
Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

Vol. 8

Dietmar Pfahl

An Integrated Approach to Simulation-
Based Learning in Support of Strategic
and Project Management in Software
Organisations

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
g

V
o

l. 8
D

ietm
ar Pfah

l
A

n
 In

teg
rated

 A
p

p
ro

ach
 to

 Sim
u

latio
n

-B
ased

 Learn
in

g
 in

 Su
p

p
o

rt o
f Strateg

ic an
d

 Pro
ject

M
an

ag
em

en
t in

 So
ftw

are O
rg

an
isatio

n
s

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Dr. Frank Bomarius, Dr. Barbara Paech,

Prof. Dr. Dieter Rombach

Software Engineering has become one of the major foci of
Computer Science research in Kaiserslautern, Germany. Both
the University of Kaiserslautern's Computer Science Depart-
ment and the Fraunhofer Institute for Experimental Software
Engineering (IESE) conduct research that subscribes to the
development of complex software applications based on engi-
neering principles. This requires system and process models for
managing complexity, methods and techniques for ensuring
product and process quality, and scalable formal methods for
modeling and simulating system behavior. To understand the
potential and limitations of these technologies, experiments
need to be conducted for quantitative and qualitative evalua-
tion and improvement. This line of software engineering
research, which is based on the experimental scientific para-
digm, is referred to as 'Experimental Software Engineering'.
In this series, we publish all PhD theses from the Fraunhofer
Institute for Experimental Software Engineering (IESE) and from
the Software Engineering Research Groups (e.g., AGSE and
AGCE) of the Computer Science Department at the University
of Kaiserslautern. PhD theses that originate elsewhere can be
included, if accepted by the Editorial Board.

Prof. Dr. Dieter Rombach
Director of Fraunhofer IESE and Head of the AGSE Group of the
Computer Science Department, University of Kaiserslautern

AG Software Engineering
AG Component Engineering

Buchumschlag.fm Page 1 Wednesday, December 5, 2001 11:51 AM

diss.book Page iv Tuesday, November 27, 2001 10:26 AM

An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project

Management in Software Organisations

Vom Fachbereich Informatik
der Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation
von

Dipl.-Math.-Oec. Dietmar Pfahl

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. H. Dieter Rombach
Prof. Dr. Dieter Ehrenberg

Dekan: Prof. Dr. Jürgen Avenhaus

Tag der Wissenschaftlichen Aussprache: 01.10.2001

D 386

diss.book Page i Tuesday, November 27, 2001 10:26 AM

diss.book Page ii Tuesday, November 27, 2001 10:26 AM

Acknowledgments

The research presented in this dissertation could not have been done without the
help of many colleagues and friends who supported me in many ways during all
the years. Only the names of some of them can be listed here.

In the first place, I thank Prof. Dr. Dieter Rombach for being my principal advisor
and for giving me the opportunity to work in the inspiring and stimulating envi-
ronment created by the Fraunhofer Institute for Experimental Software Enginee-
ring (IESE). Many thanks go also to Prof. Dr. Dieter Ehrenberg for acting as a refe-
ree of my work and to Prof. Dr. Theo Härder for chairing the Ph.D. committee at
the University of Kaiserslautern.

Much of the work conducted in the scope of this dissertation was initiated while I
was with Siemens Corporate Research. I am grateful to my former managers
Monika Gonauser and Dr. Karl-Heinrich Möller for offering me the chance to
work in the field of software process simulation. Very special thanks go to Karl
Lebsanft who was my immediate superior at Siemens. He supported my work
from the very beginning and even during all the years after I had left Siemens and
joined Fraunhofer IESE. Prof. Dr. Günther Ruhe is the person to whom I owed
most during the last years of my research conducted at Fraunhofer IESE. He was
my internal supervisor and a continuous source of encouragement, help and fri-
endship. At Fraunhofer IESE I also had the luck to work with Prof. Dr. Lionel Bri-
and and Dr. Khaled El-Emam, two outstanding researchers who taught me most -
if not all - I know about empirical research in the field of software engineering.

Many of my former and current colleagues at Siemens and Fraunhofer IESE
encouraged me to do the work presented in this dissertation and actively contri-
buted to its success. I am grateful to all of them. Those to whom I am particularly
indebted are Prof. Dr. Colin Atkinson, Dr. Andreas Birk, Dr. Frank Bomarius, Mar-
cus Ciolkowski, Dr. Christiane Differding, Pierfrancesco Fusaro, Jean-Francois
Girard, Dirk Hamann, Dr. Janne Järvinen, Reinhard Kammerer, Dr. Oliver Laiten-
berger, Roland Laqua, Prof. Dr. Peter Liggesmeyer, Jörg Lottermoser, Michael
Ochs, Prof. Dr. Mohsen Rezagholi, Dr. Louise Scott, Dr. Rini van Solingen, Harald
Thomas, Axel Völker, Dr. Hélène Waeselynck, and Dr. Isabella Wieczorek. I also
received much help from students and research assistants, namely Jörg Dorsch,
Martin Geier, Marco Klemm, Nataliya Koval, Tatyana Krivobokova, and Ioan
Teleaga. Of the many researchers who I met outside Siemens and Fraunhofer IESE
I am most grateful to Dr. Marc Kellner, Dr. Antony Powell, Prof. Dr. David Raffo,
Prof. Dr. Per Runeson, and Dr. Ioana Rus for inspiring discussions.

Finally, I am grateful to my parents and my sister for their never ending patience,
support and understanding. And last but not least, I want to thank Ute Wellnitz,
my wife, friend and partner, for the encouragement and love that I received from
her during many years of hard work.

diss.book Page iii Tuesday, November 27, 2001 10:26 AM

diss.book Page iv Tuesday, November 27, 2001 10:26 AM

v

Abstract

Abstract

Industrial software development is a highly complex, dynamic task, which is
not only determined by the choice of the right technologies but also – to a
large degree – by the knowledge and skills of the people involved. The suc-
cess of software organisations depends on its ability to facilitate continuous
improvement of products and processes (strategic level) and on the effective-
ness and efficiency of product development (project level). On both levels
management takes the key role.

The focus of this PhD research is on simulation-based learning to support
both strategic and project management in software organisations.

The main contribution of the research work lies in the design, application
and validation of a framework for Integrated Measurement, Modelling, and
Simulation (IMMoS). The IMMoS framework supports managers to cope
with the dynamic complexity of software development by providing guid-
ance on building and using quantitative simulation models as a source for
learning and improvement.

Simulation models are valuable tools for managers because they help them
understand the effects of new technologies and policies on the performance
of software development processes. Based on simulations, managers can
explore and analyse potential improvements before implementation and
empirical evaluation of the related process changes in a pilot project. In addi-
tion, quantitative simulation models can be used to support planning and
control tasks.

The core element of IMMoS is the simulation modelling method System
Dynamics (SD), which integrates quantitative (black-box) and explanatory
(white-box) modelling in a natural way. The novelty of IMMoS is twofold.
Firstly, it enhances existing guidance for SD model development by adding a
component that enforces goal-orientation, and by providing a refined pro-
cess model with detailed description of activities, products, and roles
involved in SD modelling and simulation. Secondly, it describes how to inte-
grate SD modelling with established static black-box and white-box model-
ling methods, i.e. goal-oriented measurement and descriptive process mod-
elling.

IMMoS has been successfully applied in industrial software organisations.
The effectiveness and efficiency of IMMoS is supported with empirical evi-
dence from two industrial case studies and one controlled experiment.

diss.book Page v Tuesday, November 27, 2001 10:26 AM

vi

Abstract

diss.book Page vi Tuesday, November 27, 2001 10:26 AM

vii

Table of Contents

Table of Contents

Acknowledgments ..iii

Abstract...v

Table of Contents... vii

List of Figures ... xv

List of Tables... xvii

List of Abbreviations and Acronyms ... xix

1 Introduction ... 1
1.1 The Problem of Complexity in Software Management 2

1.1.1 Static and Dynamic Complexity... 3
1.1.2 Established Modelling Approaches in Software Engineering 4
1.1.3 Models that Capture Static Complexity 8
1.1.4 Models that Capture Dynamic Complexity 8
1.1.5 Models are Tools for Learning... 9

1.2 An Existing Framework for Model-Based Learning and
Improvement... 10
1.2.1 The Quality Improvement Paradigm (QIP) 10
1.2.2 The Experience Factory ... 12
1.2.3 Goal-Oriented Measurement (GQM) 13
1.2.4 Current White-Box and Black-Box Modelling in the

QIP/EF/GQM Framework ... 15
1.2.5 Disadvantages of Current White-Box and Black-Box

Modelling ... 18
1.2.6 Strategies to Overcome Current Disadvantages with

Model-Based Learning .. 19
1.3 Objective of Thesis .. 20
1.4 Research Approach ... 21
1.5 Research Hypotheses... 22
1.6 Contributions of Thesis.. 22
1.7 Structure of Thesis... 23

Part I: Foundation .. 25

2 Model-Based Learning... 27
2.1 Learning is a Feedback Process .. 27

2.1.1 Single-Loop Learning .. 28
2.1.2 Double-Loop Learning .. 29

2.2 Organisational Learning... 30
2.3 Barriers to Learning in Software Organisations............................. 31

diss.book Page vii Tuesday, November 27, 2001 10:26 AM

viii

Table of Contents

2.3.1 Dynamic Complexity ...32
2.3.2 Limited Information ..33
2.3.3 Confounding Variables and Ambiguity..............................33
2.3.4 Misperceptions of Feedback..34
2.3.5 Flawed Cognitive Maps of Causal Relations.......................35
2.3.6 Erroneous Inferences about Dynamics36
2.3.7 Unscientific Reasoning; Judgmental Errors and Biases........36
2.3.8 Defensive Routines and Interpersonal Impediments to

Learning ...37
2.3.9 Implementation Failure ...37

2.4 Simulation-Based Learning...37

3 System Dynamics in a Nutshell ...41
3.1 System Dynamics Definition...43
3.2 System Dynamics Foundations ...43
3.3 Essential Steps of the System Dynamics Modelling Method..........45

3.3.1 Problem Description..45
3.3.2 Definition of Reference Mode ...46
3.3.3 Identification of Base Mechanisms47
3.3.4 Construction of Causal Diagram48
3.3.5 Construction of Flow Graph..50
3.3.6 Model Calibration ...51
3.3.7 Model Verification and Validation51
3.3.8 Policy Analysis...54

3.4 Proposed Guidance for SDM Development54
3.4.1 Forrester (1961/71) ...54
3.4.2 Roberts (1964) ..55
3.4.3 Randers (1973/80) ..56
3.4.4 Richardson and Pugh (1981) ...57
3.4.5 Bossel (1992) ..58
3.4.6 Coyle (1996) ...60

3.5 System Dynamics Tools..61
3.6 System Dynamics Applications in Software Engineering62

3.6.1 Software Project Management..63
3.6.2 Concurrent Software Engineering66
3.6.3 Software Requirements Engineering..................................67
3.6.4 Impact of Process Improvements on Cycle-Time67
3.6.5 Effects of Software Quality Improvement Activities............67
3.6.6 Software Reliability Management......................................68
3.6.7 Software Maintenance..68
3.6.8 Software Evolution..69
3.6.9 Software Outsourcing ...69
3.6.10 Software Engineering Training ..69

3.7 Open Issues ...70

diss.book Page viii Tuesday, November 27, 2001 10:26 AM

ix

Table of Contents

Part II: Action Research and Baselining 71

4 The PSIM Project .. 73
4.1 PSIM Project Background... 73
4.2 PSIM Project Objectives ... 73
4.3 PSIM Model Scope .. 74
4.4 Modelling Steps .. 74
4.5 Knowledge Acquisition Activities ... 76

4.5.1 Organisations and Roles Involved 76
4.5.2 Interviews and Reviews... 77
4.5.3 Data Sources .. 77

4.6 Modelling Results .. 78
4.6.1 Identification of Modelling Goal.. 78
4.6.2 Dynamic Hypotheses... 79
4.6.3 Flow Graphs and Model Equations.................................... 79
4.6.4 Causal Diagrams... 80
4.6.5 Model Calibration... 80
4.6.6 Model Validation .. 81

4.7 Lessons Learned .. 81
4.7.1 Familiarity with SD Concepts... 82
4.7.2 Realistic Expectations .. 82
4.7.3 Clarity about Modelling Goals... 83
4.7.4 Model Size and Complexity... 84
4.7.5 Efficiency in Model Building .. 84

4.8 Summary and Conclusion.. 85
4.9 Refinement of Research Objective and Formulation of Research

Hypotheses ... 86
4.9.1 Research Objective.. 86
4.9.2 Research Hypotheses .. 86

Part III:Innovation ... 87

5 The IMMoS Framework in a Nutshell ... 89

6 Process Guidance for SDM Development 91
6.1 IMMoS Phase Model ... 91
6.2 IMMoS Role Model.. 92

6.2.1 SDM Customer... 93
6.2.2 SDM User ... 93
6.2.3 SDM Developer... 93
6.2.4 Facilitator.. 94
6.2.5 Moderator .. 94
6.2.6 SE Subject Matter Expert... 94

6.3 IMMoS Product Model .. 94
6.4 IMMoS Process Model ... 97

6.4.1 MMoS Process Activities – Overview 97
6.4.2 IMMoS Process Activities – Detailed Description 99
6.4.3 IMMoS Templates... 121

diss.book Page ix Tuesday, November 27, 2001 10:26 AM

x

Table of Contents

7 Support for SDM Goal Definition ...123
7.1 GQM Goal Definition...123
7.2 IMMoS Goal Definition ..123
7.3 IMMoS Goal Definition Taxonomy ...124

7.3.1 Role ..126
7.3.2 Scope ...127
7.3.3 Dynamic Focus..127
7.3.4 Purpose ..128
7.3.5 Environment ...138

8 Integration of SD Models with Static SE Models.........................139
8.1 Representation of DPM Elements in SDMs139
8.2 Integration of QMs into SDMs ...140
8.3 Example SDM Integrating a DPM and QMs140

8.3.1 Descriptive Process Model ...140
8.3.2 Quantitative Models..141
8.3.3 System Dynamics Model ...142

9 Integration of SD Modelling with GQM and PM147
9.1 Products of the IMMoS Components ...147

9.1.1 SDM Development Products..147
9.1.2 GQM Products ..148
9.1.3 PM Products ...148

9.2 Relationships between SDM Development, GQM, and PM.........149
9.2.1 Overview of IMMoS Relationships149
9.2.2 Relations between GQM and PM151
9.2.3 Relations between SDM Development and PM................152
9.2.4 Relations between SDM Development and GQM153

9.3 IMMoS Application Example Scenario ..156
9.3.1 Initialisation of SDM Development Project156
9.3.2 Acquisition of Qualitative Information157
9.3.3 Acquisition of Quantitative Information...........................158
9.3.4 Application of SDM...159

Part IV: Validation..161

10 Validation of the IMMoS Approach..163
10.1Evaluation of Hypothesis H1 (Effectiveness)164
10.2Evaluation of Hypothesis H2 (Efficiency)166

11 The RESIM Project ..169
11.1Motivation and Background ..169
11.2RESIM Model Development ...170
11.3RESIM Design Decisions ...170

11.3.1 Reference Mode ...170
11.3.2 Base Mechanisms..172

11.4RESIM Model Structure..173
11.4.1 Module 1: Software Development...................................175

diss.book Page x Tuesday, November 27, 2001 10:26 AM

xi

Table of Contents

11.4.2 Module 2: Workforce Allocation and Adjustment 175
11.4.3 Module 3: Effort and Cost Calculations........................... 176
11.4.4 Module 4: New Requirements Generation 176
11.4.5 Module 5: Co-ordination of Increments 177

11.5RESIM Model Calibration and Validation.................................... 177
11.6RESIM Model Application .. 178

12 The GENSIM Project ... 181
12.1 Introduction and Background.. 181
12.2Design of the WBT/Simulator GENSIM....................................... 183

12.2.1 GENSIM Model Parameters ... 183
12.2.2 GENSIM Model Structure .. 184
12.2.3 GENSIM Model Implementation...................................... 187

12.3Activation of the WBT/Simulator GENSIM.................................. 187
12.3.1 WBT/Scenario Structure .. 188
12.3.2 WBT/Scenario Block Characteristics................................. 190

13 Effectiveness of IMMoS... 193
13.1Suitability of PSIM ... 193

13.1.1 Role: Process Owner ... 194
13.1.2 Role: Project Manager... 194
13.1.3 Suitability of PSIM with IMMoS....................................... 195

13.2Suitability of RESIM ... 195
13.3Suitability of GENSIM .. 196

13.3.1 Hypotheses... 197
13.3.2 Subjects.. 198
13.3.3 Treatments ... 198
13.3.4 Experimental Design ... 199
13.3.5 Experimental Variables.. 199
13.3.6 Experimental Procedure .. 201
13.3.7 Data Collection Procedure .. 202
13.3.8 Data Analysis Procedure.. 204
13.3.9 Experimental Results ... 205
13.3.10Threats to Validity ... 213
13.3.11Summary and Discussion of Results 215

14 Efficiency of IMMoS... 217
14.1GQM Plan for IMMoS Efficiency Evaluation................................ 217

14.1.1 Definition of Measurement Goal..................................... 217
14.1.2 Definition of Models ... 217

14.2Evaluation of Impact on Duration .. 219
14.3Evaluation of Impact on Effort ... 219
14.4Potential Impact of IMMoS on PSIM .. 220

15 Summary and Outlook .. 221
15.1Results and Contributions.. 221
15.2Limitations and Future Work ... 223

References ... 227

diss.book Page xi Tuesday, November 27, 2001 10:26 AM

xii

Table of Contents

Appendix A: SD Model PSIM ...239
PSIM Functionality ..239
Running a Simulation ...239
Analysis of Simulation Results ...240
Example PSIM Applications ...241

Project Planning ..241
Project Control ...242
Process Improvement ..244

Appendix B: SD Model RESIM ..247
Model Equations ..247

Policy Variable ..247
Levels ...247
Rates ..247
Auxiliary Variables ..248
Constants ...248

Appendix C: SD Model GENSIM ...249
Quantitative Relationships between Key Variables (Examples)249
Graphical User Interface (GUI) ..250

Input Windows ...251
Output Windows ..252
Analysis Windows ...253

Appendix D: Questionnaires used for Validating GENSIM255
Influencing Factors - Background Characteristics / Before Pre-Test255

DF 0.1: University Education ...255
DF 0.2: Practical Software Engineering Experience255
DF 0.3: Software Project Management Literature255
DF 0.4: Learning Style ...256

Pre-Test ..257
Questions on “Interest in software project management”..........257
Questions on “Knowledge about typical (empir.) patterns
observed in SW projects” ..258
Questions on “Knowledge about simple SW project dynamics” .259
Questions on “Knowledge about difficult project management
issues” ..260

Post-Test / Group A ..263
Questions on “Interest in software project management”..........263
Questions on “Knowledge about typical (empir.) patterns
observed in SW projects” ..264
Questions on “Knowledge about simple SW project dynamics” .265
Questions on “Knowledge about difficult project management
issues” ..266

Post-Test / Group B ..269
Questions on “Interest in software project management”269
Questions on “Knowledge about typical (empir.) patterns
observed in SW projects” ..270
Questions on “Knowledge about simple SW project dynamics” .271
Questions on “Knowledge about difficult project management
issues” ..272

diss.book Page xii Tuesday, November 27, 2001 10:26 AM

xiii

Table of Contents

Influencing Factors – After Post-Test / Group A 275
DF 0.5: Time Need... 275
DF 0.6: Session Evaluation ... 275

Influencing Factors – After Post-Test / Group B 277
DF 0.5: Time Need... 277
DF 0.6: Session Evaluation ... 277

Appendix E: Product-Flow Representation of IMMoS Process
Model.. 279

Lebenslauf ... 281

diss.book Page xiii Tuesday, November 27, 2001 10:26 AM

xiv

Table of Contents

diss.book Page xiv Tuesday, November 27, 2001 10:26 AM

xv

List of Figures

List of Figures

Figure 1: Interrelationship between project level and organisational level 2
Figure 2: A tentative taxonomy of software processes

(based on [RoV95]) ... 2
Figure 3: Types of models and their relation to complexity 4
Figure 4: Basic entities of processes .. 5
Figure 5: Taxonomy of process models (based on [McC95]) 6
Figure 6: Generic process of model-based learning 9
Figure 7: Capitalisation and control cycles in the QIP

(adopted from [BaC95]) ... 11
Figure 8: Organisational framework for systematic SPI

(adopted from [Bas93], [BaC95]) .. 12
Figure 9: Relationships between models contained in a

state-of-the-art experience base ... 16
Figure 10: Relationships between models after integration of SD with

PM and GQM ... 20
Figure 11: Work flow of research project .. 21
Figure 12: Structure of thesis .. 24
Figure 13: Learning is a feedback process ... 28
Figure 14: Single-loop learning ... 28
Figure 15: Double-loop learning ... 29
Figure 16: Organisational learning with models 30
Figure 17: Simulation-based learning .. 39
Figure 18: Open loop decision-making .. 43
Figure 19: Decision-making process with direct information feedback 44
Figure 20: Decision-making processes with indirect information feedback 44
Figure 21: Reference mode (empirical) .. 46
Figure 22: Reference mode (hypothetical) ... 47
Figure 23: Circular causality underlying the “inspection effectiveness”

problem ... 49
Figure 24: Schematic conventions of flow graphs 50
Figure 25: Stages of SDM development [RiP81] 58
Figure 26: PSIM overall model structure .. 74
Figure 27: An extract of the causal diagram of phase HLD 80
Figure 28: Elements of the IMMoS framework .. 89
Figure 29: IMMoS phase model .. 92

diss.book Page xv Tuesday, November 27, 2001 10:26 AM

xvi

List of Figures

Figure 30: IMMoS product model ...94
Figure 31: IMMoS process activities ...98
Figure 32: Relationships between static models and SDMs139
Figure 33: Simplified DPM of a design process with inspection141
Figure 34: SDM flow graph (extract) of a design process with inspection 143
Figure 35: Causal diagram of example SDM ..146
Figure 36: Simulation output of example SDM146
Figure 37: IMMoS components ...147
Figure 38: Interaction between IMMoS components during modelling ..150
Figure 39: Relations between GQM and PM ..151
Figure 40: Relations between SDM development and PM153
Figure 41: Relations between SDM development, GQM and PM154
Figure 42: IMMoS application example scenario155
Figure 43: Extract from a view of the SDM's flow graph

(implementation phase) ..157
Figure 44: IMMoS validation approach ..164
Figure 45: Typical pattern of product evolution during project

performance ..171
Figure 46: Causal Diagram ..173
Figure 47: Modular structure of RESIM with I/O interfaces174
Figure 48: Relation between variable weekly_replace_factor and

systems engineering effort ...176
Figure 49: Relation between variable new_requ_A and time177
Figure 50: Reproduction of the RESIM reference mode178
Figure 51: Extract of the causal diagram ...186
Figure 52: WBT/Scenario structure ..188
Figure 53: Relation between experimental variables204
Figure 54: The PSIM simulation cockpit ...240
Figure 55: An example PSIM analysis screen ..241
Figure 56: PSIM simulation result for project planning242
Figure 57: PSIM simulation result for project control243
Figure 58: Impact of skill and unbalanced manpower on productivity249
Figure 59: Impact of skill and unbalanced manpower on defect

injection ...250
Figure 60: GENSIM GUI windows ..250
Figure 61: GENSIM input window “General” ..251
Figure 62: GENSIM output window “General”253
Figure 63: GENSIM analysis window “Trees” ..254
Figure 64: Product-flow representation of the IMMoS Process Model279

diss.book Page xvi Tuesday, November 27, 2001 10:26 AM

xvii

List of Tables

List of Tables

Table 1: Classification of static models... 8
Table 2: Classification of dynamic models.. 9
Table 3: Quantitative models that capture complexity in software

engineering.. 16
Table 4: Comparison of empirical learning versus simulation-based

learning ... 38
Table 5: Tests for the evaluation of System Dynamics models 52
Table 6: Selection of System Dynamics software packages. 62
Table 7: Overview of the model's four subsystems................................. 63
Table 8: Organisations and roles in the PSIM project.............................. 76
Table 9: Topics of review and interview meetings 77
Table 10: List of all levels contained in the PSIM model............................ 79
Table 11: Software version V1 data for PSIM model calibration................ 81
Table 12: Extract of the IMMoS goal definition taxonomy...................... 125
Table 13: Example Role Taxonomy... 126
Table 14: Refinement of SDM Goal Definition dimension Purpose 129
Table 15: Sequence of U-1 steps ... 130
Table 16: Induced learning by addressing purpose U-1 130
Table 17: Sequence of U-2 steps ... 131
Table 18: Induced learning by addressing purpose U-2 131
Table 19: Sequence of P-1 step ... 132
Table 20: Induced learning by addressing purpose P-1........................... 132
Table 21: Sequence of P-2 steps .. 133
Table 22: Induced learning by addressing purpose P-2........................... 133
Table 23: Sequence of C-1 steps ... 135
Table 24: Induced learning by addressing purpose C-1 135
Table 25: Induced learning by addressing purpose C-2 136
Table 26: Sequence of I-1 steps ... 137
Table 27: Induced learning by addressing purpose I-1............................ 137
Table 28: Sequence of I-2 steps ... 138
Table 29: Induced learning by addressing purpose I-2............................ 138
Table 30: Mapping of DPM elements to SDM flow graph representation140
Table 31: Mapping from DPM to SDM (example)................................... 143
Table 32: Measurement goal specification template for SD Reference

Mode definition ... 158

diss.book Page xvii Tuesday, November 27, 2001 10:26 AM

xviii

List of Tables

Table 33: Summary of evaluation results for hypothesis H1....................166
Table 34: Summary of evaluation results for hypothesis H2....................167
Table 35: Information flow between RESIM modules174
Table 36: RESIM model constants used for calibration............................178
Table 37: Summary of RESIM simulation results179
Table 38: Key parameters of the WBT/Simulator GENSIM.......................184
Table 39: Effects of input parameter alterations187
Table 40: List of principles dominating project performance...................189
Table 41: Characterisation of WBT/Scenario blocks190
Table 42: Summary of SDM Goal Definitions for PSIM, RESIM and

GENSIM ...193
Table 43: Experimental variables ..199
Table 44: Differences between treatments ...200
Table 45: Schedule of experiment..202
Table 46: Pre-test scores ..206
Table 47: Post-test scores ..206
Table 48: Difference scores ..207
Table 49: Disturbing factors ...207
Table 50: Group A results for “post-test” vs. “pre-test”.........................209
Table 51: Group B results for “post-test” vs. “pre-test”209
Table 52: Results for “performance improvement”210
Table 53: ANCOVA results for “performance improvement”..................210
Table 54: Results for “post-test performance”211
Table 55: ANCOVA results for “post-test performance”.........................211
Table 56: Evaluation of IMMoS impact on duration of SDM building......219
Table 57: Evaluation of IMMoS impact on effort consumption for SDM

building..220
Table 58: PSIM simulation result for project control (point estimates)243
Table 59: PSIM simulation result for process improvement244

diss.book Page xviii Tuesday, November 27, 2001 10:26 AM

xix

List of Abbreviations and Acronyms

List of Abbreviations and Acronyms

AARR Actual Average Requirements Replacement
ALF Advanced Software Engineering Environment Logistics Frame-

work
ASM Analytic Summary Model
BU Business Unit
CMM Capability Maturity Model
CMPM Cellular Manufacturing Process Model
COCOMO Constructive Cost Model
CORONET Corporate Software Engineering Knowledge Networks for

Improved Training of the Work Force
CT Corporate Technology
DM Dynamic Model
DPM Descriptive Process Model
EF Experience Factory
EPG Electronic Process Guide
EPOS Expert System for Program and System Development
GENSIM Generic Simulator
GUI Graphical User Interface
GQM Goal Question Metric
HFSP Hierarchical and Functional Software Process Description and

Enaction
IEEE Institute of Electrical and Electronics Engineers
IMMoS Integrated Measurement, Modelling, and Simulation
ISO International Standardisation Organisation
JAD Joint Application Development
MAM Measurement-based Analytic Models
MVP-L Multi-View Process Modeling Language
NASA National Aeronautics and Space Administration
PEM Process Enactment Model
PM Process Modelling
PMIM Project Management Integrated Model
PMO Project Management Office
PMT Project Management

diss.book Page xix Tuesday, November 27, 2001 10:26 AM

xx

List of Abbreviations and Acronyms

PPM Prescriptive Process Model
PROFES Product Focused Process Improvement for Embedded Soft-

ware
PSIM Process/Project Simulator
PSM Process Simulation Model
PTA Process Trade-off Analysis
QIP Quality Improvement Paradugm
QM Quantitative Model
RESIM Requirements Engineering Simulator
SD System Dynamics
SDM System Dynamics Model
SDOM System Dynamics Operational Model
SDSM System Dynamics Strategic Model
SE Software Engineering
SEI Software Engineering Institute
SEPG Software Engineering Process Group
SEPS Software Engineering Process Simulator
SESAM Software Engineering Simulation by Animated Models
SLICS Software Life Cycle Simulator
SPADE Software Process Analysis, Design and Enactment
SPI Software process Improvement
SPICE Software Process Improvement and Capability Determination
SPEARMINT Software Process Elicitation, Analysis, Review, and Measure-

ment in an Integrated Modeling Environment
WBT Web-Based Training

Abbreviations and Acronyms.fm Page xx Thursday, November 29, 2001 2:25 PM

1

Introduction

1 Introduction

Software industry is constantly facing increasing demands for “better, faster,
cheaper” and the increasing complexity of software products and projects
have significantly “raised the bar” for software developers and managers to
improve performance.

Software industry has received help in the form of new technologies, such as
tools, programming languages, and development methods. However, since
software development is an inherently human-based activity, one of the key
questions is “How can (new) technologies and people work together in
order to deliver products with better quality, within schedule and budget?”.
A crucial role in answering this question plays the management function.

In general, management in software organisations takes place on two levels:
project level and organisational level. Project management is responsible for
the planning and successful execution of software (or system) development
projects. Management on the organisational level is represented by the line
management functions and responsible for all strategic issues that go
beyond the scope of development projects, e.g. definition of business goals,
management of business and development processes, human resource man-
agement, and – last but not least – definition of product goals and initialisa-
tion of projects in order to develop the required products.

Management on project and organisational level is interrelated in many
ways. There are two main reasons for the existence of both project and
organisational level management:

1. In order to make the highly complex development of software products
as flexible as possible while keeping control over schedule, budget, and
quality, an efficient and effective project organisation is most adequate.

2. In order to (a) support the execution of current projects, and (b) establish
a systematic learning cycle that goes beyond the project scope, organisa-
tional level management is needed. Note that systematic learning from
project experience is the prerequisite for continuous improvement.

Figure 1 summarises the interrelationship between project and organisa-
tional level.

diss.book Page 1 Tuesday, November 27, 2001 10:26 AM

2

Introduction

Figure 1: Interrelationship between project level and organisational level

1.1 The Problem of Complexity in Software Management

A major task of software management is decision making: choosing the
right technologies, planning and supplying resources, controlling project,
and finding the appropriate strategy to introduce innovative techniques,
methods, and processes. But decision-making is difficult and risky because it
is hard to reliably anticipate the impact of decisions on organisational and
project performance. Particularly on organisational level, the evaluation of
the impact of decisions, e.g. resulting in the introduction of new or change
of existing processes or organisational structures, requires a tremendous
investment in both time and money.

Figure 2: A tentative taxonomy of software processes (based on [RoV95])

Organisation

Project

organisational
feedback

(project related)

local feedback
(project internal)

Project goal(s):
- product-related
 (functionality, quality)
- resource constraints
 (time, effort, staffing)

Past products (reuse)

Past experience
(mental models of
individuals, or packaged
in the form of explicit
reusable models)

New products

New experience
- lessons learnt
- evaluated models data /

observations
analysis /
interpretation

analysis /
interpretation

data /
observations

Software Processes

Engineering Processes

Product-Engineering
Processes

Process-Engineering
Processes

Business
Processes

Social
Processes

Technical
Processes

Managerial
Processes

Modeling and
(Re-)Planning Processes

Development
Processes

Life-Cycles

Non-Engineering Processes

Development
Processes

Improvement
Processes

Measurement
Processes

Reuse
Processes

Software ProcessesSoftware Processes

Engineering ProcessesEngineering Processes

Product-Engineering
Processes

Product-Engineering
Processes

Process-Engineering
Processes

Process-Engineering
Processes

Business
Processes

Social
Processes

Technical
Processes
Technical
Processes

Managerial
Processes
Managerial
Processes

Modeling and
(Re-)Planning Processes

Modeling and
(Re-)Planning Processes

Development
Processes

Development
Processes

Life-CyclesLife-Cycles

Non-Engineering Processes

Development
Processes

Development
Processes

Improvement
Processes

Improvement
Processes

Measurement
Processes

Measurement
Processes

Reuse
Processes

Reuse
Processes

diss.book Page 2 Tuesday, November 27, 2001 10:26 AM

3

Introduction

The difficulties arise mainly for two reasons: huge complexity of software
products, and – in order to be able to develop sophisticated software prod-
ucts – huge complexity of software processes. Both products and processes
are the constituents of software engineering. Since products are the result of
conducting processes in the scope of projects, the main sphere of impact for
software managers is the process dimension. The diversity of software pro-
cesses is large. As an illustration of process diversity, Figure 2 presents the
tentative taxonomy of software processes suggested by Rombach and Ver-
lage [RoV95].

1.1.1 Static and Dynamic Complexity

Senge distinguishes two major dimensions of complexity [Sen90]: static1

complexity and dynamic complexity. Static complexity refers to the number
of elements of a system, and the level of detail in which these elements are
described. Dynamic complexity refers to behavioural aspects of a system and
the difficulty with which causes and effects associated with the behaviour of
the elements composing the system can be understood. Particularly systems
that are essentially human-driven, as in software development, are charac-
terised by high dynamic complexity. Large software products, like in telecom-
munication industry, typically are characterised by both static and dynamic
complexity.

A standard approach to deal with complexity in the real world is to build
models of reality and analyse them. A model is a set of propositions or equa-
tions describing in simplified form some aspects of the real world, which can
be either the empirical world or the mental world that only exists in the head
of the modeller. A model consists of a set of entities and associated
attributes, described in terms of variables and relations defined on these.

There exist various types of models. They can be classified according to three
criteria, i.e. explanatory power (black-box vs. white-box models), mode
(static vs. dynamic models), and scale (quantitative vs. qualitative models).

Black-box models encapsulate relationships between variables, as, for exam-
ple, when one seeks to build regression and other statistical models from a
data set. They primarily reflect structure in the data. White-box models, on
the other hand, must reflect entities of the real world, and relationships
between the attributes of these entities. Hence, they convey insight into the
structure of the process or product being modelled2.

Static models are not able to capture and represent any sort of change over
time of the real world. They are mere snapshots of the essential characteris-

1 Senge uses the words “detail complexity”. In this thesis, however, the naming “static complexity” is
more appropriate as the distinction between static and dynamic complexity matches well with the dis-
tinction between static and dynamic models.

2 For a discussion of the related topics the interested reader is referred to [KaM94].

diss.book Page 3 Tuesday, November 27, 2001 10:26 AM

4

Introduction

tics of a part of the real world at a certain point in time. Dynamic models, in
contrast, have the ability to express behaviour of elements or changes in the
relationships between elements of the real world over time.

The decision whether a model is qualitative or quantitative depends on the
scales3 on which the variables contained in the model are defined. In the
context of this thesis, models with variables that are defined on nominal
scales only are called qualitative models. Models where all variables are
defined on ordinal, interval, ratio, or absolute scales are called quantitative
models4. Models that mix variables defined on nominal scales with variables
defined on other scales are hybrid models. In the remainder of this thesis
they will be included in the class of quantitative models.

It should be noted that quantitative models often use information that is
contained in qualitative models. Similarly, dynamic models often use infor-
mation that is contained in static models.

There are no restrictions in the possibility of combining criteria values. Thus,
in total, eight model types can be distinguished, four static model types and
four dynamic model types (cf. Figure 3).

Figure 3: Types of models and their relation to complexity

Static models are adequate to capture static complexity, and dynamic models
are adequate to capture dynamic complexity.

1.1.2 Established Modelling Approaches in Software Engineering

In the field of software engineering, generally, white-box modelling is associ-
ated with the discipline of process modelling, and black-box modelling is
associated with the discipline of building analytical models that are
expressed in terms of mathematical equations or in terms of logical or rule-
based expressions.

3 For a definition of scales the interested reader is referred to [FeP97].
4 Mathematically speaking, also models where the variables are defined on ordinal scales have to be

considered as qualitative. Under certain circumstances, however, models based on variables that are
defined on ordinal scales can be considered as equivalent to quantitative models, i.e. models with
variables that are defined at least on an interval scale [Spe80].

Complexity
Static Dynamic

Quantitative Static
Dynamic

Black-box Qualitative Static
Dynamic
StaticModel Type

White-box Quantitative Dynamic
Static

Qualitative Dynamic

diss.book Page 4 Tuesday, November 27, 2001 10:26 AM

5

Introduction

1.1.2.1 Process Modelling

A variety of methods for building white-box models have been proposed in
the field of process modelling. The result of process modelling (PM) is a pro-
cess model. A process model defines sub-sets of the engineering or non-
engineering processes in software organisations (cf. Figure 2). A process
model represents the entities of a process, and the relationships between the
process entities. Figure 4 summarises essential entities of process models (cf.
[Lon93]): activities, artefacts (that are consumed or produced by activities),
tools (that are used by activities), roles (that perform activities), and actors
(that perform one or more roles). Following the classification scheme pro-
posed by Fenton and Pfleeger [FeP97] who distinguish three classes of enti-
ties, i.e., process, product, and resource entities, the entities presented in
Figure 4 would classify as follows:

• Process: set of activities
• Product: set of artefacts
• Resources: set of tools, roles, actors

Figure 4: Basic entities of processes

The Software Engineering Institute (SEI) has defined a more comprehensive
framework specifying the elements of a process model. Armitage and Kell-
ner [ArK94] have published the main elements of this framework. An
advanced framework that strives toward the integration of measurement-
based analytic models (cf. Section 1.1.2.2) into process models has been
proposed by Becker and Webby [BeW97]. Summary information about vari-
ous approaches of process modelling (PM) can be found in [LiC91][ABG+92]
[CKO92][FKN94][Pfa94a][BFL+95][FuW96].

Generally, two types of PM approaches can be distinguished [BHV97]:
descriptive process modelling and prescriptive process modelling. Descriptive
process modelling captures the current software development practices and
organisational issues, i.e., the actual process and not the official process is
represented (cf. [BFL+95]). Prescriptive process modelling specifies how soft-
ware development practices and related organisational issues should be
(official process). Figure 5 presents a tentative taxonomy of process models.
The taxonomy is based on the work of McChesney [McC95].

Activity

Artefact (Product)

Role

Actor

performs

performs

producesis consumed by

is composed of

is composed of

Tool

uses

diss.book Page 5 Tuesday, November 27, 2001 10:26 AM

6

Introduction

Figure 5: Taxonomy of process models (based on [McC95])

In the field of descriptive process modelling, many different modelling
approaches have been proposed. McChesney divides the group of models
resulting from descriptive process modelling according to their degree of for-
mality [McC95]. Informal models are qualitative and static of nature. Formal
models resulting from descriptive process modelling can be either qualitative
or quantitative of nature. Both qualitative and quantitative formal models
can be either static or dynamic. Static models resulting from descriptive pro-
cess modelling are called descriptive process models (DPMs). Typical exam-
ples of informal DPMs are verbal process descriptions (e.g. phase models or
life cycle models [Hum89][RoV95]). Examples of formal DPMs include graph-
ical process representations with a defined semantic (e.g. statecharts, Petri-
net based representations, activity networks, product flow charts, and actor
dependency models [YuM94]), or formal process description languages (e.g.
APPL/A [Ost87] and MVP-L [BLR+92][KLN+92][Ver98]). Dynamic models
resulting from descriptive process modelling are either process simulation
models (PSMs) or System Dynamics models (SDMs) [For61][For71][AbM91].
PSMs facilitate the simulation of process behaviour directly from the process
description of a formal DPM. Examples of PSMs include models based on
Petri-net based approaches like FUNSOFT [DeG94], SLANG [BFG92], and Pro-
cessWeaver [Fer93], statechart-based approaches like Statemate [Har88]
[HaP98][HuK89][KeH89][Raf96], and process description language
approaches like MVPsim [Brö95][Brö97] and Prometheus [Vis94]. In contrast
to PSMs, SDMs are not directly based on formal DPMs, although information
contained in DPMs is a valuable input in building SDMs. In the context of
software engineering, SDMs are developed based on structural and quanti-
tative information of software processes and their organisational environ-
ment. The main purpose of SDMs is to capture feedback phenomena of
software development systems5 in a way that they can be analysed in order
to improve process performance. Summary presentations dedicated to
dynamic descriptive process modelling approaches can be found in [Brö95]
[KMR99].

Process Models

descriptive prescriptive

informal
(qualitative)

formal
(qualitative & quantitative)

manual
(qualitative)

automated
(qualitative & quantitative)

static static dynamic static dynamic

DPM PSM PPM PEMSDM

diss.book Page 6 Tuesday, November 27, 2001 10:26 AM

7

Introduction

The group of models resulting from prescriptive process modelling can be
divided in two categories: manual and automated models [McC95]. Manual
models are qualitative and static of nature. They are called prescriptive pro-
cess models (PPMs). PPMs can be based on (formal or informal) DPMs that
have been altered in order to capture process improvements that are to be
implemented. As soon as the process change is implemented and “lived” in
the software organisation, the PPM turns back into a DPM. Typical examples
of PPMs that are not derived from DPMs are software process standards such
as IEEE 1074-1991[IEEE91], ISO 12207 [ISO95], or ISO 15504 (SPICE)
[ISO98]. Automated models are dynamic models (either quantitative or qual-
itative) that aim at providing guidance during software development
projects. They are called process enactment models (PEMs). PEMs are
directed at aiding process actors by mechanically interpreting software pro-
cess models, i.e. performing activities related to assistance, support, man-
agement and/or computer-assisted software production techniques. PEMs
can be event-triggered, rule-based, or based on logic language, attribute
grammars, automata (including finite state automata and Petri-nets), imper-
ative programming languages, and abstract data types. Examples of PEMs
include Adele [BEM91], ALF [OZG91], EPOS [KHL+94], GRAPPLE [HuL88],
HFSP [Kat89], MARVEL [BaK91], MERLIN [EJS91], OIKOS [ACM90], SESAM
[Lud+92][Sch93][DrL99], and SPADE [BFG92]. Summary presentation of sev-
eral of the related modelling approaches can be found in [FKN94].

1.1.2.2 Measurement-Based Analytic Modelling

In software engineering, black-box models are measurement-based analytic
models (MAMs) that are expressed in terms of mathematical equations
(quantitative models) or in terms of logical expressions or rules (qualitative
models). MAMs model attributes (e.g. size, number, quality, duration) and
the relationships between attributes of real world entities. Quantitative and
qualitative MAMs exist. Both quantitative and qualitative MAMs can be
static or dynamic. A methodological framework for effective and efficient
development of MAMs has been defined by the Goal / Question / Metric
(GQM) approach [Bas93][BCR94b][vSB99].

Quantitative static MAMs are composed of one or more primitive quantita-
tive models (QMs) of the form y = f(x1, …, xn). Primitive QMs are typically the
result of statistical or other inductive analysis techniques (e.g., classification
trees) applied to quantitative data. A QM defines the functional relation
between one dependent variable (y) and one or more independent variables
(x1, …, xn). Briand et al. distinguish three types of primitive QMs, i.e.,
descriptive QMs, predictive QMs, and evaluation QMs [BDR96]. In the scope
of industrial measurement programmes, usually sets of primitive QMs are
defined. In order to be efficient and effective in defining sets of primitive

5 A feedback system (or “closed” system) has a closed loop structure that brings results from past ac-
tion of the system back to control future action [For71]. In this sense, software projects and software
organisations can be interpreted as feedback systems.

diss.book Page 7 Tuesday, November 27, 2001 10:26 AM

8

Introduction

QMs, it is recommended to proceed goal-oriented. In industrial environ-
ments, the GQM approach has successfully been applied for goal-oriented
development of QMs [BDH+98][LSO+98][BDK+99][HPJ+99][vSB99]. Due to
the top-down QM specification approach of GQM, clear hierarchical struc-
tures that define the relationships between primitive QMs are generated.
Structured sets of primitive QMs are called analytic summary models (ASMs)
[Kel88]. An example of an ASM for software project management is the
well-known COCOMO model developed by Boehm et al. [Boe81] [BAB+00].

Qualitative static MAMs are typically the result of data mining techniques
applied to qualitative data. An example of such a technique that has suc-
cessfully been applied to software engineering problems is the rough-set
analysis technique [Ruh96].

Quantitative dynamic MAMs are expressed in terms of first-order differential
equations that are based on time series data [HKL87]. A first-order differen-
tial equation is a primitive dynamic model (DM). Systems of mutually interre-
lated first-order differential equations, i.e. higher order differential equa-
tions, can be used to describe and analyse management policies in software
organisations [AbM91]. The related models are known under the name Sys-
tem Dynamics models (SDMs) [For61][For71]. A main feature of SDMs is the
ability to capture feedback phenomena in real world systems.

Attempts to define methods for building qualitative SDMs have been made
[OyK88][Rug94], but references to successful application in software engi-
neering or managerial sciences could not be found in the literature.

1.1.3 Models that Capture Static Complexity

Taken from the set of models presented in Section 1.1.2, a sub-set of static
models useful to capture static complexity has been summarised in Table 1.

Table 1: Classification of static models

1.1.4 Models that Capture Dynamic Complexity

Taken from the set of models presented in Section 1.1.2, a sub-set of
dynamic models useful to capture dynamic complexity has been summarised
in Table 2.

Static Complexity

Static Models Black-box Quantitative primitive QMs, ASMs

Qualitative qualitative MAMs

White-box Quantitative formal DPMs

Qualitative DPMs, PPMs

diss.book Page 8 Tuesday, November 27, 2001 10:26 AM

9

Introduction

Table 2: Classification of dynamic models

1.1.5 Models are Tools for Learning

Referring to the statement made in Section 1.1.1 that a standard approach
to deal with complexity in the real world is to build models of reality and
analyse them, Figure 6 presents the generic process by which the use of
models can become a tool of learning for software managers.

Figure 6: Generic process of model-based learning

The building and analysis of models that represent current reality helps soft-
ware managers understand aspects of the real world that are in the focus of
interest. The usage of models that represent current reality can help manag-
ers with many different kinds of planning tasks, e.g. project planning. As
soon as tasks that have been planned with the help of models are per-
formed, comparing expected outcomes with actual outcomes is a means to
control the success of the activities involved in the task. In the case that the
actual outcomes are different than the expected outcomes, a root cause
analysis should be conducted. Such an analysis will produce new insights
into the nature of the real world and will help improve the associated mod-
els. This kind of learning cycle can be called empirical learning.

There is, however, another potential dimension of model-based learning. If a
manager had a model at hand that offers the possibility of representing a
reality that is currently not in place, i.e. a virtual reality, then the manager

Dynamic Complexity

Dynamic Models Black-box Quantitative primitive DMs, SDMs

Qualitative (qualitative SDMs)

White-box Quantitative quantitative PSMs, SDMs,
quantitative PEMs

Qualitative qualitative PSMs,
(qualitative SDMs), qualitative PEMs

understand

implementation of changes
in reality

explore
&

improve

controlplan

empirical learning

Models capturing
current reality

Models capturing
future reality

simulation-based
learning

diss.book Page 9 Tuesday, November 27, 2001 10:26 AM

10

Introduction

had the possibility to explore alternatives to the current reality, i.e. for the
purpose of improvement. Typically, simulation models facilitate such kind of
exploration, hence the name simulation-based learning. The transition from
simulation-based learning to empirical learning happens as soon as manage-
ment decides to implement one or the other alternative to the current real-
ity, i.e. a process change. The model that represents the changed reality has
become a model of current reality (given that the implementation of the pro-
cess change was done correctly), i.e. it can be used for planning of tasks
related to the real world and is subject to evaluation based on the results of
controlling.

1.2 An Existing Framework for Model-Based Learning and Improvement

The systematic usage of models for learning and improvement in software
organisations requires a methodological and organisational framework. An
example of a successful framework for systematic learning and continuous
improvement in software organisations is the Quality Improvement Paradigm
(QIP) developed by Basili et al. at the Software Engineering Laboratory
[Bas89]. The QIP strives to improve software development practice by mak-
ing explicit the models that are underlying the software development activi-
ties, and using them as the key instrument (a) for defining and conducting
development projects, and (b) to systematically learn from project experience
on both project and organisational level. The organisational entity that facili-
tates experience-based learning is the so-called Experience Factory. An
essential methodological element for empirical model building and analysis
is goal-oriented measurement. The most advanced and successfully applied
method for defining and conducting measurement programmes is the Goal/
Question/Metric (GQM) method.

1.2.1 The Quality Improvement Paradigm (QIP)

The QIP6 is a six-step procedure for structuring software development and
improvement activities. It involves three overall phases: planning, execution,
and evaluation. The planning phase consists of the explicit characterisation
of the initial situation (QIP step 1), the identification of the goals to be
achieved (QIP step 2), and the development of the implementation plan (QIP
step 3). The implementation plan guides the systematic execution of the
activities needed to achieve the goals (QIP step 4). The subsequent evalua-
tion phase involves the analysis of the performed actions (QIP step 5) and the
packaging of the experiences into new or improved reusable artefacts (QIP
step 6).

6 In a recent European research project, PROFES (Product Focused Process Improvement for Embedded
Software) [BJK+98][HJO+98][BDK+99][PRO00], the QIP has been enhanced by integrating a method
for explicit modelling of product-process dependencies. As a consequence, the six steps of QIP have
been detailed into 12 steps. It should be noted, however, that the basic underlying principles of PRO-
FES are the same as in the QIP.

diss.book Page 10 Tuesday, November 27, 2001 10:26 AM

11

Introduction

QIP is based (a) on appropriate characterisation of the environment and pro-
viding a context for goal definition, and (b) on reuse of obtained experiences
by packaging them in the form of structured knowledge represented by
models. The improvement process established by QIP can be interpreted as
an iterative process that implements two interrelated feedback cycles as illus-
trated in Figure 7:

1. The project feedback cycle (control cycle) provides feedback to the
project during project execution in order to control project execution.
This is done by analysing and interpreting qualitative and quantitative
data collected during project execution. Its purpose is to optimise project
performance, and to prevent and solve any kind of problems.

2. The corporate feedback cycle (capitalisation cycle) provides feedback to
the organisation in order to facilitate organisational learning. It has a
double purpose. Firstly, providing analytical information about project
performance at project completion time by comparing the project data
with the nominal range in the organisation and analysing concordance
and discrepancy. Secondly, accumulating reusable experience in the form
of software artefacts that are applicable to other projects and are, in gen-
eral, improved based on project experience.

Figure 7: Capitalisation and control cycles in the QIP (adopted from [BaC95])

The capitalisation cycle is the key element in constituting organisational
learning. Its steps can be characterised as follows [Bas92]:

1. Characterisation of the current project and its (organisational) environ-
ment.

2. Setting of the quantifiable goals for successful project performance and
improvement.

3) choose
execution
models

1) characterise and
understand (new aspects)

2) set (new)
goals

5) analyse
results

4) execute
and
measure

6) Package and
 store experience

analyse
results

provide project
with feedback

Project
Learning

(Control Cycle)

Organisational
Learning

(Capitalisation
Cycle)

diss.book Page 11 Tuesday, November 27, 2001 10:26 AM

12

Introduction

3. Choosing of the appropriate process model and supporting methods and
tools for the current project.

4. Execution of the processes, construct the products, collect and validate
the prescribed data, and analyse it to provide real-time feedback for cor-
rective action.

5. Analysis of the data in order to evaluate the current practices, determine
problems, record findings, and make recommendations for improve-
ments. The results of the analysis step can be both fed back to the cur-
rent project in order to adjust/improve current project performance
(project level), and to the packaging step (organisational level).

6. Packaging of the experience in the form of updated and refined models
and other forms of structured knowledge gained from the current and
prior projects and save it in an experience base for future projects.

In order to implement the QIP in a software organisation, an organisational
entity that conducts all tasks that go beyond the responsibility of a project
organisation is needed. In the context of the QIP, this entity has been given
the name Experience Factory (EF) [BCR94a].

1.2.2 The Experience Factory

The Experience Factory is an organisational entity that is logically or physi-
cally separated from the project organisation (cf. Figure 8).

Figure 8: Organisational framework for systematic SPI (adopted from [Bas93], [BaC95])

Whereas the project organisation focuses on the development of a product,
the priority of the Experience Factory is “to support project developments by
analysing and synthesising all kinds of experience to various projects on
demand. The Experience Factory packages experience by building informal,

Project
Organisation

Experience Factory

1. Characterise

2. Set goals

3. Choose models

4. Execute

6. Package:
Generalise
Formalise
Tailor

Project
Support Group

5. Analyse

Experience Base

(tailorable and actual)
project / environment characteristics

(tailorable and actual) goals

product models
process models
resource models
quality models, etc.
from similar projects

(actual) models
data
lessons learnt

data analyses
suggestions for alterations

diss.book Page 12 Tuesday, November 27, 2001 10:26 AM

13

Introduction

formal or schematised, and productised models and measures of various
software processes, products, and other forms of knowledge via people,
documents, and automated support.” [Bas89]

1.2.3 Goal-Oriented Measurement (GQM)

GQM (Goal/Question/Metric) is a well-known and widely used method for
defining and executing goal-oriented measurement programmes. In the
scope of this research it will be regarded as the unique reference method.
GQM originated from the work lead by Basili at the University of Maryland
and the NASA Software Engineering Laboratory in the 1980's [BaW84]. It
has since been further formalised and developed into a practical methodol-
ogy [BCR94b][BDR96][GHW95][vSB99].

1.2.3.1 GQM Principles

GQM represents a systematic approach to tailoring and integrating goals
with: models of the software processes, software products, and with partic-
ular quality perspectives of interest. GQM focuses on the specific needs of
the software project and of the development organisation. Measurement
goals are defined on the basis of high-level corporate goals, and refined into
metrics. In other words, GQM defines a certain goal, refines this goal into
questions, and defines metrics that must provide the information to answer
these questions. The GQM paradigm provides a method for top-down met-
ric definition and bottom-up data interpretation.

The principles of GQM measurement are:

• A measurement programme must reflect interests of data providers and
must be based on the knowledge of the people who are the real experts
on the measurement goals. In this paper these are members of the soft-
ware project team.

• Since the design of the measurement programme is based on the knowl-
edge of the project team, only they can give valid interpretations of the
collected data. Therefore, they are the only ones who are allowed to
interpret measurement data.

• Due to the limited amount of time of project members, and their com-
mitments to project planning, conflicts of interest may occur when all
improvement efforts are also assigned to the project team. Therefore a
separate team, a GQM team, should be created that facilitates the collec-
tion and analysis of measurement data by performing all operational
activities not necessarily to be executed by the project team.

These principles imply that the members of the GQM team offer a service to
the software project team by doing most of the technical work, related to
setting up and performing the measurement programme. Essentially, during
execution of the measurement programme, the GQM team provides a data

diss.book Page 13 Tuesday, November 27, 2001 10:26 AM

14

Introduction

validation and analysis service, by organising ‘feedback sessions’ in which
graphical measurement data is presented to the project teams.

1.2.3.2 GQM Process

The GQM process is divided into several stages. After the pre-study, the next
stage is to identify a set of measurable quality goals. After the goals have
been set, questions that define the goals are derived as completely as possi-
ble. The next step consists of specifying the metrics that need to be collected
in order to answer the questions defined, and to track the conformance of
products and processes to the defined measurable quality goals. Defined
goals, questions and metrics are described in the GQM plan. The three layers
(goals, questions, and metrics) of the GQM plan correspond to the following
three levels:

• Conceptual level (Goal): The definition of the measurement goal specifies
the object of measurement, the purpose of measurement, the quality
model of interest, the role for whom the measurement results are of
interest (viewpoint), and the environment in which the measurement
programme takes place.

• Operational level (Question): A set of questions is used to define in a
quantitative way the goal and to characterise the way the data will be
interpreted. Questions try to characterise the object of measurement
with respect to a selected quality issue and to describe either this quality
issue from the selected point of view or the factors that may affect the
quality issues.

• Quantitative level (Metric): A set of metrics - combined into a model - is
associated with every question in order to answer the question in a quan-
titative way.7

The definition of the questions and metrics contained in a GQM plan is usu-
ally done with the help of so-called abstraction sheets. Basically, an abstrac-
tion sheet is a means for acquiring, structuring, and documenting all the rel-
evant information provided by participants in the measurement programme.
An abstraction sheet contains information about the measurement object
and its associated attributes representing the quality focus (as specified by
the measurement goal), and information about factors that have an impact
on the quality focus (so-called variation factors). In addition, hypotheses
about the performance of the quality focus attributes and the way in which
the variation factors influence the performance of the quality focus
attributes are documented. Based on this information, for each measure-
ment goal, a set of questions, metrics, and models can be defined (for
details see [BaW84] and [BDR96]).

7 Cf. footnote 4 on page 4.

diss.book Page 14 Tuesday, November 27, 2001 10:26 AM

15

Introduction

After the measurements have been specified, a mechanism for collecting
measurement data is developed. This is described in the measurement plan
and in the associated data collection forms. The data is then collected and
validated during the software development project according to the mea-
surement plan.

The collected data is analysed and discussed in feedback sessions. Feedback
sessions are organised meetings involving members of the project team and
the measurement team. It is an essential mechanism supporting analysis and
interpretation of the measurement results. The main objective of feedback
sessions is to discuss the preliminary findings and results of the measurement
programme and derive interpretations by the project team from the data col-
lected so far with the GQM experts.

After the end of the software development project all relevant information
gathered during the project has to be packaged and stored for later retrieval
and reuse. This is especially important for continuous learning and improve-
ment.

Practical guidelines, examples and procedures for the GQM process in prac-
tice can be found in [vSB99].

1.2.4 Current White-Box and Black-Box Modelling in the QIP/EF/GQM Framework

State-of-the-art software engineering modelling strongly focuses on quanti-
tative black-box and white-box modelling. There are three reasons for this:

• The advantage of quantitative models over qualitative models is that
trade-off analyses can be conducted. An advantage that is particularly
important for software managers where the finding and maintaining of
an optimal equilibrium between cost, time, and quality (incl. functional-
ity) is the main issue.

• The advantage of white-box models over black-box models is that
changes in the model as a result of model analysis can directly transferred
to the real world. This is due to the fact that the model structure is visible
and represents entities in the real world.

• The advantage of black-box models is that mathematical analysis can be
better applied. This is due to the fact that quantitative black-box models
are usually represented in the form of mathematical equations.

Excluding qualitative software engineering models from the model classifica-
tions provided in Section 1.1.3 and Section 1.1.4, the remaining types of
quantitative black-box and white-box models can be summarised as shown
in Table 3. Quantitative black-box models that capture static complexity are
either primitive QMs or ASMs. Both types of models are most effectively and
efficiently developed by following the GQM method. Quantitative black-box
models that capture dynamic complexity are either primitive DMs or SDMs.
Both types of models are developed using standard dynamic modelling tech-

diss.book Page 15 Tuesday, November 27, 2001 10:26 AM

16

Introduction

niques based on time series data analysis, or by following the System
Dynamics method. Quantitative white-box models that capture static com-
plexity are formal DPMs. Quantitative white-box models that capture
dynamic complexity comprise quantitative PSMs, SDMs, or quantitative
PEMs. Because PEMs aim at the automated guidance of software engineer-
ing processes and not at the analysis and improvement of existing processes
and development practices, they are not in the focus of interest in the con-
text of this thesis, and thus will not be further addressed.

Table 3: Quantitative models that capture complexity in software engineering

Figure 9 indicates the relationships between the various process model
types, and the state-of-the-art modelling approach that is related to each
models type: process modelling (PM) to develop DPMs, PPMs, and PSMs;
goal-oriented measurement (GQM) to develop QMs and ASMs; System
Dynamics to develop DMs and SDMs.

Figure 9: Relationships between models contained in a state-of-the-art experience base

The relations between the model types are characterised as follows:

• Bold solid arrows stand for the relation “is-part-of”. For example, since
PSMs are built upon formal DPMs, a DPM is usually part of the PSM.
ASMs and SDMs are formed of QMs and DMs, respectively. The relation-
ship between DPMs and PPMs is identity, i.e. a DPM becomes a PPM and
a PPM becomes a DPM at certain phases of the improvement cycle,
therefore the “is-part-of” relation is binary.

• Plain solid arcs stand for the relation “us-used-by” or “is-specified-by”.
For example, the qualitative information typically contained in a DPM, i.e.
information about real world entities, attributes, and relationships
between entities and their attributes, is used as an input for defining

Complexity

Static Dynamic

Model
(static or dynamic,
quantitative)

Black-box primitive QMs, ASMs primitive DMs, SDMs

White-box formal DPMs, PPMs quantitative PSMs, SDMs,
(quantitative PEMs)

DPM

PSM ASM

QM DM

SDM

PM GQM SD

PPM

diss.book Page 16 Tuesday, November 27, 2001 10:26 AM

17

Introduction

goal-oriented measurement programmes8, and thus influences the defi-
nition of QMs and ASMs. The development of QMs and DMs, on the
other hand, is triggered by the development of ASMs and SDMs, respec-
tively. This is mainly due to the fact that ASMs and SDMs are usually
developed top-down, and thus specify to a certain degree the QMs and
DMs upon which they are built.

• Dashed arcs stand for the relation “triggers-change-in”. The type of
model in which future improvements are documented is the PPM. The
suggestions for the changes in a PPM result from analyses made with
help of PSMs, ASMs, or SDMs.

Models that represent complete software development projects form an
important class of models contained in a state-of-the-art experience base.
All three types of models, ASMs, PSMs, and SDMs can be used to represent
project complexity.

ASMs of software development projects capture mathematical relationships
between selected input and output factors of the underlying development
process (or process phases). Typical input factors include: estimated product
size, project complexity, personnel capability, available tool support, resource
and time constraints, etc. Typical output factors include: project duration and
effort consumption. The focus of ASMs is on high-level relationships
between independent and dependent model variables, facilitating point esti-
mates that predict the impact of independent (input) variables on dependent
(output) variables. The underlying process model is basically considered a
“black-box”, thus no detailed information about parameter changes during
project performance is generated. Usually, the model equations contained in
ASMs are derived through statistical analysis from empirical data of past
projects. Prominent examples of ASMs that capture software project com-
plexity are SLIM [Put78], COCOMO [Boe81][BAB+00], and Checkpoint
[Jon91].

PSMs of software development projects capture the behavioural dimension
of the underlying software process description. Due to their strict adherence
to the underlying process model, Process Simulation Models (PSM) of soft-
ware development projects provide operational guidance regarding the criti-
cal sequence of process steps, product flow, and information flow. In addi-
tion, these models often have the capability to check the integrity of the
process. Prominent examples of PSMs that capture software project com-
plexity are the Statemate-based models developed by Kellner et al.
[HuK89][KeH89]. By using the Process Trade-off Analysis (PTA) method
developed by Raffo, PSMs can be used to support the quantitative analysis
of management decisions related to software process changes [Raf96].

8 A well documented example of how descriptive process modelling is used for defining goal-oriented
measurement programmes has been published by Bröckers et al. [BDT96].

diss.book Page 17 Tuesday, November 27, 2001 10:26 AM

18

Introduction

SDMs of software development projects capture mathematical relationships
between project, product, and process parameters, and, in addition, the
time-dependent variation of several of these parameters. Compared to
ASMs, System Dynamics Models (SDMs) of software development projects
provide more details about the underlying process model. This is mainly due
to the high flexibility of the System Dynamics Modelling approach, which
allows for an adjustment of the level of granularity depending on the spe-
cific purpose for which the SDM has been developed. Compared to PSMs,
SDMs of software development projects provide more flexibility in ade-
quately capturing management decision rules, information feedback, delay,
and non-linearity. The System Dynamics method can be classified as a con-
tinuous simulation modelling approach, although other paradigms such as
discrete-event simulation can be emulated. Prominent examples of SDMs
that capture software project complexity are the models developed by
Abdel-Hamid et al. [AbM91], Lin et al. [Lin89][Lin93][LAS97], and Madachy
[Mad94][Mad96].9

1.2.5 Disadvantages of Current White-Box and Black-Box Modelling

With regard to learning and improvement, the situation presented in Figure
9 can be summarised as follows:

1. Learning and improvement in software engineering can be based on
three types of complex models: PSMs (white-box / dynamic), ASM (black-
box / static), and SDM (white-box & black-box / dynamic).

2. For the development of models of each of the three types mature and
well-documented modelling approaches have been defined.

3. The methodological integration between the related modelling
approaches is lose (PM and GQM), or not existing (PM and SD, GQM and
SD).

The fact that good methodological support exists for the development and
application of either of the three model types upon which learning and
improvement of software management can be based is definitely positive.
Problems arise from the third finding, i.e. the lack of methodological integra-
tion between the three modelling approaches. In the current situation, in
order to address the whole spectrum of complexity (static and dynamic) and
use the whole spectrum of analysis capability (white-box and black-box
models) managers have basically two options if they want to avoid the
(effort consuming) modelling of all three types of models. Either they rely on
PSMs and ASMs (option 1), or they rely on SDMs (option 2). Both options
have disadvantages:

• Disadvantages of option 1: The relationship between model types PSM
and ASM is not defined, therefore, it is not clear how analysis results

9 More details are provided in Section 3.6.1.

diss.book Page 18 Tuesday, November 27, 2001 10:26 AM

19

Introduction

addressing static complexity relate to analysis results addressing dynamic
complexity. For example, if analyses based on process simulations indi-
cate that the splitting of certain activities or concurrent performance of
certain activities will shorten overall development time, how does this
impact defect density of the artefacts produced by these activities? As
long as the related (static) QMs are not integrated with the (dynamic)
PSM, there is no possibility to answer this question.

