
   

Uncertainty-wise Cyber-Physical Systems Testing 
 

 

 

Man Zhang 
 

 

 
 

 

Thesis submitted for the degree of Ph.D. 

 

 

Department of Informatics 

Faculty of Mathematics and Natural Sciences 

University of Oslo 

2018 





 

Abstract 

A Cyber-Physical Systems (CPS), as an integration of computing, communication, and 

control for making intelligent and autonomous systems, has been widely applied in various 

safety-critical domains, e.g., avionics and automotive. However, uncertainty is inherent in 

CPSs due to various reasons such as unpredictable environment under which the CPSs are 

operated. And, uncertainties may cause irreparable accidents once they cannot be handled 

properly by CPSs. Therefore, it is crucial to identify uncertainties in CPSs and test CPSs 

under the uncertainties, to ensure that CPSs are capable of handling the uncertainties during 

their actual operations, i.e., making CPSs less uncertain.  

Towards this direction, five contributions were made in the thesis corresponding to five 

papers respectively: (C1) a conceptual model, named as U-Model, for helping develop a 

systematic and comprehensive understanding of uncertainty in CPSs; (C2) an use case 

modeling methodology, named as U-RUCM, for identifying, qualifying, and, where 

possible, quantifying uncertainty in requirements engineering; (C3) a test modeling 

methodology, named as UncerTum, for supporting the construction of test ready models with 

the explicit representation of uncertainties in CPSs; (C4) an evolution framework, named as 

UncerTolve, for interactively evolving test ready models specified with UncerTum based on 

real operational data; and (C5) a testing framework, named as UncerTest, for testing CPSs 

in the presence of uncertainties in their operating environments in a cost-effective manner 

using model-based and search-based testing techniques. 

Based on our evaluations of the five contributions with the industrial CPS case studies, 

we observed that U-Model, as the foundation for this research, is sufficiently complete for 

characterizing and classifying uncertainties in CPSs. Then, the U-Model based modeling 

methodologies U-RUCM and UncerTum offer solutions to enable the identification and 

specification of uncertainties at two critical phases of a system development lifecycle: 

requirements engineering and testing. Furthermore, UncerTolve can successfully evolve 

model elements of the test ready models specified with UncerTum and calculate objective 

uncertainty measurements based on real operational data. Last, UncerTest managed to cost-

effectively test CPSs in the presence of uncertainties and proactively identify unknown 

uncertainties by introducing the sources of the uncertainties into the test environments during 

test case execution. 

 i 



 

Acknowledgments 

When writing the last part of the thesis, a feeling of gratitude welled up in my heart for 

the people who helped me to make the thesis possible. 

First and foremost, I would like to express my deepest gratitude to my supervisors: 

Shaukat Ali and Tao Yue. They have both consciously and unconsciously taught me how to 

think, how to express and how to do research. I appreciated their immense knowledge, 

professional guidance, continues supports, patience and time to make my uncertain Ph.D. 

pursuit be towards certain. In addition, the enthusiasm and enjoy they presented for their 

research motived me when I met the bottle-neck in my research.  

I would like to thank all the members of our group for their caring and help in my research 

and daily life. Without them, I cannot have this great time after I moved away from my 

country for the first time. Also, I would like to thank the members of the U-Test project, who 

provided me invaluable suggestions and case studies for conducting the evaluation of the 

solutions proposed in this thesis. Moreover, I would like to thank all colleagues at Simula 

Research Laboratory, who altogether create a pleasant research environment. 

Last, I would like to express my special gratitude to my parents for their encouragement 

and support. Whenever I need help, you are always there. Thank you. 

 

  

 ii 



 

List of papers 

The following papers are included in this thesis: 

Paper A. Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model 
M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz and R. Norgren.  

In: Proceedings of the 12th European Conference on Modelling Foundations and Applications 

(ECMFA 2016), pp. 247-264, 2016. DOI: 10.1007/978-3-319-42061-5_16 

Paper B. Specifying Uncertainty in Use Case Models 
M. Zhang, T. Yue, S. Ali, B. Selic, O. Okariz, R. Norgren and K. Intxausti. 

Journal paper that has been submitted to the Journal of Systems and Software (JSS), second 

revision. 

Paper C. Uncertainty-Wise Cyber-Physical System Test Modeling 
M. Zhang, S. Ali, T. Yue, R. Norgren and O. Okariz 

Journal of Software & Systems Modeling (SOSYM). DOI: 10.1007/s10270-017-0609-6 

Paper D. Uncertainty-Wise Evolution of Test Ready Models 
M. Zhang, S. Ali, T. Yue and R. Norgren. 

Journal of Information and Software Technology (IST). DOI: 10.1016/j.infsof.2017.03.003 

Paper E. Uncertainty-wise Test Case Generation and Minimization for Cyber-Physical 

Systems: A Multi-Objective Search-based Approach 
M. Zhang, S. Ali and T. Yue.  

Journal paper that has been submitted to ACM Transactions on Software Engineering and 

Methodology (TOSEM). 
 

  

 iii 



 

Contents 

 

Abstract ............................................................................................................................. i 
Acknowledgments ............................................................................................................ ii 
List of papers................................................................................................................... iii 
Contents ........................................................................................................................... iv 
Part I Summary ............................................................................................................... 1 
1 Introduction ................................................................................................................. 2 

2 Background ................................................................................................................. 7 
2.1 Cyber-Physical System and its uncertainty ...................................................................... 7 
2.2 Restricted Use Case Modeling (RUCM) .......................................................................... 7 
2.3 Model-based Testing (MBT) ............................................................................................ 8 
2.4 Search-based Software Testing ........................................................................................ 9 
2.5 Uncertainty Theory ........................................................................................................ 10 

2.5.1 Probability Theory vs. Uncertainty Theory.  ......................................................... 10 
2.5.2 Uncertainty Measure and Uncertainty Space .......................................................... 10 

3 Research Methodology .............................................................................................. 12 
3.1 Research activities .......................................................................................................... 12 
3.2 Implementations ............................................................................................................. 13 

4 Uncertainty-wise CPSs Testing Methodologies ........................................................ 15 
4.1 U-Model ......................................................................................................................... 16 
4.2 U-RUCM ........................................................................................................................ 17 
4.3 UncerTum ...................................................................................................................... 20 
4.4 UncerTolve ..................................................................................................................... 21 
4.5 UncerTest ....................................................................................................................... 23 

5 Evaluation .................................................................................................................. 25 
5.1 Case Study ...................................................................................................................... 25 

5.1.1 GeoSports ................................................................................................................ 25 
5.1.2 Automated Warehouse ............................................................................................ 26 

5.2 U-Model (Paper A) ........................................................................................................ 27 
5.3 U-RUCM (Paper B) ....................................................................................................... 29 
5.4 UncerTum (Paper C) ...................................................................................................... 30 
5.5 UncerTolve (Paper D) .................................................................................................... 32 
5.6 UncerTest (Paper E) ....................................................................................................... 33 

6 Discussion ................................................................................................................. 35 

7 Conclusion and Future Work .................................................................................... 38 

Reference ......................................................................................................................... 39 

 

Part II ............................................................................................................................. 46 
Paper A ........................................................................................................................... 47 
Abstract............................................................................................................................ 48 

1 Introduction ............................................................................................................... 48 

 iv 



 

2 Background and Running Example ........................................................................... 49 

3 Uncertainty Conceptual Model .................................................................................. 51 
3.1 Belief Model .................................................................................................................. 51 

3.1.1 Belief, BeliefAgent and BeliefStatement ................................................................ 53 
3.1.2 Evidence, EvidenceKnowledge, IndeterminacySource and 

IndeterminacyKnowledge. ........................................................................................................ 55 
3.1.3 Measurement and Measure. .................................................................................... 57 

3.2 Uncertainty Model ......................................................................................................... 57 
3.2.1 Uncertainty, Lifetime and Pattern. .......................................................................... 58 
3.2.2 Locality and Risk. ................................................................................................... 60 

3.3 Measure Model .............................................................................................................. 61 
4 Evaluation .................................................................................................................. 62 

4.1 Development and Validation of Uncertainty Requirements and U-Model .................... 62 
4.2 Evaluation Results .......................................................................................................... 64 

5 Related Work ............................................................................................................. 65 

6 Conclusion ................................................................................................................. 67 

References ........................................................................................................................ 68 

 

Paper B ........................................................................................................................... 72 
Abstract ............................................................................................................................ 73 

1 Introduction ............................................................................................................... 74 

2 Background and Running Example ........................................................................... 76 
2.1 U-Model ......................................................................................................................... 76 
2.2 Running Example ........................................................................................................... 77 
2.3 Restricted Use Case Modeling (RUCM) ........................................................................ 77 

3 U-RUCM Templates and Keywords ......................................................................... 80 

4 U-RUCM Formalization ............................................................................................ 83 
4.1 Relationships of BeliefUCMeta with UCMeta and U-Model ........................................ 83 
4.2 Belief Use Case Model, Element, and Classifier ........................................................... 84 
4.3 Belief Use Case Specification ........................................................................................ 85 
4.4 Belief Flow of Events .................................................................................................... 89 
4.5 Belief Sentence .............................................................................................................. 92 
4.6 Uncertainty ..................................................................................................................... 94 

4.6.1 Uncertainty in Belief Sentences (NLUncertainty) .................................................. 95 
4.7 Branch Uncertainty ........................................................................................................ 96 
4.8 Measurement .................................................................................................................. 97 

5 Tool Support and Methodology ................................................................................. 99 
5.1 Tool Support .................................................................................................................. 99 
5.2 Methodology .................................................................................................................. 99 

6 Evaluation ................................................................................................................ 104 
6.1 Case Studies ................................................................................................................. 104 
6.2 Context, Design, and Execution of Evaluation ............................................................ 105 
6.3 Results .......................................................................................................................... 107 
6.4 Experience, Lessons Learned, and Future Challenges ................................................. 111 

7 Related Work ........................................................................................................... 113 

8 Conclusion and Future Work ................................................................................... 115 

 v 



 

Acknowledgment ........................................................................................................... 116 

References ..................................................................................................................... 116 

 

Paper C ......................................................................................................................... 122 
Abstract.......................................................................................................................... 123 

1 Introduction ............................................................................................................. 123 

2 Background ............................................................................................................. 127 
2.1 Cyber-Physical Systems and Testing Levels................................................................ 127 
2.2 U-Model ....................................................................................................................... 128 
2.3 UML Testing Profile (UTP) ......................................................................................... 128 

3 Running Example .................................................................................................... 129 

4 Overview of UncerTum .......................................................................................... 134 

5 UUP and CPS Testing Levels Profile ..................................................................... 136 
5.1 UUP Belief ................................................................................................................... 137 
5.2 UUP Uncertainty and Measurement ............................................................................ 139 
5.3 CPS Testing Levels Profile .......................................................................................... 141 

6 Model Libraries ....................................................................................................... 141 
6.1 Measure Libraries ......................................................................................................... 142 
6.2 Pattern Library ............................................................................................................. 145 

7 UncerTum Modeling Methodology ........................................................................ 145 
7.1 Overview ...................................................................................................................... 147 
7.2 Application Level Modeling ........................................................................................ 148 
7.3 Infrastructure Level Modeling ..................................................................................... 149 
7.4 Integration Level Modeling .......................................................................................... 150 
7.5 Apply UUP (AP2/IF2/IT2)........................................................................................... 151 

7.5.1 Measurement Modeling ........................................................................................ 153 
7.5.2 Uncertainty Modeling ........................................................................................... 155 

8 UncerTum Validation Process ................................................................................ 158 
8.1 UAL Executable Modeling Guidelines ........................................................................ 159 
8.2 Recommendations to Fix Problems in Test Ready Models ......................................... 160 

9 Evaluation ................................................................................................................ 161 
9.1 Development and Validation of UncerTum and Test Ready Models .......................... 162 
9.2 Evaluation Results ........................................................................................................ 165 

9.2.1 Mapping UUP/Model Libraries to U-Model and MARTE ................................... 166 
9.2.2 Application of UUP/Model Libraries ................................................................... 169 
9.2.3 Validation of Test Ready Models via Model Execution ....................................... 170 
9.2.4 Application of UTP V.2 ........................................................................................ 171 

9.3 Overall Discussion and Limitations ............................................................................. 172 
10 Related Work ....................................................................................................... 173 

11 Conclusion and Future Work ............................................................................... 175 

Acknowledgment ........................................................................................................... 176 

References ..................................................................................................................... 177 

 

Paper D ......................................................................................................................... 183 

 vi 



 

Abstract .......................................................................................................................... 184 

1 Introduction ............................................................................................................. 185 
1.1 Challenges and Objectives ........................................................................................... 186 
1.2 Context, Scope and Overview ...................................................................................... 187 
1.3 Contributions ................................................................................................................ 190 
1.4 Results and the Structure of the Paper ......................................................................... 191 

