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Classical models for excitable tissue assume that the domain can be
represented in an homogenized manner
Technology now allows for numerical
resolutions below model resolution.

vt −∇·(Mi∇v + Mi∇ue) = −Iion,

∇·(Mi∇v + (Mi + Me)∇ue) = 0,

st = F(v , s).

How to model spatial variations
in membrane properties, or
how cellular morphology affect
the dynamics?

How to model a single cell or a
small collection of cells?
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The emerging EMI framework use a geometrically explicit representation
of the cellular domains

Find the intracellular and extracellular potentials φi = φi (x , t) and
φe = φe(x , t), and the transmembrane current IM = IM (x .t) s.t.:

−∇ · (σi∇φi ) = 0 in Ωi , (1)

−∇ · (σe∇φe) = 0 in Ωe, (2)

φM = φi − φe at Γ, (3)

σe∇φe · ne = −σi∇φi · ni = IM at Γ, (4)

∂φM

∂t
=

1
CM

(IM − Iion) at Γ. (5)

Ion concentrations are assumed to be constant in space and time –
often an accurate approximation, but not always . . .

[Krassowska & Neu 1994],
[Ying & Henriquez 2007],
[Tveito et al. 2017]

Rat cortex with ECS in red [Nicholson, 1998]
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Brain tissue is composed of networks of extracellular spaces and
primarily two classes of cells: neurons and glial cells

Left panel: Sketch of neurons and glial cells. Right panel: Micrograph of brain tissue. [OpenStax CNX, 2016]
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Movement of ions is fundamental in brain signalling and various
mechanisms ensure ionic homeostasis

[courses.lumenlearning.com]
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Movement of ions is fundamental in brain signalling and various
mechanisms ensure ionic homeostasis

[courses.lumenlearning.com]

Homeostatic mechanisms will take the ionic concentrations back towards baseline levels, e.g.:
• Na+/K+/ATPase pumps (3 Na+ out, 2 K+ in),
• cotransporters (KCC2, NKCC1),
• glial K+ buffering.
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Ion concentration changes are a trademark of several pathological
conditions, such as epilepsy or spreading depression

• Homeostatic mechanisms are not able to
”keep up”

• Shifts in the ECS ion concentrations
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The extracellular ion composition changes with local neuronal activity
and across brain states

Ionic shift may set up osmotic gradients
causing cellular swelling.

[Rasmussen, 2021]
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Modeling electrodiffusion: main assumptions and core ideas
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Electrodiffusion is governed by the Nernst–Planck equation, stating that
ions move due to diffusion or drift in the electrical field

Diffusion

Jk = −Dk∇[k ]︸ ︷︷ ︸
diffusion

Electrodiffusion

Jk
r = −Dk∇[k ]︸ ︷︷ ︸

diffusion

− Dk zk F
RT

[k ]∇φr︸ ︷︷ ︸
electrical drift

.
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Ions are conserved within each region and move due to diffusion or drift
in the electrical field (Nernst–Planck)

Let ck
r = ck

r (x , t) denote the concentration of (ion)
species k in compartment r . Conservation of ions in the
bulk of each compartment yields:

∂ck
r

∂t
+∇ · Jk

r = 0,

where the ion flux density is given by:

Jk
r = −Dk

r ∇ck
r︸ ︷︷ ︸

diffusion

− Dk
r

zk F
RT

ck
r ∇φr︸ ︷︷ ︸

electrical drift

.

2|K |+ 2 unknowns, but only 2|K | equations:

• Poisson–Nernst–Planck (PNP)

• Kirchhoff–Nernst–Planck (KNP)

Tissue domain Ω = Ωi ∪ Ωe ⊂ Rd , with (ion)
species k ∈ K (e.g. Na+, K+, Cl−).

11 / 37



Ions are conserved within each region and move due to diffusion or drift
in the electrical field (Nernst–Planck)

Let ck
r = ck

r (x , t) denote the concentration of (ion)
species k in compartment r . Conservation of ions in the
bulk of each compartment yields:

∂ck
r

∂t
+∇ · Jk

r = 0,

where the ion flux density is given by:

Jk
r = −Dk

r ∇ck
r︸ ︷︷ ︸

diffusion

− Dk
r

zk F
RT

ck
r ∇φr︸ ︷︷ ︸

electrical drift

.

