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Abstract 

Software effort estimation is an important part of software development work and provides 

essential input to project feasibility analyses, bidding, budgeting and planning. The 

consequences of inaccurate estimates can be severe. For example, estimates that are too 

optimistic can cause significant losses and those that are too pessimistic can result in 

contracts being lost. Unfortunately, it is common for software development projects to 

overrun their effort estimates, typically because the estimates are too optimistic. The 

average overrun is reported to be 30-40% of the estimated effort.  

In this thesis, I focus on expert judgment-based effort estimation. This estimation 

approach is by far the most frequently applied estimation approach in the software industry. 

In addition, even when formal effort estimation models are applied, expert judgment 

typically plays an important role in providing input to the models. In spite of the obvious 

industrial importance of expert judgment in effort estimation, and the lack of evidence that 

formal estimation models provide more accurate effort estimates, the main focus of research 

has so far been on the effort estimation models.  

The goal of my thesis is to contribute to reducing the estimation error in software 

development projects by coming to a better understanding of the shortcomings of, and how 

to improve, expert judgment-based processes of effort estimation. The following topics are 

addressed:  

• When, and how much, do judgmental biases and inconsistencies in effort estimates 

impact the estimation error?  

• What is the software clients' role in reducing effort estimation error in software 

development projects? 

• What is the state of practice of software effort estimation error measurement and 

analysis? 

The selection of these topics is motivated by their importance for the improvement of 

expert judgment-based effort estimation error. Accurate expert judgment-based effort 

estimates will be impossible in the following circumstances: when the estimator is strongly 

affected by irrelevant information; when the same estimation information leads to widely 

differing estimates by the same estimator on different occasions; when the clients’ 

behaviour prevents meaningful effort estimation work; when there is no common 

understanding of what is meant by an effort estimate; and when the interpretation of 
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estimation error measurements is flawed. An additional motivation is the observation that 

these topics have previously received scant research attention. 

The topics are addressed in three experiments with, in total, 175 software professionals 

as subjects, one survey with 300 software professionals as respondents, one analysis of 19 

completed projects within one software development company, and two reviews of the 

software estimation literature. Main findings include: 

• The presence of estimation irrelevant information as input to expert judgment-based 

processes of effort estimation can affect the estimates severely. Knowledge and 

acceptance that the information is irrelevant do not result in the effect being eliminated. 

This implies that the only safe method of eliminating the effect of irrelevant information 

is to remove the information before the estimation work starts. 

• The level of inconsistency in expert judgment-based estimation processes is 

surprisingly high. If we do not introduce training and processes aimed at higher levels of 

estimation consistency, we can hardly ever expect accurate effort estimates. 

• Software professionals perceive that clients affect estimation accuracy, especially 

issues regarding system requirements. This implies that the clients should play an 

important role in the improvement of estimation processes. 

• Imprecise estimation terminology and inappropriate processes of estimation error 

analysis are common in software estimation research. One consequence is that the 

results of many estimation error analyses, both in industry and research, are easily 

misinterpreted. For example, it is often difficult to know in field studies whether an 

increase in average estimation error indicates a decrease in estimation skill, poorer 

project control, or higher estimation complexity. I suggest a framework for, what I 

believe is, better estimation error analyses. 

 

 In addition to the findings’ individual contributions to the body of knowledge in software 

engineering, together they contribute to a better understanding of the huge variety of topics 

that researchers need to address to improve estimation processes. Topics of relevance are 

related not only to typical engineering processes, but also to such various topics as 

communication of estimation information (including terminology), clients’ estimation 

behaviour, human biases, and judgmental inconsistency. Therefore, to address the 

“estimation problem”, software engineering researchers need to apply knowledge and 

research methods from a variety of research disciplines.  
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1. Motivation, Research Questions and Contributions 

Computer use now pervades almost every aspect of our daily lives. We use computers at work, we 

use email to communicate with friends and colleagues, and we shop on the internet. Somewhat less 

visible, but equally important, are the computers that are embedded in other products. For example, 

cars, fridges, pacemakers, ATMs, and ticket systems would not work without their integrated 

computers. Central services such as health care, airline traffic, and power plants have been made safer 

and more efficient by the use of computers. In short, today's society relies heavily on the use of 

computers. 

However, computers need to be told what to do in order to function in ways that are useful to us. 

People have to write instructions that the computer can interpret. Without these instructions, 

computers are useless. The instructions are often referred to as "computer programs", "applications" 

or, perhaps most commonly, "software".  When software fails, the consequences can be dramatic. For 

example, in 1995, 164 people were killed when a passenger aeroplane from American Airlines 

crashed into a mountain in Colombia. The subsequent investigation revealed that the crash was a 

direct consequence of an error in the software. In most cases, the consequences of software failure are 

not fatal, but they are often severe. For example, it is easy to imagine that flawed information can lead 

to flawed decisions, and consequently, to severe financial losses.  

Software engineering is the discipline of designing, creating, and maintaining software by applying 

technologies and practices from computer science, project management, engineering, application 

domains and other fields*. It can be expensive, complex, and demanding of resources. Consequently, 

there is a high demand for predictable software development processes that yield high-quality 

software.  

Since the 1960s and 1970s, academia and the software industry have made large investments in 

software engineering research and development. This has produced considerable insight into the 

complex domain of software development, and has led to improved tools, languages, methodologies 

and techniques. We may lack strong scientific evidence of this improvement, but few professionals 

doubt that we have increased our ability to work more efficiently, and to build more complex 

software, over the years. However, there is at least one field in which little progress seems to have 

                                                           
* See http://www.wikipedia.org (7. Nov. 2006) 
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been made: software effort estimation. This is unfortunate, because effort estimation is the basis for 

important software development processes such as bidding, planning, budgeting and determining the 

project's feasibility. 

When we read about "software project failures" in the press, these failures refer, in most cases, to 

the consequences of inaccurate effort estimates. A recent example is that the U.S. government "lost" 

$318 on improper tax refunds because a new version of a software system used by the Internal 

Revenue Service (IRS) that screens tax returns for fraud was delayed*.  The IRS had counted on the 

software being ready as estimated and did not have any backup plan when it did not. There are many 

other examples of severe problems caused by inaccurate estimates, e.g. people who get fired because 

their projects overrun the effort estimates, companies that encounter financial trouble because their 

estimates are too pessimistic and therefore lose many contracts, companies that have lost business 

opportunities because the estimates were too optimistic and the end product had to be delayed, 

suboptimal resource allocation because the cost benefit analysis were based on unrealistic estimates, 

and unexpected high software maintenance costs because the quality of the software was 

compromised in order to reduce estimation errors. 

Scientific studies confirm the poor state of software effort estimation. A recent review [33] reports 

that 70-80% of software development projects overrun their estimates and that average overruns are 

about 30-40%. These figures seem to be stable over location and time. Studies with similar results 

have been conducted in, e.g., the USA, Norway, New Zealand and the United Kingdom. Further, 

there has been little, if any, reported improvement in software effort estimation accuracy since the 

earliest surveys were conducted more than 20 years ago. The only studies reporting a strong 

improvement are the Standish Groups' Chaos reports†. They claim that in 1994 the average overrun in 

software development projects was as high as 189%, and that it was reduced to 45% in 2000, i.e. a 

huge improvement. However, as pointed out in [20], there seem to be several severe methodical 

shortcomings in the Standish reports. There is an ongoing debate about whether or not these results 

are trustworthy. As I point out in paper IV, it is not trivial to interpret the exact meaning of the figures 

reported in the other studies either, but at least it seems quite clear that effort estimation errors are 

common and that the errors are often rather large.  

                                                           
* See http://www.foxnews.com/story/0,2933,211887,00.html (7.nov.2006) 
† See http://www.standishgroup.com 
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It is unrealistic to expect perfect effort estimates even with perfect estimation processes, because 

the effort use is probabilistic by nature, i.e., there are many possible effort outcomes with connected 

probabilities at the time of estimation. The effort used to implement a software development project 

depends on many factors, e.g. the amount of implemented functionality, the number of errors made by 

the programmers, the estimated effort use, and the quality of the code that is produced. Some of these 

factors can be known upfront, such as the availability of appropriate development tools, while other, 

probabilistic factors, such as the absence of staff due to illness, cannot. The presence of probabilistic 

factors means that until the project is finished, the remaining effort use is a distribution and an 

interval of estimates have a nonzero probability of being equal to the actual effort. Good estimation 

processes will produce estimates with a higher probability of being correct than less good processes.   

Accurate effort estimates are also difficult to achieve because of the complex relationships among 

factors relevant to effort. As an illustration, some factors cause more use of effort directly, e.g. 

unexpected problems configuring the development tools; some factors may lead to other events and 

cause more use of effort indirectly, e.g. use of new and untested development tools; some factors 

enable other factors to sometimes lead to more use of effort, e.g. use of a development methodology 

that depends on a new development tool; and yet other factors do not cause more use of effort but 

increase use of effort if not in place, e.g. availability of skilled development tools support personnel. 

The probabilistic nature of effort usage in software development projects and the complex 

relationships among factors relevant to effort mean that we should not expect an easy solution to the 

estimation problem. However, given the current state of highly inaccurate software effort estimates 

and the sometimes dramatic consequences of inaccurate estimates, we must continue to search for 

ways of improving effort estimation. Even changes in estimation methods that lead to small 

improvements in estimation accuracy may be highly profitable, due to the amounts of resources used 

by, and the potentially damaging consequences of, poorly planned software projects. The strong need 

for improved estimation accuracy is a major motivation for the choice of effort estimation as the topic 

of this thesis. 

The remaining part of this section describes and motivates the research questions (Section 1.1), 

provides a summary of the main contributions (Section 1.2), and describes the structure of the thesis 

(Section 1.3). 
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1.1. Research Questions 

The approaches to solve the complex problem of estimating software development effort are typically 

classified as expert estimation or formal estimation model-based. The term "expert estimation" is 

typically used as a label for estimation methods in which a significant part of the estimation process 

(particularly the final step, i.e., the “quantification step”) is based on intuition, while the term "formal 

estimation models" is typically used as a label for estimation methods where a substantial part of the 

estimation (and particularly the "quantification step") is based on the use of mechanical and analytical 

processes, e.g., the use of a formula derived from historical data using regression analysis. Software 

effort estimation research is inconclusive regarding which estimation approach is better, e.g. a recent 

review [17] of studies comparing models and experts in software development effort estimation 

concludes that experts typically performs no worse than the models.  

Reduction of estimation error has been a major concern in the software engineering community for 

a long time. Most of this research has focused on the development and evaluation of formal 

estimation models. However, despite a massive amount of research on formal estimation models [19] 

and recommendations on the use of estimation models in software engineering textbooks and process 

improvement frameworks, expert judgment-based effort estimation is by far the most popular 

estimation method in the software industry. This may be due the lack of convincing results regarding 

the accuracy of estimation models, but may also be due to the fact that even estimation models rely on 

expert judgment to provide some of the input.  

Motivated by the dominant use of expert estimation in the software industry, the lack of 

convincing results regarding the benefits of switching to formal estimation models, and the 

importance of improved judgmental processes even when using formal estimation models, I chose to 

focus my research on the improvement of judgment-based software development effort estimation 

processes. The overall research question that is investigated in thesis is therefore:  

 

RQ: How can expert-judgment based effort estimation processes be modified to reduce software effort 

estimation error in software development projects? 

 

There are many ways of improving judgment-based effort estimation processes. In my thesis I focus 

on the following means of improving effort estimation accuracy: 
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• Coming to a better understanding of why and how irrelevant information affects effort estimates, 

and of the level of, and reasons for, inconsistency in effort estimates. 

• Coming to a better understanding of the client-related factors that can cause and prevent 

estimation errors in software development projects. 

• Developing better processes for analysing estimation error, including our own analyses.  

 

These means were the starting point when formulating the research questions (see Table 1) addressed 

in the studies. The underlying assumption is that a better understanding of important relationships, 

e.g., the relationship between irrelevant information and estimation accuracy, is likely to promote the 

development of better estimation processes. 

 

Table 1 Research Questions and Motivations 

Research Question Motivation (“Research gaps”) 

 

RQ 1: How can biases and inconsistencies in 

effort estimates based on expert judgment be 

reduced? 

 

Few software estimation studies address expert judgment-based estimation processes [19] 

and we have a poor understanding of the cognitive processes involved [16]. 

RQ 1.1: When, and how much, are software 

professionals' estimates of most likely effort 

impacted by estimation-irrelevant information 

in the requirement specifications? 

 

Several studies report that poor requirement specifications can increase software effort 

estimation error, e.g. [26, 43]. Currently, we know little about the role of estimation 

irrelevant information in specifications on the effort estimates. Research from other fields, 

e.g. [36, 46], suggests that such information in the input to forecasting processes could be 

an important cause of inaccuracy in forecasting processes that relies on human judgment. 

RQ 1.2: How consistent are software 

professionals’ expert judgment-based effort 

estimates? 

Several studies show that the variance of effort estimates when different estimators 

estimate the same task is large, see e.g. [24], but I am not aware of any studies that 

address the topic of intra-subject consistency in a software estimation context, i.e., there 

have been no previous studies on how consistently the same software professional would 

estimate the same project based on the same information on different occasions. Research 

from other fields typically finds that judgmental forecasts are inconsistent, and that this 

inconsistency is a major source of error that contributes to reduced forecasting accuracy 

and makes learning more difficult; see e.g. [41]. 

RQ 2: What is the software clients' role in 

reducing effort estimation error in software 

development projects? 

Client-related factors are believed to affect estimation error, as reported in e.g. [38, 39]. 

The results reported in [34], for example, suggest that government projects had higher 

overruns of effort estimates than private projects. Despite the apparent importance of 

client-related factors, there has been little, if any, systematic investigation of such factors.  
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RQ 3: What is the state of practice of software 

effort estimation error measurement and 

analysis and how can it be improved? 

Flawed measurement and analysis of estimation error can lead to flawed conclusions. 

While there has been some research on the estimation error measures themselves, e.g., on 

properties on the MMRE-measure [40], I have not found much research on other 

important steps of estimation error measurement and analysis, e.g., studies on how to 

ensure that what we measure is estimation skill and not something else.    

RQ 3.1: Is the term ‘effort estimate’ precisely 

defined in the software engineering literature? 

 

 

Several papers demonstrate the importance of a precise estimation terminology for effort 

estimation measurement, e.g.  [14]. However, no studies I am aware of have investigated 

the state of estimation terminology in the software industry and research, i.e. to what 

degree there is a need for improved use of terminology and what the main problems are.  

RQ 3.2: What is the state of estimation error 

analysis, and when does the lack of proper 

estimation error analysis bias analyses of effort 

estimation accuracy and, in the worst case, lead 

to incorrect conclusions? 

 

Several general frameworks for analysing software measurements exist, e.g. the GQM 

(Goal-Question-Metrics) framework. These frameworks for analysis are neither specific 

nor tailored to software estimation. Consequently, there may be a need for additional 

frameworks for analysis, based on knowledge about the shortcomings of current analyses 

of estimation error. 

. 

 

Further motivation for the selection of research questions is provided by the comprehensive review of 

software estimation research papers reported in [19]. Based on the review of 304 software effort 

estimation papers, the authors argue for more research in six areas. I believe the research questions I 

have selected respond to at least the following two recommendations: 

1) “… current research on, e.g., expert estimation is sparse and we believe that it deserves more 

research effort.” ([19], p. 22) 

2) “… we should put much more research effort into developing better ways of evaluating estimation 

methods and of measuring the accuracy of estimations.” ([19], p. 22) 

 

Table 2 shows how each paper in the thesis relates to the research questions.  

Table 2 Research Questions and Papers 

Research Question Paper Id Title of Paper 

1.1 I The Impact of Irrelevant Information on Software Effort Estimates 

1.2 II Inconsistency in Expert Judgment-based Estimates of Software Development Effort 

2 III The Clients' Impact on Effort Estimation Accuracy in Software Development Projects 

3.1 VI Software Effort Estimation Terminology: The Tower of Babel 

3.2 V A Framework for the Analysis of Software Cost Estimation Accuracy 
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1.2. Main Contributions 

The results presented in this thesis provide empirical evidence that the error of judgment-based effort 

estimates can be reduced by:  

• Removing irrelevant information from the requirement specifications prior to estimation.  

• Practices that reduce inconsistency, e.g., mechanically combining independent estimates from 

several estimators. 

• Developing greater awareness of the clients’ role in promoting realistic effort estimates.   

 

The evidence in support of these recommendations are based on the following: 

• The results from two experiments presented in Paper I that suggest that the presence of 

estimation-irrelevant information in input to expert judgment-based effort estimation processes can 

severely hinder the estimators' ability to consider only relevant information, and thereby lead to 

inaccurate estimates. For example, the presence of irrelevant information increased average effort 

estimates by 30% in one of the experiments.  

• The results from an experiment presented in Paper II that suggest that there is a surprisingly high 

level of inconsistency among estimators, e.g. in the experiment the subjects estimated identical tasks 

on several occasions and the mean difference of the effort estimates of the same task by the same 

estimator was as much as 71%. This high level of inconsistency may be a major source of error in 

software effort estimation. In addition, inconsistent use of estimation information and processes may 

reduce the realism of the effort estimates and hinder learning. 

• The results from a survey presented in Paper III that suggest that software professionals believe 

that clients affect estimation accuracy. Changed and new requirements are perceived as the clients' 

most frequent contribution to overruns, while overruns are prevented by the availability of competent 

clients and capable decision makers. 

• The results from two reviews and an analysis of completed projects within one software 

development company, presented in Paper IV and Paper V, suggest that imprecise estimation 

terminology and inappropriate estimation error analysis processes makes it in many cases difficult, if 

not impossible, to interpret and make meaningful use of the results of studies that report and analyze 

software effort estimation error, e.g. we found that only two out of 23 reviewed research papers used 
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a precise estimation terminology. A framework that, I believe, enables a better process for analysing 

estimation error is suggested. 

 

These findings indicate that a wide range of topics, as different as estimation terminology, 

cognitive processes and client-related factors, can have an impact on estimation errors. Consequently, 

it seems necessary to conduct studies of many types, and from many viewpoints, in order to reduce 

estimation error. This thesis focuses on improving expert judgment-based effort estimation processes, 

but I believe that the results regarding inconsistency and biases may be useful input to the 

improvement of any estimation method that is based, at least in part, on human judgment, and that the 

results on estimation error analysis and the customers' impact on estimation error, may be valuable for 

an even broader audience. However, in order to make a substantial contribution to the reduction of 

software effort estimation error, we may need to develop theories that explain the processes of expert 

judgment better. This thesis does not provide such theories, but the findings presented will, I hope, 

contribute to their development.  

I have not found any studies that were published after the papers in the thesis had been written that 

support, explain or contradict my findings. This is, perhaps, unsurprising, given the short time span 

between the writing of the papers and the writing of the thesis. 

 

1.3. Overview of the Thesis  

This work is organized as follows. Section 1 (this section) introduces the topic of software cost 

estimation and motivates the need for more research in this area. The section presents and motivates 

the research questions investigated and describes the main contributions related to each research 

question. Section 2 discusses the state of software effort estimation practice and research, with a focus 

on topics relevant to the research questions. Section 3 briefly presents alternative research 

methodologies in empirical software engineering, and provides an overview of, and motivation for, 

the research methodology decisions made in this thesis. Section 4 summarizes the results of the 

individual papers. Section 5 contains a summary of my contributions to the idea, design, data 

collection, analysis and writing of the individual papers included in the thesis. Section 6 presents 

further work. Section 7 provides some concluding remarks. The five individual papers are included at 

the end of this thesis. 
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2. Software Effort Estimation Error 

Software estimation has been recognized as a problem since the early days of software development; 

see, e.g. the report from 1965 reported in [9]. A considerably body of research has been produced. In 

this section, I define and explain what we mean by “effort estimate” in this thesis. Then, I briefly 

describe related research results from three research areas: 1) estimation methods, 2) causes for 

estimation error, and 3) measurement and analysis of estimation error. These results are intended to 

provide background material for the discussion and understanding of the studies reported in the thesis. 

 

2.1. Terminology 

The term software development effort estimate is understood as a prediction of the effort most likely 

required to implement a software development project. An effort estimate is produced by an 

estimation process that takes estimation-relevant (and sometimes irrelevant) information as input and 

translates it into the effort estimate or a distribution of effort values with connected probabilities. As 

described in Section 1, this process may be dominantly mechanical (model-based) or judgmental 

(expert estimation-based). An effort estimate is based on a set of implicit or explicit assumptions, e.g. 

the assumption that the implemented system will be the same as that which is described in the 

requirement specification. Some assumptions are made by the people who estimate the project, while 

others are constraints that are enforced on the project, e.g. that the project has to be delivered within 

three months.  

All estimates are uncertain. This uncertainty can be expressed as confidence intervals, e.g., 90% 

confidence minimum-maximum intervals, or more informally, e.g., that an estimate is likely to be 

quite inaccurate. Typically, the uncertainty of an estimate decreases when more information is 

available.  

   

2.2. Estimation Methods 

A plethora of estimation methods exists and there are several schemas for classifying them, e.g. [4, 

21]. In what follows, I discuss estimation methods on the basis of the classification "expert judgment" 
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and "formal estimation models". This is similar to the top level of the categorization schema used in 

[5] (model-based estimates vs. non-model based estimates).  

  

Formal estimation models 

There are many different types of formal effort estimation models available. Many of these models 

are categorized and described in [5]. Effort estimation models may be based on sophisticated analyses 

and dependencies between effort and other variables in sets of previously completed projects and 

result in, e.g., formulae of the following type: 

 

Effort = a Sizeb * Adjustment factor   

 

The Size variable can, for example, be a measure of the ‘size of functionality’ derived from the 

requirements specified by the client or the estimated number of lines of code to be programmed. The 

adjustment factor is typically derived from a weighted sum of answers to questions related to 

development complexity, project member skills and tools used to support the development process. 

The adjustment factor may also include input of a productivity factor, i.e., a measure of the historical 

productivity of similar projects. Examples of well-known estimation models are these:  

• COCOMO [3]. In COCOMO, the use of effort of a typical project is assumed to follow a pre-

defined formula regarding the relationship between Size and Effort. To account for differences in 

productivity, it is possible to make a number of (to some extent subjective) adjustments to the 

“nominal” effort estimate, e.g., the estimate can be adjusted for level of reuse.   

• Use Case Point Estimation (UCP) [1]. The method takes as main input a software specification 

described through “Use Cases”, which is part of the notation of UML [25] and is similar to the use of 

“Function Point”-based estimation models. Each use case is counted and weighted, and is adjusted for 

technical parameters. An expected productivity rate is provided as input.  

 

Current research in this area is typically directed at making better models, e.g. [27], investigating 

when, how and how much local calibration of the models that are beneficial, e.g. [28], and evaluating 

models, e.g. [31].  

Model-based effort estimation processes may rely on expert judgment-based input. Hence, model 

output may also be biased towards over-optimism or be affected by the presence of irrelevant 
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information. Further, inconsistency in effort estimates may be a problem, despite the use of models. 

The fact that model-based estimation processes sometimes rely on expert judgment-based input 

illustrates the relevance of studies on expert judgment-based estimation, even when models are used. 

 

Expert judgment-based estimation 

Expert judgment-based estimation is not a single estimation method, but a spectrum of judgment-

based processes. Even within the same software development organization, processes of expert 

judgment-based estimation may vary from those based on pure intuition to highly structured 

processes that use relevant historical data, in which it is principally the essential step from 

understanding the software development estimation problem to quantifying the required effort that is 

based on intuition. There are several estimation processes and support material designed to aid expert 

judgment-based estimation, e.g.:  

• "Planning Poker" (PP) [6], which is a set of estimation process guidelines that are rapidly gaining 

popularity in the Agile community. PP is based on the combining of anonymous, individual estimates 

from the developer team and on group discussions.    

• Work Breakdown Structures (WBS) guidelines, e.g. [42]. A WBS typically involves a template 

for partitioning software project work into smaller tasks that are estimated separately. These estimates 

are combined to provide the total estimate. 

• Estimation checklists. These checklists may be company-specific and based on, e.g., the 

company’s perception of activities that are typically forgotten when estimating. 

 

Current research on expert judgment-based estimates is typically directed at discovering faults in the 

process of human judgment that bias the estimates, e.g. [2], developing and evaluating methods and 

training processes that reduce the impact of estimation biases, e.g. [44], and the development of 

models that aim at a better selection of realistic estimators, e.g., [16]. 