• Disadvantages of option 2: Although SDMs are black-box and white-box
at the same time, and much of the structural information contained in a
SDM is based on static quantitative models, there exists no clearly
defined method on how to integrate information contained in DPMs and
QMs during the development of SDMs.

1.2.6 Strategies to Overcome Current Disadvantages with Model-Based Learning

In order to resolve the disadvantages related to options 1 and 2, the follow-
ing possibilities exist:

• Strategy 1: The modelling approaches for PSMs and ASMs are integrated
in a way that results from analyses based on one of the two model types
can directly be interpreted in the context of the other model type. A main
problem with this proposal is, however, the diversity in DPM – and thus
PSM – approaches that would require a particular solution for each pro-
cess modelling method.10

• Strategy 2: The modelling method System Dynamics is enhanced such
that resulting SDMs smoothly integrate with QMs based on goal-ori-
ented measurement (i.e., the current “static” GQM is enhanced toward
“dynamic” GQM), and with relevant information contained in available
DPMs (no matter according to which process modelling method they
were built).

Raffo worked on strategy 1 by proposing the Process Trade-off Analysis (PTA)
method to support the quantitative analysis of management decisions
related to software process changes [Raf96]. The PTA method has been vali-
dated by using it in connection with Statemate-based PSMs in industrial
environments. In principle, the PTA method is applicable to any type of PSM.
So far, however, there is no integration of the analysis method available for
any of the common process simulation modelling and analysis tools.

Strategy 2 is currently followed by Madachy who is about to integrate the
COCOMO II model with a System Dynamics component (cf. chapter on
“Dynamic COCOMO” in [BAB+00], p. 207 ff). This extension of a generic
project ASM with dynamic elements of a SDM will certainly become a pow-
erful planning tool for software project managers. The integration of a par-

10 Although there exists a proposal of a meta-modelling process for the development of DPMs, the Elicit
method developed by Madhavji et al. [MHH+94], there exists no generally accepted method for the
development of comprehensive DPMs in industrial environments (cf. [Ver98], p. 26).

diss.book Page 19 Tuesday, November 27, 2001 10:26 AM

20

Introduction

ticular ASM with elements of a SDM, however, does not deliver comprehen-
sive guidance on how to conduct integrated development of static ASMs
and dynamic SDMs in general.

1.3 Objective of Thesis

The objective of the research conducted in the scope of this thesis has been
to integrate System Dynamics modelling with goal-oriented measurement
(GQM) and descriptive process modelling in order to provide software man-
agers with a comprehensive approach to model-based learning, which com-
bines empirical learning with simulation-based learning.

Since empirical learning is state-of-the-art in software engineering for almost
two decades and the increasing number of related publications is showing
that it is becoming state-of-the-practice in industrial software organisations,
the focus of the research will be put on simulation-based learning. It is
expected that simulation-based learning will become state-of-the-practice in
software engineering – as in any other engineering discipline – as soon as
System Dynamics modelling has been fully integrated with complementary
modelling practices currently used in the QIP/EF framework, i.e. descriptive
process modelling (PM), and goal-oriented measurement (GQM).

Figure 10: Relationships between models after integration of SD with PM and GQM

How the relationships between models in an experience base will be after
integration of SD modelling with PM and GQM is shown in Figure 10. Com-
pared to Figure 9, the QMs are used by SDMs for defining static functional
relations, in the same way as DMs are used for defining dynamic functional
relations. The elements of both QMs and DMs are specified by the SDM,
which in turn takes relevant qualitative information from DPMs. ASMs, i.e.
the structured collection of QMs do not longer exist stand-alone but are fully
integrated with a SDM, which become “dynamic ASMs”11. PSMs become
absolete because all relevant qualitative white-box information from the
related DPMs is integrated with the SDM. Process simulations on any kind of

DPM

(PSM) SDM
(ASM)

QM

PM GQM SD

[“dynamic ASM”]PPM

DM

[“dynamic GQM”]

11 This integration of ASMs and SDMs adds a new shade of meaning to the label “Analytic Structural
Model” under which Raffo subsumes the class of SDMs [Raf96].

diss.book Page 20 Tuesday, November 27, 2001 10:26 AM

21

Introduction

granularity can be run by the SDM12. In this setting, improvement sugges-
tions, i.e. changes in the PPM, are triggered exclusively based on analysis of
SDM simulation results.

The advantage of the integration of SD modelling with descriptive PM and
GQM, i.e. an extension of GQM toward a “dynamic GQM”, has several
advantages:

1. Consistent and transferable interpretation of results from model analy-
ses.

2. High degree of reuse of model entities and modelling activities.

3. Reduction of modelling and analysis effort due to reduction of modelling
paradigms to the essential.

1.4 Research Approach

In the course of the research work related to the thesis, the following
research methods have been applied: literature survey, action research
(explorative case study), industrial case study, and controlled experiment. The
flow of work is summarised in Figure 11.

Figure 11: Work flow of research project

Literature survey (step 1) and action research (step 2) have been used to
identify the needs of managers in software organisations with regards to

12 Note that advanced SDM tools provide functionality that even allows for integration of descrete-event
simulation with SDMs.

Explorative
Literature Survey

Explorative
Case Study

General
Goal Definition

Refined
Goal Definition

Methodology
Development

Methodology
Application

Validation
(Case Study, Experiment)

SDM 1 (PSIM)

SDM 2 (RESIM)
SDM 3 (GENSIM)

IMMoS

1

2

3

4

5

diss.book Page 21 Tuesday, November 27, 2001 10:26 AM

22

Introduction

building and using SDMs in order to cope with the dynamic complexity of
software development. Based on the literature surveys, information about
the state-of-practice and state-of-the-art in SD modelling was collected.
Action research was applied in order to gain insights into the actual impact
of using SDMs in software organisations, and into the strengths and weak-
nesses of the currently available guidance for building and using SDMs
(baselining) [Arg83]. For this purpose a SD modelling project (PSIM) was con-
ducted in an industrial environment (a software division in the telecommuni-
cation industry).

Based on the results of the modelling project, the state-of-the-art in SD
modelling was enhanced (step 3) by developing comprehensive guidance for
System Dynamics model building, i.e. the IMMoS framework (Integrated
Modelling, Measurement and Simulation). The elements of the IMMoS
framework were used to build two additional SDMs (step 4), i.e. the RESIM
model for an industrial environment (a software division in the automotive
industry), and the GENSIM model for academia (University of Kaiserslautern).

Two industrial case studies13 and a controlled experiment in a university set-
ting were conducted in order to validate (step 5) the proposed IMMoS
framework with regards to efficiency and effectiveness.

1.5 Research Hypotheses

For the validation of the proposed IMMoS framework two research hypothe-
ses were investigated:

• Research Hypothesis 1: SDM development with IMMoS is at least as
effective as SDM development without IMMoS.

• Research Hypothesis 2: SDM development with IMMoS is more efficient
than SDM development without IMMoS.

Effectiveness is measured as the degree to which a developed SDM fulfils its
purpose from the point of view of the model user. Efficiency is measured in
terms of effort and time needed for developing a SDM.

1.6 Contributions of Thesis

The main contribution of this PhD research lies in the design, application and
validation of a framework for Integrated Measurement, Modelling, and Sim-
ulation (IMMoS). The IMMoS framework will support managers in coping
with the dynamic complexity of software development by providing guid-
ance in developing and using quantitative simulation models as a source for
systematic learning and improvement.

13 Guidance on how to conduct case study research can be found in [Yin94].

diss.book Page 22 Tuesday, November 27, 2001 10:26 AM

23

Introduction

The main achievements resulting from the development of the IMMoS
framework can be summarised as follows:

1. Theoretical work:

• Detailed description of a process for SDM development with:
• definition of roles, responsibilities, activities, and work products,
• support in specifying the simulation modelling goal, and
• provision of guidelines, checklists, templates, and other materials.

• Integration of SD modelling with the GQM modelling method.
• Systematic use of information contained in static white-box and

black-box models, i.e. DPMs and QMs, for SDM development.

2. Practical work:

• Development of three SDMs for different modelling goals.
• Integration of one SDM into a web-based training module for stu-

dents on the topic of software project management.
• Implementation of the IMMoS process model with SPEARMINT

[BHK+99]. Based on this implementation, a web-based Electronic Pro-
cess Guide (EPG) for IMMoS can be automatically generated.

3. Empirical work:

• The effectiveness and efficiency of the IMMoS framework is sup-
ported with empirical evidence from two case studies and one con-
trolled experiment.

1.7 Structure of Thesis

The results of the research are presented in four parts (cf. Figure 12). Part I
relates to research step 1 (cf. Figure 11 in Section 1.4). It summarises the
foundation of the research, i.e. the essence of model-based learning for
managers (Section 2), and a brief description of the System Dynamics
method (Section 3). Part II relates to research step 2. It presents the results of
the action research phase. In particular, this includes a summary of the les-
sons learned from the explorative case study (PSIM project, cf. Section 4),
which also served as a baseline for evaluating the effectiveness and effi-
ciency of IMMoS. Part III relates to research step 3. In Part III the innovations
of the research work are presented, i.e. the IMMoS framework and its com-
ponents (Section 5 to Section 8). Part IV relates to research steps 4 and 5. It
summarises the results of the empirical research, i.e. the validation of the
effectiveness and efficiency of IMMoS (Section 10 to Section 14). This
includes the descriptions of the RESIM and GENSIM projects, which both
used the IMMoS approach for SDM development. The thesis concludes with
a summary of contributions and achievements and an outlook to future
work (Section 15).

diss.book Page 23 Tuesday, November 27, 2001 10:26 AM

24

Introduction

Figure 12: Structure of thesis

Section 2: Model-Based Learning

Section 1: Introduction

Part I: Foundation

Section 3: System Dynamics in a Nutshell

Part II: Action Research and Baselining

Section 4: The PSIM Project

Section 5: The IMMoS Framework in a Nutshell

Section 6: Process Guidance for SDM Development

Section 7: Support for SDM Goal Definition

Section 8: Integration of SDMs with Static SE Models

Part III: Innovation

Part IV: Validation

Section 10: Validation of the IMMoS Approach

Section 15: Summary and Outlook

Section 9: Integration of SD Modelling with GQM and PM

Section 11: The RESIM Project

Section 12: The GENSIM Project

Section 13: Effectiveness of IMMoS

Section 14: Efficiency of IMMoS

Step 1

Step 2

Step 3

Steps 4 and 5

diss.book Page 24 Tuesday, November 27, 2001 10:26 AM

25

Part I: Foundation

diss.book Page 25 Tuesday, November 27, 2001 10:26 AM

26

diss.book Page 26 Tuesday, November 27, 2001 10:26 AM

27

Model-Based Learning

2 Model-Based Learning

The QIP/EF framework can be seen as a powerful facilitator of systematic
learning and continuous improvement. The success of the QIP/EF approach is
essentially based on the prominent role of explicit models, which is a conse-
quence of strictly following the inductive approach of the “scientific
method” [Bas92], either in its evolutionary improvement oriented manifesta-
tion (“engineering method”) or in its revolutionary improvement oriented
manifestation (“empirical method”). In the context of software develop-
ment, four important uses of models can be distinguished. The combination
of these uses facilitates learning and improvement. The four uses are:

1. Capturing and packaging experience from past projects.

2. Proposing improvements upon current ways of conducting projects (evo-
lutionary approach) or proposing new ways of conducting projects inde-
pendent from past experience (revolutionary approach).

3. Support for planning of current projects.

4. Support for execution of current projects (control).

Note that the first two uses can be associated with the organisational level
of management, whereas the last two uses are associated with project man-
agement.

In order to understand better how the use of explicit models facilitates learn-
ing and, as a consequence, continuous improvement, a closer look at the
general structure of learning processes is helpful.

2.1 Learning is a Feedback Process

The feedback-loop character of learning has been recognised for long time,
since around the turn of the 19th to the 20th century, when John Dewey
described learning as an iterative cycle of invention, observation, reflection,
and action ([Sch92], referenced according to [Ste94], p. 293). During the last
century, the notion of learning as an explicit feedback process has found its
way into many areas of the social and management sciences.

The single feedback loop shown in Figure 13 describes the most basic type
of learning. The loop is a classical negative feedback whereby decision mak-
ers compare quantitative and qualitative information about the state of the
real world to various goals, perceive discrepancies between desired and
actual states, and take actions that (they believe will) cause the real world to
move toward the desired state.

diss.book Page 27 Tuesday, November 27, 2001 10:26 AM

28

Model-Based Learning

Figure 13: Learning is a feedback process

2.1.1 Single-Loop Learning

The feedback loop shown in Figure 13, however, obscures an important
aspect of the learning process. Information feedback about the real world is
not the only input used by decision-makers. Their decisions are the result of
applying a decision rule or policy to information about the world as they per-
ceive it [For61]. The decision rules are themselves conditioned by institutional
processes, organisational strategies, and cultural norms. These are in turn
governed by the mental models that a decision-maker has about the real
world (cf. Figure 14).

Figure 14: Single-loop learning

As long as the mental models of the decision-makers remain unchanged, the
feedback loop in Figure 14 represents single-loop learning [ArS78][Arg85],
or adaptive learning [Mil95]. Single-loop learning is a process where deci-

Real
World

Information
Feedback

Decisions

Real
World

Information
Feedback

Decisions

Strategy,
Processes,

Decision Rules

Mental
Model

diss.book Page 28 Tuesday, November 27, 2001 10:26 AM

29

Model-Based Learning

sion-makers learn to reach their current goals in the context of their existing
mental models. It is focused on the operational level of management, based
on detecting and correcting errors, competencies and routines. Single-loop
learning does not result in change to the existing mental models, i.e. the
understanding of the causal structure of the system in which the decision-
makers act.

2.1.2 Double-Loop Learning

Since software development is a highly complex task that takes place in an
ever faster changing world of development methods, techniques, and tools,
it becomes necessary for decision-makers to become active players who
adjust their mental models to reality, and use them as a tool for reflection
and generation of improvement suggestions. This way of thinking, which
involves continuously new articulations of the decision-makers’ understand-
ing, or reframing of a situation, and which leads to new goals and new deci-
sion rules – not just new decisions – is called double-loop learning
[ArS78][Arg85]. When successful, such learning replaces the reductionist,
partial, narrow, short-term perception of the world with a holistic, broad,
long-term, and dynamic view that constantly redesigns decision-makers’ pol-
icies and thus the organisations they live in. Figure 15 illustrates how the sin-
gle-loop feedback is complemented by a second feedback loop that con-
nects mental models with the information received from observing the real-
world via interpretation and reflection, and thus makes it accessible to adap-
tation and change.

Figure 15: Double-loop learning

Real
World

Information
Feedback

Decisions

Strategy,
Processes,

Decision Rules

Mental
Model

Interpretation/
Reflection

diss.book Page 29 Tuesday, November 27, 2001 10:26 AM

30

Model-Based Learning

2.2 Organisational Learning

In order to capture the difference between individual and organisational
learning, an extension of Figure 15 is needed. Since each of the decision-
makers in a software organisation has their own (implicit) mental model of
the real world, there exists a multiplicity of mental models in the organisa-
tion. This is adequately represented in Figure 16 by the duplication of mental
models.

Figure 16: Organisational learning with models

Structure, processes and goals of the organisation, as well as the influences
from the environment on the organisation will be perceived differently by
the actors in the organisation, and thus the expectations about the effects of
own decisions or decisions made by others: “Each member of the organiza-
tion constructs his or her representation, or image, of the theory-in-use of
the whole. That picture is always incomplete (…) Organization is an artifact
of individual ways of representing organization.” [AgS78]. In order for an
organisation to be able to benefit from the double-loop learning on an indi-
vidual basis it is important to integrate and streamline the individual mental-
models, and use them establish double-loop learning on the organisation
level. The establishment of this complex process is one of the major tasks of
senior management.14 The many decision-makers that concurrently act

Real
World

Information
Feedback

Decisions

Strategy,
Processes,

Decision Rules

Mental
Model

Interpretation/
Reflection

Explicit (formal)
Model

14 In order to explain the complex “process of organisational knowledge creation”, Nonaka et al. de-
veloped a theory of organisational learning that is based on a process of transformations between
explicit and implicit (tacit) knowledge [NoT95]. This process consists of the phases socialisation, ex-
ternalisation, internalisation, and combination, which are continuously iterated. A comprehensive
discussion of existing theories on organisational learning and their conceptual foundations has
been provided by Wiegand [Wie96].

diss.book Page 30 Tuesday, November 27, 2001 10:26 AM

31

Model-Based Learning

upon and reflect about software development in the organisation have to be
considered, and all the important aspects that cause success or failure have
to be accounted for [Mil95].

One important tool to establish organisational learning is to integrate the
individual mental models of decision-makers into explicit formal models that
are then used to (a) reflect upon the real world and (b) support managerial
tasks such as decision-making, planning, and control.

2.3 Barriers to Learning in Software Organisations

Usually, the models contained in the experience base of a software organisa-
tion are static, i.e. they do not facilitate the analysis of behavioural aspects of
software development, e.g. the variation of process parameters or product
attributes over time during project execution. Static models, however, do
only have limited value for helping managers in software organisations over-
come two major difficulties [Sen90]:

• High dynamic complexity of software projects (which cannot be captured
by static models)

• Presence of information feedback (triggering unexpected side-effects of
management decisions), delay (of management decisions), and non-lin-
earity of cause-effect relationships.

Based on a comprehensive study analysing potential barriers to systematic
learning, Morecroft identified many ways in which the links of double-loop
learning shown in Figure 15 can fail. Morecroft identified the following
obstacles [Ste94]:

• Real World:
• Unknown structure
• Dynamic complexity
• Time delays
• Inability to conduct controlled experiments

• Information Feedback:
• Selective perception
• Missing feedback
• Delay
• Bias, distortion, error
• Ambiguity

• Decisions:
• Implementation failure
• Game playing
• Inconsistency
• Performance is goal

• Interpretation/Reflection:
• Misperceptions of feedback
• Judgmental biases

diss.book Page 31 Tuesday, November 27, 2001 10:26 AM

32

Model-Based Learning

• Defensive routines
• Mental Models:

• Unscientific reasoning
• Strategy, Processes, Decision Rules:

• Inability to infer dynamics from cognitive maps

2.3.1 Dynamic Complexity

Despite the fact that much of the literature in psychology and other fields
suggests learning proceeds via the simple feedback loops described in
Figure 14, the real world is not so simple. In particular, learning cannot be
considered as first-order negative feedback producing stable convergence to
an equilibrium or stable output. Human-based processes, such as software
development, involving more than one person are much more complex with
high levels of dynamic complexity. For example, in a software organisation,
the decisions and related actions of one agent form but one of many feed-
back loops that operate in the organisational system. These loops may
reflect both anticipated and unanticipated side effects of the decision mak-
ers’ actions; there may be positive as well as negative feedback loops, and
the loops will contain many system entities and many non-linearities in the
relationships between these entities.

Also, time delays between taking a decision and its effects on the state of
the system under consideration are common and particularly problematic.
Most obviously, delays reduce the number of times one can cycle around the
learning loop, slowing the ability to accumulate experience, test hypotheses,
and improve.

Dynamic complexity not only slows the learning loop but also reduces the
learning gained on each cycle. In many cases, controlled experiments are
prohibitively costly or risky. Often, it is simply impossible to conduct con-
trolled experiments. Complex systems are in disequilibrium and evolve. Many
actions yield irreversible consequences. The past cannot be compared well to
current circumstances. The existence of multiple interacting feedback loops
means that it is difficult to hold other aspects of the system constant to iso-
late the effect of the variable of interest. As a result, many variables simulta-
neously change, confounding the interpretation of changes in system behav-
iour and reducing the effectiveness of each cycle around the learning loop.

Delays also create instability in dynamic systems. Adding time delays to the
negative feedback loops, which typically are associated to control tasks of
managers, increase the tendency for the system to oscillate. As a result of
too long time delays, decision makers often continue to correct apparent
discrepancies between the desired and actual state of the system even after
sufficient corrective actions have been taken to restore the system to equilib-
rium, leading to overshoot and oscillation15. In software organisations, oscil-
lation and instability reduce the ability of decision-makers to control for con-

diss.book Page 32 Tuesday, November 27, 2001 10:26 AM

33

Model-Based Learning

founding variables and discern cause and effect further slowing the rate of
learning.

2.3.2 Limited Information

All human beings experience the real world through filters. No one knows
the current number of defects in a software product, the current productivity
rate, or the actual degree of completeness of a development project.
Instead, managers receive estimates of these data, based on sampled, aver-
aged, and delayed measurements. The act of measurement introduces dis-
tortions, delays, biases, errors, and other imperfections, some known, others
unknown and unknowable. Above all, measurement is an act of selection.
Measurement-based information systems in place select but a tiny fraction
of possible experience.

Of course, the information systems governing the feedback that decision-
makers in a software organisation receive and its characteristics can change
as learning proceeds. The information systems itself are part of the feedback
structure of the systems under consideration. Through the mental models of
the agents, constructs such as “productivity” or “quality” emerge, metrics
for these constructs are defined, and measurement programmes to collect
data and report them are designed and implemented. These then condition
the perceptions that agents form. Changes in the mental models of the
agents are constrained by what they previously chose to define, measure,
and attend to. As Sterman puts it [Ste94]: “Seeing is believing, and believing
is seeing”.16 Even though sometimes this sort of positive feedback assists
learning by sharpening the ability of decision-makers to perceive interesting
features of the system, often, however, the mutual feedback of expectations
and perceptions limits learning by blinding decision-makers to the anomalies
that might challenge their mental models.

2.3.3 Confounding Variables and Ambiguity

To learn, managers must use the limited and imperfect feedback available to
them to understand the effects of their own decisions, so they can adjust
their decisions to align the state of the system (e.g. the software organisa-
tion, or a software project) with their goals (single-loop learning), and so
they can revise their mental models (and the associated formal models) and
redesign the system itself (double-loop learning). Yet much of the feedback
received from the real world is ambiguous. Ambiguity arises because
changes in the state of the system resulting from decisions are confounded
with simultaneous changes in a host of other variables, both exogenous

15 A trivial but widely known example of this kind of unwanted oscillation is the adjustment of the
temperature of a shower that responds to the adjustment of the temperature with too long delay.

16 Sterman provides a brief summary of the philosophical discussion about the critical role of beliefs
in conditioning perceptions [Ste85].

diss.book Page 33 Tuesday, November 27, 2001 10:26 AM

34

Model-Based Learning

(external to the observed system) or endogenous (internal to the observed
system). The number of variables that might affect the system vastly over-
whelms the data available to rule out alternative theories and competing
interpretations. This identification problem plagues both qualitative and
quantitative approaches.

In the qualitative realm, ambiguity arises from the ability of language to sup-
port multiple meanings. For example, in descriptive process modelling, one
of the key tasks during knowledge elicitation for modelling the actual pro-
cesses in place is to clarify terminology, in order to make sure that informa-
tion collected from different individuals refers to the same or different enti-
ties of the process [BeB00].

In the quantitative realm, the main problem is to uniquely identify the struc-
ture and parameters of a system from its observed behaviour. As soon as the
system has been identified, a vast set of statistical analysis methods can be
applied to determine the functional relations between system parameters. In
principle, elegant and sophisticated theory exists to delimit the conditions in
which one can identify a system. In practice, however, data are often too
scarce and the alternative plausible alternative specifications too numerous
for statistical methods to discriminate among competing theories. The same
data often support divergent models equally well, and conclusions based on
such models are not robust. Research of Briand et al. in the field of software
cost and quality modelling provides examples of these difficulties
[BEF+98][BEW99].

2.3.4 Misperceptions of Feedback

Effective management is difficult in a world of high dynamic complexity.
Decisions may create unanticipated side effects and delayed consequences.
Attempts to stabilise a system may actually destabilise it. Decisions by one
agent in the system may provoke reactions by other agents seeking to
restore the balance upset by the decisions of the first agent. Decisions may
move the system into a new regime of behaviour, where unexpected and
unfamiliar dynamics arise because the dominant feedback loops have
changed. Forrester calls such phenomena the “counterintuitive behavior of
social systems” [For71]. It often leads to “policy resistance”, the tendency
for interventions to be delayed, diluted, or defeated by the response of the
system to the intervention itself.

Sterman reports a series of studies that confirm these observations yielding
the following statement [Ste94]: “These studies let me suggest that the
observed dysfunction in dynamically complex settings arises from mispercep-
tions of feedback. I argued that the mental models people use to guide their
decisions are dynamically deficient. Specifically, people generally adopt an
event-based, open-loop view of causality, ignore feedback processes, fail to
appreciate time delays between and response and in the reporting of infor-
mation, (…) and are insensitive to nonlinearities that may alter the strengths

diss.book Page 34 Tuesday, November 27, 2001 10:26 AM

35

Model-Based Learning

of different feedback loops as a system evolves.”17 Sterman concludes that
the misperceptions of feedback result from two basic and related deficien-
cies in the mental models of complexity: “First, our cognitive maps of the
causal structure of systems are vastly simplified compared to the complexity
of the systems themselves. Second, we are unable to infer correctly the
dynamics of all but the simplest causal maps. Both are direct consequences
of bounded rationality [Sim79] [Sim82]; that is, the many limitations of
attention, memory, recall, information processing, and time that constrain
human decision making.”

2.3.5 Flawed Cognitive Maps of Causal Relations

Causal relations are a central feature of mental models. Individuals create,
update, and maintain cognitive maps of causal connections among
attributes of entities and actors. Often, however, individuals tend to think in
mono-causal dependencies and have difficulty to conceptualise systems with
side effects and multiple causal pathways. Studies have shown that the
occurrence of feedback in mental models is practically not existent, thus
reducing mental models to open-loop, event-level representations with intu-
itive decision trees relating possible actions to probable consequences
[Axe76] [Dör80]. Often individuals focus on single causes that cease the
search for explanations of a particular event when a sufficient cause is
found. Sterman concludes that the heuristics managers and decision-makers
use to judge causal relations lead systematically to cognitive maps that
ignore feedback, multiple relationships, non-linearity, time delay, and the
other elements of dynamic complexity [Ste94].

Senge pointed out that "systems cause their own crises, not external forces
or individual's mistakes" [Sen90]. Individuals, however, have a strong ten-
dency to attribute the behaviour of other actors in the system to disposi-
tional rather than situational factors. But in complex systems, the same pol-
icy (decision rule) can lead to very different behaviour (decisions) as the state
of the system changes. The attribution of system behaviour to individuals
and special circumstances rather than to system structure systematically
diverts the attention of managers and decision-makers from the high-lever-
age points where redesign of the system or governing policy can have signif-
icant, sustained, beneficial effect on system performance. Sterman sum-
marises this as follows: “When we attribute [system] behavior to people
rather than to system structure, the focus of management becomes the
search for extraordinary people to do the job rather than designing the job
so that ordinary people can do it.”

17 Compare also Senge’s discussion of this topic [Sen90].

diss.book Page 35 Tuesday, November 27, 2001 10:26 AM

36

Model-Based Learning

2.3.6 Erroneous Inferences about Dynamics

Even if the causal maps of causal system structure were perfect, learning,
especially double-loop learning would still be difficult. In order to use a men-
tal model to design a new strategy, process or organisation, a manager must
make inferences about the consequences of decision rules that have never
been tried and for which data is not available. To do so requires intuitive
solution of higher-order non-linear differential equations, a task far exceed-
ing human cognitive capabilities in all but the simplest systems [For71]
[Sim82].

Individuals cannot simulate mentally even the simplest possible feedback sys-
tem, the first-order linear positive feedback loop, i.e. the differential equa-
tion dx / dt = gx yields pure exponential growth x = xb·exp (gt). Even though
such positive feedback processes are commonplace, individuals significantly
underestimate exponential growth, tending to extrapolate linearly rather
than exponentially. Sterman concludes that “bounded rationality simulta-
neously constrains the complexity of our cognitive maps and our ability to
use them to anticipate the System Dynamics. Schemata where the world is
seen as a sequence of events and where feedback, nonlinearity, time delays,
and multiple consequences are lacking lead to poor performance in settings
where these elements of dynamic complexity are prevalent. Dysfunction in
complex systems can arise from the misperception of the feedback structure
of the environment. But schemata that do account for complexity cannot be
used reliably to understand the dynamics. Dysfunction in complex systems
can arise from faulty mental simulation – the misperception of feedback
dynamics. These two different bounds on rationality must both be overcome
for effective learning to occur. Perfect maps without a simulation capability
yield little insight; a calculus for reliable inferences about dynamics yields sys-
tematically erroneous results when applied to simplistic maps”.

2.3.7 Unscientific Reasoning; Judgmental Errors and Biases

Most individuals are poor intuitive scientists, generally failing to reason in
accordance with the principles of scientific method. Sterman lists some typi-
cal shortcomings [Ste94]:

• Indivduals do not generate sufficient alternative explanations or consider
enough rival hypotheses.

• Individuals do not adequately control for confounding variables when
they explore a new situation.

• Individuals’ judgements are strongly affected by the frame in which the
information is presented, even when the objective information is
unchanged.

• Individuals suffer from overconfidence in their judgements (underesti-
mating uncertainty), wishful thinking (assessing desired outcomes as

diss.book Page 36 Tuesday, November 27, 2001 10:26 AM

37

Model-Based Learning

more likely than undesired outcomes), and the illusion of control (believ-
ing one can predict or influence the outcome of random events).

Hogarth discusses 30 different biases and errors documented in decision-
making research [Hog87]. Sterman claims that “among the failures of scien-
tific reasoning most inimical to learning is the tendency to seek evidence
consistent with current beliefs rather than potential confirmation” [Ste94].18

Successful learning, however, can only take place when issues are examined
from multiple perspectives and the boundaries of mental models are
expanded to consider the long-term consequences and side effects of any
decision taken. This is particularly important for decisions taken on strategic
management level.

2.3.8 Defensive Routines and Interpersonal Impediments to Learning

Organisational learning can be thwarted even if the system under consider-
ation provides excellent information feedback and the decision-makers rea-
son well as individuals. Individuals rely on their mental models to interpret
the language and acts of others, construct meaning, and infer motives.
Argyris and others document the defensive routines and cultural assump-
tions individuals rely on, often unknowingly, to interact with others [Arg85].
Defensive routines are used to save face, assert dominance over others,
make untested inference seem like facts, and advocate own positions while
appearing to be neutral, etc. defensive routines ensure that the mental mod-
els of individuals remain hidden, ill formed, and ambiguous.

2.3.9 Implementation Failure

In the real world, decisions are often implemented imperfectly. This can
defeat the learning process because the management team evaluating the
outcome of the (imperfectly) implemented decision may not be aware of the
ways in which the decisions they thought they were implementing were dis-
torted.

2.4 Simulation-Based Learning

In order to facilitate successful learning in such complex systems as software
organisations and software projects, all impediments to learning need to be
addressed adequately. Sterman claims that effective learning involves contin-
uous experimentation in both real worlds and virtual worlds, with feedback
from both, thus developing the mental models, the formal models, and deci-
sions to be applied in the real world [Ste94]. Virtual worlds are formal mod-

18 For a detailed discussion of the role of systematic falsification as a scientific method cf. Popper
[Pop68].

diss.book Page 37 Tuesday, November 27, 2001 10:26 AM

38

Model-Based Learning

els, or microworlds, in which decision-makers can simulate and thus test the
expected behaviour of planned changes to the real world.

Virtual worlds have several advantages. First, they provide low-cost laborato-
ries for learning. The virtual world allows time and space to be compressed
or dilated. Actions can be repeated under the same or different conditions.
Actions can be stopped at any time in order to reflect. Decisions that are
risky or costly in the real world can be taken to the virtual world. Thus con-
trolled experimentation becomes possible, and the time delays in the loop
through the real world are dramatically reduced. In the virtual world, it is
possible to push the system into extreme conditions, often revealing more
insights about its structure than incremental adjustments to the current
practice in the scope of limited pilot projects of the real world.

Table 4 summarises the advantages that virtual worlds (simulation models)
can have on the learning processes of managers and decision makers, as
compared to the barriers to learning without formal models.

Table 4: Comparison of empirical learning versus simulation-based learning

With regard to organisational learning, as it was presented in Figure 16, the
fact that explicit formal models, which represent and integrate individual

Real World Virtual World (Simulation Model)

Unknown structure

Dynamic complexity

Time delays

Inability to conduct
cotrolled experiments

Known structure

Variable level of complexity

Controlled (laboratory) experiments

Information Feed-
back

Selective perception

Missing feedback

Delay

Bias, distortion, error

Ambiguity

Complete, accurate, immediate feed-
back

Decisions Implementation failure

Game playing

Inconsistency

Performance is goal

Perfect implementation

Consistent incentives

Consistent application of decision rules

Learning can be goal

Interpretation/
Reflection

Misperceptions of feedback

Judgmental biases

Defensive routines

Mapping of feedback structure

Discussability of group process and
defensive behaviour

Mental Models Unscientific reasoning Disciplined application of scientific rea-
soning (e.g., systematic falsification)

Strategy, Processes,
Decision Rules

Inability to infer dynamics
from cognitive maps

Simulation used to infer dynamics of
cognitive maps correctly

diss.book Page 38 Tuesday, November 27, 2001 10:26 AM

39

Model-Based Learning

mental models, are accessible to group discussion may help diminish individ-
ual misperceptions, erroneous inferences, unscientific reasoning, and judg-
mental errors and biases of individuals. However, as long as double-loop
learning is exclusively seen as empirical learning that evolves mental models
only after the fact, i.e. after decisions have been implemented and evaluated
in the real world, all obstacles listed above, in principle apply to organisa-
tional learning, too.

Since software organisations and software development projects are com-
plex systems, with high dynamic complexity, barriers to learning can be over-
come through simulation-based learning. Often, in large-scale industrial
software production environments it is very costly, if not impossible, to
experiment with alternative development technologies (and processes) on
real projects. When experimentation on the real system happens to be
unfeasible, a common engineering practice consists of building a model that
can be studied by simulation. For example, a simulation model of a software
project is a mathematical abstraction that acts as a substitute for the real
project but is more amenable to manipulation. It is tempting to adopt the
principles of modelling and simulation to study the underlying assumptions
and processes by which software organisations and projects are managed.

Figure 17: Simulation-based learning

Virtual worlds for learning and training based on simulation models are com-
monplace in many disciplines. The advantage of simulation in software
organisations has been summarised by Christie [Chr99].

Real
World

Information
Feedback

Decisions

Strategy,
Processes,

Decision Rules

Mental
Model

Interpretation/
Reflection

Simulation
Model

(Virtual World)

diss.book Page 39 Tuesday, November 27, 2001 10:26 AM

40

Model-Based Learning

diss.book Page 40 Tuesday, November 27, 2001 10:26 AM

41

System Dynamics in a Nutshell

3 System Dynamics in a Nutshell

Simulation with System Dynamics models is used for learning about the
dynamic complexity of systems, for the identification of optimal policies in
existing systems, and for improvement of system behaviour through param-
eter or structural changes.

System Dynamics was introduced at MIT in the late 1950s to solve industrial
problems; hence the original name of Industrial Dynamics. In his reference
book [For61], Forrester gave two detailed examples dealing with cyclical pat-
terns in production, inventory and employment in the manufacturing area.
One of them was the first application of System Dynamics on a real case, the
Sprague Electronic Company (electronic components industry). It was shown
that variation in demand of the products was not an adequate explanation
for an oscillation: the system structure had the inherent tendency to gener-
ate it. Sensitivity analysis was performed to indicate which parts were most
crucial in determining this behaviour. A combination of new inventory and
employment policies was proposed from model experimentation. The imple-
mentation of these policies in the real system, reported in [Fey78], supplied a
mitigated result: during the first months, the situation was improved; how-
ever, after about one year, the managers tended to return to their old
employment policy and cyclic behaviour patterns appeared again. Note that
the structural explanation for long-term cyclic rise and fall of industrial activ-
ity has now become a classical result of the method (see e.g. [Ran80a] who
mentions a study of the Norwegian pulp industry focused on inventory fluc-
tuation).

Since the early developments at MIT, the method has been applied to model
a wider variety of systems, hence the current name of System Dynamics. A
collection of papers published in [Rob78a] reports studies from five broad
application domains: manufacturing, marketing and distribution, research
and development activities, management control and finance, societal prob-
lems (ecological, economical, and sociological).

The most famous of the societal models was the World model [MMR+72]
developed by a research group at the MIT on the initiative of the Club of
Rome in the early 1970s19. It aimed at studying the future of human activity
in our finite world, and focused on five physical quantities: population, food
production, industrial capital, production and non-renewable natural
resources. This work generated much controversy, but gave rise to a new
interest in policy modelling efforts in numerous countries.

19 An updated version of the World model was published in 1992 [MMR92].

diss.book Page 41 Tuesday, November 27, 2001 10:26 AM

42

System Dynamics in a Nutshell

During the last ten years the management of software projects has emerged
as a new application domain. The ideas underlying the models of software
project dynamics originate mostly from the work previously performed at
MIT on R&D projects under the direction of Prof. E. B. Roberts [Rob64]
[Rob74]. Roberts developed a base model intended to capture the funda-
mental characteristics of an R&D project and its typical life cycle. The base
model is supposed to be adapted to an organisations specific needs. It is
reported in [Rob78a] that R&D project models based on the Roberts frame-
work have been implemented by several industrial organisations, among
which are Motorola Military Electronics and Sony Labs.

As pointed out in [AbM91], the management of software projects shares
common features and problems with the management of R&D projects, i.e.,
as regards project planning, control of progress, and management of human
resources (men and months are not interchangeable). Indeed, the System
Dynamics models of software projects incorporate many structural elements
of Roberts' model, including [LeL91]:

• typical project variables, such as workforce level, budget, scheduled com-
pletion date, number of errors produced, number of errors detected;

• managerial-related functions, e.g. staffing, planning and controlling;
• production-related functions, e.g. design, development, verification,

rework;
• human-related functions, e.g. productivity, motivation, error rate, whose

values are affected by the project's perceived status (schedule pressure)
and the penalty-reward structure of the organisation.

During the 1990s many new applications of System Dynamics in software
engineering, not only restricted to software project management, have been
published. Based on an exhaustive literature survey, the following applica-
tion domains of System Dynamics in software engineering have been identi-
fied (cf. Section 3.6 for summary descriptions):

• software project management [AbM91][CoM93][LAS97][HeH00],
• concurrent software engineering [PMB99],
• software requirements engineering [ChS00],
• the impact of process improvements on cycle-time [TvC95][Tve96],
• effects of software quality improvement activities [AFO93][Chi93]

[Mad94][Mad96],
• software reliability management [Rus98][RuC99],
• software maintenance [CaS99],
• software evolution [LeR99],
• software outsourcing [RCH+00], and
• software engineering training [MaT00].

The tutorial published in [For71] gives a good introduction into the principles
of System Dynamics and the underlying mathematics; additional material

diss.book Page 42 Tuesday, November 27, 2001 10:26 AM

43

System Dynamics in a Nutshell

may be found in [For61][RiP81][Bos92][Coy96]. The following sections briefly
summarise the foundations and the main methodological elements of the
System Dynamics method (Section 3.1 to Section 3.4). Section 3.5 provides
an overview of the available tool support. Section 3.6 summarises reported
applications of System Dynamics modelling in the software domain. In Sec-
tion 3.7, an evaluation of the existing support for practitioners in applying
the method is presented. Based on this evaluation, issues that still need to be
resolved were identified.

3.1 System Dynamics Definition

The origins of System Dynamics can be traced back to the theories of servo-
mechanism and cybernetics [Ric90]. Several definitions of System Dynamics
have been suggested in the literature (e.g. [For61][Wol90]). The most com-
prehensive has recently been provided by Coyle ([Coy96], p.10):

“System dynamics deals with the time-dependent behaviour of managed
systems with the aim of describing the system and understanding, through
qualitative and quantitative models, how information feedback governs its
behaviour, and designing robust information feedback structures and con-
trol policies through simulation and optimization.”

A system, in this definition, is understood as a collection of elements that
operate together for a common purpose.

3.2 System Dynamics Foundations

Management is the process of converting information into action via deci-
sion-making. Decision-making is in turn controlled by various explicit and
implicit policies of behaviour. In the context of System Dynamics, a policy is a
rule that states how operating decisions in an organisation are made, i.e. a
policy defines which sort of information is relevant to control an action, and
how the relevant information is processed in order to control the action.

Figure 18: Open loop decision-making

There is not only a conversion from information via decisions to actions, but
actions in turn produce new information. In the open loop decision-making
process shown in Figure 18 there is no information feedback from the action
to the decision. Organisations that are governed by decsision-making pro-
cesses without information feedback are open systems.

Information Decision Action Information

diss.book Page 43 Tuesday, November 27, 2001 10:26 AM

44

System Dynamics in a Nutshell

Figure 19: Decision-making process with direct information feedback

In a software organisations, however, most of the information that is pro-
duced by one decision-making process is used by other decision-making pro-
cesses within the organisation, and, usually, there is information feedback,
either direct or indirect. A decision-making process with direct information
feedback is shown in Figure 19. Figure 20 shows two decision-making pro-
cesses with mutual (indirect) information feedback. An organisation that is
mainly characterised by decision-making processes with direct or indirect
information feedback is a closed system or feedback system.

Figure 20: Decision-making processes with indirect information feedback

System Dynamics was mainly developed to analyse the behaviour of closed
systems (also called feedback systems). The essential characteristic of feed-
back systems is that their behaviour is generated by its structure, i.e. the
physical processes in the system and the set of decision rules that are used to
control the physical processes based on information feedback.

For example, in a software project, physical processes relate to the creation,
integration, test, and correction of work products, such as requirements
specifications, design documents, program code, inspection reports, test
specifications and reposts, and so forth. The physical processes would
address concepts like productivity, quality (i.e. defect generation and detec-
tion), size, and other attributes associated with the actors, activities and arte-

Information Decision Action

Information Decision Action

Information Decision Action

diss.book Page 44 Tuesday, November 27, 2001 10:26 AM

45

System Dynamics in a Nutshell

facts involved. The associated decision rules would be related to issues like
selection and allocation of work force, selection of requirements, decision
upon when to start or stop certain activities, decision about which tool or
method to apply, and so forth.

In order to change the behaviour of a closed system (in the example: the
project performance) the structure has to be changed. In order to change
the system structure, it must be explicitly represented. One way to capture
the information feedback contained in closed systems is to use differential
equations. In System Dynamics models, each system state (e.g., representing
the quality of a work product or the size of the work force) and the associ-
ated rules to control this system state, is represented by one differential
equation. The set of all differential equations represents the system structure
and – if executed – can simulate the system behaviour. Technically, the sim-
ulation of the system of differential equations is facilitated by transformation
of the differential equations into difference equations and numerical treat-
ment.

3.3 Essential Steps of the System Dynamics Modelling Method

The development of System Dynamics models follows a method that was
first described by Forrester in 1961 [For61]. During the last 40 years, this
method was slightly enhanced and refined by several authors. The essential
steps of the System Dynamics modelling method are as follows:

• Description of problem,
• Definition of reference mode,
• Identification of base mechanisms,
• Construction of causal diagram,
• Construction of flow graph (with model equations),
• Calibration of model,
• Verification and validation of model,
• Policy analysis based on model simulation.

3.3.1 Problem Description

The general goal of any System Dynamics modelling effort is to improve
understanding of the relationships between information feedback structure
and dynamic behaviour of a system, so that policies for improving problem-
atic behaviour may be developed. From the System Dynamics perspective, a
model is developed to address a specific set of questions, which form the
problem statement. At the end of the modelling process, the simulation data
generated with the help of the model shall be used to answer the questions
contained in the problem statement.

diss.book Page 45 Tuesday, November 27, 2001 10:26 AM

46

System Dynamics in a Nutshell

In principle, any kind of behavioural phenomenon that occurs in the real
world can be subject of the problem definition. Typical examples of ques-
tions in a problem statement include: What are the reasons for increasing
schedule and effort overruns in the development projects? How should the
development process be changed in order to avoid schedule and effort over-
runs in the future? What is the trade-off relationship between product qual-
ity and project schedule? How do schedule overruns of past projects affect
the quality and timeliness of subsequent projects in the organisation? Etc.

3.3.2 Definition of Reference Mode

The reference mode is an explicit description of the (problematic) dynamic
behaviour of one or more system parameters observed in reality. It acts as a
catalyst in the transition from general speculation about a problem to an ini-
tial model, and it captures the dynamics of the tackled problem, i.e. behav-
iour patterns and related time horizon. The reference mode is typically repre-
sented by graphs that display the historical or hypothesised evolution of
important system variables over time. Reference modes representing empiri-
cal behaviour patterns are typically based on measurement data. Reference
modes representing hypothesised behaviour patterns should be based on
expert opinion.

Examples of reference modes are shown in Figure 21 and Figure 22.
Figure 21 is an example of an empirical reference mode that shows problem-
atic project behaviour during the implementation phase. In the example
shown, the problematic behaviour is characterised by the steady growth of
the average size of program code per inspection (solid line), and by the con-
current decrease in the average number of defects found per inspection
(dashed line).

Figure 21: Reference mode (empirical)

Implementation Phase: Inspections (current)
400
10

200
5

0
0

0 20 40 60 80 100 120 140
Time (Day)

LOC per inspection : empirical
defects per inspection : empirical

diss.book Page 46 Tuesday, November 27, 2001 10:26 AM

47

System Dynamics in a Nutshell

Assume that it was found – e.g., based on statistical analysis – that the
decrease in inspection effectiveness could be attributed mainly to the
increase of the lines of code per inspection, and the noise in the average
number of defects detected per inspection could be attributed to variation in
preparation time of inspection participants. Now, in order to keep the effec-
tiveness of the code inspections on a constant level, the goal would be to
avoid increase of the average size of code inspected per inspection session.
Figure 22 is an example of a hypothetical reference mode that describes the
intended behaviour of the currently problematic variables after implementa-
tion of adequate process changes.

Figure 22: Reference mode (hypothetical)

3.3.3 Identification of Base Mechanisms

In order to analyse – and eventually change – the behaviour of observed
objects in the real world, it is necessary to understand the important cause-
effect relations of the factors that influence those variables that represent
the observed behaviour. In System Dynamics, these cause-effect relations are
called base mechanisms. The union set of all base mechanisms is assumed to
be the minimal set of cause-effect relations that is able to explain the
dynamic behaviour described in the reference mode.

For example, in order to explain the problematic behaviour described in the
reference mode shown in Figure 21, the first question would be: What is the
reason for the increase in average code size per inspection? Possible reasons
could be increase of time pressure or decrease in motivation to follow the
inspection guidelines. Again, there are causes for the increase in time pres-
sure or the decrease in motivation. The possible causes have to be explored.
Usually, assumptions about possible cause-effect relationships have to be
elicited from project participants (managers and developers) for example in
interviews. In order to keep the number of relevant cause-effect relations
reasonably small, and to focus on the really essential effects, it is recom-

Implementation Phase: Inspections (wanted)
400
10

200
5

0
0

0 20 40 60 80 100 120 140
Time (Day)

LOC per inspection : hypothetical
defects per inspection : hypothetical

diss.book Page 47 Tuesday, November 27, 2001 10:26 AM

48

System Dynamics in a Nutshell

mended to collect as much empirical evidence as possible for any of the con-
sidered cause effect relations. Eventually, the set of base mechanisms is doc-
umented in the form binary relations. Two types of relations are possible:

Cause + → Effect + (positive impact)

Cause + → Effect – (negative impact)

In the first case (positive impact), an increase in the value of variable Cause
results in an increase in the value of variable Effect. Similarly, a decrease in
the value of variable Cause would result in a decrease in the value of variable
Effect.

In the second case (negative impact), an increase in the value of variable
Cause results in a decrease in the value of variable Effect. Similarly, a
decrease in the value of variable Cause would result in an increase in the
value of variable Effect.

3.3.4 Construction of Causal Diagram

Connecting all base mechanisms into one causal network and representing
it in the form of a graph yields the causal diagram. In order to be able to
generate the behaviour that is described in the reference mode, it is impor-
tant that the interconnection of base mechanisms captures the essential
information feedback associated with the physical processes under consider-
ation.

For the example reference mode shown in Figure 21, the interconnection of
the underlying base mechanisms could result in a causal diagram as shown
in Figure 23. If schedule pressure is perceived, this will result in decreasing
inspection effectiveness (because larger chunks of code are inspected per
inspection session), which in turn results in a decrease of the number of
defects detected. Other effects of increased schedule pressure include
increased defect injection (due to less careful programming) and faster work
progress (due to a reduced number of inspection sessions). Increased defect
injection will increase the number of defects detected because the number
of detected defects is a function of total number of defects contained in the
code. More detected defects will cause more rework which in turn will slow
down work progress. Slower work progress, in turn, will increase the time
need, which again has a positive impact on schedule pressure.

A closer look at the causal diagram presented in Figure 23 exposes three
nested information feedback loops with varying polarity:

• Loop 1: Schedule pressure (+) → Inspection effectiveness (-) → Defects
detected (-) → Rework (-) → Work progress (+) → Time need (-) →
Schedule pressure (-) [negative feedback loop]

diss.book Page 48 Tuesday, November 27, 2001 10:26 AM

49

System Dynamics in a Nutshell

• Loop 2: Schedule pressure (+) → Defect injection (+) → Defects detected
(+) → Rework (+) → Work progress (-) → Time need (+) → Schedule
pressure (+) [positive feedback loop]

• Loop 3: Schedule pressure (+) → Work progress (+) → Time need (-) →
Schedule pressure (-) [negative feedback loop]

Loops 1 and 3 have negative polarity, i.e. they have a damping effect on the
dynamics induced by an increase in schedule pressure. Loop 2, in contrast,
has positive polarity, i.e. an increase in schedule pressure has a self-reinforc-
ing effect. Whether the aggregate effect of all three loops is positive or neg-
ative can only be answered after a thorough analysis of loop dominance.

Figure 23: Circular causality underlying the “inspection effectiveness” problem

The philosophical position underlying the System Dynamics method is what
Senge and other researchers call Systems Thinking [Sen90]. The essential
step toward systems thinking is to recognise the presence of feedback
mechanisms in the observed system, in a similar way as presented in the
example above. In Systems Thinking, the behaviour of a system is considered
as primarily being generated by its structure, i.e. the interaction of all the
feedback loops over time. Therefore, in the example above, the decrease of
inspection effectiveness is diagnosed as originating from endogenous mech-
anisms, rather than from external disturbances (e.g. initial planning of work-
load and schedule). The internal structure is deemed as the explanatory fac-
tor for behaviour, and an adequate System Dynamics model has to
encompass any interaction that is essential to reproduce the behaviour of
interest. This also includes the human decision processes, which are not
modelled on the micro level of individuals but as aggregated flows resulting
from a general policy structure20. For example, the hiring of a new devel-
oper typically arises within the framework of an (implicit or explicit) organisa-
tional manpower acquisition policy. This policy might be an aggressive policy

Implementation
work to do

Time
need

Work
progress

Rework

Inspection
effectiveness

Schedule
pressure

Defect
injection

+

Implementation
schedule

Initial
planning

-

+

+

+

+

- +

+
-

-

Defects
detected

diss.book Page 49 Tuesday, November 27, 2001 10:26 AM

50

System Dynamics in a Nutshell

(i.e., hire and fire), or it might reflect reluctance to change the workforce
level, or a mix of both depending on certain conditions.

3.3.5 Construction of Flow Graph

In order to be able to run simulations, the causal diagram has to be trans-
formed into a formal model. In System Dynamics, the formal model consists
of a set of mathematical equations. System Dynamics model equations are
separated into two groups: level equations and rate equations. This termi-
nology of levels and rates is consistent with the flow-structure orientation
introduced by Forrester together with schematic conventions invoking the
image of fluid-like processes [For61][For71]. Using these conventions, Sys-
tem Dynamics model equations can be represented (and manipulated)
graphically in the form of flow graphs (cf. Figure 24 for available graphical
symbols).

Figure 24: Schematic conventions of flow graphs

The levels in a System Dynamics model describe the state of the system.
Knowledge about their values at time t is sufficient to retrieve the instanta-
neous value of any other variable. They accumulate (or integrate) the results
of action in the systems, an action being always materialised by flows in
transit. The derivative of a level, or equivalently the rapidity at which it is
changing, depends on its input and output flows. In simulation models, the
computation of a level is approximated by a difference equation of the form:

Level (t+dt) = Level (t) + (Σ input rates – Σ output rates) dt

The rates are what change the value of levels. Their equations state how the
available information is used in order to generate actions. A rate has four
conceptual components: an observed condition is compared to a goal, and
the discrepancy found is taken as the basis for action (flow) generation. The
rate equation that formalises this policy is an algebraic expression that
depends only on levels and constant values. Auxiliary variables can be used
for intermediate computation.

20 Note the underlying assumption, central to Systems Thinking, that people placed in the same struc-
ture tend to produce qualitatively similar results. Senge referred to this assumption when pointing
out that "systems cause their own crises, not external forces or individual's mistakes" [Sen90].

level
rate

auxiliary

constant

source or sink outside
the model boundary

information link

flow of quantities

diss.book Page 50 Tuesday, November 27, 2001 10:26 AM

51

System Dynamics in a Nutshell

As a concrete example of the use of these notations, let us present a simple
mechanism aiming at controlling the number of software engineers working
on a project:

Staff_level (t+dt) = Staff_level (t) + Hiring_rate (t) dt

The instantaneous hiring rate is given by:

Hiring_rate (t) = (Indicated (t) - Staff_level (t)) / Adjustment_time

As the staff level grows at a rate that depends on the previously observed
state, the equation expresses the presence of direct information feedback
(cf. Figure 19). The auxiliary "Indicated" is the goal sought by the loop,
which may vary according to some (possibly non-linear) function not detailed
here. "Adjustment_time" is a constant indicating the time needed to find
and train a new engineer.

The level and rate variables must alternate along any feedback loop, which
can be classified according to three attributes:

• polarity, negative (deviation-counteracting feedback) or positive (devia-
tion-amplifying feedback),

• order (number of levels),
• linearity or non-linearity (in rate equations).

It is the presence of non-linear high-order loops in the system that makes the
derivation of analytical solutions unfeasible. It can be shown that even sim-
ple low-order systems may exhibit a large variety of behaviour patterns; and
in practice, any system of interest will involve a high-order, multiple-loop,
non-linear structure.

3.3.6 Model Calibration

SDM calibration consists of attributing initial values to levels, setting con-
stant parameters and equation coefficients, estimating lengths and orders of
delays, and defining the table functions used to introduce non-linearities
that cannot easily be expressed by algebraic functions. To all these problems
comprehensive research has been conducted and suitable techniques have
been proposed, details can be found in [Pet76][Gra80][Ham80].

3.3.7 Model Verification and Validation

Verification is done in order to check the internal correctness21 (or appropri-
ateness) of the SDM. The guiding question is whether the model has been
constructed right. Validation, in contrast, is done in order to check the exter-
nal correctness (appropriateness) of the SDM. The guiding questions
whether the right model has been constructed. Model verification requires

diss.book Page 51 Tuesday, November 27, 2001 10:26 AM

52

System Dynamics in a Nutshell

expert knowledge about the System Dynamics modelling technique,
whereas model validation requires expert knowledge about the real system.

Barlas has proposed a set of tests for SDM verification and validation
[Bar85][Bar89][Bar94]. In addition to conducting verification and validation
tests, Richardson and Pugh propose several criteria to evaluate “general use-
fulness” of SDMs [RiP81].

Table 5 summarises the possibilities to evaluate SDMs. Barlas distinguishes
two categories of tests: structural and behavioural tests. The category of
structural tests can be further divided into direct structural tests, which are
based on theoretical and empirical evaluation checks, and behaviour-ori-
ented indirect structural tests.

Table 5: Tests for the evaluation of System Dynamics models

3.3.7.1 Verification

Verification of SDMs is done through application of direct and indirect
(behaviour-oriented) structural tests.

Direct structural tests check for correct transformation of causal relationships
into the flow graph, dimensional consistency of model equations, and the
meaningfulness of model equations also for boundary values.

Indirect structural tests check for robustness of the model behaviour against
minor changes of the model structure, appropriateness of behavioural
changes when model parameters alter (parameter sensitivity), and appropri-
ateness of the model behaviour when applying extreme values to decision
rules (policy sensitivity). Sensitivity analysis [Tan80] is performed, in order to
test whether all chosen factors are essential to reproduce a given behaviour
mode, and to study the sensitivity of the model with respect to reasonable
variations in parameter values or to a reasonable alternative in model formu-
lation. Since it is a powerful means to identify the active and dormant part of
the model, sensitivity analysis also gives an insight into influential places for
policy implementation.

21 Richardson and Pugh prefer the word appropriateness [RiP81] recalling Forrester’s principle that the
validity of SDMs “is a relative matter. The usefulness of a mathematical simulation model should
be judged in comparison with the mental image or other abstract model which would be used in-
stead.” (cf. [For71], p. 4, chapter 3).

Structural Tests Behavioural Tests

direct indirect

Verification x x

Validation x x

General usefulness x x

diss.book Page 52 Tuesday, November 27, 2001 10:26 AM

53

System Dynamics in a Nutshell

3.3.7.2 Validation

Validation of SDMs is done through application of direct structural tests and
behavioural tests.22

Direct structural tests can be applied to check whether:

• all major causal relationships have been included in the model structure
(face validity),

• the model variables have a meaningful correspondence with entities in
reality (representative or conceptual validity),

• the model parameters have been calibrated correctly, i.e., the chosen
variables and their initial values correspond to quantities that are mean-
ingful in reality (empirical validity).

Mass and Senge [MaS80] have proposed tests for the appropriate selection
of model variables based on empirical data. Statistical methods for evaluat-
ing empirical validity have been analysed and described by Morecroft
[Mor85], Peterson [Pet75][Pet76][Pet80], and Grcic and Munitic [GrM96].

Behavioural tests are applied to check whether:

• the reference mode can be sufficiently well reproduced by the model,
• there are new or unexpected behavioural patterns in addition to the ref-

erence mode behaviour,
• there are behavioural anomalies when single cause-effect mechanisms

are excluded,
• model enhancements produce unexpected behavioural patterns.

3.3.7.3 General Usefulness

Questions that help evaluate general usefulness refer to model structure,
model behaviour, and model usability. With respect to model structure crite-
ria like appropriate granularity and modularity should be judged. With
respect to model behaviour usefulness can be judged by answering ques-
tions like:

• Does model simulation provide new insights / does it offer fruitful ideas?
• Can unexpected behaviour be explained through the model?
• Is it possible to generalise the model?

Model usability can be evaluated based on an assessment of the model user
interface.

22 A summary description of general concepts of model validity, their relation to measure validity, and
their application to SDMs can be found in [Pfa97b].

diss.book Page 53 Tuesday, November 27, 2001 10:26 AM

54

System Dynamics in a Nutshell

3.3.8 Policy Analysis

Simulation-based policy analysis involves the use of the SDM to help investi-
gate why particular decision rules have the effects they do, and to identify
new decision rules that can be implemented to improve the problematic
behaviour of the real system as described in the problem statement. Policy
alternatives correspond to one or a mixture of two kinds of model manipula-
tions: parameter changes and structural changes, i.e., changes in the form
or number of model equations. Both involve changing how decisions are
made. For example, sensitive policy parameters in a model indicate leverage
points in the real world system, i.e. places where a change in quantities –
without changing the cause-effect structure – would improve matters.
Model changes involving new feedback structure, on the other hand, sug-
gest new ways of processing information for decision-making in the real
world for the purpose of improvement.

3.4 Proposed Guidance for SDM Development

Strictly speaking, there is no formal methodology defined for the develop-
ment of dynamic models, e.g. in the form of a process model. In the related
literature, process guidance for SDM development has only been provided
on informal and coarse grain level23. Several authors, including Forrester
[For61][For71], Roberts [Rob64], Randers [Ran73][Ran80b], Richardson and
Pugh [RiP81], Bossel [Bos92], and Coyle [Coy96], have suggested sequences
of modelling steps. In the following sub-sections, their work is briefly sum-
marised24.

3.4.1 Forrester (1961/71)

Forrester proposed the following list of “steps in an industrial dynamics
study” [For61]:

1. Defining the objectives of the system under study

2. Observing symptoms

3. Detecting symptoms

4. Visualising the system at issues

5. Estimating the boundaries within which lie the causes of the trouble

6. Selecting the factors to be dealt with

7. Constructing a formal model of the preceding

23 Very recently, Acuña et al. have recognised the lack of guidance for SDM model building in a com-
prehensive analysis of various descriptive process modelling methods (cf. [AAF+01], Table 2).

24 The suggestion of Wolstenholme is fully contained in the sequence of modelling steps proposed by
Coyle. Therefore, no separate section has been reserved for this author.

diss.book Page 54 Tuesday, November 27, 2001 10:26 AM

55

System Dynamics in a Nutshell

8. Using the model simulate system interactions under selected conditions

9. Interpreting the significance of the simulation results

10.Inventing system improvements

11.Repeating all of these steps to move closer and closer to the true prob-
lems and to better management policies

The list indicates that Forrester starts by deciding on a problem, proceeds to
determine the scope of the system needed to generate the problem endoge-
nously, and then chooses a set of descriptors from inside the system bound-
ary sufficiently detailed to be able to treat the problem. Upon completion of
a version of the formal model, it is run to insure that the assumed relations
actually do reproduce the problem, and to help decide how the model can
be improved. The iterative nature of modelling is recognised.

3.4.2 Roberts (1964)

The second list of “phases in the industrial dynamics approach” was pro-
posed by Roberts [Rob64]:

1. Problem identification

2. Verbal description of the dynamic system theory affecting the problem

3. Mathematical model development

4. Computer simulation of the represented system

5. Analysis of results to determine model validity and factor sensitivity

6. Double-checking of, and data collection regarding, the sensitive areas in
the model

7. Simulation experimentation to help identify improved system parameters
and policies

8. Implementation of results of investigation in the real world problem
areas

9. Evaluation of the effectiveness of the changes, and return to step 1 for
continuing improvement, if necessary

Roberts differs from Forrester mainly in his greater emphasis on the need for
data collection and sensitivity analysis to increase model credibility, and for
special efforts to insure implementation of results. Roberts explicitly
describes the largely non-quantitative, descriptive information constituting
the basis for his formal model. He also shows how increased understanding
of system characteristics can be obtained through systematic changes in
model parameter values. Roberts’ later work discusses the implementation
problem more thoroughly, pointing out the important role of the model user

diss.book Page 55 Tuesday, November 27, 2001 10:26 AM

56

System Dynamics in a Nutshell

(or customer) during problem definition and model validation
[Rob74][Rob78b].

3.4.3 Randers (1973/80)

Randers proposed the third list of activities for “conceptualizing dynamic
models” [Ran73][Ran80b]:

Phase I: Model conceptualisation

1. Familiarisation

2. Problem identification

3. Definition of reference mode

4. Identification of organising concepts and base mechanisms

Phase II: Model formulation

5. Real world description and definition of model boundaries

6. Construction of causal diagram

7. Identification of system levels

8. Detailed definition of (formal) model structure

9. Model parametrisation

10.Model testing

11.Running simulations

12.Policy experimentation

The difference of Randers’ proposal to those of Forrester and Roberts is
mainly in the more detailed description of modelling activities, which are
accompanied by a list of guidelines for the model builder. In addition, by
splitting the modelling process into two phases, model conceptualisation
and model formulation, Randers aims at reducing the repetition of the full
modelling cycle for each single model enhancement. The goal of the con-
ceptualisation phase (steps 1-4) is to arrive at a rough conceptual model
capable of addressing a relevant problem. The formulation phase (steps 5-
12) comprises two processes: the test of the dynamic hypothesis, which is a
preliminary check to see that the basic mechanisms included in the concep-
tual model actually reproduce the reference mode, and model improvement,
which extends and elaborates on the initial model until it is sufficiently versa-
tile and detailed to serve the intended purpose.

The first step after familiarisation with the customer organisation and prob-
lem definition is the definition of the reference mode, which acts as a cata-
lyst in the transition from general speculation about a problem to an initial

diss.book Page 56 Tuesday, November 27, 2001 10:26 AM

57

System Dynamics in a Nutshell

model. The reference mode captures the dynamics of the tackled problem,
i.e., behaviour patterns and time horizon. It is typically represented by
graphs displaying the historical or hypothesised evolution of major system
variables over time. Having specified the target aspects of system behaviour
in that way, the basic real-world mechanisms producing the reference mode
must be identified: a causal diagram with few generic loops is issued.

The implementation of the initial model requires turning this model skeleton
into a set of equations. The model variables must be chosen: first the levels,
then the rates and finally the auxiliaries. At this point, it is useful to build a
flow diagram that visualises the parameter interactions. Then, the rate equa-
tions are precisely defined.

Having implemented and tested the initial model, the incremental refine-
ment can start. A refinement step may either extend the model boundary by
incorporating new causal mechanisms, or refine the existing structure; some
examples are the dissection of a level, the replacement of a constant value
by a variable, the addition of a new loop, etc. The refinement process is
guided by the need to generate a new behaviour mode, to test the effect of
a management policy, or to satisfy the customer's expectation with respect
to realism and predictive accuracy. The refined models will show a variety of
behaviour modes, including the reference mode.

Once credible model structure and parametrisation is obtained by iteration,
it is expected that realistic conclusions can be drawn from policy experimen-
tation with the model.

