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Abstract

Genome-wide association studies have implicated many ion channels in schizophrenia pathophysiology. Although the func-
tions of these channels are relatively well characterized by single-cell studies, the contributions of common variation in these
channels to neurophysiological biomarkers and symptoms of schizophrenia remain elusive. Here, using computational mod-
eling, we show that a common biomarker of schizophrenia, namely, an increase in delta-oscillation power, may be a direct

consequence of altered expression or kinetics of voltage-gated ion channels or calcium transporters. Our model of a circuit



of layer V pyramidal cells highlights multiple types of schizophrenia-related variants that contribute to altered dynamics in
the delta frequency band. Moreover, our model predicts that the same membrane mechanisms that increase the layer V
pyramidal cell network gain and response to delta-frequency oscillations may also cause a deficit in a single-cell correlate of

the prepulse inhibition, which is a behavioral biomarker highly associated with schizophrenia.



Introduction

A recent genome-wide association study (GWAS) of schizophrenia (SCZ) identified 145 loci exceeding genome-wide signif-
icance (Pardifias et al., 2018), several of which were missed by the previous consortium GWAS (Ripke et al., 2014). At
least ten of these loci implicate genes that encode ion channels and calcium transporters and are thus major contributors
to the electrical properties of neurons (Ripke et al., 2014; Pardinas et al., 2018). The biological mechanisms by which the
disorder symptoms emerge are unknown, but there is a growing body of data, including recent genetic evidence (Devor
et al., 2017), that SCZ is a disorder of synaptic plasticity and connectivity (Stephan et al., 2006) or cortical excitability at
large (O’Donnell, 2008; Hasan et al., 2013). This is reflected in clinical biomarkers and endophenotypes of SCZ that can be
observed and quantified using electroencephalography (EEG). In parallel, biophysically detailed modeling has reached a level
where the genetic contributions to distinct ion channel species of the neurons can be addressed and the neuron’s signature
in macroscopic EEG signals can be predicted (Grillner, 2014; Wang and Krystal, 2014). In the present modeling work, we
combine these two advances and show how common variants of ion channel and calcium transporter-encoding genes may
affect the macroscopic electrical signals, leading to a frequently observed clinical phenotype in SCZ.

The biomarkers and endophenotypes of SCZ include deficits in prepulse inhibition (Turetsky et al., 2007) and mismatch
negativity (Umbricht et al., 2003), and modified power spectra of delta (Sponheim et al., 1994; Duan et al., 2015) (0.5-5 Hz),
alpha-theta (Sponheim et al., 1994; Hong et al., 2008) (4-13 Hz), and gamma (Hall et al., 2011) (25-70 Hz) oscillations. The
prepulse inhibition of the startle reflex is defined by a decrease of the amplitude of the startle reflex when a startling stimulus
is preceded 30-300 ms by a weak prestimulus (Turetsky et al., 2007). SCZ patients and their first-degree relatives exhibit a
robust deficit in this inhibition, and due to the similarity of the startle pathway across mammalian species, this phenotype
has also been intensively studied using animal models (Turetsky et al., 2007). The increase in delta power, in turn, is unique
(Michie et al., 2002; Braff et al., 2008; Duan et al., 2015; Hong et al., 2008; Hall et al., 2011) in that it has been found
only in SCZ patients and not in their first-degree relatives, and has thus been hypothesized to be causal (Duan et al., 2015;
Lisman, 2016). In general, delta oscillations are prominent during sleep and mental tasks. Supporting the prominent role
of delta-oscillation alterations in SCZ pathology, patients with SCZ have repeatedly been shown both to suffer from sleep
abnormalities (Keshavan et al., 1998) and perform worse than controls in many cognitive tasks, such as arithmetic tasks,
working-memory tasks and tasks measuring cognitive control (reviewed in Hinkley et al., 2010 and Schwarz et al., 2016; cf.
Duan et al., 2015).

The details of the mechanisms behind delta oscillations remain to be elucidated, but they seem to have two components
generated in the thalamus and neocortex (Neske, 2015). The thalamically generated delta oscillations stem largely from the
intrinsic properties of the thalamocortical neurons. The cortically generated delta oscillations likely rely on the properties of
layer V pyramidal cells (L5PCs) (Carracedo et al., 2013; Neske, 2015; Blaeser et al., 2017). In vivo, L5PCs show transitions
between “up” and “down” states, which correspond to states of high and low excitability (and firing rate), respectively
(Harmony, 2013). These transitions occur in slow ( < 1 Hz) and delta frequencies, giving rise to the amplification of these
frequencies in EEG power spectra (Neske, 2015). The down state has been proposed to be caused, at least in part, by
L5PCs entering the afterhyperpolarization period after synchronized bursting during the up state (Harmony, 2013; Neske,
2015). This hypothesis underlines the possibility that the properties of delta oscillations are largely dependent on not only
synaptic connections but also non-synaptic ion channels contributing to the afterhyperpolarization period. If true, this would

strengthen the link between altered delta oscillations in SCZ and the recent discoveries of gene variants related to ion channel



and Ca?* transporters associated with SCZ (Ripke et al., 2014; Devor et al., 2017).

In this work, we use established models of L5PC networks to show that the excitability of the networks and the magnitudes
of their responses to inputs that oscillate in a delta frequency are significantly altered by modeled variants of SCZ-associated,
ion channel and Ca?* transporter-encoding genes. We do this by incorporating the previously constructed (Miki-Marttunen
et al., 2016) models of SCZ-associated variants in a circuit model of thick-tufted L5PCs (Hay and Segev, 2015), using
reduced-morphology representations of the L5PCs to speed up the simulations (M#ki-Marttunen et al., 2018). Due to the
lack of functional genomics data on common single nucleotide polymorphisms (SNPs), we do not know which of our model
variants represent cellular-level phenotypes of the SCZ-associated SNPs — however, our findings based on a large (N = 101)
set of model variants suggest a correlation between increased delta-oscillation power and a single-cell correlate of the deficit
in prepulse inhibition. We complement these analyses by computational experiments where we study, based on our in-house
blood sample data, the effects of altered expression of specific ion channels or calcium transporters on network dynamics.
Importantly, we are able to estimate the EEG signature of our L5PC population using the model of Neess et al., 2017 and
show that the effects of the SCZ-associated variants may be directly reflected in the EEG signal. Our approach thus bridges
the gap between the levels of individual genes and macroscopic electrophysiological signals, proposing a novel mechanistic

link between the newly identified risk genes and the clinical phenotype of increased delta-oscillation power.