2|K |+ 2 unknowns, but only 2|K | equations:

• Poisson–Nernst–Planck (PNP)

• Kirchhoff–Nernst–Planck (KNP)

Tissue domain Ω = Ωi ∪ Ωe ⊂ Rd , with (ion)
species k ∈ K (e.g. Na+, K+, Cl−).

11 / 37



A charge imbalance in the ECS will typically vanish within nanoseconds

t = 0

t < 10 ns

DCl− > DNa+ : Diffusion
give net (−) charge
transport from left to right.

t > 10 ns

Quasi steady state: the
potential φe prevents
further charge separation.
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A charge imbalance in the ECS will typically vanish within nanoseconds

t = 0

t < 10 ns

DCl− > DNa+ : Diffusion
give net (−) charge
transport from left to right.

t > 10 ns

Quasi steady state: the
potential φe prevents
further charge separation.

Poisson–Nernst–Planck (PNP):

∇2φr =
−ρr

εr
, ρr = F

∑
k

zk [k ]r .

Kirchhoff–Nernst–Planck (KNP):

∂ρr

∂t
= 0, ρr = F

∑
k

zk [k ]r .
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The electroneutrality condition (KNP) is a good approximation on
spatiotemporal scales larger than ∼ nanoseconds / nanometers

Poisson–Nernst–Planck (PNP)

Explicit modelling of charge relaxation
processes - requires fine resolution

[Lopreore et al., 2008]

[Pods et al., 2013]

[Holcman and Yuste, 2015]

[Cartailler et al., 2017, 2017]

[Sacco et al., 2017]

Kirchhoff–Nernst–Planck (KNP)

Electroneutrality assumption - good
approximation on larger scales (> nano)

[Mori, 2009]

[Ellingsrud et al., 2020]
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The KNP-EMI model
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A computational framework for ionic electrodiffusion in brain tissue with
explicit representation of the cells (KNP-EMI)

Consider a (tissue) domain Ω = Ωi ∪ Ωe ⊂ Rd , where Ωi (with
boundary Γ) and Ωe represent respectively intracellular and
extracellular regions, with (ion) species k ∈ K (e.g. Na+, K+,
Cl−).

Rat cortex with ECS in red [Nicholson, 1998]
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A computational framework for ionic electrodiffusion in brain tissue with
explicit representation of the cells (KNP-EMI)

For each ion species k ∈ K , find the ion concentrations
ck

r : Ωr × (0,T ]→ R (mol/m3) and the electrical potentials
φr : Ωr × (0,T ]→ R (V) such that:

∂ck
r

∂t
+∇· Jk

r = 0 in Ωr , (6)

− F
∑

k

zk ∇· Jk
r = 0 in Ωr , (7)

for r = {i, e}, where the ion flux densities are given by:

Jk
r = −Dk

r ∇ck
r − zkψk ck

r ∇φr , in Ωr . (8)

The system remains to be closed by appropriate initial
conditions, boundary conditions, and importantly interface
conditions.

Rat cortex with ECS in red [Nicholson, 1998]
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A computational framework for ionic electrodiffusion in brain tissue with
explicit representation of the cells (KNP-EMI)

At the interface Γ, apply the following coupling conditions, and
find the total ionic current density IM : Γ× (0,T ]→ R (cm/m2s)
such that:

φi − φe = φM , on Γ, (9)

∂φM

∂t
=

1
CM

(IM −
∑
k∈K

Ik
ion), on Γ, (10)

IM ≡ F
∑

k

zk Jk
i · ni = −F

∑
k

zk Jk
e · ne, on Γ, (11)

Jk
i · ni =

Ik
ion + αk

i Icap

Fzk , on Γ, (12)

−Jk
e · ne =

Ik
ion + αk

e Icap

Fzk , on Γ. (13)

The transmembrane ion fluxes Ik
ion = Ik

ion(φM , [k ], s) are subject
to modelling, and may depend on gating variables governed by
ODEs.