3.4.4 Richardson and Pugh (1981)

Richardson and Pugh propose five stages of model conceptualisaton [RiP81]:

1. Problem definition

2. Model conceptualisation

3. Model formulation

4. Simulation

5. Evaluation

Within these five stages the modeller develops a statement of the context
and symptoms of a problem, sketches reference behaviour modes, articu-
lates the purposes of the modelling study, defines the system boundary, and
develops a view of system structure in terms of feedback loops of action and
information. Figure 25 summarises how these stages and concerns fit
together. The connections shown in Figure 25 suggest the overlapping
nature of stages in the modelling process. A clear statement of model pur-
pose, for example, contributes to the process of model conceptualisation as
well as to the definition of the problem. Feedback structure is likewise a

diss.book Page 57 Tuesday, November 27, 2001 10:26 AM

58

System Dynamics in a Nutshell

focus of two different stages of model development, non-quantitative
model conceptualisation in terms of diagrams, and model formulation in
terms of mathematical equations.

Figure 25: Stages of SDM development [RiP81]

The process proposed by Richardson and Pugh is very similar to that of Rand-
ers, but more technical detail is provided for the model formulation and
evaluation stages. It is also interesting, that the statement of model purpose
includes the model user, an initial view of the policies the model user would
like to be able to simulate with the model, and the kind or degree of imple-
mentation desired. Richardson and Pugh distinguish three categories of
implementation purposes: education and consciousness raising, actual adop-
tion of policy recommendations, or adoption of the model as an ongoing
policy-testing tool.

3.4.5 Bossel (1992)

Bossel distinguishes five main stages of the System Dynamics modelling life
cycle [Bos92]:

1. Development of the conceptual model (qualitative):
• Problem description and definition of model purpose
• Definition of model boundaries
• Verbal model description
• Identification of model elements and model structure
• Construction of causal diagram
• Qualitative analysis

2. Development of the simulation model (quantitative)
• Identification of model variables
• Specification of functional relationships
• Quantification
• Definition of (formal) simulation model (flow diagram and model

equations)

Stages

Problem Definition

Model Conceptualisation

Model Formulation

Simulation

Evaluation

Concerns

Context; Symptoms

Reference Behaviour Modes

Model Purpose

System Boundary

Feedback Structure

Formal Representation

Model Behaviour

Reference Behaviour Modes

diss.book Page 58 Tuesday, November 27, 2001 10:26 AM

59

System Dynamics in a Nutshell

• Validation of model structure
• Model reduction

3. Simulation of system behaviour
• Selection of simulation tool
• Implementation of model
• Selection of numerical integration method
• Selection of time step
• Definition of start conditions
• Selection of system parameters
• Specification of exogenous influences
• Definition of scenarios
• Definition of result presentation (tables, graphs, reports, etc.)
• Visualisation of state trajectories
• Sensitivity analysis
• Validation of model behaviour

4. Mathematical system analysis
• Development of a generic model
• Identification of points of equilibrium
• Identification of attractors
• Stability analysis
• Linearisation
• Analysis of catastrophic behaviour

5. Change of system behaviour
• Identification of criteria for the evaluation of behaviour
• Model changes and optimisation in search of better solutions
• Stabilisation of unstable systems by changes in parameter values and

model structure

6. Identification of generic structures (for reuse)

Compared to the other proposals, the process suggested by Bossel is the
most detailed with regard to techniques that can be applied during system
analysis and identification of reusable model structures.

Stage 1 deals with the development of the causal structure of the System
Dynamics model. Main driver for the definition of model content and model
expressiveness is the model purpose. The definition of the model structure
requires the identification of model boundaries, and of external influence
factors that have an impact at certain points in the model structure. The
main activity during stage 1 is the identification of structural elements of the
model that are of relevance for the behaviour of the real system. Because
the identification of these elements requires the close collaboration between
system analyst (model builder) and subject matter experts with knowledge
about the real system, first a verbal model description using common natural
language is developed. The verbal model is then analysed and transformed
into a causal diagram.

diss.book Page 59 Tuesday, November 27, 2001 10:26 AM

60

System Dynamics in a Nutshell

Since the qualitative structural model developed in stage 1 cannot be simu-
lated, in stage 2 of the modelling process a formalisation and quantification
of the causal diagram is conducted. For this purpose various simulation mod-
elling languages can be used, from standard programming languages to
dedicated system dynamics modelling languages. The formalisation of the
causal diagram requires the identification of model variable, the specification
of the functional relationships between variables, and their quantification.
The way in which the formalisation is done should reflect on the type of
problem to be solved, the model purpose, and the model user. The formali-
sation also includes the validation of the model structure through analysis of
the model behaviour. In order to improve the model structure alternative
model representations can be tested and a reduction of the model structure
to its essential cause-effect relationships is recommended.

Stage 3 of the modelling process comprises the selection of the modelling
tool, and the implementation of the system dynamics model. After valida-
tion of behavioural validity the model is ready for simulation. While repro-
duction of past (empirical) behaviour can be based on actual external influ-
ences on the system, simulations of future behaviour does require the
development of scenarios that define future influences. The quality of the
simulation-based analysis strongly depends on the plausibility, consistency,
and completeness of the specified scenarios. By evaluating the behavioural
validity of the model within the interesting intervals of the system parame-
ters, the original modelling task has been resolved.

In addition to the analyses conducted during stage 3, stage 4 offers a variety
of mathematical analysis methods that can help to gain insight into the
whole range of system behaviour. Starting point for the mathematical sys-
tem analysis are the level equations. Based on the analysis of the level equa-
tions it is possible to identify points of equilibrium and attractors, and to gain
insights about system stability and leverage points for changes of behaviour.

Stage 5 of the System Dynamics modelling process deals with the identifica-
tion of critical parameters and opportunities for improvements of the model
behaviour. The goal of the improvement can be the stabilisation of unstable
system behaviour or its optimisation with regard to certain evaluation crite-
ria.

3.4.6 Coyle (1996)

Coyle proposes a five-stage approach to system dynamics modelling and
analysis [Coy96]:

1. Problem recognition (who cares, and why)

2. Problem understanding and system description (influence diagrams)

3. Qualitative analysis (bright ideas and pet theories)

diss.book Page 60 Tuesday, November 27, 2001 10:26 AM

61

System Dynamics in a Nutshell

4. Simulation modelling (formal model building and testing)

5. Policy testing and design:
a) Exploratory modelling and policy design by simulation (assessment by

judgement)
b) Policy design by optimisation (objective function)

The five stages proposed by Coyle are very similar to those of Bossel. Most
interesting is probably the mentioning of so-called “bright ideas” and “pet
theories” during qualitative analysis (stage 3).

Bright ideas emerge from experience with other problems. One may have
seen something like the set of feedback loops for this problem in some other
case, and what was learned then may be applied in the current analysis.

According to Coyle, pet theories are frequently even more useful. They are
the views of experienced people in the system of what is wrong with it. The
views themselves may be found to be wrong on deeper analysis – and the
reasons why they are wrong are of great interest – but they are almost
always a useful source of knowledge about the problem and should be
searched for by the analyst.

3.5 System Dynamics Tools

System Dynamics model equations can be implemented by using a general
purpose programming language like FORTRAN, Pascal and C, or by using a
dedicated SDM development software. The first dedicated System Dynamics
modelling language and tool was DYNAMO, developed at the MIT in the
late 1950s. The first version of DYNAMO, which was available in 1960, bears
little relationship to what is now produced. It ran on mainframes, was purely
textual, had very limited input/output functionality, and no interfaces to
other applications. Today, there exist currently a lot of software packages
supporting the development and simulation of SDMs. The characteristics
and features of some of these packages are summarised in Table 6, provid-
ing references for further reading. A presentation of the “evolutionary lines”
of System Dynamics software can be found in Coyle [Coy96].

diss.book Page 61 Tuesday, November 27, 2001 10:26 AM

62

System Dynamics in a Nutshell

Table 6: Selection of System Dynamics software packages.

3.6 System Dynamics Applications in Software Engineering

Published examples of SD applications in software development cover a vari-
ety of issues such as:

• software project management,
• concurrent software engineering,

Tool name
(year of first

version)

Type of developer Refer-
ence

Characterisation

COSMIC/COS-
MOS (1984)

COSMIC Holding
Company (UK; com-
mercial)

[Coy96] Descendent of DYSMAP; strong optimisation functionality; comprehen-
sive model analysis functionality; graphical modelling environment

DYNAMO (1960) Pugh-Roberts Associ-
ates (USA; commer-
cial)

[Dyn91] First System Dynamics simulation language; no graphical modelling lan-
guage is provided; originally only batch simulation; in the meanwhile, an
enhanced version – DYNAMO Plus – supports the building of GUIs and
conducting interactive simulation runs

DynaMan (1992) University of Milano
(Italy; non-commer-
cial)

[BFL+92] Proprietary system of Politechnico di Milano (research prototype) with
graphical modelling environment and strong model analysis functionality
(similar to Vensim); not further developed; today out of use

DYSMAP2 (1970) University of Salford /
Salford Software Ltd.
(UK; commercial)

[VaD87]
[Coy96]

The DYSMAP software package was originally developed at the Univer-
sity of Salford based on DYNAMO; today, DYSMAP2 is a commercial tool
with purely textual modelling language but comprehensive simulation
and analysis functionality

EXTEND (1992) Imagine That Inc.
(USA, commercial)

[RuC99] Integrates discrete (event-driven/ queuing systems, etc.) and continuous
modelling; allows for hierarchical modelling; provides many pre-defined
building blocks

MicroWorld Cre-
ator (1992)
MicroWorld S**4
(1993)

MicroWorlds Inc.
(USA, commercial)

[Die92]
[Die93]

Supports a textual simulation language, but can import STELLA/Ithink
and DYNAMO models; support for design of GUIs for interactive simula-
tions, exploration and playback modes; can models can be connected to
management information systems

MIMOSE (1992) University of Landau-
Koblenz (Germany,
non-commercial)

[MSF92] Proprietary University development with special focus on hierarchical
modelling; mainly geared at applications in sociology; provides a graphi-
cal modelling environment

PowerSim (1992) POWERSIM AS (Nor-
way, commercial)

[Coy96] A descendant of Ithink, developed in the context of a Norwegian govern-
ment sponsored project aimed at improving the quality of high school
education using SDMs. This project resulted in the development of
Mosaic, an object oriented system aimed primarily at the development of
simulation based games for education. Powersim was later developed as
a Windows based environment for the development of system dynamics
models that also facilitates packaging as interactive games or learning
environments; a graphical modelling language is provided

STELLA/IThink
(1984)

High Performance Sys-
tems Inc. (USA, com-
mercial)

[Ste90] STELLA/IThink was the first System Dynamics tool that provided a graphi-
cal modelling language; recent versions provide a comprehensive func-
tionality for batch and interactive simulation, input/output, and analysis
(e.g., sensitivity analysis, Monte Carlo); hierarchical modelling is sup-
ported on two levels; the authoring version provides functionality for cre-
ating learning environment or management flight simulators

VENSIM (1992) Ventana Systems Inc.
(USA, commercial)

[Ven97] Supports a graphical simulation language; provides functionality for
structural analysis of the model (e.g., causal tracing, loop detection),
behavioural analysis (e.g., multi-variate sensitivity analysis, Monte Carlo),
optimisation, filtering, model validation, interactive simulation (gaming),
storage and comparison of simulation runs, and design of GUIs and
learning environments; models can be decomposed into views

diss.book Page 62 Tuesday, November 27, 2001 10:26 AM

63

System Dynamics in a Nutshell

• software requirements engineering,
• the impact of process improvements on cycle-time,
• effects of software quality improvement activities,
• software reliability management,
• software maintenance,
• software evolution,
• software outsourcing, and
• software engineering training.

3.6.1 Software Project Management

In the area of software project management, several different models have
been published. Some of them are briefly summarised below.

3.6.1.1 Abdel-Hamid and Madnick

Abdel-Hamid and Madnick developed a first generic software project simula-
tion model with SD in the late 1980s. The book by Abdel-Hamid and Mad-
nick gives a complete description of the model equations and the hypothe-
ses that led to their formulation [AbM91].

Table 7: Overview of the model's four subsystems

The model proposed by Abdel-Hamid and Madnck originates in concepts
contained in the generic model of R&D project life cycles published by Rob-

Human Resource Manage-
ment

Captures the hiring, training, assimilation and transfer of
people; evaluates the workforce available, newly hired or
experienced.

Software
Produc-
tion

Manpower Allo-
cation

SW Development

QA & Rework

System Testing

Evaluates the fraction of manpower allocated to QA,
rework, development & test.

Focuses on productivity. Determination of the % of tasks
completed.

Models the occurrence of errors in tasks, their partial
detection (QA) and imperfect removal (rework), evaluates
the number of errors that will pass into subsequent phases
of development.

Models the propagation of residual errors into subsequent
phases of development, and their elimination during test-
ing, determines the percentage of tasks tested.

Controlling Measures perceived progress and adjusts the job size esti-
mates.

Planning Adjusts schedule & workforce level according to the esti-
mates.

diss.book Page 63 Tuesday, November 27, 2001 10:26 AM

64

System Dynamics in a Nutshell

erts in the 1960s [Rob64][Rob74], and is based on a comprehensive analysis
of small and medium-size software development projects conducted at the
NASA during the 1980s. The proposed model consists of about 200 model
equations. It integrates three kinds of functions that influence a project's
dynamics: managerial related, production-related and human-related func-
tions. It is confined to the development phase, that is, neither the require-
ments definition phase, nor the maintenance phase is taken into account: as
a result, stable requirements are assumed all along the process.

The model consists of four subsystems, each including several kinds of influ-
ential functions: the Human Resource Management subsystem; the Soft-
ware Production subsystem; the Controlling subsystem; the Planning sub-
system. Table 7 outlines their main features. All subsystems are interrelated
and interdependent; the local modification of a system parameter triggers a
chain reaction in the whole system that will eventually affect the initially
changed parameter. Simulation output shows behaviour patterns of essen-
tial management parameters, i.e. scheduled completion date, estimated
cost, manpower loading, and cumulative man-day expenditure. Batch simu-
lations of the model have been performed, in order to gain insight into the
general process of software development, and to investigate the impact of
some managerial policies on typical example projects. Experimental results
can be found in [Abd90][AbM91][Abd93a][Abd93b][ASR93].

Abdel-Hamid and Madnick’s model does not consider any breakdown of the
project work, assuming the highest possible level of aggregation. This way, it
cannot provide a detailed analysis of the intermediate schedule milestones.
This consideration also avoids the model to consider a planned staff profile
for the project and, hence, in replicating the "Raleigh curve", there is no
explicit consideration for the "natural" changes in the work intensity. Finally,
the model also considers stable requirements for the project, something
extremely unlikely in most medium-large size software projects.

The work of Abdel-Hamid and Madnick brought a significant contribution to
the field of software project simulation. Due to the fact that the model has
been entirely published and thoroughly commented it has been re-used by
other authors as the basis for their studies. For example, Aranda, Fiddaman,
and Oliva report the extension of Abdel-Hamid and Madnick's model with a
longer time horizon, covering successive software releases and market diffu-
sion [AFO93].

3.6.1.2 Lin et al.

The models developed by Lin et al. at the Jet Propulsion Laboratory consider
an explicit breakdown of the software project work into the classic life-cycle
stages, providing a more detailed analysis for the schedules, budgets and
staff allocation to the project than Abdel-Hamid and Madnick.

diss.book Page 64 Tuesday, November 27, 2001 10:26 AM

65

System Dynamics in a Nutshell

The Software Life Cycle Simulator (SLICS) focuses on the problem of require-
ments changes being introduced throughout the life-cycle [Lin89][LeL91].
An interesting feature of this work is the use of an input and output expert
system having fuzzy logic at the interface of the dynamic model. The fuzzy
logic has been introduced to handle imprecise information such as subjective
input variables (e.g. effectiveness of training methods) or some delay vari-
ables (e.g. length of time during which work pressure is applied). The input
expert system checks the plausibility of input values, performs preliminary
analysis using conditional statements, and transforms the fuzzy values into
numerical ones that will be used as inputs to the System Dynamics model.
The purpose of the output expert system is to make recommendations based
on experimentation with the model; it supports the analysis of output vari-
ables using fuzzy algorithms.

The Software Engineering Process Simulator (SEPS) is an extension of SLICS
[LAS97]. It provides an important perspective of a software project described
as a dual life-cycle process of engineering (i.e. product development) and
management (i.e. decision-making). Also important is the proposed proce-
dure to support empirical validation of the model based on several tests. The
model has been validated against real data from a completed space shuttle
software project, covering a time horizon of about 8 years: the supplied
results were accurate within a range of 10% of errors. An experiment has
been conducted to test the hypothesis that experienced managers were not
able to distinguish between genuine and simulated data [Lin93].

3.6.1.3 Cooper and Mullen

In the scope of their consultant activities at Pugh-Roberts Associates analys-
ing defence and commercial projects, Cooper and Mullen developed a
generic SDM that focuses on the rework cycles in software development
[CoM93]. In their model they introduced the important concepts of the
rework cycle and monitoring ramps. This considers explicitly that rework is
generated in the project and remains undiscovered until the later stages. The
consequent gap between the perceived and the real progress explains the
occurrence of the "90% syndrome". Cooper and Mullen’s system provides a
very flexible way of capturing the project work structure because the model
is developed based on generic "building blocks" to capture the major
project activities. This includes design, construction, procurement, testing,
staffing categories, and program management. The procedures to apply the
model in practice are based on the calibration for a "problem-free" scenario,
followed by "what-if" analyses where disturbances are introduced. Despite
the modularity of the simulation model, it still assumes a high level view aim-
ing to support the strategic management of large design and construction
programs, which often include several projects being implemented in paral-
lel.

diss.book Page 65 Tuesday, November 27, 2001 10:26 AM

66

System Dynamics in a Nutshell

3.6.1.4 Rodrigues and Williams

Rodrigues and Williams developed the Project Management Integrated
Model (PMIM) in order to demonstrate the usefulness of complementing tra-
ditional project management approaches with SDMs [RoW96]. The PMIM
considers the use of SDMs at both strategic and the operational manage-
ment levels providing support to the planning and monitoring functions. In
planning, the role of the models focuses on estimating future results and
performing risk analysis, while in monitoring they are aimed at diagnosing
the project past behaviour. At the strategic level, the high-level System
Dynamics Strategic Model (SDSM) is used, which covers the whole project
life-cycle and captures the major software development milestones. At the
operational level, a more complex model (SDOM) captures in more detail the
individual life-cycle phases. The structure of both models is based on an
appropriate breakdown of the project into major sub-tasks, and in consis-
tence with the traditional work breakdown structure. The use of the SDSM
focuses on providing quick and preliminary assessment of major strategic
decisions and risks before a detailed plan is produced. This is particularly
important at the early stages when a detailed plan for the whole life-cycle is
not available. The SDOM focuses on the project sub-tasks in more detail pro-
viding quantitative data to support work scheduling and resource allocation.
The PMIM framework has been validated in an industrial case study.

3.6.1.5 Henderson and Howard

Henderson and Howard developed a SDM to analyse large-scale software
development projects [HeH00]. The CMPM, the Cellular Manufacturing Pro-
cess Model, represents a component-based process strategy that uses con-
currency and distribution to reduce cycle time. In CMPM, networks of semi-
autonomous cells co-operate to produce a complex large-scale system. The
model views development as a manufacturing activity where systems are
built from components, which are a mixture of self-built, reused and
bought-in components. The model is hierarchical, any component may be a
product of others. Predicting the cost, quality and schedule outcome of
CMPM depends upon the behaviour within cell (intra) and co-operative
behaviour between cells (inter) in a dynamic enviroment. CMPM proved to
be useful to develop better understanding of both inter and intra cell behav-
iour and to evaluate effects on project cycle time and predictability.

3.6.2 Concurrent Software Engineering

Powell et al. used a SDM to evaluate strategies for lifecycle concurrency and
iteration [PMB99]. Two significant methods for achieving improved cycle-
time capability are concurrent software engineering and staged-delivery.
Concurrent software engineering exploits the potential for simultaneous
performance of development activities between projects, product deliveries,
development phases and individual tasks. Staged-delivery enables lifecycle

diss.book Page 66 Tuesday, November 27, 2001 10:26 AM

67

System Dynamics in a Nutshell

iteration to supply defined chunks of product functionality at pre-planned
intervals. The simulations substantiated the assumption that both techniques
provide a promising route to reduced cycle-time, increased product quality
and lower development costs.

3.6.3 Software Requirements Engineering

Christie and Staley built a SDM that simulates the Joint Application Develop-
ment (JAD) process, as implemented by the Computer Sciences Corporation
with particular focus on the requirements development process [ChS00]. The
model not only explores the organisational issues of requirements develop-
ment but also the social issues, namely, how effectiveness of "people inter-
actions" does affect the resulting quality and timeliness of the output. The
importance of social modelling in determining the outcomes of software
processes is demonstrated.

3.6.4 Impact of Process Improvements on Cycle-Time

A common problem faced by most software development organisations
attempting to shorten their cycle time is selecting among the numerous pro-
cess improvement technologies. In order to analyse the impact of improve-
ment technologies on software development cycle time, Tvedt developed a
modular SDM that captures a basic waterfall-like development process
[TvC95][Tve96]. The effectiveness of new technologies like software inspec-
tions can be investigated by experimentation with this model.

3.6.5 Effects of Software Quality Improvement Activities

As in software project management, in the area of software quality improve-
ment and technology change, several different models have been published.
Some of them are briefly summarised below.

3.6.5.1 Aranda et al.

Aranda et al. developed a management flight simulator or a "microworld"
to support policy evaluation and management decision-making related to
the use of TQM (total quality management) techniques for software devel-
opment [AFO93]. For example, based on simulation runs the long-term gains
and short-term costs of quality initiatives like Quality Function Deployment
(QFD) or formal inspections can be analysed. The flight simulator has been
used as a computer-based learning environment enabling cross-functional
product development teams to practice decision making by simulating the
entire software product lifecycle in accelerated time.

diss.book Page 67 Tuesday, November 27, 2001 10:26 AM

68

System Dynamics in a Nutshell

3.6.5.2 Chichakly

Chichakly reports that High Performance Systems, Inc., used small SDMs in
their consulting activities with software organisations to help analyse the fol-
lowing two real-case problems [Chi93]:

• Introduction of a new technology, namely object-oriented design and
programming. The SDM was intended to help manage the transition,
and incorporated both long-term and effects of the technology (intensive
code reuse) and short term ones (inexperience of developers, loss of
existing code base of past products, use of new tools).

• Quality improvement. The SDM was focused on the software develop-
ment life-cycle (specification, design and coding), and aimed at optimis-
ing quality initiatives: the introduction of techniques such as reviews and
prototyping was simulated at several project stages.

3.6.5.3 Madachy

Madachy developed a dynamic simulation model of an inspection-based
software lifecycles process to support quantitative process evaluation
[Mad94][Mad96]. His model serves to examine the effects of inspection
practices on cost, schedule and quality throughout the lifecycle. Madachy
used System Dynamics to model the interrelated flows of tasks, errors and
personnel throughout different development phases. The model has been
calibrated to industrial data.

3.6.6 Software Reliability Management

Rus et al. describe the use of a process simulator to support software project
planning and management [Rus98][RuC99]. The modelling approach here
focuses on software reliability, but is just as applicable to other software
quality factors, as well as to cost and schedule factors. The original simulator
was developed using the System Dynamics approach. As the model evolved
by applying it to a real software development project, a need arose to incor-
porate the concepts of discrete event modelling. The System Dynamics
model and discrete event models each have unique characteristics that make
them more applicable in specific situations. The structure of the System
Dynamics model is presented and the use of the discrete event model to
construct a software reliability prediction model for an army project, the
Crusader, is described in detail.

3.6.7 Software Maintenance

Cartwright and Shepperd built a SDM to analyse the dynamic behaviour of
software systems from a maintenance perspective [CaS99]. As an approach

diss.book Page 68 Tuesday, November 27, 2001 10:26 AM

69

System Dynamics in a Nutshell

to understand maintenanace processes and trends, the dynamics generated
by information feedback loop was of particular interest. The authors report
on a major case study of an information system that was developed for a
multi-national organisation. In this case study change documents data was
examined over a period of four years. The data includes information on the
time taken for each change at six different stages in the change request life
cycle and evidence of interesting feedback processes was noted.

3.6.8 Software Evolution

Lehman and Ramil developed a SDM to analyse the impact of feedback in
the global software process, i.e. the evolution of software during successive
releases [LeR99]. Based on their analyses they could conclude that process
dynamics, which typically involve feedback phenomena, are a powerful
determinant in the software (and systems) development and evolution pro-
cess.

3.6.9 Software Outsourcing

The primary objective of the research of Roehling et al. is to determine how
software organisations can improve their software outsourcing strategies
and processes [RCH+00]. This research utilises System Dynamics simulation
modelling to explore the dynamics of outsourcing relationships, including
both positive and negative outcomes, as well as to provide potential decision
support for strategic outsourcing decisions. The model's current implemen-
tation, applicability and usefulness are demonstrated with an example use
case and analysis of simulation results. The described maintenance outsourc-
ing model represents fundamental software project components, such as
staffing, schedule, learning and costs, which are combined with outsourc-
ing-specific rework, overhead and work effort scheduling.

3.6.10 Software Engineering Training

Litton's Guidance and Control Systems Division used System Dynamics to
create mostly small-scale models for investigating managerial process issues
and supporting personnel training. In a paper, Madachy and Tarbet argue
that System Dynamics simulation is well suited to exploring process issues
and even small models are highly valuable for providing insight into dynamic
trends [MaT00]. The SDMs have helped managers understand the key fac-
tors in complex scenarios. Modelling is also used to support training of soft-
ware managers. Topics including earned value techniques, productivity esti-
mation, requirements volatility effects and extrapolation of project tracking
indicators have been successfully presented with simulation models.

diss.book Page 69 Tuesday, November 27, 2001 10:26 AM

70

System Dynamics in a Nutshell

3.7 Open Issues

Based on the review of the available System Dynamics literature it can be
concluded that the modelling method as such is mature and well docu-
mented, that adequate tool support for implementing and analysing SDMs is
available, and that successful applications of System Dynamics in the field of
software engineering have been reported. But it can also be recognised that
no standard life cycle model for the development of SDMs has emerged, and
that no detailed process model for the development of SDMs exists.

Most of the System Dynamics work published consists of presenting models
and the results of their application. There is, however, very little support in
helping industrial practitioners on how to efficiently and effectively build
System Dynamics models. Available guidance is mainly related to technical
aspects like identification model variables, parameter estimation, verification
and validation, and system analysis based on simulation. In addition, the
available guidance does not reflect upon the specific context of software
engineering, i.e., alignment with systematic improvement, customisation to
software management tasks, support for reuse of data and models that are
typically available in software organisations. Detailed support for model
building in the form of a process model that covers issues like problem defi-
nition, identification of stakeholders (role model), description of entry and
exit criteria of modelling activities, definition of a product model, provision
of templates and checklists, and guidance on systematic information reuse
from other modelling activities and existing models is missing. This lack of
sufficiently detailed guidance for SDM developers in software organisations
has recently been reconfirmed in a study on process modelling by Acuña et
al. [AAF+01].

In order to overcome these weaknesses of the System Dynamics method and
to integrate it smoothly with state-of-the-art SPI methodologies, action
research was conducted in the scope of the project PSIM within an industrial
organisation (cf. Section 4 for details). The objective of this research was to
apply the System Dynamics approach “as-is”, i.e. from scratch, only based
on the available literature, in an industrial software organisation. During the
application, the impact on the software organisation and the strengths and
weaknesses of the System Dynamics approach could be analysed. Based on
the lessons learned from this explorative case study, improved guidance for
System Dynamics modelling in SW organisations was developed (cf. Part III
of the thesis).

diss.book Page 70 Tuesday, November 27, 2001 10:26 AM

71

Part II: Action Research and Baselining

diss.book Page 71 Tuesday, November 27, 2001 10:26 AM

72

diss.book Page 72 Tuesday, November 27, 2001 10:26 AM

73

The PSIM Project

4 The PSIM Project

As part of the research for this thesis, a first SDM development project was
conducted in the years 1994 and 1995 in a large software development
department of Siemens’ former Private Communication Networks Group. As
a result of this project, the SD model PSIM (Project SIMulator) emerged
[Pfa94][PfK95].

4.1 PSIM Project Background

Previous to the PSIM project, the software development processes of the Pri-
vate Communication Networks Group had been assessed against the Capa-
bility Maturity Model (CMM) [PCC+93], and a subsequent re-engineering
project was currently ongoing. One goal of this re-engineering project was
to improve cycle time such that the overall development time of new soft-
ware versions could be reduced. A result of this effort was the redesign of
the software development processes so that activities within individual
development phases could be carried out in parallel, thus facilitating com-
prehensive concurrent development with well-defined synchronisation
points.

4.2 PSIM Project Objectives

The PSIM project was a pilot project. Its purpose was to explore the feasibility
of SDM development in an industrial software organisation and to demon-
strate the usefulness of SDMs for the planning, control, and improvement of
software development processes. As a by-product, simulations with the PSIM
model should demonstrate the improvements of the new concurrent devel-
opment process over the old process.

The duration of the PSIM project was 18 months, from April 1994 to Sep-
tember 1995. The total project effort accumulated to about 1.25 person
years, including about 0.25 person years for the customer organisation at
Siemens.

From the research point of view, the main objective of the PSIM project was
to explore the potentials of the System Dynamics approach in a real setting.
The project goals of the potential PSIM model users can be separated into
short term and long term goals. The major short-term goals were related to
the planning and control of software development projects. The following
issues were of primary interest:

diss.book Page 73 Tuesday, November 27, 2001 10:26 AM

74

The PSIM Project

• defect generation, detection, and propagation along development
phases;

• trade-off effects between project duration, product quality, and man-
power allocation (effort);

• effects of unexpected change requests;
• interdependence between software features;
• interdependence between concurrent projects.

In the long run, it was intended to use PSIM as a kind of general-purpose
support tool for continuous process improvement.

4.3 PSIM Model Scope

The SD model PSIM covers the software development phases high-level
design (HLD), low-level design (LLD), implementation (IMP), and unit and
integration test (TST). To reduce the static complexity of the overall model,
each development phase was modelled as a separate view. All views are
mutually interrelated, reflecting critical aspects of the interdependency
between development phases. The interdependencies are mainly deter-
mined by the product flow and its defect co-flow, as well as by joint
resources, namely human workforce and room availability for conducting
inspections. A rough idea of PSIM's overall model structure is given in
Figure 26.

Figure 26: PSIM overall model structure

To each of the software development phases exist both a causal diagram
containing the qualitative cause-effect relationships, and a formal flow
graph containing the mathematical equations of the simulation model.
Details about implementation and functionality of the PSIM model can be
found in Appendix A (see also [Pfa94b][PfL00c]).

4.4 Modelling Steps

When the idea was born to use System Dynamics within a software organi-
sation at Siemens, no detailed guidance for the construction of SDMs was
available. In the SD literature, only a general modelling process and some
rough guidelines were suggested. Based on the recommendations provided

View 1: HLDView 1: HLDView 1: HLDView 1: HLD View 2: LLDView 2: LLDView 2: LLDView 2: LLD

HL Design
Docs to do

HL Design
Docs ready

write
&

rework
inspect

LL Design
Docs to do

LL Design
Docs ready

write
&

rework
inspect

View 4: TSTView 4: TSTView 4: TSTView 4: TSTView 3: IMPView 3: IMPView 3: IMPView 3: IMP

Code
to do

Code
ready

write
&

rework
inspect

Code
untested

Code
tested

test

diss.book Page 74 Tuesday, November 27, 2001 10:26 AM

75

The PSIM Project

in [Ran80b] and [RiP81], the development of SDMs at Siemens was planned
to be done in five steps, which were expected to be iterated several times
[PfK95]:

• Step 1: Problem definition. In principle, any kind of behavioural phenom-
enon that occurs in the system can be subject of the problem definition.
It is important, however, that the problem to be analysed is related to
dynamic behaviour patterns, and that the scope of the problem defini-
tion is reasonably well focused.

• Step 2: Definition of the reference mode. The reference mode is an
explicit description of the (problematic) dynamic behaviour of one or
more system parameters observed in reality. It acts as a catalyst in the
transition from general speculation about a problem to an initial model,
and it captures the dynamics of the tackled problem, i.e. behaviour pat-
terns and related time horizon. The reference mode is typically repre-
sented by graphs that display the historical or hypothesised evolution of
important system variables over time.

• Step 3: Definition of the causal diagram. Having specified the target
aspects of system behaviour in Step 2, the basic real-world mechanisms
producing the reference mode must be identified: a causal diagram with
few generic loops is issued.

• Step 4: Definition of the flow graph and model equations (including
implementation of user interface, and model documentation). The imple-
mentation of the initial model requires turning the causal diagram into a
set of equations. The model variables must be chosen: first the levels,
then the rates and finally the auxiliaries. At this point, it is useful to build
a flow diagram that visualises the parameter interactions. Then, the rate
equations are precisely defined. For static verification, the plausibility of
any introduced feedback mechanism must be examined, given the
knowledge about the real system. Also, the chosen variables and their
initial values have to correspond to quantities that are meaningful in the
real system. Some systematic checks are performed on the model equa-
tions: dimensional analysis ensures their consistency; rate and auxiliary
equations are examined under extreme conditions in order to expose
flaws in their formulation.

• Step 5: Simulation for validation and problem solution. After a model
version has passed static verification, dynamic testing begins. It is
checked whether the values taken by variables during the simulation
remain within their valid range even under extreme conditions. In case of
unexpected behaviour modes, the opinion of experts in the real system is
requested. Sensitivity analysis is performed in order to test whether all
chosen factors are essential to reproduce a given behaviour mode, and to
study the sensitivity of the model with respect to reasonable variations in
parameter values or to a reasonable alternative in model formulation.
Since it is a powerful means to identify the active and dormant part of
the model, sensitivity analysis also gives an insight into influential places
for policy implementation. Once credible model structure and parameter-

diss.book Page 75 Tuesday, November 27, 2001 10:26 AM

76

The PSIM Project

isation is obtained by iteration, it is expected that realistic conclusions
can be drawn from policy experimentation with the model.

4.5 Knowledge Acquisition Activities

In the context of SDM development, knowledge acquisition is necessary to
gather information that helps to specify the reference mode, to derive the
causal diagram, to estimate the parameters of the model equations, to cali-
brate the SDM, and to validate the SDM.

It should be noted that in larger software organisations, there is not a single
source of information available. Usually, knowledge is distributed among
experts (personal knowledge), process descriptions, measurement databases
and many other information sources. Moreover, it is often the case that no
‘hard facts’ are available and therefore personal interpretations and percep-
tions of the real system “software organisation” have to contribute to the
evolving model.

4.5.1 Organisations and Roles Involved

The development of the PSIM model required extensive knowledge elicita-
tion from different experts. In total, five roles were involved in knowledge
acquisition. They are listed in Table 8, indicating role name, role label, and
number of persons assuming a role. All roles, except the SDM developer
were assumed by members of the customer organisation at Siemens.

Due to uncertainty about the potential applications, the SDM user was not
clearly defined from the beginning of the project. First, it was assumed that
the members of a Software Engineering Process Group (SEPG) would be the
target role, then the project manager seemed to be the most appropriate
user, finally it was discussed whether the members of the Project Manage-
ment Office (PMO) might be the right group of persons to apply the model
on a regular base.

Table 8: Organisations and roles in the PSIM project.

The group of software development experts included the project manager,
one sub-project manager, one test expert, one configuration management

Role name Label Number of persons

SDM developer B 1

Facilitator F 1

SDM user U 1-5

SDM maintainer M 1

Software development expert E 8

diss.book Page 76 Tuesday, November 27, 2001 10:26 AM

77

The PSIM Project

expert, one quality assurance expert, one requirements engineering expert,
one process management expert, and one tools and methods expert.

It should be noted that one person can assume several roles, i.e. the facilita-
tor or SDM user can also be a software development expert. In the PSIM
project, for example, the process management expert also assumed the role
of the facilitator, the tools and methods expert was also responsible for
maintaining the SDM, and the overall project manager was at the same time
a candidate for assuming the role of the model user.

4.5.2 Interviews and Reviews

Interviews and subsequent review meetings were the most important activi-
ties for knowledge acquisition. A total of 17 interviews and review meetings
were conducted, each one with one interviewer and one to three inter-
viewees. The typical duration of an interview or review meeting was one to
two hours. Table 9 lists the topics that were covered by an interview or
review meeting, and shows the number of meetings and the roles involved
(using the same labels as in Table 8).

Table 9: Topics of review and interview meetings

In addition to face-to-face meetings, telephone conversations were con-
ducted and presentations were given to potential users and management.

4.5.3 Data Sources

In order to build the PSIM model, subjective and objective measurement
data was needed (cf. [FeP97] for a general discussion of subjective and
objective measures). Siemens selected a large project, which was considered
to be representative for the organisation, and from which process informa-
tion and data on several subsequent software versions (V1, …, Vn) could be
provided. When the PSIM project started, software version V1 was just about
to go into the field, and software version V2 was in its requirements analysis
phase.

Interviews and Review Meetings

Topic Number of Meetings Roles involved

Modelling goals / Problem definition 3 F, U, M

Overall SW development process / Model gran-
ularity

3 F, E

Details about test phases 2 E, M

Details about early phases 1 E

User interface 2 U, M

Measurement data for model calibration 3 E

Model validity 3 F, M, U

diss.book Page 77 Tuesday, November 27, 2001 10:26 AM

78

The PSIM Project

In the course of the project, mainly two databases could be exploited: a
database (DB-A) with information on inspections and tests conducted during
software development, and a database (DB-B) with defects detected during
field trials and by the customer. From database DB-A, full information about
design documents, code inspections, and unit, integration and system tests
of software version V1 could be extracted. Typical attributes in the database
were the type of document inspected, the effort spent for inspections, and
the number of defects found during inspections and development tests.

In addition to databases DB-A and DB-B, information could be extracted
from the available project management documents, e.g. planned and actual
schedules, effort consumption, and code size.

Since the complete data set for software version V1 was available early dur-
ing the PSIM project, it could be used for calibrating the PSIM model. As
development of the next software version V2 proceeded, new data was con-
tinuously added to the databases. This data could be used to validate (and
re-calibrate) the PSIM model. After validation, the PSIM model could then be
used for planning and controlling the development of software version V3.

4.6 Modelling Results

Based on the results of the knowledge acquisition activities, quantitative
models describing essential aspects of the software development process
were derived, and to each of the software development phases both a
causal diagram containing the qualitative cause-effect relationships, and a
more formal flow graph containing the mathematical equations of the simu-
lation model were developed.

4.6.1 Identification of Modelling Goal

As mentioned before, a clear and well-focused goal definition for the model-
ling project could not be achieved. In the beginning of the project, the SD
facilitator was expected to provide the relevant input. His goal was to make
PSIM a full micro-world [Die94, Mor88] that would be able to reproduce any
important aspect of the software development process in his organisation. In
particular, this micro-world should be used to demonstrate that the new
development process, designed to enforce concurrent development, was
better than the old process. In contrast to this broad organisational, process-
oriented goal definition, later in the course of the modelling project, the
project manager, one of the potential PSIM users, was mainly interested in
getting a project-centred decision support tool that he/she could use for
high-level planning and control.

Reference mode: An explicit agreement between model builder and model
user(s) on what the reference mode for the PSIM model was, could not be
achieved. This was mainly due to the fact that the modelling goal was not

diss.book Page 78 Tuesday, November 27, 2001 10:26 AM

79

The PSIM Project

defined precisely enough. As a consequence, the experts were often not
able to formulate hypotheses on typical (and/or problematic) dynamic
behaviour of the software development system. The fact that historical time
series data was not available in sufficient detail worsened this problem.

4.6.2 Dynamic Hypotheses

As a direct consequence of not having a well-focused reference mode in
place, the experts used to state assumptions about causal relationships that
govern project behaviour only very vaguely. Nevertheless, based on the avail-
able data related to the development and field test of software version V1,
the SDM developer could come up with several analogy-based mathematical
models, namely: a defect slippage model (addressing defect injection, defect
propagation, defect detection, etc.), a size prediction model (estimating
number of KLOC and number of test cases based on design size), an inspec-
tion effectiveness model, a test case effectiveness model, and productivity
models (for each phase). These mathematical models were supposed to
largely represent the dynamic hypotheses, i.e. the key dynamics that govern
the system behaviour (i.e. project performance). Unfortunately, due to lack
of time, most of the experts were not available for a detailed discussion of
these models. Therefore, it could not be decided whether the SDM devel-
oper had identified the most important dynamic hypotheses, and whether
they were represented correctly.

4.6.3 Flow Graphs and Model Equations

Based on the interviews, the available process handbook, and the quantita-
tive data, flow graphs were developed for each development phase. In total,
the whole model contained 212 variables, and hence, 212 model equations.
Among the 212 model variables, 26 were of type level. Table 10 provides a
list of the level variables.

Table 10: List of all levels contained in the PSIM model

PSIM level variables

Global (1) HLD (7) LLD (7) IMP (7) TST (4)
Average
Overtime

HLD Defects Detected
HLD Defects Generated
HLD Defects Undetected
HLD Inspections
HLD Project Variation
HLD Work Accomplished
HLD Work Remaining

LLD Defects Detected
LLD Defects Generated
LLD Defects Undetected
LLD Inspections
LLD Project Variation
LLD Work Accomplished
LLD Work Remaining

IMP Defects Detected
IMP Defects Generated
IMP Defects Undetected
IMP Inspections
IMP Project Variation
IMP Work Accomplished
IMP Work Remaining

TST Defects Detected
TST Project Variation
TST Work Accomplished
TST Work Remaining

diss.book Page 79 Tuesday, November 27, 2001 10:26 AM

80

The PSIM Project

4.6.4 Causal Diagrams

For the purpose of documentation, and to ease communication with
experts, causal diagrams were developed. They represent the major causal
relationships contained in the PSIM model.

Figure 27: An extract of the causal diagram of phase HLD

Figure 27 shows an extract of the causal diagram of phase HLD, indicating
the core process with those level variables that are subject to measurement
during project execution (surrounded by boxes), and the network of influ-
encing factors (exogenous model parameters are underlined). The core pro-
cess can be described as follows: The set of customer requirements defines
the amount of work to do (level variable: Work to do). The design activity
produces a set of design documents (level variable: Work accomplished).
Before the design documents can be released to the subsequent phase (LLD)
they are subject to inspections (level variable: Inspections performed). If
defects are detected during an inspection (level variable: Defects detected)
the design document has to be - at least partially - reworked and goes back
to the (virtual) amount of work to do (level variable: Work to do).

4.6.5 Model Calibration

The model was calibrated based on the historical data of software version V1
(sources: expert knowledge and database) and the standards defined by the
process handbook (PHB). Table 11 lists the variables that were adjusted to

Elapsed Time

Room Problem

Initial Project Size

Change Request Size

 Inspection Effectiveness

Planned Completion Date

Inspection Rate

Work Flow

Communication overhead

Time left

Learning

Number of Features Fatigue

Defects generated

Defects undetectedPages per Inspection

Inspection Rooms

Projects per Designer

Work to do

 Inspections
performed

Defects
detected

Work
accomplished

Productivity

Overtime
Schedule Pressure

Workforce

Complexity of Feature
Interrelationship

diss.book Page 80 Tuesday, November 27, 2001 10:26 AM

81

The PSIM Project

the version V1 data, indicating the information source (E = expert; DB =
database; PHB = process handbook).

Table 11: Software version V1 data for PSIM model calibration

4.6.6 Model Validation

For model validation, the simulation results were compared to the actual
data of software version V2, which was developed during the modelling
project. These comparisons at several points in time (i.e. after completion of
HLD, after completion of LLD, etc.) showed good results with respect to
model validity. The model predictions anticipated the actual project behav-
iour with a maximal deviation of less than 10%.

4.7 Lessons Learned

Based on the experience from the PSIM project the following lessons learned
seem to be worth being mentioned.

PSIM model variable HLD LLD IMP TST

Number of features E

Workforce E

Defects detected after phase TST DB

Size of HLD documents (total) DB & E

Size of LLD documents (total) DB & E

Size of code (KDLOC / total) DB & E

of test cases (total) DB & E

of minor defects detected in inspections (total) DB DB DB

of major defects detected in inspections (total) DB DB DB

Total # of defects found per inspection (average) derived derived derived

Planned duration of inspections PHB PHB PHB

Planned # of pages per inspection PHB PHB

Planned # of KLOC per inspection PHB

Actual # of inspections performed DB DB DB

Actual # of pages per inspection (average) derived derived

Actual # of KLOC per inspection (average) derived

of minor defects detected in test (total) DB

of major defects detected in test (total) DB

Total # of defects found per test case (average) derived

Projects per person (average) E E E

Complexity of feature interrelation E E E E

Planned schedule (milestones) E E E E

Actual schedule (milestones) E E E E

diss.book Page 81 Tuesday, November 27, 2001 10:26 AM

82

The PSIM Project

4.7.1 Familiarity with SD Concepts

System Dynamics concepts and principles are something new in the software
domain. Therefore, users cannot be expected to have a clear understanding
of the benefits, the potential pitfalls, the possible results of an SDM develop-
ment project. Moreover, the active contribution that is required from them
during model building is difficult to motivate. In the PSIM project, this led to
uncertainty about the ‘right’ individuals to be brought into the project, and
to unclear expectations about the necessary effort to be provided by them.
As a consequence, there were situations where the required experts were
not accessible for the model builder. This caused delays in the modelling pro-
cess. Another serious consequence from missing familiarity with SD concepts
was an unclear and in part unrealistic expectation about the modelling
results.

The lesson learned is that sufficient time should be spent in the beginning of
the modelling project to train all project participants in the basic SD con-
cepts, and to create insight into the needs of a modeller and the support
that he/she should receive during the project. Another effect of a sound
training would be that unfocussed modelling goals and unrealistic expecta-
tions about simulation results could be avoided.

4.7.2 Realistic Expectations

In the PSIM project the initial goal of SDM development, as defined by the
facilitator, was too ambitious. Hearing about “simulation of a model that
represents the reality of the software department” led to the implicit persua-
sion of people, that simulation of such a model will automatically answer
any possible question that could be asked about the reality of the depart-
ment and consequences of possible changes to it. Eventually, the SDM was
expected to fully represent the overall software development process and
serve as a laboratory for experiments with process changes in any direction.
As a consequence, and mainly due to the lack of focus, it was hard to find
the appropriate scope and granularity for the subsequent modelling steps.

Another observation was that, in general, people seemed to expect answers
to their problems to be expressed in numbers (in the sense of point esti-
mates), generated by simulation runs. This expectation is reflected in the
way problems were formulated, e.g. “How many days will the schedule
overrun be if we assume a workforce gap of 12 developers in the project
XYZ?”. It took time to convince potential users of the PSIM model and other
project participants that the big benefit of the project might arise from the
modelling effort itself: by learning about the situation of the department, its
staff, and its processes. In a way this is an effect often observed during mea-
surement programs in software organisations: not the collected data and
associated models are the most valuable result, but the side effects of the
program itself. By conducting the measurement program participants get
clarity about different existing perceptions of the reality and come up with

diss.book Page 82 Tuesday, November 27, 2001 10:26 AM

83

The PSIM Project

an improved common understanding of their processes and organisational
environment.

The lesson from this experience is that when starting an SD project it is
important to explain what can realistically be expected: learning about and
better understanding of the real system through modelling and simulation in
order to improve the decision making capacity.

4.7.3 Clarity about Modelling Goals

As mentioned in the previous sub-sections, it seems to be difficult and time
consuming to come up with a well focused and precisely defined goal for a
SDM development activity. In the PSIM project, for instance, this problem
could never be completely resolved. Starting a SDM development project
without a well-defined goal, however, has a high probability of undesired
consequences. Some of these consequences showed up in the PSIM project:

• An accepted and generally understood reference mode could not be
defined.

• The future user of the SDM was not clearly defined. In the course of the
modelling project, different candidate model users with different model-
ling goals were identified. A final decision could never be achieved.

• The responsibility for the maintenance of the SDM could not be clarified.

Having a fuzzy goal and changing expectations about the model bears the
implicit danger that the model ownership will never really shift to the target
organisation. Thus, clarity about the goals, the effort, and the expected
answers must be considered crucial for success. It is necessary that potential
model users have a clear understanding about the purpose of the modelling
exercise, and the model builder must clearly identify what kind of results the
model user expects. Again, this reminds of a similar experience with mea-
surement programs, where goal-orientation, as defined by the GQM
approach, is a necessary prerequisite for success. In fact, it was a lesson
learned from the PSIM project that GQM-like concepts should be adopted
when developing SDMs:

• Goals: Who wants to learn about what issue in a particular environment
in order to better understand the underlying informal and organisational
mechanisms that influence decision-making? For example, is he/she the
head of department who wants to learn about the reasons why a recent
process change did not have the desired effect on the department per-
formance? Or is he/she a project leader who wants to find out the reason
why it was impossible to accelerate the cycle time for design completion?

• Questions: What kind of information in what granularity is required to
enable the model user to learn about a certain problem area? Inexperi-
enced model users tend to add more and more expectations on the
capabilities of the model to provide answers to questions arising along

diss.book Page 83 Tuesday, November 27, 2001 10:26 AM

84

The PSIM Project

with the modelling activities. Experience has shown that different individ-
uals coming into contact with the model easily get the impression that
their 'own little questions' should also be answered, as it seems to be
easy to add ‘a few more’ equations to the model. Adding equations to a
model in an unfocused way, however, makes it increasingly more difficult
to understand the real system to be captured by the model.

• Metrics: What kinds of numbers have to be produced by simulation runs
to answer the questions behind the modelling goal?

4.7.4 Model Size and Complexity

Inexperienced users (and model builders) tend to add more and more infor-
mation and details to an already existing model. In a few cases, this might be
the right way to better and better mirror the reality that is represented by the
model. But experience shows that a more detailed model is not automati-
cally a better model. It is obvious, that all the basic facts and related informa-
tion about the modelling purpose have to be fed into the model in order to
get realistic results. The art in modelling is to stop as soon as the adequate
level of detail has been reached. Improved simulation precision can only be
expected as long as basic facts are missing. But whenever information is
added to a model without making a 'real difference', the effect might be
counterproductive. The more details are included, the more difficult it
becomes to understand all the interrelations of the model parts and vari-
ables. Hence, adding detail to a model might weaken its explanatory power.

'Good' SDMs try to figure out the minimal set of feedback loops sufficient to
generate realistic system behaviour. Understanding the base mechanisms
that determine the behaviour of a software organisation - in other words:
learning about the organisation - is sometimes much more complicated as it
seems to be at the first glance. This is specifically true as far as 'human
aspects' are concerned. To understand a single feedback effect requires hard
work. Combinations of feedback loops might be even harder to grasp.
Therefore, it is advisable to model small parts of the reality in isolation,
before integrating them into more complex structures. Combining well-
understood partial models eases the interpretation of the behaviour of the
integrated model.

4.7.5 Efficiency in Model Building

Having in mind the difficulties mentioned above it is clear that adequate
guidance is needed for SDM development. With only a roughly defined
modelling process there is a high probability of losing time and spending
effort without payback. To a certain degree this could also be observed in
the PSIM project, where (too) many iterations of the modelling steps
occurred. Another typical problem for efficient modelling is insufficient avail-
ability of empirical data for model calibration and/or validation. Although

diss.book Page 84 Tuesday, November 27, 2001 10:26 AM

85

The PSIM Project

lack of data is encountered more frequently in immature organisations, even
in high-maturity organisations there is always some probability that a com-
plete and satisfactory set of ‘hard data’ is missing. Overcoming this lack in a
reasonably short period of time requires a good common understanding of
how to design the concerned model parts and how to substitute missing
data by other types of information (e.g. subjective measures).

The experience from the PSIM project re-affirmed what had been said in the
SD literature before: There are intermediate work products in a SDM devel-
opment project, which are crucial. One of these work products is the refer-
ence mode. It must be clear for every participant in SD modelling that with-
out a well-defined reference mode the success of the modelling project is at
risk. Therefore, the model builder must be enabled to conduct the modelling
process in a way that the definition of a well-defined reference mode is
enforced. Another crucial work product is the causal diagram. In the PSIM
project, due to insufficient experience with SDM development and lacking
guidance, this excellent tool, which is perfectly suited to knowledge acquisi-
tion in early phases, was not used in an effective manner. In PSIM, causal
diagrams were mainly used for documentation purposes, i.e. in situations
when the contents of a flow diagram had to be explained to software devel-
opment experts during review meetings.

4.8 Summary and Conclusion

During the PSIM project, the following lessons have been learned:

LL1 – Familiarity with System Dynamics concepts: The SDM developer must
be skilled and experienced with the System Dynamics method, techniques
and tools in order to facilitate efficient and effective model building.

LL2 – Realistic expectations: The SDM users must be informed about the
potentialities of the System Dynamics method in order to avoid wrong
expectations.

LL3 – Clarity about modelling goals: The SDM developing process needs
good support in defining the right modelling goals and good guidance to
stick to them during the whole modelling activity.

LL4 – Model size and complexity: It is better to build several small SDMs in
iterations than to build one big SDM that tries to capture every possible
aspect of interest in a ‘big bang’ approach.

LL5 – Efficiency in model building: The SDM developing process needs
detailed guidance in eliciting knowledge from subject matter experts, in tak-
ing advantage from established static modelling methods software engineer-
ing, and in reusing information from existing static models.

diss.book Page 85 Tuesday, November 27, 2001 10:26 AM

86

The PSIM Project

Based on the experiences made during the PSIM pilot project, the assump-
tion that SDMs are well suited to complement existing qualitative and quan-
titative methods that are commonly used to analyse processes in software
organisations (i.e., process assessment, process modelling, and goal-oriented
measurement) was substantiated. Moreover, the feedback received from
managers and subject matter experts at Siemens strengthened the belief
that SDMs - if developed systematically - can become powerful tools for
decision makers, helping them anticipate the impact of process changes to
be implemented in the course of improvement (or re-engineering) projects.
In particular, a SDM development project can be successful even without
resulting in a SDM that generates realistic numbers. The modelling activity
itself is a catalyst for establishing continuous learning.

4.9 Refinement of Research Objective and Formulation of Research Hypotheses

Based on the lessons learned, the quite general objective statement of the
research conducted in the scope of this thesis (cf. Section 3.7) could be
refined and related research hypotheses could be formulated.

4.9.1 Research Objective

After having conducted the PSIM project, the research objective was refined,
i.e. it aimed at the development of a framework that supports efficient and
effective development of SDMs. In particular, this framework should 1)
address the lessons learned from the PSIM case study, 2) build upon existing
guidance for SDM development (cf. Section 3.3 and Section 3.4), and 3)
integrate SDM development with established static SE modelling approaches
of the QIP/EF framework like process modelling (PM) and goal-oriented mea-
surement (GQM). The framework that supports efficient and effective devel-
opment of SDMs has been given the name IMMoS (Integrated Measure-
ment, Modelling, and Simulation). IMMoS will be described in detail in
Section 5 to Section 8.

4.9.2 Research Hypotheses

Related to the refined research objective, two research hypotheses have
been defined:

• Research Hypothesis 1 (H1): SDM development with IMMoS is at least as
effective as SDM development without IMMoS.

• Research Hypothesis 2 (H2): SDM development with IMMoS is more effi-
cient than SDM development without IMMoS.

These two research hypotheses will be used to validate the IMMoS frame-
work (cf. Section 10 for a detailed discussion and presentation of results).

diss.book Page 86 Tuesday, November 27, 2001 10:26 AM

87

Part III: Innovation

diss.book Page 87 Tuesday, November 27, 2001 10:26 AM

88

diss.book Page 88 Tuesday, November 27, 2001 10:26 AM

89

The IMMoS Framework in a Nutshell

5 The IMMoS Framework in a Nutshell

IMMoS (Integrated Measurement, Modelling, and Simulation) is a frame-
work for effective and efficient SDM development. IMMoS has the following
characteristics:

1. It improves existing process guidance for SDM development.

2. It supports SDM goal definition.

3. It enhances the descriptive and explorative power of current state-of-the-
art SE experience bases by adding a type of dynamic simulation models,
i.e. SDMs, that smoothly integrate with existing static black-box and
white-box models, i.e. QMs and DPMs.

4. It combines SDM development with static process modelling (PM), and
integrates SDM development with measurement-based quantitative
modelling (GQM).

Characteristics 1 and 2 directly relate to PSIM lessons learned LL1 – LL4, the
joint set of all characteristics relates to lesson learned LL5 (cf. Section 4.8).
Each of the characteristics is represented by an IMMoS element (cf.
Figure 28). The IMMoS elements are described in detail in Section 6 to Sec-
tion 8.

Figure 28: Elements of the IMMoS framework

Element 1

Process Guidance for
SDM Development

Element 2

Support for SDM
Goal Definition

Element 3

Integration of SDMs
with Static SE Models

Element 4

Integration of SD
Modelling with
GQM and PM

IMMoS Framework

Effective
SDM Development

Efficient
SDM Development

H1

H2

diss.book Page 89 Tuesday, November 27, 2001 10:26 AM

90

The IMMoS Framework in a Nutshell

IMMoS element 1 (Process Guidance), providing process guidance for SDM
development, consists of a SDM life cycle model and a SDM development
role model, product model, and process model. Role model, product model,
and activity model can be combined into a product-flow model. Details are
presented in Section 6.

IMMoS element 2 (Goal-Orientation), providing support for SDM goal defini-
tion, consists of a SDM goal definition template specifying five relevant
dimensions that capture the problem definition during SDM development,
namely SDM viewpoint (user role), scope, dynamic focus, purpose, and envi-
ronment. How certain viewpoint – purpose combinations influence SDM
usage is illustrated with the help of selected usage scenarios. Details are pre-
sented in Section 7.

IMMoS element 3 (Integration of Models) describes how static SE models
like DPMs and QMs are integrated with SDMs. The descriptions are illus-
trated with an example. Details are presented in Section 8.

IMMoS element 4 (Integration of Methods) describes how SDM develop-
ment relates to process modelling (PM) and goal-oriented measurement
(GQM). Particular focus is put on the integration of SDM development with
GQM, enhancing the established GQM method towards “Dynamic GQM”.
Details are presented in Section 9.

It is expected that IMMoS elements 1 and 2 guarantee the effectiveness of
SDM development. The set of all IMMoS elements is expected to improve
the efficiency of SDM development. The validation of the IMMoS framework
with regard to its impact on effectiveness and efficiency of SDM develop-
ment is based on a case study and a controlled experiment. Details are pre-
sented in Part IV of this thesis (with a summary in Section 10).

diss.book Page 90 Tuesday, November 27, 2001 10:26 AM

91

Process Guidance for SDM Development

6 Process Guidance for SDM Development

Process guidance for SDM development, is provided through a set of models
that support the SDM developer:

• The IMMoS Phase Model defines the SDM life-cycle (cf. Section 6.1).
• The IMMoS Role Model defines the roles that are typically involved in a

SDM development project (cf. Section 6.2).
• The IMMoS Product Model defines all work products and the end prod-

uct that occur in a SDM development project (cf. Section 6.4).
• The IMMoS Process Model provides a control-flow-oriented description

of the sequence of activities that should be followed in a SDM develop-
ment project. 25

The IMMoS Process Model describes each SDM development activity in detail
through a set of attributes, such as involved roles and input/output products.
With the help of these attributes it is possible to represent the IMMoS Pro-
cess Model in the form of a product-flow model.26

6.1 IMMoS Phase Model

The IMMoS Phase Model structures the SDM life-cycle into four phases (cf.
Figure 29):

• Phase 0: Pre-study for the identification of the prospective model user
and the modelling goal (SDM goal definition)

• Phase 1: Development of the initial model (reproduction of the reference
mode)

• Phase 2: Enhancement of the initial model (to be used for problem analy-
sis/solution)

• Phase 3: Application and maintenance of the enhanced model for prob-
lem analysis/solution.

Phase 0 of the IMMoS Phase Model is needed to prepare the actual model
building activities. It focuses mainly on the definition of prospective SDM
users and identification of SE subject matter experts that can be approached
by the SDM developer during the modelling activities. Another important
task of Phase 0 is the specification of the modelling goal. If no SDM user can

25 A first version of the IMMoS Process Model has been published in the form of a technical report
[Pfa98a].

26 A product-flow oriented representation of the IMMoS Process Model is shown in Appendix E. This
representation was created with the process modelling tool SPEARMINT [BHK+99].

diss.book Page 91 Tuesday, November 27, 2001 10:26 AM

92

Process Guidance for SDM Development

be identified and no precise SDM goal definition can be achieved, the mod-
elling activity should be stopped.

Phases 1 – 3 of the IMMoS Phase Model represent the major iteration cycles
that SDMs typically follow, i.e. first an initial SDM is developed that is able to
reproduce the reference behaviour (cf. Section 3.3.2). Then, in Phase 2, this
initial SDM is enhanced such that it can be used for problem solving. It might
be the case that the SDM user is only interested in a singular problem solu-
tion, e.g. when the goal is to evaluate alternative improvement suggestions.
In this case, the modelling activities would stop at milestone 3. If the goal is
to use the model repeatedly for the same purpose, e.g. when the SDM is
used for planning or training, then maintenance and continuous improve-
ment of the SDM is necessary. This is done in Phase 3.

While Phases 1 – 3 of the IMMoS Phase Model more or less reflect the cur-
rent state-of-the-art in structuring SDM development activities (cf. Section
3.4), the inclusion of Phase 0 does represent an important enhancement by
putting more focus on the early SDM development stages.

Figure 29: IMMoS phase model

6.2 IMMoS Role Model

The IMMoS Role Model defines the roles that are typically involved in a SDM
development project:

• SDM Customer (C)
• SDM User (U)

Milestone
M 0

Phase 0:
Pre-study (goal definition)

Milestone
M 1

Phase 1:
Initial model development

Milestone
M 2

Phase 2:
Model enhancement
(singular problem solving)

Phase 3:
Model application and maintenance
(repeated problem solving)

Milestone
M 3

Milestone
M 4

7 Activities

7 Activities

1 Activity

2 Activities

Learning

Learning

Exit

diss.book Page 92 Tuesday, November 27, 2001 10:26 AM

93

Process Guidance for SDM Development

• SDM Developer (D)
• Facilitator (F)
• Moderator (M)
• SE Subject Matter Expert (E)

6.2.1 SDM Customer

The SDM Customer is the sponsor of the SDM development project. For the
SDM development project to be successful it is important that the SDM Cus-
tomer knows about the cost and benefit of developing and using SDM. This
includes a basic understanding of typical application areas of SDMs. The
SDM Customer is responsible for the identification of potential SDM Users,
and of providing the human resources (i.e. SE Subject Matter Experts) for the
SDM development and maintenance task.

6.2.2 SDM User

The SDM User, i.e. the future user of the SDM in the software organisation,
is responsible for providing the necessary information for SDM goal defini-
tion. In addition, the SDM User participates in all phases of the SDM life
cycle, particularly during verification and validation activities, and during the
definition of the SDM user interface (when desired). During the SDM appli-
cation, the SDM User triggers enhancements of the existing model, e.g., re-
calibration of the model parameters due to changes in the real world.

6.2.3 SDM Developer

The SDM Developer is responsible for technically sound SDM development.
In order to fulfil this task, the following skills are needed:

• Sufficient theoretical and practical knowledge about the SD modelling
approach (gained through training, relevant literature, and – ideally –
active participation in previous SDM development projects). This may
include – even though it is not necessary – basic understanding of the
principles of system theory and cybernetics, as well as knowledge about
the mathematical characteristics of systems of differential and integral
equations (including their analytical and numerical solution).

• Sufficient knowledge about at least one SD modelling tool.
• Sufficient communication skills and ability to apply knowledge elicitation,

moderation, and presentation techniques.
• Sufficient knowledge about GQM and PM.
• Basic knowledge about the organisational and technical characteristics of

the organisational environment in which the SDM development project
takes place are useful.

diss.book Page 93 Tuesday, November 27, 2001 10:26 AM

94

Process Guidance for SDM Development

6.2.4 Facilitator

The Facilitator helps with establishing contacts, and planning and arranging
meetings. This role is often taken over by C, U, or even D – when D is famil-
iar with the customer organisation. Because the responsibility of the Facilita-
tor is strictly limited to technical support during the conduct of a SDM devel-
opment project, it will not be explicitly mentioned in the following sections.

6.2.5 Moderator

The Moderator is responsible for preparing and guiding workshops and
meetings of the SDM Developer with three or more SE Subject Matter
Experts.

6.2.6 SE Subject Matter Expert

The SE Subject Matter Experts are responsible for providing the relevant SE
information needed for SDM building. This includes managerial and techno-
logical information about how software is developed (processes, methods,
techniques, tools, plans, measurement data, etc.) in the organisation.

6.3 IMMoS Product Model

Figure 30: IMMoS product model

SDM Goal Definition

SDM Reference Mode

SDM Base Mechanisms Initial SDM Flow Graph

SDM Causal Diagram

Initial SDM Equations

Enhanced SDM

SDM Dynamic Hypotheses Definition Initial SDM

Phase 0 Phase 2 Phase 3

Phase 1

Real World
Problem

Virtual World
Experimentation

& Problem
Solution

Legend:
- Development
- Verification
- Validation

diss.book Page 94 Tuesday, November 27, 2001 10:26 AM

95

Process Guidance for SDM Development

Several work products and end products are generated during a SDM devel-
opment project. These products form the IMMoS product model. Figure 30
presents the IMMoS product model, showing only the essential constructive
SD modelling products.

A complete list of work and end products is provided below, with products
ordered according to SDM life-cycle phases (constructive modelling products
are printed in bold):

Phase 0: Pre-Study

• SDM Agreement: Tentative agreement of SDM Customer to sponsor a
SDM development project.