As can be seen from the above discussion, expert estimation can include structured and analytical 

processes. The difference from model-based effort estimation is sometimes not large, and mainly due 

to differences in the “quantification step”, i.e., the step from understanding what to do to how much 

effort it will require. 
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Which approach is better? 

Surveys of industry practice have shown that expert judgment-based estimation is by far the most 

commonly used estimation approach, e.g. [11, 12, 37].  In spite of this, only 15% of the papers on 

estimation methods address the use of expert judgment [19], and then typically as a means to evaluate 

the performance of a recently developed estimation model. 

Studies are inconclusive regarding whether we can expect more accurate estimates with models or 

expert judgment. The review published in [17] reports on 16 studies that compare expert judgment-

based estimation with formal estimation models. That review shows that the average accuracy of 

expert judgment-based effort estimates was greater than the average accuracy of the models in 10 of 

the 16 studies. The lack of systematical superiority of either approach might be explained by the fact 

that most meaningful models are at least partly based on expert judgment, i.e. expert judgment is used 

to produce the input to the models. 

These results are somewhat surprising. Compelling evidence from other fields shows that expert 

judgment is, in most cases, outperformed by even the simplest estimation models; see, e.g. [30].  

Whether this is because the models used in software estimation are of low quality, or because the 

complexity of software estimation is high, or because there is some other problem, is unknown. Some 

studies have investigated the combination of methods, exploring the advantage of both, e.g. less bias 

in models and flexibility in expert judgment, with promising results.  

In relation to the studies presented in this thesis it is important to note that one reason for the 

difficulty in comparing expert judgment and model-based effort estimation is the lack of 

understanding of conditions for good and poor estimation performance by experts, i.e., when we can 

expect software professionals to produce more accurate estimates than the estimation models. I 

believe that the results reported in this thesis represent a step in that direction, e.g., in that my studies 

report that the availability of a high amount of irrelevant and misleading information indicates poor 

expert judgment. 

 

2.3. Factors that Affect Estimation Error 

In order to improve estimation processes, it is necessary to understand why and when software cost 

estimation errors occur. A better understanding of such factors is important input to many activities 

relevant to the reduction of software effort estimation errors, such as developing and improving 
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estimation methods, analysing estimation errors, determining productivity factors, and choosing 

development methods. Previous research on this topic relies mainly on interviews/surveys of project 

members and statistical analysis of the recorded characteristics of completed projects. 

In [18] it is shown that the data collection approach, who you ask and the methods used for 

analysis, can provide quite different results regarding the causes of estimation errors for the same 

projects. However, it would seem that these results from different data collection approaches and 

analysis methods are complementary rather than contradictory, i.e., the importance and descriptions 

of estimation error factors are related strongly to perspectives.  

The transfer of the causes of estimation error from one organization or project to other 

organizations or projects is not trivial. For example, the level of maturity of the clients may be an 

important factor regarding estimation error in one organization, while organizations that have mostly 

mature clients will not perceive client maturity as a problem. A further complicating factor is that the 

nature of software development projects changes continuously, e.g. in many modern web 

applications, deployment issues are less of a problem than in many traditional client-server 

applications.  Hence, previous results are not of obvious value for current projects. 

The organization and project dependency of estimation-relevant factors, together with changes 

over time regarding the importance of these factors, means that the value of the survey-based studies 

on estimation errors, e.g., studies based on questionnaires sent to a large number of project leaders in 

organizations of various sizes and project types, may be questionable. This problem with the current 

studies on factors regarding estimation error motivates our focus on establishing a framework that 

will hopefully provide good support for software organizations to conduct their own analyses on their 

own data. 

 

2.4. Effort Estimation Error Measurement 

Measuring estimation error is a fundamental activity in software estimation research. It is the basis of 

many activities, such as analysing whether or not an organization has an estimation problem, 

evaluating estimation methods, and identifying causes of estimation error. 

Software projects differ in size and, for aggregation purposes, most measures of estimation error 

are consequently based on relative estimation error. The most commonly used measure of estimation 

error is the Magnitude of Relative Error (MRE) [7].  MRE is calculated by the following formula:  
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The mean MRE (MMRE) is often used to average estimation error for multiple observations. 

However, MMRE can be very sensitive to extreme values, and it is therefore sometimes preferable to 

use median MRE (MdMRE) instead. A related metric is PRED, which is a measure of how many 

observations lie below a specified level of estimation error (MRE), e.g., PRED(25%) is a measure of 

the proportion of estimates that deviate less than 25% from the actual effort.  

It is not unproblematic to use MMRE as a measure of estimation accuracy; see [10, 40] for 

discussions of problems related to, among other things, a correlation between MRE and project size 

and the implicit loss function that penalizes effort overruns less than effort underruns. The use of a 

measure of the relative estimation error has, in addition, the disadvantage that small projects may 

easily be given too much weight in the MMRE, e.g., a 10 man-year project with 20% effort overrun 

contributes as much to the MMRE as a 10000 man-year project with 20% effort overrun. 

MMRE measures estimation error relative to the actual effort. In many cases, it is more interesting, 

and perhaps more intuitive, to measure estimation error relative to the expected effort, i.e. the 

estimate, as done by MER (the magnitude of error relative to the estimate) [23]: 
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A problem with both MER and MRE is that they place uneven weight on over- and underestimation. 

A more balanced metric is  BRE [32], calculated by 
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Other, less used, measures include the relative standard deviation (RSD), the logarithmic standard 

deviation (LSD). In other fields, similar measures may have other names; see, e.g. [29]. However, all 

estimation error measures have shortcomings [10, 13]. Hence, the measure that should be used in any 
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given case depends on the context [35]. The studies included in the thesis mainly use MRE as the 

measure of estimation error. I believe that this choice is acceptable, given the similarity of the tasks’ 

size. 

Factors other than the choice of estimation error measure can have a large impact on the validity of 

a measurement of estimation error. An obvious example is the lack of clear terminology for effort 

estimation. Although all the presented measures are based on "estimated effort", it is not clear how to 

interpret this term in most field settings. In [8],  for example, the authors found that the term "effort 

estimate" was used as a substitute for concepts with such different purposes as the following: most 

likely effort (Purpose: Realism), planned effort (Purpose: Project control), budgeted effort (Purpose: 

Budget control), price (Purpose: Winning a bidding round), and combinations of these concepts. In 

[15] it is argued that mixing these concepts and purposes leads easily to less focus on realism. In 

addition, the way in which estimation error is interpreted obviously depends on the intended meaning 

of the term “effort estimate”. 

I noted above that many factors can affect estimation error. Measuring estimation error without a 

clear understanding of which factors contributed most to the estimation error, e.g., without an 

understanding of whether a high estimation error is caused by the factor “low estimation ability” or 

“high estimation complexity”, is rarely meaningful.  

These problems related to the imprecise use of estimation terminology and the isolation of 

estimation error factors, are in my opinion, perhaps even more important to solve than the selection of 

the optimal estimation error measure, and have motivated my selection of research topic. These topics   

have received little attention in research on software estimation. 

 

3. Research Methods 

Section 3.1 briefly describes the use of some common empirical research methods in software 

engineering. For a more thorough discussion of these methods and related issues see, for example, 

[45]. Section 3.2 gives an overview of and motivates the important decisions of this thesis that pertain 

to research design. 
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3.1. Research Methods used in Empirical Software Engineering 

Experiments 

In an software engineering experiment, the subjects are typically randomly assigned to a treatment. 

Then they perform one or more tasks and the effect of the treatment is measured. The effect of the 

treatment is then analysed statistically, and any differences is assumed to be caused by the treatment. 

Experiments are typically conducted in a laboratory setting, but may also be conducted in field 

settings.   

The main strengths of experiments are that they enable a high level of control, in that the effect of 

the studied factor can be isolated, and that experiments are typically easier to replicate than other 

types of study. The main weakness is that the artificiality of the tasks and contexts may make 

generalizations, particularly of the effect sizes, to field settings difficult. 

 

Observational studies (single- or multiple-case studies) 

In a case study, one or more projects or activities are typically observed. Data may be collected in 

several ways, e.g. by interviewing project members and by analysing code. Observational studies are 

typically conducted in a real-life context, e.g. the researcher observes a software development project 

in an organisation.  

The main strength of observational studies is that they enable the researcher to study a 

phenomenon in a realistic context with rich data. The main weaknesses are the lack of control, e.g. it 

can be difficult to isolate the impact of a particular factor, and the fact that they are difficult to 

replicate.  

 

Surveys 

In a survey, data about a phenomenon is collected from many sources using questionnaires or 

interviews. Data is typically collected in a standardized way and from a defined population, e.g., from 

software organizations within a country. Surveys are typically performed after the phenomenon to be 

studied has occurred, e.g. when a project has been completed.  

 The main strengths of surveys are that they are easy to replicate and that the cost of 

investigation is low; hence, a large number of subjects can be included and many factors can be 

measured. The main weaknesses are that it might be difficult to interpret the answers, e.g. the answers 
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reflect what the subjects believe and what they believe might be different from how things actually 

are, and that the researcher's level of control is low.  

 

Systematic Reviews 

In a systematic review, the existing literature is systematically searched, evaluated and synthesized 

for evidence regarding a phenomenon or research question. Reviews are often performed prior to 

other studies in order to establish a background framework and/or to identify gaps in existing 

research. However, they can also be independent studies, e.g. to test hypotheses.   

The main strengths of reviews are that they investigate the effects of some phenomenon over many 

contexts and research methods, and that data from several studies can be combined in powerful 

analysis. The main weaknesses, particularly in the context of software engineering, are perhaps that 

the amount of related research can be low, and that it can be hard to extract data from studies due to 

non-standardized reporting.  

 

As can be seen, there is no obvious best choice of research method. The choice of research method 

depends on, among other things, the following: available resources, the need for control to isolate 

factors to enable generalization by theory, the need for realism to enable generalization-by-similarity 

or statistical means, the need for in-depth, rich data to understand complex relationships, and the 

focus of people’s perception rather than the real relationships. My choice of research methods is 

based on several of these decision elements. In particular, the need for control to isolate relevant 

factors led to the choice of controlled experiments for two of the papers. Essential decisions regarding 

design choice are discussed in greater depth in the following section. 

 

3.2. Research Design Decisions 

Tables 3-5 give an overview of the research methods applied in the papers included in this thesis. The 

columns "Advantages of study design" and "Disadvantages of study design" briefly summarize 

arguments for and against the chosen research design.  
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Table 3 Overview of Study Designs (Experiments) 

Design element Paper I  Paper II 

 

Main purpose 

 

Study the impact of irrelevant information on expert 

judgment-based effort estimates. 

 

Study the inconsistency in expert judgment-based 

estimation processes. 

Type of study Controlled experiment. Controlled experiment. 

Subjects Experiment 1: 76 software professionals. 

Experiment 2: 92 software professionals. 

Seven highly skilled, software professionals selected 

based on previous estimation accuracy performance. 

Tasks One small software development task (different tasks in 

the two experiments). 

60 small software development tasks. 

Context The subjects, unaided, estimated the experimental task as 

an interactive part of a seminar talk (both experiments). 

The subjects were paid to come to our laboratory and 

estimate various enhancements to an existing system.   

The system documentation was made available to them, 

and they had previously worked on the system.  

Advantages of study design Realistic (although small) tasks.  

Software professionals as subjects. 

High number of subjects.  

High level of control. 

Realistic (although small) tasks. 

Software professionals as subjects. 

Previously collected information about the subjects was 

available. 

High level of control. 

Disadvantages of study design Only one tasks. 

Unrealistic estimation environment. 

 

Few subjects. 

Limitations in realism of estimation environment, e.g., no 

access to historical data and source code.  

Expensive. 

 

Table 4 Overview of Study Designs (Surveys) 

Design element Paper III 

 

Main purpose 

 

Investigate how client-related factors are perceived to impact effort estimation error. 

Type of study Questionnaire-based survey. 

Subjects 300 software professionals. 

Tasks 22 questions regarding client-related factors an how they impact estimation error. 

Context The survey was handed out to participants at an industrial software conference. 

Advantages of study design Software professionals as subjects. 

Investigates many factors. 

Inexpensive. 

Disadvantages of study design The data reflects the subjects’ explanatory models, and not necessarily the underlying cause-effect models. 

Possible sample biases (e.g., some projects, clients and companies might be the reference of several responses)  
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Table 5 Overview of Study Designs (Reviews) 

Design element Paper IV Paper V 

 

Main purpose 

 

Assess the state of practice of effort estimation 

terminology usage as background for proposed improved 

use of terminology. 

 

Assess the state of practice effort estimation error 

analysis, and investigate consequences of improper 

analysis as background for a proposed framework for 

improved estimation error analysis. 

Type of study Literature review. Literature review. 

Analysis of software projects. 

Studied elements (subjects)  Software engineering text books. 

Software estimation research papers. 

Review: Software estimation research papers. 

Projects: 19 software development projects. 

Study focus (tasks) Identification of the use of estimation terminology. 

 

Review: Analysis of how the research papers isolated the 

studied factor in their estimation error analyses.  

Projects: Comparison of  estimation error of two 

methods. 

Context Two researchers reviewed the most popular text books 

and research papers that report estimation error. The 

review was based on the guidelines in [22].   

Review: Two researchers reviewed research papers that 

report estimation error. 

Projects: Analysis of completed projects in a software 

development organization. 

Advantages of study design Good control of publication selection process. 

Explicit steps make the analyses possible to replicate. 

Good control of publication selection process. 

Explicit steps make the analyses possible to replicate. 

Enables a demonstration of potential consequences of 

improper estimation error analysis in a real-life context. 

Disadvantages of study design Possible researcher bias in analysis and selection process. Possible researcher bias in analysis and selection process. 

 

Considerations that led to my design decisions include the following: 

• In Papers I and II, I considered studying the impact of irrelevant information on, and the level of 

inconsistency of, effort estimation of large development tasks, instead of the rather small 

programming tasks actually used. Studying large development tasks may have produced different 

results more applicable to industrial contexts, but would i) lead to a much lower number of subjects 

and tasks studied due to restrictions on resources, and, ii) increase the risk of introducing “noise” into 

the experiment, with the consequence that the results would be less reliable. As an illustration, the 

variation in how a requirement specification is interpreted increases with the number of requirements. 

The effect of the studied factor, e.g., irrelevant information, would consequently easily have become 

diluted and would not have been possible to study without a high number of observations if we had 
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insisted on larger requirement specifications. The use of smaller, although realistic, tasks means that 

the studies point mainly to the existence of the studied phenomenon, and not so much on how large 

the effect sizes are in an industrial context. However, in Paper II I argue that there are reasons to 

believe that the level of inconsistency is larger in real projects that the one I observed, i.e., that my 

observations were made in a consistency-friendly environment. 

• In Paper II, when studying the level of and causes of inconsistency, I considered the use of an 

inter-subject design. This would have been much cheaper than the relatively costly intra-subject 

design we chose. However, in a inter-subject design it would be difficult to isolate the individuals’ 

level of inconsistency, and, for that reason we decided to use the intra-subject design. 

• In Paper III, when studying factors pertaining to estimation error that are client-related, I 

considered conducting a multi-case study instead of a survey. This was motivated by the belief that 

the cause-effect relationship under consideration might be insufficiently understood by the survey 

respondents. Many factors can affect estimation accuracy in software development, and extensive 

analysis may be required to identify the root causes of estimation error. In surveys such as the one I 

completed, the respondents have a limited opportunity to perform complex analysis, and consequently 

their perceptions might be misleading. A multi-case, observational study would have enabled a more 

in-depth study of the reasons for estimation error and allowed us to triangulate results. The choice of 

a questionnaire-based survey was based on two factors: 1) the lower cost of the study, 2) the fact that 

it would better enable us to make comparisons of the reasons contributing to overruns and the reasons 

preventing overruns with other studies. In hindsight, I find that questionnaire-based studies on 

complex relationships are very difficult to conduct properly and would not recommend this unless it 

is the main goal of the survey to monitor the respondents’ perceptions. The experiences related to 

analysis of the design and analysis of the questionnaires motivated, to some extent, the studies 

described in Papers IV and V, and the research designs in Papers I and II. 

• In Papers IV and V, in which properties of research papers and textbooks are reviewed, I 

considered using external assessors to classify properties of the papers and textbooks. Instead, all 

classifications were conducted by the authors of the paper. Some of the classifications may be quite 

subjective and other assessors may have classified differently. The main reason for not using external, 

independent assessors was practical. It is not easy to find highly skilled assessors for this purpose.  

• In Papers IV and V, I considered including material from a wider selection of sources, because 

there may have been a bias in the selection of publications. For example, both papers include only 
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publications that address software effort estimation. This means that related material, such as the 

literature on general project management and forecasting, where a more precise terminology may be 

present, was not reviewed. I considered this, but on the basis of the impression that such literature 

was little read by most software professionals and researchers, I decided not to include material from 

those sources. 
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4. Results 

This section contains a summary of the individual papers that are included in this thesis.  

4.1. Paper I 

This paper reports on two controlled experiments that investigated the impact of irrelevant 

information on software development effort estimates. In both experiments, I gave one group of 

software professionals a requirement specification in which I had included effort-irrelevant 

information, while I gave the other group the same requirement specification but without the 

irrelevant information. Seventy-six professional software developers participated in the first 

experiment and 92 in the second. 

I found that information in requirement specifications that is irrelevant to estimation can strongly 

affect software effort estimates. The average effort estimates increased significantly in both 

experiments when irrelevant information was included. In addition, the results of the first experiment 

suggest, somewhat ironically, that estimators may also become more confident in the accuracy of 

their own estimates when they are exposed to irrelevant information and, consequently, estimate less 

accurately. The results suggest that estimation accuracy can be improved if information that is 

irrelevant to estimation is removed from the requirement specifications before being presented to the 

estimators*.  

More research is needed if this phenomenon is to be understood fully, particularly when and why it 

occurs, but I believe that the results are rather robust in the sense that they show that irrelevant 

information may have a large impact on effort estimates 

                                                           
* In a recently conducted (as yet, unpublished) study of 172 software professionals I found that the effect of irrelevant 

information was not eliminated by asking the estimators to identify and highlight (with a yellow pen) the relevant text of a 

requirement specification. By contrast, removing the irrelevant text by using a black pen, so that it could not be read, 

reduced the impact of the irrelevant information, although not completely. This suggests that, preferably, a person other 

than the estimator should remove the irrelevant information. If that is not possible, the "black pen" method of removing 

irrelevant text should be applied. This result supports and extends the results presented in Paper I. 
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4.2. Paper II 

This paper reports on a controlled experiment that investigated the degree of inconsistency in expert 

judgment-based estimates of software development effort. Seven experienced software professionals 

estimated 60 software development tasks, each over a period of three months. Each participant 

estimated six of the tasks twice. These tasks provided input to my analysis of the level of 

inconsistency of expert judgment-based effort estimation. 

I found that there was a high degree of inconsistency in the participants' effort estimates of the 

same task. The mean difference between estimates of the same task by the same participant was as 

high as 71%! The level of inconsistency did not, in my experiment, reduce with increase in task size, 

i.e., we should not expect the level of inconstancy to decrease with more realistically sized estimation 

tasks, but rather the opposite. Clearly, effort estimates cannot be very accurate when the degree of 

inconsistency in the estimates is so large. A consequence of my findings is that it is likely that 

estimation accuracy can be improved substantially by the use of methods that improve consistency, 

e.g. by combining effort estimates from several independent estimators.  

As with the phenomenon reported in Paper I, this phenomenon is poorly understood and further 

research is needed. The main finding may be that the level of estimation inconsistency can be 

surprisingly high among highly skilled software professionals. There is consequently, a need for a 

stronger focus on improving the consistency of estimation processes to reduce estimation error.  

 

4.3. Paper III 

This paper report on a survey conducted at an industrial software engineering conference. The survey 

contained 20 multiple choice questions and two open-ended questions related to the positive and 

negative ways in which clients affected the accuracy of effort estimation in software development 

projects. 300 software professionals participated in the survey.      

The respondents answered that the most common client-based factors that produce estimation 

inaccuracy are the following: (i) frequently changing, and new, requirements, (ii) a lack of well-

defined requirements, and (iii) an absence of competent customers and capable decision makers. The 

most important factors contributing to the prevention of overruns were (i) competent customers and 
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capable decision makers, (ii) adequate project administration and steering, and (iii) well-defined 

requirements. An additional important finding is related to how difficult it is to design and interpret 

results from questionnaires about cost overrun factors.  

There are several methodological weaknesses with this study, as discussed in Section 3.2.  

However, in spite of the methodological weaknesses, the results may be a useful starting point for 

further research on client-related factors that affect estimation accuracy.  

 

4.4. Paper IV 

This paper contains a structured review of software estimation terminology in software engineering 

text books and research papers. I investigated eight software engineering text books and 23 software 

cost estimation research papers to determine the degree to which the term "effort estimate" was 

precisely defined, and the degree to which the estimated and the actual efforts were comparable when 

evaluating estimation accuracy.  

Imprecise terminology regarding concepts pertaining to estimation was typical in software 

engineering text books and research papers. This lack of clarity and precision in the use of terms 

pertaining to estimation has the following unwanted effects: it makes results regarding estimation 

accuracy more difficult to interpret; it makes the communication of estimates difficult; and it makes it 

more difficult for estimators to learn from past estimates. Guidelines for a more consistent 

terminology, aimed at practitioners and researchers, are suggested.   

Despite the potential shortcomings of the review (see Section 3.2 for a discussion), I believe that 

the following conclusions are quite robust: 1) currently, terminology for estimation is used 

imprecisely, and 2) the measurement and analysis of estimation error will often benefit from a more 

precise terminology.  

 

4.5. Paper V   

This paper investigates the importance of proper processes for analysing estimation error. To 

investigate this research topic, I conducted an examination of the analysis of estimation error in a 

selection of estimation research studies and a study of completed projects. I investigated eight 
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software cost estimation research papers to determine the degree to which strategies to isolate the 

effects of different estimation error factors were used when analysing estimation error. I also 

examined the analysis of effort estimation error conducted in a software development organisation.  

I found that the lack of proper estimation error analysis can easily lead to flawed conclusions. Few 

research papers report any attempt to isolate the effects of different estimation error factors. This 

means that many studies analyse cost estimation error without being able to interpret it properly; 

without, for example, understanding whether a high estimation error is caused by poor estimation 

ability, high project complexity, or delivery of more functionality than was assumed when estimating 

the effort. The results indicate that studies often ignore the potential impact of factors that were not 

studied, e.g., how systematic differences in estimation complexity or differences in the measurement 

process can disturb an analysis of the estimation ability. Based on these results, I propose a practical 

framework for what, I believe, constitutes a sound analysis of estimation error. 

 

In spite of the difference in research questions and expert estimation topics, I believe that all papers 

contribute to the goal of better understanding the nature of expert judgment-based effort estimation 

and to the variety of elements that needs to be addressed in order to produce accurate effort estimates. 

Together, the papers both establish a basis for better analysis of effort estimation error and increased 

understanding of the variety of reasons for estimation error in software development projects. 
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5. My Contributions to the Papers 

All the five papers that are included in this thesis were written together with my supervisor. Table 6 

shows my contribution to each paper.  

 

Table 6 Contributions to Papers 

Paper Idea Study Design Data Collection Analysis Writing 

I Responsible Responsible Responsible Responsible Responsible 

II Responsible Responsible Responsible Responsible Responsible 

III Responsible Responsible Responsible Responsible Responsible 

IV Shared Responsible Responsible Responsible Responsible 

V Contribution Shared Shared Shared Responsible 

  

In addition, I took part in the study design and the analysis in the first related paper (Paper VI) and in 

the data collection and the writing of the second related paper (Paper VII).  
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6. Further Work 

The findings in this thesis leave many questions unanswered, and there is consequently a need for 

further research. I intend to perform a systematic review of papers that address the impact of 

irrelevant information, in order to identify theories that can explain the phenomenon and suggest 

techniques that can reduce the impact.  

In addition, I consider to replicate and extend the findings presented in the thesis, in the following 

respects:  

 

Replication of the studies presented in the thesis with: 

• Larger samples. This is especially important for the study reported in Paper II, because this study 

was conducted with a very low number of subjects. 

• Samples from other populations. The studies reported in Papers I, II and III were conducted with 

experienced software developers as subjects. Conducting similar experiments with samples from 

other populations, such as inexperienced software developers and project leaders, would increase our 

knowledge. 