Methods

L5PC network model

We employed the single-cell “Hay” model of thick-tufted L5PCs (Hay and Segev, 2015) as the basis of our study. This model,
built using extensive electrophysiological data from rat neocortex, includes a reconstructed morphology and descriptions of
eleven types of ion channels as well as a simple description of the intracellular Ca?* dynamics (Hay and Segev, 2015).
The model thus represents a medium- to high-complexity neuron model that is well suited for studying contributions of
different ion channels to neural responses. In this work, we coupled this model with human in vitro electrophysiological data
on ion-channel behaviour from functional genomics literature, following the approach of Méki-Marttunen et al., 2016. We
used the circuit model consisting of 150 L5PCs with identical morphology, as presented in Hay and Segev, 2015, with the
following modifications. To reduce overall simulation times, we replaced the original Hay model with 196 compartments by
a four-compartment neuron model. This reduced-morphology model was presented in Maki-Marttunen et al., 2018, where
the ion-channel conductances, passive membrane parameters, and parameters governing the Ca?* dynamics were fitted in a
stepwise manner to data obtained from simulations of the Hay model. In addition to these changes, we corrected an error
in the original model (Hay and Segev, 2015) that was causing depletion of the pre-synaptic vesicles even when no release
occurred. The model L5PC received AMPA, NMDA, and GABA-receptor mediated background synaptic inputs, and AMPA
and NMDA-receptor mediated L5PC-to-L5PC synaptic currents. As in all Hodgkin-Huxley-based systems, the integration of
these inputs will be affected by the ion-channel mechanisms — the effects of the model variants we use stem from alterations
of this ion-channel-contributed integration. The single-cell and network models are presented in detail in Supplementary
material, Sections S1.1.1-S1.1.4. The NEURON software (Hines and Carnevale, 1997) was used for simulating the model.
To confirm that our results are not specific to networks consisting of only excitatory neurons, we explored the effects of

our model variants in networks where the L5PC population is randomly connected to an inhibitory basket cell population



(N=50). For the basket cells, we used the single-compartment model for fast-spiking interneurons (Pospischil et al., 2008),
which were connected to each other and the L5PCs with chemical synapses, obeying the connectivity statistics from Markram
et al., 2015. Furthermore, we connected the basket cells to each other with gap junctions, as suggested by experimental data
(Galarreta and Hestrin, 2002). See Supplementary material, Figure S1 for an illustration of the activity in these excitatory-
inhibitory networks and Section S1.1.5 for details on the construction of these networks. The models for the effects of genetic
alterations are presented in Supplementary material, Section S1.2. The methods for sampling oscillatory Poisson processes
(needed in similation of the responses of the networks to oscillatory inputs) are described in Supplementary material, Section
S1.3, and Section S1.4 describes the methods for quantifying the oscillations in the spike train data. Finally, Supplementary

material, Section S1.5 presents the scheme for forward modeling of the EEG signal.

Modeling effects of genetic variants

We followed the procedure of Méki-Marttunen et al., 2016 in modeling the effects of SNP-like genetic variants, see Sup-
plementary material, Section S1.2 for details. In brief, we first chose the set of genes of interest based on the SNP-wise
p-value data of Ripke et al., 2014, and searched the literature for variants of these genes and their effects on cell electro-
physiology (Section S1.2.1). We restricted our survey on ion-channel or Ca?* transporter-encoding genes that are likely to
be expressed in L5PCs (see below), and as a result, obtained models for variants (see Kudrnac et al., 2009; Depil et al.,
2011; Hohaus et al., 2005; Stary et al., 2008; Tang et al., 2004; Tan et al., 2011; Zhang et al., 2011; Pinggera et al., 2015;
Azizan et al., 2013; Lieb et al., 2012; Cordeiro et al., 2009; Massa et al., 1995; Link et al., 2009; Hu et al., 2010; Murbartian
et al., 2004; Gomora et al., 2002; Ji et al., 2000; Fakira et al., 2012; Empson et al., 2010; Ficarella et al., 2007; Giacomello
et al., 2011; Cestele et al., 2008; Vanmolkot et al., 2007; Volkers et al., 2011; Cestele et al., 2013; Mantegazza et al., 2005;
Ishii et al., 2007; Lesso and Li, 2003; Wemhoner et al., 2015; Bocksteins et al., 2011) of the following genes: CACNAI1C,
CACNA1D, CACNB2, CACNAL1I, ATP2A2, ATP2B2, SCN1A, HCN1, and KCNBI1, see Table S2. However, the effects of
most literature-based model variants on the L5PC excitability were large (see Figure 1 and S1 of Maki-Marttunen et al.,
2016), which is not expected from common variants. Therefore, following the procedure of Méki-Marttunen et al., 2016, we
imposed conditions on how much the neuron responses (to predefined stimuli) were allowed to vary, and scaled down the
parameter changes related to each of the literature-based model variants until these conditions were met. In practice, each
change of parameter that was related to a considered literature-based model variant as presented in Table S2 was multiplied
(on linear or logarithmic scale, depending on the type of the underlying parameter) by a scaling parameter ¢ = Ctpyresh, where
the parameter cinresn was determined as the largest factor ¢ € [0,2] for which the scaling conditions 1-5 (Section S1.2.2)
concerning single-neuron firing behaviour were met. This gave us a set of 101 small-effect model variants (Table S3), which
we then further downscaled with fixed factors € € R and employed as models for effects of common variants of the underlying
genes on L5PC electrophysiological properties. Throughout the work, we use the term “variant” to refer to a gene variant in
the genome of the human or experimental animal and the term “model variant” to a model of a gene variant where certain

parameters of the L5PC model are changed (as indicated above) to describe the effects of a gene variant.

Modeling effects of altered gene expression — indications from blood sample data

Many of the SCZ-related SNPs affect the levels of expression of the targeted proteins without affecting their structure (Ripke
et al., 2014). In contrast to the models of common SNP-like variants that (in the case of ion channels) affected the voltage-

dependence and kinetics of the target channels, altered expression of an ion channel-encoding gene could be modeled as a



change in total maximum conductance of the underlying channel type. To do this, we needed data on which ion channels
are likely to be under- or over-expressed in neurons of SCZ patients in comparison to those of healthy controls. Measuring
the gene expression in human neurons can generally be carried out only in very restricted cases, but indicative information
can be obtained from blood sample data (Sullivan et al., 2006). Here, we used data from the Thematically Organized
Psychosis (TOP) study sample (Dieset et al., 2012; Dieset et al., 2015), Oslo University Hospital, including 338 SCZ patients
(including schizoaffective and schizophreniform patients) and 263 healthy controls. 61% of the patients (206/338) and 53%
of the controls (98/184) were male. The patients (31£10 years) were slightly younger than the controls (33+10 years) (t-test,
p-value = 0.034 < 0.05). Blood samples were collected using Tempus Blood RNA Tubes (Life Technologies Corporation,
Carlsbad, California, USA). Total RNA was extracted with ABI PRISM 6100 Nucleic Acid PrepStation (Life Technologies
Corporation, Carlsbad, California, USA) and TEMPUS 12-port RNA Isolation Kit according to the manufacturer’s protocol.

We analysed samples using Illumina Human Expression Arrays (Illumina HT-12) (Illumina, San Diego, CA, USA). We
used multidimensional scaling and hierarchical clustering for regular quality control, and removed outliers and multiple batch
effects. After this, we performed a logs-transformation. We ignored probes that showed zero expression in more than 90%
of the samples. We refer to our earlier work (Akkouh et al., 2018) for more details on the RNA microarray analysis and
quality control. We fitted a linear model to the expression level with respect to age and gender, and tested the difference
of the residuals in healthy control vs. SCZ patient data (t-test, p-value 0.05). The use of antipsychotics was not controlled.
Out of the 267 assays for genes encoding for ion-channels and Ca?*-transporters, 30 had significantly different expression in
SCZ patients vs. healthy controls. From these 30 assays, we concentrated on probes targeting genes that are expressed in
the cortex and whose effects can be studied using our L5PC model: these were ATP2A2, ATP2A3, ATP2B1, CACNA2D?2,
CACNA2D3, CACNA2D4, and CACNBS. However, genes ATP2A3, CACNA2D2, and CACNA2D4 do not seem to be
expressed in L5PCs (see below), thus we disregard them in this work.

