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Classical models for excitable tissue assume that the domain can be
represented in an homogenized manner

Technology now allows for numerical How to model spatial variations
resolutions below model resolution. in membrane properties, or

how cellular morphology affect

vi = V-(MiVV 4+ MiVue) = —kon, the dynamics?

V-(MVV + (M, + Me)Vte) = 0,

st = F(v,s).
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How to model a single cell or a
small collection of cells?
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Physiological heart cell: h ~ 100pm
Computational mesh cell: A < 100zm
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The emerging EMI framework use a geometrically explicit representation
of the cellular domains

Find the intracellular and extracellular potentials ¢; = ¢;(x, t) and
e = ¢e(x, t), and the transmembrane current /yy = lu(x.t) s.t.:

-V (0iVgi)=0 in Q;, (1)

V- (0aVe) = 0 nQ, ()

Pm = ¢i — Pe atr, 3)

0eVe-Ne = —0iNoi-ni = Iy atl, (4)
Om _ 1 .

ot~ Cy (I = hon) atrl. (5)

lon concentrations are assumed to be constant in space and time —
often an accurate approximation, but not always . ..

[Krassowska & Neu 1994],
[Ying & Henriquez 2007],
[Tveito et al. 2017] 9] e
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Outline

® Motivation and physiological background
® Modelling electrodiffusion: main assumptions and core ideas

® The KNP-EMI model: strong form and numerical strategies

® Multi-dimensional form and a mortar finite element method
® Single-dimensional form and a DG finite element method

¢ A study of ephaptic coupling
e Future perspectives
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Brain tissue is composed of networks of extracellular spaces and
primarily two classes of cells: neurons and glial cells

Neurons

Microglial cell S Astrocytes

{2
*

Left panel: Sketch of neurons and glial cells. Right panel: Micrograph of brain tissue. [OpenStax CNX, 2016]
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Movement of ions is fundamental in brain signalling and various
mechanisms ensure ionic homeostasis

[courses.lumenlearning.com]
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Movement of ions is fundamental in brain signalling and various
mechanisms ensure ionic homeostasis

[courses.lumenlearning.com]
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Movement of ions is fundamental in brain signalling and various
mechanisms ensure ionic homeostasis

Membrane
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Homeostatic mechanisms will take the ionic concentrations back towards baseline levels, e.g.:
* Na™/K'/ATPase pumps (3 Na™ out, 2 K" in),
e cotransporters (KCC2, NKCC1),
e glial K* buffering.
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lon concentration changes are a trademark of several pathological
conditions, such as epilepsy or spreading depression

Neurcnal
RSP O depolarisation
........... \ firing
5 mv
CNS hyperexcitability,
u ‘ASHD‘ Neuronal
anxiety, bipolar disease . o
and schizophrenia depolarisation

® Homeostatic mechanisms are not able to
erep upﬂ
e Shifts in the ECS ion concentrations

Spreading
depolarisation

Depression of activity
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The extracellular ion composition changes with local neuronal activity

and across brain states

lonic shift may set up osmotic gradients
causing cellular swelling.

water sucrose molecule

membrane

normal condtions osmotic gradient swollen cell
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[Rasmussen, 2021]
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Modeling electrodiffusion: main assumptions and core ideas
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Electrodiffusion is governed by the Nernst—Planck equation, stating that
ions move due to diffusion or drift in the electrical field

Diffusion
(a) Initial (b) Final
+’\
K K K Kt
L an ]
A A A A
Net K flux jp Net K* flux |
Net A™ flux Net A~ flux |

J = —D'VI[K]
N———

diffusion
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Electrodiffusion is governed by the Nernst—Planck equation, stating that
ions move due to diffusion or drift in the electrical field