• Other estimation tasks. The tasks that the subjects estimated in the studies reported in Papers I and 

II were relatively small and most of the subjects had experience with the relevant technologies. 

Investigating the impacts on other types of tasks would be useful for our understanding. 

• More realistic environment. It would be interesting to replicate the studies reported in Papers I and 

II at the subjects' work-place, e.g., in a setting where they have access to estimation guidelines, 

historical data, and, other experts. 

• Reduced level of anonymity. Replicating the survey without project and company anonymity 

could offer some insight into the little-studied topic of the effect of anonymity in software 

engineering surveys, e.g., would respondents answer differently if they, as they do in most field 

settings, have to describe explicitly the clients and projects they used as background for their 

opinions. 

• Assessment of the review questions presented in Papers IV and V by external researchers. At 

present, there is a risk of research bias, because the authors assessed the review questions themselves.  
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Studies that investigate other aspects of the phenomena investigated in this thesis: 

• Experiments that investigate the actual effect of the client related estimation error factors reported 

in Paper III.  

• Experiments that investigate irrelevant information and inconsistency and where the tasks, as 

opposed to the studies described in Papers I and II, are actually implemented. 

• Experiments that investigate the potential of reduced inconsistency and impact of irrelevant 

information by training estimators and using especially tailored guidelines for estimating. 

• Systematic reviews of related research results from other fields. Topics related to the prediction of 

events have been investigated for decades, and sometimes centuries, in fields such as economics and 

psychology. An extensive summary of their findings may lead to improved processes of effort 

estimation in software development contexts. 
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7. Concluding Remarks   

The papers included in the thesis address a variety of topics related to effort estimation, e.g.  topics as 

different as inconsistency in cognitive estimation processes and the use of terminology. A stronger 

focus in the thesis would have enabled an in-depth overall contribution to a more specific research 

question than "How can expert-judgment based effort estimation processes be changed to reduce 

software effort estimation error in software development projects?". One of the strengths of the 

spread of the research topics of this thesis is that it points to the variety of topics that need to be 

address by estimation research to reduce effort estimation error. In addition, the variety of topics 

enables the use of a variety of research methods and is, consequently, important in my researcher 

education. 
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Abstract 
Software professionals typically estimate software development effort based on a requirement 

specification. Parts of this specification frequently contain information that is irrelevant to the 

estimation of the actual effort involved in the development of software. We hypothesize that effort-

irrelevant information sometimes has a strong impact on effort estimates. To test this hypothesis, we 

conducted two controlled experiments with software professionals. In each of the experiments, the 

software professionals received specifications describing the same requirements. However, we gave 

one group of the software professionals a version of the requirement specification where we had 

included additional, effort-irrelevant, information. In both experiments we observed that the estimates 

of most likely effort increased when the estimates were based on requirement specifications that 

contained the information irrelevant to development effort. The results suggest that when estimation-

irrelevant information is included as input to expert judgment-based estimation processes, the 

estimators find it difficult to distinguish between the estimation-relevant and the estimation-irrelevant 

information. A possible consequence of our findings is that estimation-irrelevant information should 

be removed from the requirement specification prior to the use of it as input to estimation work. 
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1. Introduction 
Software projects frequently overrun their effort estimates [1]. This is a major concern for the 

software industry, because the quality of software effort estimates directly affects companies’ ability 

to compete. Poor estimation performance often causes budget overruns, delays, lost contracts and 

low-quality software.  

A recent review [2] summarizes findings suggesting that expert judgment-based estimation is the 

most popular estimation method in the software industry. Typically, studies report that 70-80% of 

industrial estimates are made by experts without using formal estimation models. The review 

summarizes studies of expert judgment- and model-based effort estimates and concludes that the 

evidence does not support a replacement of expert judgment with estimation models. Although there 

are studies that have identified factors that affect the judgment-based effort estimates [2, 3], our 

understanding of the steps and biases involved in expert estimation is limited [4]. The popularity of 

the method, and the lack of knowledge about it, indicates that a better understanding of expert 

estimation may be required to meet the software industry's demand for more accurate effort estimates. 

There are many factors that are relevant to the effort of software development [5, 6], e.g., amount 

of functionality, focus on cost control in the project and implementation technology. In an ideal 

world, we would like the estimate to be based on only relevant factors and not be affected by 

information that has no relation to the actual effort. Information about the choice of GUI colors in a 

web system should, for example, not affect the estimate of the effort required to develop a new order 

engine. Neither should the font size and margins of a requirement specification affect the estimate. 

However, an unpublished experiment conducted by the second author of this paper on computer 

science students found that this could be the case! In that experiment, half of the students estimated 

development effort based on a short requirement specification, and the other half estimated based on a 

long specification. The text in the two specifications was identical, but line-spacing, page set up and 

font size were adjusted so that the long version of the specification was seven pages and the short 

version only one page long. The students exposed to the long version provided on average 16% 

higher effort estimates. This effect caused by irrelevant information is consistent with research in 

other fields [7-11]. Hristova et al. [10], for example, report that the colour of the text influenced price 

judgments, and, Gaeth and Shanteau [11] report that experienced soil judges are influenced by 

irrelevant factors in soil judgment. 
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Software effort estimates are often based on requirement specifications where the information 

varies in precision, structure and relevance. It is rare that all the information in a requirement 

specification is relevant for estimating software development effort. Estimation-irrelevant information 

is included in requirement specifications for a number of reasons, such as the following: insufficient 

time is spent on removing information of less relevance (e.g., the text is copied from a previous 

specification), the author lacks knowledge of what to include in a requirement specification, the 

information is useful for purposes other than software effort estimation. This study investigates 

empirically whether the presence of information that is irrelevant to estimation of software effort 

affects software professionals' effort estimates. The research question is as follows:  

 

RQ: Are software professionals' estimates of most likely effort affected by estimation-irrelevant 

information in the requirement specifications?  

 

By the term "estimation-irrelevant information" we mean information that does not have a direct or 

indirect casual relationship to software development cost. Notice that, as we interpret it in this paper, 

information can be estimation-irrelevant even if it has a correlation to actual effort. (Correlations may 

indicate a causal relationship at a deeper level, but do not themselves constitute a causal relationship.) 

For example, the length of the requirement specification may correlate with development effort. We 

would categorize the length of the requirement specification as effort estimation relevant if a 

difference in length is caused by differences in the amount of development effort demanding 

requirements. Length or the requirement specification would, on the other hand, be categorized as 

irrelevant information if a difference in length is caused by differences in text formatting or by 

inclusion of information that has nothing to do with the development of the software.  

Our hypothesis was tested in two controlled experiments. In both experiments, half of the 

software professionals estimated a software development task based on a requirement specification 

where we had introduced estimation-irrelevant information, and the other half estimated effort based 

on the same specification, with the estimation-irrelevant information removed.  

The remainder of the paper is organized as follows. Section 2 describes related work on the effect 

of irrelevant information. The experiments are presented in Sections 3 and 4. Section 5 discusses the 

results. Section 6 summarizes the paper and provides recommendations.    
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2. Related work 
In order to find software cost estimation studies related to our research question, we searched the 

BESTweb database* for studies that investigate empirically the impact of irrelevant information on 

software cost estimates. BESTweb is an online library of estimation papers that claims to include 

nearly all journal papers and many of the conference papers on software cost estimation. The 

selection of papers included in BESTweb are described in [12]. At the time of the review, the 

BESTweb library contained 964 estimation-relevant articles. We also included a recent study that we 

are aware of, not included in the BESTweb database. The following studies on the impact from 

irrelevant information in software engineering contexts were identified: 

 

• Jørgensen and Sjøberg [13] report that preplanning effort estimates can have a major impact on 

detailed planning effort estimates, even when the estimators are told that the early estimates are not 

based on historical data or expert knowledge, i.e., should not be considered as relevant information to 

the estimation process. The estimators' awareness of the impact of the irrelevant information was low. 

• Jørgensen and Sjøberg [14] report that information about the customer's expectations can 

significantly affect most-likely estimates of software development, even when the subjects are 

explicitly told that the customer's expectation is not an indicator of the actual effort. The estimators 

did not notice this effect or assessed it to be low. 

• Aranda and Easterbrook [15] report that including customer expectations of cost, which are 

clearly marked as irrelevant in the requirement specification, can have a large impact on cost 

estimates. The impact could not be explained by the subjects' estimation experience.  

 

In these studies, the irrelevant information is presented to the subjects as some sort of initial estimate 

that is irrelevant to the subjects' estimation process. This special case of irrelevant information is 

typically termed "anchoring". The impact of anchors is strong, and has been demonstrated in many 

domains [16]. However, the estimates may, as reported by research in other fields [7, 17-19], be 

affected severely by other types of irrelevant information. These studies have shown that the 

introduction of irrelevant information can lead to increased estimation error, reduced estimation 

reliability, less learning, and increased over-confidence in one’s own estimates. There is also 
                                                           
* available at http:///www.simula.no/BESTweb 
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evidence that personal characteristics, such as domain expertise [20], attention ability [21] and  

handedness [22], can make an estimator more likely to be subject to the effects of irrelevant 

information.  

Results from other research fields should be considered with some care, because most of the 

studies are conducted in contexts that differ from software effort estimation. Hence, we need to carry 

out studies in contexts similar to those met by software professionals estimating development effort. 

Consequently, the main contributions of this paper are these: 1) to study the effect of irrelevant 

information on judgment in a software development effort context, and 2) to investigate empirically 

the impact of textual estimation irrelevant information, i.e., the effect of non-numerical irrelevant 

information on effort estimates. Textual irrelevant information may be more common in software 

development effort estimation contexts than irrelevant numerical anchors, but we have been unable to 

find previous studies on this topic. We have found no other study on the impact of textual irrelevant 

information in software development effort estimation contexts. 

 

3. Experiment 1 
Experiment 1 was designed to test two issues: 1) the impact of irrelevant information on the effort 

estimates, and 2) the impact of level of specification precision on the estimates. This paper focuses on 

only the first issue, i.e., the impact of estimation-irrelevant information. For this reason, the impact of 

the level of precision will only be discussed related to the possibility of interaction effects between 

precision and irrelevant information. Section 3.1 describes and discusses the design of the 

experiment, while Section 3.2 presents the results. 

 

3.1 Design of Experiment  

We wanted to investigate our research question in a realistic setting, i.e., software professionals 

completing estimation tasks similar to those they normally complete. In order to isolate the factors we 

wished to study, we applied a 2x2 factorial design with random allocation of treatment. The two 

binary factors were related to the presence of irrelevant information and the degree of precision of the 

requirement specification. 
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Participants 

The experiment was conducted at a conference for software developers (JavaZone 2005*). There were 

76 software professionals participating in the experiment. On average, the participants each had 10 

years of experience as software developer. The sample is self-selected in the sense that the 

participants were those who chose to attend a particular lecture on software cost estimation. This 

suggests that the participants might be more than averagely interested in estimation. This, in turn, 

may imply that any biases in the sample of participants are likely to be in the direction of better than 

average estimation expertise.   

The randomized allocation of treatment is likely to have eliminated systematic differences in 

personal characteristics within the sample. 

 

Estimation task 

Cooksey [23] cautions that experts are especially sensitive to the realism and familiarity in 

judgmental tasks. The estimation task was therefore based on an actual industrial task to ensure 

realism. To increase the likelihood of familiarity, we chose a small development task. This is based 

on the belief that software developers more frequently estimate smaller tasks, i.e. parts of a project, 

than the entire project, i.e., the likelihood of previous experience with similar estimation tasks 

increases with small tasks. In addition, the estimation of a small task would increase the similarity of 

time used for estimation in the experiment and in a real-world context. The participants estimated the 

effort required to write a simple program that retrieves a file from a remote server, validates the data 

and stores the data in an existing database. We believe that this is a rather general task that requires 

little specialized technology and domain knowledge. 

We created four variants of the same requirement specification: i) a high-level  requirement 

specification without irrelevant information being introduced, ii) a high-level requirement 

specification that included irrelevant information, iii) a detailed requirement specification without 

irrelevant information being introduced, and iv) a detailed requirement specification that included 

irrelevant information. The difference between the high-level and the detailed requirement 

specification was that the detailed requirement specification included explicit validation rules and a 

                                                           
* see http://www.javazone.no 
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complete example of file format and file policy. The irrelevant information consisted of information 

about end users' work processes, a description of the selection criteria that were used for selection of 

data providers, and information about systems that their implementation would not have to integrate 

with i.e., information that should not lead to more or less development effort. The requirement 

specifications are shown in Appendix A. 

   Two experienced developers validated the requirement specification. These two developers were 

asked to evaluate whether the four variants of the specification: 1) lacked any information normally 

found in this type of specification, 2) contained any errors, 3) described a realistic development task, 

and 4) was representative of tasks normally implemented by the conference attendees likely to 

participate in our experiment. In addition, they were requested to evaluate whether the irrelevant 

information that was introduced really was irrelevant for the purpose of estimating the software 

development effort. 

 

Treatment 

The participants were divided into four groups (groups A, B, C and D) with different variants of the 

requirement specification allocated to each group; see Table 1. 

  

Table 1 Treatment in Experiment 1 

Group Detailed requirements Irrelevant information 

A No No 

B Yes No 

C No Yes 

D Yes Yes 

 

The specifications were handed out so that every fourth participant, by physical location, was 

allocated to the same group. The estimation task was included in a set of three other experiments, and 

a survey.  

The participants took about 10 minutes to complete the effort estimation task, which is not 

unrealistic for this type of small estimation task. The participants' responses were collected 

immediately after the allocated time had expired.  
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Measurement  

The participants were asked to estimate the most likely effort (in hours) they would need to 

implement the specified program. To measure the participants’ confidence in their most likely 

estimate, we asked them to provide a minimum-maximum interval (in hours) that they were 90% 

certain would contain the actual effort. In the results, we present the relative width of the minimum-

maximum interval as a measure of confidence. The relative width of the minimum-maximum 

intervals is calculated by the following formula:  

 

RWidth = (Maximum value – Minimum value) / Estimate of most likely effort 

 

The lower the RWidth, the higher the confidence in the accuracy of the estimate. 

3.2 Results  

An analysis of potential outliers revealed one obvious outlier that was removed from the data set. This 

participant submitted an effort estimate that was very much higher than that of the other participants, 

i.e., he estimated the effort to be 1250 work-hours while the mean value of the remaining participants 

was 29.6 work-hours. We believe that this very high estimate indicates that the participant either did 

not take the task seriously, did not have the skill required to estimate meaningfully, or estimated 

something other than development and unit testing of the program specified in the requirement 

specification.  

The results are displayed in Table 2 (estimates of most likely effort) and Table 3 (relative width of 

the minimum-maximum intervals).  

Table 2 Estimates of Most Likely Effort (work-hours) 

Group N Mean Median Min Max Stdv 

A  (high-level specification with no irrelevant info) 19 17.2 11.0 4 60 14.2 

B  (detailed specification with no irrelevant info) 18 22.2 17.5 5 70 17.5 

C (high-level specification with irrelevant info) 20 32.8 30.0 8 80 20.1 

D (detailed specification with irrelevant info) 18 46.7 24.5 4 250 65.5 

A + B (no irrelevant information)  37 19.7 15.0 4 70 15.9 

C + D (irrelevant information) 38 39.3 27.5 4 250 47.2 
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Table 3 Relative Width of Minimum-Maximum Interval (RWidth) 

Group N Mean Median Min Max Stdv 

A  (high-level specification with no irrelevant info) 19 1.44 1.20 0.38 3.82 0.97 

B  (detailed specification with no irrelevant info) 18 1.27 0.83 0.22 6.00 1.32 

C (high-level specification with irrelevant info) 20 0.86 0.78 0.33 1.50 0.40 

D (detailed specification with irrelevant info) 18 0.99 0.85 0.47 2.00 0.44 

A + B (no irrelevant information)  37 1.36 1.00 0.22 6.00 1.14 

C + D (irrelevant information) 38 0.92 0.82 0.33 2.00 0.42 

 

The results show that the participants that received requirement specifications with irrelevant 

information submitted, on average, higher effort estimates than the participants that did not receive 

irrelevant information (mean of 19.7 vs. 39.3 work-hours). To analyze the effect of the independent 

variables "Irrelevant information introduced” (yes/no), “Detailed specification” (yes/no) and the 

interaction between the two on the dependent variable "Estimates" we fitted a General Linear Model 

(GLM). A log-transformation of the dependent variable was required to achieve a normal distribution 

of the residuals. The analysis shows that the impact of estimation-irrelevant information is highly 

significant (p=0.01), and that the interaction effect between the binary variables (related to presence 

of irrelevant information and/or level of specification) is not significant (p=0.38). The relative effect 

size of adding irrelevant information (based on Least Square Means estimates of irrelevant/relevant 

information) is +72%.  

Surprisingly, the participants’ confidence in the accuracy of their own estimates increased, i.e., the 

relative minimum-maximum interval width decreases, when irrelevant information was added! The 

mean relative width was 1.36 without irrelevant information, yet 0.92 when irrelevant information 

was included. The difference was statistically significant (p=0.03) applying log(relative width) to 

achieve a normal distribution of the residuals and GLM to compensate for any interaction effects 

between the independent variables related to irrelevant information and level of specification. This 

means that although the inclusion of irrelevant information affected the estimate, and consequently 

affected the level of realism negatively, confidence in the accuracy of the effort estimates actually 

increased. 
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4. Experiment 2 
The second experiment was designed to: 1) test the robustness of the results in Experiment 1 on a 

different estimation task, 2) to further investigate the impact of irrelevant information, and 3) to 

investigate the effect of asking participants to explain the basis of their estimates, i.e., a weak variant 

of justification of effort estimates. As before, our focus is on the impact of irrelevant information. We 

will, therefore, only discuss the impact of justification in relation to possible interaction effect with 

level of irrelevant information. The design is discussed in Section 4.1. The results are presented in 

Section 4.2 

 

4.1 Design of Experiment 

The design of Experiment 2 was a 2x2 factorial design similar to the design of Experiment 1. The 

binary factors were presence/no presence of irrelevant information and justification/no justification of 

the estimates. 

 

Participants 

The experiment was conducted at an estimation seminar for professional software developers. We did 

not collect information about the participants' background in this experiment, but it is probable that 

the participants in Experiments 1 and 2 were similar with respect to experience and organizational 

role. This belief is based on the distribution of invited companies, and discussions with seminar 

attendees before and after the seminar.  

 

Estimation Task  

As in Experiment 1, we tried to create an estimation task that was small enough to be estimated 

realistically in a short experiment, representative for real-world estimation tasks, and based on 

assumptions about the use of technologies well known to the participants. The task was based on the 

estimation of a simple web application that registered seminar attendees in a database.  

In this experiment, the treatments were as follows: requirements specification i) without irrelevant 

information and no request for justification of the estimate, ii) with irrelevant information and no 

justification, iii) without irrelevant information, but with justification, and, iv) with irrelevant 
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information and justification. Justification of estimates was obtained by asking the participants to 

assess how relevant different parts of the requirement specification were for their estimates. The 

irrelevant information consisted of a description of a complex system that would, sometime in the 

future, replace the program they estimated. If this information had any relevance at all for the 

development effort, the impact should, we think, have been that information about future replacement 

would reduce the actual effort due to the lesser importance placed on long-term quality issues such as 

maintainability. The requirement specifications are shown in Appendix B. The different versions of 

the requirement specifications were, similarly to Experiment 1, validated with respect to quality, 

realism and whether the introduced additional information really was irrelevant for the purpose of 

effort estimation by software professionals. 

 

Treatment 

The participants were divided into four groups (group A, B, C and D) with different treatments 

allocated to each group, see Table 4. 

  

Table 4 Treatment in Experiment 1 

Group Irrelevant information Justification 

A No No 

B Yes No 

C No Yes 

D Yes Yes 

 

As in Experiment 1, the participants were randomly allocated to treatment (by physical location in the 

seminar room), and the tasks were completed in a time frame and conditions similar to those in 

Experiment 1, i.e., the time spent on the estimate was about 10 minutes. The experimental task was 

included in a set of two experiments and one brief survey. 

 

 Measurement  

As in Experiment 1, the participants were asked to estimate the most likely effort in work-hours and 

to provide a minimum-maximum interval (also in work-hours) that they were 90% certain would 

contain the actual effort.  
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4.2 Results 

One participant in Group a (200 work-hours) and three participants in Group C (estimates of 150, 300 

and 400 work-hours) were considered to be outliers and removed. These participants were removed 

on the basis that the very high effort estimates made it likely that they either did not take the task 

seriously, did not have sufficient expertise, or misunderstood the task. 

The results are displayed in Table 5 (estimates of most likely effort), and in Table 6 (relative width 

of the minimum-maximum intervals).  

 

Table 5 Estimates of Most Likely Effort 

Group N Mean Median Min Max Stdv 

A  (basic) 21 11.8 8 0.5 40 11.8 

B  (irrelevant information) 23 14.8 8 1.0 40 12.8 

C (justification) 20 20.5 8 0.5 120 30.0 

D (irrelevant information and justification) 24 22.5 11 3.0 100 24.4 

A + C (no irrelevant information) 41 16.0 8 0.5 120 22.7 

B  + D (irrelevant information) 47 18.7 10 1.0 100 19.8 

 

Table 6 Relative Width of Minimum-Maximum Interval (RWidth)  

Group N Mean Median Min Max Stdv 

A (basic) 21 1.22 1.00 0.40 3.80 0.73 

B (irrelevant information) 23 1.21 1.20 0.38 2.10 0.55 

C (justification) 20 1.18 1.00 0.25 2.67 0.68 

D (irrelevant information and justification) 24 1.24 1.26 0.40 3.00 0.63 

A + C (no irrelevant information) 41 1.20 1.00 0.25 3.80 0.70 

B + D (irrelevant information) 47 1.22 1.20 0.38 3.00 0.58 

    

The results show that (i) the participants who received requirement specifications with irrelevant 

information submitted higher effort estimates than those that did not receive irrelevant information 

(mean of 16.0 vs. 18.7 work-hours), and that (ii) the impact of irrelevant information seemed to be 

somehow moderated when the participants had to justify their estimates (mean of 11.8 vs. 14.8 work-

hours when they did not have to justify their estimate, mean of 20.5 vs. 22.5 when they did have to 
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provide justification). Statistical analysis of the data, similar to that in Experiment 1, i.e., GLM 

analysis of log(ML estimates) and the binary variables “Irrelevant information” (yes/no) and 

“Justification” (yes/no), shows that the impact of estimation-irrelevant information is significant 

(p=0.08). The interaction effect (irrelevant information/justification) on the estimates is not 

significant (p=0.83). The relative effect size of adding irrelevant information (based on Least Square 

Means estimates of irrelevant/relevant information) is +52%. The results strengthen the results from 

Experiment 1 as they clearly point in the same direction.  

The participants’ confidence in their own estimates, measured as mean relative width of minimum-

maximum intervals, was not much affected by irrelevant information in this experiment with mean 

values of 1.22 (irrelevant information included) vs. 1.20 (without irrelevant information).  Statistical 

analysis, by GLM analysis of log (relative width), of statistical significance of difference confirms 

this (p=0,74). 

 

5. Discussion 
In both experiments, the average estimate of most likely effort increased when estimation irrelevant 

information was included. The main reason for this effect of irrelevant information in our experiments 

may be the use of simple, unconscious estimation processes, so-called judgmental heuristics by the 

participants. Such heuristics are frequently used to solve complex problems, where the human mind is 

not capable of implementing the “normatively correct” processes [24].  

To keep the estimation processes simple, the participants in our study may have based their effort 

estimates on easily available variables with no causal relationship to effort, on the assumption that 

these variables usually correlate well with amount of effort. The length of the text, the number of 

systems mentioned, or simply the assumption that everything in the requirement specification is 

relevant [9] may be examples of irrelevant information used as indicator of effort. Judgmental 

heuristics, such as those used in software effort estimation, are often unconscious processes (often 

they have originally been analytic and evolved into tacit processes as they have been used repeatedly 

with success  [24]). The unconscious use of variables means that the effort estimates may have been 

affected by information elements that the estimators, when asked about it, would admit are irrelevant 

in the current estimation situation. 

Two elements of such, more or less, unconscious heuristics are “estimation-by-analogy” and “first 

impression”: 
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• Estimation-by-analogy: Estimation by analogy is quite common in software effort estimation [25]. 