The effects of altered expression of these genes can be directly or indirectly represented in our L5PC model. The 8 subunit
encoded by CACNBS3 and the a0 subunit encoded by gene CACNA2D3 can modulate the number of high-voltage-activated
(HVA) Ca?* -channels inserted to the membrane as well as the conductance and kinetics of the channel (Dolphin, 2003;
Dolphin, 2013). Here, we modeled the effects of these genes by altering the maximal conductance of the Ic,pya current (over-
expression <> increase in maximal conductance (Canti et al., 2001; Dolphin, 2013)). The gene ATP2A2 encodes for a subunit
of the SERCA protein, which pumps free intracellular Ca?* into the endoplasmic (ER) or sarcoplasmic (SR) reticulum. As
the description of the Ca?* stores was not included in the single-L5PC model, the effect of this gene was modeled indirectly.
The model includes a parameter describing the fraction  of the incoming Ca?* currents that remain in the sub-membrane
area — the underlying process involves various Ca?* buffers and transporters, but the number and efficiency of the SERCA
pumps is likely to be an important factor to this quantity (Ji et al., 2000). Thus, we modeled the contribution of expression
level of ATP2A2 by altering the value of this parameter (over-expression <> increase in «y). Finally, the gene ATP2B1
encodes a PMCA pump, which expels the Ca?T ions from the intracellular medium to the extracellular matrix. The effect of
altered numbers of these proteins was modeled as a changed value of the parameter Tyecay that represents the time constant
of the Ca** decay towards the resting-state value (over-expression «» decrease in Tqecay; see Supplementary material, Section
S1.1.2).

Of the genes of Table S2, ATP2A2 was the only SCZ-associated gene that also showed differential expression in our blood
sample data. This observation is in line with a post-mortem study showing increased expression of ATP2A2 in hippocampi

and prefrontal cortex of SCZ patients (Earls et al., 2012). Similar results have been previously obtained for a SCZ-associated



variant rs1006737 in CACNA1C, but the direction of the effect was brain-region-specific (Eckart et al., 2016; Bigos et al.,
2010), and thus it is not surprising that no difference was found in the expression level in blood samples. Likewise, there
are rare SCZ-associated variants of CACNA1I gene that have shown altered expression in embryonic kidney cells (Andrade
et al., 2016), however we did not find significantly different expression of CACNA1I gene in our SCZ vs. control data (see
Table 1).

Suggestions for SCZ-associated genetic effects on Icagya current are also found in the literature. In Maschietto et al.,
2015, (cultured) human induced pluripotent stem cells (iPSCs) were found to differentially express CACNA1C (contributor
to Icanmva current) between healthy control and SCZ patient-derived cells. As our L5PC model does not differentiate between
channels composed of different subunits, altered expression of CACNA 1C would lead to parameter modifications qualitatively

similar to that of CACNA2D3, and thus we do not explicitly consider the altered expression of CACNA1C.

Indications of gene expression in L5PCs

An important prerequisite for the eligibility of our approach is that the genes mentioned above be expressed in L5PCs.
To date, there is no single study or database showing gene expression levels of all above genes in L5PCs specifically, but
expression data can be combined from multiple sources to obtain a sufficient level of confirmation. Table 1A shows the
expression values from the Human Protein Atlas for the genes indicated by the above blood sample analysis, and Table
1B for the corresponding data for genes of Table S2. However, data from the Human Protein Atlas only show average
expression values across various cell types, and should thus be supported by more specific expression data. The Mouse Brain
Atlas database (another database by the Allen Brain Institute) provides layer-specific expression data from murine visual
cortex. Out of the genes of Table 1, ATP2A43, CACNA2D2, CACNA2D4, CACNA1I, and CACNA1C had low expression
(< 1 FPKM or < 4 TPM) in layer V of visual cortex in the Mouse Brain Atlas database, while the rest of the genes had
moderate or high gene expression values (fourth and fifth columns of Table 1). However, previous cell-type specific studies
confirm the expression of some of these genes in L5PCs: mRNAs of CACNAIC and CACNA1I were found to be expressed
in L5PCs of postnatal rats at different stages of development (Christophe et al., 2005). Furthermore, an early study showed
the expression of CACNA1C in neurons from all layers of rat dorsal cerebral cortex (Hell et al., 1993). In conclusion, data
from humans and mice indicate that all of the genes considered in the results section (CACNA1C, CACNA1D, CACNBZ2,
CACNA2D3, CACNA1I, ATP2A2, ATP2B1, ATP2B2, SCN1A, HCN1, and KCNB1) are expressed in L5PCs.

Results

We performed simulations of 150 interconnected L5PCs, driving the network with randomly activated background synaptic
currents. We repeated each simulation using different model variants of Table S2 (we also varied the scaling of each variant,
see below). For each model variant, the properties of ion channel activation of Ca?* dynamics were slightly perturbed,
leading to altered activation of the ion channels, and thus modified spiking and network dynamics. The results below show

that many aspects of L5PC single-cell and network activity were affected by the SCZ-associated model variants.

SCZ-associated variants can increase the L5PC network excitability

The neurons were activated by AMPA, NMDA and GABA-receptor mediated background synaptic currents, whose activation

times obeyed stationary, independent Poisson statistics as in Hay and Segev, 2015. We varied the activation rate of the



background synapses to analyze the gain of the network. The firing rate of the network depended both on the activation
rate of the background synapses (Figure 1A) and on the presence and type of the model variant altering the ion-channel or
Ca?*-transporter functions (Figure 1B). Most of the model variants affected the gain of the network, i.e., the input/output
relationship with respect to the activation rate of the background synaptic inputs (Figure 1C). Extensive simulations revealed
that 39 of the e = % model variants (101 in total) of Table S3 (purple) fired on average in a higher frequency and 62 in a
smaller frequency than the control network (Figure S3). In Figure 1C, a model variant that produced the highest average
firing frequency (see Figure S3) for the € = % scaling was chosen for each gene (except for ATP2B2 for which all positively
scaled variants had a weaker gain than the control). As expected, a combination of these model variants radically increased
the network gain (the median of the spike frequency distribution at input rate » = 1.0 was significantly different from that
in the control network, U-test, p < 0.01, 10 vs. 4 samples), despite the small effects of the individual model variants (Figure

1C). The effects of the model variants on network gain were in line with their effects on single-cell excitability (insets of

Figure 1C).