2 Related Work ........................................................................................................... 192 
2.1 Comparison with Existing Works ................................................................................ 192 
2.2 Comparison with Our Previous Works ........................................................................ 195 

3 Background .............................................................................................................. 196 
3.1 Cyber-Physical Systems and Uncertainty Levels......................................................... 196 
3.2 UML Testing Profile .................................................................................................... 197 
3.3 U-Model ....................................................................................................................... 198 
3.4 UncerTum .................................................................................................................... 198 
3.5 UncerTest ..................................................................................................................... 199 

4 Terminologies And Running Example .................................................................... 200 
4.1 Belief Test Ready Model ............................................................................................. 200 
4.2 Executable Belief Test Ready Model ........................................................................... 203 
4.3 Driver Model ................................................................................................................ 203 

5 Architecture and Current Implementation of UncerTolve ....................................... 205 
5.1 Architecture .................................................................................................................. 205 
5.2 Current Implementation of UncerTolve ....................................................................... 208 

6 Recommended Methodology ................................................................................... 211 
6.1 Creating BM and Driver Model (S1) ........................................................................... 212 
6.2 Validate BM and Driver Model, and Evolve Objective Uncertainty Measurements (S2)

 214 
6.2.1 Analysis of Errors and Fixing Models (S2A2, S2A3, and S2M1) ........................ 215 
6.2.2 Identifying Objective Uncertainty Measurements (S2A4) ................................... 216 

6.3 Evolve Belief State Machines with Dynamic Invariant Analysis (S3) ........................ 217 
7 Evaluation ................................................................................................................ 219 

7.1 Results of Creating BM and DM (S1) .......................................................................... 220 
7.2 Results of Validation and Evolution via Model Execution (S2) .................................. 220 
7.3 Results of Dynamic Inference (S3) .............................................................................. 221 
7.4 Overall Validation ........................................................................................................ 222 
7.5 Effort to Build Belief Test Ready Models and Adoption of UncerTolve .................... 223 
7.6 Discussion and Experiences ......................................................................................... 224 
7.7 Threats to Validity ....................................................................................................... 225 

8 Conclusion ............................................................................................................... 226 

Acknowledgment ........................................................................................................... 226 

References ...................................................................................................................... 227 

 

Paper E ......................................................................................................................... 232 
Abstract .......................................................................................................................... 233 

1 Introduction ............................................................................................................. 233 

2 Background .............................................................................................................. 235 
2.1 Uncertainty Modeling Framework (UncerTum) .......................................................... 236 

 vii 



 

2.2 Uncertainty Theory ...................................................................................................... 236 
2.2.1 Probability Theory vs. Uncertainty Theory .......................................................... 236 
2.2.2 Summary of Uncertainty Theory .......................................................................... 237 

2.3 Example of the Application of UncerTum and Uncertainty Theory ............................ 237 
3 Overview ................................................................................................................. 239 

4 Test Case Generation and Minimization ................................................................. 240 
4.1 Abstract Test Case Generation ..................................................................................... 240 

4.1.1 Definitions ............................................................................................................. 240 
4.1.2 Strategies ............................................................................................................... 243 

4.2 Uncertainty-Wise Test Case Minimization .................................................................. 245 
4.2.1 Problem Representation ........................................................................................ 245 
4.2.2 Definitions and Functions of the Six Minimization Objectives ............................ 246 
4.2.3 Uncertainty-wise Test Case Minimization Problems ............................................ 247 

4.3 Executable Test Case Generation ................................................................................. 248 
4.3.1 Enabling Indeterminacy ........................................................................................ 248 
4.3.2 Test Setup and Test Data Generation .................................................................... 251 

4.4 Test Execution and Reporting ...................................................................................... 252 
5 Evaluation ................................................................................................................ 253 

5.1 Case Study .................................................................................................................... 254 
5.2 Research Questions ...................................................................................................... 256 
5.3 Design of the Evaluation .............................................................................................. 257 
5.4 Results and Analyses .................................................................................................... 259 

5.4.1 Results for RQ1 ..................................................................................................... 259 
5.4.2 Results for RQ2 ..................................................................................................... 260 
5.4.3 Results for RQ3 ..................................................................................................... 261 

5.5 Discussion .................................................................................................................... 263 
5.6 Threats to Validity ........................................................................................................ 264 

6 Automation .............................................................................................................. 265 

7 Related Work ........................................................................................................... 267 

8 Conclusion ............................................................................................................... 269 

Acknowledgment ........................................................................................................... 270 

References ..................................................................................................................... 270 

 

Appendixes ................................................................................................................... 277 
Appendix A. Definitions of U-Model Concepts ......................................................... 277 

A.1 Belief Model ............................................................................................................. 277 
A.2 Uncertainty Model .................................................................................................... 280 
A.3 Measure Model ......................................................................................................... 283 

Appendix B. An Example of Questionnaire of the AW Case Study .......................... 284 

Appendix C. An Example of BUCS Specified with the U-RUCM Editor ................. 289 

Appendix D. tolveR-E ............................................................................................. 290 

Appendix E. tolveR-D .............................................................................................. 291 

 

 viii 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part I 
Summary 

  

1 
 
 
 
 
 
 



 
 

 

Summary 
 
 
 
 
 
 
 

1 Introduction 
A Cyber-Physical Systems (CPS), as an integration of computing, communication, and 

control for making intelligent and autonomous systems [1], has been widely applied in 

various safety-critical domains, e.g.,  avionics and automotive [1-3]. However, uncertainty 

is inherent in CPSs, due to various reasons such as unpredictable operating environments of 

CPSs [1-3]. And, uncertainties may cause irreparable accidents once they cannot be handled 

properly by CPSs. Therefore, it is crucial to identify the uncertainties and test CPSs under 

the uncertainties, to ensure that CPSs are capable of handling the uncertainties during their 

actual operations, i.e., making CPSs less uncertain.  

In the thesis, we investigated uncertainty in CPSs from the subjective view. This means 

that uncertainty is considered as a state of affairs whereby, for whatever reason, participants 

who are involved in the phase of CPSs lifecycle (e.g., designer) lack perfect knowledge about 

some interests of CPSs (e.g., a state of CPSs during the actual operations). Thus, the 

identification of the uncertainties in CPSs originates from the participants according to their 

knowledge at a given point of time. More specifically, the identification is about sufficiently 

and explicitly capturing uncertainties known by the participants. In addition, the 

identification is also about to exploring unknown uncertainties, which might be known at 

some point in the future. However, the identified uncertainties in CPSs may be not valid. 

Therefore, it is also required to take an objective approach (e.g., testing) to validate the 

identified uncertainties based on CPSs. Towards this direction, a series of systematic, 

2 
 
 
 
 
 
 



 
 

 
uncertainty-wise, model-based methodologies (Figure 1) was proposed with respect to five 

contributions (C1-- C5).  

 

Figure 1. The scope of the Uncertainty-wise Cyber-Physical Systems Testing 

As shown in Figure 1, the first contribution (C1) is U-Model, which is a conceptual model 

for understanding uncertainty in CPSs. The conceptual model takes a subjective approach to 

represent uncertainties, i.e., lack of knowledge about some interests of CPSs held by some 

agents or agencies (i.e., belief agents). In addition, the classification and abstractions of 

uncertainties in CPSs were defined in U-Model. Furthermore, a set of the commonly known 

measures of uncertainty were also introduced in U-Model. Note that all proposed 

uncertainty-wise methodologies share the same definition of uncertainty at the conceptual 

level based on U-Model.  

To handle uncertainty at the early stage of the development of CPSs, we developed U-

RUCM (C2 in Figure 1) for specifying uncertainty as a part of requirements of CPSs, i.e., 

uncertainty requirements. In terms of testing CPSs under uncertainty using MBT as shown 

in Figure 1, U-RUCM also aims to provide the precise uncertainty requirements for 

supporting further modeling activities (e.g., constructing test ready models with 

uncertainties). In U-RUCM, two templates were introduced for structuring and specifying 

the uncertainty requirements. Such requirements can be automatically formalized as 

instances of a formal U-RUCM metamodel.  

To enable MBT of CPSs under uncertainty, an uncertainty modeling methodology, named 

as UncerTum, was developed (C3 in Figure 1), for constructing belief test ready models 

(BMs). BMs annotate the test ready models with uncertainties, describing the uncertain 

3 
 
 
 
 
 
 



 
 

 
behaviors of CPSs and/or their uncertain operating environments. Moreover, the 

methodology also allowed to specify the measurements and characteristics of the 

uncertainties as parts of BMs. The core of UncerTum is the UML Uncertainty Profile (UUP), 

which was implemented based on U-Model. In addition, we also developed three model 

libraries (i.e., time library, pattern library and measure library) in UncerTum for constructing 

BMs with the advanced modeling features. 

To evolve and validate BMs, we developed an uncertainty-wise evolving framework (C4 

in Figure 1), called UncerTolve.  As shown in Figure 1, since BMs are produced by modelers, 

BMs may be not complete and correct due to their mistakes made accidentally. Therefore, it 

is vital to validate the BMs based on some objective evidence. In addition, the BMs are the 

inputs of MBT of CPSs, which decides whether CPSs can be tested sufficiently with 

uncertainties. Thus, the sources of uncertainty in the BMs are required to be identified 

sufficiently and correctly before testing. Otherwise, it might be time-consuming to observe 

the occurrence of uncertainty during testing, due to the randomness of the appearance of the 

sources. As such, UncerTolve was proposed to be interactive to evolve BMs based on 

available evidence, i.e., real operational data collected from real applications of CPSs. To 

achieve the evolution, three main features were implemented: 1) validating BMs based on 

the data via model execution; 2) deriving objective uncertainty measurements (i.e., 

frequency) based on the result of the model execution; 3) evolving state invariants and 

guards of transitions of BMs together with the data using a dynamic invariant detector. 

Last but not least, we developed a search-based and model-based framework to test CPSs 

in the presence of uncertainty, called UncerTest (C5 in Figure 1). To be uncertainty oriented 

and cost-effective, we implemented three features in UncerTest for supporting three testing 

activities shown as 4-6 steps in Figure 1: (1) Test Case Generation: Two test case generation 

strategies were proposed in UncerTest corresponding to two coverage criterions, All Simple 

Belief Path Coverage (ASiBP) and All Specified Length Belief Path Coverage (ASlBP); (2) 

Test Case Minimization: To reduce the number of the generated test cases, we defined four 

test cases minimization strategies based on multi-objective search; and (3) Test Case 

Execution: A set of an uncertainty-wise test verdicts were defined for evaluating the 

occurrence of uncertainty during test case execution.  

4 
 
 
 
 
 
 



 
 

 
Through the entire process (1-6 steps) as shown in  Figure 1, uncertainties in CPSs can 

be gained step by step. More concretely, the modeling methodologies (i.e., U-RUCM and 

UncerTum) is potential to help modelers to identify more known uncertainties by 

characterizing and structuring the uncertainties explicitly. In addition, the evolution provided 

by UncerTolve helps to validate the known uncertainties and identify new uncertainties 

which are not obvious to modelers but exist according to available evidence, i.e., real 

operational data. Last, UncerTest enables to test CPSs under uncertainty by introducing 

various sources of uncertainty into test environments, and thus we are also able to observe 

new (i.e., previously unknown) uncertainties during testing. 

The structure of this thesis is presented in Figure 2, which includes two parts.  

 

 

Figure 2. The structure of the thesis 

5 
 
 
 
 
 
 



 
 

 
The first part (Part I) is about summarizing the research work for the entire thesis, which 

is organized as the following: Section 2 is the background that provides the necessary 

information for understanding the thesis; The research methodology is presented in Section 

3; Section 4 briefly presents the contributions of the thesis, followed by the summary of the 

key results (Section 5); and Section 6 concludes the thesis. The second part (Part II) is about 

collecting the related papers with respect to the five contributions (C1-- C5). The mapping 

between the summary and the collection of papers is shown in Figure 2. 

  

6 
 
 
 
 
 
 



 
 

 

2 Background 
2.1 Cyber-Physical System and its uncertainty 

As defined in [4], a CPS is composed of “a set of heterogeneous physical units (e.g., 

sensors, control modules) communicating via heterogeneous networks (using networking 

equipment) and potentially interacting with applications deployed on cloud infrastructures 

and/or humans to achieve a common goal.” 

According to the definition, uncertainty in CPSs can be categorized as the three logical 

levels [4] as shown in Figure 3. First, the uncertainty at the application level originates from 

an application (one or more software components) of a physical unit of CPS, which can be 

one software component, or the interaction between human being and applications, or the 

interaction among software components within one physical unit. Second, the uncertainty at 

the infrastructure level originates from the hardware of a physical unit, or networking 

infrastructure and/or cloud infrastructure built on the set of physical units, or data 

transmission via information network enabled through the infrastructure. Last, the 

uncertainty at the integration level originates from either the interaction of applications 

across physical units at the application level or the interactions of physical units across the 

application and infrastructure levels.  