Estimation by analogy is based, to some extent unconsciously, on retrieving one or more tasks from 

memory (the analogies) that resemble the task that is going to be estimated, and then creating the 

estimate based on properties and actual effort of the retrieved tasks. In the experiments, the selection 

of analogies might have been based on surface cues (e.g., the number of systems mentioned, the 

technical platform information) or in-depth cues (e.g., the steps involved in solving the task). 

Irrelevant information might have surface similarity to previous tasks that differ in the underlying 

structure. This means that the irrelevant information might have led to misleading, or at least other, 

analogies compared to the situation without irrelevant information. 

• “First impression”: People can be strongly affected by their first impression when making 

predictions and other decisions under uncertainty [26], e.g. studies have found that court decisions are 

affected severely by the jury's first impression. The estimation process might be based on an early, 

unconscious, categorization (“first impression”) of the estimation task into a predefined category. 

When the estimate is created, it is strongly influenced by the initially chosen category, e.g., that the 

task looks like a “medium-large task”. In both experiments, the irrelevant information was placed 

early in the requirement specification, and might therefore have caused an incorrect ”first impression” 

that was difficult to change with more information, e.g., by reading further in the requirement 

specification, as confirming evidence has a stronger effect than evidence that does not fit with the 

initially chosen task category, i.e., the effect of “theory-loaded observations” [27, 28].  

 

More studies on the effect of the amount, the type, the extremity, the framing and the placement of 

irrelevant information are needed to better understand when and how it affects effort estimates. Until 

we know how to neutralize the effect of irrelevant information, we believe the best strategy is to try to 

avoid it altogether, particularly in the early stages of the estimation process.  

Some might find this advice counterintuitive, because average effort estimates increased in both 

experiments when irrelevant information was included, and it is well known that software cost 

estimates are usually too optimistic. However, other irrelevant information can cause effort estimates 

to decrease. Unless the estimation process is based on information that is relevant for the actual use of 

effort, systematic improvement of judgment-based effort estimation may be very difficult. 
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6. Summary and Recommendations 
It may be the exception, rather than the rule, that all information in a requirement specification is 

relevant for estimation of software development effort. Does this not matter or is it essential to avoid 

irrelevant information in requirement specifications? We designed two experiments to answer the 

research question of whether effort estimates were affected by the presence of irrelevant information. 

The two experiments (with 76 and 92 participants) answered this research question with the 

observation that estimation-irrelevant information in requirement specifications strongly affected the 

software effort estimates. The average effort estimates increased significantly in both experiments 

when estimation-irrelevant information was included. In addition, the results of Experiment 1 suggest 

that the estimators may also become more confident in the accuracy of their own estimates when they 

are exposed to irrelevant information.  

The magnitude of the effect differed and we currently have a quite incomplete understanding of 

how, when and how much different irrelevant information affects cost estimation. Consequently, 

further research is needed. 

Until we have a better understanding of the impact of irrelevant information on expert judgment-

based effort estimates, we believe it to be essential that irrelevant information is removed from 

requirement specifications before presented to the estimators [29]. If this is impossible, it may be a 

good idea to highlight and present early the most relevant information to avoid incorrect first 

impressions [30]. The removal of irrelevant information is important even when using formal 

estimation models, i.e., formal estimation models are typically based on expert judgment-based input. 

This input may also be affected by irrelevant information.  
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Abstract 
Expert judgment-based effort estimation of software development work is partly based on non-

mechanical and unconscious processes. For this reason, a certain degree of intra-person 

inconsistency is expected, i.e., the same information presented to the same individual at different 

occasions sometimes lead to different effort estimates. In this paper, we report from an experiment 

where seven experienced software professionals estimated the same sixty software development tasks 

over a period of three months. Six of the sixty tasks were estimated twice. We found a high degree of 

inconsistency in the software professionals’ effort estimates. The mean difference of the effort 

estimates of the same task by the same estimator was as much as 71%! The correlation between the 

corresponding estimates was 0,7. Highly inconsistent effort estimates will, on average, be inaccurate 

and difficult to learn from. It is consequently important to focus estimation process improvement on 

consistency issues and thereby contribute to reduced budget-overruns, improved time-to-market, and 

better quality software. 

 

 

1. Introduction 
Effort estimation is an important activity in software development and provides essential input to 

pricing, planning and budgeting processes [2, 4, 26]. Unfortunately, many software effort estimates 
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are inaccurate and effort overruns seem to be the rule rather than the exception [8, 10, 21]. It is 

unrealistic to expect perfectly accurate estimates, even with the best estimation and development 

processes, since several of the factors that affect project effort can only be known after the project is 

completed. On the other hand, it is likely that estimation accuracy can be improved substantially by 

better estimation processes [1, 13]. Improved consistency in the use of effort estimation information 

and processes, which is the topic of this paper, is one possible approach to achieving more accurate 

effort estimates.  

Greater consistency may, to some degree, be achieved by greater use of formal estimation models. 

In many other fields in which forecasts are made, such as the making of diagnoses in medicine, expert 

judgments are typically outperformed by even the simplest prediction models, partly due to the higher 

degree of consistency of the models [19]. The obvious consequence of this is that we should switch to 

effort estimation models instead of expert judgment in software development projects. However, the 

situation in software engineering seems to be different from that in many other disciplines. A recent 

review of sixteen studies comparing models and experts in software development effort estimation 

shows that the experts typically performed no worse than the models [11]. One reason for this may be 

that it is difficult to develop meaningful estimation models that do not require a high degree of expert 

judgment as input to the models in the first place; that being so, the difference between models and 

expert judgment-based effort estimates in software development with regard to consistency may not 

be large. Understanding the nature and degree of inconsistency in expert judgment may consequently 

benefit estimation processes based on models, as well as those based on expert judgment. 

In this paper we understand “degree of inconsistency” to mean how much an individual's effort 

estimates of the same software task, based on the same information and made under similar 

conditions, but made at different times, differ. If a difference in an individual's effort estimates of the 

same task is caused by changed conditions, e.g., by learning or the possession of new information, the 

difference it is not necessarily an indication of estimation inconsistency. In psychology, this judgment 

inconsistency is sometimes referred to as "test-retest reliability". 

Forecasting research on inconsistency, e.g., [27], suggests that inconsistency is a major source of 

error in forecasts based on human judgment and that it makes learning more difficult. The forecasting 

research has mainly been conducted in laboratory settings, which is not surprising, since people in 

real-life situations seldom make judgments more than once under the same conditions. In spite of the 

lack of real-life studies, there are good reasons to believe that there is a high degree of inconsistency 
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in judgments made outside the laboratory. This belief is supported by, among other things, the finding 

that reducing inconsistency through a mechanical combination of predictions typically leads to more 

accurate predictions; see, for example, [9, 14, 28]. Consequently, a reduction in the degree of 

inconsistency in software development effort estimation may be important for improving the 

estimation processes.  

This paper tries to contribute to this goal by providing a better understanding of the size and nature 

of the inconsistency in software professionals’ expert judgment-based estimation. A better 

understanding of the degree and nature of effort estimation inconsistency may provide valuable input 

for the development of improved estimation guidelines, models and processes; the selection of 

estimation personnel; and the design of training programmes that will lead to a more consistent use of 

estimation information and processes. There has, as far as we know, not been any previous study that 

investigates empirically software professionals’ degree of inconsistency in an effort estimation 

context. This means that we do not know the extent to which severe consequences of inaccurate effort 

estimates, e.g., budget-overruns, delayed time-to-market, and poor quality software, can be reduced 

by improving software professionals’ consistency in their use of estimation information and 

processes.   

The research questions of this paper are as follows:  

 

RQ 1: How consistent are software professionals’ expert judgment-based effort estimates? 

  

RQ 2: Do more accurate estimators have more consistent expert judgment-based effort estimates 

than less accurate estimators?  

 

The remainder of the paper is organized as follows: Section 2 briefly discusses related work on 

inconsistency. Section 3 describes the design of our experiment. Section 4 presents the results. 

Section 5 discusses the results. Section 6 summarizes. 

 

2. Related Work 
Inconsistency in expert judgment has been investigated, and demonstrated, in many research fields; 

see, for example, [17, 18]. One important finding is that there are considerable domain-specific 

differences. For example, weather forecasters are, on average, far more consistent than stockbrokers 
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[24]. Among professions studied with respect to consistency in judgments, none are, in our opinion, 

sufficiently similar to software development to enable the transfer of research results on consistency. 

Unfortunately, as stated earlier, we have been unable to find any empirical study of software 

professionals’ individual level of effort estimation consistency.  

It is, to some extent, understandable that there is a lack of studies on this subject. Such studies 

require, among other things, that software professionals estimate the effort of the same task at least 

twice, that they do not remember the first estimate on the second occasion, and that no significant 

amount of learning have taken place. These conditions can hardly be met in other situations than 

carefully designed laboratory conditions. 

Most studies in which different software professionals estimate the same software development 

task report a high variation of effort estimates. In [16], for example, 14 professional software project 

leaders estimated the effort of the same project. The mean effort of the 14 estimates was 28 man-

months. The standard deviation of the estimates was as high as 18 man-months for expert judgment-

based estimates and 14 man-months for model-based effort estimates. It is, however, not reasonable 

to claim that this large variation in effort estimate for the same project is a proper measure of the 

individuals' level of inconsistency. This would require that we made several unrealistic assumptions, 

e.g., that the software professionals would build the same software and have the same understanding 

of the (typically incomplete) specification. In our opinion, analyses based on such assumptions would 

be highly speculative and we have, consequently, not included these studies as reference points for 

our own results on individuals’ degree of inconsistency regarding effort estimation.  

In [15] we observed that software professionals who were more optimistic on previous effort 

estimation tasks were the more optimistic ones on subsequent tasks in 68% of the cases. This 

observation suggests that there are systematic individual differences in software professionals’ 

estimation accuracy. The opposite result, i.e., that there were no systematic difference in estimation 

accuracy, would suggest that the degree of inconsistency was random and that we should not expect 

to observe systematic individual differences in inconsistency in our experiment, i.e., the answer to 

RQ2 would be negative. 

 

3. Study Design 
The problems of examining inconsistency regarding effort estimation in real-life situations motivated 

our decision to investigate our research questions in a carefully-designed laboratory setting. 
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3.1 Previous Experiment 
About one year before completion of the current experiment, we conducted an experiment in which 

20 software professionals each estimated the effort and then completed five development tasks on an 

existing web-based database system written in Java [6]. The current experiment is based on the effort 

estimation of development tasks on the same web-based database system. The research results and 

study material of that previous study provide essential input to the design of the current experiment. 

 

3.2 Selection of Subjects 
We selected three software professionals with high and three software professionals with low 

estimation accuracy from the previous experiment as subjects for the current experiment. In addition, 

we selected one software professional with medium estimation accuracy, for a total of seven subjects.  

All subjects are experienced software consultants with Masters degrees. They were paid for their 

participation. None of them had received any estimation training between participation in the 

previous and the current experiment. Clearly, the observation of only seven software professionals is 

a threat to the robustness of the results. However, for practical reasons we had to choose between a 

study of few subjects solving many estimation tasks or many subjects solving few tasks. We 

considered that our research questions were better answered with the first study design option. 

Our selection of subjects ensured that they had relevant previous experience with estimation and 

completion of similar tasks. In addition, the nonrandom selection of the 20 subjects from the previous 

experiment was supposed to strengthen the analysis of whether or not the most accurate estimators 

were also the most consistent (RQ 2), because the difference in previous estimation accuracy among 

the subjects is likely to be larger, compared to that of a random selection. 

  

3.3 Estimation Tasks 
The requirement specifications are based on actual change requests from the users of the system and 

written in natural language. The length of the specifications varied from a few lines to a full page. An 

example is given below. 
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The current system implementation accesses the database directly. Rewrite all database 

code to use Hibernate for database access.   

 

Estimate the most likely work-effort it would require for you to implement and unit test 

this task.   

 

Estimate of the most likely work effort ________ (work-hours)  

 

 

Two senior software developers went through the requirement specifications to ensure that there 

were no obvious errors in the descriptions and that it was reasonable to believe that the tasks were 

familiar to the subjects. The two senior software developers believed that the requirement 

specifications represented a typical specification met in the software industry. The only notable 

difference was that the specifications were more  precise than the average, e.g. that there was less 

irrelevant information than is typical in many real-world specifications. This means that the 

specifications are, to some extent, estimation consistency-friendly*. Consequently, the degree of 

inconsistency may be greater in real-life situations than in our experiment.  

We debriefed the subjects when they had completed all tasks. In the debriefing, the subjects stated 

that they had perceived the tasks as realistic and all but one subject found the estimation tasks typical 

for tasks they normally estimate. The outlying subject’s level of inconsistency was average with 

respect to the studied group.  

 

3.4 Treatment 
The subjects participated in three half-day sessions with approximately one month between each 

session. At the start of each session, the subjects received a booklet that contained 20 estimation 

                                                           
* Forecasting research suggests that when information is presented in a way that clearly emphasizes the most relevant 

information, consistency improves [27]. 
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tasks. The subjects were instructed to estimate the tasks in the same order as in the booklet. They 

were not allowed to go back and change previous, already completed, estimates. All seven subjects 

estimated the same tasks and in the same order. The tasks were estimated by expert judgment. The 

subjects had access to the system documentation, but not to the source code. 

Six of the tasks (TT1-TT6) were used to measure the degree of inconsistency. These test tasks 

were estimated twice, e.g., the 10th task estimated in Session 2 was identical to the 14th task estimated 

in Session 1; see Table 1. Most tasks (48 out of 60) were estimated only once. This, together with the 

long period of time between the sessions, would imply, we assumed, that the subjects did not realize 

that they had estimated a test task before.  

Table 1 Tasks (T1-T60) and Test Tasks (TT1-TT6) 

Session 1 Session 2 Session 3 

T1  T21 T41 

T2 (TT2) T22 T42 

T3 T23 (TT5) T43 

T4 (TT4) T24 (TT6) T44 (TT2) 

T5 T25 T45 

T6 T26 T46 (TT4) 

T7 T27 T47 

T8 T28 T48 

T9 T29 T49 

T10 T30 (TT1) T50 

T11 T31 T51 

T12 T32 T52 

T13 T33 T53 

T14 (TT1) T34 (TT3) T54 

T15 T35 T55 

T16 (TT3) T36 T56 

T17 T37 T57 

T18 T38 T58 

T19 T39 T59 (TT5) 

T20 T40 T60 (TT6) 
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We informed the subjects that the duration of each session was stipulated to be about four work-

hours, but that they could use more time, and would be paid for it, if needed. In the debriefing, six 

subjects reported that the time they had used on estimation was the similar to, or greater than, the time 

they typically used to estimate similar tasks, while one had spent less time than usual. Time pressure 

may increase inconsistency [23]. However, we believe that the impact of time pressure on the subject 

who spent less than time than usual was low. This belief is supported by the observation that this 

subject was, on average, the third most consistent estimator. 

 

3.5 Measurement  
To compare the estimation accuracy of the subjects in the previous experiment, we applied MRE [3] 

(Magnitude of Relative Error). MRE is a commonly used measure for estimation accuracy, and is 

calculated by the following formula: 

 

%100*
effortactual

effortestimatedeffortactual
MRE

−
=  

 

As noted above, six test tasks were estimated twice. Consequently, there are 42 pairs (seven 

subjects * six tasks) of corresponding estimates that can be used to measure inconsistency. A pair 

consists of two estimates of the same development task, by the same subject, in two different 

sessions.  

 We measure the relative inconsistency (RIncons) of a pair of estimates provided by subject i 

on test task j by the following formula: 
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where Si is subject i, and TTj is test task j. Est1 is the first estimate of TT j, and Est2 is the second 

estimate. Simplified, we measure the relative inconsistency as the ratio of the highest to the lowest 

effort estimate of the same task for the same subject. If, for example, S1 estimated that he required 10 

work-hours to solve TT4 in Session 1, and 15 work-hours for the same task one month later, 

RIncons(S1,TT4) = ((max(15,10)/min(15,10) – 1) * 100%  = (15/10 – 1)* 100% = 50% 
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The relative degree of inconsistency has the advantage that it measures degree of inconsistency 

independently of the size of the estimates. However, for small tasks relative degree of inconsistency 

can be misleading, i.e., relative degree of inconsistency can be high although the absolute difference 

between the estimates is of no practical importance. Therefore, we also used a measure of absolute 

degree of inconsistency (AIncons). We define AIncons as:  

 

( ) ( ) ),(2,1, TTjSiEstTTjSiEstTTjSiAIncons −=  

  

4. Results 
 

4.1 Descriptive Statistics  
The estimates of the six test tasks (TT1-TT6) are presented in Table 2. We did not identify any 

obvious outliers, e.g., due to mistyping, in the data.  

 

Table 2 Estimates of Most Likely Effort (work-hours) 

 

 

 

 

 

 

 

Task  Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 

 Est1 Est2 Est1 Est2 Est1 Est2 Est1 Est2 Est1 Est2 Est1 Est2 Est1 Est2 

TT1  32 30 6 13 5 5 7,5 7 8 25 7 20 18 11 

TT2  8 8 6 2,5 5 2 5 6 4 6 6 8 5 5,5 

TT3 32 28 7 11 4 5 7 4 16 8 7 10 15 9 

TT4  4 4 1 2,5 2 2 2 4 3 2 2 1 2 1,5 

TT5  16 40 10 15 6 16 7 5,5 80 30 40 40 7 8 

TT6 6 10 4 3 1 3 1,5 1,5 1 1 3 1 2 1 

 

4.2 Research Question 1 
We addressed Research Question 1 through examination of the difference of subjects' estimates of the 

same task applying the measures RIncons and AIncons; see Table 3 and Figure 1.  
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Table 3 RIncons (%) and AIncons (work-hours) 

Subject Id Mean Median Max Min Stdv 

 RIncons AIncons RIncons AIncons RIncons AIncons RIncons AIncons RIncons AIncons 

1 40 5,67 11 3,00 150 24,0 0 0,00 59,6 9,16 

2 91 3,67 87 3,75 150 7,00 33 1,00 50,4 2,23          

3 90 2,67 88 1,50 200 10,0 0 0,00 91,7 3,78 

4 38 1,33 24 1,25 100 3,00 0 0,00 40,1 1,08 

5 97 13,0 75 5,00 213 50,0 0 0,00 80,0 19,2 

6 94 3,50 71 2,00 200 13,0 0 0,00 83,4 4,76 

7 48 2,67 49 1,00 100 7,00 0 0,50 34,9 2,99 

Average 71 4,64 50 2,00     66,4 8,66 
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Figure 1 Histogram of relative inconsistency (RIncons) 
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Important observations include:   

• The degree of inconsistency is high. Mean (median) RIncons is 71% (50%). RIncons is larger than 

25% in 28 of the 42 tests. The correlation between the first and the second effort estimate of the same 

task is 0,7. 

• There are large individual differences in inconsistency. The lowest mean (median) RIncons of the 

subjects is 40% (11%), while the highest is 97% (75%).  

• None of the subjects is consistent on all six tasks. All subjects have RIncons of 100% or more on 

at least one occasion.  

• None of the tasks are consistently estimated by all subjects. The lowest mean (median) RIncons 

for any test task is 54% (33%), while the highest is 86% (67%).   

 

RIncons was, on average, higher for larger than for smaller tasks. While mean RIncons for tests tasks 

with both effort estimates larger than eight hours is 93%, it is 68% for test tasks with one of the 

estimates equal to or smaller than eight hours. This suggests that: i) the high degree of inconsistency 

is not explained by the fact that some of the estimated tasks are quite small, and ii)  the degree of 

inconsistency is at least as high for large as for smaller development tasks. However, the degree of 

effort estimation inconsistency for large projects remains to be studied. 

 

4.3 Research Question 2 
The second research question concerns whether more accurate estimators are more consistent in their 

expert judgment-based effort estimates than less accurate estimators. This research question is 

investigated by analyzing the connection between the subjects' estimation accuracy (MRE) of the 

previous experiment and the degree of inconsistency (RIncons) of the current experiment. Figure 2 

shows the median RIncons and the median MRE. As can be seen in Figure 2, the connection between 

MRE and RIncons is not strong. The correlation (r) between median MRE and median RIncons is  

-0,3. However, this result should be interpreted with great care, because the number of subjects is low 

and the impact from a few extreme observations is strong. If we, for example, remove Subject 1 

(median MRE of 81% and median RIncons of 11%) from the analysis, the correlation is 0,4 in the 

expected direction. Subject 1 seemed to have a different estimation process than the others. The fact 

that one subject affects the correlation illustrates the lack of robustness of the results from this part of 

the study. 
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Figure 2 Inconsistency (median RIncons) vs. Accuracy (median MRE) 

 

If it is possible to generalize from the displayed in Figure 2, it may be that we cannot select 

accurate effort estimators based on tests of degree of estimation consistency. However, this does not 

entail that estimation accuracy and inconsistency are unrelated. Clearly, individual software 

professionals who improve their estimation consistency are likely to improve their estimation 

accuracy, as well.  

  

5. Discussion 
The main result of our study is the observed high degree of inconsistency in expert judgment-based 

estimates. Our study was conducted in the laboratory, but we believe it is likely that real-life 

inconsistency is at least as large in many real-world situations. Arguments supporting our belief 

include the observation that inconsistency increased with larger tasks in our experiment, that the 

subjects perceived the experimental setting as realistic, and that the estimation tasks in the experiment 

in many ways were consistency-friendly. In addition, the typical higher complexity of larger projects 

may induce a higher degree of inconsistency. 

One implication of our results is that expert judgment-based effort estimates will never be very 

accurate if the inconsistency problem is not properly addressed. To illustrate the impact of level of 

inconsistency on estimation accuracy in our study, assume that the actual effort of a task in our 
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experiment is the mean value of the two estimates of that task, i.e., that the main source of estimation 

error is inconsistency and not, for example, a bias towards optimism. Then, the mean MRE is 0,2. 

This MRE-value indicates that the best possible level of estimation accuracy is about 20% given the 

observed level of inconsistency, i.e., given a median RIncons of 50%. 

Clearly, this calculation has its limitations. There are, for example, factors other than the ability to 

provide realistic estimates that affect estimation accuracy, e.g., the ability to “develop to cost” by 

simplifying the process or product [5]. Such complex relationships between estimates and actual 

efforts make it difficult to isolate the impact of inconsistency on estimation error. Nevertheless, the 

high degree of inconsistency that we have measured indicates that inconsistency can, to some degree, 

explain the observed high estimation error in many surveys, i.e., the 30-40% development effort 

overrun reported in [20]. It may also explain parts of the interestimator disagreement observed in 

estimation studies where different software professionals estimate the same project; see the example 

in Section 2.  

We did not find evidence that more accurate estimators are more consistent. Some possible 

explanations are that: 1) the power of our study was too low to examine this relationship, 2) factors 

other than the ability to provide realistic estimates had a strong impact on the measured estimation 

accuracy, e.g., variations in the ability to develop to cost, and 3) while consistency is a necessary 

condition for accurate estimates, it is not a sufficient condition. There are estimation methods that are 

perfectly consistent, but have no predictive value. If, for example, a subject responds "10 hours" 

every time asked for an estimate, he or she would be perfectly consistent in spite of inaccurate effort 

estimates. 

Many explanations have been proposed for the inconsistency of human judgment in other fields; 

see, for example, [7, 25, 27]. Two examples of (partly overlapping) types of explanations are these: i) 

inconsistency is caused by the effects of presumably irrelevant variations in the decision situation, 

and ii) inconsistency is caused by cognitive limitations. An example of the first category is found in 

[25], where the weather influenced the weight that reviewers of college applications placed on 

academic attributes. An example of the second category is described in [22], where it is shown that a 

decomposing variant of a multiple-criteria decision-making technique was more consistent than a 

holistic variant of the same technique. However, the variety of explanations and theories also suggest 

that our knowledge of the causes of inconsistency is limited. 

 77



Although we know little about the causes of inconsistency, we do know something about how to 

reduce it. An example of a well-established method for improving consistency is to combine effort 

estimates from several independent estimators [9, 14, 28]. Given our observation of a high level of 

inconsistency, we believe that greater use of proper combination-based effort estimation would lead 

to substantial improvements in estimation accuracy. The empirical evidence in [12] supports this 

belief in the benefits derived from combining effort estimates.  

