopy.

While there is an open research question for the automated tool detection
and guidance in GI procedures, there is a lack of available public datasets. We
aim to initiate the development of automated systems for the segmentation of
GI tract diagnostic and therapeutic endoscopy tools. This research direction will
enable tracking and localisation of essential tools used in endoscopy and help to
improve targeted biopsies and surgeries in complex GI tract organs. To accom-
plish this, and to address the lack of publicly available labeled datasets, we
have publicly released 590 pixel-level annotated frames that comprise of tools
such as balloon dilation for facilitating opening of GI organs, biopsy forceps
for tissue sample collection, polyp removal with snares, submucosal injections,
radio-frequency ablation of dysplastic mucosa using probes and some other re-
lated surgical/diagnostic procedures. The released video frames will allow for
building automated machine learning algorithms that can be applied during
clinical procedures or post-analyses. To commence this effort, we provide a base-
line benchmark on this dataset. U-Net [13] is a common semantic segmentation
based architecture for medical image segmentation tasks. In this paper, we thus
present results utilising two U-Net based architectures. The provided dataset is
open and can be used for research and development, and we invite multimedia
researchers to improve over the provided baseline methods. The main contribu-
tions of this paper are:

– Release of 590 annotated bounding box and segmentation masks of GI di-
agnostic and surgical tool dataset. To the best of our knowledge, this is the
first dataset of segmented tools in the GI tract.

– Benchmark of the provided dataset using U-Net and DoubleUNet architec-
tures for semantic segmentation. Standard computer vision metrics are used
for a fair comparison of methods and possible future work.

2 Related Work

Surgical vision is evolving as a promising technique to segment and track instru-
ments using endoscopic images [6]. To gather researchers on a single platform,
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Table 1: Available instrument datasets

Dataset Content Task type Procedure

Instrument

segmentation

and tracking (2015) [6]

Rigid and robotic

instruments

Segmentation

and tracking
Laparoscopy

Robotic Instrument

Segmentation (2017) [4]

Robotic surgical

instruments

Binary segmentation,

part based

segmentation,

instrument

segmentation

Abdominal

porcine

Robotic Scene

Segmentation (2018) [3]

Surgical instruments

and other

Multi-instance

segmentation

Robotic

nephrectomy

Robust Medical

instrument

segmentation (2019) [14]

laparoscopic

instrument

Binary segmentation,

multiple instance

detection, multiple

instance segmentation

Laparoscopy

Kvasir-Instrument

Diagnostic and

therapeutic tools

in endoscopic images

Binary segmentation

Detection and

localization

Gastroscopy

& colonoscopy

Endoscopic vision (EndoVis) challenge is being organized since 2015 at Medi-
cal Image Computing and Computer Assisted Intervention Society (MICCAI)
with an exception in 2016. The Endovis challenge hosts different sub-challenges.
The year-wise information about the hosted sub-challenge can be found on the
challenge website1.

Bodenstedt et al. [6] organized ”EndoVis 2015 Instrument sub-challenge” for
developing new techniques and benchmarking the Machine Learning (ML) algo-
rithm for segmentation and tracking of the instruments on a common dataset.
The organizers challenged on two different tasks, (1) Segmentation, (2) Tracking.
The goal of the challenge was to address the problem related to segmentation and
tracking of articulated instruments in both laparoscopic and robotic surgery2.
A comprehensive evaluation of the methods used in instrument segmentation
and tracking task for minimally invasive surgery is summarized in this work [6].
The extensive evaluation showed that deep learning works well for instrument
segmentation and tracking tasks.

In 2017, a follow up to the previous 2015 challenge was organized called
”Robotic Instrument Segmentation Sub-Challenge”3. The challenge was part

1https://endovis.grand-challenge.org/
2https://endovissub-instrument.grand-challenge.org/

EndoVisSub-Instrument/
3https://endovissub2017-roboticinstrumentsegmentation.grand-challenge.

org/
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of the Endoscopic vision challenge that was organized at MICCAI 2017. This
challenge offered three tasks: (1) Binary segmentation task, (2) Parts based seg-
mentation task, and (3) Instrument type segmentation task. The goal of the
binary segmentation task was to separate the image into an instrument and
background. Parts segmentation challenged the participants to divide the bi-
nary instrument into a shaft, wrist, and jaws. Type segmentation challenged
the participants to identify different instrument types. A detailed description of
the challenge tasks, dataset, methodologies used by ten participating teams in
different tasks, challenge design, and limitation of the challenge can be found in
the challenge summary paper [4].