Diffusion Electrodiffusion
(a) Initial (b) Final (a) (b) (c)
o~ -~ i~ N
Kt e < o K™k - © O
N Sl
—— < o e
A K A A A = A A =it A A =t
-t -it
=+ =i+
Net K flux jp Net K¥ flux | Net K flux jmp Net KT flux jmsp Net K™ flux |
Net A™ flux Net A™ flux |
f:
J* = —DFV[K] J = _DFV[K] - Dk%[k]w,.
——r —— N———

diffusion diffusion electrical drift
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lons are conserved within each region and move due to diffusion or drift
in the electrical field (Nernst—Planck)

Let ¢/ = c/(x, t) denote the concentration of (ion)
species k in compartment r. Conservation of ions in the

bulk of each compartment yields:
6Ck K Q ) *F
L4V =0, v
ot +
where the ion flux density is given by:
Qe
k K K kZkF xo
r = 7Dr r — Dr BT Cr Dr. . : : f
J ve AT OV Tissue domain = Q; U Q. C RY, with (ion)
—— — B -
diffusion electrical drift species ke K (eg Na+! K+1 Cl )
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lons are conserved within each region and move due to diffusion or drift

in the electrical field (Nernst—Planck)

Let ¢/ = c/(x, t) denote the concentration of (ion)
species k in compartment r. Conservation of ions in the
bulk of each compartment yields:

ack
ot

where the ion flux density is given by:

+Vv-Jh=o,

f:
J = _pFvek — D,k%cqua,.
N——

diffusion electrical drift

2|K| + 2 unknowns, but only 2|K| equations:
® Poisson—Nernst—Planck (PNP)
e Kirchhoff-Nernst—Planck (KNP)

Q |

Q.

Tissue domain = Q; U Q. C RY, with (ion)
species k € K (e.g. Na™, KT, CI™).
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A charge imbalance in the ECS will typically vanish within nanoseconds
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Quasi steady state: the
potential ¢ prevents

further charge separation.
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A charge imbalance in the ECS will typically vanish within nanoseconds

o e

+
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t<10ns
Dy > : Diffusion
give net (—) charge

transport from left to right.

t>10ns

Quasi steady state: the
potential ¢ prevents

further charge separation.

Poisson-Nernst-Planck (PNP):

V2o, = L o =F> adkl..
k

€r

Kirchhoff-Nernst—Planck (KNP):

Opr _
8t _07 Pr= ng:zk[k]f'
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The electroneutrality condition (KNP) is a good approximation on
spatiotemporal scales larger than ~ nanoseconds / nanometers

Poisson—-Nernst-Planck (PNP)

Explicit modelling of charge relaxation
processes - requires fine resolution

[Lopreore et al., 2008]
[Pods et al., 2013]

[Holcman and Yuste, 2015]
[Cartailler et al., 2017, 2017]
[Sacco et al., 2017]

Kirchhoff-Nernst-Planck (KNP)

Electroneutrality assumption - good
approximation on larger scales (> nano)

[Mori, 2009]
[Ellingsrud et al., 2020]
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The KNP-EMI model
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A computational framework for ionic electrodiffusion in brain tissue with
explicit representation of the cells (KNP-EMI)

Consider a (tissue) domain Q = Q; U Qe C RY, where Q; (with
boundary I') and €2, represent respectively intracellular and
extracellular regions, with (ion) species k € K (e.g. Na™, K*,
CI7).
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A computational framework for ionic electrodiffusion in brain tissue with
explicit representation of the cells (KNP-EMI)

For each ion species k € K, find the ion concentrations
¢k Q. x (0, T] = R (mol/m®) and the electrical potentials
&r 2 Q2 x (0, T — R (V) such that:

ack
ot

—FY ZV.y=0 inQ, @)
k

+V-J=0 inqQ, (6)

for r = {i, e}, where the ion flux densities are given by:

I = —Dfvcl — 29V, inQ. (8)

The system remains to be closed by appropriate initial
conditions, boundary conditions, and importantly interface
conditions. Qe
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A computational framework for ionic electrodiffusion in brain tissue with
explicit representation of the cells (KNP-EMI)