Clearly, more research on inconsistency in estimation processes is needed. The degree of 

inconsistency we have measured needs to be validated against studies in other contexts and with 

larger samples and other populations, and the impact on estimation accuracy needs to be investigated 

further. We also need research on how inconsistency in estimation processes can be reduced, e.g., 

with respect to the effect of different types of estimation checklists or guidelines.  

 

6. Summary 
We reported on an experiment conducted to investigate the degree of inconsistency in expert 

judgment-based software development effort estimation. This is a topic that has received little 

attention in research on software estimation.  

In the experiment, seven experienced software professionals estimated the most likely work-effort 

of the same 60 software development tasks. The subjects estimated six of the tasks twice, with at least 

one month between each estimate of the same task. We found that a subject's estimates of the same 

task differed substantially (mean difference 71%, median difference 50%). Highly inconsistent effort 

estimates will, on average, be inaccurate and difficult to learn from. Consequently, when attempting 

to improve processes of software effort estimation, and thereby contribute to reduced budget-

overruns, improved time-to-market, and better quality software, it is important to focus on issues 

pertaining to consistency. 

The difference in estimation accuracy of the subjects on previously completed development tasks 

did not predict degree of estimation inconsistency in the experiment.  Possible explanations include 

the following: i) The power of our study was too low to examine this relationship, e.g., the correlation 

is as expected when removing one extreme observation from our experiment. ii) The estimation 

accuracy of individuals was affected by factors other than the degree of consistency, e.g., by the 

ability to develop to cost iii) A high degree of consistency may be a necessary, but not a sufficient 

condition for accurate estimates. Even if there should be a lack of positive correlation between 
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software developers’ median estimation accuracies and median level of inconsistency, this would not 

gainsay our recommendation of implementing processes that will reduce estimation inconsistency. 

Clearly, individual software professionals who improve their estimation consistency are likely to 

improve their estimation accuracy. 
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Abstract 
This paper focuses on the clients' impact on estimation accuracy in software development projects. 

Client related factors contributing to effort overruns as well as factors preventing overruns are 

investigated. Based on a literature review and a survey of 300 software professionals we find that: 1) 

Software professionals perceive that clients impact estimation accuracy. Changed and new 

requirements are perceived as the clients' most frequent contribution to overruns, while overruns are 

prevented by the availability of competent clients and capable decision makers. 2) Survey results 

should not be used in estimation accuracy improvement initiatives without further analysis. Surveys 

typically identify directly observable and project specific causes for overruns, while substantial 

improvement is only possible when the underlying causes are understood.  

   

 

1. Introduction 
Overruns in software development projects have been a major concern for several decades. The topic 

of effort estimation has been given much attention in software engineering research, for instance by 

the development of numerous algorithmic estimation models. Still there is no evidence of 

improvement in effort estimation accuracy over the last 20 years. A recent review of estimation 

surveys [1] shows that most surveys of effort estimation performance in software development 

projects  report average overruns of 30-40%. Even if it is debatable whether the magnitude of these 
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overruns constitutes a 'software crisis' [2], it is likely that organizations who improve estimation 

accuracy will gain a competitive advantage, e.g., as a consequence of increased predictability and 

more optimal resource allocation.  This applies to clients as well as vendors, since disadvantages 

caused by overruns hit both clients and vendors, irrespective of contract type, as discussed in [3].   

It is often claimed that clients, as well as vendors, influence effort estimation accuracy in software 

development projects. Previous research supports this view. For instance, a survey of estimation 

overruns in software development projects showed that governmental projects on average had higher 

overruns of effort estimates than private projects [4]. The governmental and private projects did not 

differ on any of the project characteristics measured, such as development methodology, vendor 

capability, project size, or project duration. The only difference was the category of client.  

By focusing solely on clients' impact on estimation accuracy and by investigating both negative 

and positive impact clients have on estimation accuracy we hope to gain a deeper understanding of 

this relationship. For clients such understanding is important in order to improve their acquisition 

processes. Besides, an understanding of their own capability as clients of software development 

projects might be valuable input to the selection of vendors. The understanding of clients' impact on 

estimation accuracy is also valuable to vendors. Realizing that the client is the cause of a troubled 

project enables appropriate actions to be taken. These might include changes to the development 

methodology, the project staffing, re-negotiations, juridical actions, etc. Note that the term 'client' is 

used in a broad sense in this paper; we have not made any attempt to distinguish between 'clients', 

'users' and 'customers'. 

The goal of this study is to examine 1) Do clients influence estimation accuracy?  2) How do 

clients impact estimation accuracy? 3) What can clients do to improve estimation accuracy? These 

questions are examined by reviewing software engineering literature and surveying software 

professionals. The paper is organized as follows: Section 2 presents a review of existing research on 

how customers impact estimation accuracy in software development projects.  That review is the 

background for the study design described in Section 3. The results of the study are presented in 

Section 4, while Section 5 discusses the results of the study and the findings in the review with 

respect to the objectives of the study. Section 6 concludes the paper. 
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2. Review of Related Work 
The aim of the review is to identify research relevant to the research questions presented in Section 1 

in an unbiased and auditable manner. 
 

2.1 Review Design 
The design of the review is based on the guidelines for structural reviews in software engineering 

proposed by Kitchenham [5]. The review is limited to what we consider the most important journals 

for software engineering; Information and Software Technology, Journal of Systems and Software, 

IEEE Transactions of Software Engineering and ACM Transactions on Software Engineering and 

Methodology. Papers were selected for inclusion by manually going through the online indexes of 

these journals, reading the abstracts that appeared relevant and finally the full versions of the 

remaining papers. The review was done by one of the researchers. For each included paper, the 

following information was extracted: the bibliographic information, study type, goals of the study, 

sample size and the client's impact on estimation accuracy.  The criteria used to decide whether to 

include or exclude papers were:  

• the papers have to report causes or risk factors for estimation accuracy/performance/overruns or 

project success/failure (when success/failure was related to schedule/budget or estimates)   

• the papers have to report empirical evidence from software development projects  

• the papers have to identify general reasons (as opposed to investigate a specific issue) 

• if two studies are based on the same data set, only one were included  

• the papers have to be available online (in most cases, papers from the last 10-15 years were 

available) 

   

There are a number of limitations to this review. Among the most important is that the survey is based 

on a limited selection of journals. We are aware of other journal papers, books, conference papers and 

industry reports that have made important contributions to the topic such as Brooks' classic The 

Mythical Man-Month [6]. We have chosen this approach in an attempt to get an unbiased sample of 

material.  
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There is also a risk that papers from the selected journals have been wrongly excluded, i.e. that we 

were not able to recognize the relevance of the paper by the name and/or the abstract. Some 

verification was done by checking against a previous review [7]. 

Another risk is the subjective identification of client influenced factors. This task is hard as the 

categories/terms/reasons are most often only explained in broad terms. We have not found any good 

way to address this risk other than to rely on our experience as researchers and software professionals. 

There is also the problem that papers built on considerable experience are excluded from this review 

as they do not directly report empirical evidence. However, inclusion of such articles would lower the 

quality of the review, as it would be even more subjectively decided which articles to include and 

which to exclude.  

 

2.2 Review Results 
We identified eight studies that matched our criteria. 

 

2.2.1 Verner et al. [8]. Verner et al. [8] conducted structured interviews with 20 senior software 

development professionals from a number of different organizations in the USA. The goal of the 

study was to compare the software project management advices given in Brooks' famous book the 

Mythical Man-Month with practices employed 25 years later. For each topic discussed, the factors 

leading to project success were identified, and then how the same factors could contribute to failure. 

The client related success factors found, and their frequency, are: High level management support 

(about 50%), customer and user involvement (15%), good requirements (nearly 50%), flexibility 

(frequency not available) and communication (67%). The corresponding failure factors are: Lack of 

higher level management support (almost all), lack of involvement/confidence and too many 

customers involved (nearly 50%), vague/poor requirements and no clear vision (40%), poor estimates 

made by management and dictated dates (50%) and feature and scope creep (reported as "many" in 

the paper). 

 

2.2.2 Procaccino et al. [9].  Procaccino et.al. [9] had 21 IT professionals reflecting 42 software 

development projects complete two questionnaires (failed/successful projects). The goal of the study 

was to investigate some of the most influential success factors early in the development process. The 

respondents were project leaders, technical support personal and developers. All were from the same 
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organization. The respondents were asked what they perceived as success factors, and what they 

thought management considered as success factors (there were differences). The significant success 

factors, when applying Chi-square tests, were: Presence of a committed IT sponsor, customer/user's 

involvement/commitment/confidence in the project, customer/users involvement in schedule 

estimation, customer/users had realistic expectations, establishment of complete and accurate 

requirements and customers/users allocated adequate time for requirement gathering.  

 

2.2.3 Lederer and Prasad [10]. Lederer and Prasad [10] used a questionnaire to have 112 systems 

managers and other information systems professionals rate 24 predefined reasons for overruns. The 

customer factors perceived as important out of the ten most important are: Change requests by users, 

users' understanding of requirements, user-analyst communication and understanding, poor or 

imprecise problem definition and coordination of company functions during development. The causes 

where correlated with the organization's percentage of inaccurate estimates by use of the Pearson r 

coefficient correlation. The customer factors of the top ten most statistic significant reasons are: 

Reviewers don’t consider whether estimates are met, lack of careful examination of the estimate by 

management and poor or imprecise problem definition.     .   

 

2.2.4 van Genuchten [11]. van Genuchten [11] performed weekly interviews with project leaders 

and collected data on activity level for six software development projects in the same software 

development department in order to gain an insight in the reasons for delays of software development 

projects. The most frequent reasons for delays were "more time spent on other work than planned" 

(mainly as a result of maintenance tasks) and "complexity of application underestimated".  None of 

these are customer related. Measurements in other departments revealed that distribution of causes 

varies strongly for each department. 

 

2.2.5 Jiang and Klein [12]. Jiang and Klein [12] had 86 members of Project Management Institute 

complete a questionnaire to test the linkage between previously identified software development risks 

and various dimensions of  system success. Only two of the risks had a significant impact on "meet 

budgets" and "meet schedules": "Lack of teams general expertise" (including the ability to work with 

uncertain objectives, ability to work with top management and ability to understand human 

implications of a new system) and "Lack of role clarity" (including the role of each person involved 
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in the project is not clearly defined and communications between those involved in the project are 

unpleasant). 

 

2.2.6 Ropponen and Lyytinen [13]. Ropponen and Lyytinen [13] surveyed 83 project managers 

from the Finnish Information Processing Association (at most two respondents from each company) 

using a questionnaire. The goal of the study was to investigate the impact of risk management 

practices on software development. Schedule and timing risks were influenced by the following client 

related factors: The project size (larger projects performed worse than smaller), the client's industry 

(retail business, accommodation, nutrition performed better than other industries) and the application 

type (interactive applications performed worse than other). 

 

2.2.7 Jørgensen and Moløkken-Østvold [7]. Jørgensen and Moløkken-Østvold collected data 

from estimation experience reports of 68 projects and interviewed eight employees (in different roles) 

in a Norwegian software company. The goal of the study was to understand how roles, information 

collection approaches and analysis techniques supplement each other when examining reasons for 

errors in software effort estimates. Reasons for estimation error mentioned in the interviews were: 

Lack of realism in HCI-requirements, lack of requirement change control processes, unrealistic 

expectations by clients and lack of good requirement specifications leading to unplanned re-work. 

Reasons for estimation inaccuracy found in the experience reports where: Change requests from 

clients or "functionality creep", resource allocation problems,  poor requirement specifications or 

problems with communication with the client or that high priority where on quality and not on cost 

accuracy. Reasons for estimation accuracy found in the experience reports where:  Simple projects 

and a high degree of flexibility in how to implement the requirement specification. The study also 

contains a statistical analysis (stepwise regression) of some project characteristics and how they relate 

to estimation accuracy. The only significant client factor was the client's priority of time-to-delivery.  

 

2.2.8 Subramanian and Breslawski [14]. Subramanian and Breslawski [14] had 40 members of 

the ACM Special Interest Group on Software Engineering responded to a mail questionnaire. The 

study seeks, among other things, to explain the percentage of relative error in software effort 

estimation. The customer influenced reasons for failure were: "requirements 
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change/addition/definition", "design changes, scope and complexity", "upper management influence, 

bidding and time constraints" 

 

2.2.9 Summary. None of the studies identified in this review explicitly investigated client 

influence on estimation accuracy in software development projects, but seven out of eight studies 

report that client factors are perceived as important for estimation accuracy. This strongly suggests 

that clients influence estimation accuracy. Factors related to management, communication and 

involvement in the project along with factors related to requirements and realistic expectations are the 

most frequent reasons perceived as impacting estimation accuracy that can be attributed to clients. 

Other client related factors, such as project size, the industry of the client, application type and 

flexibility are also reported, but less often. Table 1 summarises our interpretation of the most frequent 

client factors impacting estimation accuracy reported in the reviewed studies.     

The studies further report that vendors are more likely to attribute failure than success to clients [8] 

and that who you ask (developers, project managers, management, etc) influences the perception of 

the clients' impact on estimation accuracy [8, 9]. Also, statistically analysis of factors give different 

results than surveys and interviews of what reasons are perceived as most important [7, 10].  One of 

the papers finds reasons for estimation accuracy to be largely project specific. When the results of a 

case study conducted in one department [11] was compared to results from another department within 

the same organization, there were significant differences. 

However, it is not clear what clients should do to improve estimation accuracy in software 

development projects. Our study, described in the remaining sections of this paper, explicitly 

investigates the clients' contribution to estimation accuracy. The aim is to get more data regarding 

these phenomena so that we can do a more thorough analysis and better understand them.  

 

Table 1 Client factors frequently reported to affect estimation accuracy 

Factor Study 

Management [7-10, 12, 14] 

Communication [7, 8, 10, 12] 

Involvement in project [8-10] 

Requirements  [7-10, 14] 

Realistic expectations [7-9, 14] 
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3. Survey Design  
To investigate our research questions, we conducted a survey at a technical conference. Sections 3.1-

3.3 describe the design of the schema and the sample, while sections 3.4 and 3.5 comment the data 

collection and the analysis. 

 

3.1 General 
The findings in some of the studies in Section 2, along with our previous research and industry 

experience, determined the content in the survey instrument we used to investigate the research 

questions described in Section 1. The survey collected three types of data; 1) context information 

about the respondents (such as estimation experience and project roles) 2) the respondents' perception 

of clients' impact on estimation accuracy (positive and negative) and 3) the estimation performance in 

the respondents' last completed project along with their rating of a predefined set of client factors.  

 

3.2 Schema Design 
Four software professionals validated the schema in a pilot study. This led to clarification of some 

questions. The final schema consisted of 20 multiple choice questions and two open-ended questions. 

The schema was written in Norwegian and the data are later translated by us. The motivation for 

using Norwegian, and thus introducing the risk of translation errors, is that we believe this would 

lower the burden of participation and therefore increase the number of respondents. This approach 

would only exclude the non-Scandinavian speakers since Norwegian is quite similar to Swedish and 

Danish. The schema took approximately 10 minutes to complete. To motivate participation, the 

respondents could win prices in a lottery. In order to participate in the lottery, the respondents had to 

write their email address, but participation in the lottery and hence writing the email address was 

voluntarily. However, all respondents chose to write their e-mail address. A threat to this type of data 

collection is the risk of misunderstandings. The main strength of using a survey instrument, compared 

to interviews, is that the number of data points increase. 

The respondents decided themselves how to interpret "estimate", "overruns of estimates" and "no, 

or small, overrun of estimates". Previous studies has shown that the estimation terminology in use is 

ambiguous, i.e. the term estimate is frequently used for most-likely estimates, estimates of budgets 
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and price to customer  [15]. In this study we have chosen to use broad terms such as "overruns" and 

"estimate". We did this because we did not want to confuse the participant with unfamiliar terms, and 

since we believe that the reasons for overruns are the same for the different meanings of the term 

"estimate". Similarly, we did not specify whether the terms "estimate" and "overruns" referred to cost, 

effort or schedule, as we believe that fairly similar factors cause overruns for these different types of 

estimates. To measure the magnitude of overrun in their last completed projects we used broad 

categories that were further combined in the analysis. We asked for information about the most recent 

project, instead of "average values" or a "information about a typical project", to reduce the influence 

of poor memory and selection bias.  

 

3.3 Sample  
The survey was conducted at the JavaZone 2004 conference in Oslo, Norway. The conference was 

arranged by the Norwegian java user group (javaBin). JavaZone targets Scandinavian professionals 

with an interest in Java technology, and is one of the leading technical conferences in Scandinavia. 

800 persons registered for the conference including speakers, journalists, organizing committee and 

expo personnel. 307 of these participated in the survey. Table 2 presents some demographic data 

collected. The first column states the questions the respondents answered, the second shows the 

categories the respondents could choose from, the third column presents the frequency of each 

category and the percentage of the total (excluding non-respondents) while the last column contains 

comments. The data suggest that the respondents have a technical focus (91,5%  has programmed in 

at least one project), they are fairly experienced estimators and that they are distributed across 

industries. It is also reasonable to believe that the attendants are above average interested in software 

development since they attend the conference, and that the average level of competence is high since 

most of the talks at the conference were at an advanced level.  
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Table 2 Demographic data 

Question Category Result Comment 

None 27   (9,0%) 

1 – 4 113 (37,7%) 

5 – 20 118 (39,3%) 

How many projects have you participated in 

estimating?  

20 +  42   (14%) 

N = 300.  

Not estimated 25   (8,3%) 

Internal 74   (24,7%) 

External 126 (42%) 

Both internal and external 75   (25%) 

Has the projects you have participated in 

estimating been for an internal or an external 

client? 

Other 0 (0%) 

N = 300.  Nine respondents gave multiple answers. 

These are interpreted as "equally many". One 

respondent did not answer the question, but had 

answered "no estimation experience" on a previous 

question. This is interpreted as "has not estimated". 

Not estimated 26 (8,7%) 

Governmental 93 (31,1%) 

Telecom 96 (32,1%) 

Financial  97 (32,4%) 

Industry 46 (15,4%) 

What sector have you primarily been estimating 

for? 

Other 43 (14,4%) 

N = 299. Each respondent were allowed to select 

several industries. The "other" category was mainly 

retail. 222 respondents (74,2%) had estimated for 

more than one sector. 

 

Developer 271 (91,8%) 

Architect 141 (48,0%) 

Project manager 62 (21,0%) 

What has been your role(s) in the above 

mentioned projects? 

Other 6 (2%) 

N = 295. Each respondent was allowed to select 

several roles. All the non-respondents replied "not 

estimated" on the questions above.   

None  57 (19,2%) 

0 – 20%  133 (44,8%) 

21 – 50% 55 (18,5%) 

Above 50% 18 (6,1%) 

In your latest completed project, how large was 

the overrun of estimates? 

Do not know 34 (11,5%) 

N = 297.  80% of the projects had overrun of 

estimates which is similar to other estimation 

surveys [1].  

Do not know 40 (13,4%) 

< 100.000  28 (9,4%) 

100.000 – 1 million 86 (28,9%) 

1 – 10 millions 102 (34,2%) 

In your latest completed project, what was the 

budget (approximately)? 

Above 10 millions 42 (14,1%) 

N = 298. The figures are in Norwegian Kroner 

(NOK). 1 US Dollar is approximately 6,3 NOK.  
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3.4 Data Collection 
The survey was handed out from the organizers' stand in the conference expo area. It was labeled as a 

joint effort between the University of Oslo and the Norwegian java user group. A research assistant 

distributed and collected the schemas, and the survey was open for participation from the start of the 

conference till the social program started, a total of 12 hours. About 400 schemas where handed out 

and 307 of these were returned. 

We were unable to collect reasons for non-participation in a systematic way, as the organizers 

declined our request to include questions regarding survey participation in the official conference 

evaluation form. To collect data on non-participation, we asked conference attendees during the social 

program about their participation. Three reasons for non-participation dominated: 1) The conference 

program was too packed so they did not prioritize participation in the survey, 2) They did not visit the 

expo area and therefore were not aware of the survey, and 3) They did not feel qualified to answer 

(marketing staff, journalists, etc).  This means that there seems to be no harmful bias regarding 

participation in the survey as would have been the case if for instance one company refused to let its 

employees participate or if people where ashamed to participate because they had a bad track record 

for estimation performance. 

 

3.5 Analysis 
 The data were analyzed and structured using Excel and Minitab. Seven out of the schemas were 

excluded from the analysis because we regarded them to be of insufficient quality (primarily because 

they were mostly blank). Preliminary results from the study were verified at two of the monthly 

member meetings in the java user group. The attendants at the meetings agreed with the 

interpretations. 

The data regarding participants' perception of the customers' influence on estimation accuracy 

were categorized. The categories were derived by analyzing the answers and joining answers into 

groups until we had a sufficiently small number of categories. The categorization was done 

independently by one of the authors and an experienced software professional. Disagreements were 

discussed. In the few cases were an agreement was not reached, both categories were included. For 

the completed projects, overrun magnitude was collected by asking the respondents to choose the 

category that best fitted their project. They could choose from: "no overrun", "0-20%", "21-50%", 

"more than 50%" and "do not know".  In the analysis, "no overrun" and "0-20%" is merged together 
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as "< 20% overrun", while "21-50%" and "more than 50%" is merged together as "> 20% overrun". 

73 of the responds were in the category "> 20% overrun" and 189 in the category "< 20% overrun". 

To preserve anonymity, we did not ask for any project identification. This is unlikely to be a 

problem for the part of the survey that is concerned with the respondents' perception of factors that 

influence estimation accuracy, as this address the respondents opinions based on their total 

experience.  However, for the rating of factors in the last completed project, we do not know how 

many projects (experimental units) the respondents represent. The data suggests that the distribution 

is fairly good (based on combining estimation accuracy, size of project and type of customer), but it is 

likely that at least some projects are overrepresented.  

 

4. Results 
 

4.1 Software Professionals' Perception of Client Factors Impacting Estimation 

Accuracy 
 This section presents the respondents perception of client factors that frequently caused overruns and 

client factors that prevented overruns.  The questions asked were as follows (translated):  

Q1:"In projects where estimates have been overrun, which client related factors have contributed 

to the overrun?"  

Q2:"In the projects where estimates were not overrun, or there were only minor overruns, which 

client related factors contributed to prevention of overrun?" 

The responses were grouped in categories, see table 3, and are presented in table 4.   
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Table  3 Categories of perceived reasons 

 

Code Category 

STAB Requirement changes and new requirements  

REQU Well defined requirements 

COMM Client – vendor communication 

FLEX Flexibility in the project (give and take) 

TECH Integration with technical environment, infrastructure and development environment 

SUBC Integration and co-operation with 3rd party vendors  

SIZE Project size 

REAL Realistic expectations (requirements, time, budget, etc) 

SKILL Availability of competent customers and capable decision makers  

PROJ Project administration and steering 

OTHE Other reasons that we were not able to classify 

Table 4 Customer factors impacting estimation accuracy 

Factor type Perceived as causing overruns by Perceived as preventing overruns by 

STAB 118 23 

REQU 97 50 

COMM 13 34 

FLEX 9 28 

TECH 17 3 

SUBC 4 2 

SIZE 0 4 

REAL 15 13 

SKILL 70 76 

PROJ 38 50 

OTHE 14 18 

 

Out of the 300 replies included in the analysis, 48 respondents did not mention any client factors 

contributing to overruns (Q1), while 89 respondents did not mention any client factors preventing 

overruns (Q2). In the cases where the same respondents had made several answers that fell into the 

same category, each answer was counted. 

The three client related reasons most frequently perceived as contributing to overruns are 1) 

frequent requirement changes and new requirements,  2) lack of well defined requirements and 3) 

lack of competent customers able to make decisions. The  most important reasons perceived as 

 95



preventing overruns are  1) competent clients able to make decisions, 2) well defined requirements 

and 3) adequate project administration. 

 

Table 5 Factors tested for connection with overruns 

Code Factor Statement type Translated statement/question 

METH Project Methodology Neutral The project used an incremental/iterative development method. 

REAL Realism in plans and budgets Positive The project had realistic plans and budgets 

GOAL Clear project goals Positive The goals of the project were clearly defined and communicated. 

PRIO Client's priority of the project Positive The project had high priority in the client organization. 

RESO Client's resource allocation Positive The client had allocated sufficient resources for an efficient project  execution (test 

environment, end-users, etc). 

SKILL  Client skills Positive The clients had the right skills for an efficient project execution. 

COMM Client and vendor 

communication 

Positive The communication between client and vendor were adequate. 