In 2019, a similar challenge called ”Robust Medical Instrument Segmenta-
tion Challenge 2019”4 was organized by Roß et al. [14]. This challenge offered
three tasks (1) Binary segmentation, (2) Multiple instance detection, and (3)
Multiple instance segmentation. The challenge was focused on addressing two
key issues in surgical instruments, Robustness and Generalization, and bench-
mark medical instrument segmentation and detection on the provided surgical
instrument dataset. EAD2019 challenge focused on endoscopic artefact detection
primarily, but also included instrument class in their detection, segmentation and
“out-of-sample” generalisation tasks. The challenge outcome revealed that most
methods performed well for instrument detection and segmentation class [2].
However, this dataset mostly consisted of large biopsy forceps.

In Table 1, we present available instrument datasets in the field. All of the
datasets were designed for hosting challenges. The training dataset is released for
all the datasets (except ROBUST-MIS); however, the test dataset is not provided
by the challenge organizers. Thus, it makes it difficult to calculate and compare
the results on the test dataset. However, experiments are still possible by splitting
the training dataset into train, validation, and testing sets. The Robust Medical
instrument segmentation dataset is yet not public. However, the participants
who have participated in the challenge have the opportunity to download the
training dataset. Usually, there are certain practicalities to download the dataset,
such as signing the agreement and, getting permission from the owner, which
takes time, and it is inconvenient. Moreover, to participate in the challenge, the
participants have to signup in the particular year, and usually, the organizers do
not make the dataset public unless they make a publication out of it, meaning
it may take up to years. Thus, the significance of the datasets becomes less as
the technology is changing rapidly. More information on available instrument
datasets, contents, and offered tasks by the organizers and about the availability
can be found from Table 1.

The literature review shows that there are only a few open-access datasets
for MIS instrument segmentation. However, to the best of our knowledge, GI
tract organ tools have never been explored. This is the first attempt to identify
this avenue and provide the community with a curated and annotated public
dataset that comprises of diagnostic and therapeutic tools in the GI tract. We
believe that the presented dataset and the widely used U-Net based algorithm

4https://robustmis2019.grand-challenge.org/
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Fig. 1: Distribution of Kvasir-Instrument dataset. On left: Small (green),
medium (blue) and large (pink) sized tool clusters. On right: sample images
with variable tool size in images.

benchmark will encourage the multimedia researchers to develop a robust and
efficient algorithm on the provided dataset that can help clinical procedures in
endoscopy.

3 Kvasir-Instrument dataset

In this section, we introduce the Kvasir-Instrument dataset with details on how
the data was collected, the annotation protocol, and the dataset’s structure. The
dataset was collected from endoscopic examinations performed at the Bærum
Hospital in Norway. The unlabelled images’ frames are selected from the Hy-
perKvasir dataset [7]. HyperKvasir provides frame-level annotations for 10,662
frames for 23 different classes. However, the majority of the images (99,417
frames) are not labeled. We trained a model using the labeled samples of this
dataset and tried to predict the classes of the unlabeled samples. Although our
algorithm [16, 17] could not classify all the images correctly; however, we were
able to classify the instrument class out of hundreds of thousands of provided im-
age frames. Additionally, some images were extracted manually from the polyp
class of the Kvasir-SEG [11] dataset. Below, we present the acquisition and an-
notation protocols used in the data preparation:

Data acquisition: The images and videos were collected using standard en-
doscopy equipment from Olympus (Olympus Europe, Germany) and Pentax
(Pentax Medical Europe, Germany) at Vestre Viken Hospital Trust, Norway.
All the data used in this study were obtained from videos for procedures that
had followed the patient consenting protocol of Bærum Hospital. Additionally,