Response to inputs oscillating in delta frequency and emergence of delta oscillations in L5PCs

are altered by SCZ-associated model variants

Here, we show that the model variants affect the way inputs oscillating within the delta frequency band are integrated by the
network. To do this, we made the Poisson process event rate A in the generation of background synaptic spike trains vary in
time in a sinusoidal form with a 25% amplitude, see Section S1.3 for details and Figure S2 for an illustration. We altered the
background oscillation frequency from delta to beta range to analyze the resonance of the network to different frequencies.
Different baseline frequencies led to different L5PC network firing responses (Figure 2A). The response of the network was
quantified using standard Fourier spectral analysis (Section S1.4). Typically, the model variants affected the amplitudes of
the power spectra of the population spike trains (Figure 2B). The control network was previously shown to resonate strongly
with inputs oscillating in a frequency of 0.7-2.5 Hz (Méki-Marttunen et al., 2018). The L5PC networks expressing the
SCZ-associated model variants (the same variants as in Figure 1C) preserved this feature but, except from the network with
KCNBI1 variants that had negligible effects, altered the amplitude of the response (Figure 2C). The median of the power
spectrum amplitude at baseline frequency 1.5 Hz in the network with combination of model variants (¢ = %) was significantly
different from that in the control network (U-test, p<0.01, 8 vs. 11 samples). The impacts of CACNA1I, SCN1A, and HCN1
model variants were small but non-negligible (Figures 1C and 2C) — stronger versions of these variants (i.e., corresponding
variants with larger scaling parameters) showed more pronounced effects on both L5PC network gain and response to delta
oscillations (Figure S4). The results for the combination of model variants were replicated using the full-morphology model
of Hay et al., 2011 — Figure S5 shows these results and confirms that the two models gave qualitatively similar results.

In addition to responding strongly to delta-frequency inputs, the L5PC network is also hypothesized to have a key role
in producing the cortical delta oscillations (Neske, 2015). In Maki-Marttunen et al., 2018, we demonstrated that given
stationary (non-oscillatory) Poisson inputs, the L5PC network firing rate showed oscillations in the delta-frequency range.
These oscillations were robust and depended on the SK currents (Méki-Marttunen et al., 2018). In this work, we showed that
the amplitude of the delta-frequency oscillations originating in the L5PC network was significantly altered by the combination
of SCZ-associated model variants (Figure S6A). In addition to the continuous-time continuous-frequency Fourier transform

applied in Figure S6A for determining the power spectra (see Section S1.4), these oscillations could be observed using a



range of FFT-based methods (Figure S6B-E).

Effects of the SCZ-associated model variants are observed in the predicted EEG signals

We predicted the EEG signal measured on the scalp (12.5 mm above the L5PC somata) using the head model consisting of
four concentric spheres, where each layer had a constant electrical conductivity (Srinivasan et al., 1998). In this approach,
the membrane currents of each compartment in each neuron were measured in order to calculate the dipole moment of the
network, and the EEG signal was evaluated based on these dipole moments using an analytically tractable model (Naess
et al., 2017) (see Supplementary material, Section S1.5 for more details). In single-cell simulations, the events leading to
somatic action potentials (Figure 3A) and amplified synaptic currents (Figure 3B) were reflected both on the dipole moment
measurements (Figure 3C) and the EEG signature of the neuron (Figure 3D). In network simulations, by contrast, the large
number of action potentials made these signals noisy, but periods characterized by high firing activity (Figure 3E) and thus
stronger synaptic currents (Figure 3F) could still be recognized from the dipole moment and EEG signals (Figure 3G-H). We
calculated the spectral powers for different frequency components of the EEG signal and averaged across many (Nsamp=140)
repetitions, using both control networks and networks with the model-variant combinations of Figure 1C. The network data
did not fit any single power-law behavior, but they showed approximate 1/f¢ scalings with powers a=1 for frequencies smaller
than 20 Hz and a=3 for frequencies greater than 20 Hz, in a fashion similar to that observed in experimental data from
cat cortical EEG during waking (Bedard et al., 2006) (Figure 3I). These values of « fall within the theoretically predicted
range [%, 3] (Pettersen et al., 2014). We observed that the model variants that caused an increased firing frequency (purple,
gray) in Figure 1C also caused an increase in the low-frequency powers — including delta-frequency range (Figure 3J-K).
This is an expected result, as increased spiking implies an increased magnitude of the dipole moments and the EEG signal
magnitude is linearly dependent on the dipole magnitude. An increased magnitude of the EEG signal relates directly to an
increased power at zero frequency (Equation S5) and indirectly to powers at non-zero frequencies as well (Equation S4). It
is noteworthy that the shape of the power spectrum of the EEG signal (Figure 3J) shows a less steep decay with frequency
(steady decrease from 2 to approximately 40 Hz) than that of the population spike train (Figure S6, from 2 to approximately
10 Hz), although both data are based on the same network simulations. This low-pass filter effect may be explained by

intrinsic dendritic filtering (Pettersen and Einevoll, 2008; Lindén et al., 2010; Leski et al., 2013).

Increased L5PC network gain and delta power may be caused by altered expression of Ca2t

channels and transporters

A parametric analysis showed that altering the maximal conductance of HVA channels or changing the ratio in which Ca?*
ions were included in the sub-membrane volume (7y) or the decay rate of intracellular Ca®* concentration (Tqecay) significantly
affected the spiking behaviour of the network (Figure S7). In the analyses above, some of these parameters were affected by
variants that modeled, based on data from functional genomics (see Table S2), the effects of altered amino acid sequences
of the underlying proteins. Nevertheless, the values of these parameters could also be altered to more directly represent
increased or decreased numbers of the proteins. In our sample, SCZ patients had altered expression of seven genes controlling
the Ca?T currents and intracellular Ca?* homeostasis, four of which are likely to be expressed in L5PCs (Table 1A). Here, we
considered several single-parameter variants that were related to these genes and tested their effects on network dynamics.

We found that a modest (10%) decrease or increase in parameters describing the HVA Ca?* channel conductance (gcamva ),



the inclusion parameter v, or the decay parameter 7qecay notably affected the L5PC network gain and response to oscillations
(Figure 4). The change of high-voltage-activated (HVA) Ca?*-conductance parameter simulates the altered expression of
a26-3 (encoded by CACNA2ZD3) or 3 (encoded by CACNB3) subunit, whereas the changes in parameters v and Tqecay
simulate the altered expression of SERCA (ATP2A2) or PMCA (ATP2B1) pumps, respectively. The bold curves of Figure 4
show the direction of effect as suggested by the expression data (under-expression of CACNA2D3, CACNBS3, ATP2A2, and
ATP2B1 in SCZ): interestingly, all these effects except that of the under-expression of ATP2B1 corresponded to increased

network gain and increased responses to delta-oscillations.

Increase in delta power is not cancelled by counteracting synaptic scaling

The results shown thus far illustrated how model variants of the risk genes increased the overall LEPC network excitability,
which (especially in the case of combined variants) led to an amplified response to oscillations across all tested frequencies
(see Figure 2). To show that the delta-band responses of the L5PC network, in contrast to higher frequency ranges, are
highly susceptible to the effects of the model-variant combinations of Figures 1C and 2C, we counterbalanced the variant-
induced increase in network excitability by reducing the numbers of thalamocortical and corticocortical background synapses
to0 Ngyng = 10000 and Ngyn1 = 25000 (o < 1). Using the bisection method for each model variant separately, we searched
for the coefficient a that made the network implemented with the variant combination produce as much spiking as the
control network in the baseline conditions (namely, when background synaptic inputs followed stationary Poisson statistics
with Agiu¢ = 0.72 Hz and Agapa = 7.0 Hz). This search resulted in coefficients o = 0.872 (e = 1) and o = 0.929 (e = ).
We showed that the variant-induced increase in delta-band power persists although the power of higher frequency ranges
are brought back to control levels by the synaptic scaling (Figure S8). In wvivo, synaptic scaling of this magnitude could
be easily induced during animal development by mechanisms for homeostatic plasticity, given that the target neurons were
intrinsically — or for external reasons — too active (Turrigiano and Nelson, 2004). To support the hypothesis that this may
happen for thalamocortical inputs to L5PCs in SCZ, there is anatomical evidence that the fibre pathways of inputs from
midline and anterior thalamic nuclei to prefrontal cortex are reduced in volume in SCZ patients (Lambe et al., 2007; Lang
et al., 2006) and computational modeling evidence from neural mass based models fitted to magnetic resonance imaging data
that indicated reduced connection strengths of thalamocortical connections in high-risk subjects with psychotic symptoms
(Dauvermann et al., 2013).