STAB Scope creep Negate The requirement specification were frequently expanded. 

FLEX Project flexibility Positive The project had the flexibility to reduce scope (functionality/quality) in order to 

meet plan and budget. 

REWO Client's change of opinion Negative Clarifications made by the client were later changed so that work had to be re-done 

or thrown away. 

UNFO Unforeseen tasks  Negative Unforeseen tasks occurred frequently 

PARA Projects run in parallel Negative The project were delayed by projects running in parallel. 

LUCK Luck/bad luck  Negative Luck or bad luck had a significant impact on the outcome of the project. 

 

4.2 Correlation Between Client Factors and Effort Overruns in the Respondents' 

Last Completed Project 
The respondents were asked to rate their last completed project (from 1 = "totally agrees" to 5 = 

"totally disagrees") according to a set of predefined statements. Table 5 describes the statements the 

respondents rated (column four) and the associated factors the statements were intended to test 

(column two).  The statements have a mixed framing strategy. Column three describes whether the 

statement is positively or negatively framed. For the positively framed statements, low scores (that is, 

agreement) are believed to be better, while high scores (disagreement) are believed to be better for 

negative framed statements. 
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Table 6 presents the average ratings for each factor. The first column in Table 6 lists the different 

factors' by code. The two next columns show the estimation performance (divided into above or 

below 20% overrun), while the last column shows the difference between the groups. The average is 

calculated after removing the responses in "Don’t know" and "No response". 21 was the highest count 

removed for any factor. We report mean values instead of median values as we believe this gives a 

better picture of the dataset (no extreme values and fairly uniformly distributed values). 

The projects with large overruns differ most from the projects less overruns for 1) realism in plans 

and budgets, 2) project flexibility and 3) client's change of opinion. The clients' priority of the project 

is the only factor where there is almost no difference. 

 

Table 6 Factors connected with estimation performance 

 

Project outcome Less than 20% overrun More than Difference 

METH 3,58 3,90 -0,32 

REAL 2,74 3,99 -1,25 

GOAL 3,46 3,89 -0,43 

PRIO 4,24 4,25 -0,01 

RESO 3,92 3,42  0,50 

SKILL 3,26 3,55 -029 

COMM 3,34 3,85 -0,51 

STAB 4,25 3,77  0,48 

FLEX 3,07 3,68 -0,61 

REWO 3,15 2,63  0,52 

UNFO 3,82 3,37  0,45 

PARA 3,15 2,89  0,26 

LUCK 2,44 2,03  0,41 

 

5. Discussion of Results 
 

5.1 Do Clients Influence Estimation Accuracy?   
252 out of 300 software professionals (84%) mention at least one client factor that they considered to 

be a major contribution to estimation overrun. Similar, 211 out of 300 (70%) listed one or more client 

factors contributing to prevention of overruns. Also, the respondents' projects with the largest 
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overruns have worse average rating for all the rated factors (on their last completed projects), with the 

exception of "Client's priority of the project" which is virtually identical for both categories of 

projects. The importance of the client impact on estimation accuracy is further supported by related 

work (see Section 2.2.9).  

It seems obvious that clients can impact vendors' estimation accuracy, e.g. by frequently changing 

requirements. The results reported in this study, and in related work, suggest that clients are perceived 

by software professionals as major contributors to estimation overruns. But these studies  reports the 

perceptions of the respondents, and not objective facts, so the extent of clients' impact on vendors' 

estimation accuracy is unclear. There might be a number of reasons why respondents blame clients 

for overruns undeservedly (some of these reasons are discussed in the following section). 

 

5.2 How do Clients Impact Estimation Accuracy? 
The factors perceived as influencing estimation accuracy in this survey correspond well to factors 

reported in earlier surveys in the sense that at least one other study mention a category similar to each 

category identified in this survey as a major contributor to effort overruns (see Section 2.2.9). Still, 

even if there is a great deal of overlap between the surveys, none of them have provided the exact 

same list of factors causing overruns. These differences can probably be explained by the different 

focuses of the studies, terminology ambiguousness, the roles of the respondents, the method of 

analysis and the size differences in the samples.  

Almost all of the client factors perceived by the software professionals as influencing 

estimation accuracy are project specific and direct causes, and little focus is on more general and 

underlying causes (see Table 4). For instance, "requirement changes and new requirements" is 

perceived as important, but less focus is on why scope is increased (for instance, "business changes") 

or why this caused an overrun (for instance, "the project buffer was too small"). Studies by 

Procaccino et al. [9] and Jørgensen and Moløkken-Østvold [7] suggest that the role of the respondents 

influence type of answers. Both these studies have observed that project participants are likely to 

provide different reasons for estimation inaccuracy than managers do. Even if the underlying reasons 

might be most valuable, it is unrealistic to expect that the participants in a brief survey should report 

such reasons when asked open-ended questions.  

The perception of the factors that cause overruns corresponds to the perception of factors that 

prevent overruns in the sense that the same categories are suitable for grouping the respondents' 
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answers (see Table 4). However, there are some substantial differences in the weights the factors are 

given. While "requirement changes and new requirements" is perceived as the most frequent 

contributor to overruns, only 23 mentions this as a factor that prevents overruns. Similarly, 97 

mentions (lack of) "well defined requirements" as a factor causing failure, while only 50 mention it as 

a reason for success. The most important success factor ("availability of competent customers and 

capable decision makers ") mentioned rank third of the factors causing failure. A possible explanation 

for these differences is the human tendency towards biased self-assessment, i.e., "we made the project 

a success" while "they made the project a failure". In Verner et al. [8] more than half of the projects 

blamed clients for overruns, while only a small fragment credited the client for success. Several of the 

factors attributed to the client, such as client-vendor communication and integration and co-operation 

with 3rd party vendors, might in reality be factors mostly influenced by the vendor. An inherent 

limitation of this kind of surveys is that we only explore what the software professionals think and 

recall. It is, for instance, easier to note the presence of something than the absence. Issues, such as 

client-vendor communication, might happen at a level that is not visible to the respondents in our 

survey.   

Even if most of the perceived reasons for overruns are not directly tested in the connection 

between factors and estimation performance (see Table 6), the perceived reasons for overruns have 

related factors that rate worse for the projects with bad estimation performance. However, the 

frequency of the perceived factors does not correspond with the impact of the factors in the rating. 

The most frequent factor perceived as causing overruns is "requirement changes and new 

requirements". Even though the corresponding factor rates worse for projects with overruns than for 

projects without, the rating is no worse than for other factors corresponding to reasons that are much 

less frequently mentioned as contributing to success or overruns.  This effect is also found in Lederer 

and Prasad [10]  and in Jørgensen and Moløkken-Østvold [7]. 

It seems as if clients are perceived as impacting estimation accuracy in many ways. However, the 

results obtained in surveys will vary according to several factors, e.g., the questions asked (overrun 

prevention vs. contribution), who you ask (developers, managers, etc) and the method of analysis 

applied (statistical analysis vs. respondents' perceptions). Still, there seems to be a limited number of 

symptoms of troubled projects that point to client specific causes. These symptoms are: a) increased 

scope b) increased complexity c) waiting,  d) lack of control e) re-work f) lack of incentives.   
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5.3 What Can Clients do to Improve Vendors' Estimation Accuracy? 
Before any action is taken to change client behavior to improve estimation performance, it should be 

investigated whether there actually is an estimation accuracy problem that needs to be solved. For 

instance, there is no estimation problem if inaccuracy was caused by a deliberate choice (i.e., 

extended functionality to increase return of investment) or if it was caused by planned events that are 

unlikely to re-occur (i.e. organizational changes). However, in most cases, we believe, estimation 

inaccuracy is undesirable. If analysis shows that the troubled projects have been suffering from any of 

the symptoms described in Section 5.2, clients might be contributing to the inaccuracy. But the 

solution is rarely as simple as that the client should just stop doing whatever actions leading to the 

causes identified. In order to obtain sustainable improvements, we need to identify the underlying 

causes [16]. Example 1 illustrates how one of the most frequently mentioned client reason for overrun 

can have several different underlying causes.  

 

EXAMPLE 1: Let us assume that a company suffers from effort overruns in their software 

development projects, and that an analysis of the experience reports has identified that "frequent 

change requests during development" seems to be the most prominent factor causing problems. So, 

does this mean that the client should stop making change requests? In order to answer that question 

we need to understand why these change requests occur. Some possible answers are:  

1) The client tries to get more functionality than originally agreed. 

2) The original requirements were wrong and/or incomplete, so that the originally specified 

solution will have no or little value. 

3) Unexpected business changes demand changes to the solution. 

 

All the above mentioned reasons are possible causes for "frequent changes to the requirement 

specification". But they point to different underlying problems, and require different actions to 

eliminate. A possible solution for the first issue can be introduction of contracts that enforce better 

change management. The second and third issues require further analysis. Was it because insufficient 

time was spent on making the specification? Did the wrong people work on it? Was it impossible to 

know the requirements up front? In order to efficiently remove the problem, we need to understand 

the answer to these questions.  
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Another way to attack the problem of changing requirements would be to address the conditions 

that make the changes harmful. Table 6 shows that even if the projects that had large overruns 

generally rated worse on requirement stability, more than half of the successful projects (projects with 

overruns less than 20%) reported that they had unstable requirement A previous study by one of the 

authors [17] found that while the projects experience reports implied that one of the most important 

reasons for overruns were incomplete requirement specifications, comparisons of the requirement 

specification information and the estimation precision indicated the opposite! The reason for this 

counter intuitive result may have been that incomplete requirement specification typically meant 

more flexible deliveries. Therefore, understanding which circumstances make "changes to 

requirement specification" cause estimation overruns, is essential in order to improve the situation.  

Similar examples could easily be created for most of the factors perceived as causing overruns 

reported in our survey. Such examples illustrate the danger of relying on individuals' perceptions in 

estimation accuracy improvement initiatives. A consequence is that surveys on reasons for estimation 

inaccuracy, project success, overruns, etc. should solely be used as a starting point for further 

analysis. As discussed in Section 5.2, an estimation survey does not report an objective truth and the 

identified causes depend on several factors. Therefore, a first step in an estimation improvement 

initiative might be to investigate your own projects to determine which factors are relevant for your 

organization. This should be followed by an in-depth analysis, for instance by applying structured 

interviews and investigating project artifacts, to determine the underlying causes of the problem. It is 

important to note that such an analysis should investigate both the actions that cause problems, and 

the conditions that enable the problem to arise. Once such understanding is obtained, sustainable 

improvement can be made.   

 

6. Conclusion 
This study suggests that clients are perceived by software professionals as impacting estimation 

accuracy. In a survey of 300 software professionals, the respondents answered that the most common 

contributions to estimation inaccuracy by clients are frequently changing, and new, requirement along 

with the lack of well-defined requirements and the absence of competent customers and capable 

decision makers. Overruns are prevented when competent customers and capable decision makers are 

present, the project administration and steering is adequate and requirements are well-defined. 

However, the results of such surveys have limited value for an organization's estimation accuracy 
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initiatives since the factors identified in surveys typically are project specific and "direct" causes, and 

not the underlying causes necessary to eliminate the problem. Also, the survey results strongly 

depend on a number of factors such as the data collection approach, method of analysis and the 

framing of the questions. Despite these limitations, surveys on factors impacting estimation accuracy 

might be valuable as a starting point for more thorough analysis of factors impacting estimation 

accuracy.  
 

References 

 

1. Moløkken, K. and M. Jørgensen. A review of software surveys on software effort estimation. in International Symposium on 

Empirical Software Engineering. 2003. Rome, Italy: Simula Res. Lab. Lysaker Norway. 

2. Glass, R., Failure Is Looking More like Success These Days. IEEE Software, 2002. January/February: p. 103-104. 

3. Jørgensen, M. and S. Grimstad. Over-optimism in Software Development Projects: “The winner’s curse". in 

CONIELECOMP. 2005. Puebla, Mexico. 

4. Moløkken-Østvold, K., et al. Management of Public Software Projects: Avoiding Overruns. in Hawaiian International 

Conference on Business. 2005. Hawaii, USA: www.hicbusiness.org. 

5. Kitchenham, B., Procedures for Performing Systematic Reviews, in Keele University Technical Report TR/SE-0401. 2004, 

Keele University: Keele. 

6. Brooks, F., The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary Edition. 1995: Addison-Wesley 

Professional. 

7. Jørgensen, M. and K. Moløkken-Østvold, Reasons for Software Effort Estimation Error: Impact of Respondent Role, 

Information Collection Approach, and Data Analysis Method. IEEE Transactions on Software Engineering, 2004. 30(12): p. 

993-1007. 

8. Verner, J.M., S.P. Overmyer, and K.W. McCain, In the 25 years since The Mythical Man-Month what have we learned about 

project management? Information and Software Technology, 1999. 41: p. 1021-1026. 

9. Procaccino, J.D., et al., Case Study: factors for early prediction of software development success. Information and Software 

Technology, 2002. 44: p. 53-62. 

10. Lederer, A.L. and J. Prasad, Causes of Inaccurate Software Development Cost Estimates. Journal of Systems and Software, 

1995. 31: p. 125-134. 

11. van Genuchten, M., Why is Software Late? An Empirical Study of Reasons for Delay in Software Development. IEEE 

Transactions on Software Engineering, 1991. 17(6). 

12. Jiang, J. and G. Klein, Software development risks to project effectiveness. The Journal of Systems and Software, 2000. 52: p. 

3-10. 

13. Ropponen, J. and K. Lyytinen, Components of Software Development Risk: How to Address them? A project Manager 

Survey. IEEE Transactions on Software Engineering, 2000. 26(2). 

14. Subramanian, G. and S. Breslawski, An Empirical Analysis of Software Effort Estimate Alterations. Journal of Systems and 

Software, 1995. 31(2): p. 135-141. 

15. Grimstad, S., M. Jørgensen, and K. Moløkken-Østvold, Software Estimation Terminology - The Tower of Babel. submitted to 

Information and Software Technology, 2005. 

 102



16. Gano, D., V. Lee, and V. Mitchell, Apollo Root Cause Analysis - A New Way Of Thinking. 1999: Apollonian Pubns. 

17. Jørgensen, M., L. Moen, and N. Løvstad. Combining Quantitative Software Development Cost Estimation Precision Data 

with Qualitative Data from Project Experience Reports at Ericsson Design Center in Norway. in Conference on Empirical 

Assessment in Software Engineering. 2002. Keele, England: Keele University. 

 103



 104



 

Paper IV: 

Software Effort Estimation Terminology:   

The Tower of Babel 
 

 
Stein Grimstad1,2, Magne Jørgensen1 and Kjetil Moløkken-Østvold1,2 

1Simula Research Laboratory 
2University of Oslo 

 

 

Abstract 
It is well documented that the software industry suffers from frequent cost overruns. A contributing 

factor is, we believe, the imprecise estimation terminology in use. A lack of clarity and precision in 

the use of estimation terms reduces the interpretability of estimation accuracy results, makes the 

communication of estimates difficult, and lowers the learning possibilities. This paper reports on a 

structured review of typical software effort estimation terminology in software engineering textbooks 

and software estimation research papers. The review provides evidence that the term 'effort estimate' 

is frequently used without sufficient clarification of its meaning, and that estimation accuracy is often 

evaluated without ensuring that the estimated and the actual effort are comparable. Guidelines are 

suggested on how to reduce this lack of clarity and precision in terminology. 
 

 

1. Introduction 
Software development effort estimates are the basis for project bidding, budgeting and planning. 

These are critical practices in the software industry, because poor budgeting and planning often has 

dramatic consequences. When budgets and plans are too pessimistic, business opportunities can be 

lost, while over-optimism may be followed by significant losses. The importance of accurate 

estimates is documented in a wide range of studies. For instance, the Standish Group [24] concludes 
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that reliable estimation is among the top ten most important success factors in software projects. It is 

therefore unfortunate that, as indicated in a recent review of estimation surveys [41], there has been 

little improvement in software cost estimation accuracy over the last 20 years. We believe that one 

reason for this lack of improvement is the imprecise use of terminology for effort estimation. The 

following two case stories indicate that proper communication, interpretation and improvement of 

estimation accuracy measurements may be a problem when there is no precise use of terms related to 

estimation. This problem motivates the review and guidelines provided in this paper. 

Case story 1: In 2003, two of the authors performed a survey on project estimation in Norwegian 

software companies [43]. The goal was to obtain an in-depth understanding of estimation practice and 

to examine factors that affect the accuracy of effort estimation. The basis for the measurement of 

estimation accuracy was a comparison of the actual use of effort with the estimated most likely effort 

provided in the planning stage of the project, i.e., the amount of effort the contractor believes that the 

project will require, regardless of the price to the customer or the budget. An interesting result was the 

observation that government projects had, on average, significantly higher deviations between 

estimated most likely efforts and actual efforts than private projects [42]. This observation made the 

headlines in Norway’s largest morning newspaper.  The day after the results were presented, the front 

page of the newspaper stated ‘Yearly overruns of 6 billions [Norwegian Kroner] in governmental IT-

projects’[18]. The debate that followed was heated, and culminated in the research results being 

discussed in the Norwegian parliament. In particular, there were members of parliament who saw our 

results as evidence of a waste of government money on IT projects. However, our results did not say 

anything about the customers’ budget overruns or losses. Neither had we studied the software 

providers’ budget overruns or losses. What we did study was the overruns related to what the 

software providers believed was the most likely effort of a project. The newspaper article, which was 

the basis for the debate, did not point this out, i.e., we had failed to communicate the difference 

between overruns of most likely effort and overruns of budgeted costs. Budgeted costs typically 

include a risk buffer added to the most likely effort. The cost overrun we found through the survey 

was therefore probably much higher than the software organizations’ and the customers’ budget 

overrun. A consequence of the misinterpretation of the term ‘cost estimate’ was that the public 

discussion focused mainly on whether one should believe the high cost overrun number or not, and 

much less on how government projects could be better managed, i.e., on improvement of their role as 

software customers. 
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Case story 2: Some time ago, one of the authors was hired as a solution architect of a software 

project. It was a high risk project for a number of reasons: the functionality to be developed was 

complex, several stakeholders with conflicting goals were involved and a non-extendable deadline 

was set. The initial analysis suggested that the project would involve about 40 people and changes 

had to be made to five systems, all in operation. Our schedule and effort estimates suggested that we 

could probably deliver before the deadline, but with small margins. Not surprisingly, we ran into 

trouble during development and the changes to one of the systems were two weeks delayed. The 

changes to this system were on the project’s critical path and the entire project was therefore two 

weeks delayed. Moving the deadline was, of course, unacceptable to the customer because this would 

ruin the announced launch. However, we did manage to deliver all functionality on time and on 

budget. We did so in the same way that many other software development teams do in similar 

situations; we reduced the amount of testing. The project went into operation, and luckily only minor 

failures occurred. How accurate were our estimates? From the outside, i.e., as would have been 

observed in most estimation surveys, we had only minor effort estimation error and no schedule 

overrun. In reality, however, the project would have had greater estimation error and a time overrun if 

the testing process had been completed as planned, i.e., with the promised level of quality. This case 

story shows that common ways of measuring effort estimation accuracy may give a misleading 

picture of the real estimation accuracy and hence a misleading picture of the need for improvement in 

the process of estimation and project management. 

We present related work in Section 2 of this paper. Section 3 further elaborates on the 

consequences of imprecise use of effort estimation terminology. The consequences are illustrated by 

estimation error analyses of software projects in a Norwegian software development organization. In 

Section 4 we review the actual use of effort estimation terminology in popular software engineering 

textbooks and software estimation research papers. Based on the related work in Section 2, the 

discussion in Section 3 and the review in Section 4 we provide, in Section 5, recommendations aimed 

at improving the use of software effort estimation terminology, thus enabling improvement in the 

process of estimation. Section 6 concludes. 

 

2. Related work 
The problems of imprecise terminology for software cost estimation have been addressed by several 

software engineering researchers. Table 1 lists a number of research papers and textbooks that suggest 
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there may be problems caused by the imprecise use of software estimation terminology. However, we 

have been unable to find any study with the same goal as this paper, i.e., to documenting the 

importance and the severity of the terminology problem through a structured review of popular 

software engineering textbooks and a representative set of estimation research papers.  

 

Table 1 Related Work 

Author Examples of Estimation Terminology Problems Addressed 

Kitchenham [33] Kitchenham recommends that before you improve estimation processes, you should make sure that you do not have 

a management problem. She identifies lack of understanding of the probabilistic nature of estimates; confusing 

plans, costs and estimates; and not giving sufficient time to the estimation process as specific management 

problems. 

DeMarco and Lister [14] The authors argue that schedule flaws can occur when no distinction is made between the most optimistic estimate 

(that with virtually no probability of success), the goal (that which the project aims for), the estimate (the most 

likely outcome) and the schedule (what the project commits to). 

DeMarco [13] DeMarco points out that an estimate is a prediction based on a probabilistic assessment, and that an estimate should 

be the most likely value accompanied by upper and lower bounds. He says lack of experience is one of the 

important reasons for poor estimation and proposes that a separate metrics group should be responsible for data 

collection and estimation. 

Boehm and Fairley [7] Boehm and Fairly state two important points about software estimation: 1) It is best to understand the background 

of an estimate before using it and, 2) It is best to orientate the estimation approach to the use that is going to be 

made of the estimate.  

Edwards and Moores [15] The authors show that estimates can be a rough guide to the cost of a project as well as applying numbers to the 

detailed project plan. These meanings of estimates are different with respect to uncertainty, usage and motivation. 

They argue that the lack of clear distinction between these two types of estimates is why estimation tools are not 

commonly used in the industry. 

Coombs [11] Coombs explains that mixing price, cost and realistic estimates together with reduced functionality gives a false 

impression of estimation accuracy. He claims that this happens because most projects are underestimated to begin 

with and the only option left for the project managers is to axe the requirements and use both the contingency 

allowance and profit in order to meet the budget.    

Jørgensen [25] The author explains, through comparison with vacation cost estimation and by an industrial case study, why cost 

estimates with similar accuracy can hide huge differences in estimation performance. The paper exemplifies the 

conflicting goals of different types of estimates; ‘most-likely software development cost’, ‘risk-minded planned 

development cost’ and ‘cost-reducing planned development costs’. 
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3. The Importance of Precise Effort Estimation Terminology 
Obviously, the use of more precise or standardized terminology is not sufficient to solve most of the 

problems inherent in effort estimation. However, we believe that a necessary condition for sustainable 

improvement is the precise use of important terms, because lack of precision leads easily to the 

following: 

 

• A mix of processes with different purposes, e.g., a mix of processes with a focus on realism 

(estimation of most likely effort), a focus on efficient development work (estimation of planned 

effort), a focus on avoidance of budget overrun (decisions on budgeted effort), and a focus on 

winning a bid (estimation of price-to-win). The lack of separation between these processes have 

been found to reduce the realism of estimation of most likely effort [10, 12, 32].  

• Comparison of estimation error of different projects when they are not really comparable. For 

example, one project may have based their estimation error measurement on the difference 

between planned effort and actual effort, while another project may have based theirs on the 

difference between most likely effort and actual effort. 

• Survey results that are difficult to interpret. If you want to evaluate your own estimation 

performance against those presented in an estimation survey, this is virtually impossible if the 

survey results are based on an unknown mixture of estimates of different types and different sizes 

of contingency buffers. 

 

The consequences are improper evaluation, comparison and reporting of effort estimation 

performance, including a lower ability to learn from experience [26, 30].  

Recent observations of software projects in a Norwegian software development organization 

further illustrate these consequences. Over a period of two years we logged estimation information of 

several software projects in that company as part of a study on reasons for estimation errors (a subset 

of the data is presented in [29]). As a part of the logging we requested that the person responsible for 

the estimation documented the estimate of ‘most likely effort’. An analysis of the description of how 

the estimate of ‘most likely effort’ was derived showed, however, a wide variety of interpretations. In 

most cases, the estimate was not of most likely effort. Instead, the effort estimate was typically 

described as most likely effort plus a risk buffer of varying size, i.e., it was interpreted as the planned 
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or the budgeted effort, or was sometimes described as the effort (derived from the price) agreed with 

the customer. A consequence of the imprecise use of ‘effort estimate’ in the studied organization was 

that it was difficult to compare and evaluate the estimation accuracy of different projects. We 

compared the subset of projects that we assessed to contain effort estimates of ‘most likely effort’ 

with those we assessed to contain effort estimates of a type used as a basis for price to customer or 

planned effort, i.e., where a risk buffer typically was added to the most likely effort. The remaining 

projects were omitted from the comparison because it was difficult to classify the types of estimate 

used.  The estimates of most likely effort had, on average, an effort overrun of 11%, while the 

estimates including a risk buffer on average used 8% less effort than estimated. From the description 

of the estimation process it seems that a typical risk buffer was 10-20% of most likely effort. When 

removing the specified risk buffer from the estimates that contained them, we found that they had, on 

average, almost the same estimation accuracy (about 10% overrun) as the estimates described as 

‘most likely effort’. Finding the average estimation accuracy of all projects, without adjustments, 

would be like adding ‘apples and oranges’. 