• SDM Customer Sheet: Characterisation of the customer organisation and
potential application domain.

• SDM Management Briefing Materials: Presentation slides, experience
reports, and other general information materials that are useful to intro-
duce the SD modelling approach on a managerial level.

• SDM Management Briefing Minutes: Minutes of the management brief-
ing session.

• SDM Goal Definition: Identification and specification of the problem to
be analysed with the help of a SDM.

• SDM Project Plan: Planning of the SDM development tasks (duration,
effort, available resources and tools, etc.).

• SDM Project Logfile: A document for recording the SDM project progress,
and intermediate SDM development information/results, created and
maintained by the SDM Developer. This document can also be used as a
source of learning about SDM development.

• SDM Development Contract: Written agreement upon the SDM develop-
ment project, signed by the SDM Customer.

Phase 1: Initial Model Development

• SDM Technical Briefing Materials27: Presentation slides, experience
reports, application examples, process descriptions, and other technical
information materials that are useful to introduce the SD modelling
approach on a technical level.

• SDM Technical Briefing Minutes: Minutes of the technical briefing ses-
sion.

• SDM Development Workshop Minutes
• SDM Dynamic Hypotheses Definition: The definition of the dynamic

hypotheses consists of two elements:
• SDM Reference Mode: Graphical representation of the dynamic

behaviour of interest.

27 A System Dynamics tutorial based on SDM Customer Briefing Materials and SDM Technical Briefing
Materials developed for the Siemens AG was presented at the ESCOM’2000 Conference [PfL00a].

diss.book Page 95 Tuesday, November 27, 2001 10:26 AM

96

Process Guidance for SDM Development

• SDM Base Mechanisms: Assumptions about the principle causal
relations generating the dynamic behaviour of interest.

• SDM Causal Diagram: Representation of the minimal network of causal
relations necessary to generate the dynamic behaviour of interest.

• SDM Verification Report 1: Documentation of the findings resulting from
the verification of the SDM Causal Diagram against the set of SDM Base
Mechanisms.

• Initial SDM: The Initial SDM consists of three elements:
• Initial SDM Flow Graph: Formal graphical representation of the

SDM Causal Diagram, using typed model variables, and distinguish-
ing information links from material flows.

• Initial SDM Equations: Mathematical equations precisely defining
the relations between variables in the Initial SDM Flow Graph.

• Initial SDM GUI (optional): An interactive graphical user interface that
allows for easy model execution and analysis of simulation runs.

• SDM Verification Report 2: Documentation of the findings resulting from
the verification of the Initial SDM against the SDM Causal Diagram.

• SDM Validation Report 1: The SDM Validation Report 1 consists of two
elements:
• Initial SDM Simulation Results: Simulation data resulting from execut-

ing the Initial SDM in order to reproduce the SDM Reference Mode.
• Initial SDM Simulation Analysis: Documentation of findings resulting

from the validation of the Initial SDM against the SDM Dynamic
Hypothesis Definition based on an analysis of the Initial SDM Simula-
tion results.

Phase 2: Model Enhancement

• Enhanced SDM: The Enhanced SDM consists of four elements:
• Enhanced SDM Flow Graph: Formal graphical representation that

includes the modifications, extensions, and refinements of the Initial
SDM Flow Graph. The enhancements are done in way such that poli-
cies that are supposed to overcome the observed problems defined in
the SDM Goal Definition can be experimented with.

• Enhanced SDM Equations: Mathematical equations precisely defining
the relations between variables in the Enhanced SDM Flow Graph.

• Enhanced SDM GUI (optional): An interactive graphical user interface
that allows for easy model execution and analysis of simulation runs.

• Enhanced SDM Causal Diagram: If new/alternative base mechanisms
were found when enhancing the Initial SDM, the SDM Causal Dia-
gram is updated in order to adequately represent the underlying
causal structure of the Enhanced SDM. This is done for documenta-
tion purpose only.

• SDM Validation Report 2: Documentation of the findings resulting from
the validation of the Enhanced SDM with regards to the correct imple-
mentation of suggested policies supposed to adequately handle the
problems defined in SDM Goal Definition. The SDM Validation Report 2
consists of two elements:

diss.book Page 96 Tuesday, November 27, 2001 10:26 AM

97

Process Guidance for SDM Development

• Enhanced SDM Simulation Results: Simulation data resulting from
executing the Enhanced SDM in order to explore its potential for pol-
icy experimentation with regard to the problem defined in the SDM
Goal Definition.

• Enhanced SDM Simulation Analysis: Documentation of findings
resulting from the validation of the Enhanced SDM based on an anal-
ysis of the Enhanced SDM Simulation Results.

Phase 3: Model Application

• Enhanced SDM: The Enhanced SDM consists of four elements, i.e.
Enhanced SDM Flow Graph, Enhanced SDM Equations, Enhanced SDM
GUI, Enhanced SDM Causal Diagram. If necessary (e.g., due to changes
in the modelled reality), the Enhanced SDM is updated accordingly.

• SDM Simulation Results: Simulation data and associated analyses result-
ing from executing the Enhanced SDM for the purpose defined in the
SDM Goal Definition.

6.4 IMMoS Process Model

This section provides a detailed description of the IMMoS process activities.
Section 6.4.1 provides an overview representation of the IMMoS Process
Model using a control-flow-oriented representation. In Section 6.4.2, each
process activity is described in detail. Finally, Section 6.4.3 provides a brief
specification of the templates offered by the IMMoS Process Model.

A product-flow-oriented representation of the IMMoS Process Model can be
found in Appendix E. Based on this representation, which was created with
the help of the SPEARMINT tool, a web-based Electronic Process Guide (EPG)
has been generated automatically [BHK+99].

6.4.1 MMoS Process Activities – Overview

A summary of the IMMoS process activities is shown in Figure 31, indicating
the relationship to standard SE modelling activities, i.e. goal-oriented mea-
surement (GQM) and process modelling (PM). In the column “PM”, the
labels “DPM” and “PPM” distinguish whether the relationship is with
descriptive (DPM) or prescriptive (PPM) process modelling. An “x” in the col-
umn “PM” indicates that the relationship can be with both, DPM and PPM.
A detailed discussion of the relationships to GQM and PM is provided in Sec-
tion 8 and Section 9. The labels used in to denote the involved roles have
been defined in Section 6.2.

A detailed description of each IMMoS process activity is provided in Section
6.4.2.

diss.book Page 97 Tuesday, November 27, 2001 10:26 AM

98

Process Guidance for SDM Development

28

Figure 31: IMMoS process activities

Phase 0: Pre-study

Activity id Activity name Roles involved GQM PM

0.1 First contact C, D

0.2 Characterisation C, D, F x DPM

0.3 Management briefing C, D, F, poten-
tial U

0.4 Identification of SDM users C, potential U

0.5 Problem definition C, D, U x DPM, (PPM)28

0.6 Technical feasibility check C, D, E, F, U

0.7 Planning and contract C, D

Phase 1: Initial Model Development

Activity id Activity name Roles involved GQM PM

1.1 Technical briefing C, D, E, F, U

1.2 Definition of dynamic hypotheses D, E, F, M, U x DPM, (PPM)

1.3 Definition of the causal diagram D

1.4 Review of the causal diagram (verifica-
tion 1)

D, E, F, M, U

1.5 Implementation of the initial SDM D, E, F, U x DPM, (PPM)

1.6 Review of the initial SDM (verification 2) D

1.7 Test of the initial SDM (validation 1) D, E, F, M, U x

Phase 2: Model Enhancement

Activity id Activity name Roles involved GQM PM

2.1 Enhancement of the initial SDM D, E, F, U x DPM, (PPM)

2.2 Test of the enhanced SDM (validation 2) D, E, F, M, U x

Phase 3: Model Application

Activity id Activity name Roles involved GQM PM

3.1 Application and maintenance of the
SDM

D, E, U x x

28 Normally, a problem definition starts out with the current process baseline, i.e. the DPM. It might
happen, however, that problem to be solved addresses the evaluation of a potential PPM that has
been defined based on some rationale. If a PPM is involved in activity 0.5, it will also be used in
activities 1.2, 1.5, and 2.2.

diss.book Page 98 Tuesday, November 27, 2001 10:26 AM

99

Process Guidance for SDM Development

6.4.2 IMMoS Process Activities – Detailed Description

The detailed description of the 17 IMMoS activities uses a uniform set of
attributes. The attributes are defined as follows:

• ID: Activity identification number.
• Name: Activity name.
• Entry condition: The set of conditions that have to be fulfilled before the

activity can be started.
• Exit condition: The set of conditions that have to be fulfilled before the

activity is completed.
• Role: The set of IMMoS roles that should be involved in carrying out the

activity (cf. Section 6.2), and their specific responsibilities.
• Input: The set of IMMoS products (cf. Section 6.4), and other documents

that must be available for the activity to be successfully conducted.
• Output: The set of IMMoS products that have been created or modified

during the conduct of the activity.
• Description: Summary descriptions of the tasks that need to be carried

out when conducting the activity.
• Methods and techniques: Methods and techniques that describe how

the tasks of the activity should be carried out, e.g. presentation, meeting
(interview, discussion, review), test techniques, etc.

• Guidelines: Best practices, recommended procedures, and “rules of
thumb” that should be followed when conducting the activity.

• Materials and tools: materials and tools that should be used when con-
ducting the activity. Materials include templates (cf. Section 6.4.3) and
checklists.

6.4.2.1 IMMoS Phase 0: Pre-Study

Entry condition:

--

ID 0.1

Name First contact

Role D, C
• C: Is empowered and willing to decide whether the development of a

SDM should be further investigated.
• D: Is an SDM expert.

Input --

Output SDM Agreement

diss.book Page 99 Tuesday, November 27, 2001 10:26 AM

100

Process Guidance for SDM Development

Exit condition:

SDM Agreement exists in written form.

Description:

1. Establishment of contact between C and D. The initiative can come from
either role.

2. Agreement on the intention to develop and use a SDM in the customer
organisation.

3. Rough identification of the SDM application scope and purpose.

Methods and techniques:

Meeting

Guidelines:

--

Materials and tools:

Brochures, experience reports, web-pages, and other references that inform
about successful SDM development and usage in software organisations.

Entry condition:

SDM Agreement exists.

Exit condition:

• D knows the customer organisation sufficiently well (subjective judge-
ment).

• The SDM Customer Sheet exists in written form.

Description:

1. Familiarisation of D with the SDM user organisation, first identification of
problems, and listing of findings/issues resulting from document elicita-
tion and the interview with C.

ID 0.2

Name Characterisation

Role C, D, F
• C: Can provide relevant information about the customer organisation to D.
• D: Can conduct interviews (oral or in writing) in order to elicit information

about the customer organisation.
• F: Supports C and D.

Input SDM Agreement

Output SDM Customer Sheet

diss.book Page 100 Tuesday, November 27, 2001 10:26 AM

101

Process Guidance for SDM Development

2. Characterisation of the SDM user organisation (size, products, projects,
etc.)

Methods and techniques:

Knowledge elicitation techniques29:

• Interviews (unstructured or exploratory)
• Document elicitation

Guidelines:

--

Materials and tools:

• Information about the customer organisation: organisation chart,
description of business goals, assessment results, process models (actual
and official), findings from past or current SPI (or measurement) pro-
grammes, quantitative models, etc.

• SDM Customer Sheet template

Entry condition:

SDM Customer Sheet exists.

Exit condition:

SDM Management Briefing Minutes exist.

Description:

The purpose of the management briefing is to inform the SDM Customer
and (potential) SDM Users about the key principles of System Dynamics, and
about the types of problems for which SDMs can help find solutions.

29 A useful taxonomy of knowledge elicitation techniques can be found in [BiS98].

ID 0.3

Name Management briefing

Role C, D, F, potential U
• C: Responsible for organisation of briefing session and invitation of partici-

pants (C, D, potential U)
• D: Responsible for preparation and conduct of briefing session.
• F: Responsible for the organisation of the briefing session.
• Potential U: Participation in briefing session on invitation by C.

Input SDM Customer Sheet

Output SDM Management Briefing Materials, SDM Management Briefing Minutes

diss.book Page 101 Tuesday, November 27, 2001 10:26 AM

102

Process Guidance for SDM Development

1. Assembly of SDM Management Briefing Materials by D.

2. Preparation and planning of management briefing (identification of par-
ticipants, date, place, invitation, etc.) by D in collaboration with C (and
with support from F).

3. Conduct of management briefing by D.

4. Writing of the management briefing session minutes and distribution to
all participants (and other interested parties).

Important topics of the management briefing include:

• How can SDMs support management in software organisations?
• How are standard SPI methods complemented (e.g., process assess-

ments, GQM, process modelling)?
• What types of problems can be tackled with the help of SDMs?
• How does a “typical” SDM project look like? (This includes the presenta-

tion of a typical SDM development project plan)
• What are the costs and benefits of SDM development projects?
• What are the success factors of SDM development projects?

Methods and techniques:

Presentation with discussion.

Guidelines:

• Recommended duration of the presentation: 30-45 min
• Recommended duration of the discussion: 30 min

Materials and tools:

Brochures, experience reports, web-pages, and other references that inform
about successful SDM development and usage in software organisations.

Standard slide set of SDM Management Briefing Materials [Pfa98c].

Entry condition:

The SDM Management Briefing Minutes exist.

ID 0.4

Name Identification of SDM users

Role C, potential U
• C: Responsible for identification and appointment of SDM User (U).
• U: Commitment to participate in development of a SDM. Commitment to

use the SDM for problem solving.

Input SDM Management Briefing Minutes

Output --

diss.book Page 102 Tuesday, November 27, 2001 10:26 AM

103

Process Guidance for SDM Development

Exit condition:

U has been identified and formally appointed or SDM development project
has been cancelled.

Description:

1. Identification and appointment of U by C.

2. Information of D about this decision (or, alternatively, about the cancella-
tion of the project).

Methods and techniques:

--

Guidelines:

The appointed SDM User (U) should have participated in “Management
briefing” (Activity 0.4).

Materials and tools:

--

Entry condition:

U has been identified (→ Activity 0.4).

Exit condition:

SDM Goal Definition exists in written form or SDM development project has
been cancelled.

Description:

1. Identification of a problem that – if solved – would help U with his/her
daily work.

2. Formal documentation of the problem definition (SDM Goal Definition).

ID 0.5

Name Problem definition

Role C (optional), D, U
• C: Checks whether SDM Goal Definition is in line with business goals.
• D: Supports U during problem definition.
• U: Responsible for problem identification and definition.

Input • SDM Customer Sheet
• If available: process models (DPM or PPM).
• If available: measurement-based quantitative models (QMs).

Output SDM Goal Definition, SDM Project Logfile

diss.book Page 103 Tuesday, November 27, 2001 10:26 AM

104

Process Guidance for SDM Development

3. Notes should be taken of all relevant information that could be used to
define the dynamic hypothesis in Phase 1, e.g. first assumptions about
cause-effect relationships, suggestions of potential problem solutions,
relevant existing models, subject matter experts, etc. This kind of infor-
mation is recorded in the SDM Project Logfile.

Methods and techniques:

Knowledge elicitation techniques:

• Interview (semi-structured or unstructured)
• Focused discussion (goal-related)

Guidelines:

• The problem definition should be well-focused and be stated in concrete
terms. The SDM Goal Definition template should be used.

• In order to be suitable for a System Dynamics analysis, the problem has
to deal with phenomena that show dynamic behaviour.

• In order to be suitable for a System Dynamics analysis, the system that is
going to be investigated for problem solution, has to be viewed as a
feedback (or closed) system.30 This assumption implies that a change in
the system structure – and not an alteration of the inputs – is in the focus
of interest of the problem solution.

Materials and tools:

SDM Goal Definition template

Entry condition:

SDM Goal Definition exists.

30 A feedback system has a closed loop structure that brings results from past action of the system
back to control future action. In other words, a feedback system is influenced by its own past be-
haviour. Opposed to feedback systems, open systems are characterised by outputs that respond to
inputs but where the outputs are isolated from and do not have influence on the inputs. For a dis-
cussion of the differences between “feedback” and “open” systems see Forrester [For71].

ID 0.6

Name Technical feasibility check

Role C, D, E, F, U
• C: Responsible for providing access to documents and SE Subject Matter

Experts (if needed).
• D: Responsible for checking the (technical) prerequisites for SDM develop-

ment and usage.
• E, U: Support of D
• F: Support of C and D

Input SDM Goal Definition

Output --

diss.book Page 104 Tuesday, November 27, 2001 10:26 AM

105

Process Guidance for SDM Development

Exit condition:

Technical feasibility of SDM development has been approved or SDM devel-
opment project has been cancelled.

Description:

The technical prerequisites for development of an SDM has to be checked,
i.e. adequacy of problem definition, availability of experts and data, process/
organisational maturity. This may include that the prerequisites for planning,
conducting, and using goal-oriented measurement programmes are
checked.

Methods and techniques:

• Technical review
• Structured interview

Guidelines:

• The number and type of prerequisites to be checked depends on the
SDM Goal Definition. For example, the development of a SDM for the
purpose “planning” may require the existence of empirical data for SDM
calibration. The development of a SDM for the purpose “controlling”
may – in addition – require the existence of ongoing measurement pro-
gramme, in order to provide the data to which the SDM simulation
results will be compared.

• Relevant technical prerequisites have to be checked on part of the cus-
tomer organisation, and on part of the SDM Developer.

• A classification and detailed description for developing and using SDMs
can be found in [Pfa97b]. Success factors for planning and conducting
measurement programmes are provided in [JeB93][JBB94] 31.

Materials and tools:

• Checklist Ch-A.1 [Pfa98c]: Prerequisites for planning, executing, and
using measurement programmes.

• Checklist Ch-A.2 [Pfa98c]: Prerequisites for the development and usage
of quantitative models with particular focus on System Dynamics model-
ling.

31 A reprint of this list of success factors can also be found in [OfJ97].

diss.book Page 105 Tuesday, November 27, 2001 10:26 AM

106

Process Guidance for SDM Development

Entry condition:

Technical feasibility check was successful (→ Activity 0.6).

Exit condition:

SDM Project Plan exists and SDM Development Contract has been signed by
C and D, or SDM development project has been cancelled.

Description:

The effort and time planning for development phases 1 and 2 has to be
done by D and proposed to C (SDM Project Plan). If C agrees to the pro-
posed SDM Project Plan, the SDM development Contract is signed. The sign-
ing of the contract imposes responsibility on C to provide all necessary
resources (access to documents and SE Subject Matter Experts) by D.

Methods and techniques:

Planning meeting.

Guidelines:

Typically, the development of the Initial SDM will consume more than 50%
of the total time and effort.

Materials and tools:

• IMMoS Process Model.
• Experience from past SDM development projects (effort, duration).

ID 0.7

Name Planning and contract

Role C, D
• C: Responsible for contract placement.
• D: Responsible SDM project planning.

Input SDM Goal Definition

Output SDM Project Plan, SDM Development Contract

diss.book Page 106 Tuesday, November 27, 2001 10:26 AM

107

Process Guidance for SDM Development

6.4.2.2 IMMoS Phase 1: Initial Model Development

Entry condition:

SDM Development Contract has been signed.

Exit condition:

SDM Technical Briefing Minutes exist.

Description:

The purpose of the technical briefing is to:

1. Officially start the SDM development project.

2. Inform SDM User and SE Experts about the modelling goals and the SDM
modelling project plan.

3. To inform the SDM User and SE Experts about the principles of System
Dynamics and how their knowledge will be used to build a valid SDM in
order to solve the stated problem.

The following tasks have to be performed:

1. Assembly of SDM project kick-off information (project goals and plan) by
C (with support from D and F).

2. Assembly of SDM Management Briefing Materials by D.

3. Preparation and planning of technical briefing (identification of partici-
pants, date, place, invitation, etc.) by D in collaboration with C (with sup-
port from F).

4. Conduct of technical briefing by C and D. C informs about the project
goals and plan. D informs about the technical aspects of System Dynam-
ics modelling (including examples and illustration of benefits).

ID 1.1

Name Technical briefing

Role C, D, E, F, U
• C: Responsible for communicating the project goals (project kick-off) to all

participants (particularly E)
• D: Responsible for preparation and conduct of briefing session. Note: organ-

isation (e.g. invitation of participants, room reservation) may be supported by
Facilitator)

• E, U: Participation in briefing session on invitation by C.
• F: Responsible for the organisation of the briefing session.

Input SDM Goal Definition, SDM Project Plan

Output SDM Technical Briefing Materials, SDM Technical Briefing Minutes

diss.book Page 107 Tuesday, November 27, 2001 10:26 AM

108

Process Guidance for SDM Development

5. Write minutes of the technical briefing session and distribute to all partic-
ipants (and other interested parties).

Important topics of the technical briefing include:

• Underlying principles of the System Dynamics method.
• Characteristics of SDMs. In particular, difference to other types of models

(statistical models, process models).
• Important steps of the SDM development process.
• Basic concepts/elements of the SDM method (reference mode, base

mechanisms, causal diagram, flow graphs, etc.). The concepts should be
introduced and explained by using a standard demonstration model.

Methods and techniques:

Presentation, and tutorial with discussion.

Guidelines:

• Recommended duration of the kick-off presentation (by C): 5-10 min
• Recommended duration of the technical presentation (by D): 90-120 min

(incl. demo)
• Recommended duration of the discussion: max. 45 min

Materials and tools:

• Brochures, experience reports, web-pages, and other references that
inform about successful SDM development and usage in software organ-
isations.

• Standard slide set of SDM Technical Briefing Materials [Pfa98c].
• Demonstration (computer-based)

diss.book Page 108 Tuesday, November 27, 2001 10:26 AM

109

Process Guidance for SDM Development

Entry condition:

Technical briefing has been conducted and SDM Goal Definition exists.

Exit condition:

SDM Dynamic Hypotheses exist.

Description:

Dynamic hypotheses are hypotheses on the underlying dynamics that are
assumed to cause the problem stated in the SDM Goal Definition. The defini-
tion of the dynamic hypotheses requires the identification and explicit
description of relevant elements of the mental models of subject matter
experts. The definition process includes:

• the specification of the reference mode,
• the identification of organising concepts,
• the identification of the most relevant cause-effect mechanisms (base

mechanisms), and
• the identification of the model boundaries.

Supporting activities include:

• the identification of E, and
• the identification and analysis of related DPMs and QMs.

Methods and techniques:

• Workshops,
• Brainstorming and creativity techniques (e.g. the “magnetic hexagon”

technique32 proposed by Hodgson [Hod92]),

ID 1.2

Name Definition of dynamic hypotheses

Role D, E, F, M, U
• D: Responsible for planning and conducting modelling workshops, and –

based on the results – definition of dynamic hypotheses.
• E: Responsible for provision of expert knowledge, and related documents.
• F: Supports D, E, and U.
• M: Responsible for moderation of workshops.
• U: Responsible for keeping the modelling focus and helping to find SE sub-

ject matter experts. (Note: an SDM facilitator may support the organisation
of modelling workshops and the identification of E).

Input SDM Customer Sheet, SDM Goal Definition, SDM Project Logfile
If available:
• Process Models (DPMs and/or PPMs)
• Measurement-based Quantitative Models (QMs)

Output SDM Development Workshop Minutes (optional), SDM Project Logfile, SDM
Dynamic Hypotheses Definition (SDM Reference Mode, SDM Base Mechanisms)

diss.book Page 109 Tuesday, November 27, 2001 10:26 AM

110

Process Guidance for SDM Development

• Knowledge elicitation techniques (exploratory and structured interviews,
document elicitation)

Guidelines:

• The modelling process starts with the definition of the SDM reference
Mode. If related empirical data is available, the reference behaviour can
be extracted from this historical data. If no empirical data is available, the
reference behaviour can be based on experience or anticipation of U
(hypothetical reference behaviour). The rationale underlying the defini-
tion of a hypothetical reference mode must be documented.

• If a generic SDM shall be developed (e.g. for training purpose), it is still
necessary to define a (generic) reference mode.

• The reference mode shall neither be too general (this is the danger with
generic reference modes) nor too detailed (this is the danger with empir-
ically derived reference modes).

• The time horizon of the reference mode bust be chosen sufficiently large
in order to comprise sufficient dynamic variance.

• The set of base mechanisms should be as small as possible. On the other
hand should the model boundaries be set such that the dynamic variance
exposed by the reference mode can be generated from the model struc-
ture, i.e. without any exogenous influence.

• The purpose of the base model is to test the dynamic hypothesis. It is not
used for predicting future behaviour of the modelled system.

• The structure of the base model should only comprise the base mecha-
nisms. The inclusion of additional cause-effect relations, i.e. in order to
represent a larger number of real world entities, will be done during
phase 2.

Materials and tools:

• Examples of reference modes, organising concepts, and base mecha-
nisms for illustration/explanation purpose.

• Materials for the application of moderation and creativity techniques.
• Checklist for the planning and conduct of workshops.
• Checklist Ch-B.1 [Pfa98c]: Definition of the dynamic hypotheses (refer-

ence mode, organising concepts, base mechanisms, causal diagram).
• A System Dynamics tool might by used for illustrating typical behaviour

modes.

32 A case study describing the use of the “magnetic hexagon” technique can be found in [Lan93].

diss.book Page 110 Tuesday, November 27, 2001 10:26 AM

111

Process Guidance for SDM Development

Entry condition:

SDM Base Mechanisms exist.

Exit condition:

SDM Causal Diagram exists.

Description:

By connecting the base mechanisms into a network of feedback loops the
causal diagram is formed. The causal diagram is expected to represent the
network of all cause-effect relations responsible for the (interesting or prob-
lematic) dynamics that are observed in the system under consideration.

Methods and techniques:

--

Guidelines:

It is important to provide a detailed documentation of the base mechanisms
that are used, i.e. description of cause, description of effect, description of
the rationale on which the assumption of a particular cause-effect relation-
ship is base (potential sources in the literature, or data sources can be men-
tioned).

Materials and tools:

System Dynamics tool.

ID 1.3

Name Definition of the causal diagram

Role D: Responsible for the definition of the causal diagram

Input SDM Base Mechanisms, SDM Project Logfile

Output SDM Causal Diagram, SDM Project Logfile

ID 1.4

Name Review of the causal diagram (verification 1)

Role D, E, F, M, U (optional)
• D: Responsible for the detailed presentation of the causal diagram, and for

keeping records of proposed changes.
• E, U: Responsible for the review (inspection) of the causal diagram.
• F: Responsible for organising the review meeting.
• M: Responsible for the moderation of the review meeting.

Input SDM Causal Diagram, SDM Project Logfile

Output SDM Verification Report 1, SDM Causal Diagram, SDM Project Logfile

diss.book Page 111 Tuesday, November 27, 2001 10:26 AM

112

Process Guidance for SDM Development

Entry condition:

SDM Causal Diagram exists.

Exit condition:

SDM Verification Report 1 exists and proposed corrections of SDM Causal
Diagram have been made.

Description:

The causal diagram is presented to the participants by D. Then, the causal
diagram is reviewed by E and U (optional) with regard to:

• Structural correspondence with reality (i.e. entities and relationships
between attributes of entities)

• Correct and complete integration of base mechanisms.

Proposed changes are written down and corrections are performed by D.

Methods and techniques:

Review meeting.

Guidelines:

• First, each individual cause-effect relation contained in the causal dia-
gram is reviewed.

• Then, the correctness of the integration of the individual cause-effect
relations is reviewed.

• Finally, the completeness and minimality of the causal diagram is
assessed.

Materials and tools:

System Dynamics tool.

diss.book Page 112 Tuesday, November 27, 2001 10:26 AM

113

Process Guidance for SDM Development

Entry condition:

SDM Causal Diagram exists and SE subject matter experts are available.

Exit condition:

Initial SDM exists.

Description:

The implementation of the initial SDM consists in transforming the causal
diagram into a (formal) flow graph, and in specifying the corresponding
model equations quantitatively.

The implementation of the initial SDM comprises the following steps:

• Identification of state variables (levels).
• Identification of rate variables, constants, and auxiliary variables.
• Transformation of cause-effect relationships contained in the SDM

Causal Diagram into a flow graph using a graphical editor (flow graph
editor). This requires the specification of the model equations (functional
relations between flow graph variables).

• Parameter estimation (model calibration).

Supporting activity: Identification and analysis of process descriptions
(DPMs), and quantitative models (QMs).

Methods and techniques:

Knowledge elicitation techniques (exploratory and structured interviews,
document elicitation).

Guidelines:

The most critical tasks are the identification of state variables (levels) and the
specification of the model equations (incl. parameter estimation).

ID 1.5

Name Implementation of the initial SDM

Role D, E, F, U
• D: Responsible for the implementation of the initial SDM.
• E: Supports D in defining the functional form of the model equations and in

parameter estimation (based on empirical data or on subjective judgement).
• F: Supports D, E, and U.
• U: Responsible for specifying the requirements for the GUI.

Input SDM Causal Diagram, SDM Project Logfile
If available:
• Process Models (DPMs or PPMs)
• Measurement-based Quantitative Models (QMs)

Output Initial SDM (Initial SDM Flow Graph, Initial SDM Equations, Initial SDM GUI), SDM
Project Logfile

diss.book Page 113 Tuesday, November 27, 2001 10:26 AM

114

Process Guidance for SDM Development

For the identification of the state variable the following guidelines should be
followed:

• Application of “snapshot test”: The snapshot test is a mental experiment
that imagines stopping time in the observed system, freezing all informa-
tion and material flows instantaneously, as if one took an all encompass-
ing photography (hence the name of the test) of the system capturing
intangible and invisible characteristics as well as physical processes. The
potential level variables are those that still are visible to the observer of
the snapshot, i.e. because they represent tangible entities (such as peo-
ple, or lines of code). Note that the snapshot test is just a rule of thumb.
Constants - at least in the time frame of interest - are not considered as
levels. On the other hand, non-material (and thus invisible) entities that
have a quasi-material quality (e.g. effort, number of defects) should also
be considered as levels.

• The number of state variable should be sufficient, i.e. the value of all
other variables in the SDM can be derived from the values of the state
variables (and the model constants). On the other hand, the state vari-
ables should be independent, i.e. the value of one state variable cannot
be derived from the values of the other state variables (at the same point
in time).

Guidelines on the identification of rates, auxiliary variables, and constants
can be found in [RiP81]. Guidelines on parameter estimation for SDMs can
be found in [Pet75][Pet76][Pet80].

The specification of model equations should be based on quantitative mod-
els (details will be explained in Section 8).

Materials and tools:

• Checklist Ch-B.2 [Pfa98c]: Implementation of flow graph and associated
model equations.

• System Dynamics tool and tools for data analysis (statistical analysis)
[Pfa97c]33.

Entry condition:

Initial SDM exists.

ID 1.6

Name Review of the initial SDM (verification 2)

Role D: Responsible for formal verification of Initial SDM

Input Initial SDM, SDM Project Logfile

Output SDM Verification Report 2, Initial SDM, SDM Project Logfile

33 A framework for instrumenting measurement programmes with tools has been described in
[KRS+00].

diss.book Page 114 Tuesday, November 27, 2001 10:26 AM

115

Process Guidance for SDM Development

Exit condition:

SDM Verification Report 2 exists and proposed corrections of Initial SDM
have been made (or return to previous activities).

Description:

In order to verify the technical soundness of Initial SDM, the following
checks are made:

Check of the SDM Flow Graph with regard to:

• Correctness and completeness of the implementation of organising con-
cepts and base mechanisms (i.e., boundary adequacy [RiP81]).

Check of SDM Model Equations with regard to (for details refer to [RiP81]):

• Consistency of variable dimensions.
• Correctness of the arithmetics (e.g., no division by zero, extreme condi-

tions),
• Numerical fit (plausibility of numerical values of constants and coeffi-

cients),
• Conceptual fit (plausibility of the chosen functional forms).

Check of the robustness of the Initial SDM (sensitivity with regard to param-
eters and structures).

Proposed changes to the Initial SDM are documented, and necessary correc-
tions are performed.

Methods and techniques:

Walkthrough, model checking, and statistical analysis.

Guidelines:

For robustness checks sensitivity analyses and Monte Carlo simulation can be
conducted.

Materials and tools:

• Checklist Ch-B.2 [Pfa98c]: Implementation of flow graph and associated
model equations.

• System Dynamics tool and tools for data analysis (statistical analysis)
[Pfa97c].

diss.book Page 115 Tuesday, November 27, 2001 10:26 AM

116

Process Guidance for SDM Development

Entry condition:

SDM Verification Report 2 exists and corrections of Initial SDM have been
made.

Exit condition:

SDM Validation Report 1 exists and corrections of Initial SDM have been
made (or return to previous activities).

Description:

Simulation runs are conducted and analysed in order to check whether:

• the Initial SDM reproduces the SDM Reference Mode (boundary ade-
quacy for behaviour [RiP81]),

• the model structure is appropriate for U with regard to size, simplicity/
complexity, and aggregation/detail (model utility [RiP81], and

• the Initial SDM GUI is acceptable for U.

If sufficient quantitative data is available, empirical correctness can be
checked with the help of statistical tests that are particularly suited to SDMs
(cf. [Bar85][Bar89][Bar94]).

Methods and techniques:

Test workshops, statistical analysis.

Guidelines:

Richardson and Pugh provide a taxonomy of tests for building confidence in
SDMs [RiP81]. They distuingish between tests for checking the suitability for
the model purpose, tests for the consistency with reality, and tests for the
contribution of a suitable and consistent model to utility and effectiveness
for U. In each category, a distinction is made between tests that focus on
model structure and tests that focus on model behaviour.

ID 1.7

Name Test of the initial SDM (validation 1)

Role D, E, F, M, U
• D: Presentation of the initial SDM and of results of simulation runs.
• E: Responsible for the analysis and interpretation of simulation results.
• F: Supports D, E, and U in preparing and organising the test workshops.
• M: Responsible for the moderation of test workshops.
• U: Responsible for the interpretation of simulation results, and evaluation of

the GUI.

Input Initial SDM, SDM Project Logfile

Output • SDM Validation Report 1 (Initial SDM Simulation Results, Initial SDM Simula-
tion Analysis),

• Initial SDM, SDM Project Logfile

diss.book Page 116 Tuesday, November 27, 2001 10:26 AM

117

Process Guidance for SDM Development

Main focus of activity 1.7 is on testing model consistency and model utility.
With regard to consistency, the level of appropriateness depends on the
model purpose. SDMs for the purpose of learning require less formal (or
empirical) testing than SDMs for the purpose of planning and controlling.
Thus, appropriateness of SDMs for learning can be based on face validity
(with regard to both structure and behaviour), whereas appropriateness of
SDMs for planning and controlling should, in addition, be based on statisti-
cal tests (based on quantitative data) that evaluate empirical correctness.

Barlas has developed a set of statistical tests for the validation of SDMs, clas-
sified into structural tests, sructure-oriented behavioural tests, and behav-
ioural tests [Bar85][Bar89][Bar94]. An example implementation of some
standard goodness of fit measures for the empirical correctness of SDMs can
be found in [GrM96].

Materials and tools:

• Checklist Ch-C [Pfa98c]: Verification and validation of System Dynamics
models.

• System Dynamics tool and tools for data analysis (statistical analysis)
[Pfa97c].

6.4.2.3 IMMoS Phase 2: Model Enhancement

Entry condition:

Initial SDM has been validated and proposed corrections have been imple-
mented.

ID 2.1

Name Enhancement of the initial SDM

Role D, E, F, U
• D: Responsible for the implementation of the enhanced SDM.
• E: Supports D in defining the functional form of the model equations and in

parameter estimation (based on empirical data or on subjective judgement).
• F: Supports D, E, and U.
• U: Responsible for deciding when the modelling activity should stop (possibly

with decision support from E), and responsible for specifying additional
requirements for the GUI.

Input SDM Goal Definition, Initial SDM, SDM Causal Diagram, SDM Project Logfile
If available:
• Process Models (DPMs and PPMs)
• Measurement-based Quantitative Models (QMs)

Output • Enhanced SDM (Enhanced SDM Flow Graph, Enhanced SDM Equations,
Enhanced SDM GUI, Enhanced SDM Causal Diagram…),

• SDM Project Logfile

diss.book Page 117 Tuesday, November 27, 2001 10:26 AM

118

Process Guidance for SDM Development

Exit condition:

U considers the enhanced SDM to be ready for use.

Description:

Modifications, extensions, and refinements of the initial SDM are done in a
way such that policies that are supposed to overcome the observed prob-
lems can be experimented with. This may include a re-calibration of model
parameters.

When new/alternative base mechanisms are found and included into the ini-
tial model, the corresponding causal diagram is updated accordingly. This is
done for documentation purpose.

The GUI, allowing for easy model execution and analysis of simulation runs,
has to be adjusted to the model enhancements.

Supporting activity: Identification and analysis of process descriptions (DPMs
and PPMs), and quantitative models (QMs).

Methods and techniques:

Knowledge elicitation techniques (exploratory and structured interviews,
document elicitation).

Guidelines:

• Under no circumstances, the enhancement of the SDM should start
before the initial SDM has been validated.

• In order for the enhanced SDM to not become overly complex, model
equations should only be added to the initial SDM when this does yield
new model behaviour patterns, which are either of interest for the prob-
lem under investigation, or create more realistic behaviour and thus let
appear simulation results more convincing.

• A new model equation should represent an important relation between
attributes of real world entities. New model equations should not be
added based on mere intuition.

• When the SDM is in danger to become too complex, the level of detail
should be reduced (and not the model scope).

• The causal diagram is an important conceptual tool for building the initial
SDM. For the enhanced SDM the importance of the causal diagram is
reduced to the level of documentation and communication. Any
enhancement of the SDM should be directly made in the flow graph (and
afterwards be documented in the causal diagram).

Materials and tools:

• Checklist Ch-B.2 [Pfa98c]: Implementation of flow graph and associated
model equations.

diss.book Page 118 Tuesday, November 27, 2001 10:26 AM

119

Process Guidance for SDM Development

• System Dynamics tool and tools for data analysis (statistical analysis)
[Pfa97c].

Entry condition:

Enhanced SDM exists.

Exit condition:

SDM Validation Report 2 exists and corrections of Enhanced SDM have been
made (or return to activity 2.1).

Description:

Simulations are run to check whether the structure and behaviour of the
enhanced SDM is adequate with respect to the problem statement. In addi-
tion, the usability of the SDM is evaluated (model complexity, GUI). Proposed
corrections are documented and implemented.

Methods and techniques:

Test workshop.

Guidelines:

The enhanced SDM must only be used by U for the specified purpose.

Materials and tools:

• Checklist Ch-C [Pfa98c]: Verification and validation of System Dynamics
models.

• System Dynamics tool and tools for data analysis (statistical analysis)
[Pfa97c].

ID 2.2

Name Test of the enhanced SDM (validation 2)

Role D, E, F, M, U
• D: Presentation of the enhanced SDM and of results of simulation runs.
• E: Responsible for the analysis and interpretation of simulation results.
• F: Supports D, E, and U in preparing and organising the test workshops.
• M: Responsible for the moderation of test workshops.
• U: Responsible for the interpretation of simulation results, and evaluation of

the GUI.

Input SDM Goal Definition, Enhanced SDM, SDM Project Logfile

Output • SDM Validation Report 2 (Enhanced SDM Simulation Results, Enhanced SDM
Simulation Analysis),

• Enhanced SDM, SDM Project Logfile

diss.book Page 119 Tuesday, November 27, 2001 10:26 AM

120

Process Guidance for SDM Development

6.4.2.4 IMMoS Phase 3: Model Application

Entry condition:

SDM Validation Report 2 exists and corrections of Enhanced SDM have been
made.

Exit condition:

Enhanced SDM is no longer valid or SDM Goal Definition has become obso-
lete.

Description:

The SDM is applied in order to find new policies that solve the problem(s)
described in the problem statement. This includes experimenting with
parameter values and model structures. If necessary (e.g., due to changes in
the modelled reality), the Enhanced SDM is updated accordingly.

As a consequence of using the Enhanced SDM for the purpose “improve-
ment”, development processes may be altered (and documented in the form
of a PPM).

If the Enhanced SDM is used for the purpose “controlling”, concurrently to
the application of the Enhanced SDM, a related measurement programme
has to be conducted.

Methods and techniques:

Causal tracing of SDM variables34, statistical analysis.

Guidelines:

The enhanced SDM must only be used by U for the specified purpose.

Materials and tools:

System Dynamics tool and tools for data analysis (statistical analysis).

ID 3.1

Name Application and maintenance of the SDM

Role D, E, U

Input Enhanced SDM, SDM Goal Definition

Output Enhanced SDM, SDM Simulation Results

34 Advanced SDM tools (such as Vensim) provide structural tracing tools allowing the model user to
gain a deeper understanding of the impact of cause-effect relations on simulation outcomes.

diss.book Page 120 Tuesday, November 27, 2001 10:26 AM

121

Process Guidance for SDM Development

6.4.3 IMMoS Templates

The following sections provide outlines of the IMMoS templates for SDM
Customer Sheet and SDM Goal Definition.

6.4.3.1 SDM Customer Sheet Template

The SDM Customer Sheet template consists of eight fields:

<field 1> Name of customer organisation
<field 2> Name of SDM Customer (C)
<field 3> Name of SDM Developer (D)
<field 4> Date
<field 5> List of documents
<field 6> List of findings/issues resulting from document elicitation
<field 7> Date and place of meeting with C
<field 8> List of findings/issues resulting from interview with C

6.4.3.2 SDM Goal Definition Template

The SDM Goal Definition template consist of ten fields:

<field 1> Name of customer organisation
<field 2> Name of SDM User (U)
<field 3> Name of SDM Developer (D)
<field 4> Date
<field 5> SDM Scope
<field 6> SDM Dynamic Focus
<field 7> SDM Purpose
<field 8> SDM Role
<field 9> SDM Environment
<field 10> Additional information provided by U, e.g. first assumptions

about cause-effect relations (base mechanisms), suggestions
of potential problem solutions, relevant existing models,
names of subject matter experts in the customer organisation,
etc.

diss.book Page 121 Tuesday, November 27, 2001 10:26 AM

122

Process Guidance for SDM Development

diss.book Page 122 Tuesday, November 27, 2001 10:26 AM

123

Support for SDM Goal Definition

7 Support for SDM Goal Definition

Even though a clear and adequate definition of the SDM goal seems to be
essential, not much support has been provided in the SD literature.

In the IMMoS framework, support for SDM goal definition is provided
through a SDM goal definition taxonomy that assists SDM developers and
SDM users in defining the modelling goal. Recently, categories for classifying
SE simulation models according to scope and purpose have been published
[KMR99]. These categories can be used as a first input for defining a SDM
goal definition taxonomy.

The main starting point, however, for defining the SDM goal definition tax-
onomy has been the GQM goal definition template used to define measure-
ment goals.

7.1 GQM Goal Definition

A GQM goal is specified along five dimensions, i.e. object, quality focus, pur-
pose, viewpoint, and environment [BCR94b][BDR96]. Using these five
dimensions, an example GQM goal definition would be as follows:

Analyse the <object>
for the purpose of <purpose>
with respect to <quality focus>
from the viewpoint of <role>
in the context of <environment>.

Examples objects are processes and products, example purposes are under-
standing, prediction and evaluation, examples for the quality focus are effort
consumption, time needed, productivity and quality. The slot <viewpoint> is
defined by the user role. The organisational unit in which the data collection
and interpretation takes place defines the slot <environment>.

7.2 IMMoS Goal Definition

Similar to the five GQM goal definition dimensions, five dimensions are used
to specify the SDM development goal in the IMMoS framework:

• Dimension 1 – Role: Who will be the user of the SDM? This dimension is
identical to the slot <viewpoint> in the GQM goal definition. In the con-
text of this thesis only managerial roles will be taken under consider-
ation.

diss.book Page 123 Tuesday, November 27, 2001 10:26 AM

124

Support for SDM Goal Definition

• Dimension 2 – Scope: What is the SDM boundary and granularity. This
dimension is similar to the slot <object> in the GQM goal definition.

• Dimension 3 – Purpose: Why is the SDM developed? This dimension is
identical to the slot <purpose> in the GQM goal definition.

• Dimension 4 - Dynamic Focus: What particular dynamic behaviour is in
the focus of interest? This dimension is similar to the slot <quality focus>
in the GQM goal definition.

• Dimension 5 – Environment: In which organisational environment is the
SDM developed and applied? This dimension is identical to the slot
<environment> in the GQM goal definition.

To each of the five dimensions various values can be assigned. In contrast to
GQM where only one value can be assigned to each dimension, in IMMoS,
dimensions 1 (role), 3 (purpose), and 4 (dynamic focus) can have more than
one value assignment at the same time. This is mainly due to higher com-
plexity of SDMs, as compared to QMs, which facilitates more complex usage
scenarios involving several roles, purposes, and dynamic foci.35 There are,
however, certain dependencies between roles and scopes and roles and pur-
poses that restrict the possibility to combine values in an arbitrary way.
Details will be provided in the following sections.

It should also be mentioned at this point that the slot <environment> does
not have direct influence on a SDM development activity. Similar to the
GQM case, the context information is only of relevance for the packaging
and storage of a SDM in the organisations experience base. The provision of
context information for packaging is an essential prerequisite for reuse and
organisational learning. Since these aspects are out of the scope of the
research conducted for this thesis, the interested reader is referred to [Bir00]
for more details.

7.3 IMMoS Goal Definition Taxonomy

Table 12 shows an extract of the IMMoS goal definition taxonomy. The tax-
onomy lists possible values for each of the five SDM goal definition dimen-
sions.

In three cases, i.e. for dimensions Role, Scope, and Purpose, value assign-
ments are restricted to a limited set of pre-defined possibilities that can be
grouped hierarchically on two levels of refinement. The asterisk in dimension
Purpose indicates that a related SDM goal definition requires empirical learn-
ing to take place, including the collection of measurement data.

35 An example scenario explaining the usage of a SDM with a complex goal definition can be found
in [Pfa98b] (Example SDM Goal Definition -- Role: process engineer and project manager; Scope:
single project; Dynamic Focus: project duration, effort consumption, product quality; Purpose: un-
derstand, plan, control, and improve; Environment: software organisation ABC).

diss.book Page 124 Tuesday, November 27, 2001 10:26 AM

125

Support for SDM Goal Definition

For the dimensions Dynamic Focus and Environment no normative value
assignment can be made. This is due to the large variety of possible values.
For example, Dynamic Focus can be directed toward effort consumption,
quality, cost, productivity or any other attribute related to a software devel-
opment artefact, activity or resource. Also combinations of several values are
feasible. This is due to the nature of SDM development, i.e. the underlying
paradigm of Systems Thinking, which advocates multi-causal analyses to
explain observed or anticipated dynamic behaviour.

Table 12: Extract of the IMMoS goal definition taxonomy

In the following sections, each dimension will be discussed in more detail.
The size and structure of the possible value sets associated with each dimen-
sion determine the depth of discussion.

SDM Goal
Definition
Dimension

Multiple
Values

Refinement Level 1 Refinement Level 2

Role Yes Strategic Manage-
ment

Line Management

Process Management (process owners, SEPG)

Product Management

Human Resource Management

Configuration Management

Quality Management

etc.

Project Manage-
ment

Project Management

Project Management Office (PMO)

SE Subject Matter
Experts

<further normative refinement not in scope of work /
non-managerial roles are not in the focus of interest>

Trainer <further normative refinement not in scope of work /
relevance is restricted to role Management Trainer>

Scope No Organisational level Long-term organisation development

Long-term product evolution

Multiple, concurrent projects

Project level Development project (with or without maintenance)

Sub-project (portion of project life-cycle)

Purpose Yes Understanding U-1: Analysis of current or past reality

U-2: Transfer of knowledge

Planning P-1: Prediction based on current reality

P-2: Evaluation of planning alternatives

Controlling C-1: Validation of planning (*)

C-2: Benchmarking (*)

Improving I-1: Exploration of improvement opportunities

I-2: Improvement of current reality (*)

Dynamic
Focus

Yes <further normative
refinement not pos-
sible>

(cost, effort, quality, time, productivity, size, functional-
ity, trade-off between effort consumption and quality,
etc.)

Environ-
ment

No <further normative
refinement not pos-
sible>

(attributes characterising the organisational unit: size,
product domain, location, culture, etc.)

diss.book Page 125 Tuesday, November 27, 2001 10:26 AM

126

Support for SDM Goal Definition

7.3.1 Role

Even though there does not exist an accepted standard set of software engi-
neering roles, a rough distinction can be made between roles that are prima-
rily related to strategic management, i.e. roles dealing with organisational
issues, and roles that are primarily related to project management. In addi-
tion to management-oriented roles, there exist a variety of roles that relate
to technical software engineering tasks, and to software engineering and
managerial skill development.

Table 13 shows an example role taxonomy that was derived from a concrete
software organisation [Pfa97a]. Four role clusters could be identified in this
organisation. For each role cluster there is at least one role name. In two
cases, for the management-related role clusters, supporting roles are listed.
Then, for each role, it is indicated whether a particular role is mainly active
on strategic (organisational) or project level.

Table 13: Example Role Taxonomy

The following sub-sections briefly characterise role clusters contained in the
example role taxonomy.

7.3.1.1 Strategic Management

The decision what product is going to be developed and when the next
project will be started is made on organisational level. These are strategic
decisions which are complemented by other long-term activities like human
resource management, marketing, product evolution, process evolution,
choice of tools and software architectures, etc. Typical roles on organisa-
tional level include Department Head, Department Quality Manager (QM),
Process Engineer, and Product Manager. The Process Engineer is the facilita-
tor of Organisational Learning having the difficult task to continuously

Role Cluster Role Name Supporting Roles La

a. L indicates whether the role mainly acts on strategic level (O = organisation) or on project level
(P = project).

Strategic Management Department Head O

Department QM O

Process Engineer O/P

Product Manager O/P

Project Management Project Manager P

Project Management Office (PMO) P

Project QA P

Feature responsible P

Technical Software Engineer-
ing

Developer P

Tester/QA P

Skill Development / Training Trainer O/P

diss.book Page 126 Tuesday, November 27, 2001 10:26 AM

127

Support for SDM Goal Definition

bridge the gap between the organisational and project perspective by col-
lecting lessons learned from current projects, integrating them into the
organisation's memory (experience base), and introducing positive experi-
ence into future projects via improved processes.

7.3.1.2 Project Management

Product development is always carried out within a project. The Project Man-
ager is responsible for carrying out the project successfully. In larger projects
the Project Manager can rely on a project staff covering roles like project
related quality assurance (Project QA), or a Project Management Office
(PMO).

7.3.1.3 Technical Software Engineering

In each project there is a team of subject matter experts in charge of devel-
oping the software product. Basically, this team can be divided into two
groups, represented by the roles Developer (including, e.g., Analyst,
Designer, Programmer, etc.) and Tester.

7.3.1.4 Skill Development / Training

Trainers are the facilitators of Individual and Group Learning. Similarly to the
role Process Engineer, the Trainer has to bridge the gap between the organ-
isational and project perspective.

7.3.2 Scope

The SDM Goal Definition dimension Scope has a finite set of five possible
values. This set of values was adopted from the simulation model characteri-
sation grid proposed by Kellner et al. [KMR99]. A dependency from the
dimension Role can be established through refinement level 1. Strategic
management related roles will be particularly interested in simulation models
having their scope in the organisational level, whereas project management
related roles will be more interested in models with scope in the project
level.

7.3.3 Dynamic Focus

The SDM Goal Definition dimension Dynamic Focus specifies which aspect of
the system to be modelled is of particular interest. For example, in a model
representing the behaviour of software development projects, aspects like
effort consumption, duration, resource allocation to tasks, amount of
rework, product quality, and so forth could be of interest. Typically, these

diss.book Page 127 Tuesday, November 27, 2001 10:26 AM

128

Support for SDM Goal Definition

aspects measure certain attributes of real world entities. In contrast to the
state of practice in GQM modelling, in the context of System Dynamics mod-
elling, only the dynamic behaviour of the modelled system – i.e. the change
of attribute values over time – is in the focus of interest.

In SDM development it is typical that several mutually related aspects of the
modelled system are in the focus of interest. For example, in project man-
agement, it does not make sense to put focus only one aspect of the “magic
triangle” cost/effort – time – functionality/quality. All three aspects are so
closely related that they always have to be taken under consideration jointly.
Generally, due to the holistic approach of systems thinking, in System
Dynamics modelling, it is not useful to assume that only one aspect be
included in one SDM goal definition. This is in contrast to GQM goal defini-
tion, where exactly one value can be assigned to each goal dimension, and
the resulting models that are derived from a goal definition are hierarchically
structured.

7.3.4 Purpose

The main purpose of SDM development and usage is learning. In Section 1,
four elements of the generic process of model-based learning were identi-
fied (cf. Figure 6): understanding, planning, controlling (or evaluation), and
exploration (for improvement). System Dynamics modelling and simulation
can support each of these elements of the learning process, i.e. the purpose
of a SDM is to support one or more of these learning steps. Direct support
can be provided to understanding, planning, and exploring. Since control
requires the availability of empirical data, only a combination of System
Dynamics simulation and goal-oriented measurement.

In a detailed analysis [Pfa97a][Pfa98b], it was found that the four main pur-
pose types could be further refined (cf. Table 14). The asterisk (“*”) indicates
that refined purposes C-1, C-2, and I-1 cannot be fulfilled by SDM develop-
ment and simulation without setting up and running in parallel a related
measurement programme. The columns “SDM development” and “SDM
simulation” indicate how the refined purposes relate to the SDM life cycle.
For example, purpose U-1 can be addressed by only developing an SDM,
whereas purpose P-1 can only be addressed by running simulations. In the
following sub-sections each of the four purposes will be discussed in detail
and the type of learning that is triggered by the activities related to SDM
development and simulation are summarised.

diss.book Page 128 Tuesday, November 27, 2001 10:26 AM

129

Support for SDM Goal Definition

Table 14: Refinement of SDM Goal Definition dimension Purpose

7.3.4.1 Understanding

The development and application of a SDM for the purpose of understand-
ing can include both:

• analyses of dynamic behaviour of current or past reality, and
• transfer of knowledge about dynamic behaviour of current or past reality

to others (training).

7.3.4.1.1 Understanding of current or past reality (U-1)

The development of a SDM based on information about current or past real-
ity is a source of learning because it helps understand why system states that
are of interest behave in the observed way if certain start conditions and
exogenous influences are in place.

As soon as a SDM exists that reproduces current or past behaviour of reality,
systematic variation of model parameters (i.e., sensitivity analysis or inclusion
and exclusion of model structures) can help understand the sources of
dynamic behaviour. In particular, the nature of trade-off relationships
between system states can be investigated. This kind of analysis can form
the basis for risk analyses and exploration of improvement opportunities (cf.
Section 7.3.4.2 and Section 7.3.4.4).

Understanding of current or past reality comprises two steps. Table 15 lists
the steps, provides a brief characterisation of each step, and lists for each
step the necessary prerequisites. Table 16 summarises the kind of learning
that is induced by addressing purpose U-1.

Purpose Refinement SDM development SDM simulation

Understanding U-1: Analysis of current or past reality yes yes

U-2: Transfer of knowledge (Training) yes yes

Planning P-1: Prediction based on current reality no yes

P-2: Evaluation of planning alternatives no yes

Controlling C-1: Validation of planning (*) no yes

C-2: Benchmarking (*) no yes

Improving I-1: Exploration of improvement opportunities no yes

I-2: Improvement of current reality (*) no yes

diss.book Page 129 Tuesday, November 27, 2001 10:26 AM

130

Support for SDM Goal Definition

Table 15: Sequence of U-1 steps

Table 16: Induced learning by addressing purpose U-1

Example uses of SDM development for purpose U-1 include:

• Identification of relevant system states to describe observed dynamic
behaviour, e.g. defect flow between project phases.

• Better understanding of the causal relationships between system states,
e.g. factors that influence changes in motivation of project staff over
time.

Example uses of SDM simulations for purpose U-1 include:

• Analysis of dynamic error injection patterns in software development
projects.

• Analysis of causes why process changes did not produce the expected
improvements in project performance.

• Analysis of the impact of variation in external influences to the modelled
system, i.e. as a basis for risk analyses.

• Analysis of the impact of variation in system parameters or system struc-
tures as a basis for investigating potential improvement opportunities.

• Analysis of trade-off effects between system states. For example, a SDM
that simulates project behaviour can be used to investigate the mutual
dependency between product quality, project duration, and effort con-
sumption.

• Analysis of system stability. For example, a SDM that simulates project
behaviour can be used to investigate how much average project duration
can be shortened without triggering unwanted side-effects like extreme
cut-down in product quality or sudden increase of project staff turnover.

7.3.4.1.2 Transfer of Knowledge / Training (U-2)

An existing SDM can be used to explain structure and behaviour of a real
system to others. Particularly interesting is the possibility to visualise and
analyse the behaviour of systems with high dynamic complexity like software
development projects. Without the help of a simulation model it is very hard

U-1 steps Characterisation Prerequisite

U-1.1 Based on analysis of past or current reality R, development of
the SDM. The SDM development facilitates understanding of
empirical reality R.

--

U-1.2 Running simulations with the SDM and conducting analyses
based on simulation results. The analyses facilitate understand-
ing of both the empirical reality R and the SDM.

U-1.1

Addressed Purpose Prerequisite Induced Learning

U-1 -- Learning by authentic modelling and simulation (L-1)

diss.book Page 130 Tuesday, November 27, 2001 10:26 AM

131

Support for SDM Goal Definition

to grasp dynamic complexity of a system, particularly if own experience with
the empirical system is limited. But not only simulating an existing SDM, also
the development of an SDM (or of parts of an SDM) in the scope of a train-
ing activity can provide new insights, particularly about causal relationships
between system states, and the number and type of possible influences to
the modelled system.

Hence, the transfer of knowledge (or training) with the help of a SDM can
consist of two steps as shown in Table 17. The second step can be con-
ducted based on a pre-defined model, or based on step U-2.1. Table 18
summarises the kind of learning that is induced by addressing purpose U-2.

Table 17: Sequence of U-2 steps

Table 18: Induced learning by addressing purpose U-2

Example uses of SDM development and simulation for purpose U-2 include
the education of computer science students and the training of software
project managers.

7.3.4.2 Planning

Planning with the help of SDMs refers to the prediction of behaviour of the
modelled system based on simulation runs. For the case that all starting con-
ditions and model input are fixed, the planning task consists of executing
exactly one simulation run. For the case that at least one starting condition
or model input can vary, the planning task can consist in finding the optimal
value assignment with regard to a defined objective function.

7.3.4.2.1 Prediction based on Current Reality (P-1)

An existing SDM that is supposed to represent a subset of current reality can
be used to predict the behaviour of the modelled system by running simula-

U-2 steps Characterisation Prerequisite

U-2.1 Based on appropriately packaged information about past or
current reality R (e.g. provided by a trainer), development of the
SDM. The SDM development facilitates understanding of
empirical reality R.

U-1

U-2.2 Running simulations with a SDM and conducting analyses
based on simulation results. The analyses facilitate understand-
ing of both the empirical reality R and the SDM.
The used SDM can be provided as-is (i.e. by a trainer), or can be
the result of step U-2.1. In the first case, the trainer will get
feedback about the model from the model users (i.e. trainees).

U-1; U-2.1

Addressed Purpose Prerequisite Induced Learning

U-2 -- Learning by mediated modelling and simulation (L-2)

diss.book Page 131 Tuesday, November 27, 2001 10:26 AM

132

Support for SDM Goal Definition

tions. The simulation results, i.e. point estimates or behaviour patterns, can
be used for planning purposes.

Table 19 lists possible sequences of steps that have to be conducted in order
to address purpose P-1 properly, provides a brief characterisation of each
step, and lists for each step the necessary prerequisites. Table 16 summarises
the kind of learning that is induced by addressing purpose P-1.

Table 19: Sequence of P-1 step

Table 20: Induced learning by addressing purpose P-1

Example uses of SDMs for purpose P-1 include:

• A SDM representing the behaviour of a software development project
can be used to estimate certain project parameters (e.g. cumulated effort
consumption, number of inspections conducted, number of defects
found, increase of time pressure) at a pre-defined project milestone.

• Inversely to the previous example, a SDM representing the behaviour of
software projects can be used to predict the point in time at which cer-
tain model states have reached predefined values (effort consumption,
number of defects detected, etc.).

P-1 steps Characterisation Prerequisite

P-1.1 Based on an existing SDM a simulation run is conducted with
the required starting conditions and input data. The simulation
result facilitates learning in two ways:
a) There is a solution to the planning problem (P-1.1 success-

ful)
b) There is no solution to the planning problem (P-1.1 not

successful)
In the case that there is a solution to the planning problem its
implementation in the real system can be started.

U-1

P-1.2
(optional)

Even in the case that the step P-1.1 was successful, the plan-
ning solution may or may not coincide with the expectations of
the planner. In either case, comparing the simulation results
with expectations triggers learning.

P-1.1

P-1.3
(optional)

Even in the case that the step P-1.1 was successful, the plan-
ning results may or may not coincide with planning data gen-
erated by other available models (not necessarily SDMs). In
either case, comparing the planning results with planning
results generated by other models triggers learning.

P-1.1

Addressed Purpose Prerequisite Induced Learning

P-1 U-1

P-1.1

P-1.1

Learning by planning (L-3)

Learning by comparison of planning results with
expectations (L-4)

Learning by comparison of planning results with
planning data generated by other models (L-5)

diss.book Page 132 Tuesday, November 27, 2001 10:26 AM

133

Support for SDM Goal Definition

7.3.4.2.2 Evaluation of Planning Alternatives (P-2)

In the case that the start conditions and input data for a simulation run are
not fixed, several planning alternatives are possible. Evaluation of these plan-
ning alternatives with regard to an objective function can be part of plan-
ning.

Table 21 lists possible sequences of steps that have to be conducted in order
to address purpose P-2 properly, provides a brief characterisation of each
step, and lists for each step the necessary prerequisites. Table 22 summarises
the kind of learning that is induced by addressing purpose P-2.

Table 21: Sequence of P-2 steps

Table 22: Induced learning by addressing purpose P-2

Example uses of SDMs for purpose P-2 include:

• A SDM modelling software development projects can be used to esti-
mate the optimal setting of start conditions (e.g., maximal available total
effort, distribution of effort over project phases, percentage of work

P-2 steps Characterisation Prerequisite

P-2.1 Based on an existing SDM, n simulations are conducted with
varying starting conditions and input data (cf. step P-1.1 in
Table 19). In case that there is at least one feasible solution for
the planning problem, the optimal solution is selected. The sim-
ulations facilitate learning in two ways:
a) There is an optimal solution to the planning problem (P-1.1

successful)
b) There is no solution to the planning problem (P-1.1 not suc-

cessful)
In the case that there is a solution to the planning problem its
implementation in the real system can be started.

U-1; P-1.1

P-2.2
(optional)

Even in the case that an optimal planning solution could be
found in step P-2.1, the simulation results may or may not coin-
cide with the expectations of the planner. In either case, com-
paring the planning results with expectations triggers learning.

P-2.1

P-2.3
(optional)

Even in the case an optimal planning solution could be found in
step P-2.1, the simulation results may or may not coincide with
planning data generated by other available models (not neces-
sarily SDMs). In either case, comparing the planning results with
planning results generated by other models triggers learning.

P-2.1

Addressed Purpose Prerequisite Induced Learning

P-2 P-1.1

P-2.1

P-2.1

Learning by evaluating planning alternatives (L-6)

Learning by comparison of optimal planning results
with expectations (L-4)

Learning by comparison of optimal planning results
with planning data generated by other models (L-5)

diss.book Page 133 Tuesday, November 27, 2001 10:26 AM

134

Support for SDM Goal Definition

products to be inspected) such that the project concludes within a cer-
tain time frame with a certain product quality.

• With the help of a SDM that models the process of allocating of software
requirements to subsequent product releases, optimal allocation strate-
gies can be calculated depending on the average speed of requirements
creation (and other parameters, e.g. complexity of requirements).

7.3.4.3 Controlling

Controlling refers to the comparison of simulation results with related
empirical data. A typical control situation results from the comparison of
plan data with measurement data. Too large discrepancy between plan and
measurement data is an indicator that either the model was not valid when
the planning took place, or since the planning was made, reality has
changed significantly so that the model does no longer represent reality in a
proper way.

7.3.4.3.1 Validation of Planning (C-1)

In order to build trust into the validity of the SDM and the planning that was
made with it, a regular comparison of the planning with the behaviour of
the real system is recommended. This can be achieved by conducting a mea-
surement programme and by comparing plan data with measurement data.
Too large discrepancy between plan and measurement data is an indicator
that either the model was not valid when the planning took place, or since
the planning was made, reality has changed significantly so that the model is
no longer valid.

Table 23 lists a sequence of possible steps that have to be conducted in
order to address purpose C-1, provides a brief characterisation of each step,
and lists for each step the necessary prerequisites. Table 24 summarises the
kind of learning that is induced by addressing purpose C-1.

diss.book Page 134 Tuesday, November 27, 2001 10:26 AM

135

Support for SDM Goal Definition

Table 23: Sequence of C-1 steps

Table 24: Induced learning by addressing purpose C-1

7.3.4.3.2 Benchmarking (C-2)

Simulation results of a SDM can be used as a benchmark, it can be used as
an instrument that checks whether the behaviour of the real system deviates
from the simulated (prescriptive) behaviour. This purpose is typical for static
quantitative models (cf. for example [BLW97] or [BEL+97]).