Title Suppressed Due to Excessive Length 7

Fig. 2: Kvasir-Instrument dataset: First two rows represent frames with
biopsy forceps, the middle row consist of metallic clip, the fourth row is a radio-
frequency ablation probe and the last row depicts the crescent and hexagonal
shaped snares for polyp removal.

no patient information was used for archiving. We have performed a random
naming for each publicly released frame for effective annonymisation.
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Annotation strategy: We have uploaded the Kvasir-Instrument dataset to label-
box5 and labeled the Region of Interest (ROI) in the image frames, i.e., the ROI
of diagnostic and therapeutic tools in our cases and generated all the ground
truth masks. Figure 2 shows the example images, bounding box, image anno-
tation, and generated masks for the Kvasir-Instrument dataset. All annotations
were then exported in a JSON format which was used to generate masks for
each of the annotations. Related codes and more information about the dataset
can be found here6.

The exported file contained the information of the images along with the
coordinate points that were used for mask and bounding box generation. All
annotations were performed using a three-step strategy:

– First, the selected samples were labeled by two experienced research assis-
tants.

– The annotated samples where cross-validated for their delineation quality
by two experienced GI experts (more than 10 years of work experience in
colonoscopy).

– Finally, the suggested changes were incorporated using the comments from
experts and were validated for only those samples.

The Kvasir-Instrument dataset includes 590 frames consisting of various GI
endoscopy tools used during both, endoscopic surveillance and therapeutic or
surgical procedures. A thorough annotation strategy (detailed above) was used to
create bounding boxes and segmentation masks. The dataset consists of variable
tool size with respect to image height and width as presented in Figure 1. The
majority of the tools are small and medium-sized. The sample bounding box
annotation, precise area delineation and extracted masks, are shown in Figure 2.

Our dataset is publicly available, and can be accessed at: https://datasets.
simula.no/kvasir-instrument/. It consists of original image samples (in JPEG
format), their corresponding masks (in PNG format), and bounding box infor-
mation (in JSON format). A sample python script to help researchers visualise
the data is also provided.

4 Benchmarking, results and discussion

In this section, we explore encoder-decoder based classical models for baseline
algorithm benchmarking, their implementation details for reproducibility, details
on evaluation metric used for quantitative analysis, and results and discussion.

4.1 Baseline methods

U-Net has been explored in the past through many biomedical segmentation
challenges and has shown strength towards an effective supervised segmenta-
tion model. In this paper, we, therefore, use U-Net based architectures on our

5https://www.labelbox.com/
6https://github.com/DebeshJha/Kvasir-Instrument
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Kvasir-Instrument dataset to provide a baseline result for future comparisons.
U-Net uses an encoder-decoder architecture, that is, a contractive feature extrac-
tion path and expansive path with a classifier to perform binary classification of
each image pixel in an upsampled feature map. In our previous work, we have
shown that the strength of supervised classification can be amplified by using the
output mask from one U-Net [13] architecture to the other by proposing Dou-
bleUNet [10]. In addition, the DoubleUNet architecture uses VGG-19 pretrained
on ImageNet as one of the encoder block, squeeze and excite block and Atrous
spatial pyramid pooling (ASPP) block. All other components in the network
remain the same as the U-Net. For both networks, dice loss gives an 1−DSC,
where DSC is the dice similarity coefficient (see Eq. 1 below).

4.2 Implementation Details

We have implemented the U-Net-based and DoubleUNet based architectures
using the Keras framework [8] with TensorFlow [1] as backend running on
the Experimental Infrastructure for Exploration of Exascale Computing (eX3),
NVIDIA DGX-2 machine. We have resized the training dataset into 512×512.
We set the batch size of 8 for training. Both architectures are optimized by using
the Adam optimizer. We have made use of dice loss as the loss function. We split
the dataset using 80% of the dataset for training and the remaining 20% for the
testing (evaluation). We performed basic augmentation, such as horizontal flip,
vertical flip, and random rotation. Moreover, we have also provided the train-test
split so that others can improve the methods on the same dataset.