In the studied organization we also found it necessary to adjust the actual effort for the decreases 

and increases in delivered functionality to enable a proper interpretation. Several of the projects had 

increases or decreases in functionality of more than 10%. In most cases this adjustment led to better 

estimation accuracy; many estimates of most likely effort were accurate, but looked inaccurate 

because of added or removed functionality. For example, a project went from 50% effort overrun to 

10% overrun when we adjusted for the increase in functionality. Again, without this adjustment a 

comparison of estimation accuracy would give a misleading picture of the estimation ability in many 

of the projects. 

We have logged similar estimation information for other organizations and believe that this is a 

common pattern [28]. The results are further supported by the survey described in the first section of 

this paper [43], which indicates, for instance, that the separation between price and most likely effort 

is blurred in many organizations.   

Lack of precise terminology for estimation may hinder the improvement of estimation processes. It 

is, for example, difficult to determine whether estimation errors are caused by poor estimation ability, 

poor risk analysis, poor project management, or something else, when a clear estimation terminology 

is absent. 
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4. A Review of Textbooks and Previous Research 
 

4.1. Design of Review Process 
In order to examine possible reasons for the lack of precise estimation terminology in the software 

industry, we reviewed the actual use of estimation terminology in a representative set of estimation 

research papers and the most popular software engineering textbooks. The motivation for this 

selection is that we believe these are the publications that have the most influence on the estimation 

terminology used by software professionals. The review focuses on the following two questions 

derived from the software cost estimation terminology problems discussed in the previous sections: 

 

• Q1: Is the term ‘effort estimate’ precisely defined?  

• Q2: When evaluating estimation accuracy, are the estimates and the actual efforts 

comparable?  

 

In order to conduct the review in a fair and auditable manner, the review design is based on the 

guidelines for systematic reviews proposed by Kitchenham [34]. Note that the review design deviates 

somewhat from these guidelines. The main reason for the deviations is that we aim at describing 

'typical practices', not 'best practices' or 'all practices', regarding use of estimation terminology. 

Section 4.2 describes how the reviewed material was selected, while Section 4.3 explains how the 

review questions (Q1 and Q2) were assessed for the reviewed material. The results of the review are 

presented in Section 4.4. The validity of the review is discussed in Section 4.5, and Section 4.6 

provides a general discussion of the results.     

 

4.2. Selection of Reviewed Material 
We used different approaches to select textbooks and research papers. As we aimed at selecting 

textbooks that address software cost estimation and are among those most often read by software 

professionals, we targeted books used by universities in lecturing and books that software 

professionals read. For research papers, we consider precise estimation terminology to be most 

important for papers that report on estimation accuracy. Therefore, we aimed at selecting a 
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representative sample of research papers in journals and conferences that report on software cost 

estimation accuracy. 

Three different information sources were used to identify the literature. Lecture books were found 

by using Google to search the internet using the search string 'software engineering course books'.  

We then manually investigated the first 100 URLs that appeared relevant, and counted the frequency 

of each textbook used in university courses on software engineering. The four most popular textbooks 

were included in the review. 

Books that software professionals are most likely to read were selected by using Amazon's list of 

the top 100 bestselling computer science books. Books were extracted from the bestselling list by 

browsing the list manually. For a book to be included in the review, we had to regard it as likely that 

the book addresses software cost estimation in particular. These judgments were based on the title and 

the abstract of the book. The assessments were done by two of the authors, independently of each 

other. When there were disagreements, the book were included. If the same author had multiple books 

that appeared to meet the selection criteria, only the most recent were selected. An examination of the 

books revealed that three of the books did not include any sections on software cost estimation. These 

three books were excluded from the review. 

Research papers were selected from the BESTweb library (available at www.simula.no/BESTweb). 

BESTweb is an online library of estimation papers that claims to include nearly all journal papers and 

a large proportion of the conference papers on software cost estimation. The journal papers in 

BESTweb were selected by manually scanning potentially relevant journals, while conference papers 

were identified by a comprehensive search in the INSPEC-library. A full description of the BESTweb 

library will appear in a forthcoming paper by one of the authors. At the time of the review, the 

BESTweb library contained 963 estimation relevant articles. We selected papers to include in the 

review by reading all the abstracts, and then the full versions of all the papers that appeared to meet 

all inclusion criteria: 

• Deal with estimates of software development effort, schedule, budget or cost or with project 

success/failure/performance. 

• Report on empirical collected estimates from real projects (not experiments or student projects). 

• Report on estimates made up-front. This excludes, for example, all history-based evaluations of 

formal estimation models. 

• Report on estimation accuracy.  
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• The paper was the most recent paper by the main author that met the above criteria. This 

criterion applied to several of the authors (for instance, Lederer and Prasad had several older papers 

excluded).  

 

This selection procedure has some limitations, e.g., it is not a review of all relevant estimation papers 

and the initial selection of papers by title and abstract only may lead to exclusion of papers that 

otherwise meet the inclusion criteria. For the purpose of documenting typical estimation terminology 

practice, however, the selection process is, in our opinion, acceptable. 

The searches for lecture books and bestselling books were conducted on the 23rd of February 2005. 

Amazon's best selling lists report those books that currently have the most sales. Similarly, most of 

the web pages of university courses in software engineering were recently updated.  The search for 

research papers was conducted on the 19th of February. BESTweb covers articles published up to 

April 2004. The selection of reviewed lecture books and research articles were done by one of the 

authors, while two of the authors selected bestselling books. 

 

4.3. Assessment of the Research Questions (Data Extraction) 
The first review question (Q1: Is the term ‘effort estimate’ precisely defined?) is evaluated to have 

been answered satisfactorily if there is a definition of 'effort estimate' in the reviewed material that 

clarifies whether the intended meaning of the term is an estimate of 'most likely effort', 'budgeted 

effort', 'price' or something else. The question is also deemed to have been answered satisfactorily if, 

even if there is no explicit definition, the terminology in use makes a clear and consistent distinction 

between estimates made for different purposes.  

The second review question (Q2: When evaluating estimation accuracy, are the estimates and the 

actual efforts comparable?)  is evaluated to have been answered satisfactorily if the comparability of 

estimated effort and actual effort is discussed, or actions to ensure comparability are taken in 

situations when there may be significant differences in functionality or quality between the estimated 

and the actual solution. For example, comparable values can be secured either through adjustments of 

actual effort or removal of projects in cases where estimated and actual effort is not comparable.  

Assessment of the research questions was conducted by two of the authors, independently of each 

other. When a question was not a topic addressed in a textbook or a paper, we used the value ‘na’ (not 
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addressed). There were only minor disagreements to be resolved. Disagreements were resolved by 

examining each controversial issue separately. We reached an agreement in all the cases. 

 

4.4. Review Results 
The reviewed material and our evaluations of their use of estimation terminology are presented in 

Table 2 (textbooks) and Table 3 (research papers). In the tables, the first column identifies the 

reviewed publication, the second and third columns report the type of publication and the fourth and 

fifth columns include our answers of the review questions (Q1 and Q2).  

The results of the review show that the term 'effort estimate' is rarely used in a consistent manner 

(Q1) neither in textbooks nor research papers.  Only one [39] out of the eight books and two [27, 35] 

out of the 23 research papers use estimation related  terminology in a way we find satisfying 

according to the criteria described in Section 4.3. However, a few of the texts partly comply to the 

criteria. For instance, in [22] there is a distinction between estimates for pricing and estimates for 

planning, but no distinction between 'planned effort' and 'most likely effort'.  For the majority of the 

reviewed material we were unable to tell whether the term 'effort estimate' referred to an estimate of  

'most likely effort', 'budgeted effort', 'price' or something else.  

Whether estimated effort is comparable to actual effort when evaluating estimation accuracy (Q2) 

is a topic in two of the textbooks [21, 39]. They both include a brief discussion of problems related to 

estimation accuracy evaluation, but neither of them suggest guidelines or provide any example of how 

the problems can be solved in practice. In the research papers, Q2 is addressed in nine of the papers 

[1, 4-6, 22, 35, 40, 47, 51]. They handle the incomparability in a somewhat different manners: Some 

studies discuss the consequence of incomparability or assess it to be ignorable/not relevant [1, 4, 5, 

40, 47], some studies remove data points [22, 35], while one study avoids to calculate estimation 

accuracy at all due to comparison problems [51]. Only one of the studies attempts to adjust the actual 

effort to be comparable to the original estimate [6].  
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Table 2 Textbooks 

Publication  Lecture book Bestselling book Q1 Q2 

Brooks [9] Y Y N NA 

Heldman [21] N Y N Y 

Larman [36] Y N N NA 

McConnell [39] N Y Y Y 

Pressman [44] Y Y N NA 

Schwaber and Beedle [46] N Y N NA 

Sommerville [48] Y N N NA 

Sponsky [49] N Y N NA 

 

4.5. Threats to Validity 
We assess the major threats to validity to be related to: 1) Biased selection of textbooks or research 

papers, 2) Biased review of the textbooks or research papers. 

 

Biased Selection: The bestselling list at Amazon and the first 100 hits on Internet is a sample 

based on current popularity and not, for example, quality. This type of sample was intended as a 

means to review typical practice, but it does give a poor picture of 'best practice' among textbooks. 

We acknowledge that there are textbooks with rather precise estimation terminology. Another 

limitation to the review is that it only includes books and articles that address software cost 

estimation. This means that related material, such as general project management and forecasting 

literature, where a more precise terminology might be present, was not reviewed. However, our 

impression is that such literature is not much read by most software professionals.  

 

Biased Review: The review was conducted by two reviewers, independently of each other. 

However, these reviewers are from the same research group and so they are not totally independent, 

and other reviewers may answer the questions differently. In addition, some of the reviews may be 

highly subjective. Despite these potential sources of bias, we believe that the main conclusion is quite 

robust: most textbooks and research papers on estimation are not based on a precise use of estimation 

terminology.  
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Table 3 Research Papers 

Publication   Conference paper Journal paper Q1 Q2 

Abdel-Hamid et. al. [1] N Y N Y 

Barki et. al. [3] N Y N N 

Barry et. al. [4] N Y N Y 

Bergeron and St-Arnaud [5] N Y N Y 

Berry and Schoenborn [6] Y N N Y 

Bootsma [8] Y N N N 

Fleck [16] N Y N N 

Gray et. al. [17] Y N N N 

Haynes and Henderson-Sellers [19] N Y N N 

Heemstra and Kusters [20] N Y N N 

Hill et. al. [22] N Y N Y 

Jenkins et. al. [23] N Y N N 

Jørgensen [27] N Y Y N 

Kamatar and Hayes [31] N Y N N 

Kitchenham et. al. [35] N Y Y Y 

Lederer and Prasad [37] N Y N N 

Lind and Sulek [38] N Y N N 

Mizuno et. al. [40] Y N N Y 

Moløkken and Jørgensen [41] Y N N N 

Ropponen and Lyytinen [45] N Y N N 

Shepperd and Cartwright [47] N Y N Y 

Subramanian and Breslawski [50] N Y N N 

Taff et. al. [51] N Y N Y 

 

 

4.6. Discussion of Results 
The previous sections suggest that an important obstacle for estimation improvement is imprecise 

estimation terminology and that a reason for the lack of precise use of estimation terminology is the 

lack of precise terminology in software textbooks and research papers. However, it might also be that 
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the direction of cause and effect is reversed, as well. It is difficult to survey estimation practice and 

write good estimation guidelines when important estimation terms are vague and used inconsistently 

by software professionals. Consequently, attempts to improve the use of estimation terminology 

should be made concurrently in both industry practice and the writing of textbooks and research 

papers.  

There may be different motivations for improving the precision of estimate terminology. Software 

organizations may wish to improve their use of estimation terminology to avoid misunderstandings, 

to increase the realism in the estimates, and to facilitate learning from experience. Software 

researchers may wish to develop precise terminology to increase the validity of their research results, 

(e.g., when comparing two formal estimation models), and to suggest better estimation guidelines for 

software professionals.  

 

Since several researchers have pointed out the importance of a precise software estimation 

terminology, e.g., DeMarco [13] as early as in 1982, it is somewhat surprising that software 

estimation has been conducted out for so many years without greater attention being paid to the use of 

precise terminology. There are a number of possible reasons for this lack of progress: 

• Authors of the estimation literature seem to take a “deterministic” (estimates as one single 

effort value) instead of a “probabilistic” (estimates as a combination of effort value and 

probability) view on effort estimation. A probabilistic view means here that ‘most likely 

effort’, ‘planned effort’, ‘budgeted effort’, etc., are values (with different probabilities of 

being exceeded by actual effort) on an effort probability distribution. Figure 1 illustrates how 

estimates of most likely effort (the effort with the highest probability) and planned effort 

(typically, most likely effort plus a contingency allowance) are values on a probability 

distribution of effort. Without a probabilistic basis of effort estimation terminology a 

separation of most likely, planned, and budgeted effort may be difficult to describe. The 

strong textbook focus on parametric cost estimation models, which typically deliver only a 

single effort value, may be one reason for the adoption of a deterministic view. 

• Software organizations do not regard estimation as a separate activity, but as an integrated part 

of project planning, project pricing and project budgeting. As pointed out earlier, mixing 

processes may result in the mixing of terminology.  
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• Software organizations typically do not collect the data necessary to validate and adjust the 

actual effort to make it comparable with the estimated effort. Our experience is that most 

organizations have an unformed view on how to assess estimation accuracy measurements and 

do not allocate any resources to the in-depth analysis of estimation accuracy data across 

projects [30].   

 

Figure 1 Example of an Effort Probability Distribution 
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5. Guidelines for Estimation Terminology 
Our review motivates a change towards a more proper software cost estimation terminology among 

software professionals and researchers. Proper estimation terminology is a complex topic and it is 

beyond the scope of this paper to provide suggestions for a complete terminology. We propose, 

however, two simple guidelines, the following of which is, we believe, essential for improved 

software estimation processes. The guidelines are aimed at all users of software cost estimation 

terminology, including authors, practitioners, researchers and reviewers. The guidelines are based on 

our own experience and recommendations made in the text books and papers summarized in Table 1. 
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Guideline 1: Do not mix estimation of most likely effort with planning, budgeting or pricing. 

 

Implications of the guideline for researchers and authors of textbooks: 

• Different terms should be used for different concepts. In particular, a distinction should be 

made between estimated ‘most likely effort’, ‘planned effort’ and ‘budgeted effort’.  

• When conducting surveys or logging estimation information, it must not be assumed that the 

terminology used is understood, even if it is defined precisely. In-depth studies and 

triangulation may be needed to ensure that all the data are based on the same understanding of 

the estimation terminology used.  

 

Implications of the guideline for practitioners: 

• Different terms should be used for different concepts. In particular, a distinction should be 

made between estimated ‘most likely effort’, ‘planned effort’ and ‘budgeted effort’. 

• The estimation of most likely effort should be performed as an independent activity and 

separated from planning, budgeting and pricing. People in charge of bidding should, for 

example, not be in charge of the estimation of most likely effort, to ensure that pricing and 

realism are not mixed. Planning tools should not be used as estimation tools, or, at least, used 

with great care to avoid a mixing of concerns. 

 

 

Guideline 2: When assessing estimation accuracy, make sure that the estimated and the actual 

effort are comparable. 

 

Implications of the guideline for researchers: 

• The actual efforts should be adjusted so that they are comparable to the estimated effort with 

respect to technical and functional parameters before the estimation accuracy is calculated.  If 

functional and quality requirements are not available, the project plan should be investigated 

and interviews should be used to identify changes in scope and/or quality. If estimates are of 

types other than most likely effort estimates, they should be transformed to most likely 

estimates before the accuracy is calculated.  
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• When estimates cannot be reliably transformed to values that are comparable to the actual 

result, great care should be taken when using these results, or the projects for which such 

transformation cannot be performed should be removed from the data set. 

 

Implications of the guideline for practitioners: 

• The scope and other assumptions of the estimate of most likely effort should be recorded. The 

version of the requirement specification, and other documents that the estimate of most likely 

effort is based on, should be specified. 

• Deviation from estimated scope, quality, and development process should be recorded. 

 

The first of the case stories in Section 1 presents an example of how violation of Guideline 1 

(estimates of most likely effort not clearly separated from budgeted effort) resulted in a public debate 

where a research report on overruns of most likely estimates was mistakenly used as evidence of 

governmental waste of money. An example of the second guideline's importance is presented in the 

case study described in Section 3. This case study shows how violation of Guideline 2, (no 

adjustment of estimation accuracy when the estimated and the actual solution differs), would lead to 

unfair  evaluation of estimation ability. More comprehensive estimation terminology guidelines can 

be found in [2, 26, 33]. 

 

6. Summary 
Effort and schedule overruns are serious problems in the software industry. In this paper we argue 

that the lack of a precise software effort estimation terminology is an important obstacle for the 

improvement of estimation accuracy.  We reviewed the currently most popular software textbooks 

and a representative set of software estimation research papers and found systematic shortcomings in 

use of estimation terminology. For example, estimates of most likely effort are frequently mixed with 

planned effort, budgets and price. In addition, effort estimation accuracy is frequently measured 

without adjustments being made for differences in the scope and/or quality assumed when estimating 

the effort and the system actually implemented. 

In order to improve effort estimation accuracy, a more precise terminology for software effort 

estimation is needed. We provide two simple guidelines for this purpose: 1) Do not mix estimation of 
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most likely effort with planning, budgeting or pricing, and 2) When assessing estimation accuracy, 

ensure that the estimate and the actual effort are comparable. Although these guidelines are not 

innovative and might seem obvious, they are nevertheless worth stressing. As this review points out, 

they are frequently violated.  
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Abstract 

Many software companies track and analyze project performance by measuring cost estimation accuracy. 

A high estimation error is frequently interpreted as poor estimation skills. This is not necessarily a correct 

interpretation. High estimation error can also be a result of other factors, such as high estimation 

complexity and insufficient cost control of the project. Through a real-life example we illustrate how the 

lack of proper estimation error analysis technique can bias analyses of cost estimation accuracy and lead 

to wrong conclusions. Further, we examine a selection of cost estimation studies, and show that they 

frequently do not take the necessary actions to ensure meaningful interpretations of estimation error data. 

Motivated by these results, we propose a general framework that, we believe, will improve analyses of 

software cost estimation error. 

  

1. Introduction 
Software cost estimation is an essential part of most software development [7, 8, 22]. Unfortunately, 

software development cost estimation is difficult and inaccurate. In spite of the availability of many 

estimation methods and guidelines, e.g., [5, 12, 20], there is still a need for improvement. One means of 

reducing cost estimation error is through analysis of cost estimation error, e.g., through the identification 

of estimation processes that lead to more accurate estimates. Cost estimation error is relatively easy to 

measure. Unfortunately, as shown in this paper, the measured data can be hard to interpret properly. If we 
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do not know what we measure, there may be little to learn from estimation error analysis. By contrast, 

proper measurement and analyses of estimation error may have the following beneficial results: 

• identification of estimation processes resulting in systematic lowering of estimation errors 

• improved evaluation and training of people responsible for estimation 

• identification of (controllable and not controllable) factors that lead to  estimation error, which will 

enable improved risk management 

The goal of this paper is to show that commonly used estimation error analysis processes can lead to 

wrong conclusions, to document an insufficient focus on removing the effect from non-studied variable in 

estimation error analyses, and to propose a framework for improved analysis of software cost estimation 

error. 

The paper is organized as follows: Section 2 describes a real-world example where a straight-forward 

analysis of estimation error led to misleading conclusions and our attempt to improve the analysis. Section 

3 examines estimation error analyses in software cost estimation studies. Section 4 presents a framework 

for analysis of estimation error, and Section 5 summarizes.  

 

2. A Real-World Example 
 

2.1. The Company 
Software development company X had estimated the cost of their projects in two ways; some had been 

estimated by applying a self-developed estimation model and some by expert estimation. The estimation 

model was based on counting and classifying program elements, e.g., GUI-elements and program 

components. Each program element was classified according to size (very small, small, medium, large, 

very large) and technical complexity (very low, low, medium, high, very high). The estimation model 

suggested the required work-hours for the programming and unit test of each program element based on 

input of size and complexity. The estimation model had effort values calibrated to different types of 

development project. Since the classification of size and complexity is expert judgment-based, the 

estimation model may be characterized as a combination of model and expert judgment. Despite the 

availability of this estimation model, most projects were estimated by unsupported expert judgment-based 

estimation. A typical expert estimation-based process was to break the project work into activities and to 

estimate the effort of each activity, i.e., bottom-up, expert judgment-based estimation. 
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After some time, the company wanted to know whether the estimation performance was better with the 

model or with the expert estimation.  The goal of the estimation error analysis was to compare the 

performance of the self-developed estimation model with that of expert estimation.  

 

2.2 The Straight-Forward Analysis 
To compare the performance of the model and the expert judgment-based effort estimates, the company 

collected data from 19 completed projects. The company found that the mean estimation error was 18% 

for the expert judgment-based estimates, yet only 7% for the model-based ones. The difference was 

statistically significant (t-test of difference in mean values gave p=0.04). The estimation error data are 

displayed in Figure 1, which clearly suggests that more use of model-based estimation would lead to lower 

estimation error. 

 

Figure 1: Estimation Error Data

This straight-forward analysis of real-world estimation error data tells a convincing story about the 

benefits of using the estimation model. Unfortunately, as we discovered as part of a larger study of the 

organization's estimation performance, this convincing story is probably flawed. 

 

2.3 Our Attempt to Improve the Analysis 
The analysis in Section 2.2 is what could have happened if a typical data collection and analysis process 

had been followed. This section describes how we conducted the data collection and the analysis and how 

this changes the conclusion. 

Our attempt to improve the estimation error analysis started with an examination of the implications of 

the goal of the analysis. The general goal of the analysis was to get more knowledge about the estimation 

ability (performance) of two different categories of estimation method: the estimation model and the 

Expert Model

0%

10% 
20% 
30% 
40% 
50% 

Estimation method

(means are indicated by lines)

E sti
ma
ti
on 
er
ro
r

 127



expert estimation. Clarifying the goal, we found that the estimation accuracy of the smallest projects, here 

defined as projects with less than 100 work-hours, was not essential for the organization and they should, 

consequently, be excluded from the analysis.  Similarly, very large projects were excluded from the 

analysis for two reasons: (i) they were considered to be substantially different from the other projects with 

respect to estimation complexity, and (ii) there were too few to be analyzed by statistical means. The factor 

to be analyzed was, consequently, the relative estimation performance of two estimation methods for 

medium-size (between 100 and 5000 work-hours) projects. 

From previous experience we knew that there might be systematic method use biases with respect to 

when formal estimation models and expert estimation are used. In particular, we anticipated that: 

• Early estimates based on limited information would usually be based on expert estimation, because 

experts are better able to cope with incomplete data and non-standard data formats than the model. 

• The calibration of the formal estimation model required data from similar projects. This means that 

expert estimation may have been the only possible option for projects when the company had few similar 

projects. 

In addition, we decided to collect data related to the following factors that could potentially bias the 

comparison of the estimation error of the model and the expert judgment: 

• Difference between estimated and actual functionality. 

• Unusual reasons for estimation error. 

• Differences in the project's priorities on cost control. 

 

Other differences, e.g., difference in the level of estimation skill between users of estimation models and 

expert estimation, were assumed to be small or unlikely to be more systematically associated with one 

estimation method than the other. We assumed, based on information about the experience of the 

estimators, that the estimation model was applied properly. As can be seen, the identification of factors of 

interest did require knowledge about the studied process and the organization. Notice also that the 

estimation model we compare with expert estimation is a rather simple two-parameter (size and technical 

complexity) model. More sophisticated formal estimation models may, of course, perform better and this 

is no general evaluation of models vs. experts. 