The sequence of possible steps to address purpose C-2 is similar to that pre-
sented in Table 23. The consequences of a discrepancy between simulated

C-1 steps Characterisation Prerequisite

C-1.1 The comparison between measurement data and plan data can
have two different outcomes:
a) Plan data equals measurement data, i.e. planning was cor-

rect.
b) Plan data differs from measurement data, i.e. planning was

incorrect. Interpretation

Outcome a) can be interpreted as follows:

Interpretation 1: SDM was correct when planning was made;
SDM still represents the current reality R;

Outcome b) can be interpreted in three different ways:

Interpretation 2: If there are no indications that the modelled
system has changed significantly since the point in time when
planning took place, it must be assumed that the SDM was not
valid when planning took place and should be corrected. Go to
step C-1.2.

Interpretation 3: If there are indications that the reality has
changed significantly since planning took place, the SDM
should be adapted to the current reality R’. Go to step C-1.3.

Interpretation 4: If there are indications that the reality has
changed since planning took place but the SDM is still valid (i.e.
the changes from R to R’ can be reproduced by readjusting
parameter values), a re-planning should be conducted. Go to
step C-1.4.

P-1 or P-2

C-1.2
(optional)

If step C-1.1 has shown that the SDM has never been valid,
SDM development has to be corrected (cf. step U-1.1 in Table
15).

C-1.1 (b)

C-1.3
(optional)

If step C-1.1 has shown that the SDM is no longer valid, SDM
development has to be redone (cf. step U-1.1 in Table 15).

C-1.1 (b)

C-1.4
(optional)

If step C-1.1 has shown that the reality has changed since plan-
ning took place but the SDM is still valid, a re-planning should
be made (cf. step P-1.1 in Table 19 or step P-2.1 in Table 21).

C-1.1 (b)

Addressed Purpose Prerequisite Induced Learning

C-1 C-1.1 Learning by validating planning (L-7)

diss.book Page 135 Tuesday, November 27, 2001 10:26 AM

136

Support for SDM Goal Definition

and measured data are, however, different. In the case of purpose C-2, the
goal of the simulation activity is not to check the validity of the SDM but to
check whether there has been an – unintended and otherwise not observed
– change in the real system. Table 25 summarises the kind of learning that is
induced by addressing purpose C-2.

Table 25: Induced learning by addressing purpose C-2

A typical use of a SDM for purpose C-2 is the monitoring of process adher-
ence during the execution of a software project. For example, a deviation of
the actual number of inspections conducted, or of the number of defects
found during inspection, can be an indicator that the inspection process is
not followed as prescribed.

7.3.4.4 Improving

Improving the behaviour of a system requires a change in the system struc-
ture, or in parameter values. On the other hand, not any change in the sys-
tem structure or parameter automatically implies improved behaviour. The
success of a change can only be proven by empirical evaluation, i.e. through
measurement.

Often, however, empirical evaluation is expensive and risky. By evaluating
intended changes in a virtual reality possible consequences – also unex-
pected or even unintended – can be better understood, and thus put the
decision of whether to try an empirical evaluation on safer ground. Seen
from a more constructive perspective, SDMs can be used for systematically
develop and evaluate improvement suggestions in a virtual (laboratory-like)
setting.

7.3.4.4.1 Exploration of Improvement Opportunities (I-1)

Similar to systematic experiments in the real world, a SDM can be used to
investigate whether changes in model parameters or model structure
improve model behaviour with respect to SDM Goal Dimension Dynamic
Focus. In order to do so, proposed changes of the real system are imple-
mented in the SDM and then compared to the baseline behaviour. If several
improvements are suggested the one with the highest impact can be identi-
fied. Also, the effect of combining several improvement suggestions can be
analysed.36

Addressed Purpose Prerequisite Induced Learning

C-2 C-1.1 Learning by benchmarking (L-8)

36 A detailed description of how to use a SDM for exploring the impact of process changes on product
quality can be found in [PfB00].

diss.book Page 136 Tuesday, November 27, 2001 10:26 AM

137

Support for SDM Goal Definition

Table 26 lists possible sequences of steps that have to be conducted in order
to address purpose I-1 properly, provides a brief characterisation of each
step, and lists for each step the necessary prerequisites. Table 27 summarises
the kind of learning that is induced by addressing purpose I-1.

Table 26: Sequence of I-1 steps

Table 27: Induced learning by addressing purpose I-1

A typical use of SDMs for purpose I-1 is comparison of effects of process
changes (e.g. introduction of new technology) on product quality, project
duration, and effort consumption.

7.3.4.4.2 Improvement of Current Reality (I-2)

The improvement of the current reality comprises two steps. First, one or
more improvement suggestions have to be evaluated in the virtual reality of
the SDM. Then, given that at least one improvement suggestion performs
better than the baseline, implementation and evaluation of the improve-
ment suggestions in the real world – typically in the scope of a pilot project –
can be conducted. Both, the collection of data for the (empirical) baseline, as
well as the collection of empirical data for evaluating the improvement sug-
gestion requires the performance of a related measurement programme.

Table 28 lists possible sequences of steps that have to be conducted in order
to address purpose I-2 properly, provides a brief characterisation of each
step, and lists for each step the necessary prerequisites. Table 29 summarises
the kind of learning that is induced by addressing purpose I-2.

I-1 steps Characterisation Prerequisite

I-1.1 The SDM has been changed according to an improvement pro-
posal. Then simulations are run with the same starting condi-
tions and input data as the baseline (produced as described in
steps P-1.1 in Table 19 or P-2.1 in Table 21).

If more than one improvement proposal is made, the bast alter-
native is chosen.

P-1; P-2

I-1.2 The simulation results resulting from the best improvement sug-
gestion are compared to the baseline. If the results of the
changed model are better than the baseline, then the related
improvement suggestions are a candidate for implementation.
Otherwise, the improvement suggestion is rejected.

I-1.1

Addressed Purpose Prerequisite Induced Learning

I-1 I-1.2 Learning by exploration (L-9)

diss.book Page 137 Tuesday, November 27, 2001 10:26 AM

138

Support for SDM Goal Definition

Table 28: Sequence of I-2 steps

Table 29: Induced learning by addressing purpose I-2

7.3.5 Environment

The SDM Goal Definition dimension Environment has exactly the same
meaning as the slot <environment> in the GQM goal definition template. As
in the GQM case, the context information provided in Environment dimen-
sion is only of relevance for the packaging and storage of a SDM in the
organisations experience base. The provision of context information for
packaging is an essential prerequisite for reuse and organisational learning.

Typical examples of context information include characteristics of the soft-
ware organisation and projects to which the modelling and simulation activ-
ities relate, i.e. project size, product domain, location, management culture,
standards in place, organisational maturity, etc.

I-2 steps Characterisation Prerequisite

I-2.1 The improvement suggestion that has proven to improve
the simulated system behaviour is implemented in the real
world.

I-1

I-2.2 The implementation of the improvement suggestion in the
real world and the comparison of induced behaviour in the
changed system S’ to the baseline behaviour of the
unchanged system S can have two outcomes:

Case 1: Behaviour of system S’ is better than the baseline
behaviour the system S.

Case 2: Behaviour of system S’ is not better than the base-
line behaviour.

In case 1, everything is ok, the change of system S was suc-
cessful, i.e. a real improvement.

In case 2, before the improvement suggestion is discarded,
it should first be checked whether the implementation was
done correctly (cf. steps related to purpose C-2). If this is
the case, obviously the SDM that was used to explore the
improvement suggestion is not valid and should be cor-
rected (cf. steps related to purpose L-1).

I-2.1

Addressed Purpose Prerequisite Induced Learning

I-2 I-2.2 Learning by empirical evaluation (L-10)

diss.book Page 138 Tuesday, November 27, 2001 10:26 AM

139

Integration of SD Models with Static SE Models

8 Integration of SD Models with Static SE Models

In Section 1.3, the claim was made that SDMs, which are dynamic white-box
and black-box models, smoothly integrate information represented by static
white-box models, i.e. DPMs, and static black-box models, i.e. QMs. In order
to substantiate this clam it is necessary to show how the information con-
tained in a DPM is mapped to the white-box component of a SDM, i.e. the
flow graph, and how QMs are integrated into the black-box component of
SDMs, i.e. the model equations.

Figure 32: Relationships between static models and SDMs

Figure 32 shows which kind of information is provided from one model type
to another. For example, QMs assign values to attributes of process model
entities or define quantitative relationships between these attributes. It is
worthwhile to note that information about the relationships between enti-
ties, which is usually expressed graphically (cf. Figure 4 on page 5), is only
used for defining data collection procedures (i.e. the measurement plan) but
not for defining QMs. The integration of information contained in DPMs is
discussed in Section 8.1. The integration of QMs into SDMs is discussed in
Section 8.2. Section 8.3 provides an example that illustrates how DPMs and
QMs are integrated into a SDM.

8.1 Representation of DPM Elements in SDMs

In order to integrate the descriptive information about software processes,
as captured by a DPM, in a SDM a mapping has to be defined that specifies
how entities, relationships between entities, and attributes are represented
in a flow graph. Table 30 defines such a mapping. It specifies how entities,
i.e. processes (activities), products (artefacts), and resources (tools, roles, and
actors), relationships between entities, and attributes of entities and their
relationships can be represented in a SDM flow graph (cf. Figure 24 on page
50 for schematic conventions).

SDMQM

DPM

Attributes
Entities
(with Relations)
and Attributes

Model
Equations

diss.book Page 139 Tuesday, November 27, 2001 10:26 AM

140

Integration of SD Models with Static SE Models

Table 30: Mapping of DPM elements to SDM flow graph representation

Activities are represented as rates in the SDM flow graph. All other entities
are represented as levels. Relationships between activities and artefacts, i.e.
relations “is consumed by” and “produces” (cf. Figure 4), are represented as
flows of quantities. All other relationships are represented by information
links. Attributes of both entities and relationships of entities are represented
by levels, auxiliaries or constants. If the attribute is variable, the decision of
whether it should be modelled as a level or an auxiliary, depends on the
source of change. If it is model internal (endogenous) the attribute should be
modelled as a level. If it is model external (endogenous), i.e. it is an input
parameter, it should be modelled as an auxiliary.

8.2 Integration of QMs into SDMs

The possible types of QM models are typically used in a SDM as follows:

• Descriptive QMs (DQMs) are used to define start conditions of the model,
i.e. initial values of levels, and to define input data (auxiliaries) and model
parameters (constants).

• Predictive QMs (PQMs) are used to define implicit management decision
rules (rate equations).

• Evaluation QMs (EQMs) are used to define explicit management decision
rules (rate equations).

8.3 Example SDM Integrating a DPM and QMs

The following example of a simplified design inspection process will be used
to illustrate the mappings of DPM elements and QMs to SDMs.

8.3.1 Descriptive Process Model

Figure 33 shows a simplified product flow of a design process with inspec-
tion, consisting of two activities, i.e. design and inspection, and three arte-

DPM Element SDM Flow Graph Representation

Entity Actor Level

Role Level

Tool Level

Artefact Level

Activity Rate

Relationship between Activity and Artefact Flow of quantities

All other relationships Information link

Attribute of an Entity Level, auxiliary or constant

of a Relationship between Entities Level, auxiliary or constant

diss.book Page 140 Tuesday, November 27, 2001 10:26 AM

141

Integration of SD Models with Static SE Models

facts (products), i.e. requirements specification, design document, and
inspection report with list of defects. The connection between artefact
“inspection report” and activity “design” indicates that defects found dur-
ing inspection have to be reworked, i.e. a re-design is triggered.

The starting and stopping of an activity is controlled by entry and exit criteria
that typically are defined based on status information associated with the
input and output products. For example, the entry criterion of activity
“design” might be defined based on (1) the number of requirements not yet
implemented, and (2) the number of defects not yet reworked. Similarly, the
entry criterion of activity “inspection” might be based on (1) the complete-
ness of the design documents and (2) the number or severity of defects
found during the previous inspection. The latter criterion answers the ques-
tion whether a re-inspection should be performed.

Each artefact has certain attributes. Some of them are shown in Figure 33.
For example, attributes of the artefact “requirements specification” might
provide information about the status of the document (e.g., available, under
work, complete), the size of the documents, or the number of requirements
specified in the document. Similar attributes might be associated with arte-
facts “design document” and “inspection report”, but instead of counting
the number of requirements, the number of defects injected (or contained)
in the design documents, and the number of defects detected during activity
“inspection” might be counted.

Figure 33: Simplified DPM of a design process with inspection

8.3.2 Quantitative Models

Quantitative models related to the design process with inspection, as pre-
sented in the previous sub-section, are typically used to measure or esti-
mates attributes like “size”, “number of requirements” and “number of
defects”, and to define decision rules, e.g., to specify whether a re-inspec-
tion has to be performed.

An example predictive model estimating the number of defects detected per
inspection might have the following form:

Requirements
Specification

Design
Document

Inspec. Report
(List of Defects)

(Re-)
Design

(Re-)
Inspection

Entry / Exit
Criteria

Entry / Exit
Criteria

State,
Size,

Defects

State,
Size,

Defects

State,
Size,

Requirements,

diss.book Page 141 Tuesday, November 27, 2001 10:26 AM

142

Integration of SD Models with Static SE Models

(1) Defects_detected=inspection_effectiveness*defects_contained_in_desing_document

with

(2) inspection_effectiveness=f(inspection_effort, design_doc_size)

Equation (1) expresses the assumption that the number of defects found
during an inspection depends on a portion of the total number of defects
contained in the design documents. The size of the portion is defined by
inspection effectiveness. Equation (2) then defines the estimator of inspec-
tion effectiveness as a function of the effort used for conducting inspections
and the size of the design documents inspected (per inspection).

An example evaluation model specifying whether a re-inspection has to be
conducted might be expressed in terms of a decision rule as in Equation (3):

(3) if defects_detected (per inspection) > defect_limit re-inspection =“yes”

then

re-inspection =“yes”

else

re-inspection = “no”

8.3.3 System Dynamics Model

In Section Section 8.3.1, a simplified DPM of a design process with inspec-
tion, and in Section Section 8.3.2, two of the related QMs were presented.
In the following, the mapping of the DPM to a SDM flow graph, and the
integration of the related QMs into the set of SDM equations is sketched.

Figure 34 shows an excerpt of the SDM flow graph. View 1 of the flow
graph represents the product flow as described by the DPM in Figure 33.
View 2 represents the control flow, i.e. the entry/exit criteria, defined
through status attributes of the artefacts37. View 3 represents the defect co-
flow, as specified through the related attributes of the artefacts “design
document” (des_doc) and “inspection report” (des_insp_doc). The complete
mapping from DPM to SDM is summarised in Table 31.

37 Note that in order to save space, in Figure 34, only a subset of the interface to the variables defined
in view 2 but not the view itself is represented.

diss.book Page 142 Tuesday, November 27, 2001 10:26 AM

143

Integration of SD Models with Static SE Models

Figure 34: SDM flow graph (extract) of a design process with inspection

Table 31: Mapping from DPM to SDM (example)

des doc des insp doc

design

des to do

des inspection

View 1:
Product Flow

<des doc stat> <des insp doc stat><des learning stat>
View 2:
Control Flow

defect detection

injected
 defects

defect injection

detected
 defects

reworked
 defects

defect rework

View 3:
Defect
Co-Flow

DPM Element SDM Flow Graph Representation

Entity Actor n/a --
Role n/a --
Tool n/a --
Artefact Requirements Specification Level: des_to_do

Design Document Level: des_doc
Inspection Report Level: des_insp_doc

Activity (Re-)Design Rate: design
(Re-)Inspection Rate: inspection

Relationship betw. Activity and
Artefact

Requirements Specification-> (Re-) Design Flow of quantities: design_to_do -> design
(Re-)Design -> Design Documents Flow of quantities: design → des_doc
Design Documents -> (Re-) Inspection Flow of quantities: des_doc→ inspection
(Re-)Inspection -> Inspection Report Flow of quantities: inspection→ des_insp_doc
Inspection Report -> Re-)Inspection Flow of quantities: inspection→ des_to_do

all other relation-
ships

n/a --

Attribute of an Entity Requirements Specification: State Level: des_to_do
Requirements Specification: Size Level: des_to_do
Design Document: State Level: des_doc_stat
Design Document: Size Level: des_doc
Design Document: Defects (contained) Level: injected_defects - reworked_defects
Inspection Report: State Level: des_insp_doc_stat
Inspection Report: Size Level: des_insp_doc
Inspection Report: Defects (contained) Level: detected_defects

of a Relationship
between Entities

n/a --

diss.book Page 143 Tuesday, November 27, 2001 10:26 AM

144

Integration of SD Models with Static SE Models

The complete set of model equations constituting the SDM are presented
below, ordered according to level equations, rate equations, and model
parameters (constants).

Level equations:

a) Artefacts:
des to do= INTEG (des inspection-design, planned des doc size) -- pages
des doc = INTEG(design-des inspection,0) -- pages
des insp doc = INTEG(des inspection*des insp doc factor,0) – pages

b) Attributes:
des defects detected = INTEG(des defects detection-des defects rework,0) -- defect
des defects generated = INTEG(des defects generation,0) -- defects
des defects reworked = INTEG(des defects rework,0) -- defects
des defects undetected = INTEG(des defects generation-des defects detection,0) -- defects
des doc stat = INTEG(des doc stat change,0) -- no unit

~ status 0: non_exist
status 1: incomplete
status 2: complete

des insp doc stat = INTEG(des insp doc stat change,0) -- no unit
~ status 0: non_exist

status 1: incomplete
status 2: complete
status 3: complete_again

des learning stat = INTEG(des learning,0) -- no unit

Note: The level equations are automatically generated from the flow graph.
Rate equations:

design = IF THEN ELSE((des doc stat=1),MIN(des to do,des rate*MAX(des learning
stat,1)),0) -- pages/day
des inspection = IF THEN ELSE((des insp doc stat=1):OR:((des insp doc stat=3):AND:(des
doc stat=2)),des doc,0) -- pages/day
des defects generation = design*des def gen rate*(1/MAX(1,des learning stat*des learn-
ing stat)) -- defects/day
des defects detection = IF THEN ELSE((des insp doc stat=1):AND:(des doc stat=2),des def
detection factor*des defects undetected,0) -- defects/day
des defects rework = IF THEN ELSE((des insp doc stat>0),MIN(des defects detected,des
defect rework rate*design),0) -- defects/day
des doc def flag =IF THEN ELSE(des defects detected>des defect limit,1,0) -- no unit
des doc stat change = IF THEN ELSE((des doc stat=0):AND:(entry design flag=1),1,IF THEN
ELSE ((des doc stat=1):AND: (des to do<=0),1,IF THEN ELSE((des doc stat=2):AND:(des to
do>0),-1,0))) -- no unit
des defect rework rate = des def gen rate -- defects/day
des learning = design/planned des doc size -- no unit
des insp doc stat change = IF THEN ELSE((des insp doc stat=0):AND:(des doc stat=2),1,IF
THEN ELSE((des insp doc stat=1):AND:(des doc stat=2),1,IF THEN ELSE((des insp doc
stat=2):AND:(des doc def flag=1),1,IF THEN ELSE ((des insp doc stat=3):AND:(des doc def
flag=0):AND:(des doc stat=2),-2,0)))) -- no unit

Model parameters (constants):

des rate = 10 -- pages/day
des def detection factor = 0.8 -- no unit
des def gen rate = 0.1 -- defects/page
des insp doc factor = 0.1 -- no unit
entry design flag = 1 -- no unit

diss.book Page 144 Tuesday, November 27, 2001 10:26 AM

145

Integration of SD Models with Static SE Models

The following QMs were integrated into the set of SDM equations:

When developing the SDM, two major enhancements were made as com-
pared to the information available in the DPM and related QMs. Firstly, the
defect co-flow was explicitly modelled in parallel to the product flow of the
design and inspection process. Secondly, the root cause for the dynamics
that eventually determines whether a re-inspection has to be conducted has
been introduced, i.e. the learning curve. In the SDM, learning is represented
by the level variable des_learning_stat. The level des_learning_stat can be
interpreted as an attribute of the activity des_doc, because learning takes
place during the (re-)design activity.38 The effect of learning is two-fold.
Firstly, it reduces the defect injection rate during design (rate variable
“des_defects_generation”). Secondly, it increases design productivity (rate
variable “design”). Figure 35 summarises the causal structure that generates
the dynamics of the example SDM.

Input data:

des defect limit = 9 -- defects/page
planned des doc size = 200 – pages

DQM (descriptive QM):

des rate = 10 -- pages/day
des def detection factor = 0.8 -- no unit
des def gen rate = 0.1 -- defects/page
des insp doc factor = 0.1 -- no unit

Note: In the example SDM, variable des_def_detection_factor replaces vari-
able inspection_effectiveness. This is based on the assumption that inspec-
tion effort and size of the design documents inspected are constant (on
average).
PQM (predictive QM):

des defects detection = IF THEN ELSE((des insp doc stat=1):AND:(des doc stat=2),des def
detection factor*des defects undetected,0) -- defects/day

EQM (evaluation QM):

design = IF THEN ELSE((des doc stat=1),MIN(des to do,des rate*MAX(des learning
stat,1)),0) -- pages/day
des inspection = IF THEN ELSE((des insp doc stat=1):OR:((des insp doc stat=3):AND:(des
doc stat=2)),des doc,0) -- pages/day
des doc def flag =IF THEN ELSE(des defects detected>des defect limit,1,0) -- no unit
des doc stat change = IF THEN ELSE((des doc stat=0):AND:(entry design flag=1),1,IF THEN
ELSE ((des doc stat=1):AND: (des to do<=0),1,IF THEN ELSE((des doc stat=2):AND:(des to
do>0),-1,0))) -- no unit
des insp doc stat change = IF THEN ELSE((des insp doc stat=0):AND:(des doc stat=2),1,IF
THEN ELSE((des insp doc stat=1):AND:(des doc stat=2),1,IF THEN ELSE((des insp doc
stat=2):AND:(des doc def flag=1),1,IF THEN ELSE ((des insp doc stat=3):AND:(des doc def
flag=0):AND:(des doc stat=2),-2,0)))) -- no unit

38 An alternative would have been to model learning, i.e. the accumulation of knowledge, as an at-
tribute to the role “designer”. However, because there was no need to introduce an explicit repre-
sentation of roles, this SDM design option was descarded.

diss.book Page 145 Tuesday, November 27, 2001 10:26 AM

146

Integration of SD Models with Static SE Models

Figure 35: Causal diagram of example SDM

Figure 36 shows the results of a simulation run with the SDM. On the left-
hand side, three variables related to the product flow are presented, namely
the development of the design document (variable des_doc) with three
rework cycles, the performance of three inspections (variable
des_inspection), and the learning curve (variable des_learning_stat). On the
right-hand side, three variables related to the defect co-flow are presented,
namely the cumulated number of defects injected into the design document
during development and rework (variable des_defects_generated), the num-
ber of detected and not yet reworked defects (variable
des_defects_detected), and the cumulated number of defects reworked
(variable des_defects_reworked). The impact of the cumulation of knowl-
edge (learning curve) on both design productivity and improved work quality
can be recognised in the product-flow window by the shortening of rework
cycle time, and in the defect co-flow window by the reduction of defect
generation during rework cycles.

Figure 36: Simulation output of example SDM

Design Injected Defects

Detected Defects

Productivity
+

+

+

-

Learning

+
+

+Requirements
+

0 15 30 45 60
Time (Days)

des defects generated : run1 defects
des defects detected : run1 defects
des defects reworked : run1 defects

0 10 20 30 40 50 60
Time (Days)

des doc : run1 pages
des inspection : run1 pages/day
des learning stat : run1

Product
Flow

Defect
Co-Flow

diss.book Page 146 Tuesday, November 27, 2001 10:26 AM

147

Integration of SD Modelling with GQM and PM

9 Integration of SD Modelling with GQM and PM

Figure 37 gives an overview of the modelling methods that are used within
the IMMoS framework, i.e. process modelling (PM), goal-oriented measure-
ment (GQM), and System Dynamics (SD). In the following, these methods
will be referred to as the IMMoS components. Figure 37 also shows the end
products of the modelling methods, i.e. prescriptive process model (PPM),
descriptive process model (PPM), quantitative model (QM), and System
Dynamics model (SDM), as well as the relations between modelling methods
and products.

Figure 37: IMMoS components

In the following sections, the various relationships between methods of the
IMMoS components, established through the mutual use of work products
and end products are described in detail.39 Special focus is put on the close
relationship between System Dynamics and GQM.

9.1 Products of the IMMoS Components

To prepare for a detailed presentation of the relationships between individ-
ual IMMoS components, in this section, the most important SD, GQM, and
PM products are briefly summarised.

9.1.1 SDM Development Products

Relevant work products of SD modelling and simulation are (cf. Section 6.4):

System
Dynamics

(SD)

Goal-oriented
Measurement

(GQM)

Process
Modelling

(PM)

SDMQM

DPM

PPM

39 Parts of this work have been published in [PfL99].

diss.book Page 147 Tuesday, November 27, 2001 10:26 AM

148

Integration of SD Modelling with GQM and PM

• SDM Goal Definition: specifying scope, dynamic focus, purpose, role,
and environment of the SDM development project.

• SDM Reference Mode capturing the dynamic behaviour of interest.
• SDM Causal Diagram: defining the minimal network of causal relations

(i.e. SDM Base Mechanisms) necessary to generate the dynamic behav-
iour of interest.

• Initial SDM: able to reproduce the SDM reference Mode.

Relevant end products of SD modelling and simulation are (cf. Section 6.4):

• Enhanced SDM: applied to solve the problem defined in the SDM Goal
Definition.

• Analysed and interpreted simulation results: used to solve the problem
defined in the SDM Goal Definition.

9.1.2 GQM Products

Relevant work products of GQM planning and measurement are (cf.
[GHW95]):

• One or several measurement goals (GQM Goals): each specifying object,
quality focus, purpose, viewpoint, and context of the measurement pro-
gramme.

• GQM Plan: making measurement goals operational through questions,
and defining the metrics and models that will help to answer these ques-
tions.

• Measurement Plan: specifying in detail all the procedures to be followed
during the measurement programme.

• Measurement data.

End products of a GQM programme are the analysed and interpreted mea-
surement data in the form of QMs. The following types of QMs exist (cf.
[BDR96]):

• Descriptive QMs (DQMs), i.e. models that describe attributes of certain
real-world objects quantitatively,

• Prescriptive QMs (PQMs), i.e. models that describe the relations between
attributes of real-world objects and impacting factors quantitatively, or

• Evaluation QMs (EQMs), i.e. models that support decision making.

9.1.3 PM Products

The end products40 of descriptive and prescriptive PM are descriptive process
models (DPMs) and prescriptive process models (PPMs), respectively (cf. Sec-
tion 1.1.2.1).

diss.book Page 148 Tuesday, November 27, 2001 10:26 AM

149

Integration of SD Modelling with GQM and PM

DPMs capture information about the current software development prac-
tices and organisational characteristics of the software organisation. The
content of a DPM is mainly based on knowledge elicited from process
experts and software development practitioners. Relevant real-world aspects
are represented by entities and relations between entities. Entities are char-
acterised through attributes. Examples of attributes are size, complexity, sta-
tus, time, effort, etc. Different approaches for descriptive process modelling
can be applied.

PPMs contain the same kind of information as DPMs. But the purpose of a
PPM is different to that of a DPM. While DPMs are developed in order to
capture current development practice, the purpose of PPMs is to specify how
the development processes should be.

9.2 Relationships between SDM Development, GQM, and PM

With the information provided in the previous section, a detailed description
of relationships between IMMoS components is presented below. First, a
complete overview of all possible interdependencies between the three
IMMoS components is illustrated, then a more detailed insight into the rela-
tions between individual products of the IMMoS components is given.
Finally, a short example on the integration of SDM development with infor-
mation derived from a DPM and an associated PQM is presented to demon-
strate the benefits of IMMoS.

9.2.1 Overview of IMMoS Relationships

Various interdependencies between the individual modelling stages and
products of SDM development, GQM and PM can be identified. An overview
is sketched in Figure 38, indicating:

• Role: model developer with defined modelling goal(s).
• Modelling method: PM, GQM, SD.
• Modelling stage: descriptive and prescriptive PM, GQM planning and

execution, SDM development and simulation.
• Work products of PM, GQM, and SD: measurement goals, GQM and

measurement plans, SDM Reference Mode, SDM Causal Diagram (with
SDM Base Mechanisms), SDM Equations (Initial SDM) with related simu-
lation results.

• End products of PM, GQM, and SDM development: DPM, PPM, measure-
ment data with related QM(s), SDM Equations (Enhanced SDM) with
related simulation results.

40 PM work products are not considered here. This is due to the fact that standard processes for
deskriptive and descriptive PM have not yet been collected. A very general phase model (without
definition of work products) can be found in [BHV97]. Refinements of this framework with lessons
learned from an industrial case study were presented in [BeB00].

diss.book Page 149 Tuesday, November 27, 2001 10:26 AM

150

Integration of SD Modelling with GQM and PM

• Reality: software development.
• Relations (depicted as arcs) between model user, modelling stages, mod-

elling work/end products, and reality. Arcs from products to modelling
methods/stages, role or real world software development represent a “is
used by” relation. Arcs from modelling methods/stages to products rep-
resent a “produces” relation. Arcs from modelling stages to modelling
methods represent a “triggers” relation. Arcs from real world software
development to products represent a “provides data to” relation. Arcs
from real world software development to role represent a “is observed
by” relation. Arcs from role to real world software development repre-
sent a “makes decision upon” relation. Arcs from role to modelling
method represent a “develops model” or “uses model” relation.

When and how the products of the three modelling approaches are com-
bined depends on the goals of the potential model user.

The PPM (grey shaded in Figure 38) is only needed to specify what an
intended process change will look like. As soon as the process change is suc-
cessfully implemented, the PPM automatically becomes the new DPM.

Figure 38: Interaction between IMMoS components during modelling

A complete description of the detailed relations between individual IMMoS
components and their work and end products is presented in the following
sub-sections.

PM

descriptive prescriptive

GQM

planning execution

SD

modelling simulation

DPM PPM

Role with Goal(s)

meas. goal(s),
plans

data,
QM(s)

ref. mode,
causal diagram,

SD model
simulation

results

real world
software

development

diss.book Page 150 Tuesday, November 27, 2001 10:26 AM

151

Integration of SD Modelling with GQM and PM

9.2.2 Relations between GQM and PM

Figure 39 outlines the product flow between PM and GQM, only showing
the end products resulting from the individual modelling activities, i.e. DPM,
QM, and PPM, and their relation to the real world, which is modelled and to
which the models are applied.

In order to get a qualitative understanding about the entities in the real
world and their relationships, a DPM can be developed without support
from any other modelling method (1). Based on information contained in
the DPM, and on data collected from the real world, QMs can be developed
(2). Both, development and analysis of the DPM and application of the QM
to the real world may trigger proposals to change the current development
process in order to improve it. The improvement suggestion will be repre-
sented in the form of a PPM, which is largely based on the existing DPM (3).
In order to evaluate the PPM, the development of a QM, which uses infor-
mation from both DPM and PPM, might be triggered (4). Iterations between
modelling activities are depicted by dashed arcs.

Figure 39: Relations between GQM and PM

On a more detailed level, the relations between GQM products and PM
products can be summarised as follows:

Descriptive PM and GQM:

• DPM ↔ Measurement goal: Usually, the object that is subject to mea-
surement is an entity in the DPM, and the quality focus of the measure-
ment goal is specified by some of the entity's attributes. On the other
hand, it can turn out during the specification of a measurement goal that
the software processes are not yet clearly defined. In that case, a PM
activity is initiated.

• DPM ↔ GQM plan: The definition of the questions and metrics con-
tained in a GQM plan is usually done with the help of so-called abstrac-

Real
World

PM

DPM

GQMQM

PM

PPM

1

3 2, 4

2

3

4

diss.book Page 151 Tuesday, November 27, 2001 10:26 AM

152

Integration of SD Modelling with GQM and PM

tion sheets. Basically, an abstraction sheet is a means of acquiring, struc-
turing, and documenting all the relevant information provided by
participants in the measurement programme. An abstraction sheet con-
tains information about the entities of the measurement object with its
associated attributes representing the quality focus (as specified by the
measurement goal), and information about factors that have an impact
on the quality focus (so-called variation factors). In addition, hypotheses
about the performance of the quality focus attributes and the way in
which the variation factors influence the performance of the quality
focus attributes are documented. Based on this information, for each
measurement goal, a set of questions, metrics, and models can easily be
defined (for details cf. [GHW95]). To a large extent, the set of entities and
attributes gathered in abstraction sheets is determined by the informa-
tion contained in the organisation-specific DPM. Again, it can turn out
during the development of a GQM plan that the software processes are
not yet defined clearly enough. In that case, a PM activity is initiated.

• DPM → Measurement plan: When, how and by whom measures that
have been defined in the GQM plan are collected must be specified in
accordance with the development process (as represented by the DPM).
An instructive example that describes how a DPM is used for defining the
measurement plan can be found in Bröckers et al. [BDT96].

GQM and prescriptive PM:

• QM → PPM: The results from the application of a QM can trigger ideas
for improving the development process. The proposed process changes
are represented in a PPM.

• PPM (& DPM) → QM: Evaluation of the validity of the improvement sug-
gestions represented in the PPM might trigger the development of a QM,
i.e. a EQM.

9.2.3 Relations between SDM Development and PM

The relations between SD modelling products and PM products are as fol-
lows (cf. Figure 40):

• Indirect relation via measurement (cf. Section 9.2.2).
• Direct relation through usage of qualitative process information from a

DPM as input for the definition of reference modes, base mechanisms,
causal diagrams, and by mapping the relevant parts of the control and
product flow to the SDM flow graph (Step 2 in Figure 40)

• Again, as with QMs, the results of SDM simulation might be used for pre-
scriptive process modelling (Step 3 in Figure 40). Note that no input from
PPMs to SDM development is necessary because potential process
changes are directly implemented in the SDM flow graph and evaluated
through simulation.

diss.book Page 152 Tuesday, November 27, 2001 10:26 AM

153

Integration of SD Modelling with GQM and PM

Figure 40: Relations between SDM development and PM

9.2.4 Relations between SDM Development and GQM

Figure 41 outlines the product flow between SDM development, PM and
GQM, taking the viewpoint of SDM development, i.e. relations between PM
and GQM without direct involvement of SDM development are not shown.
Again, Figure 41 does only show the end products resulting from the individ-
ual modelling activities, i.e. DPM, QM, SDM and PPM, and their relation to
the real world, which is modelled and to which the models are applied. The
relation between SDM development and GQM, which is in the focus of this
sub-section (cf. grey areas), is very tight and involves exchange of informa-
tion at several modelling steps, involving various intermediate work prod-
ucts.41

PPM

Real
World

PM

DPM

SDSDM

PM

1

3 2

2

3

41 Similar to the relation between GQM and PM, where PM end products are used at several stages
of the GQM process, GQM end products (i.e. QMs) are used in several stages of the SDM develop-
ment process.

diss.book Page 153 Tuesday, November 27, 2001 10:26 AM

154

Integration of SD Modelling with GQM and PM

Figure 41: Relations between SDM development, GQM and PM

The relations between SD modelling products and GQM products are as fol-
lows:

• SDM Reference Mode → Measurement goal (and GQM plan): If a refer-
ence mode shall be based on empirical data and this data is not yet
readily available, an adequate measurement goal has to be defined. For-
mally, five aspects have to be specified for a complete definition of a
measurement goal: object, quality focus, purpose, viewpoint, and con-
text. The SDM Reference Mode determines three of the five aspects. The
measurement object is defined by the real-world entity under consider-
ation, the measurement quality focus is defined by the attributes which
describe the reference behaviour of the entity under consideration, the
measurement purpose is defined as monitoring (i.e., quantitative charac-
terisation of attributes over time). The information about the entities and
attributes used to define the reference mode will also be the starting
point for the development of the GQM plan.

• SDM Base Mechanisms / SDM Causal Diagram → Measurement goal
(and GQM plan): SDM Base Mechanisms define cause-effect relation-
ships that are supposed to generate the reference behaviour. If the iden-
tification of cause-effect relationships shall be based on empirical evi-
dence, appropriate measurement has to be conducted. Therefore, one or
more measurement goals with measurement purpose control have to be
defined. Then, the GQM plans based on these measurement goals will
capture the attributes describing effects in the quality focus section, and
attributes describing causes in the variation factors section. Statistical
correlation analysis might be applied.

• SDM Equations → Measurement goal (and GQM plan): SDM Equations
define quantitative functional relationships between model variables. If
the identification of functional relationships shall be based on empirical

PPM

Real
World

PM

DPM

GQMQM

PM

SDSDM

diss.book Page 154 Tuesday, November 27, 2001 10:26 AM

155

Integration of SD Modelling with GQM and PM

evidence, appropriate measurement has to be conducted. Therefore, one
or more measurement goals with measurement purpose control or pre-
diction have to be defined. Then, the GQM plans based on these mea-
surement goals will capture the dependent variable in the quality focus
section, and the independent variables in the variation factors section.
Statistical modelling, e.g. regression analysis, and data mining techniques
might be applied.

• GQM plan → SDM Base Mechanisms / SDM Causal Diagram: When
defining a GQM plan, there is a chance that during the process of knowl-
edge acquisition with abstraction sheets new quality focus attributes and
associated variation factors are identified. New pairs of dependent vari-
ables (quality focus attributes) and explanatory variables (variation fac-
tors) can be used to modify or extend the set of SDM Base Mechanisms.

• Measurement results (DQM) → SDM Reference Mode: If adequate mea-
surement data is available, it can be used to define the reference mode
through a DQM.

• Measurement results (DQM, PQM) → SDM Base Mechanisms and SDM
Model Equations: Measurement results that come out of an adequately
defined measurement programme can help to identify and define cause-
effect relationships qualitatively (in terms of SDM Base Mechanisms) and
quantitatively (in terms of SDM Equations).

Figure 42 summarises the relationships between SDM development and
GQM, including the SDM user and application of the SDM for problem solu-
tion. While the bold arcs indicate the general flow of work, the plain arcs
represent the relationships between SD and GQM work products. Dashed
arcs indicate the use of information from DPMs.

Figure 42: IMMoS application example scenario

User (Role)

Flow Graph / SDM

Base Mechanisms

Causal Diagram

Reference Mode

Problem /
Modelling Goal

Project Plan
PPM / DPM

GQM Goal

Measurement Plan

Measurement
Results (QM)Simulation Results

GQM Plan

control

understand
plan
improve

actualplan

Process / Project
understand, plan,
control, improve

diss.book Page 155 Tuesday, November 27, 2001 10:26 AM

156

Integration of SD Modelling with GQM and PM

9.3 IMMoS Application Example Scenario

To further illustrate IMMoS, in this subsection an example scenario is pre-
sented explaining how a hypothetical SD modelling and simulation activity
can be linked to process modelling (PM) and goal-oriented measurement
(GQM).42 Adopting the perspective of a SD modelling project, the example
scenario begins with the description of the situation at project start, then it
concentrates on possible relations between SD modelling and simulation,
PM, and GQM. The scenario evolves in four steps:

(1) Initialisation of the SDM development project: Motivation of the SDM
development project, and description of the starting situation in terms of
roles involved, problem statement, and modelling goals.

(2) Acquisition of qualitative information: SDM development triggers PM
and exploits the resulting DPM. [Affected relations between IMMoS com-
ponents: SD → PM → SD]

(3) Acquisition of quantitative information: SDM development triggers
GQM-based measurement and exploits resulting DQMs and PQMs.
[Affected relations between IMMoS components: SD → GQM → PM →
GQM → SD]

(4) Application of SDM: a) SD simulation results serve for process analysis
and subsequent identification of potential improvements, eventually
resulting in a PPM that specifies the candidate process improvements; b)
Evaluation of the implemented process changes via EQMs and use of the
(re-validated) SDM for project planning and control. [Affected relations
between IMMoS components: SD → PM and GQM → SD]

These four steps are worked out in more detail in the four subsections
below. In each of the steps, SD, PM, and GQM-related work products and
end products are used as described in Section 9.1.

9.3.1 Initialisation of SDM Development Project

Assume a Software Engineering Process Group (SEPG), consisting of process
engineers and technical project leaders, is interested in achieving a better
understanding of the trade-off effects between development time and soft-
ware product quality. Moreover, if possible, the team would like to improve
the project performance as a result of an adequate process change. If the
process change is successful, the project leaders would like to have a simula-
tion model that supports project planning and control.

In summary, the SEPG has four goals: learning (understand process/project
dynamics), improving (change process to achieve better project perfor-

42 The value of SDMs for defining measures and, in addition, for demonstrating the usefulness of es-
tablishing a measurement system in a software organisation has been explained based on the ex-
ample of the PSIM model in [Pfa95].

diss.book Page 156 Tuesday, November 27, 2001 10:26 AM

157

Integration of SD Modelling with GQM and PM

mance), planning and controlling (of project performance). The team
expects that a SD simulation model can help to support the achievement of
their goals.

9.3.2 Acquisition of Qualitative Information

As a first step towards SD model building, a problem definition is provided,
restricting the abstraction level of the model structure to those development
activities and associated work products that play a key role for effort and
time consumption, as well as for the determination of product quality. To
identify the most relevant activities, artefacts, resources, roles, etc., a DPM
that describes the static structure of the current development process should
be consulted. The DPM either has to be developed, or - if already existing -
can be extracted from the organisation's experience base.

As soon as the DPM is available, it is used to help identify the most impor-
tant state variables of the SDM. Typical state variables are countable
attributes of artefacts (like size, or number of defects contained), activities
(like duration), relations between artefacts and activities (like number of
defects generated and number of defects detected), and agents (like num-
ber), etc. A subset of these state variables will be used to define the SDM's
reference mode. Additionally, the information contained in the DPM can be
the starting point for discussing possible causal relationships between model
variables.

Figure 43 shows an extract from the SDM's flow graph that is based on the
information in the DPM and additional input from software development
experts.

Figure 43: Extract from a view of the SDM's flow graph (implementation phase)

Code to do Code

Inspections

Defects
detected

code rate

rework rate

standard productivity

inspection rate

preparation time per inspection

LOC per inspection

schedule pressure

<Time>deadline

LOC per defect

code defect detection rate

planned code size

amount of
rework

inspection effectiveness

typical rework share

diss.book Page 157 Tuesday, November 27, 2001 10:26 AM

158

Integration of SD Modelling with GQM and PM

9.3.3 Acquisition of Quantitative Information

The reference mode is needed to sketch the most essential surface behav-
iour of the development process, i.e. it is a description of the dynamic
behaviour of key variables that characterise the system to be modelled. A
reference mode might contain, for example, the trajectories of defects
detected, effort consumed, change requests, etc. over project time. The ref-
erence mode can be based on expert opinion or on empirical data. The SEPG
team decides to use empirical data from typical projects. The respective data
might again either be extracted from an existing experience base, or gained
from a newly started and specifically tailored measurement programme. The
measurement goals of such a programme are determined by the needs of
SDM development. The generic specification of a measurement goal for
defining the reference behaviour of a state variable is outlined in Table 32.

The complete specification of what will be measured is then worked out in
the form of a GQM plan. The execution of the measurement programme is
defined by the measurement plan which is derived from the GQM plan and
additional information taken from the DPM and its instances (i.e. project
plans). The measurement programme will result in a set of DQMs that are
used to define the reference mode.

Table 32: Measurement goal specification template for SD Reference Mode definition

Empirical data can also play a crucial role for the identification of causal rela-
tionships. For, example, statistical analysis based on measurement data can
be applied to define the SDM variable inspection effectiveness in Figure 43.
The inspection effectiveness together with the number of inspections deter-
mines the number of defects that are detected during a week (variable code
defect detection rate), and thus the weekly amount of rework to do (variable
rework rate). The weekly number of inspections is represented by the vari-
able inspection rate. The (average) number of defects found in a code
inspection is assumed to be a function of the variables LOC per inspection
and preparation time per inspection. Such a function is equivalent to a PQM.
The exact definition of this PQM can be derived through regression analysis.
A fully documented example of such a measurement-based analysis can be
found in Briand et al. [BLW97]. The authors describe how a measurement
programme was specified, and how the statistical analyses were conducted
to derive a PQM on inspection effectiveness (with effectiveness being
defined as the number of detected defects divided by the size of the
inspected artefact). As a result of their analyses the authors showed that
there is a statistically significant exponential relation between the inspected

Analyse process (or product) [object]

with respect to <state variable> (e.g. manpower allocation) [quality focus]

for the purpose of monitoring [purpose]

from the viewpoint SEPG team [viewpoint]

in the context of typical projects of the software organisation [environment]

diss.book Page 158 Tuesday, November 27, 2001 10:26 AM

159

Integration of SD Modelling with GQM and PM

document size, the effort spent on inspection preparation, and the resulting
inspection effectiveness.

Of course, similar measurement-based analyses can be conducted for other
SDM variables. Sometimes, however, it is very time and effort consuming, or
even impossible to carry out an appropriate empirical analysis. In these cases,
one can only rely on expert opinion. And often, due to lack of adequate
data, empirical analysis cannot result in a precise definition of SDM equa-
tions, but still provide enough evidence for an association or correlation
between certain model variables. This more qualitative information is still
useful when developing causal diagrams.

9.3.4 Application of SDM

In the course of building the SDM, the SEPG has already gained much new
insight into those aspects of the development process that influence project
duration and product quality. Gaming with the simulation model allows the
team to better understand the dynamic behaviour patterns and to conduct a
systematic analysis of the trade-off between project duration and product
quality. Hence, model building and simulation satisfy the goal of learning.

Having the SDM at hand, the analysis and interpretation of the simulation
outcomes might trigger several process improvement suggestions (goal:
improving). To decrease the risk of losing money with unsuccessful pilot
projects, the improvement suggestions should first be investigated by imple-
menting the intended process changes in the SDM and comparing simula-
tion results. If these analyses confirm the improvement suggestions, this
might even be an additional argument to convince management that the
suggested process change should be piloted in real world software develop-
ment.

Before a process change is implemented, it should be specified in a PPM,
and, after implementation, it must be evaluated. This can only be done by
using an EQM that compares the performance of the new process to the
baseline. If the improvement is actually confirmed this will also support the
validity of the SDM, and the project leaders might use it for project planning,
risk management and project control (goals: planning and controlling).

Process engineers and project leaders might even use the SDM as a tool for
process or project benchmarking. Comparing the process/project behaviour
predicted by the SDM with control data derived from an appropriate mea-
surement programme can do this (goal: controlling). Assuming that the SDM
is sufficiently valid, a big difference between the model predictions and the
measurement data indicates an undetected alteration of the real system. An
example of such an undetected alteration might be a gradually increasing
loss of conformance with inspection guidelines. The identification of such
decay of the inspection process might result in a reinforcement of the guide-
lines and prevent future loss of money (i.e. during maintenance).

diss.book Page 159 Tuesday, November 27, 2001 10:26 AM

160

Integration of SD Modelling with GQM and PM

diss.book Page 160 Tuesday, November 27, 2001 10:26 AM

161

Part IV: Validation

diss.book Page 161 Tuesday, November 27, 2001 10:26 AM

162

diss.book Page 162 Tuesday, November 27, 2001 10:26 AM

163

Validation of the IMMoS Approach

10 Validation of the IMMoS Approach

In Section 4.9.2 the following research hypotheses were formulated:

• H1: SDM development with IMMoS is at least as effective as SDM devel-
opment without IMMoS.

• H2: SDM development with IMMoS is more efficient than SDM develop-
ment without IMMoS.

The concept of effectiveness is related to the suitability of a developed SDM.
Suitability is measured as the degree to which a developed SDM fulfils its
purpose from the point of view of the model user. The validity of hypothesis
H1 is evaluated by comparing the suitability of SDMs developed with IMMoS
(innovation) to the suitability of SDMs developed without IMMoS (baseline).
The expectation is that SDMs developed with IMMoS are at least as suitable
as SDMs developed without IMMoS.

The concept of efficiency is related to the consumption of resources during
the development of a SDM. Resource consumption is measured in terms of
effort and time needed for the modelling activities. The validity of hypothesis
H2 is evaluated by comparing the relative43 resource consumption of SDMs
developed with IMMoS (innovation) to the relative resource consumption of
SDMs developed without IMMoS (baseline). For the evaluation, only suitable
SDMs will be compared, because it would not be of much use to show that
SDM development with IMMoS is faster and cheaper than without IMMoS, if
the resulting SDMs would not fulfil their purposes. In that respect, the valid-
ity of hypothesis H1 can be seen a necessary condition for the validity of
hypothesis H2. The expectation is that the development of SDMs with
IMMoS needs less time and effort than the development of SDMs without
IMMoS.

The overall approach to the validation of IMMoS is summarised in Figure 44.
For the evaluation of the research hypotheses, two industrial case studies
and one controlled experiment were conducted. The following models were
used to validate the IMMoS approach:

• PSIM: Project/Process Simulator (developed without IMMoS / baseline)
• RESIM: Requirements Engineering Simulator (developed with IMMoS /

innovation)
• GENSIM: Generic Simulator (developed with IMMoS / innovation)

43 In order to eliminate the impact of SDM size on resource consumption, duration and effort numbers
were divided by SDM size.

diss.book Page 163 Tuesday, November 27, 2001 10:26 AM

164

Validation of the IMMoS Approach

The PSIM model was developed during a first case study conducted at Sie-
mens in collaboration with the corporate research division. The customer
organisation was a department in the telecommunication branch. Because
IMMoS was not yet available during the PSIM case study, this project formed
the baseline for the validation of IMMoS. Details about the PSIM project
were provided in Section 4.

The RESIM model was developed during the second case study conducted at
Siemens, again in collaboration with the corporate research division. In this
case, the customer organisation was a division in the automotive branch. For
the development of the RESIM model IMMoS was applied. Details about the
RESIM project will be provided in Section 11.

The GENSIM model was developed at Fraunhofer IESE. It was used in lec-
tures at the University of Kaiserslautern. For the development of the GENSIM
model IMMoS was applied. Details about the GENSIM project will be pro-
vided in Section 12.

Figure 44: IMMoS validation approach

The following sub-sections sketch the approaches that were chosen to eval-
uate the research hypotheses and summarise the evaluation results. Details
about the evaluation of hypothesis H1 are provided in Section 13. Details
about the evaluation of hypothesis H2 are provided in Section 14.

10.1 Evaluation of Hypothesis H1 (Effectiveness)

In order to evaluate hypothesis H1 it is necessary to compare the effective-
ness of SDM development with IMMoS (innovation) to SDM development

SDM development SDM usage

Duration & Effort
(per Size unit) Suitability

H1H1

SDM development
without IMMoS:

PSIM
(Baseline)

SDM development
with IMMoS:

RESIM & GENSIM
(Innovation)

SDM development
without IMMoS:

PSIM
(Baseline)

SDM development
with IMMoS:

RESIM & GENSIM
(Innovation)

Effectiveness
of IMMoS

Efficiency
of IMMoS

H2H2

(prerequisite)

diss.book Page 164 Tuesday, November 27, 2001 10:26 AM

165

Validation of the IMMoS Approach

without IMMoS (baseline). As the formulation of hypothesis H1 states, it is
not expected that SDM development with IMMoS is generally more effective
than SDM development without IMMoS. There is no reason to assume that a
SDM developed without IMMoS cannot fulfil its purpose from the point of
view of the model user.

Effectiveness of SDM development (with or without IMMoS) was evaluated
in terms of suitability, i.e. the fulfilment of the SDM purpose from the point
of view of the SDM user. The suitability of the SDM models PSIM and RESIM
was assessed within the context of industrial case studies, based on objective
data (PSIM) and subjective data (PSIM and RESIM). The suitability of GENSIM
was assessed based on the results of a controlled experiment with computer
science students at the University of Kaiserslautern. In the controlled experi-
ment, the effectiveness of a training session on the topic “Software Project
Management” was evaluated. A pre-test-post-test control group design was
applied. The treatment of the experimental group involved simulation with
GENSIM, while the treatment of the control group involved the usage of a
traditional project estimation model (COCOMO [Boe81]). Four variables
were used to capture student performance: (1) interest in the topic of soft-
ware project management, (2) knowledge about typical behaviour patterns
of software development projects, (3) understanding of simple project
dynamics, (4) understanding of complex project dynamics. The suitability of
GENSIM was considered sufficient if the post-test performance and the per-
formance improvement (difference between pre-test to post-test scores) of
the students in the experimental group was not worse than that of the stu-
dents in the control group.

Table 33 summarises the results of the evaluation. All three SDMs were con-
sidered suitable at least for one SDM user, i.e. there is no difference between
SDMs developed with IMMoS to the SDM developed without IMMoS, and
thus no indication that the null hypothesis associated with hypothesis H1
could not be rejected. Hence, hypothesis H1 is supported.

diss.book Page 165 Tuesday, November 27, 2001 10:26 AM

166

Validation of the IMMoS Approach

Table 33: Summary of evaluation results for hypothesis H1

10.2 Evaluation of Hypothesis H2 (Efficiency)

In order to evaluate hypothesis H2 it is necessary to compare the efficiency of
SDM development with IMMoS (innovation) to SDM development without
application of IMMoS (baseline). The result of this comparison is only useful
when in both cases, i.e. innovation and baseline, the developed SDMs were
suitable.

Efficiency of SDM development (with or without IMMoS) was evaluated in
terms of resource consumption, i.e. calendar time (duration) and effort
needed to develop the SDM. For all three models, PSIM, RESIM, and GEN-
SIM, resource consumption was assessed based on objective data. In order
to neutralise the impact of model size, time and effort data was divided by
the number of level variables44. The number of level variables was consid-
ered an adequate measure of SDM size.

Baseline
(SDM development

without IMMoS)

Innovation
(SDM development with IMMoS)

Evaluation
context

Industrial case study Industrial case
study

Controlled experiment

SDM name PSIM RESIM GENSIM

Evaluation
criterion

SDM suitability SDM suitability SDM suitability

SDM user a) Project Manager
b) Process Owner

Process Consultant
(Assessor)

Computer Science Students

SDM purpose a) Planning and Control
b) Improvement

Understanding Understanding (Training)

Type of mea-
surement
data

Subjective (a and b) and
objective (only a)

Subjective Subjective and objective

Measure-
ment results
for suitability

1. Objective data:
The predictive accuracy
of PSIM was greater
than 90%.

2. Subjective data:
a) According to the

Project Manager,
PSIM fulfilled its pur-
pose sufficiently well.

b) The Process Owner
could not use PSIM
for the intended pur-
pose.

Subjective data:
According to the
SDM user, RESIM
fulfilled its purpose
sufficiently well.

1. Objective data:
Compared to a training session with
COCOMO, the knowledge of students
about typical behaviour patterns of soft-
ware projects increased (statistical signif-
icance).
With regards to the understanding of
typical software project dynamics no sig-
nificant difference could be observed
between experimental and control
group.

2. Subjective data:
Compared to a training session with
COCOMO, the interest of students in
the topic “Software Project Manage-
ment” increased (practical significance).

Interpreta-
tion of mea-
surement
results

PSIM is suitable (at least
for one SDM user)

RESIM is suitable GENSIM is suitable

diss.book Page 166 Tuesday, November 27, 2001 10:26 AM

167

Validation of the IMMoS Approach

Table 34 summarises the results of the evaluation. The SDMs that were
developed with IMMoS needed considerably less time and effort for their
development. This is an indication that the null hypothesis associated with
hypothesis H2 could be rejected if a sufficiently large number of cases would
be available for a full statistical analysis. Hence, hypothesis H2 is supported.

Table 34: Summary of evaluation results for hypothesis H2

44 For a definition of level variables in SDMs refer to Section 3.3.5, page 50.

Baseline
(SDM development

without IMMoS)

Innovation
(SDM development with IMMoS)

Evaluation con-
text

Industrial case study Industrial case study Preparation of controlled
experiment

SDM name PSIM RESIM GENSIM

Evaluation crite-
ria

Resource consumption for
SDM development (dura-
tion and effort)

Resource consumption for
SDM development (dura-
tion and effort)

Resource consumption for
SDM development (dura-
tion and effort)

Type of measure-
ment data

Objective Objective Objective

Measurement
results for dura-
tion (divided by
SDM size)

0.69 [calendar months /
level]

0.18 [calendar months /
level]

0.04 [calendar months /
level]

Measurement
results for effort
(divided by SDM
size)

0.58 [person months /
level]

0.12 [person months /
level]

0.05 [person months /
level]

diss.book Page 167 Tuesday, November 27, 2001 10:26 AM

168

Validation of the IMMoS Approach

diss.book Page 168 Tuesday, November 27, 2001 10:26 AM

169

The RESIM Project

11 The RESIM Project

This section presents a simulation model that was developed for Siemens
Corporate Technology (Siemens CT). The purpose of this simulation model-
ling project was a) to demonstrate the impact of unstable software require-
ments on project duration and effort, and b) to analyse how much effort
should be invested in stabilising software requirements in order to achieve
optimal cost effectiveness [PfL00b].

11.1 Motivation and Background

The starting point for developing the simulation model was a CMM-compat-
ible software process assessment [Völ94][MMP+98][Leb00], which Siemens
CT had conducted within a Siemens Business Unit (Siemens BU). Usually, the
main result of a software process assessment is a list of suggested changes
to the software processes. In this case, the assessors’ observations indicated
that the software development activities were strongly affected by software
requirement volatility. Moreover, due to the type of products developed by
Siemens BU, i.e. products consisting of hardware (e.g. micro-controllers) and
embedded software, the definition of software requirements was under
direct control of systems engineering, and thus not totally under responsibil-
ity of the software department. During the assessment, the assessors
observed that many system requirements that had already been addressed
by software development were changed by the customer, or replaced by
new requirements defined by systems engineering late in the project. In
addition, there were many cases where system requirements that originally
had been passed to software development eventually were realised by hard-
ware, and vice versa. Based on these observations, the assessors expected
that improvement suggestions that exclusively focused on software develop-
ment processes (e.g., introduction of software design or code inspections)
would not help stabilise software requirements. Since the software depart-
ment that had ordered the process assessment primarily requested improve-
ment suggestions that could be implemented under their responsibility,
there was a need to find means that helped convince decision makers that
first systems engineering had to be improved before improvements in soft-
ware development could become effective. Hence the decision was made to
develop a simulation model that clarified the situation, and that investigated
the cost-effectiveness of improvements in systems engineering with regards
to software development.

diss.book Page 169 Tuesday, November 27, 2001 10:26 AM

170

The RESIM Project

11.2 RESIM Model Development

The simulation model RESIM was developed using the System Dynamics
method. The IMMoS process model guided the modelling activities.

The RESIM development process was highly iterative. 13 increments were
needed to come up with a base model that was able to capture the software
development behaviour mode of interest, and which contained all relevant
factors governing observed project behaviour. After two additional itera-
tions, the simulation model was ready to be used for its defined purpose.

In total, 5 persons were involved in the RESIM development (including 4 per-
sons at Siemens CT and the SDM developer). Overall, model building and
documentation consumed less than 2 person months of effort.

11.3 RESIM Design Decisions

Besides the definition of the model boundaries and model granularity, the
most important design decisions were related:

a) to the typically observed behaviour patterns (“reference mode”) of
development projects at Siemens BU that the model should be able to
reproduce through simulation, and

b) to the assumptions about the most significant cause-effect relationships
(“base mechanisms”) governing the observed project dynamics.

11.3.1 Reference Mode

The reference mode was defined by the dynamics of product evolution, i.e. a
product is developed in three increments, and the dynamics of requirement
generation, i.e. each product increment implements certain types of require-
ments. Both behaviour patterns can typically be observed during project per-
formance as shown in Figure 45.

11.3.1.1 Dynamics of Product Evolution

The growth of the software product is sketched with a dashed line in
Figure 45. The development of the software product is done in three subse-
quent, approximately equally long periods. During each period one incre-
ment is developed. The contents of the respective increments can be charac-
terised as follows:

• Increment A: implements the base functionality (prototype)
• Increment B: implements all important requirements
• Increment C: implements all requirements (incl. customer-specific adap-

tations)

diss.book Page 170 Tuesday, November 27, 2001 10:26 AM

171

The RESIM Project

Figure 45: Typical pattern of product evolution during project performance

During the development of an increment, usually several releases that are
subject to customer examination are created. The development cycles that
are needed to create a release are called improvement cycles (I-Cycles).

11.3.1.2 Dynamics of Requirements Generation

At the beginning of each development period of an increment, a fixed set of
requirements to start with is known (RA0, RB0, RC0). During the development
of an increment, new requirements are received from the customer (mostly
as a result from the examination of releases). Typically, the number of new
requirements shows a ceiling effect. Using the notation in Figure 45, the fol-
lowing properties can be observed:

• Number of software requirements at project start:
RA0

• Cumulated number of requirements for increment A:
RA = RA0 + RnewA

• Cumulated number of requirements for increment B:
RB = RA + RB0 + RnewB

• Cumulated number of requirements for increment C:
RC = RB + RC0 + RnewC

• Relationship between number of new requirements at start of an incre-
ment development:
RA0 > RB0 > RC0

A B Ca1 a2 a3 b1 b2 c1 c2

Requirements

Time

I-Cycles

RA0

RA

RB

RC
RB0

RC0

RnewA

RnewB

RnewC

Increment A Increment B Increment C

diss.book Page 171 Tuesday, November 27, 2001 10:26 AM

172

The RESIM Project

It should be noted that only those requirements are shown in Figure 45 that
actually are contained in the final product, i.e. the cumulated number of
requirements does not reflect modification or replacement of already imple-
mented requirements.

11.3.1.3 General Constraints On Project Dynamics

In order to reflect typical project behaviour properly, the model had to take
under consideration two important constraints on project dynamics:

• The average productivity of the workforce, measured as the number of
implemented requirements per effort unit, is constant during the devel-
opment of a product increment Ij (j = A, B, C). Between increments the
following relations hold: prod (IA) > prod (IB) > prod (IC).

• Generally, holding the project deadline has highest priority, i.e. if the
project schedule is at risk, more manpower will be added to the project.

11.3.2 Base Mechanisms

For building the SDM it was necessary to identify the most important causal
relationships that are supposed to generate the typical project behaviour.
Starting point for this modelling step was the assumption that the stability of
software (SW) requirements definition is a measure of systems engineering
(SE) quality, and that systems engineering quality can be increased, if effort is
invested for related improvement actions. Based on the insights that the Sie-
mens CT experts gained during process assessment, the following base
mechanisms were identified:

• The more effort is spent on SE improvement, the better is the quality of
SE: [SE effort + → SE quality +]

• The better the quality of SE is, the higher is the stability of the SW
requirements: [SE quality + → stability of SW requirements +]

• The higher the stability of SW requirements is, the smaller is the number
of implemented SW requirements that have to be replaced or modified:
[stability of SW requirements + → replacement of implemented SW
requirements -]

• The more requirements that have already been implemented are replaced
by new requirements, the larger is the total number of requirements to
be implemented, and thus the time needed to complete the project:
[replacement of implemented SW requirements + → total number of SW
requirements to implement + → SW project duration +]

• The more (excess) time is needed to complete the project, the bigger
becomes time pressure: [SW project duration + → time pressure +]

• The bigger the time pressure is, the more (additional) manpower will be
allocated to the project: [time pressure + → manpower +]

diss.book Page 172 Tuesday, November 27, 2001 10:26 AM

173

The RESIM Project

• The more (additional) manpower is allocated, the bigger will be the aver-
age development productivity: [manpower + → development rate (per
time unit) +]

• The more requirements that have already been implemented are replaced
by new requirements, the more I-cycles have to be conducted: [replace-
ment of implemented SW requirements + → number of I-cycles +]

• The more I-cycles are conducted, the smaller is the average development
productivity of the related increment: [number of I-cycles + → develop-
ment rate (per time unit) -]

Figure 46: Causal Diagram

In order to better understand the key dynamics of the system to be mod-
elled, these individual causal relationships can be linked together in a causal
diagram (cf. Figure 46). The causal diagram clearly shows that an increase of
SE effort would reduce SW project duration for two reasons. Firstly, it would
reduce the overall number of SW requirements that is implemented (also
counting replacements or modifications of already implemented require-
ments). Secondly, it would reduce the number of I-cycles, and thus increase
the average development rate (per time unit). Conversely, a lack of SE effort
would increase SW project duration, which – in order to keep the project
deadline – could only be compensated by adding manpower. This compen-
sation mechanism is controlled through a negative feedback loop.

11.4 RESIM Model Structure

RESIM was implemented in a modular way using the SD modelling tool Ven-
sim 3.0 [Ven97]. The main module represents the software development
with its interface to systems engineering from which the software require-
ments are received. Four additional modules describe certain aspects of soft-
ware development in more detail, namely: workforce allocation and adjust-
ment, effort and cost calculations, generation of new software
requirements, and co-ordination of incremental software development.
Figure 47 shows how the five modules are interrelated. In addition,
Figure 47 indicates that module 3 (effort and cost calculation) contains the

SE effort
stability
of SW

requirements

replacement of
implemented SW

requirements

number of I-cycles
(customer reviews)

total number of
SW requirements
to be implemented

development rate
(per time unit)

SW project
duration

time pressure manpower

+

+
+

+

+

+

+

-

-
-

-

diss.book Page 173 Tuesday, November 27, 2001 10:26 AM

174

The RESIM Project

variables that are needed for solving the issue under consideration, i.e. the
policy (or independent) variable effort_for_systems_engineering, and the
result (or dependent) variable total_effort (for systems engineering and soft-
ware development).

Figure 47: Modular structure of RESIM with I/O interfaces

The information flow between the five RESIM modules is summarised in
Table 35. For each module relationship a characterisation of the piece of
information that is exchanged is provided, together with a brief description
of the information usage in the target module.