  

Figure 3. Uncertainty in Cyber-Physical Systems (CPSs) 

2.2 Restricted Use Case Modeling (RUCM)  
RUCM is a methodology for specifying textual use case specifications [5, 6], aiming at 

being easy to use, reducing the ambiguity of the textual specification, and supporting further 

7 
 
 
 
 
 
 



 
 

 
automated analyses. Two controlled experiments were conducted to evaluate RUCM, and 

the results showed that it is overall easy to use and achieved a significant improvement of 

the understandability of use case specifications [5, 6]. 

RUCM is composed of a use case template, a set of keywords, and a formalization 

mechanism. A use case specification structured with the RUCM use case template has a 

mandatory basic flow and optional alternative flow(s). An alternative flow always depends 

on a condition occurring in a specific step of another flow (reference flow). Accordingly, 

alternative flows are classified into three types: a specific alternative flow refers to one 

specific step of a reference flow; a bounded alternative flow refers to more than one specific 

steps of reference flow(s); a global alternative flow refers to any step in any other flow. By 

such template, the interactions among flows of events in the system are able to be precisely 

defined. In RUCM, a set of keywords were proposed for specifying control structures, such 

as IF-THEN-ELSE-ELSEIF-ENDIF for conditional logic, DO-UNTIL for iteration, and 

VALIDATE THAT for the condition check. The introduction of these keywords helps to 

reduce ambiguities in the use case specifications and facilitates the automated analysis model 

transformation. In addition, a metamodel, UCMeta, was developed for formalizing RUCM 

using the OMG’s standard Meta-Object Facility (MOF) [7]. The metamodel not only covers 

all concepts in the RUCM use case template and keywords, but also captures the natural-

language (NL) concepts in a sentence, e.g., subject, object, and verb. Moreover, an 

automated solution was provided in the RUCM framework, called aToucan [5], to 

automatically extract the NL information and generate three types of UML analysis models: 

class, sequence and activity diagrams. 

Several extension works [8-11] have been developed since RUCM was initially 

introduced by Yue et al. [12] in 2009. In the thesis, an extension of RUCM (Section 4.2) for 

explicitly specifying uncertainty in use case specifications was proposed. 

2.3 Model-based Testing (MBT) 
Model-based Testing (MBT) is a technique for performing software system testing using 

models [13]. In MBT, models can be used to express the expected behavior of the system 

under test, and/or its environment to be tested. 

8 
 
 
 
 
 
 



 
 

 
MBT has been in use since the 1980s [14]. With the rapid expansion of the interest in 

MBT from the industry and academia, the feasibility and cost-effectiveness of MBT have 

been demonstrated by the intensive research work and industrial practices [14, 15].  

The typical process of MBT includes five steps [15]: (1) construct models with respect to 

the system under tested and/or its environment; (2) generate a set of abstract test cases based 

on the constructed models according to the defined test selection criteria; (3) concretize  the 

abstract test cases to executable ones; (4) execute the test cases on test infrastructures and 

assign verdicts; and (5) analyze execution results of the test cases. The constructed models 

can be reused for generating abstract test cases according to the different criteria. In addition, 

the same set of abstract test cases can be made executable in different environments by 

changing the adaptation layer for converting abstract test cases into executable ones. 

In the thesis, we developed a modeling framework (Section 4.3) for constructing test 

ready models with uncertainty. Such models can be used to test CPSs under uncertainty by 

the proposed testing framework (Section 4.5). 

2.4 Search-based Software Testing 
Search-based Software Testing (SBST) is about applying a meta-heuristic optimizing 

search technique to tackle software testing problems, such as automatic generation of test 

data [16-20]. In SBST, these testing problems are normally reformulated as search problems 

for seeking optimal or near-optimal solutions in a search space. The process is guided by 

fitness functions that are defined to evaluate the sought solution for seeking the better ones. 

The applicability and effectiveness of SBST can be demonstrated by many successful works 

and related surveys [21-25]. 

Recently, multi-objective approaches are increasingly applied for optimizing the test 

process, such as test set selection, minimization, and prioritization [20, 25]. One possible 

reason is that the problem in software testing faces multiple objectives in nature [20], and it 

may be conflict among the objectives, such as time budget and the coverage of selected test 

cases. In SBST, Pareto optimality is one commonly applied approach to deal with such 

situation by outputting a set of trade-off optimal solutions [18, 20, 26, 27]. A multi-objective 

optimization problem can be formulated as a set of fitness functions corresponding to the 

objectives being achieved. In Pareto optimality, a solution S1 is said to dominate (implies 

9 
 
 
 
 
 
 



 
 

 
better) other solution S2 if S1 is strictly better than S2 in at least one fitness function and S1 

is no worse than S2 in all other fitness functions. Then a solution is called Pareto optimal if 

no existing another solution can dominate it. To solve a multi-objective problem using search 

algorithms based on Pareto optimality, a set of Pareto optimal solutions are produced.  

In the thesis, a set of multi-objective problems for minimizing the automatically 

generated test cases were defined with considerations of the cost-effectiveness and 

uncertainty during testing CPSs (Section 4.5). In addition, eight Pareto-based search 

algorithms were selected for assessing the performances of the algorithms in solving the 

defined test case minimization problems. 

2.5 Uncertainty Theory 

2.5.1 Probability Theory vs. Uncertainty Theory.  
To measure uncertainty, Probability Theory is commonly applied method (e.g., [28, 29]) 

in the practice to treat the measurement of uncertainty as a frequency. But, the application 

of this theory is built on an amount of data collected from the long-run experiment (i.e., 

being “close enough to the long-run frequency” [30]). However, in the context of software 

testing, it is quite common that data is not able to be obtained at the startup phase of the test 

design for enabling MBT, due to, e.g., budget issues [30]. Therefore, it is not ideal to apply 

Probability Theory to obtain the frequency in such context with its usage of guiding the test 

phases, e.g., test design and test optimization.  

Uncertainty Theory defined by Liu [31] is “a branch of mathematics for modeling human 

uncertainty”. Uncertainty Theory is to measure uncertainty as a belief degree from the 

subjective perspective, heavily depending on the knowledge and experience of the domain 

expert. It is a natural fit for our context, i.e., handling uncertainty even lacking observed data 

and treating uncertainty from the subjective perspective (U-Model [4]). It is also important 

to note that Uncertainty Theory has been applied to solve various problems from different 

domains, e.g., [32-35]. In the thesis, an application of Uncertainty Theory for obtaining the 

uncertainty measurement of a test case is presented in Section 4.5, and the related definitions 

are described in Section 2.5.2. 

2.5.2 Uncertainty Measure and Uncertainty Space 

10 
 
 
 
 
 
 



 
 

 
Uncertainty Measure (UM) is defined in Uncertainty Theory that is a specific value (i.e., 

a number) assigned to the belief degree of an event [31] by a belief agent, indicating 

his/her/its confidence about the occurrence of the event [4]. In Uncertainty Theory, UM is 

represented as the ℳ symbol. As Liu suggested in [31], ℳ respects the following three 

axioms: 

Axiom 1. (Normality) ℳ(Γ) = 1, (Γ is the universal set). 

Axiom 2. (Duality) ℳ{Λ} + ℳ{Λ𝑐𝑐} = 1, where Λ shows a particular event, whereas Λ𝑐𝑐 

shows all the elements in the universal set excluding Λ. 

Axiom 3. (Subadditivity) ℳ{⋃ Λi∞
i=1 } < ∑ ℳ{Λi}∞

i=1  (every countable sequence of 

events Λ1,Λ2, …). 

In addition, Uncertainty Space and its related theorem which are relevant to the thesis are 

presented as below. For more details of Uncertainty Theory, readers may consult [31]. 

Uncertainty Space: A triplet (Γ,ℒ,ℳ), where Γ is the universal set, ℒ  is a σ-algebra [36] 

over Γ, and ℳ is UM. 

Theorem: Let (Γ𝑘𝑘,ℒ𝑘𝑘,ℳ𝑘𝑘) be uncertainty spaces and Λ𝑘𝑘 ∈ ℒ𝑘𝑘, for 𝑘𝑘 = 1, 2, …  𝑛𝑛. Then 

Λ1, Λ2,… Λ𝑛𝑛 are always independent of each other if they are from different uncertainty 

spaces. 

  

11 
 
 
 
 
 
 



 
 

 

3 Research Methodology 
This section presents the research method we applied in the entire thesis. This research 

work was funded by an EU project, U-Test, which involved two use cases providers from 

two distinct domains of CPSs and two testbed providers. Such participants provide a rare 

opportunity to develop and evaluate the proposed approaches with the support of the 

industry. From the research perspective, the industrial partners and industrial case studies 

help to identify the research problems based on their needs. In our case, it is particularly 

helpful since the existing study about uncertainty in CPSs is not mature [4, 37, 38].  From 

the engineering perspective, the developed approaches may work in theory, but it might be 

not applicable in the industry due to various factors, such as its usability and scalability. 

Thus, by conducting the research with the industrial case studies, such problems can be 

revealed and might be solved further. 

3.1 Research activities 
The research activities are shown in Figure 4, which has two parallel processes conducted 

by the researchers and U-Test industrial partners respectively.  

The overall research problem was initially defined based on the objectives of the U-Test 

project (A1 in Figure 4), i.e., testing CPSs with uncertainties for ensuring that CPSs can 

operate properly in the presence of uncertainties.  

In order to solve it, the five approaches were proposed in the following activities (A2-A6 

in Figure 4). Overall, the activities can be divided into two phases (i.e., the development 

phase and evaluation phase) for each proposed approach. For the development phase, all 

developing actions (i.e., A2.1, A3.1, A4.1, A5.1, A6.1 in Figure 4) took inputs from the 

industrial partners whether directly or indirectly. Based on the domain knowledge of the 

industrial partners, some feedbacks regarding their understanding and representations of 

uncertainty in CPSs could be collected in the forms of meetings or questionnaires. So, the 

process of the development of U-Model, U-RUCM, and UncerTum is iterative, by refining 

the approaches with the accumulated feedbacks from the industrial partners, shown as A2.2 

& B2, A3.2 & B3, and A4.3 & B4 in Figure 4. For the evaluation phase, all approaches were 

evaluated with at least one industrial case study to assess the performances, shown as A2.3, 

12 
 
 
 
 
 
 



 
 

 
A3.4, A4.4, A5.3, and A6.3 in Figure 4. The design and key results of the evaluations with 

the industrial case studies are reported in Section 5.  

The last activity (A7 in Figure 4) is to conclude the research work in the forms of this 

thesis. 

3.2 Implementations 
Finally, we produced the five uncertainty-wise approaches with tool supports, denoted by 

the underlined text in Figure 4. The implementations of all approaches are described in Table 

1, together with the accessible links to view or download the implementations.  

Table 1. Implementations of the proposed approaches 

Approach Techniques/tools/languages Implementations 
U-Model UML [39], OCL [40], IBM 

Rational Software Architect (RSA)  
U-Model was implemented by UML class diagram with 
constraints using RSA, which is available in [41].  

U-RUCM Eclipse [42], LMF, Java U-RUCM was implemented as an eclipse plugin, and the 
metamodel (BeliefUCMeta) is available in [43]. In 
addition, a video to demonstrate the U-RUCM editor and 
the formalization from U-RUCM to instances of metaclass 
can be found in [44]. 

UncerTum UML [39], RSA A prototype implementation of UncerTum by RSA can be 
found in [45], which includes a set of UML profiles and 
model libraries. The detailed specification and guidelines 
are available in [46].   

UncerTolve RSA, IBM Simulation Toolkit 
[47], Eclipse OCL [48], Java,  
Daikon Invariant Detector 

An implementation of UncerTolve was built on IBM 
Simulation Toolkit, by integrating eclipse OCL for 
evaluating the state invariant and daikon for detecting the 
invariants. More details about the implementation are 
described in Paper D and [37]. 

UncerTest Eclipse, EMF, Java, jMetal [49, 
50], Eclipse OCL and JUnit 

A prototype implementation of UncerTest by java is 
available in [51].  Note that we used multi-objective search 
algorithms implemented by jMetal for performing the test 
case minimization. 

13 
 
 
 
 
 
 



 
 

 

 
Figure 4. Overview of the research activities in the thesis 

14 
 
 
 
 
 
 



 
 

 

4 Uncertainty-wise CPSs Testing Methodologies 
Figure 5 presents an overview of the uncertainty-wise CPSs testing by integrating the five 

approaches: U-Model (Section 4.1), U-RUCM (Section 4.2), UncerTum (Section 4.3), 

UncerTolve (Section 4.4), and UncerTest (Section 4.5).  