4.3 Evaluation Metrics

In this medical image segmentation approach, each pixel of the diagnostic and
therapeutic tool either belongs to a tool or non-tool region. Dice similarity coef-
ficient (DSC) is the main evaluation metric used to evaluate this task. Addition-
ally, we calculate other standard metrics such as Jaccard similarity coefficient
(JC) or intersection over union (IoU), precision, recall, overall accuracy, F2, and
frames per second (FPS) as it is a commonly used metric in biomedical image
segmentation tasks. The mathematical expressions for them are as follows:

DSC =
2 · tp

2 · tp + fp + fn
(1)

JC or IoU =
tp

tp + fp + fn
(2)

Recall (r) =
tp

tp + fn
(3)

Precision (p) =
tp

tp + fp
(4)

F2 =
5p× r

4p + r
(5)
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Table 2: Baseline results for tool segmentation

Method JC DSC F2-score Precision Recall Acc. FPS

U-Net [13] 0.8578 0.9158 0.9320 0.8998 0.9487 0.9864 20.4636

DoubleUNet [10] 0.8430 0.9038 0.9147 0.8966 0.9275 0.9838 10.0000

Fig. 3: Failed cases: Cap region (top) is under-segmented and small clip area
is over-segmented and consist of large number of false positives (bottom).

Overall accuracy (Acc.) =
tp + tn

tp + tn + fp + fn
(6)

Frame Per Second (FPS) =
1

sec/frame
(7)

Here, tp, fp, tn, fn are the true positives, false positive, true negative, and
false negative, respectively.

4.4 Quantitative and Qualitative results

Table 2 shows the results of the baseline methods for the tool segmentation on
the Kvasir-Instrument dataset. From the table, we can observe that the UNet
achieved a high JC of 0.8578 and DSC of 0.9158, which is slightly above than
the DoubleUNet that yielded JC of 0.8430 and DSC of 0.9038. Also, UNet
achieved a speed of 20.4636 FPS, whereas computational time is double for
DoubleUNet with only 10 FPS. Similarly, both the recall and precision scores
are very comparable for both U-Net (p = 0.8998, r = 0.9487) and DoubleUNet
(p = 0.8966, r = 0.9275).

Figure 3 shows the qualitative result on the challenging images. It can be
observed that that both UNet and DoubleUNet are under-segmenting the cap
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region (top) and over-segmenting the small clip area (bottom). Some parts of
these images are confused because of the presence of saturation areas. However,
both models was able to segment well with most endoscopic tool samples in the
dataset. This is also evident from the quantitative results.

4.5 Discussion

From the experimental results in Table 2, we can validate that the classic-
cal U-Net architecture outperforms DoubleUNet model. Additionally, U-Net is
2× faster than the DoubleUNet. This is because U-Net uses basic convolution
blocks, whereas DoubleUNet uses pre-trained encoders, ASPP, squeeze and ex-
cite blocks, all of which increases the inference latency. Here, the UNet is opti-
mized by dice loss instead of binary cross-entropy loss, which showed improved
performance during our experiments.

Further, fine-tuning on other similar datasets, rigorous data augmentation
and applying more advanced Deep learning (DL) techniques can improve the
baseline results - eventually achieving the detection, localisation, and segmenta-
tion performance needed to make the technology useful in a clinical environment.
Additionally, use of DL networks with less parameters could increase the compu-
tational efficiency thereby enabling real-time systems that can be used in clinical
settings effectively.

5 Conclusion

We have curated, annotated, and publicly released a dataset that incorporates
tools used in GI endoscopy screening and surgical procedures. The dataset con-
sists of images, bounding boxes and segmentation masks of endoscopy tools used
during different procedures in the GI tract. Additionally, we provided baseline
segmentation methods for the automatic delineation of these tools and have com-
pared them using standard computer vision metrics. In the future, we plan to
continuously increase the amount of data and also call for multi-media challenges
on using the presented dataset.
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