Table 35: Information flow between RESIM modules

Module 3:
effort and cost

calculation

Module 4:
new requirements

generation

Module 1:
software development

Module 2:
workforce allocation

and adjustment

Module 5:
co-ordination
of increments

effort for
systems engineering

(policy variable)

total SW and SE
effort (cost)

(result variable)

Relationship Information Usage in target module

Mod 1 → Mod 2 development rate SW project planning (duration and
manpower need)

Mod 1 → Mod 5 SW requirements that still have to
be implemented

control of stop flag

Mod 2 → Mod 1 allocated manpower calculation of development rate

Mod 2 → Mod 3 allocated manpower effort and cost calculation

Mod 3 → Mod 1 weekly replace factor (represents
requirements instability)

calculation of (1) development rate
and (2) number of SW requirements
that still have to be implemented

Mod 3 → Mod 2 weekly replace factor (represents
requirements instability)

SW project planning (duration and
manpower need)

Mod 4 → Mod 1 new SW requirements (at start and
during development)

calculation of SW requirements that
still have to be implemented

Mod 4 → Mod 2 new SW requirements (at start and
during development)

SW project planning (duration and
manpower need)

Mod 5 → Mod 1 synchronisation info: tells which
increment is currently active

calculation of development rate

Mod 5 → Mod 2 synchronisation info: tells which
increment is currently active

SW project planning (duration and
manpower need)

Mod 5 → Mod 3 synchronisation info: tells which
increment is currently active

effort and cost calculation

Mod 5 → Mod 4 synchronisation info: tells which
increment is currently active

calculation of new SW requirements
(varies among increments)

diss.book Page 174 Tuesday, November 27, 2001 10:26 AM

175

The RESIM Project

The following sub-sections provide rough descriptions of each model mod-
ule. The complete set of RESIM model equations can be found in AppendixB.

11.4.1 Module 1: Software Development

The module “software development” represents all relevant elements of the
software development process and its interface to systems engineering. In
systems engineering, all customer requirements are collected and analysed.
Those requirements that shall be implemented in the software product are
filtered out and passed over to the software development process. Generally,
there are three types of software requirements: those that are known at
project start, those that are newly received in addition to the existing
requirements during project performance, and those that are newly received
in order to replace existing (and already implemented) requirements during
project performance. Replacing requirements can be received at any time
during project performance. The number of replacing requirements per
period (e.g. per week) is proportional to the number of requirements known
at project start. The factor that determines the number of replacing require-
ments (variable weekly_replace_factor) depends on the quality of systems
engineering, i.e. the lower the systems engineering quality the greater the
proportionality factor (cf. Section 13.3).

At project end, all software requirements are implemented in the software
product. The speed with which a certain number of requirements can be
implemented depends on the size of the workforce and the average produc-
tivity. Since the software product is implemented in three increments, and
each increment is different in nature, there is a dedicated level of average
productivity assigned to each increment. Typically, the productivity is such
that the development periods of the increments are equally long. The aver-
age productivity is affected by the variable weekly_replace_factor, i.e. the
greater the proportionality factor, the lower is the average productivity. This
dependency relationship is justified by the observation that an increase in
requirement replacements increases the amount of rework (represented by
an increased number of I-Cycles).

11.4.2 Module 2: Workforce Allocation and Adjustment

The module “workforce allocation and adjustment” represents all elements
of the software development process relevant for allocating software devel-
opers and adjusting their number during project performance (if necessary).
The initial number of software developers is calculated based on the number
of initial requirements according to the typical manpower allocation pattern
at Siemens BU. Workforce adjustments during project performance become
necessary when continuously calculated projections of the probable project
termination (which are based on the current workforce size, the current
development productivity, and the number of remaining requirements to be
implemented) significantly differ from the planned overall project duration.

diss.book Page 175 Tuesday, November 27, 2001 10:26 AM

176

The RESIM Project

According to nature and extent of the divergence, developers are added or
taken away from the team, the adjustment being subject to realistic delay.

11.4.3 Module 3: Effort and Cost Calculations

Based on the actual project duration and the workforce allocation, the mod-
ule “effort and cost calculation” calculates the overall effort used to develop
the software product. In parallel, the development cost is calculated by mul-
tiplication with a cost factor.

Figure 48: Relation between variable weekly_replace_factor and systems engineering effort

This module also determines the effort for conducting the systems engineer-
ing task using the variable effort_provided_for_systems_engineering as a
policy parameter when running simulations. It is assumed that the quality of
the systems engineering, and thus the stability of the requirements
(expressed through the variable weekly_replace_factor) is a direct function of
the effort invested. The assumed relationship between effort provided for
systems engineering and the variable weekly_replace_factor is shown in
Figure 48.

11.4.4 Module 4: New Requirements Generation

The module “new requirements generation” determines the number of new
requirements received during the development of increments A, B, and C
(RnewA, RB0 + RnewB, RC0 + RnewC). The calculations are based on typical pat-
terns observed at Siemens BU. Figure 49 shows the behaviour of the new
requirements generation rate for increment A, adjusted to an initial number
of requirements of 1000 (RA0).

Graph for weekly_replace_factor
0.06

0.054

0.048

0.042

0.036

0.03

0.024

0.018

0.012

0.006

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Effort provided for
systems engineering
[Person weeks]

() �
�

�

�

�
�

�

�

+
= 7.1gengineerin_systems_for_provided_effort2

1,05.0Minfactor_replace_weekly

diss.book Page 176 Tuesday, November 27, 2001 10:26 AM

177

The RESIM Project

Figure 49: Relation between variable new_requ_A and time

11.4.5 Module 5: Co-ordination of Increments

The module “co-ordination of increments” is needed for synchronising the
model calculations related to the development of the respective software
increments.

11.5 RESIM Model Calibration and Validation

The RESIM model was calibrated based on the knowledge of Siemens CT
about the behaviour patterns of typical development projects at Siemens BU
(baseline). Siemens CT gained their knowledge mainly through the process
assessment previously conducted within the software organisation of Sie-
mens BU. It should be noted that most of the information about software
projects at Siemens BU was qualitative of nature (with the exception of
effort data). Therefore, only relations between major variables were used to
calibrate the model. Based on these relations, a normalised baseline project
was defined through the model constants listed in Table 36.

Model validation was mainly based on plausibility checks conducted by Sie-
mens CT experts. It should be pointed out, however, that the most impor-
tant necessary condition for model validity, i.e. the ability to reproduce the
reference mode, was fulfilled. Figure 50 presents the simulated patterns of
SW product growth (implemented stable requirements / variable:
SW_product) and growth of SW requirements that actually are contained in
the final SW product (stable requirements / variable:
actual_all_SW_requirements), as generated by the SDM for the baseline situ-
ation, i.e. with 10 person-weeks of effort provided for systems engineering.
Using the criterion of face validity, these patterns clearly reproduce the refer-
ence behaviour as defined in Section 11.3.1 (cf. Figure 45).

Graph for new_requ_A
200

180

160

140

120

100

80

60

40

20

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time [Weeks]

Requirements [Functional units]

()2duration_A_Increment1
start_quRefraction_tsrequiremen_newA_requ_new

+
⋅=

diss.book Page 177 Tuesday, November 27, 2001 10:26 AM

178

The RESIM Project

Table 36: RESIM model constants used for calibration

Figure 50: Reproduction of the RESIM reference mode

Note that the number of replaced requirements (variable: SW_replace_requ)
and thus the total number of stable and replaced requirements (variable:
all_SW_requirements) can vary largely as a consequence of variation in effort
invested to improve systems engineering.

11.6 RESIM Model Application

The question that had to be answered with help of the simulation model
was: “How much effort should be invested into systems engineering at Sie-
mens BU in order to improve (software) requirements analysis and thus mini-
mise the overall software development cost?” To answer this question, an
equivalent mathematical minimisation problem was formulated:

Description Unit Value

Number of requirements at project start (RA0) functional unit 1000

New requirements fraction (needed to calculate
RnewA, RnewB, RnewC)

dimensionless 0.15

Initial requirements fraction for increment B
(needed to calculate RB0)

dimensionless 1.8

Initial requirements fraction for increment C
(needed to calculate RC0)

dimensionless 0.5

Target project completion time week 100

Nominal average productivity for increment A functional unit / person week 11

Nominal average productivity for increment B functional unit / person week 4

Nominal average productivity for increment C functional unit / person week 2.5

Cost per effort unit money unit / person week 2000

SW requirements (run: baseline)

4,000

3,600

3,200

2,800

2,400

2,000

1,600

1,200

800

400

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time (Weeks)

Implemented stable
requirements
(SW_product)

Stable and replaced
requirements
(all_SW_requirements)

Replaced requirements
(SW_replace_requ)

Stable requirements
(actual_all_SW_requirements)

Increment CIncrement A Increment B

diss.book Page 178 Tuesday, November 27, 2001 10:26 AM

179

The RESIM Project

with:

t: elapsed time (weeks)
T: project termination (weeks)
x: effort for systems engineering (person weeks)
y: weekly effort consumption for software development (person weeks /

week)

The solution to this problem was found through variation of the policy vari-
able x (model parameter: effort_provided_for_systems_engineering) and by
using the built-in optimisation function of the simulation tool Vensim, which
applies the Fletcher-Powell algorithm [FlP63]. The most important results are
summarised in Table 37.

Table 37: Summary of RESIM simulation results

It turned out that an increase of the systems engineering effort share from
1.7% of the total effort (baseline situation) to 9.1% of the total effort (opti-
mal situation) will reduce the overall cost for systems engineering and soft-
ware development by more than 20% (from 596 to 462 person weeks). This
effect is mainly due to the stabilisation of requirements, which is expressed
in terms of the actual average requirements replacement (AARR) per week.
In the optimal case, on average only 0.08% of the currently known (and yet
implemented) requirements were replaced per week, adding up to a total of
29 replaced requirements during project performance.

Simulation run n1 n2
(baseline)

n3 n5 optimal n6

Syst. Eng. effort [person weeks] 5 10 15 30 42 50

SW dev. effort [person weeks] 875 586 499 452 420 416

Total effort [person weeks] 880 596 514 482 462 466

Cost-effectiveness - 0 0.138 0.191 0.225 0.218

AARR per week [%] 1.83 0.73 0.40 0.14 0.08 0.06

total_effort x y t() min→
t 1=

T

∑+=

diss.book Page 179 Tuesday, November 27, 2001 10:26 AM

180

The RESIM Project

diss.book Page 180 Tuesday, November 27, 2001 10:26 AM

181

The GENSIM Project

12 The GENSIM Project

This section presents the motivational background and the concepts of a
web-based training (WBT) module for student education on the topic of
software project management.

12.1 Introduction and Background

There is an increasing demand for software project managers in industry.
Therefore, efforts are needed to develop the management-related knowl-
edge and skills of the current and future software workforce. In particular,
university education needs to provide to their computer science and soft-
ware engineering (SE) students not only technology-related skills but in addi-
tion a basic understanding of typical phenomena occurring in industrial (and
even academic) software projects.

The potential of simulation models for the training of managers has long
been recognised: flight-simulator-type environments (or microworlds) con-
front managers with realistic situations that they may encounter in practice,
and allow them to develop experience without the risks incurred in the real
world. Two detailed examples of training workshops based on real industrial
cases using simulation can be found in [Gra+92] (other examples are men-
tioned in [Mil95] and [Mor88], to give a few pointers).

As regards the specific topic of software project management, experimental
studies have been conducted on using simulation models representing the
typical behaviour of software development projects.

Experiments carried out at the Jet Propulsion Laboratory aimed at studying
the decision-making process of software managers [Lin93]. Twenty manag-
ers were asked to conduct a project simulated with the aid of the Software-
Engineering Process Simulation Model (SEPS) [LAS97]; some were provided
with cause-effect feedback of their actions, while the others were not. It was
observed that the second group (without feedback information) tended to
act in a more "fire fighting" mode than the first one; and the feedback
information was most beneficial to the less experienced managers.

At Draper Laboratory, a simulation model served as the basis for an experi-
ment involving a group of 50 experienced managers [SNV93]. The scenario
of the experiment involved a 15 percent requirement change in the course
of the simulated project. Few of the managers were able to adapt properly
to this situation: most of them reacted by hiring new staff late on the project
(a typical "fire fighting" policy), and experienced budget and schedule over-
runs. Worse, the managers tended to reproduce exactly the same errors

diss.book Page 181 Tuesday, November 27, 2001 10:26 AM

182

The GENSIM Project

when running the scenario for the fourth or fifth time. The authors of the
study conclude that the participating managers were limited by their mental
model of the process, and that they were reluctant to change it.

The two experiments mentioned above show that natural one-way causal
thinking can be detrimental to the success of software managers. Therefore,
the aim of the training should go beyond that of facing people to realistic
problems; the concern is also to make managers adopt systems thinking,
and perceive the existence of (unexpected) feedback to management deci-
sions. This sets the problem of an adequate game interface and more impor-
tantly of the workshop or training course organisation: just running a simu-
lation model as a black box may not be sufficient to have people gain insight
into the software development process, and accept to alter their mental
model. Lessons learned from experiments in strategic management training
[Gra+92] indicate that adequate course organisation avoids the situation
observed at Draper Laboratory, where managers played the simulation game
without analysing their errors, hence gaining insufficient insight into the
problem.

The objective of the GENSIM project was to develop a simulation-based WBT
module that helps SE students understand the complex decision-making sit-
uations in software project management, which are often characterised by
trade-off effects between conflicting goals. Typical project management
goals are to implement a specified functionality, to control or shorten project
duration (time-to-market), to control or decrease project cost, and to control
or improve the quality of the delivered end product (for specified product
functionality).

The main goal of the simulation-based WBT module is to facilitate the trans-
fer of knowledge about software project management to computer science
and SE students through a scenario-driven interactive learning environment.
An additional goal is to raise interest in the topic of software project man-
agement among SE students, and to make them aware of some of the diffi-
culties associated with controlling the dynamic complexity of software
projects.

The WBT module that was developed in the scope of the GENSIM project
can be run using standard web-browsers (e.g. Netscape). It is composed of
course material that is presented to the trainees through the internet. The
core element of the WBT module is the SD simulation model GENSIM
(Generic Simulator). With GENSIM typical behaviour of software develop-
ment projects can be simulated.

The design of the SD model GENSIM (WBT/Simulator) and the single-learner
training scenario (WBT/Scenario) that triggers the activation of the simula-
tion component are described in the following sections (more details can be
found in [Kle00], [PKR00a] and [PKR01a]).

diss.book Page 182 Tuesday, November 27, 2001 10:26 AM

183

The GENSIM Project

12.2 Design of the WBT/Simulator GENSIM

The WBT/Simulator GENSIM represents in a simplified, generic waterfall-
model-like fashion three phases of a typical software development project:
Design, Implementation, and Test. The calibration of GENSIM was not based
on a real industrial case or on exhaustive empirical research, but on the func-
tional relationships between effort, time, and size (functionality), as sug-
gested by the well-known COCOMO model [Boe81].

12.2.1 GENSIM Model Parameters

The most important GENSIM model parameters that can be accessed
through the WBT module by the trainees are listed in Table 38. The first
three columns list input parameters, the last column lists output parameters.
The model parameters in the first column are needed to characterise the
software development project. This is done by defining the expected job size
(i.e. product size or functionality) and project complexity. These parameters
are the minimal input necessary to run model simulations, thus they are
qualified as mandatory. The model parameters in the second and third col-
umn can be either altered by the project manager or left unchanged to the
default assignment, therefore they are qualified as optional. For example, if
the project manager does not define the parameters in the second column
at project start, default values are automatically provided by the model, and
the simulation will be run using these. The interesting feature of the simula-
tion model is that the project manager can change these parameters at any
time during the simulation run. For example, whenever the project manager
feels that more manpower is needed in order to hold the project deadline,
the simulation can be interrupted and the parameter “Planned manpower”
can be altered. Besides these core management parameters dealing with
schedule planning, manpower allocation, alteration of the job size, or quality
target setting, the WBT/Simulator GENSIM offers parameters that allow the
project manager to apply QA technologies such as code or design inspec-
tions. The application of QA technologies can help the project manager
influence project duration, effort consumption, and product quality. These
parameters are listed in the third column of Table 38. The last column lists
the main output parameters, i.e. job size at end of project, actual project
completion time, total effort consumed, and actual field defect density as a
measure of product quality.

diss.book Page 183 Tuesday, November 27, 2001 10:26 AM

184

The GENSIM Project

Table 38: Key parameters of the WBT/Simulator GENSIM

12.2.2 GENSIM Model Structure

In total, the WBT/Simulator GENSIM consists of five interrelated sub-models
(views):

• Production View: This view represents a typical software development
lifecycle consisting of the following chain of transitions: set of require-
ments (planned functionality) → design documents → code → tested
code. In order to limit model complexity, detection of defects during test-
ing only causes reworking of the code and not of previous design docu-
ments. Similarly, optional quality assurance (QA) activities conducted dur-
ing design and coding will only trigger reworking of documents that are
developed during the respective phase.

• Quality View: In this view, the defect co-flow is modelled: defect injection
(into design or code) → defect propagation (from design to code) →
defect detection (in the code during testing) → defect correction (only in
the code). Optionally, additional QA activities will result in defect detec-
tion and rework already during design and coding.

• Effort View: In this view, the total effort consumption for design develop-
ment, code development, code testing, optional QA activities, and defect
correction (rework) is calculated.

• Initial Calculations View: In this view, the nominal value of the central
process parameter “productivity” is calculated using the basic COCOMO
equations for estimating effort and project duration. The nominal pro-
ductivity varies with assumptions about the product development mode
(organic, semi-detached, embedded) and characteristics of the available
project resources (e.g. developer skill). The average needed manpower is
derived from the effort and duration estimates.

• Productivity, Quality & Manpower Adjustment View: In this view, project-
specific process parameters, like (actual) productivity, defect generation,
effectiveness of QA activities, etc., are determined based on

Input Parameters Output Parameters

Project Characterisa-
tion Parameters
(mandatory)

Project Management
Parameters (optional)

QA technology-
related Parameters
(optional)

Initial job size in tasks Job size adjustment Job size in tasks

Planned completion
time

Project completion
time

Planned manpower Effort

Project complexity Manpower skill

Goal field defect
density

Application of design
and/or code inspec-
tions

Field defect density

diss.book Page 184 Tuesday, November 27, 2001 10:26 AM

185

The GENSIM Project

a) planned target values for manpower, project duration, product qual-
ity, etc., and

b) time pressure induced by unexpected rework or changes in the set of
requirements.

Figure 51 shows the most important cause-effect relationships that generate
the dynamic behaviour of the simulated software project. The bold arcs rep-
resent those relationships that are defined by the basic COCOMO model
[Boe81], i.e. the model equations for project effort and duration. The funda-
mental input to the model is the planned product size or functionality (P-
SIZE). Based on the planned product size, the nominal effort for the phases
design, implementation, and test (N-EFF1) as well as the nominal duration
(N-DUR1) are calculated. The “1” at the end of the variable names indicates
that both calculations are made without consideration of potential rework
due to defect detection during testing. Based on nominal effort and dura-
tion, the nominal average manpower allocation (N-AMP) is calculated. As
long as no other information is received, the value of N-AMP is equal to A-
AMP (actual average manpower allocation). Planned size and nominal effort
are used to calculate the average productivity per person-day (PROD-per-PD).
Together with the process parameter N-DEF-Inject-Rate (nominal average
defect injection rate), the variables PROD-per-PD, N-DUR1, and A-AMP
determine the number of undetected defects contained in the design docu-
ments (Undet-Des-DEF), and the number of undetected defects contained in
the code (Undet-Code-DEF). As long as no defects are detected and cor-
rected during design, all undetected design defects propagate into the code.
During testing, a portion of the defects contained in the code is detected
(Det-Code-DEF). The size of the portion depends on the nominal test-effec-
tiveness (N-Test-Effectiveness) and the total number of defects contained in
the code (Undet-Code-DEF). Defect detection causes rework effort (Code-
Rework-EFF) which in turn decreases productivity (PROD-per-PD) and the
number of undetected code defects (Undet-Code-DEF). As a result of the
decrease in productivity, the actual duration of the project will increase (A-
DUR2). The size of the rework effort depends on the phase in which the
defects have been detected. For example, the amount of rework induced by
corrections of defects detected during coding is assumed to be smaller than
the amount of rework induced by corrections of defects found during test-
ing (variables N-Rework-Eff-Coding and N-Rework-EFF-Test). The quality of
the tested and reworked product can be expressed as defect density (DEF-
Density) by simply dividing the number of remaining undetected defects in
the code by the product size.

It should be noted that Figure 51 only provides an incomplete picture of the
causal relationships contained in the GENSIM model. For example, the possi-
bility to detect and correct defects during the design phase is not shown in
order to improve readability of the presented graph.

The dotted lines in Figure 51 indicate causal effects that are triggered when
input parameters are altered. Alteration of input parameters creates differ-
ences to nominal values and thus triggers a chain of causal reactions that

diss.book Page 185 Tuesday, November 27, 2001 10:26 AM

186

The GENSIM Project

strive to bring the system back to equilibrium by re-adjusting the affected
model variables. For example, if the planned average manpower allocation
(P-AMP) is not equal to the N-AMP, then this unbalance has a negative effect
on productivity and quality, either due to communication overhead (in case
of overstaffing), or due to exhaustion of individuals (in case of understaff-
ing).

Figure 51: Extract of the causal diagram

Since Figure 51 does not show all possibilities of input parameter manipula-
tion and the induced effects on project behaviour, a list of the most interest-
ing effects that are induced by alteration of input parameters is summarised
in Table 39. Table entries printed in Italics describe effects that can be cre-
ated by the simulation model but are not included in the causal model
shown in Figure 51. For some of the causal effects the exact numerical rela-
tionships can be found in Appendix C.

It should be noted that alterations of input parameters can be made at any
point in time during project simulation, and that compound effects on
project behaviour can be created by concurrent multiple-parameter alter-
ation.

P-SIZE N-DUR1N-EFF1

A-EFF2

A-DUR2
N-AMP

PROD-per-PD

Undet-Des-DEF

Undet-Code-DEF

Det-Code-DEF

A-DEF-Inject-Rate

N-DEF-Inject-Rate

Des-Code-DEF-MULT

Code-Rework-EFF

N-Rework-EFF-Test

N-Test-Effectiveness

A-Test-Effectiveness

+ +

-+

-+

+

-
A-AMP+ -

++

+
+

+

+ +

+

+ ++

DEF-Density

-
+

+++

+

+
+

+

-

-

+
+

N-Rework-EFF-Coding
+

A-Insp-Effectiveness
+

N-Insp-Effectiveness
+

Insp-EFF

N-Insp-EFF-per-size-unit

+
Code-Insp-Practice

+

+

+

-

SIZE-adjustment

+

P-AMP

+

AMP-Unbalance (abs)

-

+

P-DUR1

Time pressure

-

-

+

+

-

+

P-SIZE N-DUR1N-EFF1

A-EFF2

A-DUR2
N-AMP

PROD-per-PD

Undet-Des-DEF

Undet-Code-DEF

Det-Code-DEF

A-DEF-Inject-Rate

N-DEF-Inject-Rate

Des-Code-DEF-MULT

Code-Rework-EFF

N-Rework-EFF-Test

N-Test-Effectiveness

A-Test-Effectiveness

+ +

-+

-+

+

-
A-AMP+ -

++

+
+

+

+ +

+

+ ++

DEF-Density

-
+

+++

+

+
+

+

-

-

+
+

N-Rework-EFF-Coding
+

A-Insp-Effectiveness
+

N-Insp-Effectiveness
+

Insp-EFF

N-Insp-EFF-per-size-unit

+
Code-Insp-Practice

+

+

+

-

SIZE-adjustment

+

P-AMP

+

AMP-Unbalance (abs)

-

+

P-DUR1

Time pressure

-

-

+

+

-

+

diss.book Page 186 Tuesday, November 27, 2001 10:26 AM

187

The GENSIM Project

Table 39: Effects of input parameter alterations

12.2.3 GENSIM Model Implementation

For the implementation of GENSIM the SD modelling tool Vensim 3.0 was
used [Ven97]. The GENSIM user interface, which provides a set of instructive
graphical analysis functions to the model user, was developed with Borland
Delphi. A brief description of the GENSIM user interface can be found in
Appendix C (a detailed description is provided in [Kle00]).

12.3 Activation of the WBT/Simulator GENSIM

The sequence of training steps of the WBT module, into which the WBT/Sim-
ulator GENSIM has been integrated, is structured according to a pre-defined
scenario. The WBT/Scenario triggers the activation of the WBT/Simulator
GENSIM. This section describes the WBT/Scenario structure and its main
characteristics. It should be noted that in order to support the effectiveness
of the WBT, and to avoid the phenomena observed at Draper Laboratory, the
trainee will be properly briefed before and de-briefed after running the sce-
nario of the WBT module [Lan95].

Description Altered input parame-
ters

Induced effects

Unbalanced average
manpower

P-AMP > 0 and

P-AMP <> N-AMP

1. Defect injection rate increases

2. Productivity per person-day decreases

Time pressure P-DUR1 > 0 and

P-DUR1 < N-DUR1

1. Defect injection rate increases

2. Productivity per person-day decreases

3. Inspection effectiveness decreases

Negative time
pressure

P-DUR1 > 0 and

P-DUR1 > N-DUR1

1. Defect injection rate decreases

2. Productivity per person-day decreases

3. No effect on inspection effectiveness

Application of QA
activities (during
coding or design)

Code-Insp-Practice > 0

Des-Insp-Practice > 0

1. Inspection effort increases

2. The number of detected defects
increases (during coding or design)

Improved product
quality

Target defect density > 0
and

Target defect density <
DEF-Density

1. Productivity per person-day decreases
(only during testing)

2. Test effectiveness increases

Manpower skill is
insufficient

Manpower skill < 1 1. Productivity per person-day decreases

2. Defect injection rate increases

diss.book Page 187 Tuesday, November 27, 2001 10:26 AM

188

The GENSIM Project

12.3.1 WBT/Scenario Structure

The WBT/Scenario has been structured into a sequence of scenario blocks.
The current version of the WBT module contains four project management
(PMT) training blocks:

• Block 1 - PMT Introduction: General introduction into the main tasks of a
software project manager and the typical problems he has to solve with
regards to project planning and control. This includes a brief discussion
of problems caused by the so-called “magic triangle”, i.e. the typical
presence of unwanted trade-off effects between project effort (cost),
project duration, and product quality (functionality).

• Block 2 - PMT Role Play: Illustration of common project planning prob-
lems on the basis of a case example in which the trainee takes over the
role of a fictitious project manager.

• Block 3 - PMT Planning Models: Presentation of basic models that help a
project manager with his planning tasks, namely a process map, and a
predictive model for effort, schedule and quality. The predictive model is
identical with the GENSIM model contained in the WBT/Simulator. A
description of the main variables of GENSIM and their functional relation-
ships (causal model) is provided to the trainees.

• Block 4 - PMT Application Examples: Explanation on how to apply the
planning models on the basis of examples that are presented in the form
of little exercises. In particular, examples that involve trade-off between
two and three variables of the magic triangle are presented. During this
scenario block, trainees can use a stand-alone application of GENSIM to
reproduce the application examples while reading the training materials.

Figure 52 provides an overview of the WBT/Scenario structure indicating the
two different ways of activating the GENSIM model, i.e. integrated into the
WBT module or as a stand-alone tool.

Figure 52: WBT/Scenario structure

WBT/Scenario

PMT Introduction

PMT Role Play

PMT Planning Models

PMT Application Examples

Block 1

Block 2

Block 3

Block 4

WBT/Simulator
(GENSIM)

integrated

GENSIMstand-alone

SIM

diss.book Page 188 Tuesday, November 27, 2001 10:26 AM

189

The GENSIM Project

The PMT Role Play block provides the most interesting scenario because it
forces the trainee to interact with the WBT module. The goal of the scenario
block is to make trainees aware of typical performance patterns of software
projects, and to make them understand how knowledge about these pat-
terns can help project managers in making the right decisions, for example
with regards to project planning.

The scenario of the PMT Role Play block has been designed to help the
trainee understand the complex implications of a set of empirically derived
principles that typically dominate software projects conducted according to
the waterfall process model. Even though the waterfall process approach is
no longer state-of-the art and in most industrial organisations not even
state-of-the-practice, it is expected that it is still an interesting object of
study for students having little or no experience with real-world industrial
software development. The set of principles used in the block scenario (cf.
Table 40) was distilled from the top 10 list of software metric relationships
published by Barry Boehm [Boe87].

Table 40: List of principles dominating project performance

In order to make the trainee understand the implications of these principles
(and their combinations), a role-play is conducted in which the trainee takes
the role of a project manager who has been assigned to a new development
project. Several constraints are set, i.e. the size of the product and its quality
requirements, the number of software developers available, and last but not
least the project deadline. The first thing to do for the project manager (in
order to familiarise with the simulation model) is to check whether the
project deadline is feasible under the resource and quality constraints given.
Running a simulation does this check. From the simulation results, the
project manager learns that the deadline is much too short. Now, the sce-
nario provides a set of actions that the project manager can take, each
action associated with one of the principles and linked to one of the model
parameters listed in Table 38. Soon the project manager learns that his
department head does not accept all of the proposed actions (e.g. reducing
the product size or complexity). Depending on the action the project man-

No. Principle

1 “Finding and fixing a software problem after delivery is 100 times more expensive
than finding and fixing it during the requirements and early design phases.”

2 “You can compress a software development schedule up to 25 percent of nominal,
but no more.”

3 “Software development and maintenance cost are primarily a function of the number
of source lines of code (SLOC) in the product.”

4 “Variations between people account for the biggest differences in software produc-
tivity.”

5 “Software systems and products typically cost 3 times as much per SLOC as individual
software programs. Software-system products (i.e. system of systems) cost 9 times as
much.”

6 “Walkthroughs catch 60% of the errors.”

diss.book Page 189 Tuesday, November 27, 2001 10:26 AM

190

The GENSIM Project

ager has chosen, additional options can be taken. Eventually, the project
manager finds a way to meet the planned deadline, e.g. by introducing code
and design inspections (associated with Principle 6 in Table 40).

The role-play is arranged in a way that the project manager can only succeed
if he/she combines actions that relate to at least two of the principles listed
in Table 40. At the end of the role-play, a short discussion of the different
possible solutions is provided, explaining the advantages and disadvantages
of each. A full description of the design and implementation of the PMT Role
Play block can be found in [Kle00].

12.3.2 WBT/Scenario Block Characteristics

In order to describe the WBT/Scenario blocks with regards to didactical
aspects, they can be characterised using the following criteria:

(C.1) Duration [minutes]

(C.2) Medium [paper-based vs. web-based]

(C.3) Trainee interaction mode [active vs. passive]

(C.4) Usage of WBT/Simulator [yes / no]

The result of characterising the WBT/Scenario blocks according to these cri-
teria is summarised in Table 41.

Table 41: Characterisation of WBT/Scenario blocks

The PMT Introduction and PMT Planning Models blocks are the most con-
ventional with regards to didactical aspects. They deliver course content to
the trainee in the form of plain text, which can be presented either in paper-
based or in web-based form. In both cases the interaction is quite limited
since it consists basically of text reading. A web-based presentation format
certainly provides more possibilities to include “catchy” features, but in
either case the main driver of trainee activation, i.e. the use of the WBT/Sim-
ulator, is excluded. It should be noted that both blocks together are
expected to consume only 40% (18 minutes) of the overall time needed to
conduct a full training session.

WBT/Scenario Block C.1 C.2 C.3 C.4

PMT Introduction 3 min paper / web passive no

PMT Role Play 15 min web active yes (embedded)

PMT Planning Models 15 min paper / web passive no

PMT Application Examples 12 min paper / web passive / active no / yes (stand-alone)

diss.book Page 190 Tuesday, November 27, 2001 10:26 AM

191

The GENSIM Project

The PMT Application Examples block could be performed in the same way as
the PMT Introduction or PMT Planning Models block, but it is also possible to
invoke the WBT/Simulator and thus trigger active participation of the
trainee. It should be noted, however, that in the current version of the WBT
module only stand-alone usage of the WBT/Simulator is supported, i.e. the
trainee has to switch between web-browser and simulation tool. The time
consumption for completing a PMT Application Examples session is esti-
mated to be 12 minutes.

The most advanced scenario block of the WBT module with regards to
didactical aspects is PMT Role Play, because it fully exploits the possibilities
associated with web-based presentation. It offers an integrated access to the
WBT/Simulator and requires active interaction of the trainee in order to be
able to proceed and solve the project management problem imposed by the
role-play. The time consumption for completing a PMT Role Play session is
estimated to be about 15 minutes.

diss.book Page 191 Tuesday, November 27, 2001 10:26 AM

192

The GENSIM Project

diss.book Page 192 Tuesday, November 27, 2001 10:26 AM

193

Effectiveness of IMMoS

13 Effectiveness of IMMoS

The criterion for evaluating effectiveness is the suitability of the developed
SDM for its purpose from the point of view of the SDM user. For RESIM and
GENSIM, the SDM user (role) and the purpose were specified in the SDM
Goal Definition. Since IMMoS was not applied in the PSIM project, the iden-
tification of the model user and the model purpose changed during the
modelling process (cf. Section 4.6.1). Therefore, in Table 42, which sum-
marises the SDM Goal Definitions, for PSIM the rows “Role” and “Purpose”
distinguish between what actually turned out to be the goal towards the
end of the modelling process (underlined text), and what was thought to
become a useful goal in the future (plain text).

Table 42: Summary of SDM Goal Definitions for PSIM, RESIM and GENSIM

In the following sections, more details are provided on how suitability was
measured for the developed SDMs. Even though the suitability of PSIM is not
required for evaluating the effectiveness of IMMoS, it is a prerequisite for
evaluating the efficiency of IMMoS.

13.1 Suitability of PSIM

At the beginning of the modelling process of PSIM, the goal was to provide
a simulation tool to the process owner that could be used for two purposes.
First, the SDM should demonstrate that the recently defined concurrent soft-
ware development process is more productive than the old one. Second, the

SDM Goal Definition

Implicitly defined
(without IMMoS)

Explicitly defined (with IMMoS)

SDM PSIM RESIM GENSIM

Role Project Manager / Process
Owner

Process Consultant
(Assessor)

Computer Science Stu-
dents

Scope Single Project Single Project Single Project

Dynamic
Focus

Impact of changes in pro-
cess or product on
project performance

Impact of software
requirements volatility
on software develop-
ment productivity

Trade-off effects
between product size,
development time, effort
consumption, and prod-
uct quality

Purpose Planning / Control /
Improvement

Understanding Understanding (Training)

Environ-
ment

Siemens (Telecommuni-
cation / HICOM) – 1994 /
1995

Siemens (Automotive /
Micro Controllers) –
1998

University of Kaiserslaut-
ern – 1999

diss.book Page 193 Tuesday, November 27, 2001 10:26 AM

194

Effectiveness of IMMoS

SDM should provide a microworld representing the actual software develop-
ment processes in the organisation. This microworld should help the process
owner to explore improvement opportunities. During the modelling process,
it was decided that the SDM should also be used by project managers to
plan and control the projects under their responsibility.

13.1.1 Role: Process Owner

From the point of view of the process owner, the purpose of the SDM, i.e.
“improvement”, could not be fulfilled satisfactorily. The main reason for this
was the unrealistic assumption of the process owner that the new concur-
rent development process was actually implemented in the projects for
which the SDM should help with planning and controlling. The fact that the
projects for which the SDM should be used by the project manager, was
actually still using the old development process, required that the also the
SDM represented the old process. Otherwise, the model would not have
been valid for the planning and controlling task. Since the modelling effort
was only sufficient to describe the development processes in place in order
to satisfy the needs of the project manager, it was not possible to use simu-
lation to demonstrate the higher productivity of the new concurrent devel-
opment process.

Even though PSIM did not fulfil the original purpose of the process owner, it
was still useful. It uncovered that the process owner was not aware of the
fact that the new (prescriptive) process model had not yet been imple-
mented and was not used in current practice by the responsible project man-
ager and the developer team. So, even though unintended, PSIM actually
fulfilled the purpose “understanding” from the point of view of the process
owner.

13.1.2 Role: Project Manager

The suitability of PSIM for the purpose “planning and controlling” from the
point of view of the role project manager was evaluated by using subjective
and objective data.

(1) Objective data: In order to evaluate the predictive power of PSIM, the
accuracy of simulation results was measured by comparing the plan data
generated by PSIM to the actual data. Since product size and available
manpower was fixed, main focus was put on schedule, i.e. completion of
milestones, and quality, i.e. defects found during inspections and test.
These comparisons at showed good results. The model predictions antic-
ipated the actual project behaviour with a maximal deviation of less than
10%. This number was much better than the real planning (without
PSIM), which deviated from the actual data by more than 30%. It should
be noted, however, that the real planning was based on the assumption

diss.book Page 194 Tuesday, November 27, 2001 10:26 AM

195

Effectiveness of IMMoS

that the new concurrent development process was used, which was not
the case, as has been stated earlier.

(2) Subjective data: The judgement of the usefulness of PSIM by the project
manager was very positive. Besides the fact that the planning accuracy
seemed to be good, the project manager stated that he considered PSIM
to be a useful “sparring partner” for decision-making, and – in the long
run – as a promising tool for process analysis.

13.1.3 Suitability of PSIM with IMMoS

The discussion of the suitability of PSIM in the previous sections has shown
that PSIM basically fulfilled its purpose for the relevant user roles. Obviously,
this could be achieved without using the IMMoS approach. However, the
discussion has also shown that the definition of the modelling goal without
IMMoS was quite time consuming. It seems to be plausible, although it can-
not be proven, that with IMMoS, the PSIM development would have been
much more goal-oriented from the beginning yielding exactly the same defi-
nition of user roles and purposes, but with less iterations, more explicitly,
and thus more efficiently.

13.2 Suitability of RESIM

The purpose of RESIM was to help the model user, i.e. a software process
assessor at Siemens CT, in his consulting activities at a Siemens Business Unit
(Siemens BU). The goal of the model user was to transfer his understanding
of how requirements volatility impacts development productivity to the line
management and process owners at Siemens BU. The evaluation of whether
this goal was achieved could only be based on subjective judgement of the
model user.

Based on the simulations, it was possible to demonstrate that software
requirements volatility is extremely effort consuming for the software devel-
opment organisation and that investments in systems engineering in order
to stabilise requirements definition would well pay off. According to the
model user, the results of the simulation experiments had provided a twofold
advantage. Firstly a deeper understanding of the procedures for capturing
and changing requirements grew up in the assessment team while discuss-
ing about real life and its representation through the model. Secondly the
quantitative evaluation of the present situation and of the effect of possible
changes was convincing for the Siemens BU. The model results helped a lot
to broaden the view of the requirements process within software develop-
ment and to start an improvement program across all the roles and organisa-
tions participating in this process.

Note that all results produced by the simulation model are based on qualita-
tively formulated assumptions underlying the model structure. Without thor-

diss.book Page 195 Tuesday, November 27, 2001 10:26 AM

196

Effectiveness of IMMoS

ough review of the model structure by experts of Siemens BU, and without a
calibration of the model parameters and model functions to empirical data,
the model cannot be used for precise point estimates in the sense of a pre-
dictive model. However, according to the model user, having such a simula-
tion model at hand makes it quite easy to visualise the critical project behav-
iour and to discuss the assumptions about the cause-effect relationships that
are supposed to be responsible for the generated behaviour. In that sense,
the model user at Siemens CT felt that building RESIM was a useful exercise,
and that similar models can be helpful in future process improvement
projects with Siemens BUs.

13.3 Suitability of GENSIM

The suitability of the model GENSIM was evaluated based on the analysis of
subjective and objective data gained from a controlled experiment that com-
pared the effectiveness of GENSIM with that of a standard software project
planning model [PKR01b]. Note that GENSIM was not evaluated stand-alone
but in the context of its application as a simulation component integrated
into a simulation-based training module (cf. Section 12 for details).

The main objective of developing and applying the simulation-based training
module was to facilitate effective learning about certain topics of software
project management to computer science students. This was done by pro-
viding a scenario-driven interactive single-learner environment that can be
accessed through the internet by using a standard web-browser. An addi-
tional goal was to raise interest in the topic of software project management
among computer science students, and to make them aware of some of the
difficulties associated with controlling the dynamic complexity of software
projects.

The training module used in the study is composed of course material on
project planning and control. The arrangement and presentation of the
course material is defined by the single-learner training scenario. The core
element of the training module is a set of interrelated project management
(i.e. planning) models, represented by a simulation model that was created
by using the System Dynamics (SD) simulation modelling method
[For71][RiP81]. This model – GENSIM – simulates typical behaviour of soft-
ware development projects.

In order to investigate the effectiveness of computer-based training in the
field of software project management using a SD simulation model, a con-
trolled experiment applying a pre-test-post-test control group design was
conducted. The subjects who were willing to participate in the experiment
had to pass two tests, one before the training session (pre-test) and one
after the training session (post-test). The effectiveness of the training was
then evaluated by comparing within-subject post-test to pre-test scores, and
by comparing the scores between subjects in the experimental group, i.e.
those who used the SDM, and subjects in the control group, i.e. those who

diss.book Page 196 Tuesday, November 27, 2001 10:26 AM

197

Effectiveness of IMMoS

used a conventional project planning model instead of the SDM. In the
study, the well-known COCOMO model [Boe81] was used by the control
group since this model is quite comprehensive and can be considered as
state-of-the-practice in many industrial software organisations.

The following dimensions were used to characterise “effectiveness” of the
training session:

1. Interest in software project management issues.

2. Knowledge about typical behaviour patterns of software development
projects.

3. Understanding of “simple” project dynamics.

4. Understanding of “complex” project dynamics.

In the study, these dimensions were represented by dependent variables
(Dep.1 to Dep.4).

13.3.1 Hypotheses

Standard significance testing was used to analyse the effectiveness of the
training session. Two null hypotheses together with their associated alterna-
tive hypotheses were stated.

The first null hypothesis was stated as:

H0,1: There is no difference between scores before (pre-test) and after
(post-test) the training session.

The second null hypothesis was stated as:

H0,2: There is no difference in effectiveness between the experimental
group (using the SDM) and the control group (using the COCOMO
model).

The alternative hypotheses, i.e., what was expected to occur, were then
stated as:

1. H1 (relates to H0,1) – “Post-test versus pre-test scores”: The average per-
formance of all subjects (experimental group and control group) during
post-test is better than during pre-test.

2. H2 (relates to H0,2) – “Performance improvement”: The average perfor-
mance improvement of the experimental group is better than the aver-
age performance improvement of the control group.

3. H3 (relates to H0,2) – “Post-test performance”: The average post-test
scores of the experimental group are better than the average post-test
scores of the control group.

diss.book Page 197 Tuesday, November 27, 2001 10:26 AM

198

Effectiveness of IMMoS

H1, H2 and H3 apply to all dependent variables (Dep.1 to Dep.4). Note that it
is not expected that both alternative hypotheses of H0,2 will occur simulta-
neously. This reflects on the fact that occurrence of alternative H2 is less
likely when pre-test scores of the experimental group are significantly higher
than those of the control group. Similarly, alternative hypothesis H3 is less
likely to occur when pre-test scores of the control group are significantly
higher than those of the experimental group.

13.3.2 Subjects

The participants of the study were computer science students at the Univer-
sity of Kaiserslautern, Germany, who were enrolled in the advanced software
engineering class lasting one semester. While the course was running, sub-
jects were asked if they would be interested in participating in an experiment
related to software project management issues that would involve a simula-
tion model. The subjects knew that they would have to participate in a self-
learning training session, that they would have to pass a test, and that the
test scores would be analysed to evaluate the training session. Twelve stu-
dents expressed their interest in participation.

As the German system allows students to take different classes at different
times during their studies, information on their personal background with
regard to experience in software development and software project man-
agement was captured before passing the pre-test.

13.3.3 Treatments

The training sessions of both groups, experimental and control, was struc-
tured by training scenarios, consisting of a sequence of scenario blocks. The
generic scenario structure is composed of the four scenario blocks described
in Section 12.3.1.

13.3.3.1 Treatment of the Experimental Group.

The experimental group passed all scenario blocks. The SD model GENSIM
was used as the predictive model in scenario blocks 3 and 4. In addition, the
SD model GENSIM was integrated into the interactive role-play offered by
scenario block 2.

13.3.3.2 Treatment of the Control Group.

The control group passed only scenario blocks 1, 3, and 4. The predictive
model used in scenario blocks 3 and 4 was the intermediate COCOMO
model. A detailed description of the COCOMO model can be found in
[Boe81].

diss.book Page 198 Tuesday, November 27, 2001 10:26 AM

199

Effectiveness of IMMoS

13.3.4 Experimental Design

For evaluating the effectiveness of a training session using SDM simulation, a
pre-test-post-test control group design was applied. This design involves ran-
dom assignment of subjects to an experimental group and a control group.
Both groups have to pass a pre-test and a post-test. The pre-test measures
the performance of the two groups before the treatment, and the post-test
measures the performance of the two groups after the treatment. By study-
ing the differences between the post-test and pre-test scores of the experi-
mental group and the control group, conclusions can be drawn with respect
to the effect of the treatment (i.e. the independent variable of the experi-
ment) on the dependent variable(s) under study.

13.3.5 Experimental Variables

During the experiment, data for three types of variables are collected. Table
43 lists all experimental variables, including one independent variable, four
dependent variables, and three variables that represent potentially disturbing
factors.

Table 43: Experimental variables

13.3.5.1 Independent Variables.

The independent variable Ind.1 (type of treatment) can have two values,
either TA, which is applied to the experimental group, or TB, which is applied
to the control group. The difference between TA and TB is basically deter-
mined by two factors. The first factor is the training scenario according to
which the course material is presented. The second factor is the planning
model that is used to support software project management decision-mak-
ing. Table 44 briefly summarises the differences between the treatment of
the experimental group and the treatment of the control group, indicating

Independent Variable

Ind.1 Type of treatment

Dependent Variables

Dep.1 Interest in software project management issues (“Interest”)

Dep.2 Knowledge about typical behaviour patterns of software development projects
(“Knowledge”)

Dep.3 Understanding of “simple” project dynamics (“Understand simple”)

Dep.4 Understanding of “complex” project dynamics (“Understand complex”)

Disturbing Factors

DiF.1 Personal background

DiF.2 Time consumption / time need

DiF.3 Session evaluation (personal perception)

diss.book Page 199 Tuesday, November 27, 2001 10:26 AM

200

Effectiveness of IMMoS

the duration of the scenario blocks applied, and providing information on
the nature of the used planning models.

Table 44: Differences between treatments

With regard to the scenario, the main difference consists in the application
of scenario block PMT Role Play for treatment TA. As a consequence of per-
forming the scenario block PMT Role Play, interaction of the trainee with the
training module will be high whereas treatment TB will only trigger low inter-
action of the trainee with the training module. The application of scenario
block 2 also has implications on the medium through which the course
material is presented. Treatment TB may choose between paper-based or
web-based, whereas treatment TA at least requires web-based presentation
of scenario block PMT Role Play. It should also be noted that for treatment TB
the presentation style of the training materials can always be similar to a
textbook presentation even if the materials are provided web-based. With
regard to the model that is used during the training session, treatment TB
exclusively relies on a black-box model providing point estimates, such as
COCOMO. In contrast to this, by using a SD simulation model, treatment TA
is based on a white-box model that in addition to point estimates facilitates
insights into behavioural aspects of software projects.

13.3.5.2 Dependent Variables

The dependent variables Dep.1, Dep.2, Dep.3, and Dep.4 are determined by
analysing data collected through questionnaires that all subjects have to fill
in, the first time during the pre-test, and the second time during the post-
test. Each questionnaire consists of 5 to 7 questions where answers have to
be provided on a uniform scale. The value of each dependent variable will
then be equal to the average score derived from the related questionnaire.

The contents of the questionnaires are as follows:

• Dep.1 (“Interest”): Questions about personal interest in learning more
about software project management.

• Dep.2 (“Knowledge”): Questions about typical performance patterns of
software projects. These questions are based on some of the empirical

Treatment TA Treatment TB

Scenario Block 1 – 3 min

Block 2 – 15 min

Block 3 – 15 min

Block 4 – 12 min

Block 1 – 3 min

n/a

Block 3 – 30 min

Block 4 – 12 min

PMT model SDM:
• behavioural (white box)
• point estimates (black box)

COCOMO model:
• point estimates (black box)

diss.book Page 200 Tuesday, November 27, 2001 10:26 AM

201

Effectiveness of IMMoS

findings and lessons learned summarised in Barry Boehm’s top 10 list of
software metric relations [Boe87].

• Dep.3 (“Understand simple”): Questions on project planning problems
that require simple application of the provided PMT models, addressing
trade-off effects between no more than two model variables.

• Dep.4 (“Understand complex”): Questions on project planning problems
addressing trade-off effects between more than two variables, and ques-
tions on planning problems that may require re-planning due to alter-
ations of project constraints (e.g. reduced manpower availability, short-
ened schedule, or changed requirements) during project performance.

13.3.5.3 Disturbing Factors

The values of the three potentially disturbing factors DiF.1, DiF.2, and DiF.3
are also derived from questionnaires that all subjects have to fill in. The ques-
tionnaire for DiF.1 will be filled in before the pre-test, the questionnaires for
DiF.2 and DiF.3 will be filled in after the post-test.

The contents of the questionnaires are as follows:

• DiF.1: Questions about personal characteristics (age, gender), university
education (year, major, minor), practical software development experi-
ence, software project management literature background, and pre-
ferred learning style.

• DiF.2: Questions on actual time consumption per scenario block, and on
perceived time need.

• DiF.3: Questions on personal judgement of the training session (subjec-
tive session evaluation).

13.3.6 Experimental Procedure

The experiment was conducted following the plan presented in Table 45.
After a short introduction during which the purpose of the experiment and
general organisational issues were explained, data on the background char-
acteristics (variable DiF.1) was collected with the help of a questionnaire.
Then the pre-test was conducted and data on all dependent variables (Dep.1
through Dep.4) was collected, again using questionnaires. Following the pre-
test, a brief introduction into organisational issues related to the treatments
was given. After that, the subjects were randomly assigned to either the
experimental or control group. Then each group underwent its specific treat-
ment. After having concluded their treatments, both groups passed the
post-test using the same set of questionnaires as during the pre-test, thus
providing data on the dependent variables for the second time. Finally, the
subjects got the chance to evaluate the training session by filling in another
questionnaire, providing data on variables DiF.2 and DiF.3. The time frames

diss.book Page 201 Tuesday, November 27, 2001 10:26 AM

202

Effectiveness of IMMoS

reserved for passing a certain step of the schedule was identical for the
experimental and control groups.

The experiment was performed on two days following the schedule pre-
sented in Table 45. On the first day, the steps “Introduction to experiment”,
“Background characteristics”, and “Pre-test” were conducted, consuming a
total of 40 minutes. On the second day, the steps “Introduction to treat-
ments”, “Random assignment of students to groups”, “Treatment”, “Post-
test”, and “Time need & subjective session evaluation” were conducted,
consuming a total of 90 minutes. Of the 12 students that agreed to partici-
pate in the experiment, 9 students participated in both pre-test and post-
test. 5 subjects were assigned randomly to the experimental group (A), and
4 students to the control group (B).

Table 45: Schedule of experiment

13.3.7 Data Collection Procedure

The raw data for dependent variables Dep.1 to Dep.4 were collected during
pre-test and post-test with the help of questionnaires.

The values for variable Dep.1 (“Interest”) are average scores derived from
five questions on the student’s opinion about the importance of software
project management issues (i) during university education and (ii) during per-
formance of industrial software development projects, applying a five-point
Likert-type scale [Lik32]. Each answer in the questionnaire is mapped to the
value range R = [0, 1] assuming equidistant distances between possible
answers, i.e. “fully disagree” is encoded as “0”, “disagree” as “0.25”,
“undecided” as “0.5”, “agree” as “0.75”, and “fully agree” as “1”. All

Introduction to experiment 5 min

Background characteristics 5 min

Pre-test
• Interest
• Knowledge about empirical patterns
• Understanding of simple project dynamics
• Understanding of complex project dynamics

3 min
5 min
10 min
12 min

Introduction to treatments 5 min

Random assignment of subjects to groups 5 min

Treatment 45 min

Post-test
• Interest
• Knowledge about empirical patterns
• Understanding of simple project dynamics
• Understanding of complex project dynamics

3 min
5 min
10 min
12 min

Time need & subjective session evaluation 5 min

Total 130 min

diss.book Page 202 Tuesday, November 27, 2001 10:26 AM

203

Effectiveness of IMMoS

questions were formulated in a way that positive attitude towards project
management education and application of project management techniques
in projects must be expressed by ticking the fields “agree” or “fully agree”.

The values for variables Dep.2 (“Knowledge”), Dep.3 (“Understand sim-
ple”), and Dep.4 (“Understand complex”) are average scores derived from
five (for Dep.2), seven (for Dep.3), and six (for Dep.4) questions in multiple-
choice style. The answers to these questions were evaluated according to
their correctness, thus having a binary scale with correct answers encoded as
“1”, and incorrect answers encoded as “0”.

The raw data for disturbing factors DiF.1 to DiF.3 were collected before pre-
test (DiF.1) and after post-test (DiF.2 and DiF.3).

In order to determine the values of factor DiF.1 (“Personal background”)
information on gender, age, number of terms studied, subjects studied
(major and minor), personal experience with software development, and
number of books read about software project management was collected. In
order to simplify the analysis, the actual values for factor DiF.1 eventually
used for the statistical analysis were exclusively based on the normalised
average scores derived from six questions on the student’s personal experi-
ence with software development. Each of these questions could be
answered with “yes” (encoded as “1”) or “no” (encoded as “0”). “Yes”
indicated that a certain type of experience was present, and “no”, that it
was not present. Therefore, simple adding of the scores per answer gives a
measure of experience with a maximal score of 6 and a minimal score of 0.
Dividing by the number of questions provides a normalised value range, i.e.
range R = [0, 1].

The values for factor DiF.2 are normalised average scores reflecting the “time
need” for reading and understanding of the scenario blocks 1, 3, and 4, for
familiarisation with the supporting tools, and for filling in the post-test ques-
tionnaire. For group A, the variable DiF.2’ includes also scores related to sce-
nario block 2. If a subject wants to express that more than the available time
was needed related to a certain task, then “yes” (encoded as “1”) should be
marked, otherwise “no” (encoded as “0”). Adding the scores and dividing
them by the number of tasks once again provides a normalised value range
R = [0, 1], with “1” indicating time need for all tasks and “0” indicating the
absence of time need.

The values for factor DiF.3 (“Session evaluation”) are based on subjective
measures reflecting the quality of the treatment. Again, for group A, the
variable DiF.3’ includes scores related to scenario block 2. The subjective per-
ception of the treatment quality was evaluated with regard to four dimen-
sions (“useful” versus “useless”, “absorbing” versus “boring”, “easy” ver-
sus “difficult”, and “clear” versus “confusing”) using five-point Likert-type
scales, e.g. “extremely boring”, “boring”, “undecided”, “absorbing”,
“extremely absorbing”. Similar to variable Dep.1, possible answers were
encoded as “0”, “0.25”, “0.5”, “0.75”, and “1” depending on whether

diss.book Page 203 Tuesday, November 27, 2001 10:26 AM

204

Effectiveness of IMMoS

the subjective judgement was very negative, negative, undecided, positive,
or very positive. By taking the average of the values for all four questions the
values for disturbing factors could be mapped to range R = [0, 1].

13.3.8 Data Analysis Procedure

The conceptual model underlying the proposed statistical analysis is sum-
marised in Figure 53. It is inspired by the work of Jac Vennix who conducted
a similar experiment [Ven90], assuming that there are two separate effects
on the dependent variables. On the one hand the effect of the independent
variable, and on the other the effect of additional potentially disturbing fac-
tors.

In a first step, the statistical analysis applies a t-test to investigate the effect
of the independent variable on the dependent variables. For testing hypoth-
esis H1, a one-way paired t-test can be used, because the data collected for
this hypothesis is within-subjects, i.e. post-test scores are compared to pre-
test scores of subjects within the same group [She97]. For testing hypothe-
ses H2 and H3, repeated measures analysis could not be applied, thus the
appropriate test was a one-sided t-test for independent samples, or, equiva-
lently, a single factor, one-way ANOVA [She97].

Figure 53: Relation between experimental variables

In addition to that, for testing hypotheses H2 and H3, analysis of covariance
(ANCOVA) could be applied to improve the precision of the statistical analy-
sis by removing potential bias due to disturbing factors [WiA78].

To conduct the analysis, a level of significance, i.e., the α-level, has to be
specified. Several factors have to be considered when setting α. First, the
implications of committing a Type I error, i.e., incorrectly rejecting the true
null hypothesis, have to be determined. In the context of this study, it would
mean the cost of building and using simulation models in student education
without achieving any beneficial effect as compared to using conventional
planning models. Second, the goals of the study have to be taken into
account. This can be discussed from two perspectives [BBD+97]:

• From a practical perspective, which is asking for a judgement on whether
it is likely that using SD simulation models for training has a better learn-
ing effect than using traditional planning models.

• From a scientific perspective, which is trying to identify cause-effect rela-
tionships between the type of the used planning model (with associated

Disturbing factors

Independent variable Dependent variables

diss.book Page 204 Tuesday, November 27, 2001 10:26 AM

205

Effectiveness of IMMoS

training scenarios) and the learning effect, with a high level of confi-
dence.

As previously stated, the empirical work presented in this paper should be
considered as exploratory research whose goal is twofold: First, potentially
interesting and practically significant trends shall be identified in order to
focus future studies. Second, initial insights into what might be the conse-
quences of using SD simulation models for student education shall be
gained. Therefore, not a too stringent α level should be adopted, since this
might result in overlooking potential areas of further investigation. In the
study presented, α = 0.1 was used. This can be seen as a compromise
between a more practical perspective, and a strictly scientific perspective.

Another factor affecting the analysis procedure is the small sample sizes,
which are likely to have an adverse effect on the power of the applied statis-
tical methods, i.e. the chance that if an effect exists it will be found. The
power of a statistical test is dependent on three different components: sig-
nificance level α, the size of the effect being investigated, and the number of
subjects. Low power will have to be considered when interpreting non-sig-
nificant results. In these cases practical significance needs to be considered.
Practical significance occurs when the effect being investigated impacts
upon the dependent variables in a manner that can be considered practically
meaningful. To determine if this is the case, the observed effect size (γ)
detected for each dependent variable and for each hypothesis has to be cal-
culated. Effect size is expressed as the difference between the means of the
two samples divided by the root mean square of the variances of the two
samples [She97]. For this exploratory study, effects where γ ≥ 0.5 are consid-
ered to be of practical significance. This decision was made on the basis of
the effect size indices proposed by Cohen [Coh88].

13.3.9 Experimental Results

Data was collected for nine subjects during pre-test and post-test. Therefore,
18 data points were available for each dependent variable and each disturb-
ing factor – ten data points provided by the experimental group (A), and
eight data points provided by the control group (B).

Table 46 and Table 47 show the raw data collected during pre-test and post-
test together with the calculated values for mean, median, and standard
deviation.

Table 48 shows the differences between post-test and pre-test scores
together with the calculated values for mean, median, and standard devia-
tion.

diss.book Page 205 Tuesday, November 27, 2001 10:26 AM

206

Effectiveness of IMMoS

Table 46: Pre-test scores

Table 47: Post-test scores

Dependent variables: pre-test scores

Group A Dep.1 Dep.2 Dep.3 Dep.4

Student #1 0.75 1 0.29 0.33

Student #2 0.9 0.4 0 0

Student #3 0.5 0.6 0.71 0.5

Student #4 0.8 0.2 0.29 0.67

Student #5 0.5 0.6 0.29 0.33

Meanpre-test 0.69 0.56 0.31 0.37

Medianpre-test 0.75 0.6 0.29 0.33

Stdevpre-test 0.18 0.30 0.26 0.25

Group B Dep.1 Dep.2 Dep.3 Dep.4

Student #6 1 0.2 0.14 0.67

Student #7 0.8 0.8 0.29 0.17

Student #8 0.75 0.6 0.43 0.33

Student #9 0.7 0.4 0.86 0.17

Meanpre-test 0.81 0.5 0.43 0.33

Medianpre-test 0.78 0.5 0.36 0.25

Stdevpre-test 0.13 0.26 0.31 0.24

Dependent variables: post-test scores

Group A Dep.1 Dep.2 Dep.3 Dep.4

Student #1 0.85 0.8 0.43 0.33

Student #2 1 1 0.71 0

Student #3 0.5 1 0.71 0.33

Student #4 0.85 0.8 0.71 0.83

Student #5 0.75 0.6 0.71 0.67

Meanpost-test 0.79 0.84 0.66 0.43

Medianpost-test 0.85 0.80 0.71 0.33

Stdevpre-test 0.19 0.17 0.13 0.32

Group B Dep.1 Dep.2 Dep.3 Dep.4

Student #6 1 0.6 0.86 0.83

Student #7 0.85 0.6 0.86 0.33

Student #8 0.75 0.4 0.86 0

Student #9 0.55 0.8 0.71 0.67

Meanpost-test 0.79 0.6 0.82 0.46

Medianpost-test 0.80 0.60 0.86 0.50

Stdevpost-test 0.19 0.16 0.07 0.37

diss.book Page 206 Tuesday, November 27, 2001 10:26 AM

207

Effectiveness of IMMoS

Table 48: Difference scores

Table 49: Disturbing factors

Dependent variables: difference scores

Group A Dep.1 Dep.2 Dep.3 Dep.4

Student #1 0.10 -0.20 0.14 0

Student #2 0.10 0.60 0.71 0

Student #3 0 0.40 0 -0.17

Student #4 0.05 0.60 0.43 0.17

Student #5 0.25 0 0.43 0.33

Meandifference 0.10 0.28 0.34 0.07

Mediandifference 0.10 0.40 0.43 0.00

Stdevdifference 0.09 0.36 0.28 0.19

Group B Dep.1 Dep.2 Dep.3 Dep.4

Student #6 0 0.40 0.71 0.17

Student #7 0.05 -0.20 0.57 0.17

Student #8 0 -0.20 0.43 -0.33

Student #9 -0.15 0.40 -0.14 0.50

Meandifference -0.03 0.10 0.39 0.13

Mediandifference 0.00 0.10 0.50 0.17

Stdevdifference 0.09 0.35 0.38 0.34

Disturbing factors

Group A DiF.1 DiF.2 DiF.2' DiF.3 DiF.3'

Student #1 0.4 0.8 0.67 0.44 0.52

Student #2 0.6 0.4 0.33 0.56 0.46

Student #3 0.4 0 0 0.38 0.54

Student #4 0.8 0 0 0.38 0.48

Student #5 0.2 1 1 0.31 0.5

Meandif 0.48 0.44 0.4 0.41 0.5

Mediandif 0.4 0.4 0.33 0.38 0.5

Stdevdif 0.23 0.46 0.43 0.09 0.03

Group B DiF.1 DiF.2 DiF.3

Student #6 0.8 0.2 0.69

Student #7 0.4 0.2 0.56

Student #8 0.4 0.6 0.69

Student #9 0.8 0.4 0.69

Meandif 0.6 0.35 0.66

Mediandif 0.6 0.3 0.69

Stdevdif 0.23 0.19 0.06

diss.book Page 207 Tuesday, November 27, 2001 10:26 AM

208

Effectiveness of IMMoS

Table 49 shows the data collected for the disturbing factors together with
the calculated values for mean, median, and standard deviation. As can be
seen, students in the control group (B) on average had more experience with
software development (DiF.1) than students in the experimental group (A). In
addition, students in the control group expressed less need of additional
time (DiF.2) for conducting the treatment and passing the tests than stu-
dents in the experimental group. Finally, students in the control group on
average perceived their treatment easier, clearer, more absorbing, and more
useful (DiF.3) than the students in the experimental group.

13.3.9.1 Anomalies in the Data Set

Even though, assignment of students to groups A and B was done purely
random, the average values for pre-test scores and disturbing factors were
not evenly distributed. For example, the subjects in the control group (B)
were more experienced with regard to actively developing software than the
subjects in the experimental group (A). As will be discussed in Section
13.3.9.3 and Section 13.3.9.4 it was not possible in all cases to neutralise
this potential bias by applying ANCOVA.

Another anomaly in the data set is the fact that five out of nine subjects per-
formed worse during post-test than during pre-test with regard to at least
one variable. This is particularly interesting for variables Dep.2, Dep.3, and
Dep.4, because they relate questions for which the correct answers were
provided through the training materials.

Particularly for variable Dep.4 (“Understanding of complex project dynam-
ics”) the large variance in the post-test scores of both groups is surprising.
No real clue has yet been found to this phenomenon, neither from analysing
the comments made by subjects in the debriefing questionnaire, nor from
talking to some of the subjects after the experiment.

13.3.9.2 Hypothesis H1

Table 50 and Table 51 show for each group (A and B) separately the results
of testing the directional alternative hypothesis H1: Meanpost-test > Meanpre-
test using a one-tailed t-test for dependent samples. Column one represents
the dependent variable, column two the size of the effect detected (γ), col-
umn three the degrees of freedom (df), column four the t-value, column five
the critical value for α = 0.10 which the t-value has to exceed to be signifi-
cant, and column six provides the associated p value.

diss.book Page 208 Tuesday, November 27, 2001 10:26 AM

209

Effectiveness of IMMoS

Table 50: Group A results for “post-test” vs. “pre-test”

By examining columns four and five of Table 50 one can see that significant
results were achieved for dependent variables Dep.1, Dep.2, and Dep.3.
Therefore, for group A, H1 can be accepted for variables Dep.1 to Dep.3 but
not for variable Dep.4. It is worth noting though that the value for depen-
dent variable Dep.4 supports the direction of the hypothesis, however with-
out showing an effect size of practical significance.