 
To be consistent and systematic to define and identify uncertainties in CPSs, we 

developed U-Model (C1 in Figure 5) for providing a unified conceptual understanding of 

uncertainty that is the base of the entire research work. Based on U-Model, two modeling 

methodologies, U-RUCM (C2 in Figure 5) and UncerTum (C3 in Figure 5), were developed 

 

Fi
gu

re
 5

. O
ve

rv
ie

w
 o

f t
he

 U
nc

er
ta

in
ty

-w
is

e 
C

yb
er

-P
hy

si
ca

l S
ys

te
m

s T
es

tin
g 

15 
 
 
 
 
 
 



 
 

 
for annotating requirements and test ready models of CPSs with the explicit representation 

of uncertainty, denoted as uncertainty requirements and belief test ready models respectively 

in Figure 5. Moreover, the belief test ready models are able to be evolved by UncerTolve 

(C4 in Figure 5) based on real operational data collected from the real applications of CPSs. 

Furthermore, by taking the belief test ready models as input, UncerTest can produce a set of 

test cases (i.e., abstract test cases and executable test cases) embedded with uncertainty 

information, e.g., the source of uncertainty, the uncertainty measure (measurement) of 

uncertainty, by the test case generation (C5.1 in Figure 5) and/or uncertainty-wise test case 

minimization (C5.2 in Figure 5). The executable test cases can be executed on the test 

infrastructure for testing CPSs with the sources of uncertainties seeded in the test 

environment. After the execution, the occurrences of the uncertainties are allowed to be 

observed using the test results specified with the uncertainty-wise verdicts (C5.3 in Figure 

5). 

4.1 U-Model 
To investigate uncertainty in CPSs, a unified and comprehensive uncertainty conceptual 

model should be derived. As such, we developed U-Model based on the accessible CPSs 

industrial case studies and a thorough literature review of existing uncertainty models from 

various domains [52-55], e.g., physics and statistics.  

Figure 6 presents the top-level model of U-Model, which is composed of three packages: 

Belief Model, Uncertainty Model, and Measure Model.  

 

Figure 6. The top-level model of U-Model 

U-Model was proposed for taking a subjective approach to representing uncertainty. This 

means that uncertainty is modeled as a state (i.e., worldview) of some agent or agency 

(referred to as a BeliefAgent) that lacks perfect knowledge about some subject of interest. A 

BeliefAgent holds a set of subjective Beliefs about the subject. A Belief is an abstract concept, 

but it can be expressed in concrete form i.e., an explicit specification (BeliefStatement).  

Thus, Uncertainty represents a state of affairs whereby a BeliefAgent does not have full 

16 
 
 
 
 
 
 



 
 

 
confidence in a BeliefStatement that it holds.  Note that all subjective concepts mentioned 

above are represented by the grey-filled boxes in Figure 7. In addition, some objective 

concepts were also defined, reflecting objective reality, e.g., Evidence and 

IndeterminacySource. Evidence is inherently an objective phenomenon (e.g., an observation 

of a real-world event occurrence) that provides information for supporting a BeliefStatement. 

IndeterminacySource represents a situation whereby the information required to ascertain 

the validity of a BeliefStatement is indeterminate, resulting in Uncertainty being associated 

with that statement. Moreover, we defined the concept of Measurement, representing 

measured values of the associated Belief, Uncertainty or IndeterminacySource. 

 

Figure 7. The Core Belief Model 

To expand on Uncertainty from several different viewpoints and introduce the related 

abstractions (e.g, Risk, Pattern), we proposed Uncertainty Model, inspired by the concepts 

defined in the literature on uncertainty [56-60]. Besides, we defined Measure Model for 

introducing the commonly known ways of measuring uncertainty, inspired by the concepts 

reported in [57-59] and by no means complete. More details are represented in Paper A. 

4.2 U-RUCM 
Given the complexity and intrinsic uncertainty of CPSs, it is best to address uncertainty 

at the early stage of the software development. Therefore, we developed U-RUCM by 

extending RUCM (Section Section 2.2) for specifying uncertainty in use case models.  

17 
 
 
 
 
 
 



 
 

 

 
Figure 8. Overview of U-RUCM 

Figure 8 shows an overview of U-RUCM. In U-RUCM, we proposed two new templates 

(i.e., BUCSTemplate and UncertaintyTemplate) and two keywords (i.e., REF and URFS) for 

stakeholders (i.e., BeliefAgent) to specify belief use case specifications (BUCSs) and 

uncertainty specifications using natural language as shown in Table 2. BUCSTemplate 

inherits the key heading fields of the RUCM template (grey in Table 2) and introduces six 

new fields to denote belief and uncertainty information (white in the top of Table 2), e.g., 

Indeterminacy Source(s) indicates a set of indeterminacy sources which resulted in the 

uncertainties of the BUCS. In addition, BUCSTemplate extends all types the flows of events 

of RUCM (basic flow, specific althernative flow, bounded althernative flow and global 

althernative flow as described in Section 2.2) by introducing: (1) a belief degree, which 

measures the degree to which the belief agent(s) believes a specific flow; (2) a new keyword, 

URFS, from which step(s) of a reference flow branches out; (3) the new concept of 

alternative steps, which enables the specification of uncertainties for alternative steps across 

flows of events; (4) the concepts, belief sentence (BS) and belief postcondition, which 

provides the capability to annotate sentences in steps of flows and postconditions with belief 

and uncertainty information. Moreover, we developed UncertaintyTemplate to specify the 

details of an uncertainty in the BS as shown in the bottom of Table 2. 

 As discussed in Section 2.2, UCMeta which formalizes RUCM covers not only all 

concepts in the RUCM use case template and keywords but also the NL concepts in a 

sentence. The formalization of U-RUCM was implemented as a metamodel, called 

BeliefUCMeta, which extends UCMeta [6, 61] based on U-Model [4]. BeliefUCMeta imports 

all elements of UCMeta, thus, BeliefUCMeta can naturally benefit from the existing 

capability of UCMeta for formalizing sentences into instances of metaclass [5], e.g., 

formalizing sentence constructs such as noun phrase, subject. As shown in Figure 8, the U-

18 
 
 
 
 
 
 



 
 

 
RUCM editor was implemented for providing a graphical user interface to specify BUCSs 

and uncertainty specifications along with the automatic formalization from U-RUCM to 

BeliefUCMeta. Besides, a set of guidelines on the usage of U-RUCM and the editor were 

proposed (Figure 8). 

Table 2. The U-RUCM templates for specifying BUCS and uncertainty 

The template for specifying a BUCS 
Use Case Name The name of the use case. It usually starts with a verb. 
Brief Description Summarizes the use case in a short paragraph. 
Primary Actor The actor who initiates the use case. 
Secondary 
Actor(s) 

Other actors the system relies on to accomplish the services of the use case. 

Dependency Include and extend relationships to other use cases. 
Generalization Generalization relationships to other use cases. 
Belief Agent(s) One or more agents who hold a belief about this BUCS. 
Time Point and 
Duration 

The time point when the BUCS/BS is specified and the duration in which the belief agent(s)’s belief 
on the BUCS holds. 

Belief Degree The degree to which the belief agent(s) believe the BUCS. 
Indeterminacy 
Source(s) 

The set of indeterminacy sources related to the BUCS (REF is used). 

Evidence Evidence to support the BUCS, and its contained belief and uncertainty elements (REF is used). 
Belief 
Precondition 

Belief agent(s)’ belief on the precondition of the BUCS, which describes what should be true before 
the use case is executed. 

Belief Basic Flow  
(Belief degree) 

Specifies the main successful path, also called “happy path”. 
Steps (numbered) A set of ordered belief sentences. 
Belief Postcondition Belief agent(s)’ belief on what should be true after the basic flow executes. 

Belief Specific  
Alternative Flow 
(Belief degree) 

Applies to one specific step of the reference flow. 
URFS The reference flow step where the belief agent(s) believe there are 

uncertainties. 
Alternative Step An alternative to the reference flow step. 
Steps (numbered) A set of ordered belief sentences. 
Belief Postcondition Belief agent(s)’ belief on what should be true after the specific alternative 

flow executes. 
Belief Bounded  
Alternative Flow 
(Belief degree) 

Applies to more than one step of the reference flow, but not all of them. 
URFS A list of reference flow steps where the belief agent(s) believe there are 

uncertainties. 
Alternative Steps A set of alternatives to the reference flow steps. 
Steps (numbered) A set of ordered belief sentences. 
Belief Postcondition Belief agent(s)’ belief on what should be true after the bounded alternative 

flow executes. 
Belief Global  
Alternative Flow 
(Belief degree) 

Applies to all the steps of the reference flow. 
Belief Branching 
Condition 

Belief agent(s)’ belief on the condition, which describes what should be true 
when branching from any of the steps of the reference flow. 

Steps (numbered) The set of ordered beliefs sentences. 
Belief Postcondition Belief agent(s)’ belief on what should be true after the global flow executes. 

The template of specifying an uncertainty in a belief sentence 
Uncertainty 
Details 

Specifies the details of the uncertainty in the belief sentence. 
Type The type of this uncertainty 

 (Occurrence/Content/Time/Environment/GeographicalLocation) 
Indeterminacy 
Source(s) 

The set of indeterminacy sources related to this Uncertainty (REF is used). 

Measure Value The measurement of this uncertainty. 
Risk The possible risk led by this uncertainty. 
Pattern The pattern of the occurrence of this uncertainty 

19 
 
 
 
 
 
 



 
 

 

4.3 UncerTum 
To enable MBT of CPSs with uncertainty, an uncertainty-wise modeling framework 

(UncerTum) was proposed based on U-Model for constructing test ready models with 

uncertainty. 

An overview of UncerTum is represented in Figure 9. The UML Uncertainty Profile 

(UUP) is the core of UncerTum, which defined a set of modeling notations based on U-

Model. To adopt U-Model into UUP from the modeling perspective, we made three types of 

decisions: 1) Some concepts from U-Model can be incorporated into UUP as it is, e.g., 

IndeterminacySource for specifying the source of uncertainty; 2) Some concepts from U-

Model do not need to be implemented in UUP, e.g., Belief is an abstract concept to implicitly 

describe some phenomena or notions, which is not necessary to be implemented since model 

can be regarded as the explicit description by modeler ; 3) Some concepts from U-Model 

need to be refined in UUP, e.g., BeliefStatement was implemented as «BeliefElement» in 

UUP for adjusting to an explicit representation of model elements in the modeling context. 

Thus, the modeling notations of UUP are composed of stereotypes and classes for Belief, 

Uncertainty, and Measurement (Figure 9) corresponding to U-Model. In addition, an 

Internal_Library was implemented to define the necessary enumerations required in UUP. 

Besides, UncerTum also consists of a small CPS Testing Levels profile which allows the 

modeler to label the testing level of CPSs (Section 2.1), i.e., Application, Infrastructure, and 

Integration, just for MBT. 

Three model libraries, Measure Library, Pattern Library, and Time Library (Figure 9), 

were implemented in UncerTum, which defined a set of the reusable data types that are 

commonly used for specifying the characteristics of uncertainty and measuring uncertainty.  

Finally, UncerTum provides a set of the step-wise guidelines on how to use the modeling 

notions (UUP and CPS Testing Levels profile) and datatype (model libraries) to construct 

test ready models with uncertainty, named Belief Test Ready Models (BMs), to enable MBT 

of CPSs with uncertainty (Figure 9). 

 

20 
 
 
 
 
 
 



 
 

 

 

Figure 9. Overview of UncerTum 

4.4 UncerTolve 
UncerTolve is an uncertainty-wise evolution framework that can interactively evolve 

BMs of CPSs based on real operational data collected from real CPS applications. Thus, the 

uncertainties in the BMs can be systematically validated and explicitly identified. 

A CPS may be deployed to more than one applications from the same or different 

application domains. One example can be illustrated by the industrial case study of CPSs 

used in the thesis, GeoSports (Section 5.1.1). GeoSports was deployed on a variety of sports, 

e.g., Bandy and soccer. Each application regarding a different type of sports corresponds to 

a different deployment, and real operational data can be collected from already developed 

applications of CPSs, represented as D1, D2, … Dn (Figure 10). Thus, the collected 

operational data (i.e., objective evidence) are a valuable resource to validate BMs, including 

uncertainty information, test oracles, and test data specifications. Such evolved models can 

be used to generate new test cases to test future developments of the CPS with the explicitly 

identified subjective and objective uncertainties. UncerTolve was so designed to evolve BMs 

with the real operational data as shown in Figure 10. In UncerTolve, three activities and four 

components were implemented (Figure 10).  

The first activity is to construct initial BMs, which contain known subjective uncertainties 

specified by modelers (i.e., belief agents [4]). Moreover, to make BMs executable for the 

21 
 
 
 
 
 
 



 
 

 
next activity, a modeling methodology (which extends UncerTum) was proposed as a part 

of UncerTovle, particularly for constructing executable features in BMs. 