Rat cortex with ECS in red [Nicholson, 1998]
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The strongly coupled and non-linear KNP-EMI equations set a rich
scene for numerical exploration and can be solved in a multitude of ways

Numerical strategy:

• Split PDEs from ODEs (two-step first order)

• Finite difference ODE and PDE time discretizations (explicit handling of non-linear terms)

• Two different finite element based spatial discretization schemes:

Multi-dimensional form with mortar elements

Ωi

Ωe
Γ

ni

ne

ΓDe

ΓNe

Ω4,ℎ

Ω8,ℎ
Γℎ

[Illustrations taken from Tveito et al. 2021. Modeling Excitable
Tissue: The EMI Framework, chapter 5, Springer Nature]

Single-dimensional form with DG elements

Ωi

Ωe
Γ

ni

ne

ΓDe

ΓNe

Ωℎ
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We discretize the PDEs in space using a multi-dimensional formulation
and mortar finite element spaces

Continuous form

The jumps across the interface Γ hinders us from
defining global, differentiable concentrations and
potentials in H1(Ω). We instead seek for each r :

ck
r ∈ H1(Ωr ), φr ∈ H1(Ωr ), IM ∈ H1(Γ).

At each time step, find ck
i , φi : Ωi → R, ck

e ,
φe : Ωe → R and IM : Γ→ R such that:

∂t −∆ ±∆ ±ε
±∆ −∆ −I

I −I I
−I −∆ ±∆
±ε ±∆ ∂t −∆




ck
i

φi

IM
φe

ck
e

 = f

Different variational problems posed over
non-overlapping domains.

Spatial discretization

We discretize in space using a mortar finite element
method:

ck
r,h ∈ Vr,h, φr,h ∈ Tr,h, IM,h ∈ Sh,

where Vr,h, Tr,h, Sh are constructed using
continuous piecewise linear polynomials.

Ωi

Ωe
Γ

ni

ne

ΓDe

ΓNe

Ω4,ℎ

Ω8,ℎ
Γℎ

[Ωe,h and Ωi,h have identical facets on Γ, and the facets define the
finite element cells of Γh .]
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Implementing the system requires finite element software with mixed
dimensional functionality

For a problem with a smooth manufactured solution we
observe expected convergence rates.

cNa
i = 0.7 + 0.3 sin(2πx) sin(2πy)(1 + e−t ),

cNa
e = 1.0 + 0.6 sin(2πx) sin(2πy)(1 + e−t ),

φe = cos(2πx)cos(2πy);φi = φe(1 + e−t ),

. . .

[Daversin-Catty, et al. 2021. Abstractions and automated algorithms for
mixed domain finite element methods. TOMS]
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Alternatively, we can consider a single-dimensional formulation for the
PDEs, discretized with DG elements

Single-dimensional form

• We eliminate the unknown IM : Γ→ R.

• We seek global concentrations and potentials:

ck ∈ H1(∪r Ωr ), φ ∈ H1(∪r Ωr ),

belonging to the broken H1 space H1(∪r Ωr ) :=
{u ∈ L2(Ωr ) : u|Ωr ∈ H1(Ωr ), r ∈ {i, e}}.

Splitting scheme

• Split the equations for the concentrations and
the potential and obtain two smaller, and more
standard, sub-problems.

DG finite element discretization
Look for approximations in broken polynomial
spaces for k ≥ 1:

V k
h (Eh) = {v ∈ L2(Ω) : v |E ∈ Pk (E), ∀E ∈ Eh},

where PK (E) is the space of polynomials with total
degree less than or equal to k .

Ωi

Ωe
Γ

ni

ne

ΓDe

ΓNe

Ωℎ

[Illustration taken from Tveito et al. 2021. Modeling Excitable
Tissue: The EMI Framework, chapter 5, Springer Nature]
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We apply a splitting scheme to obtain two smaller, and importantly more
standard, sub-problems

Consider n ∈ [1, . . . ,N] with tn and assume that
ck

n−1 at time step tn−1 are known.

Step I: Find φn ∈ H(Ω) s.t.:

− F
∑
k∈K

zk ∇· Jk (φn, c
k
n−1) = 0, (14)

Jk (φn, c
k
n−1) = −Dk∇ck

n−1 − zkψk ck
n−1∇φn. (15)

Step II: Given φn (solution from Step I), find ck
n for

k ∈ K such that:

∂ck
n

∂t
+∇· Jk (φn, c

k
n ) = 0, (16)

Jk (φn, c
k
n ) = −Dk∇ck

n − zkψk ck
n∇φn. (17)
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Insert (15) into (14) and we obtain:

∇·(κ∇φn) = f , κ = F
∑
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ψk ck

n−1. (18)