For replication purpose, using the same experimental design, a minimum
number of 56 subjects is required to have a reasonable chance of achieving
statistical significance with regard to variable Dep.4, i.e. one where the
power of the test is approximately 0.8 (for α = 0.1, and the calculated effect
size γ). Recalling the fact that several subjects in group A obviously did not
have enough time to read and understand those training materials in sce-
nario block 3 that are particularly related to “complex project dynamics”,
improvement of the experimental procedure is required before repeating the
experiment.

Table 51 shows that for group B (control group) H1 can only be accepted for
variable Dep.3 (“Understanding of simple project dynamics”). The post-test
scores for Dep.3 are significantly larger than the pre-test scores. In contrast,
the value for variable Dep.1 does not even support the direction of the alter-
native hypothesis. For replication purpose, given the medium effect size of
variables Dep.2 and Dep.4, a minimum number of approximately 100,
respectively 56 subjects will be required to provide the test with a power of
0.8 (with α = 0.1).

Table 51: Group B results for “post-test” vs. “pre-test”

Group A

Variable γ df t-value Crit. t0.90 p-value

Dep.1 1.07 4 2.39 1.53 0.04

Dep.2 0.77 4 1.72 1.53 0.08

Dep.3 1.23 4 2.75 1.53 0.03

Dep.4 0.35 4 0.78 1.53 0.24

Group B

Variable γ df t-value Crit. t0.90 p-value

Dep.1 ** 3 -0.58 1.64 **

Dep.2 0.29 3 0.58 1.64 0.30

Dep.3 1.05 3 2.09 1.64 0.06

Dep.4 0.37 3 0.73 1.64 0.26

diss.book Page 209 Tuesday, November 27, 2001 10:26 AM

210

Effectiveness of IMMoS

13.3.9.3 Hypothesis H2

Table 52 shows the results of testing the directional alternative hypothesis
H2: Meandifference(A) > Meandifference(B) using a one-tailed t-test for indepen-
dent samples.

Table 52: Results for “performance improvement”

As can be seen, for significance level α = 0.1, the performance improve-
ment, i.e. the score difference between post-test and pre-test, of variable
Dep.1 (“Interest”) is significantly larger for the experimental group (A) as
compared to the control group (B), and thus alternative hypothesis H2 can
be accepted. It can also be noted that the value of variable Dep.2 (“Knowl-
edge of empirical patterns”) supports the direction of the hypothesis show-
ing a medium to large effect size. Again, for future replication of the experi-
ment with a power of approximately 0.8, at least 36 subjects per group are
needed for the given effect size and α = 0.1.

Note that the values of variables Dep.3 and Dep.4 do not even support the
direction of the alternative hypothesis.

Table 53: ANCOVA results for “performance improvement”

In order to check whether the test results are robust with respect to disturb-
ing factors, an analysis of covariance (ANCOVA) was conducted. Table 53
shows only results for which the implicit assumptions underlying ANCOVA
were fulfilled, i.e. homogeneity of regression coefficients, and difference
from zero of the coefficient of the disturbing variable. The assumptions were
fulfilled only for three cases. In the first case, neutralising the impact of dis-
turbing variable DiF.1 (“Personal background”) on variable Dep.1 slightly

Group A versus B

Variable γ df t-value Crit. t0.90 p-value

Dep.1 1.38 7 2.06 1.42 0.04

Dep.2 0.51 7 0.75 1.42 0.24

Dep.3 0.16 7 -0.23 1.42 **

Dep.4 0.23 7 -0.33 1.42 **

Group A versus B

Variable df F Crit. F0.90 p-value Covariate Corr. means
A ------ B

Dep.1 7 4.23 3.59 0.08 - 0.10 -0.03

Dep.1 6 3.16 3.78 0.13 DiF.1 0.09 -0.01

Dep.2 7 0.57 3.59 0.48 - 0.28 0.10

Dep.2 6 5.86 3.78 0.05 DiF.1 0.35 0.01

Dep.2 6 1.44 3.78 0.28 DiF.2 0.31 0.07

diss.book Page 210 Tuesday, November 27, 2001 10:26 AM

211

Effectiveness of IMMoS

decreased the strength of the treatment effect (with reduced effect size γ =
0.67). In the second case, however, neutralisation of the impact of DiF.1 on
variable Dep.2 strongly increased the effect of the treatment, i.e. the null
hypotheses can be rejected at a significant level (with p = 0.05) and thus the
alternative hypotheses can be accepted (with γ = 0.91). When neutralising
the impact of the disturbing factor DiF.2 (“Time need”) on variable Dep.2,
again an improvement of the p-level can be observed, however to a smaller
extent (with γ = 0.44).

13.3.9.4 Hypothesis H3

Table 54 shows the results of testing the directional alternative hypothesis
H3: Meanpost-test(A) > Meanpost-test(B) using a one-tailed t-test for indepen-
dent samples.

For significance level α = 0.1, the post-test scores of variable Dep.2 (“Knowl-
edge of empirical patterns”) is significantly larger for the experimental group
(A) as compared to the control group (B), and thus alternative hypothesis H3
can be accepted. It can also be noted that the value of variable Dep.1
(“Interest”) supports the direction of the hypothesis, however, only with a
very small effect size. In this case, in a future replication of the experiment,
for the given effect size and significance level α = 0.1, a power of approxi-
mately 0.8 could only be reached with more than 1000 subjects per group.

Table 54: Results for “post-test performance”

The values for variables Dep.3 (“Understand simple”) and Dep.4 (“Under-
stand complex”) do not even support the direction of the hypothesis.

Table 55: ANCOVA results for “post-test performance”

Group A versus B

Variable γ df t-value Crit. t0.90 p-value

Dep.1 0.01 7 0.02 1.42 0.49

Dep.2 1.45 7 2.16 1.42 0.03

Dep.3 1.53 7 -2.28 1.42 **

Dep.4 0.07 7 -0.11 1.42 **

Group A versus B

Variable df F Crit. F0.90 p-value Covariate Corr. means
A ------ B

Dep.1 7 0.00 3.59 0.98 - 0.79 0.79

Dep.1 6 3.11 3.78 0.13 Dep.1 (pre) 0.84 0.72

Dep.4 7 0.01 3.59 0.92 - 0.43 0.46

Dep.4 6 0.08 3.78 0.78 Dep.4 (pre) 0.42 0.48

diss.book Page 211 Tuesday, November 27, 2001 10:26 AM

212

Effectiveness of IMMoS

As with hypothesis H2, in order to check whether the test results are robust
with respect to disturbing factors, an analysis of covariance (ANCOVA) was
conducted. Again, Table 55 shows only results for which the implicit
assumptions underlying ANCOVA were fulfilled. This happened only in two
cases. In the first case, neutralising the impact of pre-test scores on variable
Dep.1, considerably increased the strength of the treatment effect (p =
0.13), with an effect size of γ = 0.79 now reaching the level of practical sig-
nificance. In the second case, however, neutralisation of the impact of pre-
test scores on variable Dep.4 only marginally increased the effect of the
treatment (γ = 0.10). Note that attempts to neutralise potential bias induced
by disturbing factors DiF.1 to DiF.3 was unfeasible in all cases, since there
was no significant difference from zero of the respective coefficient in the
ANCOVA model.

13.3.9.5 Analysis Summary

The results of the statistical analysis can be grouped according to the degree
of evidence in supporting the hypotheses. Three categories have been
defined: strong support, i.e. the data shows statistical significance (at α level
0.10), weak support, i.e. the data shows practical significance (γ ≥ 0.5), and
no support, i.e. the data has neither statistical nor practical significance.

• Strong Support: Statistical and practical significance was obtained for
variables Dep.1 (only group A), Dep.2 (only group A), and Dep.3 (groups
A and B) in support of H1 – “post-test scores versus pre-test scores”.
After elimination of disturbing factors, statistical and practical signifi-
cance in support of hypotheses H2 – “performance improvement” – and
H3 – “post-test performance” – was only obtained for variable Dep.2
(“Knowledge of empirical patterns”).

• Weak Support: Practical significance was obtained for variable Dep.1
(“Interest”) in support of hypotheses H2 – “performance improvement”
– and H3 – “post-test performance”. For hypothesis H2, impact on vari-
able Dep.1 is even statistically significant, if only the results of the one-
tailed t-test (cf. Table 52) are considered.

• No Support: No practical significance was found for variable Dep.4
(“Understanding of complex project dynamics”) in all three hypotheses
H1, H2, and H3, and for variable Dep.3 (“Understanding of simple project
dynamics”) in hypotheses H2 and H3.

diss.book Page 212 Tuesday, November 27, 2001 10:26 AM

213

Effectiveness of IMMoS

13.3.10 Threats to Validity

This section discusses the various threats to validity of the study.

13.3.10.1 Construct validity

Construct validity is the degree to which the variables used in the study
accurately measure the concepts they purport to measure. The following
issues associated with construct validity have been identified:

1. The mere application of a SDM might not adequately capture the specific
advantages of SDMs over conventional planning models, since it has
often been claimed that model building – and not the application of an
existing model – is the main benefit of SD simulation modelling [Lan95].

2. Interest in a topic and evaluation of a training session are difficult con-
cepts that have to be captured with subjective measurement instru-
ments. In order to keep this threat to validity as small as possible, in the
study, the instruments for measuring variables Dep.1 and DiF.3 were
derived from measurement instruments that had been successfully
applied in a similar study [Ven90].

3. There are indications that the distinction between “simple dynamics”
and “complex dynamics”, as it was made for measuring variables Dep.3
and Dep.4 (cf. Section 13.3.5.2), was too simplistic.

4. It is difficult to avoid “unfair” comparison between SDMs and
COCOMO, because there are obviously features coming with SDMs that
per definition cannot be offered by COCOMO (e.g. simulation of param-
eter changes over time / on-the-fly modification of model assumptions,
etc.).

13.3.10.2 Internal Validity

Internal validity is the degree to which conclusions can be drawn about the
causal effect of the independent variable on the dependent variables. Poten-
tial threats include selection effects, non-random subject loss, instrumenta-
tion effect, and maturation effect.

1. A selection effect was tried to be avoided by random assignment of sub-
jects. In addition, existing differences in ability between groups were cap-
tured by collecting pre-test scores and by measuring the level of experi-
ence of subjects through variable DiF.1. Any potential bias induced by
differences in pre-test scores and experience were tried to be neutralised
by using ANCOVA.

2. Non-random drop-out of subjects has been avoided by the experimental
design, i.e. assignment of groups only on the second day of the experi-

diss.book Page 213 Tuesday, November 27, 2001 10:26 AM

214

Effectiveness of IMMoS

ment, i.e. directly before the treatment, and not before the pre-test
already on the first day of the experiment.

3. The fact that the treatments of group A and B were different in the num-
ber of scenario blocks involved and, as a consequence, in the time avail-
able to perform each scenario block, may have induced an instrumenta-
tion effect. The post-mortem evaluation of the experiment with regard to
time need indicated that most subjects of group A did not have enough
time to execute both scenario blocks 2 and 3. In addition, – even though
this was tried to be avoided by careful design – the planning models used
in both treatments might slightly differ in scope and handling.

4. A maturation effect could have been caused if subjects had been
informed on the first day of the experiment, i.e. when passing the pre-
test, that at the end of the experiment they will pass a post-test with
exactly the same questions. Since this information was not given to the
subjects, all materials were re-collected after the pre-test, and the treat-
ment with post-test took place 48 hours after the pre-test, it can be
assumed that a maturation effect did not occur.

13.3.10.3 External Validity

External validity is the degree to which the results of the research can be
generalised to the population under study and other research settings. Two
possible threats have been identified: subject representativeness and materi-
als:

1. The subjects participating in the experiment were all computer science
students at an advanced level. It can be expected that the results of the
study are to some degree representative for this class of subjects. Any
generalisation of the results with regard to education of novice students,
or even with regard to training of software professionals should be done
with caution.

2. Even when the training sessions are applied to students, adequate size
and complexity of the applied materials might vary depending on previ-
ous knowledge about SDM development and COCOMO.

In any case, the point should be emphasised that the presented research at
its current stage is exploratory of nature and just the first step of a series of
experiments, which – after modification of the treatments and stepwise
inclusion of subjects with different backgrounds – might yield more general-
isable results in the future.

13.3.10.4 Reliability

Reliability is the degree to which the results of a measurement reflect the
true score of the intended concept, e.g. “Interest in software project man-
agement issues”. Reliability would be low if measurement results, e.g. the

diss.book Page 214 Tuesday, November 27, 2001 10:26 AM

215

Effectiveness of IMMoS

response to an item in a questionnaire, mainly reflect some esoteric, random
error that is due to differences between subjects in how they read and
understand a particular question in the questionnaire.

With regard to variable Dep.1 (“Interest”) sufficient reliability can be
assumed because the questionnaire used is composed of questions that
have been used successfully in a previous experiment [Ven90]. The question-
naire is presented in the Appendix. The measures of variables Dep.2 to
Dep.4 were collected by objective measurement, i.e. each question has
exactly one correct answer. Therefore, reliability of the related measurement
results can be assumed.

13.3.11 Summary and Discussion of Results

This study investigated the effect of using the model GENSIM in software
project management education of computer science and SE students. The
treatment focused on problems of project planning and control. The perfor-
mance of the students was analysed with regard to four dimensions, i.e.,
interest in the topic of project management (Dep.1), knowledge of typical
project behaviour patterns (Dep.2), understanding of simple project dynam-
ics (Dep.3), and understanding of complex project dynamics (Dep.4). This
was done by comparing the test results of students who passed a training
session using the GENSIM model to the test results of students who passed a
training session using the COCOMO model. Even though the statistical
results must be interpreted with caution, due to small number of subjects
involved and several threats to construct and internal validity, the findings of
the analyses showed several interesting trends.

First, the treatment involving GENSIM had a positive impact on the change
of scores from pre-test to post-test for all four dependent variables. The
effect was statistically significant for Dep.1 to Dep.3. For Dep.4 the power of
the test seemed to be too low to be able to detect the effect at the set sig-
nificance level α = 0.1.

Second, the treatment involving the SDM achieved practical significance on
performance improvement and post-test performance for variable Dep.1,
and even statistical significance for variable Dep.2.

Though positive, the second result might be related to problems with inter-
nal validity of the experiment, i.e. the inclusion of the role-play (scenario
block 2) exclusively for the experimental group (A). Inclusion of the role-play,
on the other hand, imposed additional time pressure on the subjects in the
experimental group, which might have resulted in low scores for questions
related to dependent variables Dep.3 and – particularly – Dep.4.

In order to avoid speculations about the positive or negative effects of the
threats to internal validity, the experimental design, and the treatments
involved in the experiment need improvement.

diss.book Page 215 Tuesday, November 27, 2001 10:26 AM

216

Effectiveness of IMMoS

With regard to enhancing the treatments, two issues are of relevance. First,
more time has to be allowed particularly for executing scenario blocks 2
(PMT Role Play) and 3 (PMT Planning Models), and for the familiarisation
with the simulation tool. Second, the experimental treatment, as it is now,
does not yet fully exploits all potentially available features of a learning tool
that SDM usage and model building can offer. This relates to the fact that
SDMs not only make causal relationships explicit and allow for variation of
the strength of the relationships, but also offer means to change the struc-
ture of these relationships and make the effects of such changes on project
performance visible through simulation.

A closer look at the nature of the applied treatments also proposes an
improved experimental design for future replications. The inclusion of a role-
play (scenario block 2) in the experimental treatment (TA) had two conse-
quences. As mentioned before, the role-play provided explicit information
on observed empirical patterns in software development projects to the sub-
jects in group A, which were not given in such an explicit form to subjects in
group B. This might explain why subjects in group A had clearly better scores
for variable Dep.2 than subjects in group B. On the other hand, because they
did not have to perform a role-play, subjects in group B had more time than
subjects in group A (30 min instead of 15 min) to read and understand the
information provided in scenario block 3 (PMT Planning Models). This might
explain why subjects in group A did not have better scores for variables
Dep.3 and Dep.4. A 2x2 factorial design (either crossed or nested) could
help to better distinguish between the effects of having or not having a role-
play and the effects induced by the nature of the PMT planning model.

diss.book Page 216 Tuesday, November 27, 2001 10:26 AM

217

Efficiency of IMMoS

14 Efficiency of IMMoS

The evaluation of the efficiency of IMMoS was based on a comparison
between SDM development with IMMoS and SDM development without
IMMoS (baseline). For the comparison, objective measurement data was fed
into appropriately designed evaluation models. As a general prerequisite, it
had to be assumed that all SDMs used in the analysis were suitable (cf.
related discussion in Section 10). The fulfilment of this assumption has been
shown in Section 13.

The PSIM project was used as to generate the baseline data. The RESIM and
GENSIM projects were used to generate the data to be compared to the
baseline.

14.1 GQM Plan for IMMoS Efficiency Evaluation

The definition and analysis of the models to evaluate the efficiency of
IMMoS followed a GQM process.

14.1.1 Definition of Measurement Goal

The measurmeent goal was defined as follows:

Analyse IMMoS
with respect to Efficiency
for the purpose of Evaluation
from the point of view of the SDM Developer
in the context of Software Organisations.

14.1.2 Definition of Models

A GQM abstraction sheet was used to identify the metrics and the associ-
ated models needed to achieve the measurement goal.

14.1.2.1 Quality Factors

Three quality factors were identified:

• E: Effort for SDM building [person months]
• D: Duration of SDM building [calendar months]
• S: SDM size [number of levels]

diss.book Page 217 Tuesday, November 27, 2001 10:26 AM

218

Efficiency of IMMoS

Based on the quality factors, the following models were defined:

• Model Erel = E / S
• Model Drel = D / S

Note: SDM size was measured by counting the number of levels, and not the
number of model equations. This was done because the number of model
equations can always be reduced to the number of levels, and it is only a
matter of stile how many equations are spent on rate equations, and equa-
tions to determine auxiliary variables. It is not clear, however, whether the
chosen size measure would also be an appropriate approximation of model
complexity. Probably, model complexity depends not only on the number of
levels but also on the type of relationship between levels.

14.1.2.2 Variation Factor

One variation factor was identified:

• A: Application of IMMoS [yes / no]

Note: Other possible variation factors, e.g. experience and skills of SDM
builder, availability of subject matter experts, have not been considered. It is
expected, however, that the application of IMMoS tends to neutralise varia-
tion in SDM development skills and experience. Lacking availability of subject
matter experts only impacts duration, not effort.

14.1.2.3 Baseline Hypotheses

The total duration of the PSIM project was 18 calendar months, from April
1994 to September 1995. The total project effort was about 15 person-
months. This includes 12 person-months of effort for the SDM developer
and about 3 person-months for the customer organisation (customer man-
agement, SE subject matter experts, and SDM user).

• E(PSIM) = 15 person months
• D(PSIM) = 18 calendar months
• S(PSIM) = 26 levels

The related models yield:

• Erel(PSIM) = 0.58 person months / level
• Drel(PSIM) = 0.69 calendar months / level

14.1.2.4 Impact Hypotheses

Two impact hypotheses were defined:

diss.book Page 218 Tuesday, November 27, 2001 10:26 AM

219

Efficiency of IMMoS

• HE: if A = yes then Erel ↓
• HD: if A = yes then Drel ↓

14.2 Evaluation of Impact on Duration

Table 56 summarises the evaluation results with regards to the impact of
using IMMoS on the relative duration for SDM building. It presents for the
SDMs PSIM (baseline), RESIM, and GENSIM:

• the required raw data (S and D), and
• the calculated relative duration (Drel).

Table 56: Evaluation of IMMoS impact on duration of SDM building

As the data shows, both RESIM and GENSIM were developed much faster
than PSIM and thus HD is supported. Even though one could argue that the
development of PSIM took particularly long due to lack of experience of the
SDM developer, and temporary unavailability of SE subject matter experts,
the difference between the baseline and RESIM or GENSIM quite large. Even
if the development time needed for PSIM were reduced by 50%, it would
still be much larger than the development time needed for RESIM or GEN-
SIM.

Regarding GENSIM it should be noted that the development was particularly
fast because no communication of the SDM developer with SE subject mat-
ter experts or prospective SDM users, i.e. the computer science students,
were required.

14.3 Evaluation of Impact on Effort

Table 57 summarises the evaluation results with regards to the impact of
using IMMoS on the relative effort for SDM building. It presents for the
SDMs PSIM (basleine), RESIM, and GENSIM:

• the required raw data, and
• the calculated relative effort.

PSIM
(baseline)

RESIM GENSIM

Raw data Duration D [calendar months] 18 3 1.5

Size S [number of levels] 26 17 40

Relative Duration Drel [calendar months / level] 0.69 0.18 0.04

diss.book Page 219 Tuesday, November 27, 2001 10:26 AM

220

Efficiency of IMMoS

Table 57: Evaluation of IMMoS impact on effort consumption for SDM building

As the data shows, the development of both RESIM and GENSIM needed
considerably less effort than the development of PSIM and thus HE is sup-
ported. Again, it could be argued that there were learning effects on part of
the SDM developer, which is not accounted for when just looking at the raw
data provided. But again, even if the effort needed to develop PSIM were
reduced by 50%, it would still be much larger than the effort needed to
develop RESIM or GENSIM.

14.4 Potential Impact of IMMoS on PSIM

There are no indications that the development of PSIM would have taken
longer or would have needed more effort if the IMMoS approach had been
followed. On the contrary, it is probable that the goal-orientation of IMMoS
would have avoided many of the iterations during the modelling process
that were caused by re-defining the model purpose and user.

PSIM
(baseline)

RESIM GENSIM

Raw data Effort E [person months] 15 2 2

Size S [number of levels] 26 17 40

Relative Effort Erel [person months / level] 0.58 0.12 0.05

diss.book Page 220 Tuesday, November 27, 2001 10:26 AM

221

Summary and Outlook

15 Summary and Outlook

The focus of this thesis is on simulation-based learning to support both stra-
tegic and project management in software organisations.

Simulation models are valuable tools for managers because they help them
understand the effects of new technologies and policies on the performance
of software development processes. Based on simulations, managers can
explore and analyse potential improvements before implementation and
empirical evaluation of the related process changes in a pilot project. In addi-
tion, quantitative simulation models can be used to support planning and
control tasks.

This section summarises the results and contributions of the thesis (Section
15.1) and outlines future work (Section 15.2).

15.1 Results and Contributions

The main achievement of the research conducted lies in the design, applica-
tion and validation of a framework for Integrated Measurement, Modelling,
and Simulation (IMMoS).

The novelty of the IMMoS framework is twofold. Firstly, it enhances existing
guidance for SDM development by adding a component that enforces goal-
orientation, and by providing a refined process model with detailed descrip-
tions of activities, products, and roles involved in SD modelling and simula-
tion. Secondly, it describes how to integrate SD modelling with established
static black-box and white-box modelling methods, i.e. goal-oriented mea-
surement and descriptive process modelling.

This research provided results on theoretical level (methodology design),
practical level (methodology application and implementation), and empirical
level (methodology validation). The results can be summarised as follows:

1. Development of the IMMoS framework (theoretical work): Based on
experience with applying the System Dynamics modelling method in an
industrial software organisation (PSIM project), a framework for Inte-
grated Measurement, Modelling and Simulation (IMMoS) has been
developed. The IMMoS framework consists of four elements. The first
element (Process Guidance) improves existing process guidance for SDM
development by providing a detailed process model with precise defini-
tions of roles, responsibilities, activities, and work products. The second
element (Goal-Orientation) provides support for SDM goal definition by
offering a goal definition template to the SDM modeller that specifies

diss.book Page 221 Tuesday, November 27, 2001 10:26 AM

222

Summary and Outlook

role (i.e. SDM user), scope, purpose, dynamic focus, and environment of
the SDM to be developed. In the current System Dynamics modelling
method, this kind of guidance was lacking. The third element (Integra-
tion of Models) describes how existing knowledge of a software organi-
sation, which is typically represented and stored in the form of static
models (i.e. process, product and quality models) can be reused and inte-
grated with SDMs. The fourth element (Integration of Methods)
describes how the modelling activities conducted during the develop-
ment of a SDM relate to process modelling and goal-oriented measure-
ment. Particular focus has been put on the integration of SDM develop-
ment with GQM, which is an established and widely applied method for
goal-oriented measurement in software industry.

2. Action research, application, and implementation of the IMMoS frame-
work (practical work): In order to explore potentialities and usefulness of
System Dynamics simulation modelling in industrial software organisa-
tions, the PSIM model was developed. After the IMMoS framework had
been developed (cf. item 1), it was applied in the development of two
additional SDMs, i.e. RESIM and GENSIM. The RESIM model was devel-
oped in an industrial environment. The GENSIM model was developed in
a research environment and integrated into a web-based training module
for computer science students. In order to be able to offer a hypertext
version of IMMoS, the IMMoS process model was implemented with the
SPEARMINT tool. Based on this implementation, a web-based Electronic
Process Guide for IMMoS (IMMoS-EPG) can be generated automatically.

3. Validation of the IMMoS framework (empirical work): The validation of
the IMMoS framework was based on measurement data from two indus-
trial cases studies (PSIM project and RESIM project) and one controlled
experiment (involving the GENSIM model). The effectiveness of the
IMMoS framework has been evaluated by comparing the suitability of
PSIM, which was developed without IMMoS (baseline), to the suitability
of RESIM and GENSIM, which were both developed with IMMoS. The
efficiency of the IMMoS framework has been evaluated by comparing
the resource consumption (time and effort) during development of PSIM,
to the resource consumption during development of RESIM and GENSIM.
Empirical evidence supports that SDM development with IMMoS is more
efficient and at least as effective as SDM development without IMMoS.

With the IMMoS framework the field of software engineering has been
enriched by a method that facilitates simulation-based learning for software
managers in an effective and efficient way. The key contributions of IMMoS
are the following:

1. Methodology: The IMMoS framework combines state-of-the-art mea-
surement and modelling approaches in the field of software engineering
with the System Dynamics simulation modelling method. In particular,
the integration of goal-oriented SDM development with GQM modelling
can be considered an enhancement of the existing GQM method
towards “Dynamic GQM”. With regards to systematic software process

diss.book Page 222 Tuesday, November 27, 2001 10:26 AM

223

Summary and Outlook

improvement, the IMMoS framework serves as a vehicle for smoothly
extending the yet comprehensive QIP/EF approach – which is based on
empirical, experience-based learning – towards simulation-based learn-
ing. This will help reduce the risk of failure when introducing software
engineering technologies or process changes in industrial environments.

2. Management: By providing guidance on building and using quantitative
simulation models as a source for learning, the IMMoS framework sup-
ports managers in software organisations to better cope with the
dynamic complexity of software processes and projects, and thus improv-
ing their decision-making capability.

15.2 Limitations and Future Work

As it often happens in industry-driven research, the results presented in this
thesis can only mark a milestone within a work in progress. In the following,
a summary of the potentialities of System Dynamics in the field of software
engineering, and a brief discussion of the limitations of the conducted
research work will be provided. By reflecting the limitations, and by relating
the achievements of the thesis to the general potentialities of System
Dynamics in software engineering, an outlook to future work will be given.

The use of SDMs offers several interesting perspectives for strategic and
project management in software organisations. Five possible directions of
simulation-based learning have been identified and discussed in the litera-
ture (cf. [WaP94] for a more detailed presentation):

1. Research towards a theory of software management: SDMs are both a
formal statement of knowledge about the modelled reality and a source
for generating new knowledge by conducting virtual experiments. Sys-
tematic experimentation with SDMs can be used to support theory-build-
ing in software engineering. Due to their high explanatory power, SDMs
are particularly well-suited for studies that focus on software manage-
ment issues (strategic level and project level).

2. Support for strategic decision-making: Policy investigation is the vocation
of System Dynamics. A SDM can be used as an electronic laboratory
where hypotheses about observed problems can be tested, and correc-
tive policies can be experimented before they are implemented on the
real system. Experience from applications in other fields than software
engineering indicates that significant benefits can be drawn from intro-
ducing the use of simulation in the meetings of policy makers and from
performing studies of systemic problems, which eventually result in new
policy recommendations (i.e. process changes). Both applications require
that System Dynamics has gained acceptance by top management. Past
experience of consultants using the System Dynamics method has shown
that obtaining credibility is a critical point. Possible ways to achieve this in
the field of software engineering are the integration of the System
Dynamics method into accepted state-of-the-art SPI approaches (e.g.

diss.book Page 223 Tuesday, November 27, 2001 10:26 AM

224

Summary and Outlook

QIP/EF), and the introduction of SDM-based simulation as a standard
technique for visualisation and decision support into managerial training.

3. Learning from past projects: Analysing a completed project is a common
means for organisations to learn from past experience, and to improve
their software development process. System dynamics can facilitate post-
mortem analysis: by properly calibrating a model, it becomes possible to
replay the project, diagnose management errors that arose, and investi-
gate policies that would have supplied better results. To avoid having the
organisation reproduce – and amplify – its past errors, Abdel-Hamid rec-
ommends finding optimal values of past projects by simulation, and
recording these values for future estimation, instead of recording real val-
ues that reflect inefficient policies [Abd93a]. Note, however, that this
implies that the simulation results supplied by the model can be relied
upon, which requires a high degree of quantitative accuracy.

4. Support for project planning and control: In the early System Dynamics
literature related to software project management, strongly divergent
opinions were expressed upon the question whether SDMs can be used
to plan and control on-going software projects. Aranda et al. wrote
[AFO93]: "microworlds are appropriately used for training rather than for
operational decision, because such models describe general rather than
precise behaviours". Opposed to this opinion, Lin et al. [LeL91] and
Abdel-Hamid [Abd93a] mentioned the monitoring of software projects
as a beneficial use of SDMs. The question refers to the problem of the
predictive accuracy of SDMs. Some authors argue that numerical preci-
sion is an irrelevant goal, due to the noise inherently present in systems
involving the human factor; others claim being able to obtain accuracy
within a range of 10 percent [Wei80]46. Based on the research done in
the scope of this thesis, two complementory ways to achieve adequate
model accuracy can be identified. The first one is to combine SDM devel-
opment with state-of-the-practice static quantitative modelling, i.e. goal-
oriented measurement and modelling (GQM). The second one is to mod-
ularise SDMs such that new models can be constructed by largely reusing
less complex SDM modules that have already been validated sufficiently
well in previous applications.

5. Management education and training: Flight-simulator-type environments
(microworlds) can be used to confront managers with realistic situations
that they may encounter in practice, and allow them to develop experi-
ence without the risks incurred in the real world. The "fun" aspect of
role-playing and microworld exploration makes the learning process
attractive. The potential of simulation models for the training of manag-
ers in other domains than software engineering has long been recogn-
ised. It can be expected that SDM-based learning environments can play
an important role in software management training, too.

46 A similar degree of predictive accuracy was achieved with the PSIM model (cf. Section 4.6.6).

diss.book Page 224 Tuesday, November 27, 2001 10:26 AM

225

Summary and Outlook

By discussing to what extent the achievements gained with IMMoS support
the favourable development of the potentialities of System Dynamics simula-
tion in software organisations, existing limitations of the IMMoS framework
and thus room for future research can be identified.

This thesis focuses on application-oriented research. Therefore, the develop-
ment of the IMMoS framework mainly relates to items 2-5 in the list of Sys-
tem Dynamics potentialities. In particular, the alignment of IMMoS with the
QIP/EF paradigm and the integration of SDM development with process
modelling and goal-oriented measurement are a step forward towards
developing support for strategic decision-making, learning from past
projects, and support for project planning and control in software organisa-
tions. Much work, however, has still to be done with respect to modularisa-
tion and reuse of SDMs (cf. item 4). IMMoS does not provide any guidance
in this regard, e.g. design principles for developing elementary base models
that can be plugged together and easily adapted to different environments.
A starting point for enhancing the IMMoS Process Model could be the work
of Tvedt who did some intial research in this direction [Tve95].

Another methodological limitation of IMMoS is the yet insufficient guidance
on how to combine empirical learning (i.e. conducting pilot projects in
industrial environments) with simulation-based learning from the perspective
of cost-effectiveness. This issue should be addressed in a follow-up industrial
research project that is specifically dedicated to cost-benefit analysis of simu-
lation-based SPI. The main objective of this project would be the clarification
of the circumstances under which the costs for SDM development and run-
ning simulations are smaller than the cost of failure associated with conduct-
ing pilot projects without prior simulation-based analysis of the intended
process changes.

In addition to methodological enhancements of IMMoS, there is also need to
continue with empirical validation, either as part of the research project
sketched in the previous paragraph, or in independent applications of
IMMoS. Even though first empirical evidence supports the effectiveness and
efficiency of the IMMoS framework, more experiments and industrial case
studies are needed to underpin the results.

A very promising new area of research is currently emerging in the field of
management education and training. The integration of simulation technol-
ogy into web-based learning environments could be a successful pathway to
increased effectiveness of work-based individual and collaborative learning
in software organisations, and thus help mitigate the huge lack of software
engineers and managers in an ever faster changing world.

diss.book Page 225 Tuesday, November 27, 2001 10:26 AM

226

Summary and Outlook

diss.book Page 226 Tuesday, November 27, 2001 10:26 AM

227

References

References

[Abd90] Abdel-Hamid TK, "Investigating the Cost/Schedule Trade-Off in Software Devel-
opment", IEEE Software, pp. 97-105, Jan. 1990.

[Abd93a] Abdel-Hamid TK, "Adapting, Correcting and Perfecting Software Estimates: a
Maintenance Metaphor", IEEE Computer, pp. 20-29, March 1993.

[Abd93b] Abdel-Hamid TK, "Thinking in Circles", American Programmer, pp. 3-9, May
1993.

[AbM91] Abdel-Hamid TK, Madnick SE, “Software Projects Dynamics – an Integrated
Approach”, Prentice-Hall, 1991.

[ASR93] Abdel-Hamid TK, Sengupta K, Ronan D, "Software Project Control: An Experi-
mental Investigation of Judgement with Fallible Information", IEEE Trans. on
Software Engineering, pp. 603-612, Vol. 19, No. 6, June 93.

[AAF+01] Acuña ST, de Antonio A, Ferré X, López M, Maté L, “The Software Process:
Modelling, Evaluation and Improvement”, to appear in: Handbook of Software
Engineering and Knowledge Engineering, World Scientific Publishing, 2001.

[ACM90] Ambriola V, Ciancarini P, Montangero C, "Software Process Enactment in
Oikos", Proceedings of the 4th ACM SIGSOFT Symposium on Software Devel-
opment Environments, Irvine, Dec. 1990.

[AFO93] Aranda RR, Fiddaman T, Oliva R, "Quality Microworlds: modeling the impact of
quality initiatives over the software product life cycle", American Programmer,
May 1993, pp. 52-61.

[Arg83] Argyris C, “Action Science and Intervention”, The Journal of Applied Behavioral
Science, Vol. 19, No. 2, pp. 115-140, 1983.

[Arg85] Argyris C, Strategy, Change, and Defence Routines, Pitman, 1985.

[ArS78] Argyris C, Schön D, Organizational Learning: A Theory of Action Perspective,
Addison-Wesley, 1978.

[ABG+92] Armenise P, Bandinelli S, Ghezzi C, Morzenti A, "Software Process Representa-
tion Languages: Survey and Assessment", Proceedings of the Fourth Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE), Capri (Italy), June 1992.

[ArK94] Armitage JW, Kellner MI: "A Conceptual Schema for Process Definitions and
Models". Proceedings 3rd Int'l Conference on the Software Process (ICSP), IEEE
Computer Soc., pp. 153-165, 1994.

[Axe76] Axelrod R, The Structure of Decision: The Cognitive Maps of Political Elites, Prin-
ceton, Princeton University Press, 1976.

[BFG92] Bandinelli S, Fuggetta A, Ghezzi C, “Software Processes as Real Time Systems:
A case study using High-Level Petri nets”, Proceedings of the International
Phoenix conference on Computers and Communications, Arizona, April 1992.

[BFL+95] Bandinelli S, Fuggetta A, Lavazza L, Loi M, Picco GP: “Modeling and Improving
an Industrial Software Process”. IEEE Trans. on Software Engineering, Vol. 21,
No. 5, pp. 440-453, May 1995.

diss.book Page 227 Tuesday, November 27, 2001 10:26 AM

228

References

[BFL+92] Barbieri A, Fuggetta A, Lavazza L, Tagliavini M, "DynaMan: a Tool to Improve
Software Process Management through Dynamic Simulation", Proceedings of
Fifth International Workshop on Computer-Aided Software Engineering
(CAiSE), Montreal, 6-10 July 1992.

[BaK91] Barghuti N, Kaiser G, "Scaling up Rule-Based Software Development Environ-
ments", Proceedings of the 3rd European Software Engineering Conference
(ESEC), Milan, Italy, Oct. 1991.

[Bar85] Barlas Y, Validation of System Dynamics Models with a Sequential Procedure
Involving Multiple Quantitative Methods, PhD Thesis, Georgia Institute of Tech-
nology, UMI Dissertation Services, 1985.

[Bar89] Barlas Y, “Multiple Tests for Validation of System Dynamics Type of Simulation
Models”, European Journal of Operational Research 42, pp. 59-87, 1989.

[Bar94] Barlas Y, "Model Validation in System Dynamics", Proceedings of the Int'l Sys-
tem Dynamics Conference, Stirling, Scotland, Methodological Issues Vol., pp. 1-
10, 1994.

[Bas89] Basili VR, “Software Development: A Paradigm for the Future”, Proceedings
13th Annual International Computer Software & Applications Conference
(COMPSAC), Keynote Address, Orlando, FL, September 1989.

[Bas92] Basili VR, “The Experimental Paradigm in Software Engineering”, in: Rombach
HD, Basili VR (eds.), Experimental Software Engineering Issues: Critical Assess-
ment and Future Directions, LNCS 706, Springer-Verlag, pp. 3-12, 1992.

[Bas93] Basili VR, “Applying the Goal/Question/Metric Paradigm in the Experience Fac-
tory”, Proceedings of the 10th Annual CSR Workshop, Oct. 1993.

[BaC95] Basili VR, Caldiera G, “Improve Software Quality by Reusing Knowledge and
Experience”, Sloan Management Review, Fall 1995.

[BCR94a] Basili VR, Caldiera G, Rombach HD, “Experience Factory”, in: Marciniak JJ (ed.),
Encyclopedia of Software Engineering, Vol. 1, pp. 469-476, John Wiley & Sons,
1994.

[BCR94b] Basili VR, Caldiera G, Rombach HD, “Goal Question Metric Paradigm”, in: Mar-
ciniak JJ (ed.), Encyclopedia of Software Engineering, Vol. 1, pp. 528-532, John
Wiley & Sons, 1994.

[BaW84] Basili VR, Weiss DM, “A Methodology for Collecting Valid Software Engineer-
ing Data”, IEEE Transactions on Software Engineering, Vol. SE-10, No. 6, pp.
728 – 738, 1984.

[BHV97] Becker U, Hamann D, Verlage M, “Descriptive Modeling of Software Pro-
cesses”, Proceedings of the 3rd Conference on Software Process Improvement,
Barcelona, Spain, December 1997.

[BeW97] Becker U, Webby R, Towards a Comprehensive Schema Integrating Software
Process Modeling and Software Measurement, Technical Report IESE-021.97/E,
Fraunhofer IESE, Kaiserslautern, 1997.

[BeB00] Becker-Kornstaedt U, Belau W, “Descriptive Process Modeling in an Industrial
Environment: Experience and Guidelines”, Proceedings of the 7th European
Workshop Software Process Technology (EWSPT), pp. 176-189, 2000.

[BHK+99] Becker-Kornstaedt U, Hamann D, Kempkens R, Rösch P, Verlage M, Webby R,
Zettel J, “Support for the Process Engineer: The Spearmint Approach to Soft-
ware Process Definition and Process Guidance”, in: Jarke M, Oberweis A (eds.),
CaiSE’99, LNCS 1626, Springer-Verlag, pp. 119-133, 1999.

diss.book Page 228 Tuesday, November 27, 2001 10:26 AM

229

References

[BEM91] Belkhatir N, Estublier J, Melo W, "Adele 2. An Approach to Software Develop-
ment coordination", Proceeding of the First European Workshop on Software
Process Modeling, Milan, Italy, May 1991.

[BDK+99] Bicego A, Dierks PP, Kuvaja P, Pfahl D, “Product Focused Process Improvement.
Experiences of Applying the PROFES Improvement Methodology at DRÄGER”,
Proceedings of the European Software Day at EUROMICRO, Wien: Österre-
ichische Computer Gesellschaft, 1999.

[Bir00] Birk A, A Knowledge Management Infrastructure for Systematic Improvement
in Software Engineering, PhD Thesis, University of Kaiserslautern, 2000.

[BDH+98] Birk A, Derks P, Hamann D, Hirvensalo J, Oivo M, Rodenbach E, van Solingen R,
Taramaa J, “Applications of measurement in product-focused process improve-
ment: A comparative industrial case study”, Proceedings of the 5th Interna-
tional Symposium on Software Metrics (METRICS), Bethesda, MD, 20 - 21 Nov.
1998, IEEE Computer Society, 1998.

[BJK+98] Birk A, Järvinen J, Komi-Sirviö S, Kuvaja P, Oivo M, Pfahl D, “PROFES - A prod-
uct driven process improvement methodology”, Proceedings of the European
Conference on Software Process Improvement (SPI), 1-4 Dec. 1998, Monaco:
John Herriot, 1998.

[BiS98] Birk A, Surmann D, “A seeded experience base on knowledge elicitation tech-
niques”, Technical Report IESE-061.98/E, Fraunhofer IESE, Kaiserslautern,
1998.

[Boe81] Boehm BW, Software Engineering Economics, Prentice Hall, 1981.

[Boe87] Boehm BW, “Industrial software metrics top 10 list”, IEEE Software, pp. 84-85,
September 1987.

[BAB+00] Boehm BW, Abts C, Brown WA, Chulani S, Clark BK, Horowitz E, Madachy R,
Reifer DJ, Steece B, Software Cost Estimation with COCOMO II, Upper Saddle
River: Prentice Hall PTR, 2000.

[Bos92] Bossel H, Modellbildung und Simulation, Vieweg, Braunschweig/Wiesbaden,
1992.

[BDR96] Briand LC, Differding CM, Rombach HD, “Practical Guidelines for Measure-
ment-Based Process Improvement”, Software Process Improvement and Prac-
tice 2 (4), pp. 253-280, 1996.

[BBD+97] Briand LC, Bunse C, Daly JW, Differding C, “An Experimental Comparison of
the Maintainability of Object-Oriented and Structured Design Documents”,
Empirical Software Engineering, 2(3), pp. 291-312, 1997.

[BEL+97] Briand LC, El Emam K, Laitenberger O, Fussbroich T, Using Simulation to Build
Inspection Efficieny Benchmarks for Development Projects, Technical Report
IESE-041.97/E, Fraunhofer IESE, Kaiserslautern, 1997.

[BEF+98] Briand LC, El Emam K, Freimut B, Laitenberger O, A Comprehensive Evaluation
of Capture-Recapture Models for Estimating Software Defect Content, Techni-
cal Report IESE-068.98/E, Fraunhofer IESE, Kaiserslautern, 1998.

[BEW99] Briand LC, El Emam K, Wieczorek I, “Explaining the Cost of European Space
and Military Projects”, Proceedings of the 21st International Conference on
Software Engineering (ICSE), Los Angeles, IEEE Computer Society Press, pp.
303-312, 1999.

diss.book Page 229 Tuesday, November 27, 2001 10:26 AM

230

References

[BLW97] Briand LC, Laitenberger O, Wieczorek I, “Building Resource and Management
Models for Software Inspections“, Technical Report ISERN-97-06, International
Software Engineering Network, March 1997.

[Brö95] Bröckers A, “Process-based software risk assessment”, Proceedings of the 4th
European Workshop on Software Process Technology, Lecture Notes in Com-
puter Science, No. 913 (W. Schäfer, ed.), Springer Press, pp. 9-29, 1995.

[Brö97] Bröckers A, Modellbasierte Analyse von Softwar-Projektrisiken (in German),
PhD Thesis, University of Kaiserslautern, Shaker Verlag, 1997.

[BDT96] Bröckers A, Differding C, Threin G, “The role of software process modeling in
planning industrial measurment programs”, Proceedings of the 3rd Interna-
tional Software Metrics Symposium (METRICS), Berlin, IEEE Computer Society
Press, 1996.

[BLR+92] Bröckers A, Lott C, Rombach HD, Verlage M, "MVP-L Language Report", Inter-
nal Report 229/92, University of Kaiserslautern, AG Software Engineering, Dec.
1992.

[CaS99] Cartwright M, Shepperd M, “On building dynamic models of maintenance
behaviour”, in: Kusters R, Cowderoy A, Heemstra F, van Veenendaal E.(eds.),
Project Control for Software Quality, Shaker Publishing, 1999.

[Chi93] Chichakly KJ, "The Bifocal Vantage Point: Managing Software Projects from a
Systems Thinking Perspective", American Programmer, pp. 18-25, May 1993.

[Chr99] Christie AM, “Simulation: An Enabling Technology in Software Engineering”,
CROSSTALK – The Journal of Defense Software Engineering, pp. 2-7, April
1999.

[ChS00] Christie AM, Staley MJ, “Organizational and Social Simulation of a Require-
ments Development Process”, Software Process Improvement and Practice 5,
pp. 103-110, 2000

[Coh88] Cohen J, Statistical Power Analysis for the Behavioral Sciences, Academic Press,
2nd edition, 1988.

[CoM93] Cooper KG, Mullen T, “Swords and Ploughshares: the Rework Cycles of
Defence and Commercial Software Development Projects”, American Program-
mer 6 (5), 1993, pp. 41-51.

[Coy96] Coyle RG, System Dynamics Modelling – A Practical Approach, Chapman &
Hall, 1996.

[CKO92] Curtis B, Kellner MI, Over J, "Process Modeling", Communications of the ACM,
Vol. 35, No. 9, Sept. 1992.

[DeG94] Deiters W, Gruhn V, “The FunSoft Net Approach to Software Process Manage-
ment”, International Journal of Software Engineering and Knowledge Engi-
neering 4 (2), pp. 229-256, 1994.

[Die92] Diehl EW, MicroWorld Creator User's Guide, MicroWorlds, Inc., Cambridge,
MA, 1992.

[Die93] Diehl EW, "The analytical Lens Strategy-Support Software to Enhance Executive
Dialog and Debate", American Programmer, pp. 26-32, May 1993.

[Die94] Diehl EW, “Managerial Microworlds as Learning Support Tools”, in: Morecroft
JDW, Sterman JD (eds.), Modeling for Learning Organisations, pp. 327-337,
Productivity Press, Portland, 1994.

diss.book Page 230 Tuesday, November 27, 2001 10:26 AM

231

References

[Dör80] Dörner D, “On the Difficulties People have in Dealing with Complexity”, Simu-
lations and Games 11 (1), pp. 87-106, 1980.

[DrL99] Drappa A, Ludewig J, “Quantitative modeling for the interactive simulation of
software projects”, Journal of Systems and Software 46, pp. 113-122, 1999.

[Dyn91] Professional DYNAMO Plus Reference Manual, Pugh-Roberts Associates, Cam-
bridge, 1991.

[EJS91] W. Emmerich, G. Junkermann, W. Schäfer, "MERLIN: knowledge-based process
modeling", Proceedings of the First European Workshop on Software Process
Modeling (EWSP), Milan, Italy, May 1991.

[Fer93] Fernström C, “Process Weaver: Adding Process Support to UNIX”, Proceedings
of the 2nd International Conference on the Software Process (ICSP), Berlin,
1993.

[FeP97] Fenton NE, Pfleeger SL, Software Metrics: A Rigorous and Practical Approach,
International Thomson Computer Press, 2nd edition, 1997.

[Fey78] Fey WR, "An Industrial Dynamics Case Study", in Managerial Applications of
System Dynamics, Roberts EB (ed.), MIT Press, pp. 117-138, 1978.

[FKN94] Finkelstein A, Kramer J, Nuseibeh B, Software Process Modelling and Technol-
ogy, Research Studies Press, 1994.

[FlP63] Fletcher R, Powell MJD, “A rapidly convergent descent method for minimiza-
tion”, Computing 6, pp. 163-168, 1963.

[For61] Forrester JW, Industrial Dynamics, Productivity Press, Cambridge, 1961.

[For71] Forrester JW, Principles of Systems, Productivity Press, Cambridge, 1971.

[FuW96] Fuggetta A, Wolf A., Software Process, Chapter 1, John Wiley & Sons, 1996.

[Gra80] Graham AK, "Parameter Estimation in System Dynamics Modeling", in: Rand-
ers J (ed.), Elements of the system dynamics method, Productivity Press, Cam-
bridge, pp. 143-161, 1980.

[Gra+92] Graham AK et al., "Model-supported case studies for management educa-
tion", European Journal of Operational Research 59, pp. 151-166, 1992.

[GHW95] Gresse C, Hoisl B, Wüst J, "A Process Model for Planning GQM-based Measure-
ment". Technical Report, STTI-95-04-E, Software Technology Transfer Initiative
(STTI), University of Kaiserslauter, Oct. 1995.

[GrM96] Grcic B, Munitic A, "System Dynamics Approach to Validation", Proceedings of
the 1996 Int'l System Dynamics Conference, Cambridge, Massachusettes, pp.
186-189, July 1996.

[HJO+98] Hamann D, Järvinen J, Oivo M, Pfahl D, “Experience with explicit modelling of
relationships between process and product quality”, Proceedings of the Euro-
pean Conference on Software Process Improvement (SPI), 1-4 Dec. 1998,
Monaco: John Herriot, 1998.

[HPJ+99] Hamann D, Pfahl D, Järvinen J, van Solingen R, “The Role of GQM in the PRO-
FES Improvement Methodology”, Proceedings of the 3rd Conference on Quality
Engineering in Software Technology (CONQUEST), Nürnberg, 1999.

[Ham80] Hamilton MS, "Estimating Lengths and Orders of Delays in System Dynamics
Models", in: Randers J (ed.), Elements of the system dynamics method, Produc-
tivity Press, Cambridge, pp. 162-183, 1980.

diss.book Page 231 Tuesday, November 27, 2001 10:26 AM

232

References

[Har+88] Harel D, et al., "STATEMATE: A working environment for the development of
complex reactive systems", Proceedings of 10th International Conference on
Software Engineering (ICSE), Singapur, 1988.

[HaP98] Harel D, Politi M, Modelling Reactive Systems with Statecharts: The Statemate
Approach, McGraw-Hill, 1998.

[HeH00] Henderson H, Howard Y, “Simulating a Process Strategy for Large Scale Soft-
ware Development using System Dynamics”, Software Process Improvement
and Practice 5, pp. 121-131, 2000.

[Hod92] Hodgson AM, “Hexagons for Systems Thinking”, European Journal of Opera-
tional Research 59, no. 1, pp. 220-230, 1992.

[HuL88] Huff KE, Lesser VR, “A plan-based intelligent assistant that supports the soft-
ware development process”, ACM SIGSOFT Software Engineering Notes 13,
No. 5, pp. 97-106, November 1988.

[Hog87] Hogart R, Judgement and Choice, Chichester, Wiley, 1987.

[HKL87] Huckfeldt RR, Kohfeld CW, Likens TW, Dynamic Modeling. An Introduction,
Thousand Oaks, Sage Publications, 1982.

[Hum89] Humphrey W, Managing the Software Process, Addison Wesley, 1989.

[HuK89] Humphrey W, Kellner MI, "Software Process Modeling: Principles of Entity Pro-
cess Models", Proceedings of the 11th International Conference on Software
Engineering (ICSE), pp. 331-342, 1989.

[IEEE91] IEEE Standard 1074-1991, IEEE Standard for Developing Software Life Cycle
Processes, 1991.

[ISO95] ISO/IEC Standard 12207-1995, ISO/IEC International Standard: Information
Technology. Software Life Cycle Processes, 1995.

[ISO98] ISO/IEC TR 15504, Information Technology - Software Process Assessment -
Parts 1-9. Technical Report Type 2, International Organisation for Standardisa-
tion (ed.), Case Postale 56, CH-1211 Geneva, Switzerland, 1998.

[JBB94] Jeffery DR, Basili VR, Berry M, "Establishing Successful Measurement for Soft-
ware Quality Improvement", Proceedings of the TCSAUS IFIP Int'l Working Con-
ference, pp. 339-350, North-Holland, Amsterdam, 1994.

[JeB93] Jeffery DR, Berry M, “A Framework for Evaluation and Prediction of Metrics
Program Success", Proceedings of the 1st Int'l Software Metrics Symp. (MET-
RICS), IEEE Computer Society Press, Los Alamitos, CA, pp. 28-39, 1993.

[KaM94] Kaposi AA, Myers M, Systems, Models and Measures, Springer-Verlag, London,
1994.

[Jon91] Jones C, Applied Software Measurement – Assuring Productivity and Quality,
McGraw-Hill, Inc., 1991.

[Kel88] Kellner MI, “Modeling the Software Maintenance Process: Analytic Summary
Models”, Proceedings of the Conference on Software Maintenance, Phoenix,
AZ, October 24-27, IEEE Computer Society, pp. 279-283, 1988.

[KeH89] Kellner MI, Hansen GA, “Software Process Modeling: A Case Study”, Proceed-
ings of the 22nd Annual Hawaii International Conference on System Sciences,
Vol. II - Software Track, pp. 175-188, 1989.

[KMR99] Kellner MI, Madachy RJ, Raffo DM, “Software process simulation modeling:
Why? What? How?”, Journal of Systems and Software 46, pp. 91-105, 1999.

diss.book Page 232 Tuesday, November 27, 2001 10:26 AM

233

References

[KRS+00] Kempkens R, Rösch P, Scott L, Zettel J, “Instrumenting Measurement Programs
with Tools”, Proceedings of the PROFES Conference, Oulu, Finland, pp. 353-
375, June 2000.

[Kle00] Klemm M, Design and Implementation of a Scenario for Simulation-based
Learning in the Domain of Software-Engineering, Project Thesis, University of
Kaiserslautern, 2000.

[KLN+92] Klingler CD, Lott CM, Nevasier M, Rombach HD, Marmor-Squires A, "A Case
Study In Process Representation Using MVP-L", Proceedings of IEEE COMPASS,
1992.

[Lan93] Lane DC, “The road not taken: observing a process of issue selection and
model conceptualization”, System Dynamics Review 9, no. 3, pp. 239-264, Fall
1993.

[Lan95] Lane DC, “On a Resurgence of Management Simulation Games”, Journal of
the Operational Research Society 46, pp. 604-625, 1995.

[LSO+98] van Latum F, van Solingen R, Oivo M, Hoisl B, Rombach HD, Ruhe G, “Adopting
GQM-Based Measurement in an Industrial Environment”, IEEE Software Janu-
ary-February, pp.78–86, 1998.

[Leb00] Lebsanft K, “Das Siemens Process Assessment”, in: Heinrich LJ, Häntschel I
(eds.), Evaluation und Evaluationsforschung in der Wirtschaftsinformatik, Old-
enbourg Verlag, 175-188, 2000.

[LeR99] Lehman MM, Ramil JF, “The impact of feedback in the global software pro-
cess”, Journal of Systems and Software 46(2/3), 1999, pp. 123-134.

[LeL91] Levary RR, Lin CY, "Modelling the Software Development Process Using an
Expert Simulation System Having Fuzzy Logic", Software – Practice and Experi-
ence, pp. 133-148, Feb. 1991.

[LiC91] Liu C, Conradi R, “Process Modeling Paradigms: An Evaluation”, Proceeding of
the First European Workshop on Software Process Modeling, Milan, Italy, pp.
39-52, May 1991.

[Lik32] Likert R, “A technique for the measurmeent of attitude”, Archives of Psychol-
ogy, 22(140), 1932.

[Lin89] Lin CY, "Computer-Aided Software Development Process Design", IEEE Trans.
on Software Engineering, pp. 1025-1037, Sept. 1989.

[Lin93] Lin CY, "Walking on Battlefields: Tools for Strategic Software Management",
American Programmer, pp. 33-40, May 1993.

[LAS97] Lin CY, Abdel-Hamid TK, Sherif JS, “Software-Engineering Process Simulation
Model (SEPS)”, Journal of Systems and Software 38, pp. 263-277, 1997

[Lon93] Lonchamp J, “A structured conceptual and terminological framework for soft-
ware process engineering”, Proceedings of the Second International Confer-
ence on Software Process, pp. 41-53, February 1993.

[Lud+92] Ludewig J et al., "SESAM – Simulating Software Projects", Proceedings of the
Software Engineering and Knowledge Engineering (SEKE) Conference, Capri,
Italy, 1992.

[MaS80] Mass NJ, Senge PM: "Alternative Tests for Selecting Model Variables", in: Rand-
ers J (ed.), Elements of the System Dynamics Method, Productivity Press, Cam-
bridge, pp. 205-225, 1980.

diss.book Page 233 Tuesday, November 27, 2001 10:26 AM

234

References

[Mad94] Madachy RJ, A software project dynamics model for process, cost, schedule,
and risk assessment, PhD Thesis, University of Southern California, Los Angeles,
1994.

[Mad96] Madachy RJ, "System Dynamics Modeling of an Inspection-Based Process",
Proceedings of the 18th International Conference on Software Engineering
(ICSE), Berlin, Germany, IEEE Computer Society Press, March 1996.

[MaT00] Madachy R, Tarbet D, “Case Studies in Software Process Modeling with System
Dynamics”, Software Process Improvement and Practice 5, pp. 133-146, 2000.

[MHH+94] Madhavji NH, Höltje D, Won-Kook H, Bruckhaus T, “Elicit: A method for elicit-
ing process models”, Proceedings of the Third International Conference on the
Software Process, IEEE Computer Society Press, pp. 111-122, October 1994.

[McC95] McChesney IR, “Toward a classification scheme for software process modelling
approaches”, Information and Software Technology 37, No. 7, pp. 363-374,
1995.

[MMR+72] Meadows DH, Meadows DL, Randers J, Behrens WW, The Limits to Growth – a
Report for the Club of Rome's Project on the Predicament of Mankind, Universe
Books, New York, 1972.

[MMR92] Meadows DH, Meadows DL, Randers J, Beyond the Limits, Chelsea Green Pub-
lishing, Post Mills, VT, 1992.

[MMP+98] Mehner T, Messer T, Paul P, Paulisch F, Schless P, and Völker A, “Siemens Process
Assessment and Improvement Approaches: Experiences and Benefits”, Pro-
ceedings of the 22nd Computer Software and Applications Conference (COMP-
SAC), Vienna, 1998.

[Mil95] Milling P, “Managementsimulation im Prozeß des Organisationalen Lernens”
[Organisational Learning and its Support by Management Simulators],
Zeitschrift für Betriebswirtschaft Ergänzungsheft 3/95: Lernende Unternehmen,
pp. 93-112, March 1995. (Also available at URL http://iswww.bwl.uni-man-
nheim.de)

[MSF92] Möhring M, Strotmann V, Flache A, MIMOSE - Einführung in die Modellierung,
Sprachbeschreibung, Koblenz, April 1992.

[Mor85] Morecroft JDW, "Rationality in the analysis of behavioral simulation models",
Management Science, 31/7, pp. 900-916, 1985.

[Mor88] Morecroft JDW, "System dynamics and microworlds for policymakers", Euro-
pean Journal of Operational Research 35, pp. 301-320, 1988.

[NoT95] Nonaka I, Takeuchi H, The knowledge-creating company, New York, Oxford
University Press, 1995.

[OfJ97] Offen RJ, Jeffery DR, "Establishing Software Measurement Programs", IEEE
Software, pp. 45-53, March/April 1997.

[OZG91] F. Oquendo, J. Zucker, P. Griffiths, "The MASP approach to Software Process
Description, Instantiation and Enaction", Proceedings of the First European
Workshop on Software Process Modeling, Milan, Italy, May 1991.

[OyK88] Oyeleye OO, Kramer MA, "Qualitative Simulation of Chemical Process Systems:
Steady-State Analysis", AIChE Journal, 34(9), p. 1441, 1988.

[PCC+93] Paulk MC, Curtis B, Chrissis MB, Weber CV, Capability Maturity Model for Soft-
ware Version 1.1, Software Engineering Institute, Technical Report CMU/SEI-93-
TR24, 1993.

diss.book Page 234 Tuesday, November 27, 2001 10:26 AM

235

References

[Pet75] Peterson DW, Hypothesis, Estimation, and Validation of Dynamic Social Models,
PhD Thesis, Department of Electrical Engineering, MIT, Cambidge, 1975.

[Pet76] Peterson DW, “Parameter Estimation for System Dynamics Models”, Proceed-
ings of the Summer Computer Simulation Conference, Washington, 1976.

[Pet80] Peterson DW, “Statistical Tools for System Dynamics”, in: Randers J (ed.), Ele-
ments of the system dynamics method, Productivity Press, Cambridge, pp. 226-
245, 1980.

[Pfa94a] Pfahl D, Modelling and Simulation of Projects and Processes - An Overview for
Software and Engineering Practitioners, Technical Report, No. Z0940669, Sie-
mens AG, Munich, August 1994.

[Pfa94b] Pfahl D, PSIM Bedienungsanleitung (English: PSIM User Guide), Siemens AG,
1994.

[Pfa95] Pfahl D, "Software Quality Measurement Based on a Quantitative Project Simu-
lation Model", Proceeding of the European Software Cost Modelling Confer-
ence (ESCOM), Rolduc, The Netherlands, 15-17 May, 1995.

[Pfa97a] Pfahl D, Description of Scenarios for the Usage of Goal-oriented Measurement,
Modelling, and Simulation (MMS), Technical Report IESE-025.97/E, Fraunhofer
IESE, Kaiserslauter, July 1997.

[Pfa97b] Pfahl D, Prerequisites for the Application of Goal-oriented Measurement, Mod-
elling, and Simulation (MMS), Technical Report IESE-031.97/E, Fraunhofer IESE,
Kaiserslautern, September 1997.

[Pfa97c] Pfahl D, A Selection of Appropriate Tools for Goal-oriented Measurement,
Modelling, and Simulation (MMS), Technical Report IESE-032.97/E, Fraunhofer
IESE, Kaiserslautern, September 1997.

[Pfa98a] Pfahl D, Ein Vorgehensmodell zur Erstellung von System Dynamics-Modellen
(English: A Process Model for Developing System Dynamics Models), Technical
Report IESE-004.98/D, Fraunhofer IESE, Kaiserslautern, February 1998.

[Pfa98b] Pfahl D, Einsatzmöglichkeiten von System Dynamics Modellen (English: Use
Cases of System Dynamics Models), Technical Report IESE-009.98/D, Fraun-
hofer IESE, Kaiserslautern, January 1998.

[Pfa98c] Pfahl D, Ein Vorgehensmodell zur Erstellung von System Dynamics-Modellen –
Hilfsmittel (English: A Process Model for Developing System Dynamics Models –
Supporting Materials), Technical Report IESE-033.98/D, Fraunhofer IESE, Kaiser-
slautern, June 1998.

[PfB00] Pfahl D, Birk A, ”Using Simulation to Visualise and Analyse Product-Process
Dependencies in Software Development Projects”, Proceedings of the PROFES-
2000 Conference, Oulu, Finland, pp. 88-102, June 2000.

[PfK95] Pfahl D, Kammerer R, Optimierung von Projekten und Prozessen in der Soft-
ware-Entwicklung mit PROSYD (English: Optimisation of Projects and Processes
with PROSYD), Technical Report, No. Z0950040, Siemens AG, Munich, March
1995.

[PKR00a] Pfahl D, Klemm M, Ruhe G, “Using System Dynamics Simulation Models for
Software Project Management Education and Training”, Proceedings of the 3rd
Process Simulation Modelling Workshop (ProSim-2000), London, United King-
dom, 12-14 June, 2000.

diss.book Page 235 Tuesday, November 27, 2001 10:26 AM

236

References

[PKR01a] Pfahl D, Klemm M, Ruhe G, “A CBT Module with Integrated Simulation Com-
ponent for Software Project Management Education and Training”, to appear
in Journal of Systems and Software, October 2001.

[PKR01b] Pfahl D, Koval N, Ruhe G, “An Experiment for Evaluating the Effectiveness of
Using a System Dynamics Simulation Model in Software Project Management
Education”, Proceedings of the 7th International Software Metrics Symposium
(METRICS-2001), London, pp. 97-109, April 2001.

[PfL99] Pfahl D, Lebsanft K, “Integration of System Dynamics Modelling with Descrip-
tive Process Modelling and Goal-oriented Measurement", Journal of Systems
and Software 46, No. 2/3, pp. 135-150, 1999.

[PfL00a] Pfahl D, Lebsanft K, Simulation of Software Development Systems – Taking an
Integrated View on processes, Products, and People when Analyzing Software
Projects, Tutorial presented at the ESCOM-SCOPE-2000 Conference, Munich,
Germany, 17 April, 2000.

[PfL00b] Pfahl D, Lebsanft K, “Using Simulation to Analyse the Impact of Software
Requirement Volatility on Project Performance”, Information and Software
Technology 42, No. 14, pp. 1001-1008, 2000.

[PfL00c] Pfahl D, Lebsanft K, “Knowledge Acquisition and Process Guidance for Building
System Dynamics Simulation Models: An Experience Report from Software
Industry”, International Journal of Software Engineering and Knowledge Engi-
neering 10, No. 4, pp. 487-510, 2000.

[Pop68] Popper KR, The logic of scientific discovery, Hutchinson, London, 1968.

[PMB99] Powell A, Mander K, Brown D, “Strategies for lifecycle concurrency and itera-
tion: A system dynamics approach”, Journal of Systems and Software 46(2/3),
1999, pp. 151-162.

[PRO00] PROFES Consortium, The PROFES User Manual, Fraunhofer IRB, Stuttgart, Ger-
many, 2000.

[Put78] Putnam LH, "A General Empirical Solution to the Macro Software Sizing and
Estimating Problem", IEEE Trans. on Software Engineering, pp. 345-361, July
1978.