The second activity is to execute (initial) BMs against the real operational data. By the 

execution, syntactic and semantic errors may be identified by checking the execution logs 

based on a set of heuristics defined in UncerTolve.  In addition, UncerTolve also calculates 

the frequency of traversing a state or transition (i.e., objective measurement) based on the 

execution logs.  As shown in Figure 10, (initial) BMs are updated with the removal, 

modification, and addition of model elements by the model execution component (blue), and 

the objective uncertainty measurements are appended in BMs by the derivation of 

measurements (orange). 

The third activity is about the invariant inference using dynamic invariant detection 

techniques [62-64]. In UncerTolve, we used Daikon [62] that enables to produce a set of 

invariants (i.e., test oracle and test data specification) by executing BMs together with the 

real operational data. To merge the invariants into BMs, UncerTolve defined a set of 

heuristics, for providing recommendations to modeler about restructuring test oracles and 

test data specifications in BMs.   

 

Figure 10. Overview of UncerTolve 

Note that the model execution activity and invariant inference activity are independent of 

each other, by evolving BMs from different aspects. But we recommend to apply them 

sequentially, resulting in the improvement of the overall quality of evolved BMs by avoiding 

22 
 
 
 
 
 
 



 
 

 
the syntactic errors in the invariant inference activity. This is also how the industrial case 

study was conducted in the thesis. 

4.5 UncerTest 
To perform an automated testing of CPSs with uncertainty, uncertainty is required to be 

considered in the test case generation, test optimization and test case execution. Driven by 

such needs, an uncertainty-wise testing framework, named as UncerTest, was developed 

using model-based and search-based software testing techniques. An overview of UncerTest 

is presented in Figure 11, which is composed of three components: test case generation, 

uncertainty-wise test case minimization and uncertainty-wise test verdicts. 

As shown in Figure 11, UncerTest facilitates to generate abstract test cases and 

executable test cases based on BMs. In UncerTest, two strategies, All Simple Belief Paths 

(ASiBP), All Specified Length Belief Paths (ASlBP), were proposed for deriving abstract test 

cases based on BMs, inspired by Prime Path Coverage [65] and Specified Path Coverage 

presented in [65]. In addition, UncerTest also calculates uncertainty measurements (i.e., 

Uncertainty Measure) for all the generated test cases using Uncertainty Theory. Note that 

each generated test cases contain uncertainty information, e.g., the number of uncertainties, 

uncertainty measure. Moreover, the executable test case generation enables to seed the 

executable test cases with indeterminacy sources which might lead to the occurrence of the 

uncertainties specified in BMs.  

To reduce the number of automatically generated abstract test cases when needed, an 

uncertainty-wise test minimization approach was proposed in UncerTest using multi-

objective search algorithms (e.g., NSGA-II). As shown in Figure 11, four uncertainty-wise 

minimization strategies were defined, which were formulated as multi-objective search 

problems. All of these four problems aim to minimize the number of test cases and maximize 

the transition coverage. But the problems distinguish themselves by four uncertainty related 

objectives for different purposes of testing CPSs under uncertainty: (1) Prob. 1 aims to 

observe the reaction of CPSs in the presence of maximum uncertainties with minimum 

possible test cases by covering the maximum number of known uncertainties possible (2nd 

objective of Prob. 1 in Figure 11); (2) Prob. 2 aims to observe the reaction of CPSs in the 

presence of uncertainties from all the known uncertainty spaces with the minimum possible 

23 
 
 
 
 
 
 



 
 

 
test cases by covering at least one uncertainty from each uncertainty spaces (2nd objective 

of Prob. 2  in Figure 11); (3) Prob. 3 aims to test the parts of the system with high degree of 

confidence by selecting the high value of the uncertainty measure of test cases (2nd objective 

of Prob. 3 in Figure 11); (4) Prob. 4 aims to test the behavior of CPSs under diverse 

uncertainties with the minimum number of test cases by maximizing the coverage of the 

different uncertainties (2nd objective of Prob. 4 in Figure 11). 

In UncerTest, a set of the uncertainty-wise test verdicts (Figure 11) were defined to assign 

the result of occurrences of uncertainties during test execution. For instance, we are able to 

identify the situation whereby known uncertainty occurred under the occurrence of a 

specified indeterminacy source, based on the test results. 

 

Figure 11. Overview of UncerTest  

24 
 
 
 
 
 
 



 
 

 

5 Evaluation 
This section describes the process and key results of the evaluation for the entire thesis. 

First, two industrial case studies are described in Section 5.1. Following, the summaries of 

key results of the evaluation of the five proposed approaches with the industrial case studies 

are reported from Sections 5.2 to 5.6. 

5.1 Case Study 
To take the benefits of the U-Test project, two industrial CPS case studies with the 

available testbeds are accessible for developing and evaluating the research works in the 

thesis. One is GeoSports system from the healthcare domain described in Section 5.1.1, and 

another is an automated warehouse system from the automation domain described in Section 

5.1.2. Note that each of the proposed approaches was evaluated with at least one of the 

industrial case studies from the U-Test project. 

5.1.1 GeoSports 
GeoSports system (GS) by Future Position X (FPX) [66] is to monitor performances and 

health conditions of each player and the whole team in the game. As shown in Figure 12, the 

system integrates a set of endpoint devices (i.e., tag), a set of receiver stations (i.e., locator), 

a set of servers (i.e., QPE server), and a set of applications. Each tag embeds a set of various 

types of sensors (e.g., accelerometer and gyroscope) for collecting data regarding the 

individual performance. A locator communicates with surrounding tags by collecting the 

data at runtime, and the data allows to be visualized using applications of Quuppa, e.g., 

visualizing a position of a tag. All the data will be maintained in QPE servers.  

The case study of GS involved in this thesis is about a sport, Bandy, using the Quuppa 

system [67]. The testbed provider of the U-Test project, Nordic Med Test [68] developed 

the testing infrastructure for testing GS with uncertainties for the Bandy setting as shown in 

Figure 12. Instead of using real player to perform test case execution, the test rig is used to 

carry the Quuppa tag (Figure 12). In addition, a set of REST APIs was developed for 

controlling the test rigs and accessing the status of GS. 

25 
 
 
 
 
 
 



 
 

 

 

Figure 12. The Test Execution Solution for GS 

5.1.2 Automated Warehouse 
Automated Warehouse (AW) system by ULMA [69] provides an automated solution to 

monitor, control, and manage warehouses. Each handling facility (e.g., cranes, conveyors) 

performs as a physical unit, and together they are deployed to one handling system 

application.  

The case study of AW involved in this thesis includes several key industrial scenarios of 

an automated warehouse system, e.g., introducing a large number of pallets to the 

warehouse. Instead of using real devices to test the scenarios, ULMA [69] and IK4-Ikerlan 

[70] developed relevant simulators and emulators (Figure 13). As shown in Figure 13, the 

test infrastructure includes two handling systems that are deployed at two different sites (Site 

1 and Site 2). In each site, a local superior collects data by monitoring all types of devices 

and services (e.g., WMS), and uploads the data to a cloud superior through the network. 

Each physical device is developed as a simulator where services, i.e., WMS and MFC, are 

deployed on. Also, a set of emulators are developed for manipulating the real physical 

environment, e.g., putting a pallet on the conveyor. To access the devices, software, and 

environment, a set of Testing APIs were implemented.  

26 
 
 
 
 
 
 



 
 

 

 

Figure 13. The Test Execution Solution for AW 

5.2 U-Model (Paper A) 
Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model. M. Zhang, 

B. Selic, S. Ali, T. Yue, O. Okariz and R. Norgren. In: Proceedings of the 12th European 

Conference on Modelling Foundations and Applications (ECMFA 2016), pp. 247-264, 2016.  

DOI: 10.1007/978-3-319-42061-5_16 

 

In this paper, U-Model was proposed with aims of identifying, defining, and classifying 

uncertainties at the three-logical level of CPSs, i.e., Application, Infrastructure, and 

Integration. 

Figure 14 shows the overall process of the development and validation of U-Model and 

uncertainty requirements. An initial uncertainty conceptual model (U-Model V.1) was 

developed incrementally (A1 and A2 in Figure 14) based on existing models in the literature 

and other related examples. The activities were mainly conducted by researchers. In parallel, 

the U-Test industrial partners developed the initial uncertainty requirements (Reqs V.1), 

denoted as B1 in Figure 14. The researchers took these initial uncertainty requirements as 

inputs for refining the U-Model (A3 in Figure 14) by outputting U-Model V.2, and further 

provided some comments on how to improve the requirements using a requirements 

inspection checklist [71]. Based on the comments, the industrial partners refined the 

uncertainty requirements (Reqs V.2). Then, Reqs V.2 and U-Model V.2 were used as inputs 

for the onsite workshops conducted by both the researchers and the two industrial partners 

(A4/B3 in Figure 14). These workshops aimed at discussing the uncertainty requirements, 

27 
 
 
 
 
 
 



 
 

 
presenting U-Model to the industrial partners and collecting their feedback. The outputs were 

U-Model V.3 (the final version of U-Model) and Reqs. V.3. Using the U-Model V.3 as a 

reference model, we identified all uncertainties in uncertainty requirements (Reqs V.3) that 

produced the final version of uncertainty requirements (Reqs V.4). 

To assess the performance of U-Model in terms of identifying uncertainties in CPSs, we 

compared the identified uncertainties among Reqs V.1, Reqs V.2, and Reqs V.4 with GS and 

AW as discussed in Section 5.1. On average, U-Model was managed to identify 61.5% of 

unknown uncertainties in Reqs V.4 that weren’t explicitly specified in uncertainty 

requirements (Reqs V.1) collected from the two case studies. 

 

Figure 14. The process of development and validation of U-Model and uncertainty requirements 

28 
 
 
 
 
 
 



 
 

 

5.3 U-RUCM (Paper B) 
"Specifying Uncertainty in Use Case Models". M. Zhang, T. Yue, S. Ali, B. Selic, O. 

Okariz, R. Norgren and K. Intxausti. Journal paper that has been submitted to the Journal of 

Systems and Software (JSS), second revision. 

 

In this paper, U-RUCM was designed for explicitly specifying uncertainty as a part of 

requirements of CPSs, which extends a practical use case modeling solution, RUCM. The 

process of the development of U-RUCM is presented in Figure 15.  

First, U-RUCM was developed based on U-Model and existing uncertainty requirements 

of AW and GS (A1 in Figure 15). In addition, a questionnaire was conducted for collecting 

information about detailing and quantifying known uncertainties in the requirements with 

the current development (U-RUCM V1). The questionnaire was derived by reviewing use 

case specifications specified by industrial partners using RUCM (Uncertainty Req.V1). 

According to the questionnaire, the industrial partners refined Uncertainty Req. V2 using 

proposed U-RUCM templates. Subsequently, several workshops (A2/B2 in Figure 15) were 

held for each industrial case study with aims of presenting RUCM V1 to the industrial 

partners and collecting their feedbacks. Based on these workshops, the industrial partners 

refined Uncertainty Req. V2 to Uncertainty Req. V3 based on RUCM V1. Then, the 

researchers refined U-RUCM V1 to U-RUCM V2 (A3 in Figure 15) based on Uncertainty 

Req.V3. When U-RUCM is stable, i.e., U-RUCM V2, the U-RUCM editor was implemented. 

Consequently, we obtained Uncertainty Req. V4 specified with the U-RUCM editor. 

To compare Uncertainty Req.V1 with Uncertainty Req. V4 in terms of 20 use cases from 

GS and AW industrial case studies (Section 5.1), results showed that additional 512% for 

GS (306% for AW) of uncertainties were learned by applying the U-RUCM methodology. 

This implies that U-RUCM performed a significant improvement in dealing with 

uncertainties in requirements engineering, resulting in a more precise characterization of 

uncertainties. 

29 
 
 
 
 
 
 



 
 

 

 
- Note that U-RUCM was developed following U-Model, so U-Model is the final version of the development 
of U-Model (Figure 14) and Uncertainty Req. V1 is the final version of uncertainty requirements specified by 
RUCM (Figure 14). 

Figure 15. The process of the development and validation of U-RUCM 

5.4 UncerTum (Paper C) 
"Uncertainty-Wise Cyber-Physical System Test Modeling". M. Zhang, S. Ali, T. Yue, R. 

Norgren and O. Okariz. Journal of Software & Systems Modeling (SOSYM). DOI: 

10.1007/s10270-017-0609-6 

 

An uncertainty modeling framework, named as UncerTum, was proposed in this paper, 

for supporting MBT of CPSs with explicitly represented uncertainties, e.g., the uncertain 

behavior of CPSs.  

