
Finite element simulation of ionic
electrodiffusion in cellular geometries

Ada Johanne Ellingsrud

CAIMS/SCMAI 2022 Conference,
Kelowna, Canada,

June 2022

1 / 12



The emerging EMI framework use a geometrically explicit representation
of the cellular domains

Find the intracellular and extracellular potentials
φi = φi (x , t) and φe = φe(x , t), and the
transmembrane current IM = IM (x .t) s.t.:

−∇ · (σi∇φi ) = 0 in Ωi , (1)

−∇ · (σe∇φe) = 0 in Ωe, (2)

φM = φi − φe at Γ, (3)

σe∇φe · ne = −σi∇φi · ni = IM at Γ, (4)

∂φM

∂t
=

1
CM

(IM − Iion) at Γ. (5)

• Ion concentrations are assumed to be constant
in space and time – often an accurate
approximation, but not always . . .

[Krassowska & Neu 1994], [Ying & Henriquez 2007],
[Tveito et al. 2017]

Rat cortex with ECS in red [Nicholson, 1998]
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Movement of ions is fundamental in brain signalling and cellular swelling

[courses.lumenlearning.com]

[Hubel, 2016]

The extracellular ion composition changes with local
neuronal activity and across brain states

[Rasmussen, 2021]
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A computational framework for ionic electrodiffusion in brain tissue with
geometrical explicit representation of the cells

KNP-EMI

In a (tissue) domain Ω = Ωi ∪ Ωe ⊂ Rd , where Ωi

(with boundary Γ) and Ωe represent respectively
intracellular and extracellular regions, with (ion)
species k ∈ K (e.g. Na+, K+, Cl−).

For each compartment r ∈ {i, e} and species k ,
x ∈ Ωr , t > 0, find the:

• concentrations [k ]r (x , t),

• electrical potentials φr (x , t),

and at the interface, x ∈ Γ, t > 0, find the:

• transmembrane current IM (x , t).

[Mori & Peskin, 2009]
[Ellingsrud et al., 2020]

Rat cortex with ECS in red [Nicholson, 1998]
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A computational framework for ionic electrodiffusion in brain tissue with
explicit representation of the cells (KNP-EMI)

Conservation of ions for the bulk of each region:

∂[k ]r

∂t
+∇ · Jk

r = 0, in Ωr .

”KNP assumption” of bulk electroneutrality:

−F
∑

k

zk∇ · Jk
r = 0, in Ωr .

Changes in the membrane potential are proportional
to the transmembrane currents:

∂φM

∂t
=

1
CM

(IM − Iion), on Γ.

[Pods, 2017]
[Solbrå et al., 2018]

Ion flux densities are given by:

Jk
r = −Dk∇[k ]r −

Dk zk

ψ
[k ]∇φr . in Ωr ,

Interface conditions:

φi − φe = φM , on Γ,

IM ≡ F
∑

k

zk Jk
i · ni = −F

∑
k

zk Jk
e · ne, on Γ,

Jk
i · ni =

Ik
ion + αk

i Icap

Fzk , on Γ,

−Jk
e · ne =

Ik
ion + αk

e Icap

Fzk , on Γ.
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The strongly coupled and non-linear KNP-EMI equations are numerically
and computationally challenging to solve

Numerical strategy:

• Split PDEs from ODEs (two-step first order)

• Finite difference ODE and PDE time
discretizations (explicit handling of non-linear
terms)

• Mortar finite element scheme for PDEs

[k ]r,h(t) ∈ Vr,h, φr,h(t) ∈ Tr,h, IM,h(t) ∈ Sh,

where Vr,h, Tr,h, Sh are constructed using
continuous piecewise linear polynomials.

For a problem with a smooth manufactured
solution we observe expected convergence rates:
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Comparing KNP-EMI and EMI: Do diffusive currents affect ephaptic
coupling through the ECS in unmyelinated axon bundles?

In an idealized axon bundle with cell gaps of 0.1µm,
action potentials are induced (via a synaptic current)
every 20 seconds in either:

• Axon A (1 active neighbour), or

• Axons B and C (8 active neighbour).

[Ellingsrud et al., 2020]

Diffusive currents contribute to ECS potential
shifts in the KNP-EMI framework:

EMI ∇ · (σe∇φe) = 0, in Ωe,

KNP-EMI ∇ · (σe∇φe +∇be) = 0, in Ωe,

where be = F
∑

k zk Dk
e [k ]e.
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Diffusive currents do not strengthen the electrical ephaptic coupling (via
the extracellular potential), however we see diffusive ephaptic coupling

Ephaptic coupling is inversely proportional to
the extracellular conductivity:

σi =
F
ψ

∑
k

Dk
i [k ]i (zk )2 = 2.01 σi = 1.0, (S/m)

σe =
F
ψ

∑
k

Dk
e [k ]e(zk )2 = 1.31 σe = 0.1, (S/m)

[Bokil et al., 2001]
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During hyperactivity, the KNP-EMI and EMI models differ due to shifts in
the ion concentration gradients

Standard Hodgin-Huxley model and homeostasis
mechanisms:

INa
ion = INa

leak + INa + 3IATP + INKCC1

IK
ion = IK

leak + IK − 2IATP + INKCC1 + IKCC2

ICl
ion = ICl

leak − 2INKCC1 − IKCC2,

We consider two firing regimes:

• Normal activity (1 Hz, not shown)

• Hyperactivity (50 Hz)
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Exciting time: Extreme modelling of excitable tissue
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