[Ran73] Randers J, Conceptualizing Dynamic Models of Social Systems: Lessons from a
Study of Social Change, PhD Thesis, Massachusetts Institute of Technology,
1973.

[Ran80a] Randers J (Ed.), Elements of the system dynamics method, Productivity Press,
Cambridge, 1980.

[Ran80b] Randers J, "Guidelines for Model Conceptualization", in Elements of the sys-
tem dynamics method, J. Randers (Ed.), Productivity Press, Cambridge, pp. 117-
139, 1980.

[Ric90] Richardson GP, Feedback Thought in Social Science and Systems Theory, Univer-
sity of Pennsylvania Press, 1990.

[RiP81] Richardson GP, Pugh GL, Introduction to System Dynamics Modeling and
Dynamo, MIT Press, Cambridge, 1981.

[Rob64] Roberts EB, "Research and Development Policy Making", Technology Review
66, no. 8, pp. 3-7, June 1964. Also reprinted in Managerial Applications of Sys-
tem Dynamics, Roberts (Ed.), MIT Press, Cambridge, pp. 283-292, 1978.

diss.book Page 236 Tuesday, November 27, 2001 10:26 AM

237

References

[Rob74] Roberts EB, "A Simple Model of R & D Project Dynamics", R&D Management,
vol. 5, no. 1, October 1974. Also reprinted in Managerial Applications of Sys-
tem Dynamics, Roberts EB (Ed.), MIT Press, Cambridge, pp. 293-314, 1978.

[Rob78a] Roberts EB (Ed.), Managerial Applications of System Dynamics, MIT Press, Cam-
bridge, 1978.

[Rob78b] Roberts EB, "Systems Dynamics – An Introduction", in: Managerial Applications
of System Dynamics, Roberts EB (Ed.), MIT Press, Cambridge, pp. 3-36, 1978.

[RoW96] Rodrigues AG, Williams TM, “System Dynamics in Software Project Manage-
ment: towards the development of a formal integrated framework”, Research
Paper, No. 96/5, University of Strathclyde, Glasgow, Scotland, 1996. (This paper
was presented at the International System Dynamics Conference, Boston, MIT,
July 1996.)

[RCH+00] Roehling ST, Collofello JS, Hermann BG, Smith-Daniels DE, “System Dynamics
Modeling Applied to Software Outsourcing Decision Support”, Software Pro-
cess Improvement and Practice 5, pp. 169-182, 2000.

[RoV95] Rombach HD, Verlage M, “Directions in Software Process Research”, Advances
in Computers 41, pp. 1-63, 1995.

[Rug94] Ruge M, "A Graph-Theoretic Approach to Qualitative Simulation: Computer-
Aided Technology Assessment Software", Internal Report, Dept. ZFE BT SE 5
TA, Siemens AG, May 1994.

[Ruh96] Ruhe G, "Qualitative Analysis of Software Engineering Data Using Rough Sets",
Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy Sets,
and Machine Discovery, Tokyo, pp. 292-299, Nov. 1996.

[Rus98] Rus I, Modelling the impact on project cost and schedule of software reliability
engineering strategies, PhD Thesis, Arizona State University, Tempe, 1996.

[RuC99] Rus I, Collofello J, Lakey P, “Software process simulation for reliability manage-
ment”, Journal of Systems and Software 46(2/3), 1999, pp. 173-182.

[Sch93] Schneider K, "Object-Oriented Simulation of the Software Development Pro-
cess in SESAM", Proceedings of the Object-Oriented Simulation Conference
(OOS'93), San Diego, Jan. 1993.

[Sch92] Schön D, “The Theory of Inquiry: Dewey’s Legacy to Education”, Curriculum
Inquiry 22(2), pp. 119-139, 1992.

[Sen90] Senge PM, The Fifth Discipline – the Art & Practice of the Learning Organiza-
tion, New York: Doubleday, 1990.

[She97] Sheskin DJ, Handbook of Parametric and Nonparametric Statistical Procedures,
CRC Press, Boca Raton, 1997.

[Sim79] Simon HA, “Rational Decision Making in Business Organizations”, American
Economic Review 69, pp. 493-513, 1979.

[Sim82] Simon HA, Models of Bounded Rationality, Cambridge, MIT Press, 1982.

[SNV93] Smith BJ, Nguyen N, Vidale RF, "Death of a Software Manager: How to Avoid
Career Suicide through Dynamic Software Process Modeling", American Pro-
grammer, pp. 10-17, May 1993.

[vSB99] van Solingen R, Berghout E, The Goal/Question/Metric method: A practical
guide for quality improvement of software development, McGraw-Hill Publish-
ers, 1999.

diss.book Page 237 Tuesday, November 27, 2001 10:26 AM

238

References

[Spe80] Spector P, “Ratings of Equal and unequal Response Choice Intervals”, The Jour-
nal of Social Psychology 112, pp. 115-119, 1980.

[Ste90] Stella II User's Guide, High Performance Systems Inc, Hanover, 1990.

[Ste85] Sterman JD, “The Growth of Knowledge: Testing a Theory of Scientific Revolu-
tions with a Formal Model”, Technological Forecasting and Social Change
28(2), pp. 93-122, 1985.

[Ste94] Sterman JD, “Learning in and about Complex Systems”, System Dynamics
Review, 10 (2-3), pp. 291-330, 1994.

[Tan80] Tank-Nielsen C, "Sensitivity Analysis in System Dynamics", in Elements of the
system dynamics method, J. Randers (Ed.), Productivity Press, Cambridge, pp.
187-204, 1980.

[TvC95] Tvedt JD, Collofello JS, "Evaluating the Effectiveness of Process Improvements
on Development Cycle Time via System Dynamics Modeling". Proceedings of
the Computer Science and Application Conference (COMPSAC), 1995, pp.
318-325.

[Tve96] Tvedt JD, An Extensible Model for Evaluating the Impact of Process Improve-
ments on Software Development Cycle Time, PhD Thesis, Arizona State Univer-
sity, Tempe, 1996.

[VaD87] Vapenikova O, Dangerfield B, DYSMAP2 User Manual, University of Salford,
1987.

[Ven90] Vennix JAM, Mental Models and Computer Models – design and evaluation of
a computer-based learning environment for policy-making, PhD Thesis, Univer-
sity of Nijmegen, 1990.

[Ver98] Verlage M, Ein Ansatz zur Modellierung großer Software-Entwicklungsprozesse
durch Integration unabhängig erfaßter rollenspezifischer Sichten (in German),
PhD Thesis, University of Kaiserslautern, Shaker verlag, 1998.

[Ven97] Ventana Simulation Environment (Vensim®) - Reference Manual, Version 3.0,
Ventana Systems, Inc., 1997.

[Vis94] G. Visaggio, "Process Improvement Through Data Reuse", IEEE Software, pp.
76-85, July 1994.

[Völ94] Völker A, “Software Process Assessments at Siemens as a Basis for Process
Improvement in Industry”, Proceedings of the ISCN, Dublin, Ireland, 1994.

[WaP94] Waeselynck H, Pfahl D, "System Dynamics Applied to the Modelling of Soft-
ware Projects", Software Concepts and Tools 15, No. 4, pp. 162-176, 1994.

[Wei80] Weil HB, "The Evolution of an Approach for Achieving Implemented Results
from System Dynamics Projects", in Elements of the system dynamics method,
J. Randers (Ed.), Productivity Press, Cambridge, pp. 271-291, 1980.

[Wie96] Wiegand M, Prozesse Organisationalen Lernens, Gabler, Wiesbaden, 1996.

[WiA78] Wildt AR, Ahtola OT, Analysis of Covariance, Sage University Paper Series on
Quantitative Applications in the Social Sciences, series no. 07-012, Sage Publi-
cations, Newbury Park, 1978.

[Wol90] Wolstenholme EF, System Enquiry: A System Dynamics Modelling Approach,
John Wiley & Sons, Chichester, 1990.

[Yin94] Yin RK, Case Study Research, Design and Methods, 2nd ed. Newbury Park,
Sage Publications, 1994.

diss.book Page 238 Tuesday, November 27, 2001 10:26 AM

239

References

[YuM94] Yu ESK, Mylopoulos J, “Understanding “why” in software process modelling,
analysis, and design”, Proceedings of the 16th International Conference on
Software Engineering, IEEE Computer Society, pp. 1-10, May 1994.

diss.book Page 239 Tuesday, November 27, 2001 10:26 AM

240

References

diss.book Page 240 Tuesday, November 27, 2001 10:26 AM

239

Appendix A: SD Model PSIM

Appendix A: SD Model PSIM

PSIM Functionality

Basically, the PSIM simulation system provides two functions:

• Running a simulation.
• Analysis of simulation results.

A simulation can be run in interactive or batch mode. In interactive mode,
the model user can stop the simulation after each individual simulation step
and change a pre-defined set of parameters (exogenous model variables).

Running a Simulation

Before a simulation run can be started, an output file must be defined in
which all subsequently generated simulation results are stored for potential
future analysis.

To support running a simulation, PSIM provides a specifically tailored user
interface, the so-called simulation cockpit (Figure 54). The simulation cockpit
consists of three sectors for input parameters (variable project parameters),
simulation control parameters, and output parameters.

A. Variable project parameters include:

• Planned work product size (for each phase separately), e.g. number of
document pages, number of lines of code, number of test cases, etc.,

• Planned project duration (with milestones),
• Number of concurrent projects to which a team member is involved (on

average),
• Number of available inspection rooms,
• Change request (time and size),
• Number of features,
• Estimated feature complexity,
• Number of test machines,
• Workforce (number of developers and testers), etc.

B. Simulation control parameters include:

• Selection of batch mode or interactive mode,
• Simulation step size (for interactive mode only),
• Switch to analysis of simulation results,

diss.book Page 239 Tuesday, November 27, 2001 10:26 AM

240

Appendix A: SD Model PSIM

• Abort of simulation, etc.

C. Output parameters:

• Total project duration.
• For selected model variables (e.g. work product size, number of defects

generated, time pressure, etc.) there is a specific pre-defined output
graph for each project phase. Control buttons allow switching between
different phases.

Figure 54: The PSIM simulation cockpit

Analysis of Simulation Results

A detailed analysis of simulation results is often necessary to better under-
stand the specific behaviour of certain output parameters. Especially, when
the results of a simulation do not coincide with the expectations of a model
user, it is helpful to learn more about the complex interactions of the cause-
effect relationships that forced a certain simulation output to be generated.

For the analysis of simulation results PSIM provides several analysis screens.
Figure 55 provides an example of such a screen, showing the screen descrip-
tion, a list of choices for jumping into a different analysis screen, a graph
with the causes tree of the selected model variable, and a graph that dis-
plays the behaviour of the selected variable.

phase specific
graphical output

variable
project parameters

simulation control
parameters

diss.book Page 240 Tuesday, November 27, 2001 10:26 AM

241

Appendix A: SD Model PSIM

Figure 55: An example PSIM analysis screen

In total, the PSIM analysis screens provide the following functions:

• Selection of simulation runs (output files). If more than one simulation
run is selected, graphical output data is displayed in different colours for
better comparison of results.

• Selection of the model variable to be analysed in detail. Each individual
variable contained in the model can be selected without any restriction.

• Representation of the behaviour of the selected variable as a graph or in
a table (time series data).

• Representation of structural model information (causes tree and effects
tree of the selected variable).

• Representations of the behaviour of all variables with direct effect on the
selected variable (strip graph or table).

• Identification of structural difference between selected simulation runs.

Example PSIM Applications

The potential applications of PSIM were already mentioned in Section Sec-
tion 4.2, namely project planning, project control, and process improvement.
For the purpose of illustration, in the following sub-sections for each of
these applications a fictitious example is sketched.

Project Planning

Under the assumption that the SDM contained in PSIM is a valid predictive
model, a project manager might use PSIM for the purpose of project plan-
ning in the following way. For a set of given project parameters (e.g., man-

description of the
analysis screen

graphical output of
the analysis variable

tree of causal
variables

menue of choices
branching into
other
analysis screens

diss.book Page 241 Tuesday, November 27, 2001 10:26 AM

242

Appendix A: SD Model PSIM

power, estimated product size, number of features, estimated feature com-
plexity, etc.) he predicts the duration of the individual project phases and the
overall product quality.

Figure 56: PSIM simulation result for project planning

Figure 56 shows the output of a simulation run generated from a project
specific set of input parameters. For each of the four phases HLD, LLD, IMP
and TST, product quality and other variables are displayed in individual
graphs. The phase duration is highlighted with a black bar. Product quality is
expressed in terms of the total number of undetected defects47 (model vari-
able: "Errors undetected") contained in the set of artefacts produced within
a specific development phase, i.e. the set of high-level design documents,
the set of low-level design documents, and the set of code modules.

Project Control

A possible application of PSIM for project control is the following: Assume
that during the conduct of a project an unexpected change request increases
the amount of work by 10% (expressed in terms of additional design docu-
ments). How should the project manager react to avoid time overrun and/or
quality loss?

High Level Design (BASE)
2,000 Page
4,000 Error
4,000 Error

200 inspection
1,000 Page
2,000 Error
2,000 Error

100 inspection
0 Page
0 Error
0 Error
0 inspection

0 20 40 60 80 100 120 140
Time

HLD Work Accomplished - (1) Page
HLD Errors Detected - (2) Error
HLD Errors Undetected - (3) Error
HLD Inspections - (4) inspection

Low Level Design (BASE)
4,000 Page
4,000 Error
4,000 Error

400 inspection
2,000 Page
2,000 Error
2,000 Error

200 inspection
0 Page
0 Error
0 Error
0 inspection

0 20 40 60 80 100 120 140
Time

LLD Work Accomplished - (1) Page
LLD Errors Detected - (2) Error
LLD Errors Undetected - (3) Error
LLD Inspections - (4) inspection

Implementation (BASE)
400 KLOC

2,000 Error
2,000 Error

800 inspection
200 KLOC

1,000 Error
1,000 Error

400 inspection
0 KLOC
0 Error
0 Error
0 inspection

0 20 40 60 80 100 120 140
Time

IMP Work Accomplished - (1) KLOC
IMP Errors Detected - (2) Error
IMP Errors Undetected IMP - (3) Error
IMP Inspections - (4) inspection

Component Test (BASE)
2,000 testcase

500 Error
500 Error

1,000 testcase
250 Error
250 Error

0 testcase
0 Error
0 Error

0 20 40 60 80 100 120 140
Time

TST Work Accomplished - (1) testcase
TST Errors Detected - (2) Error
IMP Errors Undetected TST - (3) Error

47 Please note that throughout this and the following sub-sections the terms "defect" and "error"
are used as synonyms.

diss.book Page 242 Tuesday, November 27, 2001 10:26 AM

243

Appendix A: SD Model PSIM

Figure 57: PSIM simulation result for project control

The curves in Figure 57 show the behaviour of the product quality indicator
"Errors undetected" during the implementation and component test
phases, as well as the overall project duration (assuming that the project
stops at the end of the component test phase). The simulation run BASE
indicates the behaviour without occurrence of a change request. The simula-
tion run CR_BASE shows what happens if a change request occurs in phase
HLD and the project manager does not change any of the parameters he is
controlling. Now assume that the project manager, within certain limits, can
vary two control parameters: workforce (manpower allocation), and the
schedule planning for intermediate project milestones. The simulation runs
R1 to R5 show the project performance for the case that both control
parameters are altered simultaneously.

Table 58: PSIM simulation result for project control (point estimates)

Table 58 provides the point estimates of all simulation runs. For the runs R1
to R5, changes in workforce allocation and milestone planning are printed in
italics. The growth of product size (expressed in 1000 lines of source code),
which is a direct consequence of the change request, as well as the overall
project duration, and the absolute and relative product quality are clearly vis-

600

300

0
0 28 56 84 112 140

Graph for "Errors undetected”

R5

R4

R3

R1 R2

Simula-
tion Run

Input
(controlled by management)

Output
(at end of phase TST / project end)

Project Project Product

Work-
force

[persons]

Milestone
Planning

[calendar weeks]

Duration
[calen-

dar
weeks]

Quality
(absolute)

[undetected
errors]

Size
[KLOC]

Quality
(relative)

[undetected
errors / KLOC]

BASE 40 (45, 80, 115, 134) 134 127 151 0.84

CR_BASE 40 (45, 80, 115, 134) 140 492 171 2.88

R1 48 (60, 87, 125, 134) 137 118 171 0.69

R2 45 (60, 86, 125, 137) 140 126 171 0.74

R3 45 (60, 86, 117, 134) 137 193 171 1.13

R4 42 (60, 80, 116, 135) 138 293 171 1.71

R5 41 (60, 80, 115, 136) 139 421 171 2.46

diss.book Page 243 Tuesday, November 27, 2001 10:26 AM

244

Appendix A: SD Model PSIM

ible in this fictitious example. The project manager can use these and further
simulation results to find an optimal policy. If the model variables represent-
ing project duration and product quality are appropriately combined in a
weighted utility function, he can even use the optimisation feature of the SD
modelling tool Vensim [Ven97] to perform an automated search for the best
value assignment of the control parameters.

Process Improvement

PSIM can also be used to evaluate candidate process improvement strate-
gies. Assume that an analysis of available data and discussions with project
team members have revealed that formal inspections are performed sloppily
under conditions of high time pressure, with the consequence of poor prod-
uct quality. In this situation, project management suggests the implementa-
tion of a mechanism that enforces the correct conduct of formal inspections
(e.g. by installing an adequate reward mechanism). However, before the
intended improvement is implemented, management would like to test the
suggested process change through simulation. The adherence to inspection
guidelines can be controlled through model variables representing the num-
ber of inspections, and the average size of design documents or source code
per inspection. If not all documents or code modules are inspected, or the
inspections are done violating the recommended size constraints, then the
inspections are considered as being conducted in an irregular manner (Pro-
cess 1). If all documents and code modules are inspected, and the recom-
mended size constraints are respected, then the inspection process is consid-
ered as being conducted correctly (Process 2).

Table 59: PSIM simulation result for process improvement

Table 59 shows the simulation results of a fictitious example, achieved with a
differently calibrated model than in the previous subsections. The first row
provides the original project performance of the unchanged process (Process
1 / Baseline). The project duration is 340 days, and the relative product qual-
ity is 9.2 undetected errors per KLOC. It can clearly be observed from the

Simula-
tion Run

Input
(at start of phase HLD / project

start)

Output
(at end of phase TST / project end)

Workforce
[persons]

Planned
project

duration
[days]

Planned
product
quality

[undetec-
ted errors /

KLOC]

Actual
project

duration
[days]

Actual
product
quality

[undetec-
ted errors
/ KLOC]

Time
over-
run

com-
pared to
Baseline

Increase of
product
quality

compared
to Base-

line

Process 1
/ Baseline

fixed 340 - 363 9.2 - -

Process 2 fixed 340 - 400 5.8 10 % 40 %

Process 1 fixed 340 5.8 473 5.8 30 % 40 %

diss.book Page 244 Tuesday, November 27, 2001 10:26 AM

245

Appendix A: SD Model PSIM

second row in the table that the changed process (Process 2) yields an
improved product quality of 5.8 undetected errors per KLOC. In addition, the
simulation results indicate a time overrun of about 10% compared to the
baseline. This delay, however, is small compared to the increase in product
quality of more than 40%. If Process 1 had to achieve the same product
quality as Process 2, a time overrun of almost 30% compared to the baseline
would occur due to an extremely extended testing phase.

diss.book Page 245 Tuesday, November 27, 2001 10:26 AM

246

Appendix A: SD Model PSIM

diss.book Page 246 Tuesday, November 27, 2001 10:26 AM

247

Appendix B: SD Model RESIM

Appendix B: SD Model RESIM

Model Equations

Policy Variable

effort provided for systems engineering = GAME(10)

Levels

all SW requirements = INTEG(receive requ , 0)
Customer new requirements A = INTEG(new requ A , 0)
Customer new requirements B = INTEG(new requ B , 0)
Customer new requirements C = INTEG(new requ C , 0)
Effort in person weeks = INTEG(effort accumulation rate , 0)
Manpower SW = INTEG(mp adjustment , initial manpower)
Incr A duration = INTEG(A active , 0)
Incr A status = INTEG(- switch status A , 1)
Incr B duration = INTEG(B active , 0)
Incr B status = INTEG(- switch status B , 1)
Incr C duration = INTEG(C active , 0)
Incr C status = INTEG(- switch status C , 1)
SW development Cost = INTEG(cost accumulation rate , 0)
SW product = INTEG(sw development - replace requ , 0)
SW replace requ = INTEG(replace requ , 0)
SW requirements = INTEG(receive requ - sw development , 0)
Systems Engineering = INTEG(new requ - receive requ + replace requ ,
Requ start)

Rates

A active = Incr A status
B active = IF THEN ELSE (Incr A status > 0, 0, Incr B status)
C active = IF THEN ELSE (Incr B status > 0, 0, Incr C status)
cost accumulation rate = effort accumulation rate * cost per person week
effort accumulation rate = Manpower SW * project active
mp adjustment = IF THEN ELSE (project active > 0, INTEGER (manpower
difference / manpower adjustment time) , - Manpower SW)
new requ A = IF THEN ELSE (A active > 0, INTEGER (new requirements
fraction * Requ start / (1 + Incr A duration) ^ 2) , 0)
new requ B = IF THEN ELSE (B active > 0, INTEGER (new requirements
fraction * Requ start / (1 + Incr B duration) ^ 2) , 0) + switch status
A * Requ start * new requirements fraction * B multiplier
new requ C = IF THEN ELSE (C active > 0, INTEGER (new requirements
fraction * Requ start / (1 + Incr C duration) ^ 2) , 0) + switch status
B * Requ start * new requirements fraction * C multiplier
receive requ = Systems Engineering * project active
replace requ = IF THEN ELSE (SW product > 0 :AND: SW requirements > sw
development , INTEGER (RANDOM UNIFORM (0, Requ start * weekly replace
factor , 0)) , 0) * project active
sw development = IF THEN ELSE (SW requirements > development rate ,
development rate, IF THEN ELSE (SW requirements > 0, SW requirements ,
0)) * project active
switch status A = IF THEN ELSE (Incr A status > 0, stop flag A , 0)

diss.book Page 247 Tuesday, November 27, 2001 10:26 AM

248

Appendix B: SD Model RESIM

switch status B = IF THEN ELSE (Incr B status > 0, stop flag B , 0)
switch status C = IF THEN ELSE (Incr C status > 0, stop flag C , 0)

Auxiliary Variables

actual all SW requirements = all SW requirements-SW replace requ
actual total muster duration = A active * Muster A duration + B active *
Muster B duration + C active * Muster C duration
Customer new requirements = Customer new requirements B + Customer new
requirements A + Customer new requirements C
development rate = INTEGER (process nominal dev rate per person * Man-
power SW / EXP (weekly replace factor))
estimated needed dev rate per week = A active * MAX (Requ start + Cus-
tomer new requirements A , Requ start * (1 + new requirements fraction)
) * 3 / target time + B active * MAX (Customer new requirements B , Requ
start * (1 + B multiplier) * new requirements fraction) * 3 / target
time + C active * MAX (Customer new requirements C , Requ start * (1 +
C multiplier) * new requirements fraction) * 3 / target time + Requ
start * weekly replace factor / 2
filter costs = effort provided for systems engineering * cost per person
week
initial manpower = INTEGER (manpower lookup (Requ start))
manpower adjustment time = IF THEN ELSE (ABS (manpower difference) >=
2, ABS (manpower difference) / 2, 1)
manpower difference = INTEGER (target manpower - Manpower SW)
manpower lookup = ([(0,0)
(10000,40)],(0,1),(200,2),(900,4),(1400,5),(3000,7), (7000,9),
(10000,10))
new requ = new requ B + new requ A + new requ C
process nominal dev rate per person = A active * process nominal dev rate
A + B active * process nominal dev rate B + C active * process nominal
dev rate C
project active = IF THEN ELSE ((Muster A status > 0) :OR: (Muster B
status > 0) :OR: (Muster C status > 0) , 1, 0)
stop flag A = IF THEN ELSE (Muster A duration > 0 :AND: SW requirements
< 1 :AND: Muster B duration < 1, 1, 0)
stop flag B = IF THEN ELSE (Muster B duration > 0 :AND: SW requirements
< 1 :AND: Muster C duration < 1, 1, 0)
stop flag C = IF THEN ELSE (Muster C duration > 0 :AND: SW requirements
< 1, 1,)
target manpower = MIN (3 * initial manpower , Manpower SW * time pres-
sure)
time pressure = IF THEN ELSE (development rate > 0, estimated needed dev
rate per week / development rate , 1)
total cost = SW development Cost + filter costs
weekly replace factor = MIN (0.05, 1 / (2 + effort provided for systems
engineering) ^ 1.7)

Constants

B multiplier = 1.8
C multiplier = 0.5
cost per person week = 2000
new requirements fraction = 0.15
process nominal dev rate A = 11
process nominal dev rate B = 4
process nominal dev rate C = 2.5
Requ start = 1000
target time = 100

diss.book Page 248 Tuesday, November 27, 2001 10:26 AM

249

Appendix C: SD Model GENSIM

Appendix C: SD Model GENSIM

Quantitative Relationships between Key Variables (Examples)

Figure 58 shows the effect of Unbalanced Average Manpower (expressed as
the ratio P-AMP / N-AMP) and Manpower skill on productivity (output per
person-day). Unbalanced Average Manpower is expressed as the ratio of
Planned Average Manpower (P-AMP) and Nominal Average Manpower (N-
AMP), i.e. P-AMP/N-AMP (cf. Figure 39 in Section 12.2.2). The effect of
Unbalanced Average Manpower is always negative, while the effect of Man-
power Skill is positive when Manpower Skill is greater than “1”.

Figure 58: Impact of skill and unbalanced manpower on productivity

Figure 59 shows the effect of Unbalanced Average Manpower (expressed as
the ratio P-AMP / N-AMP) and Manpower skill on defect injection (defects
per size unit). The effect of Unbalanced Average Manpower is always posi-
tive, i.e. the qualitive decreases due to higher defect injection, while the
effect of Manpower Skill is negative when Manpower Skill is greater than
“1”.

-36%

-21%

-16%
-11%

-7%
-3%

0%
3%

5%
7% 9% 11%

-33%

-26%

-20%

-14%

-8%
-4%

-1% 0%

-28%

-22%
-18%

-14%
-9%

-5%

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

eff
ect
on
pr
od
uct
ivit
y

skill manpower

diss.book Page 249 Tuesday, November 27, 2001 10:26 AM

250

Appendix C: SD Model GENSIM

Figure 59: Impact of skill and unbalanced manpower on defect injection

Graphical User Interface (GUI)

Figure 60 shows the set of I/O windows provided by the GENSIM graphical
user interface (GUI). There are three sets of windows available that can be
offered to the simulation model user whenever appropriate. Each set is ded-
icated to a special purpose, namely input of data, output of simulation
results, and analysis of simulation results.

Figure 60: GENSIM GUI windows

42%

31%

23%

17%
11%

7%
3%

0%0%
3%

5%
8%

11%
14%

-10%-9%-7%-5%-3%
0%2%

25%

18%
13%

8%
4%

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

ef
fe

ct
 o

n
de

fe
ct

 in
je

ct
io

n

skill manpower

GENSIM GUI Windows

Input Windows

Output Windows

Analysis Windows

General
Advanced

General
Advanced
Internal

Graphs
Trees
Tables
Modules (Views)

diss.book Page 250 Tuesday, November 27, 2001 10:26 AM

251

Appendix C: SD Model GENSIM

Input Windows

Two different input windows are provided. The first one (“General”) facili-
tates the input of mandatory project characterisation parameters and
optional project management and QA technology-related parameters as
listed in Table 38 (cf. Section 12.2.1). Figure 61 shows a screenshot of the
“General” input window. In order to put in data either a slide bar or the
data box on the right hand side of a slide bar can be used. If the box on the
left hand side of a slide bar is ticked, then the pre-defined default values are
used for the simulation.

Figure 61: GENSIM input window “General”

The second input window (“Advanced”) allows for adjustment of the soft-
ware process parameters that determine the behaviour of the development
processes instantiated during project performance. Typical process parame-
ters include phase-specific nominal defect injection rate per code size unit,
nominal inspection effort used per document size unit, nominal test effec-
tiveness, and phase-specific nominal rework effort needed per defect. These
process-related model parameters allow for calibration of the model to envi-
ronment specific empirical data in order to make the simulations more realis-
tic to a particular group of trainees that use the simulation model. Therefore,
the “Advanced” input window mainly serves as a service interface for tailor-
ing the simulation model to a specific training scenario and context. As a
consequence, the “Advanced” input window should be offered to non-

diss.book Page 251 Tuesday, November 27, 2001 10:26 AM

252

Appendix C: SD Model GENSIM

expert trainees only in order to present and discuss the calibration of the
process parameters and their influence on project dynamics.

Output Windows

Three different output windows are provided. The first one (“General”) pre-
sents the most important simulation results to the model user. Figure 62
shows a screenshot of the “General” output window. In the upper part of
the window, on the left hand side, results summarising the overall project
performance are provided, namely actual product size at project end, aver-
age manpower allocated, field defect density of the tested code, actual
project duration (“Time”) and total effort consumed. The three columns on
the right hand side of the upper part of the window provide additional
phase-specific data. The lower part of the window visualises the project
behaviour by plotting the dynamic change of three key variables: number of
requirements (functions) to be designed, number of tasks to be imple-
mented, and number of tasks to be tested. The values of the current simula-
tion run are compared to the simulation results with default settings. For
example, in Figure 62 the simulation results when applying design and code
inspections (run name: “current”) can be compared to the default results
(run name: “default”). The behavioural pattern of the current simulation
shows interesting differences to the default setting. In order to achieve the
same field defect density with the same average manpower allocation, the
overall project duration and effort consumption is smaller in the current run,
even though the duration and effort consumption for the design and coding
phases are larger due to additional QA activities (inspections) and resulting
rework.

The second output window (“Advanced”) provides even more phase-specific
simulation results, including detailed information about defect injection,
defect detection, and effort consumption for QA activities and rework.

The third output window (“Internal”) provides information about technical
model variables such as COCOMO estimates and calculated average produc-
tivity per effort unit and per time unit.

diss.book Page 252 Tuesday, November 27, 2001 10:26 AM

253

Appendix C: SD Model GENSIM

Figure 62: GENSIM output window “General”

Analysis Windows

The purpose of the analysis windows is to provide to the model user a set of
tools that help interpret simulation results by connecting them with struc-
tural information about the simulation model. The tools offered through the
analysis windows of GENSIM are a subset of the standard analysis tools pro-
vided by the SD tool Vensim. Four different analysis windows are provided.
The analysis window “Graphs” offers possibilities to visualise the behaviour
of any model variable individually, and together with the behaviour of its
causal variables (strip graph functionality). The analysis window “Trees” pro-
vides means to create tree-type graphical representations showing either the
causes or the uses of any selected model variable (cause tree or use tree). For
example, Figure 63 shows the causal variables of the model variable “field
defect density”. The analysis window “Tables” offers a tabular presentation
of the behaviour of any model variable. The analysis window “Models” pro-
vides means to represent the flow graphs of the model views (cf. Section
12.2.2).

diss.book Page 253 Tuesday, November 27, 2001 10:26 AM

254

Appendix C: SD Model GENSIM

Figure 63: GENSIM analysis window “Trees”

diss.book Page 254 Tuesday, November 27, 2001 10:26 AM

255

Appendix D: Questionnaires used for Validating GENSIM

Appendix D: Questionnaires used for Validating GENSIM

Influencing Factors - Background Characteristics / Before Pre-Test (5 min)

Name: ______________________________ Subject ID:
<do not fill in this field>

Gender (optional): male: ___ female: ___

Age (optional): ___ years

DF 0.1: University Education

010 Major Subject (Hauptfach): ___________________________

011 Minor Subject (Nebenfach): ___________________________
(if more than one, please mention all)

012 Number of terms (Fachsemester) completed: _____________

013 Is this your first course of studies (Erststudium): yes: ___ no: ___

014 Is this your second course of studies (Zweitstudium): yes: ___ no: ___

DF 0.2: Practical Software Engineering Experience

020 Have you ever written software? yes: ___ no: ___

021 Have you participated in the “SE Praktikum”? yes: ___ no: ___

022 Have you developed software in a large team (>4 persons) with distributed roles?
 yes: ___ no: ___

023 Have you developed software in a project with long duration (>6 months)?
yes: ___ no: ___

024 Have you developed software in an industrial environment, i.e. in a project that
developed software for a company product? yes: ___ no:___

DF 0.3: Software Project Management Literature <put exactly ONE answer per question>

031 How many books about software project management have you read?
___ 0
___ 1-2
___ 3-5
___ more than 5

032 What does the acronym COCOMO stand for (in software engineering)?

___ Constructive Cost Model

diss.book Page 255 Tuesday, November 27, 2001 10:26 AM

256

Appendix D: Questionnaires used for Validating GENSIM

___ Communication Cost Model
___ Co-operative Concept Modelling
___ Constructive Collaboration Model
___ I don’t know

033 What does Brook’s Law state?

___ Adding more people to a late project always makes it more costly, but it does
not always cause it to be completed later.

___ Hardly any projects succeed in less than ¾ of the calculated cost-optimum
schedule, regardless of the number of people allocated.

___ Adding manpower to a late software project makes it later.
___ Adding manpower to a software project can cut down project duration by

more than 50%.
___ I don’t know

DF 0.4: Learning Style <more than one answer is possible>

041. What is your preferred learning style?

___ reading of text books (with exercises)
___ classroom lectures (with exercises)
___ group work (interaction with peers and teacher / including exercises)
___ web-based training modules (with computer interaction / including examples

and exercises)

diss.book Page 256 Tuesday, November 27, 2001 10:26 AM

257

Appendix D: Questionnaires used for Validating GENSIM

Pre-Test

Name: ______________________________ Subject ID:
<do not fill in this field>

Questions on “Interest in software project management” (3 min)

Below you will find a number of opposing adjectives on both sides of each line. You can
react to the statements by checking the appropriate point on the line, as in the next exam-
ple

1 2 3 4 5
agree X O O O O disagree

when your opinion is that you fully agree.

Key: 1: fully agree

2: agree

3: undecided

4: disagree

5: fully disagree

071 I consider it very important for computer science students to know as much as pos-
sible about software project management

1 2 3 4 5
agree O O O O O disagree

072 I would like to get more information on software project management in my soft-
ware engineering lectures at the university

1 2 3 4 5
agree O O O O O disagree

073 I would like to participate in a seminar (either at university or in the form of a train-
ing course) about software project management

1 2 3 4 5
agree O O O O O disagree

074 I consider it very important for software engineers to know as much as possible
about software project management

1 2 3 4 5
agree O O O O O disagree

075 I would like to learn more about software project management (e.g. planning, con-
trol, improvement, human factors)

1 2 3 4 5
agree O O O O O disagree

diss.book Page 257 Tuesday, November 27, 2001 10:26 AM

258

Appendix D: Questionnaires used for Validating GENSIM

Questions on “Knowledge about typical (empir.) patterns observed in SW projects” (5 min)

<For each question tick exactly one answer. / If in doubt, choose the answer that you think
is most appropriate.>

081 For a typical software project, finding and fixing a software problem (defect) after
delivery is about

___ 3 times
___ 5 times
___ 10 times
___ 100 times
more expensive than finding and fixing it during the requirements and early design
phases

082 By adding manpower, the nominal schedule of a typical software development
project can be compressed up to

___ 10 %(e.g. reduction from nominal 100 days to 90 days)
___ 25 %(e.g. reduction from nominal 100 days to 75 days)
___ 40 %(e.g. reduction from nominal 100 days to 60 days)
___ 60 %(e.g. reduction from nominal 100 days to 40 days)
but no more. (Note: the nominal schedule is the cost minimum schedule when
using the standard process of the organisation.)

083 Software development cost is primarily a function of

___ product size
___ tool usage
___ product quality
___ workforce allocation

084 When comparing software development projects, variation between

___ programming language
___ tool support
___ programming style
___ people skills
accounts for the biggest difference in software productivity.

085 In typical software development projects, on average, software inspections detect
about

___ 25 %
___ 40 %
___ 60 %
___ 90 %
of all defects contained in inspected documents (design or code).

diss.book Page 258 Tuesday, November 27, 2001 10:26 AM

259

Appendix D: Questionnaires used for Validating GENSIM

Questions on “Knowledge about simple SW project dynamics” (10 min)

091 You have to estimate schedule and effort for a project of size 60,000 SLOC (source
lines of code). Assume that you don’t have any additional information about project
specifics so that you can take the standard (or nominal) project performance as a
baseline. Which cost-optimal schedule is most probable for the phases Design
(high-level and detailed) – Coding (incl. unit test) – Test ?

___ 10 months
___ 14 months
___ 18 months
___ 22 months

092 For the same project as in 091, how much total effort is needed for phases Design –
Coding – Test?

___ 150 person-months
___ 200 person-months
___ 250 person-months
___ 300 person-months

093 Using your estimates from 091 and 092, what is the average staff size?

___ persons per month

094 Assume that you can increase the average staff level of 093 without limitation, how
much can you possibly shorten the schedule of your project (without changing
product quality, development process, and skill level of developers)?

___ not at all
___ up to 25%
___ up to 50%
___ more than 50%

095 What would be your answer in 094 if – instead of increasing average staff level –
you would only assign the most capable programmers to your project? The sched-
ule of the project would be shortened:

___ not at all
___ up to 10%
___ up to 30%
___ more than 30%

096 In 095, how much would the effort be reduced?

___ not at all
___ up to10%
___ up to 30%
___ more than 30%

097 Assume that you are responsible for a 100,000 SLOC software project and you have
estimated a cost-optimal schedule of about 20 calendar months, given that you can
allocate only the best people. The overall budget amounts to a total of 10,000,000
DM. When you show these numbers to your customer he is concerned about the
project duration and offers you additional 4,000,000 DM if you can finish the
project within one year (12 calendar months). Should you accept the deal? (Note: if

diss.book Page 259 Tuesday, November 27, 2001 10:26 AM

260

Appendix D: Questionnaires used for Validating GENSIM

you can’t hold the agreed deadline your customer will be really upset and you are at
risk that you won’t get follow-up projects):

___ yes
___ no [please give a justification if you ticked “no”:]

__

__

__

Questions on “Knowledge about difficult project management issues” (12 min)

101 Assume you are responsible for a software project of size 60,000 SLOC. Assume
that you don’t have any additional information about project specifics so that you
can take the standard (or nominal) project performance as a baseline. The standard
process implies that 50% of the design and code documents are inspected. Using
the standard process, Y person-months is the cost-optimal effort consumption for
conducting the phases Design (high-level and detailed) – Coding (incl. unit test) –
Test. Due to new customer requirements the reliability level of the software has to
be “very high” (instead of “nominal”). Without changing the standard process,
which development phases will be intensified most (by adding effort and extending
the schedule) in order to achieve the increased reliability level?

___ design
___ implementation
___ test
___ all phases are intensified equally

102 Assume that in 101 it was not allowed to exceed the nominal effort consumption Y.
What is the maximum reliability level that can be achieved if the number of design
and code inspections is increased up to 100%?

___ “very high” reliability
___ “high” reliability
___ not significantly more than “nominal” reliability

103 Assume you are responsible for a software project of size 60,000 SLOC (as in 101).
Assume that you don’t have any additional information about project specifics so
that you can take the standard (or nominal) project performance as a baseline.
Using the standard process, X calendar months is the cost-optimal schedule for the
project, consuming a total of Y person-months of effort. Assume the following situ-
ation: The project has already started, you have concluded the design phase(s)
according to plan, and you are about to start with the implementation. In this situa-
tion, you receive additional requirements from the customer, which increase the
overall product size to a total of 75,000 SLOC (= 60,000 SLOC + 15,000 SLOC new
code). Assuming that you can add unlimited manpower to the project (without
delay), can you keep the schedule of your project within the nominal schedule
X+10%, if all other process parameters (e.g. QA activities, average manpower
capability) are kept unchanged?

___ yes (go to 104a and skip 104b)
___ no(skip 104a and go directly to 104b)

diss.book Page 260 Tuesday, November 27, 2001 10:26 AM

261

Appendix D: Questionnaires used for Validating GENSIM

104a If you answered “yes” in 103, how much total effort do you need?

___ Y + 15% additional effort
___ Y + 25% additional effort
___ Y + 40% additional effort
___ Y + 60% additional effort

104b If you answered “no” in 104, please explain why you think that you cannot keep
the project deadline within X+10%:

__

__

__

105 What would be your answer in 103, if you had to consider the following con-
straints:

a) You can add additional manpower only with a delay of 1.5 month (30 work
days)

b) The overall effort consumption must not be larger than Y+40%?
___ yes
___ no

106 Before the start of a typical software project, for a fixed set of customer require-
ments, a cost-minimalestimate of the project duration (in calendar time) and the
average needed staff size (in number of persons) has been made. Assuming that
the project manager wants to reduce project duration by changing the staff size
(ignoring any potential financial constraints), which of the patterns presented
below describes the typical effect of staff size variation on project duration most
appropriate?

Figure 1: ___ Figure 2: ___ Figure 3: ___ Figure 4: ___

Figure 1

project
duration

staff
size For a fixed set of requirements:

a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

diss.book Page 261 Tuesday, November 27, 2001 10:26 AM

262

Appendix D: Questionnaires used for Validating GENSIM

Figure 2

Figure 3

Figure 4

staff
size

project
duration

0

a

b

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

staff
size

project
duration

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

staff
size

project
duration

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

diss.book Page 262 Tuesday, November 27, 2001 10:26 AM

263

Appendix D: Questionnaires used for Validating GENSIM

Post-Test / Group A

Name: ______________________________ Subject ID:
<do not fill in this field>

Questions on “Interest in software project management” (3 min)

Below you will find a number of opposing adjectives on both sides of each line. You can
react to the statements by checking the appropriate point on the line, as in the next exam-
ple

1 2 3 4 5
agree X O O O O disagree

when your opinion is that you fully agree.

Key: 1: fully agree

2: agree

3: undecided

4: disagree

5: fully disagree

071 I consider it very important for computer science students to know as much as pos-
sible about software project management

1 2 3 4 5
agree O O O O O disagree

072 I would like to get more information on software project management in my soft-
ware engineering lectures at the university

1 2 3 4 5
agree O O O O O disagree

073 I would like to participate in a seminar (either at university or in the form of a train-
ing course) about software project management

1 2 3 4 5
agree O O O O O disagree

074 I consider it very important for software engineers to know as much as possible
about software project management

1 2 3 4 5
agree O O O O O disagree

075 I would like to learn more about software project management (e.g. planning, con-
trol, improvement, human factors)

1 2 3 4 5
agree O O O O O disagree

diss.book Page 263 Tuesday, November 27, 2001 10:26 AM

264

Appendix D: Questionnaires used for Validating GENSIM

Questions on “Knowledge about typical (empir.) patterns observed in SW projects” (5 min)

<For each question tick exactly one answer. / If in doubt, choose the answer that you think
is most appropriate.>

081 For a typical software project, finding and fixing a software problem (defect) after
delivery is about

___ 3 times
___ 5 times
___ 10 times
___ 100 times
more expensive than finding and fixing it during the requirements and early design
phases

082 By adding manpower, the nominal schedule of a typical software development
project can be compressed up to

___ 10 %(e.g. reduction from nominal 100 days to 90 days)
___ 25 %(e.g. reduction from nominal 100 days to 75 days)
___ 40 %(e.g. reduction from nominal 100 days to 60 days)
___ 60 %(e.g. reduction from nominal 100 days to 40 days)
but no more. (Note: the nominal schedule is the cost minimum schedule when
using the standard process of the organisation.)

083 Software development cost is primarily a function of

___ product size
___ tool usage
___ product quality
___ workforce allocation

084 When comparing software development projects, variation between

___ programming language
___ tool support
___ programming style
___ people skills
accounts for the biggest difference in software productivity.

085 In typical software development projects, on average, software inspections detect
about

___ 25 %
___ 40 %
___ 60 %
___ 90 %
of all defects contained in inspected documents (design or code).

diss.book Page 264 Tuesday, November 27, 2001 10:26 AM

265

Appendix D: Questionnaires used for Validating GENSIM

Questions on “Knowledge about simple SW project dynamics” (10 min)

091 You have to estimate schedule and effort for a project of size 1,000 tasks (func-
tions) with a goal defect density of 1.7 defects/function. Assume that you don’t
have any additional information about project specifics so that you can take the
current standard project performance as a baseline. Which cost-optimal schedule is
most probable for the phases Design – Implementation – Test?

___ 10 months
___ 14 months
___ 18 months
___ 22 months

0101 For the same project as in 091, how much total effort is needed for phases Design –
Implementation – Test?
___ 150 person-months
___ 200 person-months
___ 250 person-months
___ 300 person-months

0102 Using your estimates from 091 and 092, what is the average staff size?

___ persons per month

0103 Assume that you can increase the average staff level of 093 without limitation, how
much can you possibly shorten the schedule of your project (without changing
product quality, development process, and skill level of developers)?

___ not at all
___ up to 25%
___ up to 50%
___ more than 50%

0104 What would be your answer in 094 if – instead of increasing average staff level –
you would only assign the most capable programmers to your project? The sched-
ule of the project would be shortened:

___ not at all
___ up to 10%
___ up to 30%
___ more than 30%

0105 In 095, how much would the effort be reduced?

___ not at all
___ up to10%
___ up to 30%
___ more than 30%

0106 Assume that you are responsible for a software project of size 1,700 tasks with a
goal defect density of 1.2 defects/task, and you have estimated a cost-optimal
schedule of about 20 calendar months, given that you can allocate only the best
people. The overall budget amounts to a total of 10,000,000 DM. When you show
these numbers to your customer he is concerned about the project duration and

diss.book Page 265 Tuesday, November 27, 2001 10:26 AM

266

Appendix D: Questionnaires used for Validating GENSIM

offers you additional 4,000,000 DM if you can finish the project within one year (12
calendar months). Should you accept the deal? (Note: if you can’t hold the agreed
deadline your customer will be really upset and you are at risk that you won’t get
follow-up projects):

___ yes
___ no [please give a justification if you ticked “no”:]

__

__

__

Questions on “Knowledge about difficult project management issues” (12 min)

101 Assume you are responsible for a software project of size 1,000 tasks. Assume that
you don’t have any additional information about project specifics so that you can
take the standard (or nominal) project performance as a baseline. The standard pro-
cess implies that 50% of the design and code documents are inspected. Using the
standard process, Y person-months is the cost-optimal effort consumption for con-
ducting the phases Design – Coding (incl. unit test) – Test. Due to new customer
requirements the quality level of the software has to be “very high”, i.e. 0.2 defects
per task (instead of “nominal”, i.e. 1.7 defects per task). Without changing the
standard process, which development phase(s) will be intensified most (by adding
effort and extending the schedule) in order to achieve the increased reliability level?

___ design
___ implementation (coding)
___ test
___ all phases are intensified equally

102 Assume that in 101 it was not allowed to exceed the nominal effort consumption Y.
What is the maximum quality level that can be achieved if the number of design
and code inspections is increased up to 100%?

___ “very high” quality (better than 0.2 defects per task)
___ “high” quality (better than 0.8 defects per task)
___ not significantly more than “nominal” quality (1.7 defects per task)

103 Assume you are responsible for a software project of size 1,000 tasks (as in 101).
Assume that you don’t have any additional information about project specifics so
that you can take the standard (or nominal) project performance as a baseline.
Using the standard process, X calendar months is the cost-optimal schedule for the
project, consuming a total of Y person-months of effort. Assume the following situ-
ation: The project has already started, you have concluded the design phase(s)
according to plan, and you are about to start with the implementation. In this situa-
tion, you receive additional requirements from the customer, which increase the
overall product size to a total of 1,250 tasks (= 1,000 tasks + 250 new tasks).
Assuming that you can add unlimited manpower to the project (without delay), can
you keep the schedule of your project within the nominal schedule X+10%, if all
other process parameters (e.g. QA activities, average manpower skill) are kept
unchanged?

diss.book Page 266 Tuesday, November 27, 2001 10:26 AM

267

Appendix D: Questionnaires used for Validating GENSIM

___ yes(go to 104a and skip 104b)
___ no(skip 104a and go directly to 104b)

104a If you answered “yes” in 103, how much total effort do you need?

___ Y + 15% additional effort
___ Y + 25% additional effort
___ Y + 40% additional effort
___ Y + 60% additional effort

104b If you answered “no” in 104, please explain why you think that you cannot keep
the project deadline within X+10%:

__

__

__

105 What would be your answer in 103, if you had to consider the following con-
straints:

a) You can add additional manpower only with a delay of 1.5 month (30 work
days)

b) The overall effort consumption must not be larger than Y+40%?
___ yes
___ no

106 Before the start of a typical software project, for a fixed set of customer require-
ments, a cost-minimal estimate of the project duration (in calendar time) and the
average needed staff size (in number of persons) has been made. Assuming that
the project manager wants to reduce project duration by changing the staff size
(ignoring any potential financial constraints), which of the patterns presented
below describes the typical effect of staff size variation on project duration most
appropriate?

Figure 1: ___ Figure 2: ___ Figure 3: ___ Figure 4: ___

Figure 1

project
duration

staff
size For a fixed set of requirements:

a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

diss.book Page 267 Tuesday, November 27, 2001 10:26 AM

268

Appendix D: Questionnaires used for Validating GENSIM

Figure 2

Figure 3

Figure 4

staff
size

project
duration

0

a

b

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

staff
size

project
duration

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

staff
size

project
duration

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

diss.book Page 268 Tuesday, November 27, 2001 10:26 AM

269

Appendix D: Questionnaires used for Validating GENSIM

Post-Test / Group B

Name: ______________________________ Subject ID:
<do not fill in this field>

Questions on “Interest in software project management” (3 min)

Below you will find a number of opposing adjectives on both sides of each line. You can
react to the statements by checking the appropriate point on the line, as in the next exam-
ple

1 2 3 4 5
agree X O O O O disagree

when your opinion is that you fully agree.

Key: 1: fully agree

2: agree

3: undecided

4: disagree

5: fully disagree

071 I consider it very important for computer science students to know as much as pos-
sible about software project management

1 2 3 4 5
agree O O O O O disagree

072 I would like to get more information on software project management in my soft-
ware engineering lectures at the university

1 2 3 4 5
agree O O O O O disagree

073 I would like to participate in a seminar (either at university or in the form of a train-
ing course) about software project management

1 2 3 4 5
agree O O O O O disagree

074 I consider it very important for software engineers to know as much as possible
about software project management

1 2 3 4 5
agree O O O O O disagree

075 I would like to learn more about software project management (e.g. planning, con-
trol, improvement, human factors)

1 2 3 4 5
agree O O O O O disagree

diss.book Page 269 Tuesday, November 27, 2001 10:26 AM

270

Appendix D: Questionnaires used for Validating GENSIM

Questions on “Knowledge about typical (empir.) patterns observed in SW projects” (5 min)

<For each question tick exactly one answer. / If in doubt, choose the answer that you think
is most appropriate.>

081 For a typical software project, finding and fixing a software problem (defect) after
delivery is about

___ 3 times
___ 5 times
___ 10 times
___ 100 times
more expensive than finding and fixing it during the requirements and early design
phases

082 By adding manpower, the nominal schedule of a typical software development
project can be compressed up to

___ 10 %(e.g. reduction from nominal 100 days to 90 days)
___ 25 %(e.g. reduction from nominal 100 days to 75 days)
___ 40 %(e.g. reduction from nominal 100 days to 60 days)
___ 60 %(e.g. reduction from nominal 100 days to 40 days)
but no more. (Note: the nominal schedule is the cost minimum schedule when
using the standard process of the organisation.)

083 Software development cost is primarily a function of

___ product size
___ tool usage
___ product quality
___ workforce allocation

084 When comparing software development projects, variation between

___ programming language
___ tool support
___ programming style
___ people skills
accounts for the biggest difference in software productivity.

085 In typical software development projects, on average, software inspections detect
about

___ 25 %
___ 40 %
___ 60 %
___ 90 %
of all defects contained in inspected documents (design or code).

diss.book Page 270 Tuesday, November 27, 2001 10:26 AM

271

Appendix D: Questionnaires used for Validating GENSIM

Questions on “Knowledge about simple SW project dynamics” (10 min)

091 You have to estimate schedule and effort for a semi-detached project of size
60,000 DSI (delivered source instructions). Assume that you don’t have any addi-
tional information about project specifics so that you can take the standard (or
nominal) project performance as a baseline. Which cost-optimal schedule is most
probable for the phases PD – DD – CT – IT?

___ 10 months
___ 14 months
___ 18 months
___ 22 months

092 For the same project as in 091, how much total effort is needed for phases PD – DD
– CT – IT?

___ 150 person-months
___ 200 person-months
___ 250 person-months
___ 300 person-months

093 Using your estimates from 091 and 092, what is the average staff size?

___ persons per month

094 Assume that you can increase the average staff level of 093 without limitation, how
much can you possibly shorten the schedule of your project (without changing
product quality, development process, and skill level of developers)?

___ not at all
___ up to 25%
___ up to 50%
___ more than 50%

095 What would be your answer in 094 if – instead of increasing average staff level –
you would only assign the most capable programmers to your project? The sched-
ule of the project would be shortened:

___ not at all
___ up to 10%
___ up to 30%
___ more than 30%

096 In 095, how much would the effort be reduced?

___ not at all
___ up to10%
___ up to 30%
___ more than 30%

097 Assume that you are responsible for a 100000 DSI semi-detached software project
and you have estimated a cost-optimal schedule of about 20 calendar months,
given that you can allocate only the most capable programmers. The overall budget
amounts to a total of 10,000,000 DM. When you show these numbers to your cus-
tomer he is concerned about the project duration and offers you additional

diss.book Page 271 Tuesday, November 27, 2001 10:26 AM

272

Appendix D: Questionnaires used for Validating GENSIM

4,000,000 DM if you can finish the project within one year (12 calendar months).
Should you accept the deal? (Note: if you can’t hold the agreed deadline your cus-
tomer will be really upset and you are at risk that you won’t get follow-up projects):

___ yes
___ no [please give a justification if you ticked “no”:]

__

__

__

Questions on “Knowledge about difficult project management issues” (12 min)

101 Assume you are responsible for a software project of size 60,000 DSI. Assume that
you don’t have any additional information about project specifics so that you can
take the standard (or nominal) project performance as a baseline. The standard pro-
cess implies that 50% of the design and code documents are inspected. Using the
standard process, Y person-months is the cost-optimal effort consumption for con-
ducting the phases PD – DD – CT – IT. Due to new customer requirements the reli-
ability level [cost driver: RELY] of the software has to be “very high” (instead of
“nominal”). Without changing the standard process, which development phase(s)
will be intensified most (by adding effort and extending the schedule) in order to
achieve the increased reliability level?

___ design (PD and DD)
___ implementation (CT)
___ test (IT)
___ all phases are intensified equally

102 Assume that in 101 it was not allowed to exceed the nominal effort consumption Y.
What is the maximum reliability level that can be achieved if the number of design
and code inspections is increased up to 100% [cost driver MODP is set to “very high”]?___
“very high” reliability

___ “high” reliability
___ not significantly more than “nominal” reliability

103 Assume you are responsible for a software project of size 60,000 DSI (as in 101).
Assume that you don’t have any additional information about project specifics so
that you can take the standard (or nominal) project performance as a baseline.
Using the standard process, X calendar months is the cost-optimal schedule for the
project, consuming a total of Y person-months of effort. Assume the following situ-
ation: The project has already started, you have concluded the design phase(s)
according to plan, and you are about to start with the implementation. In this situa-
tion, you receive additional requirements from the customer, which increase the
overall product size to a total of 75,000 DSI (= 60,000 DSI + 15,000 DSI new code).
Assuming that you can add unlimited manpower to the project (without delay), can
you keep the schedule of your project within the nominal schedule X+10%, if all
other process parameters (e.g. QA activities, average manpower capability) are kept
unchanged?

___ yes(go to 104a and skip 104b)
___ no(skip 104a and go directly to 104b)

diss.book Page 272 Tuesday, November 27, 2001 10:26 AM

273

Appendix D: Questionnaires used for Validating GENSIM

104a If you answered “yes” in 103, how much total effort do you need?

___ Y + 15% additional effort
___ Y + 25% additional effort
___ Y + 40% additional effort
___ Y + 60% additional effort

104b If you answered “no” in 104, please explain why you think that you cannot keep
the project deadline within X+10%:

__

__

__

105 What would be your answer in 103, if you had to consider the following con-
straints:

a) You can add additional manpower only with a delay of 1.5 month (30 work
days)

b) The overall effort consumption must not be larger than Y+40%?
___ yes
___ no

0106 Before the start of a typical software project, for a fixed set of customer require-
ments, a cost-minimal estimate of the project duration (in calendar time) and the
average needed staff size (in number of persons) has been made. Assuming that
the project manager wants to reduce project duration by changing the staff size
(ignoring any potential financial constraints), which of the patterns presented
below describes the typical effect of staff size variation on project duration most
appropriate?

Figure 1: ___ Figure 2: ___ Figure 3: ___ Figure 4: ___

Figure 1

project
duration

staff
size For a fixed set of requirements:

a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

diss.book Page 273 Tuesday, November 27, 2001 10:26 AM

274

Appendix D: Questionnaires used for Validating GENSIM

Figure 2

Figure 3

Figure 4

staff
size

project
duration

0

a

b

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

staff
size

project
duration

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

staff
size

project
duration

For a fixed set of requirements:
a: cost-optimal (average) staff size
b: cost-optimal project schedule

0

a

b

diss.book Page 274 Tuesday, November 27, 2001 10:26 AM

275

Appendix D: Questionnaires used for Validating GENSIM

Influencing Factors – After Post-Test / Group A

Name: ______________________________ Subject ID:
<do not fill in this field>

DF 0.5: Time Need <more than one answer is possible> (1 min)

051 I did not have enough time to

___ read the materials on project management (during training session), particu-
larly:
___ Block 1
___ Block 2
___ Block 3
___ Block 4

___ familiarize with the tool(s) (during training session)
___ complete the post-test

052 I spent ____ minutes on Block 2 (Role Play)

053 I completed at least one full scenario of the Role Play in Block2

___ yes
___ no

054 I would have liked to spend more time for Block3 and Block 4 instead of conducting
Block2 (Role Play)

___ yes
___ no

DF 0.6: Session Evaluation (4 min)

Below you will find a number of opposing adjectives on both sides of each line. You can
react to the statements by checking the appropriate point on the line, as in the next exam-
ple

1 2 3 4 5
useful X O O O O useless

when your opinion is that it was very useful.

Key: 1: very useful

2: useful

3: undecided

4: useless

5: very useless

diss.book Page 275 Tuesday, November 27, 2001 10:26 AM

276

Appendix D: Questionnaires used for Validating GENSIM

061a I consider the explanations / information provided in Block2 (Role Play) in general

1 2 3 4 5
useful O O O O O useless

1 2 3 4 5
boring O O O O O absorbing

1 2 3 4 5
difficult O O O O O easy

1 2 3 4 5
clear O O O O O confusing

061b I consider the explanations / information provided in Block1, Block3, and Block4 in
general

1 2 3 4 5
useful O O O O O useless

1 2 3 4 5
boring O O O O O absorbing

1 2 3 4 5
difficult O O O O O easy

1 2 3 4 5
clear O O O O O confusing

062 II would like to make the following comment(s) / improvement suggestion(s) (can
be in German):

__

__

__

063 I had a problem with … <please explain (can be in German)>:

__

__

__

diss.book Page 276 Tuesday, November 27, 2001 10:26 AM

277

Appendix D: Questionnaires used for Validating GENSIM

Influencing Factors – After Post-Test / Group B

Name: ______________________________ Subject ID:
<do not fill in this field>

DF 0.5: Time Need <more than one answer is possible> (1 min)

051 I did not have enough time to

___ read the materials on project management (during training session), particu-
larly:
___ Block 1
n/a Block 2 (not available for Group B)
___ Block 3
___ Block 4

___ familiarize with the tool(s) (during training session)
___ complete the post-test

DF 0.6: Session Evaluation (4 min)

Below you will find a number of opposing adjectives on both sides of each line. You can
react to the statements by checking the appropriate point on the line, as in the next exam-
ple

1 2 3 4 5
useful X O O O O useless

when your opinion is that it was very useful.

Key: 1: very useful

2: useful

3: undecided

4: useless

5: very useless

061 I consider the explanations / information provided by the training materials in gen-
eral

1 2 3 4 5
useful O O O O O useless

1 2 3 4 5
boring O O O O O absorbing

1 2 3 4 5
difficult O O O O O easy

1 2 3 4 5
clear O O O O O confusing

diss.book Page 277 Tuesday, November 27, 2001 10:26 AM

278

Appendix D: Questionnaires used for Validating GENSIM

062 II would like to make the following comment(s) / improvement suggestion(s) (can
be in German):

__

__

__

063 I had a problem with … <please explain (can be in German)>:

__

__

__

diss.book Page 278 Tuesday, November 27, 2001 10:26 AM

279

Appendix E: Product-Flow Representation of IMMoS Process Model

Appendix E: Product-Flow Representation of IMMoS Process
Model

Figure 64 shows a product-flow representation of the IMMoS Process Model.
This representation was created with the SPEARMINT tool. Based on this rep-
resentation, a web-based Electronic Process Guide of the IMMoS Process
Model can be generated automatically.

Figure 64: Product-flow representation of the IMMoS Process Model

diss.book Page 279 Tuesday, November 27, 2001 10:26 AM

280

Appendix E: Product-Flow Representation of IMMoS Process Model

diss.book Page 280 Tuesday, November 27, 2001 10:26 AM

281

Lebenslauf

Name Dietmar Pfahl

geboren am 9. Januar 1963 in München

Familienstand verheiratet

Anschrift Rubensstraße 23
D-60596 Frankfurt/Main

1969-1972 Grundschule

1972-1981 Max-Born-Gymnasium Germering

1981-1986 Universität Ulm
Studium der Wirtschaftsmathematik

1984 Auslandssemester an der University of Southern California, Los Angeles
Teaching Assistant

1986 Studienabschluß zum Diplom-Wirtschaftsmathematiker

1987-1990 Siemens AG, München
Mitarbeiter im Zentralbereich Produktion und Logistik
Abteilung “Qualitätsaufgaben Software”

1990-1991 Universität des Baskenlandes in Donostia (San Sebastian)
Fachbereich: Grundlagen der Informatik und Kognitionswissenschaften
Studienfächer: Logik, Kognitive Psychologie, Sprachverarbeitung
(Auslandsstipendium des Freistaates Bayern)

1992 Deutschen Forschungsanstalt für Luft- und Raumfahrt (DLR),
Oberpfaffenhofen
Wiss. Mitarbeiter im Deutschen Fernerkundungsdatenzentrum (DFD),
Arbeitsgruppe “Software Engineering”

1993-1996 Siemens AG, München
Mitarbeiter im Zentralbereich Forschung und Entwicklung
Abteilung “Software und Engineering”

Seit 1996 Fraunhofer-Institut für Experimentelles Software-Engineering (IESE),
Kaiserslautern
Projektleiter, Abteilungsleiter (seit 7/2001)

diss.book Page 281 Tuesday, November 27, 2001 10:26 AM

282

diss.book Page 282 Tuesday, November 27, 2001 10:26 AM

283

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

diss.book Page 283 Tuesday, November 27, 2001 10:26 AM

284

diss.book Page 284 Tuesday, November 27, 2001 10:26 AM

Ph
D

 Th
eses in

 Exp
erim

en
tal So

ftw
are En

g
in

eerin
g

Vol. 8

Dietmar Pfahl

An Integrated Approach to Simulation-
Based Learning in Support of Strategic
and Project Management in Software
Organisations

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

Ph
D

 T
h

es
es

 in
 E

xp
er

im
en

ta
l S

o
ft

w
ar

e
En

g
in

ee
ri

n
g

V
o

l. 8
D

ietm
ar Pfah

l
A

n
 In

teg
rated

 A
p

p
ro

ach
 to

 Sim
u

latio
n

-B
ased

 Learn
in

g
 in

 Su
p

p
o

rt o
f Strateg

ic an
d

 Pro
ject

M
an

ag
em

en
t in

 So
ftw

are O
rg

an
isatio

n
s

Editor-in-Chief: Prof. Dr. Dieter Rombach
Editorial Board: Dr. Frank Bomarius, Dr. Barbara Paech,

Prof. Dr. Dieter Rombach

Software Engineering has become one of the major foci of
Computer Science research in Kaiserslautern, Germany. Both
the University of Kaiserslautern's Computer Science Depart-
ment and the Fraunhofer Institute for Experimental Software
Engineering (IESE) conduct research that subscribes to the
development of complex software applications based on engi-
neering principles. This requires system and process models for
managing complexity, methods and techniques for ensuring
product and process quality, and scalable formal methods for
modeling and simulating system behavior. To understand the
potential and limitations of these technologies, experiments
need to be conducted for quantitative and qualitative evalua-
tion and improvement. This line of software engineering
research, which is based on the experimental scientific para-
digm, is referred to as 'Experimental Software Engineering'.
In this series, we publish all PhD theses from the Fraunhofer
Institute for Experimental Software Engineering (IESE) and from
the Software Engineering Research Groups (e.g., AGSE and
AGCE) of the Computer Science Department at the University
of Kaiserslautern. PhD theses that originate elsewhere can be
included, if accepted by the Editorial Board.

Prof. Dr. Dieter Rombach
Director of Fraunhofer IESE and Head of the AGSE Group of the
Computer Science Department, University of Kaiserslautern

AG Software Engineering
AG Component Engineering

Buchumschlag.fm Page 1 Wednesday, December 5, 2001 11:51 AM