At the interface I, apply the following coupling conditions, and
find the total ionic current density Iy : T x (0, T] — R (cm/m?s)

such that:
bi — P = Pm, onl, (9)
Odm 1 K
gom _ 7(/M_Z/ion), onl, (10)
ot Cu ey
w=F> 29 n=—F> 2J§- ne, onl, (11)
K K
oy = Jont onl, (12)
1 1 f;Zk bl b
K In + s leap B
—Je'ne:T7 onl. (13)
Qe

The transmembrane ion fluxes I, = I (6w, [K], s) are subject
to modelling, and may depend on gating variables governed by
ODEs.
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The strongly coupled and non-linear KNP-EMI equations set a rich
scene for numerical exploration and can be solved in a multitude of ways

Numerical strategy:
® Split PDEs from ODEs (two-step first order)
® Finite difference ODE and PDE time discretizations (explicit handling of non-linear terms)

® Two different finite element based spatial discretization schemes:

Multi-dimensional form with mortar elements Single-dimensional form with DG elements

NN

NN

[lllustrations taken from Tveito et al. 2021. Modeling Excitable
Tissue: The EMI Framework, chapter 5, Springer Nature]
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We discretize the PDEs in space using a multi-dimensional formulation
and mortar finite element spaces

Continuous form

The jumps across the interface I hinders us from
defining global, differentiable concentrations and
potentials in H'(Q). We instead seek for each r:

e H'(Q), ¢ e H'(Q), Ine H(T).

At each time step, find cf, ¢; : @ — R, ¢,
¢e : Qe — Rand Iy : I — R such that:

oh—A A e

A -A -]
/ —1 /
- -A  *A

+e A O —-A

Different variational problems posed over
non-overlapping domains.

Spatial discretization

We discretize in space using a mortar finite element
method:

Kk
Crn € Vin, ¢rn€ Trn, Iun € Shy

where V; n, T; n, Sh are constructed using
continuous piecewise linear polynomials.

[Qe,n and Q; 5 have identical facets on I', and the facets define the
finite element cells of I'p.]
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Implementing the system requires finite element software with mixed

dimensional functionality

For a problem with a smooth manufactured solution we
observe expected convergence rates.

¢ = 0.7 + 0.3sin(27x) sin(2ry)(1 + e "),
ch? = 1.0 + 0.6sin(27x) sin(2ry)(1 + e~ "),
de = cos(2mx)cos(2ny); ¢i = pe(1 + €71,

L FENICS
PROJECT

[Daversin-Catty, et al. 2021. Abstractions and automated algorithms for
mixed domain finite element methods. TOMS]
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Alternatively, we can consider a single-dimensional formulation for the

PDEs, discretized with DG elements

Single-dimensional form
® We eliminate the unknown /y, : I — R.

® We seek global concentrations and potentials:
e H'(UQ), ¢eH(UQ),

belonging to the broken H' space H'(U,Q;) :
{ue L3(Q) : ula, € H'(Q),r € {i,e}}.

Splitting scheme

® Split the equations for the concentrations and
the potential and obtain two smaller, and more
standard, sub-problems.

DG finite element discretization
Look for approximations in broken polynomial
spaces for k > 1:

VE(En) = {v € L3(Q) : v|e € P(E),VE € &},

where P¥(E) is the space of polynomials with total
degree less than or equal to k.

NN

NN

[lllustration taken from Tveito et al. 2021. Modeling Excitable
Tissue: The EMI Framework, chapter 5, Springer Nature]
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We apply a splitting scheme to obtain two smaller, and importantly more

standard, sub-problems

Consider n € [1, ..., N] with t, and assume that
ck_, at time step t,_1 are known.