We repeated the simulations of Figure S8 using models where the L5PC population was coupled to an inhibitory population
of size N = 50 (See Section S1.1.5). These simulations confirmed that the increase in delta power is robust against synaptic
scaling also in excitatory-inhibitory networks, both in presence of weak (Figure S9A1-A2, B1-B2) and strong (Figure S9A3-

A4, B3-B4) gap junctions.

Predicted connection between reduced prepulse inhibition and elevated L5PC network ex-
citability

The above analysis is concentrated on neuronal function and information processing in layer V of the cortex. Nevertheless,
the effects of the model variants on neuron responses may be generalizable to many types of neurons due to the wide
expression of the underlying genes in the brain (Table 1). Here, we considered the effects of our model variants on the

neuron’s response to two successive stimuli in a setting where the response to the second, stronger stimulus may be inhibited



by the response to the first stimulus. This “cortical single-cell prepulse inhibition” is a robust phenomenon that may employ
neural mechanisms similar to those of the prepulse inhibition of the startle reflex (Maki-Marttunen et al., 2016). The startle
network underlying the behavioral prepulse inhibition is well characterized and converges to the caudal pontine reticular
formation (PnC), which directly activates the motoneurons (Lingenhohl and Friauf, 1994; Leumann et al., 2001; Bosch and
Schmid, 2006). The giant PnC neurons show a long (up to 140 ms) afterhyperpolarization (AHP) following their activation
by inputs from neurons in the pedunculopontine nucleus (PPN) (Homma et al., 2002), which are activated by acoustic inputs
(Rohleder et al., 2014). However, lesions of PPN do not completely block prepulse inhibition (Koch, 1999), which favors the
hypothesis that non-synaptic, voltage-gated ion channels (such as the ones studied here) residing in PnC neurons can also
be important contributors to the prepulse inhibition.

We used the single-cell model of Hay et al., 2011 with reconstructed morphology. The neuron was equipped with a
combination of the model variants of Figures 1C and 2C. In a similar fashion to Maki-Marttunen et al., 2016, we randomly
distributed 3000 excitatory synapses across the apical dendrite of the model L5PC. These synapses were synchronously
activated at time ¢ = 0 and later at time t = t;57 — however, unlike in Maki-Marttunen et al., 2016, we here used a
subthreshold amplitude for the first stimulus. The combination of model variants that increased the network firing frequency
(see Figure 1C) decreased the threshold conductance needed for the second input to induce a somatic spike in a LEPC (Figure
5A). This can be interpreted as a deficit in the prepulse inhibition of the neuron. Accordingly, the combination of model
variants that decreased the network firing frequency increased the threshold conductance for the second stimulus (Figure
5A). Similar results were found for the single-parameter variants representing altered gene expression (Figure S10). These
behaviors were observed for inter-stimulus intervals ranging from approximately 40 to 120 ms, while for larger intervals, the
trend was non-existent or even the opposite (by “opposite” we mean stronger prepulse inhibition than control, not prepulse
facilitation (Wynn et al., 2004)). We confirmed this behavior by calculating the correlation coefficients between the two
phenotypes across all model variants of Table S3: the threshold conductance for a second stimulus, given 60 ms after the
first stimulus, was negatively correlated with both the average network firing frequency (correlation coefficient -0.671, p-
value 1.5x107) and the amplitude of the 1.5-Hz power of the population spike train given an input oscillating in a 1.5-Hz
frequency (correlation coefficient -0.674, p-value 1.1x107'4) (Figure S11A-B). By contrast, the threshold conductance for
a second stimulus given 300 ms after the first stimulus was weakly correlated with the two network measures (correlation
coefficients with the average network firing frequency and response to delta oscillations were 0.270 and 0.296, respectively,
and the p-values were 0.0063 and 0.0027) (Figure S11C-D).

The ion channel that has the largest contribution to the prepulse inhibition in the Hay model is the SK channel. As the
SK current is Ca?t-dependent, large SK currents follow the activation of voltage-gated Ca2* channels, even in the absence
of a somatic action potential (Figure 5B). While other K* channels also contribute to hyperpolarizing the neuron, especially
during the first 80 ms following the prestimulus, only the SK conductance in the Hay model has both the long decay and
large amplitude needed to effectively inhibit the subsequent stimulus (data not shown). As a final step of our study, we
replaced the subthreshold prestimulus by a suprathreshold stimulus and quantified the strength of the prepulse inhibition in
terms of threshold conductance of the second stimulus for eliciting a second spike, as done in Maki-Marttunen et al., 2016.
Interestingly, the shape of the prepulse inhibition curve and the effects of the model variants remained qualitatively the same
when this suprathreshold prestimulus was used (Figure S12). These observations highlight the important role of dendritic
SK currents both when the neuron is near to firing a somatic spike and when crossing the spiking threshold.

Finally, we also analyzed how the observed effects of SCZ-associated model variants on delta powers and single-cell prepulse



inhibition were different from effects of other model parameter modifications that alter single-L5PC excitability but cannot
be attributed to the effects of SCZ-associated genes. Figure S13 shows that alterations in the membrane capacitance (C,,),
length-to-diameter ratio (L/d; keeping the membrane area of each compartment constant), and axial resistance (R,) of the
neurite compartments, and the recovery time from short-term depression (7;...) of the background synapses cause alterations
in the predicted network gain and delta-resonance powers. While our approach does not allow considering the effects of 7,
on prepulse inhibition, the parameters C,,, L/d, and R, also affected the predicted strengths of the prepulse inhibition.
Network excitability and delta-resonance powers could be increased by increasing 7,... (Figure S13A-B) or decreasing C,,
(Figure S13C-D), while changing L/d (Figure SI3E-F) and R, (Figure S13G-H) had mixed effects. The increase in network
excitability by an increase in 7,.. is explained by the larger effect of this parameter on inhibitory background synaptic
transmission than on the excitatory one, as the inhibitory synapses were activated at almost a ten-fold rate compared to the
excitatory synapses (7.0 Hz vs. 0.72 Hz at baseline rate factor » = 1). The increase in network excitability by a decrease in
C,, is an expected result, as smaller C), generally causes more rapid firing. Decreasing C,,, also seemed to induce a modest
positive shift in the peak resonance frequency, and vice versa (Figure S13B), which is consistent with previous in silico
observations on CA1 pyramidal cells (Booth et al., 2016). The predicted prepulse inhibition was weakened by a decrease
in Cy, (Figure S13I), R, (Figure S13J), or L/d (Figure S13K). Taken together, only a decrease in C,, produced results
qualitatively similar to those obtained with the combination of model variants (Figures 1C-2C, and 5). However, we found
that compensating the decrease in C,, by decreased numbers of background synaptic inputs (Figure S13L) abolished the
effects on delta-resonance powers (Figure S13M), unlike in the case of SCZ-associated model variant combination (Figure

S8).