As shown in Figure 16, the process of developing UncerTum is iterative, which was 

intertwined with the incremental development of test ready models. The development of 

UncerTum and test ready models were mainly conducted by researchers (A1-A3 and B1-B3 

30 
 
 
 
 
 
 



 
 

 
in Figure 16), by taking inputs of industrial requirements and scenarios provided by 

industrial use case providers (FPX and ULMA). During the development phase of 

UncerTum, a modeling workshop (A4/B4/C1/D1 in Figure 16) was conducted to initially 

present UncerTum (UncerTum V2) and test ready models (Test Ready Models V1) specified 

with UncerTum, and collect feedbacks about UncerTum and test ready models from the use 

case providers and testbed providers. Based on the collected feedbacks, the researchers 

developed UncerTum V3 and Test Ready Models V2. Moreover, two workshops for each 

case study (A5/B6/C3/D3/E2 in Figure 16) were held with aims of the validation of test 

ready models and discussion on implementations of test beds and test infrastructures. Thus, 

Test Ready Models V2 was modified as Test Ready Models V3. At last, the final version of 

test ready models is Test Ready Models V4 that was obtained by validating Test Ready 

Models V3 using model execution (B7 in Figure 16). 

 

Figure 16. The process of the development of UncerTum and test ready models 

Except for these two industrial case studies, UncerTum was also evaluated with one real-

world case study of videoconference system (VCS) [72] developed by Cisco, Norway, and 

one open source CPS case study that is modified SafeHome system provided in [73]. 

31 
 
 
 
 
 
 



 
 

 
The evaluation of UncerTum with these four case studies (i.e., AW, GS, VCS and 

SafeHome) was conducted from three main perspectives: (1) Completeness of profiles and 

model libraries: results showed that UncerTum is sufficiently complete to model all 

uncertainties identified in the four case studies; (2) Effort required to model uncertainty with 

UncerTum: On average, UncerTum required 18.5% more time to apply stereotypes from 

UUP and use datatypes from model libraries on test ready models; and (3) Correctness of 

developed test ready models by validation process: UncerTum identified seven types of 

problems in test ready models from two main categories (i.e., incorrect and incomplete). 

5.5 UncerTolve (Paper D) 
"Uncertainty-Wise Evolution of Test Ready Models". M. Zhang, S. Ali, T. Yue and R. 

Norgren. Journal of Information and Software Technology (IST). DOI: 

10.1016/j.infsof.2017.03.003 

 

This paper proposed an approach (UncerTolve) to interactively evolve BM against real 

operational data, which is composed of three features: (1) validation of BMs based the real 

operational data via model execution for correcting syntactic problems, (2) derivation of 

objective uncertainty measurements in BMs based on the execution log, and (3) inference of 

state invariants and guards of transitions in BMs by a dynamic invariant detector. To evaluate 

UncerTolve, we applied UncerTolve on one industrial case study1, GS, by the following 

steps: (1) we developed initial BMs for GS, denoted as BM V1; (2) we executed the initial 

BMs via model execution for validating BMs against real operational data of GS and 

updating objective measurements of uncertainty, which produced the evolved BMs, denoted 

as BM V2; (3) then we used Daikon to derive invariants based on the data that were used to 

further evolve BMs (denoted as BM V3) by integrating the derived invariants into the BMs; 

(4) since the integration may lead to new errors, we performed the model validation via 

model execution again. After these four steps, we obtained the final version of BMs, denoted 

as BM V3'.  

1 Since the operational data is not available for AW case study, we only applied GS to evaluate UncerTolve. 

32 
 
 
 
 
 
 

                                                           
 



 
 

 
To assess the performance of UncerTolve, we collected the number of evolved model 

elements regarding belief element, state, and transition. By comparing BM V1 with BM V3', 

we found that UncerTolve managed to evolve 51% of belief elements, 18% of states and 

21% of transitions.  

5.6 UncerTest (Paper E) 
"Uncertainty-wise Test Case Generation and Minimization for Cyber-Physical Systems: 

A Multi-Objective Search-based Approach". M. Zhang, S. Ali and T. Yue. Journal paper 

that has been submitted to ACM Transactions Software Engineering and Methodology 

(TOSEM). 

 

UncerTest is an approach for involving uncertainty aspect into MBT of CPSs. In 

UncerTest, two test case generation strategies (ASiBP and ASlBP) and four uncertainty-wise 

test case minimization problems (Prob1 -- Prob4) were developed. By combining 2 

generation and minimization to get a test set, five combined strategies were identified in 

total: 1) Str1: ASiBP, 2) Str2: ASlBP and Prob1, 3) Str3: ASlBP and Prob2, 4) Str4: ASlBP 

and Prob3, 5) Str5: ASlBP and Prob4.  

First, to evaluate the strategies (Str2 -- Str5) that require test case minimization, we 

conducted an experiment by investigating uncertainty-wise test case minimization problems 

with eight multi-objective search algorithms (i.e., NSGA-II [74], NSGA-III [75], MOCell 

[76, 77], SPEA2  [78], CellDE  [78], AbYSS [79], GDE3 [80] and SMPSO [81]) and random 

search algorithm using five use cases from two industrial case studies, i.e., four for AW and 

one for GS. Such experiment aims at answering two research questions (RQ1 and RQ2), and 

results are also reported as follows. 

RQ1: How does the selected multi-objective search algorithms compare to RS regarding 

solving uncertainty-wise minimization problems (Str2 -- Str5)?  

Results for RQ1: Results showed RS obtained the low confidence in order to become 

the best algorithm for Str2 -- Str5 among two case studies, which implies that problems 

2 The number of test cases generated by ASiBP is small in our case study, ASiBP does not need to combine 
with test case minimizations. 

33 
 
 
 
 
 
 

                                                           
 



 
 

 
(Prob1 -- Prob4) couldn’t have been solved effectively with RS and thus provides the 

evidence of using complex multi-objective search algorithms. 

RQ2: Which algorithm is the best among selected ones to solve uncertainty-wise 

minimization problems (Str2 -- Str5) respectively? 

Results for RQ2: To obtain the result of RQ2, 36 pair-wise comparisons among selected 

algorithms (C2
9) need to be made for each of five use cases for four uncertainty-wise 

minimization problems (Str2 -- Str5), and the total is 720 (36×4×5). Results showed SPEA2 

is the consistently best, or the second best (only in three instances). Thus, SPEA2 was 

recommended to solve uncertainty-wise minimization problems (Str2 -- Str5) to find the 

most optimal test set. 

The next evaluation was designed about assessing the performance of the test set obtained 

by uncertainty-wise strategies (Str1 -- Str5) in term of the cost-effectiveness of observing 

uncertainties in CPSs with two industrial case studies (Section 5.1). For measuring cost, we 

defined one metric, ET, that is the time taken for executing the test set produced by one of 

the uncertainty-wise strategies (Str1 -- Str5). To measure effectiveness, two aspects were 

mainly considered in the evaluation: known uncertainties observed and unknown 

uncertainties detected.  

For observing uncertainties in CPSs, the test set obtained by each uncertainty-wise 

strategy for each case study was required to be executed on the test infrastructures as shown 

in Figure 12 and Figure 13. Based on results, we were able to answer the following research 

question. 

RQ3: Which uncertainty-wise strategy (Str2 -- Str5) is effective to discover uncertainties 

in the real CPS? 

Results for RQ3: By analysing the results of the execution of test sets applied with the 

five strategies (Str2 -- Str5) for the five use cases, Str2 with SPEA2 performed best, which 

observed on average 51% more uncertainties due to unknown indeterminacy sources as 

compared to the rest of test strategies for all the use cases. Moreover, it managed to discover 

13 unknown uncertainties due to unknown indeterminacy sources across all the use cases.  

 

 

 

34 
 
 
 
 
 
 



 
 

 

6 Discussion 
Uncertainty-wise Modeling. Currently our modeling methodologies are for specifying 

uncertainty at two phases: requirement engineering (use case models with U-RUCM) and 

test design (test ready models with UncerTum). From the uncertainty perspective, 

measurements, sources and characteristics of uncertainties are all allowed to be specified in 

models, which help to support uncertainty related reasoning (e.g., discovering unknown 

uncertainties and inferring measurements) and analyses (e.g., risk and reliability analyses).  

In terms of use case modeling, our methodology (i.e., U-RUCM) is applicable for 

specifying uncertainty at the use case level (i.e., use case specification), scenario level (i.e., 

flow of events) and action level (i.e., sentence). In addition, we introduced the causality of 

uncertainty occurrences into the structure of use case specifications. That is, a use case level 

uncertainty can originate from one or more indeterminacy sources; a scenario level 

uncertainty can originate from an action level uncertainty; an action level uncertainty can 

originate from an indeterminacy source or another action level uncertainty. This can help to 

validate specified uncertainties and derive new uncertainty at the structure level.  

In term of test modeling, with the defined profile (UUP) and model libraries, our 

methodology (i.e., UncerTum) can be used to specify uncertainty information (e.g., sources 

of uncertainty) in structure models (i.e., class diagram), and capture uncertain behaviors of 

system under test in behavior models (i.e., state machines). Such test ready models can be 

used to generate test cases and optimize test process with for example UncerTest, and can 

be evolved when taking uncertainty into account with for example UncerTolve. In the future, 

investigation should be conducted to integrate uncertainty modeling with other modeling 

notations such as activity diagrams and SysML. 

Uncertainty-wise Modeling with U-Model. U-RUCM and UncerTum were proposed by 

establishing on U-Model for representing uncertainty and its characteristics in use case 

models and test ready models. Based on the evaluation of these two approaches with two 

industrial case studies, we observed that with our uncertainty modeling methodologies, all 

the identified uncertainties for the two case studies can be adequately captured. It gives us 

an indication that U-Model as an uncertainty conceptual model is sufficiently complete for 

classifying and characterizing uncertainty in the context of CPSs. Therefore, in the future, 

35 
 
 
 
 
 
 



 
 

 
we are confident that U-Model can be adopted or adapted for enabling uncertainty modeling 

at other phases of the software/system development lifecycle such as design, and it also can 

be used to support model-based uncertainty testing with other modeling languages such as 

SysML. 

Uncertainty-wise Evolution. Currently UncerTolve managed to evolve model elements 

(e.g., states, transition, uncertainty) of behavior models (i.e., state machines) specified with 

UncerTum, but it is only applicable when real operational data is available. To ensure the 

quality of test ready models, it is required to develop an approach to evolve the models with 

uncertainty when lacking real operational data. One possible solution is to proactively evolve 

such models by directly executing the models on test infrastructures with seeded 

indeterminacy sources. To make the execution cost-effective, an execution strategy can be 

also evolved with the help of artificial intelligence techniques (e.g., genetic programming 

[82]) for achieving the high efficiency of detecting unknown behaviors (e.g., uncertainty). 

Uncertainty-wise Testing with the UncerTum models. Our methodology supports to 

introduce uncertainty to test generation, test optimization and test execution. More 

specifically, for test case generation, we applied Uncertainty Theory to calculate 

measurements for each generated test cases. But Uncertainty Theory [31] is applicable when 

only subjective measurements are accessible. We will investigate more about measuring 

uncertainty and its derived test cases with different theories (e.g., Probability theory [28, 29], 

Dempster–Shafer theory [83]). For test optimization, we applied multi-objective search by 

reformulating test minimization problems as search problems. Each of the problems involves 

one uncertainty related objective for testing CPSs with different settings of uncertainties 

from thee perspectives of amount, coverage, measurement and space of uncertainty. In the 

future, the correlations between these uncertainty related objectives and unknown 

uncertainty detection will be investigated further. For test case execution, our methodology 

supports the generation of executable test cases with seeded indeterminacy sources, resulting 

in executing test cases with different environments and observing occurrences of 

uncertainties along with their indeterminacy sources. Doing so helps to observe previously 

unknown uncertainties during execution, study and examine relationships between 

uncertainties and their indeterminacy sources. 

36 
 
 
 
 
 
 



 
 

 
CPS Uncertainty-wise Testing. In this thesis, our empirical study was mainly conducted 

with two CPS domains (Automation, Healthcare) and thus additional case studies from more 

CPS domains are required to further generalize the evalutaion results.  

Applying Uncertainty-wise approaches in industry. By benefiting from the U-Test 

project, all the proposed uncertainty-wise approaches were evaluated with the industrial case 

studies. The evaluation results are summarized in Section 5, which gives us an indication 

that the uncertainty-wise approaches are to certain extent applicable in industry for testing 

industrial CPSs with uncertainty. Encouraged by the positive feedback from the evaluation 

and industrial partners, our test modelling (UncerTum) and testing methodology (UncerTest) 

have been partially implemented in a commercial MBT tools, CertifyIT3. This provides a 

unique opportunity to attract more interests of industry in the uncertainty-wise modelling 

and testing and exploit their potential in real industrial contexts in the future.  

  

3 http://www.smartesting.com/en/certifyit/ 

37 
 
 
 
 
 
 

                                                           
 



 
 

 

7 Conclusion and Future Work 
Uncertainty is inherent in Cyber-physical systems (CPSs) due to various reasons, e.g., 

CPSs often operate in unpredictable environments.  Therefore, a systematic approach to 

handling uncertainty in CPSs is required, for ensuring that CPSs are capable of operating 

properly in the presence of uncertainties during their actual operations. 