Insert (17) into (16) and we obtain:

∂ck
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−∇·(Dk∇ck

n )−∇·(zkψk ck
n∇φn) = 0. (19)
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Insert (17) into (16) and we obtain:

∂ck
n

∂t
−∇·(Dk∇ck

n )−∇·(zkψk ck
n∇φn) = 0. (19)

+ Reduces system to two smaller, more standard problems
- Introduces constraint on time step ∆t
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The weak formulation is discretized using a DG finite element method

• Symmetric interior penalty (SIPG) for the EMI
sub-problem (18)

• SIPG on diffusion term; upwinding on
advection term for the diffusion advection
sub-problem (19).

For a problem with a smooth manufactured solution
we observe expected convergence rates. 10−1.5 10−1 10−0.5

10−4

10−3

10−2

10−1

ℎ

‖Aq,1‖!2: 2.18
‖Aq,2‖!2: 2.78

10−1.5 10−1 10−0.5

10−6

10−5

10−4

10−3

10−2

ℎ

‖A20 ,1‖!2: 1.99
‖A20 ,2‖!2: 3.01
‖A21 ,1‖!2: 1.99
‖A21 ,2‖!2: 3.01
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sub-problem (18)

• SIPG on diffusion term; upwinding on
advection term for the diffusion advection
sub-problem (19).

For a problem with a smooth manufactured solution
we observe expected convergence rates.

Ongoing work ...
• Peclet number in physiological

scenarios?

• Robust preconditioners for the
sub-problems?

• Stability and restriction on ∆t
in splitting scheme?
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Comparing KNP-EMI and EMI
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During hyperactivity, the KNP-EMI and EMI models differ due to shifts in
the ion concentration gradients

Normal activity (A, B, C):

• 1 Hz

• KNP-EMI and EMI give
comparable results

Hyperactivity (D, E, F):

• 50 Hz

• Membrane potential
predicted by KNP-EMI
slightly (and persistently)
depolarizes for each AP
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During hyperactivity, the KNP-EMI and EMI models differ due to shifts in
the ion concentration gradients

Normal activity (not shown):

• 1 Hz

• KNP-EMI and EMI give
comparable results

Hyperactivity (E, F):

• 50 Hz

• Membrane potential
predicted by KNP-EMI
slightly (and persistently)
depolarizes for each AP
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A study of ephaptic coupling
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Comparing KNP-EMI and EMI: Do diffusive currents affect ephaptic
coupling through the ECS in unmyelinated axon bundles?

In an idealized axon bundle with cell gaps of 0.1µm,
action potentials are induced (via a synaptic current)
every 20 seconds in either:

• Axon A (1 active neighbour), or

• Axons B and C (8 active neighbour).

[Ellingsrud et al., 2020]

Diffusive currents contribute to ECS potential
shifts in the KNP-EMI framework:

EMI ∇ · (σe∇φe) = 0, in Ωe,

KNP-EMI ∇ · (σe∇φe +∇be) = 0, in Ωe,

where be = F
∑

k zk Dk
e [k ]e.
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Diffusive currents do not strengthen the electrical ephaptic coupling (via
the extracellular potential), however we see diffusive ephaptic coupling

Ephaptic coupling is inversely proportional to
the extracellular conductivity:

σi =
F
ψ

∑
k

Dk
i [k ]i (zk )2 = 2.01 σi = 1.0, (S/m)

σe =
F
ψ

∑
k

Dk
e [k ]e(zk )2 = 1.31 σe = 0.1, (S/m)

[Bokil et al., 2001]
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Future perspectives
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Exciting times: Extreme modelling of excitable tissue
Ambition
To establish mathematical and technological foundations for modelling and
simulation of electrical, chemical and mechanical interplay between brain cells
at unprecedented detail, allowing for pioneering in-silico studies of brain
signalling, volume balance and clearance.

Topics and expected outcomes

• Well-posed general mathematical and numerical framework allowing for
geometrically-explicit representations of moving excitable cells;

• New computational geometries and models, highly scalable algorithms,
and solution software for high-resolution high-realism simulations of
excitable cell ensembles – all distributed as open source;

• New physiological insight into inter-neuronal and astrocyte membrane
mechanisms and their role in brain homeostasis and learning.

Funding
Research Council of Norway, FRIPRO (12 MNOK, 2021–2025)
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