Discussion

Using computational modeling, we showed that altered expression or properties of the SCZ-associated, voltage-gated ion
channel or Ca?* transporter-encoding genes lead to increased network excitability (Figure 1) and delta power (Figures 2-3),
which is a phenotype frequently observed in patients with SCZ. Many of these effects are dependent on the activation of the
small-conductance, Ca?*-activated K channels (SK channels), which are expressed in L5PCs (Rudolph and Thanawala,
2015). While these observations were expected based on the previous modeling results showing that SCZ-associated variants
may alter single-L5PC excitability (Mé&ki-Marttunen et al., 2016; Maki-Marttunen et al., 2017), we here showed that the
changes in delta power are robust against a compensatory change in synaptic strengths (Figure S8) and the presence of an
inhibitory population (Figure S9). Furthermore, we showed that the same model variants that increased the delta power in
the L5PC network also hindered the inhibition of the second apical stimulus in single-cell simulations of an L5PC (Figure
5), mimicking the deficit in prepulse inhibition that is often observed in SCZ.

Despite the recent advances in iPSC reprogramming (Falk et al., 2016) and deeper characterization of SCZ endophenotypes
(Braff et al., 2008), we are lacking cellular-level phenotypes that on one hand could be mapped down to genetic level and
on the other hand would closely correspond to symptoms or phenotypes at the brain level. In this work, we proposed
the increased intrinsic L5PC activity as a candidate for such a phenotype. Altered L5PC activity has previously been
proposed as a potential mechanism for hallucinations (Larkum, 2013), which are a positive psychotic symptom although not
all patients of SCZ experience them. Furthermore, morphological alterations have been observed in L5PC of the prefrontal

cortex in SCZ (Broadbelt et al., 2002; Black et al., 2004). On a circuit level, L5PCs contribute to the generation of delta
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oscillations (Neske, 2015), and thus, an increased intrinsic L5PC activity would be expected to increase the delta power in
EEG recordings. Indeed, clinical studies frequently report increased powers of delta-frequency oscillations in patients of SCZ
when compared to healthy controls (Clementz et al., 1994; Duan et al., 2015), although opposite results have also been found
(reviewed in Hunt et al., 2017). See Supplementary material, Section S3 for an extended discussion on this topic.

Previous computational studies on the topic have been performed using less detailed biophysical modeling, such as
dynamic causal modeling (DCM). In one study, patients with psychosis and healthy controls performed an oddball paradigm
task during EEG (Diez et al., 2017). The researchers used DCM to construct a neural mass model that predicted a decrease
in frontal inhibitory connections in patients with psychosis, which led to local hyperexcitability of superficial pyramidal cells.
Using similar methods in a mismatch negativity paradigm, an increase in the excitability of superficial pyramidal cells of
inferior frontal gyrus was predicted in patients with psychosis in Ranlund et al., 2016. However, due to the spatial overlap
between deep layer and superficial layer neuron populations, their contributions to the EEG signal can easily be mixed,
and thus we suspect that the predictions obtained for superficial populations in Ranlund et al., 2016 and Diez et al., 2017
may apply to L5PC populations as well. Network models more detailed than that of Ranlund et al., 2016 and Diez et al.,
2017 (based on the microcircuit model of Bastos et al., 2012) could be used to more accurately characterize the source
of neural alterations observed in patients with psychosis, which would allow a more detailed comparison of the results of
biophysically detailed modeling of L5PCs and DCM-based results. On the other hand, while our model considers many
possible causal factors (expression and intrinsic properties of the ion channels, connectivities within and between the L5PC
and inhibitory neuron populations) influencing the excitability of the population, the DCM-based approaches only considered
the connectivities as plausible causal factors (Bastos et al., 2012; Ranlund et al., 2016; Diez et al., 2017). Therefore, the co-
occurrence of increased intrinsic excitability (such as that obtained by the ion-channel-encoding gene variants in this study)
and increased inhibition may be completely unrecognized by the DCM. This highlights the importance of our biophysically
detailed modeling approach to complement DCM-based approaches.

A centerpiece of our modeling framework is the downscaling of literature-derived model variants — which typically had
large phenotypic consequences — into models of common SNP-like variants. This was done in order to prevent large effects
in the physiology of the studied cell (see M&aki-Marttunen et al., 2016). Due to the great number of identified SCZ-associated
gene variants and their frequency in the healthy population (Ripke et al., 2014), it is generally assumed that a single variant
alone does not cause large consequences for brain activity either on a cellular or on a behavioral level. Note, however, that
rare SCZ-associated variants with significant effects (e.g. Andrade et al., 2016) exist as well. To complement these analyses
based on functional genomics data, we showed similar results (increased L5PC network excitability and response to delta-
frequency oscillation and decreased cortical single-cell prepulse inhibition) for single-parameter model variants inspired by
gene expression data. These gene expression data were based on blood sample analyses of SCZ patients and healthy controls,
and thus do not accurately reflect the differences in gene expression in brain tissue as such. However, gene expression
data in the blood has been shown to be at least moderately correlated with expression data in the brain and other tissues
(Sullivan et al., 2006). Furthermore, quantifying the gene expression from blood samples largely avoids the problem of RNA
degradation that biases the results obtained from post-mortem studies (Koppelkamm et al., 2011). We consider the results
obtained using these two approaches together as a strong signal of a modified L5PC firing behavior in SCZ, but experimental
genetic animal model and/or iPSC model studies may be needed to confirm this.

Our blood sample analysis suggested an under-expression of genes CACNA2D3, CACNBS, ATP2A2, and ATP2B1 in

SCZ patients compared to healthy controls. While our model predicted that an under-expression of ATP2B1 weakens L5PC
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excitability, the model predicted that the under-expression of genes CACNA2D3, CACNBS3, and ATP2A2 leads to increased
L5PC gain and larger amplitude of delta-frequency responses. Our results thus suggest that altered expression of genes
encoding subunits of Ca?* channels and transporters could explain the observation of increased delta-oscillation amplitudes
in SCZ. By contrast, our results based on the SNP-like model variants that were constructed using functional genomics
and GWAS data do not tell anything about the direction of the effects — this is because we included both gain-of-function
and loss-of-function variants and always considered both positively and negatively scaled model variants. Indeed, we did
not optimize our variant models (other than the magnitude of the parameter change) to reproduce a certain cellular or
network effect, but aimed at an unbiased analysis by taking a large number of variants as given in the literature and using
previously validated off-the-shelf neuron models. This choice reflects the current lack of knowledge on the GWAS-identified
variants: apart from a few rare SCZ-associated variants, we do not know anything about their functional effects. However,
our modeling approach could help in characterization of the effects of variants in different genes (see Figure S4) and in finding
correlations between different phenotypes (see Figure S11). These types of multimodal findings could help in revealing the
polygenic structure of SCZ by making genetically and mechanistically based links between phenotypes that were previously
conceived as separate. What we mean by this is that biophysically detailed modeling could produce detailed information
such as “variants in genes A, B, and C lead to phenotypes P and Q through effects in cellular properties X and Y”, while
purely statistical genetics approaches can only find genetic links (“variants in genes A, B, and C increase the prevalence of
phenotypes P and Q”) and modeling with less biophysical detail can only involve the more superficial levels of abstraction
(“cellular properties X and Y cause phenotypes P and Q”). Nevertheless, being more data-oriented than biophysically detailed
modeling, statistical genetics and higher-level modeling (such as DCM-based approaches) have an important role in validating

or invalidating the predictions made by biophysically detailed modeling.