In the thesis, an uncertainty-wise CPSs testing was realized via the integration of the five 

proposed approaches: (1) U-Model, which is an unified and comprehensive uncertainty 

conceptual model; (2) U-RUCM, which facilitates a more precise characterization of 

uncertainty in requirement engineering; (3) UncerTum, which provides the modeling 

features to construct test ready models with uncertainty; (4) UncerTolve, which enables the 

evolution of the test ready models and subjective uncertainties; and (5) UncerTest, which 

offers a cost-effective manner to test CPSs under uncertainty by taking uncertainty into 

consideration in test generation, test optimization, and test case execution.  

In total, by conducting the evaluation with at least one industrial case study for each of 

the five approaches, we found that (1) the modeling methodologies (i.e., U-RUCM and 

UncerTum) are sufficiently complete  and comprehensive with the support of guidelines; (2) 

the testing methodology (i.e., UncerTest) implemented a cost-effective solution for 

observing CPSs under uncertainty; (3) all approaches together served a more comprehensive 

identification of uncertainty in CPSs; and (4) the overall uncertainty-wise CPSs testing is 

systematic by considering uncertainty in requirements elicitation, test models construction, 

test design, test optimization and test case execution. 

In the future, some possible directions may be conducted: (1) evolving uncertainty in 

requirements specified with U-RUCM, by reasoning relationships (e.g., causality, 

dependency) and measurements among uncertainties in use case specifications, sentences 

and parts of sentences; (2) instead of evolving BMs against the past evidence (e.g., collected 

real operational data), developing the proactive evolution of BMs by directly executing 

models on the test infrastructure with seeded indeterminacy sources; (3) further studying 

correlations between the uncertainty-related objective (e.g., UM) and the identification of 

unknown uncertainties. 

  

38 
 
 
 
 
 
 



 
 

 

Reference 
[1] D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from 

theory to practice, CRC Press, 2015. 

[2] S. Sunder, Foundations for Innovation in Cyber-Physical Systems, in:   Proceedings 

of the NIST CPS Workshop, Chicago, IL, USA, 2012. 

[3] E. Geisberger, and M. Broy, Living in a networked world: Integrated research agenda 

Cyber-Physical Systems (agendaCPS), Herbert Utz Verlag, 2015. 

[4] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, Understanding 

Uncertainty in Cyber-Physical Systems: A Conceptual Model, in:   Proceedings of 

the 12th European Conference on Modelling Foundations and Applications 

(ECMFA). pp. 247-264, 2016. 

[5] T. Yue, L. C. Briand, and Y. Labiche, aToucan: An Automated Framework to Derive 

UML Analysis Models from Use Case Models, ACM Transactions on Software 

Engineering and Methodology (TOSEM), vol. 24, no. 3 (2015) 13. 

[6] T. Yue, L. C. Briand, and Y. Labiche, Facilitating the transition from use case models 

to analysis models: Approach and experiments, ACM Transactions on Software 

Engineering and Methodology (TOSEM), vol. 22, no. 1 (2013) 5. 

[7] OMG, "Meta Object Facility (MOF) Core Specification (Version 2.4.2)," 2014,  

http://www.omg.org/spec/MOF/2.4.2. 

[8] T. Yue, S. Ali, and M. Zhang, "Applying A Restricted Natural Language Based Test 

Case Generation Approach in An Industrial Context," International Symposium on 

Software Testing and Analysis (ISSTA), 2015. 

[9] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, Automatic generation of 

system test cases from use case specifications, in Proceedings of the 2015 

International Symposium on Software Testing and Analysis, Baltimore, MD, USA, 

2015, pp. 385-396. 

[10] J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu, Assessing the Quality of Industrial 

Avionics Software: An Extensive Empirical Evaluation, Empirical Software 

Engineering (2016). 

39 
 
 
 
 
 
 



 
 

 
[11] T. Yue, H. Zhang, S. Ali, and C. Liu, A Practical Use Case Modeling Approach to 

Specify Crosscutting Concerns: Industrial Applications, 2015. 

[12] T. Yue, L. Briand, and Y. Labiche, A Use Case Modeling Approach to Facilitate the 

Transition Towards Analysis Models: Concepts and Empirical Evaluation, in:  A. 

Schürr and B. Selic, eds. Model Driven Engineering Languages and Systems 

(MODELS 2009), 2009 2009. 

[13] M. Shafique, and Y. Labiche, A systematic review of model based testing tool 

support, Carleton University, Canada, Tech. Rep. Technical Report SCE-10-04 

(2010) 01-21. 

[14] P. C. Jorgensen, The Craft of Model-based Testing, CRC Press, 2017. 

[15] M. Utting, and B. Legeard, Practical model-based testing: a tools approach, Morgan 

Kaufmann, 2010. 

[16] P. McMinn, Search-based software test data generation: A survey, Software Testing 

Verification and Reliability, vol. 14, no. 2 (2004) 105-156. 

[17] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, Search based software 

engineering: Techniques, taxonomy, tutorial, Empirical software engineering and 

verification, pp. 1-59: Springer, 2012. 

[18] M. Harman, S. A. Mansouri, and Y. Zhang, Search-based software engineering: 

Trends, techniques and applications, ACM Comput. Surv., vol. 45, no. 1 (2012) 1-

61,  10.1145/2379776.2379787. 

[19] P. McMinn, Search-Based Software Testing: Past, Present and Future, in:   2011 

IEEE Fourth International Conference on Software Testing, Verification and 

Validation Workshops. pp. 153-163, 2011 21-25 March 2011. 

[20] M. Harman, Y. Jia, and Y. Zhang, Achievements, Open Problems and Challenges 

for Search Based Software Testing, in:   2015 IEEE 8th International Conference on 

Software Testing, Verification and Validation (ICST). pp. 1-12, 2015 13-17 April 

2015. 

[21] W. Afzal, R. Torkar, and R. Feldt, A systematic review of search-based testing for 

non-functional system properties, Information and Software Technology, vol. 51, no. 

6 (2009) 957-976, 2009/06/01/,  https://doi.org/10.1016/j.infsof.2008.12.005. 

40 
 
 
 
 
 
 



 
 

 
[22] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, A systematic review 

of the application and empirical investigation of search-based test case generation, 

IEEE Transactions on Software Engineering, vol. 36, no. 6 (2010) 742-762. 

[23] M. Harman, S. A. Mansouri, and Y. Zhang, Search based software engineering: A 

comprehensive analysis and review of trends techniques and applications, 

Department of Computer Science, King’s College London, Tech. Rep. TR-09-03 

(2009). 

[24] S. Yoo, and M. Harman, Regression testing minimization, selection and 

prioritization: a survey, Software Testing, Verification and Reliability, vol. 22, no. 2 

(2012) 67-120. 

[25] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng, Test case 

prioritization approaches in regression testing: A systematic literature review, 

Information and Software Technology (2017). 

[26] K. Deb, and K. Deb, Multi-objective Optimization, Search Methodologies: 

Introductory Tutorials in Optimization and Decision Support Techniques, E. K. 

Burke and G. Kendall, eds., pp. 403-449, Boston, MA: Springer US, 2014. 

[27] S. Yoo, and M. Harman, Pareto efficient multi-objective test case selection, in. pp. 

140-150, 2007. 

[28] P. C. Jorgensen, Software testing: a craftsman’s approach, CRC press, 2016. 

[29] Z. Xuemei, T. Xiaolin, and P. Hoang, Considering fault removal efficiency in 

software reliability assessment, IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, vol. 33, no. 1 (2003) 114-120,  

10.1109/TSMCA.2003.812597. 

[30] B. Liu, Why is there a need for uncertainty theory, Journal of Uncertain Systems, 

vol. 6, no. 1 (2012) 3-10. 

[31] B. Liu, Uncertainty theory, Springer, 2015. 

[32] Y. Zhu, UNCERTAIN OPTIMAL CONTROL WITH APPLICATION TO A 

PORTFOLIO SELECTION MODEL, Cybernetics and Systems, vol. 41, no. 7 

(2010) 535-547, 2010/09/24,  10.1080/01969722.2010.511552. 

41 
 
 
 
 
 
 



 
 

 
[33] L. Yang, K. Li, and Z. Gao, Train Timetable Problem on a Single-Line Railway With 

Fuzzy Passenger Demand, IEEE Transactions on Fuzzy Systems, vol. 17, no. 3 

(2009) 617-629,  10.1109/TFUZZ.2008.924198. 

[34] J. Peng, Risk metrics of loss function for uncertain system, Fuzzy Optimization and 

Decision Making, vol. 12, no. 1 (2013) 53-64, 2013//,  10.1007/s10700-012-9146-5. 

[35] S. Han, Z. Peng, and S. Wang, The maximum flow problem of uncertain network, 

Information Sciences, vol. 265 (2014) 167-175, 5/1/,  

http://dx.doi.org/10.1016/j.ins.2013.11.029. 

[36] W. Rudin, Real and complex analysis, Tata McGraw-Hill Education, 1987. 

[37] M. Zhang, S. Ali, T. Yue, and R. Norgre, Uncertainty-wise evolution of test ready 

models, Information and Software Technology (2017),  

http://dx.doi.org/10.1016/j.infsof.2017.03.003. 

[38] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, Uncertainty-Wise Cyber-

Physical System test modeling, Software & Systems Modeling (2017), 2017/07/25,  

10.1007/s10270-017-0609-6. 

[39] OMG, Unified Modeling Language 2.5 (UML), June 2015,  

http://www.omg.org/spec/UML/. 

[40] OMG, "Object Constraint Language (OCL)," 2014,  

http://www.omg.org/spec/OCL/. 

[41] "U-Model," accessed; http://www.zen-

tools.com/rucm/metamodels/U_Model/content/_Z4.v.f.wA.h.kE.eW31.c7B.e8.r.j_

Q_root.html. 

[42] accessed. 

[43] "BeliefUCMeta," accessed; http://www.zen-

tools.com/rucm/metamodels/belief_ucmeta/content/_.h.n.c.j.cJ.nFE.eW.a-.f8-

.j.xNWI.w_root.html. 

[44] "U-RUCM: Specifying Uncertainty in Use Case Models," accessed; http://zen-

tools.com/rucm/U_RUCM.html. 

[45] "UncerTum," accessed; https://bitbucket.org/ManZH/uncertum-v1. 

[46] M. Zhang, S. Ali, T. Yue, and R. Norgre, An Integrated Modeling Framework to 

Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty, 

42 
 
 
 
 
 
 



 
 

 
Technical report 2016-02, Simula Research Laboratory, 2016; 

https://www.simula.no/publications/integrated-modeling-framework-facilitate-

model-based-testing-cyber-physical-systems. 

[47] "IBM RSA Simulation Toolkit," accessed  2016; http://www-

03.ibm.com/software/products/en/ratisoftarchsimutool. 

[48] "Eclipse OCL," accessed  2016; 

http://www.eclipse.org/modeling/mdt/?project=ocl#ocl. 

[49] "jMetal," accessed  2016; http://jmetal.sourceforge.net/. 

[50] J. J. Durillo, and A. J. Nebro, jMetal: A Java framework for multi-objective 

optimization, Advances in Engineering Software, vol. 42, no. 10 (2011) 760-771. 

[51] "UncerTest: an uncertainty-wise testing tool for test generation and optimization," 

accessed; https://bitbucket.org/ManZH/uncertest-v1. 

[52] C. Tannert, H. D. Elvers, and B. Jandrig, The ethics of uncertainty, EMBO reports, 

vol. 8, no. 10 (2007) 892-896. 

[53] M. H. Mishel, Uncertainty in illness, Image: The Journal of Nursing Scholarship, 

vol. 20, no. 4 (1988) 225-232. 

[54] A. S. Babrow, C. R. Kasch, and L. A. Ford, The many meanings of uncertainty in 

illness: Toward a systematic accounting, Health communication, vol. 10, no. 1 

(1998) 1-23. 

[55] P. K. Han, W. M. Klein, and N. K. Arora, Varieties of Uncertainty in Health Care A 

Conceptual Taxonomy, Medical Decision Making, vol. 31, no. 6 (2011) 828-838. 

[56] G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives, 

Routledge, 2012. 

[57] D. V. Lindley, Understanding uncertainty (revised edition), John Wiley & Sons, 

2014. 

[58] K. Potter, P. Rosen, and C. R. Johnson, From quantification to visualization: A 

taxonomy of uncertainty visualization approaches, Uncertainty Quantification in 

Scientific Computing, pp. 226-249: Springer, 2012. 

[59] B. N. Taylor, Guidelines for Evaluating and Expressing the Uncertainty of NIST 

Measurement Results (rev, DIANE Publishing, 2009. 