Step I: Find ¢, € H(Q2) s.t.:

—FY 2o ch1) =0, (14)
keK

J(on, ch_1) = —D'Veh_y — 29 ch_ Vo, (15)

Step lI: Given ¢, (solution from Step 1), find c* for
k € K such that:

ack
ot
J(¢n, ¢k = =DVl — 29tV (17)

+V-J(¢n, ) = 0, (16)
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We apply a splitting scheme to obtain two smaller, and importantly more

standard, sub-problems

Consider n € [1, ..., N] with {, and assume that
ck_, at time step t,_1 are known.

Step I: Find ¢, € H(Q) s.t.:

—F> 2V J (b, ch_1) =0, (14)
kek

J(0n, €hq) = —=D"Very — Z9¥ch V. (15)
Insert (15) into (14) and we obtain:

V(kVon) =1, w=FY 2% . (18)
keK

Step II: Given ¢, (solution from Step 1), find c’ for
k € K such that:

ack
ot
J(¢n, cf) = =DVl — 29 kv, (17)

+V-J(¢n, ) = 0, (16)

Insert (17) into (16) and we obtain:

ack

T V(D*Vcl) — V(¢ Ve, =0 (19)
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We apply a splitting scheme to obtain two smaller, and importantly more

standard, sub-problems

Consider n € [1, ..., N] with {, and assume that
ck_, at time step t,_1 are known.

Step I: Find ¢, € H(Q) s.t.:

—F> 2V J (b, ch_1) =0, (14)
kek

J(0n, €hq) = —=D"Very — Z9¥ch V. (15)
Insert (15) into (14) and we obtain:

V(kVon) =1, w=FY 2% . (18)
keK

Step II: Given ¢, (solution from Step 1), find c’ for
k € K such that:

ack
ot
J(¢n, cf) = =DVl — 29 kv, (17)

+V-J(¢n, ) = 0, (16)

Insert (17) into (16) and we obtain:

ack
ot

—V(D'Vc)) — V(Y ciVen) =0. (19)

+ Reduces system to two smaller, more standard problems

- Introduces constraint on time step At
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The weak formulation is discretized using a DG finite element method

® Symmetric interior penalty (SIPG) for the EMI
sub-problem (18)

® SIPG on diffusion term; upwinding on
advection term for the diffusion advection
sub-problem (19).

For a problem with a smooth manufactured solution
we observe expected convergence rates.
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The weak formulation is discretized using a DG finite element method

® Symmetric interior penalty (SIPG) for the EMI
sub-problem (18)

® SIPG on diffusion term; upwinding on
advection term for the diffusion advection
sub-problem (19).

For a problem with a smooth manufactured solution
we observe expected convergence rates.

Ongoing work ...
® Peclet number in physiological
scenarios?
® Robust preconditioners for the
sub-problems?

® Stability and restriction on At
in splitting scheme?
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Comparing KNP-EMI and EMI
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During hyperactivity, the KNP-EMI and EMI models differ due to shifts in
the ion concentration gradients

A Membrane potential B ECS Na' concentration ¢ ECS K* concentration
18 — Normal activity (A, B, C):
KNP-EMI
2 120.0 - EMl
. I ® 1Hz
119.8 .
g s = ® KNP-EMI and EMI give
» % 106 comparable results
—60 1.2
—80 119.4
4.0
0 25 50 75 100 0 25 50 k) 100 0 25 50 i 100
time (ms) time (ms) time (ms)
D E F
1200 b HyperaCTiVity (D, E, F)
16 ® 50 Hz
- 198 _ i
2 % ¢ Membrane potential
¥ 1106 predicted by KNP-EMI
" slightly (and persistently)
e w0 depolarizes for each AP
0 25 50 K] 100 0 25 50 5 100 0 25 50 Il 100
t (ms) time (ms) time (ms)

24/37



During hyperactivity, the KNP-EMI and EMI models differ due to shifts in
the ion concentration gradients