Limitations and future directions

Our predictions are based on the Hay model that accurately describes the electrophysiological features of the thick-tufted
L5PCs (Hay et al., 2011). Although the parameters of the Hay model were not fitted to reproduce the neuron activity under
different ion-channel blockers (Mé&ki-Marttunen et al., 2018), the ion channel structure of the model is very similar to that
in other models of L5PCs with only a few differences. The Almog model (Almog and Korngreen, 2014) describes the L5PC
behavior using a partly overlapping set of ion channels. The persistent K* channels have a larger role in the Almog model,
and although the model separately describes BK currents (another Ca?T-activated current species), the contribution of the
SK currents to the neuron behavior is significant in the Almog model as well (Almog and Korngreen, 2014; Maki-Marttunen
et al., 2017). The model of Papoutsi et al., 2013 does not specify the molecular background of its Ca?*-activated slow AHP
current, but its predictions are in line with the predictions of the Hay model in that the blockade of voltage-gated Ca?*
channels increased the L5PC activity due to the consequent decrease in the Ca?*-activated AHP current (Papoutsi et al.,
2013). Thus, although the molecular structure of the Ca?*-activated AHP current in L5PCs remains to be characterized in
more detail, the modeling (and partly the experimental, see Papoutsi et al., 2013) literature is to a large extent in agreement
in that these currents are significant in L5PCs, and that due to these currents, pharmacological or genetic alterations that
reduce the Ca?* currents (including blockade of Ca?* channels) typically increase the firing activity of the L5PCs despite the
fact that the Ca?* currents themselves are clearly depolarizing rather than hyperpolarizing (Miki-Marttunen et al., 2017).

In this work, we constrained our analysis on genes encoding subunits of voltage-gated ion channels and Ca2?T transporters,

but future work should address the contributions of the SCZ-associated genes encoding receptors of neurotransmitters as
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well as plasticity-related intracellular signaling molecules (Devor et al., 2017). Our framework could also be integrated
with computational studies of NMDA receptor hypofunction and GABA deficiency, which are among the mechanisms more
traditionally considered in computational studies of pathophysiology of SCZ (Jadi et al., 2016; Krystal et al., 2017). A major
challenge for future computational work is to include the immune pathways in the models of SCZ pathogenesis, as indicated
by GWAS and post-mortem studies (Ripke et al., 2014; Van Kesteren et al., 2017).

In the prediction of the EEG signal (Figure 3), the use of the simplified, linear geometry for the L5PCs may have resulted
in over- or underestimated dipole moments of the neurons. Future studies should employ more detailed modeling of the
EEG signals (Tveito et al., 2017; Hagen et al., 2018) and involve a more diverse population of cortical neurons (Markram
et al., 2015) to bring forth more realistic network dynamics. More work is needed also to characterize how and under
which conditions (resting-state or task-related EEG) different neural populations contribute to the EEG features typically
quantified by experimentalists. However, our results form a proof of principle on how activity in L5PCs maps to the EEG
signal and how the effects of genetic variants may be reflected in the signal.

In conclusion, our work is a proof of concept on how data from GWASs and functional genomics can be integrated with
biophysical modeling to tackle challenging questions regarding the pathophysiology of SCZ. Novel experimental methods
could be used to test and further refine our model predictions in witro and in vivo. In particular, new genome editing
tools and automated cell-patching methods (Kodandaramaiah et al., 2012) could allow efficient in wvitro analysis of the
electrophysiological properties of a large number of common SCZ-associated variants, and information from such an analysis
could be used to develop new animal or iPSC models of SCZ. However, as SCZ is a massively polygenic disorder, we believe
that innovative experimental approaches will be needed to pinpoint specific genetic mechanisms in contrast to other genetic
mechanisms that have overlapping effects. Our biophysically detailed modeling approach shows great promise as a tool for
uncovering polygenic cellular level mechanisms, as it allows studying alterations of both one genetic pathway at a time and
in combination with other pathways. Given enough biological detail in the model, compensatory mechanisms that take place
in parallel with the studied genetic alterations can be implemented for a better description of the observed experimental
phenomena, but unlike in most experimental approaches for polygenic analysis, these mechanisms can be fully controlled by
the experimenter. Challenges for the field are more detailed representations of cellular and sub-cellular entities in the model