The second author of this paper was fortunate in that he was able to influence the amount and quality of 

the estimation related data that were logged. Estimation-related information was collected and logged by 
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the estimators as soon as a project estimate was completed and immediately after the project was 

completed. 

We instructed the estimators to interpret “effort estimate” as “most likely effort” when logging the 

estimation data. In addition, we required that the estimation process should be described briefly for each 

estimate. This description of the estimation process enabled us to check whether the estimate was a most 

likely effort estimate and to check the actual use of the estimation methods. We used MRE (=|actual effort 

– estimated effort|/actual effort) and RE (=(actual effort – estimated effort)/actual effort) as measures of 

estimation error. 

We decided to use a combination of exclusion, adjustment and grouping to isolate the estimation 

performance factor:  

1) Exclude projects with very unusual reasons for estimation errors, that is where the dominant reason for 

high estimation accuracy or error was clearly not related to the performance of the estimation method or 

other studied factors. 

2) Adjust the actual effort for large differences, i.e., more than 10%, between estimated and actual 

functionality. This was done to ensure that the actual effort was comparable to the estimated effort with 

respect to technical and functional parameters before the estimation accuracy was calculated, as 

recommended in [10]. 

3) Compare estimation error collected in similar estimation situations, e.g., similar with respect to: 

• Time of estimation: a) early estimate used as input to bidding, and, b) estimate used as input for 

planning. 

• Cost control priority of the project: a) priority on cost control, b) priority on time control or quality. 

• Estimation complexity: a) the estimator had experience from a similar project, b) the estimator did not 

have experience from a similar project. 

 

Estimation data from 56 projects were collected. As many as 21 of these projects were either not started or 

never completed, and they were therefore excluded. This may have lead to some serious measurement 

selection bias if we aimed at measurement of the organization's estimation skill. We assessed, however, 

that the reasons for non-completions were not related to use of estimation method and that this therefore 

would not bias our comparison of the two estimation methods. 
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Among the 35 completed projects, 19 had a size larger than 100 work-hours. Among those 19 projects, 

13 were based on expert judgment and six on the model. (These 19 projects are the same as those 

displayed in Figure 1). 

In spite of our instruction of interpreting 'estimate' as 'most likely effort', we suspected, from the 

analysis of the estimation process descriptions, that there were variations in what the estimators meant by 

'estimate'. Some of the estimators reported an estimate of most likely effort, as instructed, and others 

reported planned effort which included a small contingency buffer. Our analysis is based on the 

assumption that this will not bias the comparison. For future measurements we would recommend that the 

organization trained the estimators in consistent use of estimation terminology. 

As shown in Section 2.2 a straight-forward analysis of the difference between the two estimation 

methods suggested that the estimation model led to significantly* more accurate estimates compared with 

that of the expert estimation (MRE of 0.07 vs MRE of 0.18). The following analysis shows that the result 

from the first analysis indeed is questionable and that other conclusions are better supported.  

In the improved analysis we started with an exclusion of the outliers. We found only one obvious 

outlier. This project had a very high flexibility in product delivery and was removed from the analysis. The 

estimate of that project was better described as a 'budget' and the goal was to a large extent to deliver as 

much functionality as possible within the budgeted resource usage. Eighteen projects remained. This is a 

small number for estimation error analysis, but not an unusual number of observations available for 

software companies to analyze. 

Next, we adjusted for differences between estimated and actual functionality. The difference between 

estimated and actual functionality was asserted and reported by the estimators at the end of each project. 

We found two projects with more than a 10% difference between estimated and actual functionality. We 

assumed that an X% increase in functionality was connected with an X% increase in effort and adjusted 

for this increase in the actual effort. This assumption of a linear relationship between functionality is only 

an approximation of the true relationship. As shown in [9], a statistically significant non-linear relationship 

between effort and size is not strongly supported by existing empirical data. 

Then, we grouped and analyzed the differences with regard to time of estimation, project priority, and 

experience with similar projects. Results from the grouping are displayed in Table 1 and Table 2. 

 
                                                           
* Notice that statistical significance analysis of difference in mean values requires random allocation of treatment. It is 

therefore not a proper analysis for this and most other real-world software industry data set analyses. 
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Table 1 Grouped Analysis, Estimation Model 

Factor Value # Mean MRE Mean RE 

Early Estimate 1 0.08 -0.02 Time of estimation 

Planning Phase 5 0.07 0.08 

Cost 4 0.09 0.03 Project priority 

Time or Quality 2 0.05 -0.02 

Yes 6 0.07 0.00 Experience from similar projects 

No 0 - - 

 

Table 2 Grouped Analysis, Expert Estimates 

Factor Value # Mean MRE Mean RE 

Early Estimate 6 0.15 0.05 Time of estimation 

Planning Phase 6 0.14 0.10 

Cost 1 0.08 0.08 Project priority 

Time or Quality 11 0.15 0.07 

Yes 7 0.10 0.01 Experience from similar projects 

No 5 0.20 0.16 

 

Then, we identified differences in frequency of use of the model and the expert judgment-based 

estimation methods, i.e., we compared the values in the # columns in Table 1 and Table 2, and found that 

expert estimates had a larger proportion of their estimates in the early phase, when the focus was on time 

or quality, and, when the estimators had no previous experience from similar projects. All these situations 

are connected with higher estimation complexity and higher estimation error, as can be seen from the 

mean MRE and RE-values in the tables. We, consequently, started to suspect that the higher estimation 

error of expert estimates could be explained by a more frequent use in higher estimation complexity 

situations and not by lower estimation performance of the method. 

This alternative explanation would be supported if the difference in estimation error disappeared if we 

compared projects with similar estimation complexity characteristics only. Optimally, we should have 
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compared for each combination of factor values, e.g., for the combination of “early estimate”, “cost 

priority” and “experience from similar projects”. The low number of data points did not enable such 

analyses. Instead, we had to rely on a mix of individual analysis of each factor and informal assessment of 

the contribution of the other factors. Table 1 and Table 2 display data for the purpose of the comparison. 

Notice that several of the mean values are based on quite few observations and should be interpreted 

especially carefully. 

Table 1 and Table 2 suggest, as we understand the data, that there is at least one estimation complexity 

factor that may have biased the original, straight-forward, estimation error analysis:  Experience from 

similar projects. Experience from similar projects is, not surprisingly, strongly connected with decrease of 

estimation error compared to the situation where the estimator has no previous experience from similar 

projects (MRE of 0.09 vs 0.20). Interestingly, the estimation model was never used when the estimator 

lacked relevant experience. 

We compared projects where the estimator had experience from similar projects and found that the 

mean MRE and RE-values were similar for the model and the expert judgment-based estimates (mean 

MRE of 0.07 vs 0.10 and mean RE of 0.00 vs 0.01) for those projects. This suggests that both estimation 

methods did fairly well under these conditions, and that the reason for the improved performance of the 

estimation model was that it was not used in situations with high estimation complexity! The “convincing” 

story from the straight-forward analysis is therefore not at all convincing when applying a proper error 

analysis process. A proper conclusion from the estimation error analysis, in our opinion, is that there is no 

evidence that support a difference in performance between the two estimation methods. 

An additional benefit of our analysis is that it provides information about the infrequent use of the 

estimation model certain situations, e.g., when no experience from similar projects is available. This 

information suggests that even if the model-based estimates were more accurate, they may not be able to 

replace the expert judgment-based estimates in all situations. 

 

3. Cost Estimation Studies 
In a previous review of estimation terminology [10], we showed that consistent and well-defined  

terminology is rarely applied in software cost estimation studies. As discussed in Section 2, inconsistent 

use of terminology is one factor that can lead to flawed conclusions in estimation error analysis unless the 

studied factor is isolated. In this section we investigate software cost estimation research papers to 
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determine whether isolation strategies are commonly used in analysis of estimation error, i.e. the main 

purpose of the investigation is to determine whether any isolation attempts are made in the papers, and not 

to determine the quality of these attempts. In this review, we evaluate our own work and may easily be 

biased. As we know own work best, these papers might have been selected and evaluated differently than 

the other papers. Ideally, this part of the review should have been performed by researchers independent of 

our research group. This was not done for practical purposes. We recommend the readers to examine the 

papers and make their own opinions.  

 

Selection of reviewed material:  

Cost estimation studies were selected from the BESTweb library*, which is an online library of estimation 

papers. Papers were selected by reading all the abstracts in BESTweb, and then the full versions of the 

papers that appeared to meet the following seven inclusion criteria. The paper: 

• deals with estimates of software development effort, schedule, budget or cost or with project 

success/failure/performance, 

• analyzes empirical collected estimates from real projects, 

• analyzes estimates made before completion of the project, 

• analyzes estimation accuracy,  

• analyzes cross-company estimation performance, 

• is the most recent paper by the main author that met the above criteria, and, 

• was reviewed in the terminology review paper [10].  

Eight studies met these criteria (see Table 3). The inclusion criteria are based on a combination of 

practical concerns and what we believe are characteristics of situations where estimation error analyses are 

most complex. 

The small selection of reviewed papers is a threat to the generality of the results. It is outside the scope 

of this paper to perform a comprehensive review of the estimation literature. Our goal is to give an 

indication of the state-of-practice for isolation strategies applied in estimation error analysis. We believe 

the selection is sufficient for this purpose. We are mainly reviewing studies published in journals. It is, for 

                                                           
* available at http://www.simula.no/BESTweb 

 133



that reason, possible that our selection is biased in the direction of describing a too positive state-of-the-

practice in estimation error analysis. 

 

 

Assessment and data extraction: 

We extracted the following information from the studies  

• I1: Factor(s) investigated by estimation error analysis.  

• I2: Isolation strategies used to isolate the effect of the investigated factor(s). 

 

Possible estimation error analysis factors (I1) were 'estimation ability' (such as the accuracy of an 

estimation model), 'estimation complexity' (such as ability to control cost)  and 'measurement process' 

(such as estimation error resulting from difference between planned and actual output). Possible isolation 

strategies (I2) were 'randomization', 'exclusion', 'grouping', 'adjustments' and 'none'. These factors are 

described in more detail in Section 4. Multiple factors are possible for each study. 

For each study the information was extracted by both authors independently of each other. 

Disagreements were discussed until we reached agreement.   

 

Results:   

Table 3 shows the results of the review. Five out of eight studies used no isolation strategy when analyzing 

estimation error. Among the studies that did use an isolation strategy, grouping is most popular (three 

studies) followed by exclusion (two studies) and randomization (one study).  None of the studies 

investigated “measurement process”, and none of the studies used “adjustments” as an isolation strategy. 

All the studies that attempt to isolate the investigated factors investigate factors of type “estimation 

ability”. 

The results indicate that studies often ignore the potential impact of non-studied factors, e.g., how 

systematic differences in estimation complexity or differences in the measurement process can disturb an 

analysis of the estimation ability. Many factors may impact the estimation error, and systematic biases are 

common. Expert estimation may, for example, frequently be preferred to formal models when data from 

similar projects is missing. Therefore, as demonstrated in Section 2, the lack of proper isolation strategies 

in the estimation error analysis may be a threat to the validity of the results. 
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Table 3  Results 

Study Factor(s) investigated Isolation strategies 

Barki et. al. [2] Estimation complexity None 

Bergeron and  St-Arnaud [3] Estimation ability, Estimation complexity Exclusion, grouping, 

Heemstra and Kusters [11] Estimation ability Grouping. 

Jørgensen [14] Estimation ability Randomization, exclusion, grouping   

Lederer and Prasad [17] Estimation complexity None 

Moløkken and Jørgensen [19] Estimation ability, Estimation complexity None 

Ropponen and Lyytinen [21] Estimation complexity None 

Subramanian and Breslawski [23] Estimation ability None 

 

This review does not investigate to which degree it was required to use an isolation strategy to analyze the 

estimation error factors. It may, for example, be the case that for some analyses, the impact of non-studied 

factors is ignorable. We believe, however,  that in most cases there is a need for isolation of the 

investigated factor when performing estimation error analysis. An important reason for this belief is that 

we do not have a deep understanding of when factors do and do not impact the estimation error. 

There are large variations in the ways the studies apply isolation strategies.  While Bergeron and  St-

Arnaud [3] excludes projects with less than 150 days (actual effort), Jørgensen [14] limits his analysis to 

studies of projects with more  than 10 hours (estimated effort), and duration of less than approximately 

eight calendar months. Similarly, Bergeron and  St-Arnaud [3] group projects by time of estimation 

(project phase), Heemstra and Kusters [11] by size, while Jørgensen [14] groups by more variables: Type 

of task, project complexity, “know-how” skills of the estimators, estimation skills of estimators, whether 

or not the estimator estimated own work, type of payment, project importance for the customer and 

organizational role of the estimator.   

It is hard to determine whether the studied factor is properly isolated in the three studies that use 

isolation strategies.  It is clear that size of projects and time of estimation impact estimation error, but so 

does many other factors not addressed in these studies. We believe that this review suggest that there is a 

potential for improved estimation error analysis also in studies that do use isolation strategies in the 

estimation error analysis.   
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4. A Framework For Analysis of Estimation Error  
Lack of proper estimation error analysis can have severe consequences as illustrated by the example in 

Section 2. The review in Section 3 indicates that we frequently measure cost estimation error with 

improper means to understand what we measure. Particularly, there is a need for clarification of the goal of 

the estimation error analysis and isolation of the impact of the factors of interest on estimation error. We 

therefore propose a framework for analysis of estimation error that addresses these issues. The proposed 

estimation error analysis framework has the following steps: 

 

1. Decide on the factor to be analyzed 

2. Define terminology and measures 

3. Decide the strategy for isolation  

4. Measure estimation error and collect other information necessary for isolation of the factor to be 

analyzed 

5. Analyze and interpret the measured estimation error 

 

Several of the steps are similar to steps included in other measurement frameworks, e.g., the GQM 

(Goal-Question-Metrics) framework, and textbooks on the improvement of software development 

processes. Our contribution to the improved analysis of estimation error is the tailoring of the general steps 

in other measurement frameworks to error analysis in the context of software estimation. A search of the 

literature has not uncovered a framework for the analysis of software estimation error measurement or an 

applicable framework for the analysis of estimation error from another domain. We found examples of 

particular causal models of estimation error, e.g., [1, 18], but these were not, in our opinion, practical 

frameworks for error analysis in the context of the software industry. We believe that our framework will 

be particularly useful when the data set is small, e.g., less than 30 observations, and study design involving 

random allocation to treatment is not possible. These situations, we believe, are typical for analyses of 

software estimation error. 

The proposed framework for the analysis of estimation error requires the measurement of a set of 

projects and is not meant for the analysis of reasons for estimation error of a single project. For that type of 

analyses, other types of analysis framework should be applied, e.g., root-cause analysis , post-mortem 

review [4], or “measured mile” analysis . Even in those cases, however, several parts of our framework 

may be useful, e.g., as checklists for possible estimation error factors. 
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The following description of our framework for the analysis of estimation error is not extensive for all 

steps, e.g., we have not described fully how to ensure proper data collection and statistical analysis. These 

topics are well covered in standard textbooks on the improvement of software development processes and, 

therefore, are not covered here. A good estimation error analysis is supported by our framework, but the 

framework does not replace good measurement and analysis skill and experience. 

 

4.1 Decide on Factor to be Analyzed 
The first step in every estimation error measurement and process of analysis should be to get a precise 

understanding of the factor we want to know more about, i.e., the goal of the study. Ironically, an 

important step towards a better analysis of the factor that we want to study is to identify those factors that 

have an effect on the estimation error that we do not want to study. In particular, it is important to identify 

those factors that we do not want to study (often referred to as “nuisance” factors) that may bias the 

estimation error analysis. To support this process of factor identification we provide a comprehensive list 

of factors that can have a major impact on the measured estimation error. The top level categories of 

factors are these:  

1) Estimation ability factors 

2) Estimation complexity factors 

3) Measurement process factors 

 

Estimation Ability Factors  

Important estimation ability factors include the following: 

• Expert judgment skills. The ability to estimate the development effort of a software project applying 

judgment-based estimation methods. 

• Accuracy of an estimation model. The ability of a formal estimation model to estimate the 

development effort accurately. Kitchenham and Linkman summarize different types of sources for 

estimation model error in [16]: measurement error, model error, assumption error, and, scope error.  

• Skills in selection of estimation method. The ability to select the most suitable estimation method. 

• Skills in the use of a formal estimation model. The ability to apply formal effort estimation models 

properly. It may sometimes be useful to separate this ability from the accuracy of an estimation model if 

the estimation method cannot be assumed to be applied as prescribed. 
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Estimation Complexity Factors 

Some projects are more difficult to estimate than others and the reason for higher estimation error may be 

a higher estimation complexity. Factors related to estimation complexity include: 

• Project management (cost control) ability. The project manager's ability to control the cost, i.e., to 

manage the project to the budget, is frequently a prerequisite for accurate effort estimates. 

• Project member skill. It is usually easier to estimate the effort of skilled developers. 

• Client and sub-contractor performance. The performance of a software project depends on the skills of 

the clients and sub-contractors. 

• Completeness and certainty of information. If the input to an estimation process or formal estimation 

model (measurement error of input variable) is poor, we cannot expect accurate effort estimates. 

• Inherent project execution complexity. Innovative projects, e.g., utilizing “leading edge” technology, 

and projects developing complex functionality, are inherently more difficult to estimate than repeating or 

simple projects. Another example of inherent project complexity is size (large projects are more difficult to 

estimate). 

• Project priorities. Projects with a strong focus on time-to-market, for example, typically have less 

accurate estimates than those with a focus on cost control. 

• Flexibility in product and process execution. If the project has a flexible scope, a simplification of the 

product can compensate for initially poor estimates and thus reduce estimation complexity and risk. 

 

The above factors is related to the so-called “cost factors” listed in, e.g., [6, 24]. The main difference 

between cost and estimation complexity factors is the difference between factors with an impact on cost 

and with an impact on how difficult it is to estimate. In spite of this difference, it may be useful to examine 

lists of cost factors to identify sub-factors to the categories above. Factors with an impact on cost, 

frequently also have an impact on estimation complexity. 

 

Measurement Process Factors  

This category covers factors that affect the measured estimation error related to the quality of the 

measurement process itself:  
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• Inconsistent use of terminology: When there is a lack of clear definitions of terms and there exist 

differences in interpretations of important estimation terminology, variance in estimation error cannot 

automatically be attributed to variance in estimation ability or estimation complexity. 

• Logging problems: Lack of proper logging routines for the actual use of effort may result in there 

being differences in activities included in the measured actual effort, or may affect whether overtime is 

recorded or not.  

• Difference between planned and actual output/process: Software projects may experience increases or 

reductions in functionality. Similarly, the project may not conduct all planned quality assurance activities 

or deliver the planned quality. Differences in estimation error may be caused by these differences between 

planned and actual output/process and not, for example, estimation ability. 

• Measurement selection bias: Three particularly important selection biases are: 1) Exclusion of 

cancelled projects. This typically leads to too positive a view of the estimation ability. 2) Exclusion of 

projects that have been estimated, but never been started. This may easily lead to too negative a view of 

the estimation ability, e.g., it is more likely to win a bidding round with an over-optimistic estimate 

compared with a realistic estimate. 3) Inclusion of only the projects that confirm the desired output of the 

analysis, i.e., a “confirmation bias”.  We discuss the effect of measurement selection biases in [15].  

 

Our categorization of estimation error factors should serve as a starting point for software organizations' 

discussions on which factors to study, and as a checklist for the need to understand, and control the effect 

of, the nuisance factors. 

 

4.2 Define Terminology and Measures 
Most estimation error surveys and software engineering textbooks do not provide a clear definition of what 

they mean by an effort estimate. In addition, we, in our role as estimation advisors, have observed an 

unfortunate mix of interpreting an effort estimate as “most likely effort”, “planned effort”, “best case 

effort” and “effort used as input to price-to-win” among software professionals (see [13] for examples of 

why this can hide huge differences in estimation performance). If the data collection does not ensure 

consistent use of 'effort estimate'', it is extremely difficult to perform meaningful analyses. 

Two common cost estimation error measures are: 

Magnitude of Relative Error (MRE) = |Actual Effort – Estimated Effort| / Actual Effort 

Relative Error (RE) = (Actual Effort – Estimated Effort) / Actual Effort 
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Both measures have been criticized and are far from perfect measures of cost estimation errors. 

Frequently, it helps to use more than one measure, more than one 'central value', e.g., display both the 

mean and the median estimation error, and include plots of all the estimation error data. 

 

4.3 Decide the Strategy for Isolation 
The following four strategies are candidates for isolation of the estimation error factor of interest: 

• Randomization of treatment is the most powerful factor isolation strategy. For example, if we want to 

compare the estimation performance of two different estimation methods, this strategy would require that 

the choice of an estimation method be random. The strength of this isolation strategy is that it removes 

any biased contribution of the non-studied factors to estimation error. One problem with the strategy is 

that software companies may, for good reasons, not accept the random choice of an estimation method. 

• Grouping (Blocking) of the projects into subsets similar with respect to non-studied factors may be 

necessary to ensure meaningful comparisons. For example, supposing that we want to study the impact of 

project cost control on the estimation error, we should compare projects with similar levels of estimation 

expertise and estimation complexity. 

• Adjustment for the contribution of one or more non-studied factors to the estimation error may be 

necessary, if there is no randomization or if the effect of the non-studied factors is not removed through 

grouping. For example, if some projects delivered more functionality than initially planned, the actual 

effort values may be adjusted to reflect only the effort to implement the initially planned functionality. 

The adjustment strategy is only possible if we, to some extent, are able to assess the impact of the non-

studied factors on the estimation error. 

• Exclusion of observations from the analysis may be necessary when it is possible for the non-studied 

factors to have a large but unknown impact on the estimation error, or when an observation is not relevant 

for the goal of the estimation error analysis. Notice that exclusion of an observation does not mean that 

the observation is of no value for other analyses or purposes. The excluded observation is merely not 

relevant for the analysis of the factor to be studied. 

Most of the time, a combination of isolation strategies, e.g., of grouping, adjustment and exclusion, is 

needed. If isolation of the factor of interest is not possible, the measurement and the measurement analysis 

may not be worthwhile. 
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4.4 Measure Estimation Error and Collect Other Information Necessary for Isolation 

of the Factor to Be Studied 
The information to be collected depends on the factor to be studied (Step 1), the terminology for and 

measures of estimation error (Step 2), and the chosen isolation strategies (Step 3). In particular, the 

isolation strategies may have a large impact on the information required for proper analysis: 

Randomization: Guidelines for randomization are included in standard statistics textbooks. As opposed 

to the other isolation strategies, it is not necessary that we collect much context information, as long as the 

power of the study is high and the treatment is randomized.  

Grouping: Proper use of this strategy requires the collection of information about non-studied grouping 

factors with a large, potentially biased, impact on the estimation error analysis. 

Adjustments: Potentially, there is a large number of non-studied factors that could have a substantial 

impact on estimation error. If we were to group for all these factors, the number of observations in each 

group would be very small. To avoid this, we may combine grouping with an adjustment strategy. An 

adjustment strategy requires the identification of the important non-grouped factors and knowledge about 

their impact on the use of effort. 

Exclusion: Projects should be removed from the measurement-based analysis if the impact of non-

studied, potentially biasing factors cannot be removed through randomization, grouping or adjustments. 

Excluded projects may still be subject to analysis, but then other types of analysis frameworks are needed, 

e.g., root cause analysis or post-mortem review frameworks. 

 

4.5 Analyze and Interpret the Measured Estimation Error 
The estimation error analysis to be conducted depends on the measurement goals, the factor to be studied 

and the isolation strategy chosen. It does not lie within the scope of our framework to provide detailed 

guidelines for this. Several analysis techniques are described in standard textbooks on statistics and 

software process improvement. 

 

5. Summary 
A real-world example where common analysis of estimation error lead to a flawed conclusion, together 

with a review of published estimation error analyses in research studies, suggest that there is a need for 

better analyses of software cost estimation error. Particularly, there may be a need for clarification of the 
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goal of the estimation error analysis and how the impact of the factors of interest on estimation error 

should be isolated. Currently, we frequently measure cost estimation error with improper means to 

understand what we measure. We present a framework that can be, we believe, a useful tool to improve the 

estimation error analysis. In particular, we believe, the checklist to identify non-studied factors with a 

potential biasing impact on the measured estimation error, the emphasis on proper estimation terminology, 

and the support on isolation strategies are useful. The framework does, however, not replace good analysis 

skill. 
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