Normal activity (not shown):
® 1Hz

o KNP-EMI and EMI give
comparable results

Membrane potential Membrane potential
II Ii'i |
20 201 4 || |l|| | L
0 o | :{ :m | Hyperactivity (E, F):
|
o £ - [ * 50 Hz
£ RN
T =01 {{ihy l|||| | i
. - ’ h H.: i ® Membrane potential
| Wisinnitviauug predicted by KNP-EMI
slightly (and persistently)
0 100 _zElx(l)K [".ifl)(r 100 500 0 100 fl‘)l(.l" (l‘?:))(l 400 500 dep0|arlzeS for each AP
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A study of ephaptic coupling
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Comparing KNP-EMI and EMI: Do diffusive currents affect ephaptic
coupling through the ECS in unmyelinated axon bundles?

A Membrane potential in axon A B ECS potential above axon A
10

In an idealized axon bundle with cell gaps of 0.1um, . 1
action potentials are induced (via a synaptic current) , h o
every 20 seconds in either: B — KNPEMI s
S == B < s
e Axon A (1 active neighbour), or o 7:”
=75 z s !
25 50 i

® Axons B and C (8 active neighbour).

0

Diffusive currents contribute to ECS potential

n
e shifts in the KNP-EMI framework:
A o T
o0 EMI V - (06V¢e) =0, in Qe,
o KNP-EMI V- (0oVo + Vhbo) =0, in D,

where be = F ", Z*DE[K]e.

[Ellingsrud et al., 2020]
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Diffusive currents do not strengthen the electrical ephaptic coupling (via
the extracellular potential), however we see diffusive ephaptic coupling

A 1 active neighbour B 8 active neighbours
—60 1 == KNPEMI
== EMI

—63
Z 66 Z -6
< —69 <

-72 72

_75 —

0 2 50 0 2 0
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Diffusive currents do not strengthen the electrical ephaptic coupling (via

the extracellular potential), however we see diffusive ephaptic coupling

[Nal, (mM)

D

1 active neighbour

B

8 active neighbours

w— KNPEMI
== EMI

W===RTTR T

0 25

time (ms)

Na' concentration (ECS)

K* concentration (ECS)

5.5

K], (mM)
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Diffusive currents do not strengthen the electrical ephaptic coupling (via
the extracellular potential), however we see diffusive ephaptic coupling

1 active neighbour

8 active neighbours

—(0) { == KNPEMI

== EMI
—63
Z -6 z
S N D Al
< =69 'S
-7
7
0 25 50 25 50
time (ms) time (ms)
D Na' concentration (ECS) E K* concentration (ECS)
100.0 6.0
5.5
Z
Z 5.0
45
— ] active axon
98,04 = 8 active axons 10
0 25 50 0

time (ms)

time (ms)

Ephaptic coupling is inversely proportional to
the extracellular conductivity:

o= gzk: Df[Kli(Z)? =2.01  0;=1.0, (S/m)

_ gz DE[Klo(Z)2 =131 0o =0.1, (S/m)
k

[Bokil et al., 2001]

F 1 active neighbour (EMI) G 8 active neighbours (EMI)
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» s i 2
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Future perspectives
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Exciting times: Extreme modelling of excitable tissue

Ambition

To establish mathematical and technological foundations for modelling and
simulation of electrical, chemical and mechanical interplay between brain cells
at unprecedented detail, allowing for pioneering in-silico studies of brain
signalling, volume balance and clearance.

Topics and expected outcomes

r ® Well-posed general mathematical and numerical framework allowing for
geometrically-explicit representations of moving excitable cells;
® New computational geometries and models, highly scalable algorithms,

and solution software for high-resolution high-realism simulations of
excitable cell ensembles — all distributed as open source;

3 < E M IX ® New physiological insight into inter-neuronal and astrocyte membrane

mechanisms and their role in brain homeostasis and learning.

() The Research Council Funding
A of Norway .
Research Council of Norway, FRIPRO (12 MNOK, 2021-2025)
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