as well as the adaptability of the models to larger spatial and temporal scales.
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Figure 1: Model variants affect network excitability. A: Population spike trains for control networks with different
event rates of background synaptic inputs. The black spike train shows the response of the model to the inputs used in the
original model (Hay and Segev, 2015), i.e., when excitatory and inhibitory synapses were activated on average at frequencies
f =0.72 Hz and f = 7.0 Hz, respectively (the distribution of the inter-event intervals was stationary Poisson). In the other
examples, these rates were multiplied by the shown factor . B: Population firing rate of networks with » = 1.0 as a function
of time, smoothened using a 25-ms Gaussian kernel. Blue curve shows the control network data, while the dashed magenta
curve shows data from the CACNA1C model variant with € = % scaling (corresponds to the CACNA1C variant of panel C).
C: Gain curves of variant networks, where the mean neuron-wise firing rate during an 11-second simulation is plotted against
the rate factor r. Averaged over 3-10 samples. C, inset: f-I curves of single L5PCs with the corresponding model variants
(Maki-Marttunen et al., 2016). These data were obtained by stimulating the neuron with a somatic DC with the amplitude
shown on the x axis — the y axis shows the resulting spiking frequency (in Hz). Blue: control network (no variants), other
colors: downscaled model variants with different downscaling parameters e. The parameter changes related to each model
variant are stated in Table S3.
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Figure 2: Model variants affect the magnitude of the response of the network to oscillatory inputs. A:
Population spike trains for control networks where the event times of the background synaptic inputs were non-stationary
(oscillatory) Poisson processes. The shaded areas show the times at which the A of the oscillatory Poisson process was larger
than average. The black spike train represents the L5PC network response to the input oscillation frequency 1.5 Hz, which
caused the largest response in the network. B: Fourier power spectra of the CACNA1C model variant (purple) and control
(blue) network spike train with the input oscillation frequency 1.5 Hz. Only spikes from 2000 ms onward were considered
when calculating these spectra. Inset: zoomed-in view on the peak at the frequency corresponding to the input oscillation.
C: The power of the frequency component corresponding to the input oscillation frequency (e.g., the amplitude of the peak in
the inset of panel B) plotted against the input oscillation frequency. Averaged over 6-13 (mean 11.9) samples. Background
oscillation frequencies f=0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625, 0.6875, 0.75, 0.875, 1.0, 1.125,
1.25, 1.375, 1.5, 1.625, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.5, 10.0, and 15.0 Hz were considered. Blue: control network (no
variants), other colors: downscaled model variants with different downscaling parameters e.
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Figure 3: Predicted dipole moments and EEG signals from single-cell and network simulations, and spectral
EEG power in control and model variant networks. A: Somatic membrane potential time series of a single L5PC
receiving the background synaptic inputs but no L5PC-to-L5PC inputs. The red rectangle is zoomed in on in the inset. B:
Synaptic currents summed across the dendritic sections in the L5PC of panel (A). During a burst of action potentials, the
dendritic membrane potential is elevated, leading to magnified GABAergic (positive) background synaptic currents (inset).
C: Time series of the y-component (upwards, toward the scalp) of the dipole moment obtained from the L5PC of panel (A).
D: EEG time series (electrode placed at the top of the scalp) from the single-L5PC activity of panel (A). E: Population
spike train of 150 interconnected L5PCs. F: Synaptic currents summed across the L5PC population of panel (E). G: Time
series of the y-component of the dipole moment obtained from the network of panel (E). H: EEG time series from the L5PC
network activity of panel (E). I: Spectral power (see Equations S2 and S4-S5) of the EEG signal such as that in panel (F),
starting from 2000 ms, averaged over Ngamp=140 networks with different random number seeds. The black lines represent
1/f and 1/f% power scalings. J: The data of panel (I) reproduced on a semi-logarithmic scale. The blue curve shows the
power spectrum of the control network data of panel (I), and other colors represent the data from the same combinations of
model variants as in Figures 1C and 2C. K: Zoomed-in view on the data of panel (J).
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Figure 4: Single-parameter variants affect the network gain and responses to oscillatory inputs. The panels
from left to right show the effects of the following parameters: gcamva (maximal conductance of HVA Ca2* currents),
(proportion of Ca?T ions that enter into the sub-membrane domain of the total number of incoming Ca®* ions), and Tgecay
(the decay time constant of Ca?* concentration in the sub-membrane domain). The upper panels show the gain curves (see
Figure 1C) and the lower panels show the responses to oscillatory inputs (see Figure 2C). Oscillatory inputs with frequencies
f=0.5, 0.625, 0.75, 0.875, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 7.5, 10.0, and 15.0 Hz were considered. The densely
dashed curves show the effects of a 10% increase in the parameter value, as the sparsely dashed lines show the effects of
a 10% decrease in the parameter value. The curves corresponding to the trend (under-expression) observed in the blood
sample data are thicker than the curves corresponding to the opposite trend. The solid lines show the data from the control
network simulations. The data were averaged over Ngamp=5-6 (upper panel) or 12 (lower panel) network simulations with
different random number seeds.

Table 1: Expression of ion channel or Ca?T transporter-encoding genes. The first column shows the (human) gene
name. The second and third columns show the corresponding RNA and protein expression values in the Human Protein
Atlas, respectively. The fourth and fifth columns show the RNA expression of the corresponding murine genes in cells whose
somata are located in layer V of the mouse visual cortex. These data are from the Mouse Brain Atlas: the values in the
fourth column are in fragments per kilobase million (FPKM), while the values in the fifth column are in transcripts per
million (TPM). The sixth column shows the p-value from the t-test of differences between the gene expressions in healthy
controls vs. SCZ patients in our blood sample data: if there were multiple assays for a single gene, the one yielding the
minimum p-value is shown. If the difference in expression between patients and healthy controls was significant (p-value <
0.05), the arrow shows whether the gene was over-expressed (1) or under-expressed ({) in patients in comparison to healthy
controls. A: Data for the genes that showed significantly different expression in the blood when SCZ samples were compared
with healthy controls. B: Data for the genes identified by the SCZ GWAS data (see Table S2). One gene, namely, ATP2A2,
overlapped in these sets — this gene is included in part (A).

A RNA expression in Protein expression Mouse L5 visual cortex

Gene HPA dataset (TPM) level in HPA dataset RNA expression (FPKM) (TPM) p-value
ATP2A2 119.7 medium 77.61 £ 41.53 125.08 & 72.46  0.034 ({)
ATP2A3 1.9 high 0.007 £ 0.28 0.011 £+ 0.45 0.00061 ({)
ATP2B1 143.6 high 58.86 £ 43.73 94.48 £ 71.12 0.050 ({)
CACNA2D2 5.9 low 1.37 £ 2.63 2.14 £ 4.12 0.00033 (4)
CACNA2D3 16.2 N/A 44.66 + 51.17 72.21 £ 85.80 0.019 (4)
CACNA2D4 0.3 N/A 0.11 + 1.18 0.18 £ 1.92 0.026 (1)
CACNBS3 33.6 N/A 18.91 + 18.98 30.84 £+ 32.43 0.010 ({)
B RNA expression in Protein expression Mouse L5 visual cortex

Gene HPA dataset (TPM) level in HPA dataset RNA expression (FPKM) (TPM) p-value
CACNAIC 8.3 medium 1.85 + 3.31 3.00 + 5.54 0.17
CACNA1D 4.1 medium 2.60 £ 4.30 4.26 £ 7.58 0.28
CACNB2 26.3 N/A 7.34 + 10.59 11.82 + 17.03 0.13
CACNA1I 4.7 N/A 0.87 £ 2.08 1.42 £ 3.52 0.32
ATP2B2 64.7 high 33.22 £ 21.20 53.75 £36.95 0.11

SCN1A 10.3 N/A 22.47 £ 19.49 35.63 £ 31.06 0.88

HCN1 4.9 medium 10.71 £ 12.28 16.86 + 19.28 0.39

KCNBI1 21.6 medium 9.95 + 9.96 16.32 £+ 18.56  0.66
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Figure 5: The single-L5PC model predicts that the combination of variants increasing the network firing
causes deficits in prepulse inhibition. A: The solid curves show the threshold conductance for the second input arriving
simultaneously to the 3000 synapses located at the apical dendrite. The dashed lines show the threshold conductance for the
same input at rest, thus the solid curves converge toward the dashed lines. For the positively scaled model variants (e = %
and € = %), a deficit in prepulse inhibition, i.e., lowered threshold conductance for the second input, was observed when
the interval between the first and the second inputs is approximately 40-120 ms. The insets show the somatic membrane
potential traces following the two stimuli, given different intervals and synaptic conductances of the second stimulus. If the
two inputs were close in time (ISI = 40 ms), the neuron always fired at least one action potential shortly after the second
stimulus. Likewise, if the interval between the two inputs was long (IST = 100 ms), the neuron fired when the conductance of
the second input was either g = 0.1 nS or g = 0.15 nS (e = % variant fired also for g = 0.05 nS). By contrast, there was a lot
of variation between the model variants in what happens for intermediate interval (ISI = 60 ms): € = f% variant did not fire
for any of the three amplitudes of the second stimulus, € = % fired for both ¢ = 0.1 nS and g = 0.15 nS, and the behaviors
of the other variants fell between these two extremes. B: The SK current, recorded at the “hot zone” of Ca®* channels (720
pum from the soma at the apical dendrite) in the single-L5PC model of Hay et al., 2011, both in the control case and when

the combinations of model variants were used. Only the prestimulus (90% of the threshold conductance) was applied here.
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