43 
 
 
 
 
 
 



 
 

 
[60] S. Wasserkrug, A. Gal, and O. Etzion, A taxonomy and representation of sources of 

uncertainty in active systems, Next Generation Information Technologies and 

Systems, pp. 174-185: Springer, 2006. 

[61] T. Yue, L. Briand, and Y. Labiche, aToucan: An Automated Framework to Derive 

UML Analysis Models from Use Case Models, ACM Transactions on Software 

Engineering and Methodology (2014). 

[62] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, Dynamically discovering 

likely program invariants to support program evolution, IEEE Transactions on 

Software Engineering, vol. 27, no. 2 (2001) 99-123,  10.1109/32.908957. 

[63] C. Csallner, N. Tillmann, and Y. Smaragdakis, DySy: dynamic symbolic execution 

for invariant inference, in Proceedings of the 30th international conference on 

Software engineering, Leipzig, Germany, 2008, pp. 281-290. 

[64] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic, Using dynamic 

execution traces and program invariants to enhance behavioral model inference, in:   

2010 ACM/IEEE 32nd International Conference on Software Engineering. pp. 179-

182, 2010 2-8 May 2010. 

[65] P. Ammann, and J. Offutt, Introduction to software testing, Cambridge University 

Press, 2016. 

[66] "Future Position X," accessed  2017; http://www.fpx.se/. 

[67] "Quuppa - Do more with Location," accessed  2017; http://quuppa.com/. 

[68] "Nordic Med Test," accessed  2017; http://www.nordicmedtest.se/. 

[69] "ULMA Handling System," accessed  2017; http://www.ulmahandling.com/en/. 

[70] "IK4-IKERLAN," accessed  2017; http://www.ikerlan.es/eu/. 

[71] T. Yue, L. C. Briand, and Y. Labiche, Facilitating the Transition From Use Case 

Models to Analysis Models: Approach and Experiments, ACM Transactions on 

Software Engineering and Methodology, vol. 22, no. 1 (2013). 

[72] S. Ali, L. C. Briand, and H. Hemmati, Modeling robustness behavior using aspect-

oriented modeling to support robustness testing of industrial systems, Software & 

Systems Modeling, vol. 11, no. 4 (2012) 633-670. 

[73] R. S. Pressman, Software engineering: a practitioner's approach 7th edition, Palgrave 

Macmillan, 2010. 

44 
 
 
 
 
 
 



 
 

 
[74] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective 

genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, vol. 6, 

no. 2 (2002) 182-197. 

[75] K. Deb, and H. Jain, An Evolutionary Many-Objective Optimization Algorithm 

Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving 

Problems With Box Constraints, IEEE Transactions on Evolutionary Computation, 

vol. 18, no. 4 (2014) 577-601,  10.1109/TEVC.2013.2281535. 

[76] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Mocell: A cellular 

genetic algorithm for multiobjective optimization, International Journal of Intelligent 

Systems, vol. 24, no. 7 (2009) 726-746. 

[77] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Design issues in a 

multiobjective cellular genetic algorithm, in:  S. Obayashi, K. Deb, C. Poloni, T. 

Hiroyasu and T. Murata, eds. International Conference on Evolutionary Multi-

Criterion Optimization. pp. 126-140, 2007 2007. 

[78] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto 

evolutionary algorithm, in:   Evolutionary Methods for Design, Optimization and 

Control with Applications to Industrial Problems (EUROGEN 2001), Athens. 

Greece, International Center for Numerical Methods in Engineering, 2001. 

[79] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, AbYSS: 

Adapting scatter search to multiobjective optimization, IEEE Transactions on 

Evolutionary Computation, vol. 12, no. 4 (2008) 439-457. 

[80] S. Kukkonen, and J. Lampinen, GDE3: The third evolution step of generalized 

differential evolution, in. pp. 443-450, 2005. 

[81] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba, 

SMPSO: A new pso-based metaheuristic for multi-objective optimization, in:   2009 

IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making 

(MCDM), Nashville, TN, USA. pp. 66-73, 2009 2009. 

[82] J. R. Koza, “Genetic programming II: Automatic discovery of reusable 

subprograms,” Cambridge, MA,  USA, 1994. 

[83] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,” 

The annals of mathematical statistics, pp. 325-339, 1967.   

45 
 
 
 
 
 
 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part II 
Papers 

  

46 
 
 
 
 
 
 



 
 

 

Paper A 

 
 

Understanding Uncertainty in Cyber-
Physical Systems: A Conceptual Model 

 
 
 

Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz and Roland. 
Norgren 

 

 

 
 
 
 
 

 

In: Proceedings of the 12th European Conference on Modelling Foundations and 

Applications (ECMFA 2016), pp. 247-264, 2016. 

DOI: 10.1007/978-3-319-42061-5_16 

  

47 
 
 
 
 
 
 



 
 

 

Abstract 
Uncertainty is intrinsic in most technical systems, including Cyber-Physical Systems 

(CPS). Therefore, handling uncertainty in a graceful manner during the real operation of 

CPS is critical. Since designing, developing, and testing modern and highly sophisticated 

CPS is an expanding field, a step towards dealing with uncertainty is to identify, define, and 

classify uncertainties at various levels of CPS. This will help develop a systematic and 

comprehensive understanding of uncertainty. To that end, we propose a conceptual model 

for uncertainty specifically designed for CPS. Since the study of uncertainty in CPS 

development and testing is still irrelatively unexplored, this conceptual model was derived 

in a large part by reviewing existing work on uncertainty in other fields, including 

philosophy, physics, statistics, and healthcare. The conceptual model is mapped to the three 

logical levels of CPS: Application, Infrastructure, and Integration. It is captured using UML 

class diagrams, including relevant OCL constraints. To validate the conceptual model, we 

identified, classified, and specified uncertainties in two distinct industrial case studies. 

Keywords. Uncertainty; Cyber-Physical Systems; Conceptual Model. 

1 Introduction 

Cyber-Physical Systems (CPS) are present in a variety of safety/mission critical domains 

[1-3]. Given the pervasiveness of CPS and their criticality to the daily functioning of society, 

it is vital for such systems to operate in a reliable manner. However, since they generally 

function in an inherently complex and unpredictable physical environment, a major 

difficulty with these systems is that they must be designed and operated in the presence of 

uncertainty. By uncertainty we mean here the lack of certainty (i.e., knowledge) about the 

timing and nature of inputs, the state of a system, a future outcome, as well as other relevant 

factors. 

As a first crucial step in such an investigation, we feel that it is necessary to understand 

the phenomenon of uncertainty and all its relevant manifestations. This means to 

systematically identify, classify and specify uncertainties that might arise at any of the three 

levels of CPS: Application, Infrastructure, and Integration. Based on studying and analyzing 

existing uncertainty models developed in other fields, including philosophy, physics, 

48 
 
 
 
 
 
 



 
 

 
statistics and healthcare [4-7], we have defined an uncertainty conceptual model for CPS (U-

Model) with the following objectives: 1) provide a unified and comprehensive description 

of uncertainties to both researchers and practitioners, 2) classify uncertainties with the aim 

of identifying common representational patterns when modeling uncertain behaviors, 3) 

provide a reference model for systematically collecting uncertainty requirements, 4) serve 

as a methodological baseline for modeling uncertain behaviors in CPS, and, last but not least, 

5) provide a basis for standardization of the conceptual model leading to its broader 

application in practice. 

To verify the completeness and validity of the U-Model, we validated it using uncertainty 

requirements4 collected from two industrial case studies from two different domains: 1) 

Automated Warehouses developed by ULMA Handling Systems 

(www.ulmahandling.com/en/), Spain, 2) GeoSports (fpx.se/geo-sports/) developed by 

Future Position X, Sweden. This empirical validation was systematically performed in 

several stages and, as a result, several revisions of the U-Model were obtained in addition to 

a refined set of uncertainty requirements. The version of the U-Model that emerged from this 

work is presented in this paper. Based on the results of this validation, we discovered 61.5% 

(averaged across the two case studies) additional uncertainties not identified in the initial 

specifications. The rest of this paper is organized as follows:  Section 2 presents the 

background and a running example. Section 3 presents the U-Model. Section 4 presents 

evaluation and discussion. Section 5 discusses related work and we conclude the paper in 

Section 6. 

2 Background and Running Example 
A CPS is defined in [8] as: “A set of heterogeneous physical units (e.g., sensors, control 

modules) communicating via heterogeneous networks (using networking equipment) and 

potentially interacting with applications deployed on cloud infrastructures and/or humans 

to achieve a common goal” and is conceptually shown in Fig. A-1. As defined in [8], 

uncertainty can occur at the following three levels (Fig. A-1): 1) Application level: Due to 

events/data originating from the application of the CPS; 2) Infrastructure level: Due to 

4 Use cases containing scenarios having uncertainty.  

49 
 
 
 
 
 
 

                                                           
 



 
 

 
interactions including events/data among physical units, networking infrastructure, and/or 

cloud infrastructure, 3) Integration level: Due to either interaction among uncertainties at 

the first two levels or due to interactions between application and infrastructure levels.  

 

Fig. A-1. Conceptual model of a Cyber-Physical System [8] 

 
Due to confidentiality constraints, the actual industrial CPS case studies that we used to 

evaluate the U-Model (Section 4) cannot be described in detail. Instead, we chose a 

Videoconferencing Systems (VCS) developed by Cisco, Norway, as an example to illustrate 

the conceptual model that has been used in our previous projects.  

A typical VCS sends and receives audio/video streams to other VCS in a videoconference 

including dedicated hardware-based VCS, software-based VCS for PCs, and cloud-based 

VCS solutions (e.g., WebEx) as shown in Fig. A-2 (inspired from [9] and our existing 

collaboration with Cisco). To support videoconferences a complex infrastructure is provided 

by Cisco (Fig. A-2) comprising of a variety of hardware such as gateways (e.g., Expressway) 

and dedicated servers (e.g., Telepresence and unified Call Management servers). In Fig. A-

2, we also show the various levels at which the uncertainties can occur in the context of our 

running example. For example, as shown in Fig. A-2, at Site 2, the interactions of Application 

level uncertainties in VCS 2 and uncertainties in the Telepresence Servers are shown as 

Integration level uncertainties.   

To facilitate the understanding of concepts, a VCS represents aspects of the physical 

world in a somewhat simplified form. Among other functions, the VCS controls the 

movement of a set of cameras that are directly attached to it via wired/wireless media. This 

can also be performed via a cloud-based VCS application (i.e., WebEx) in addition to 

dedicated hardware-based solutions. In the course of a videoconference, a number of 

50 
 
 
 
 
 
 



 
 

 
different uncertainties exist due to the complex and heterogeneous collection of networks, 

cloud-based infrastructures, and VCSs. 

 

Fig. A-2. Running Example – Videoconferencing System (VCS) 

3 Uncertainty Conceptual Model 
The U-Model includes Belief Model, Uncertainty Model and Measure Model. Their key 

details are presented below, whereas more details are presented in [10]. 

3.1 Belief Model 
The U-Model takes a subjective approach to representing uncertainty. This means that 

uncertainty is modeled as a state (i.e., worldview) of some agent or agency – henceforth 

referred to as a BeliefAgent – that, for whatever reason, is incapable of possessing complete 

and fully accurate knowledge about some subject of interest. Since it lacks perfect 

knowledge, a BeliefAgent possesses a set of subjective Beliefs about the subject. These may 

be valid, if the beliefs accurately represent facts, or invalid, if they do not5. A Belief is an 

abstract concept, but can be expressed in concrete form via one or more explicit 

BeliefStatements. Different BeliefAgents may hold different views about a given subject, 

which is why each BeliefStatement is associated with a particular BeliefAgent. Note that a 

BeliefAgent does not necessarily represent a human individual; it could constitute a 

5 Such a strictly binary categorization may not be always realistic, since Beliefs could be characterized by 
degrees of validity. However, in this model, we choose to ignore such subtleties. Specifically, a 
BeliefStatement is deemed to be valid if it is a sufficient approximation of the truth for the purpose on hand. 

51 
 
 
 
 
 
 

                                                           
 



 
 

 
community of individuals, some non-human organism, or even some technological system, 

such as a computer system6.  

These and other core concepts of the U-Model are represented as a class diagram in Fig. 

A-3, where subjective concepts are represented by the grey-filled boxes and objective 

concepts as the unfilled boxes in Fig. A-3. Subjective concepts are manifestations of the 

imperfect knowledge of a BeliefAgent. Conversely, objective concepts reflect objective 

reality and are, therefore, independent of BeliefAgents and their imperfections. One 

significant characteristic of the subjective concepts is that they can vary over time, as might 

occur, e.g., when more information becomes available7. 

Uncertainty (lack of confidence) represents a state of affairs whereby a BeliefAgent does 

not have full confidence in a Belief that it holds. This may be due to various factors: lack of 

information, inherent variability in the subject matter, ignorance, or even due to physical 

phenomena, e.g., the Heisenberg uncertainty principle. While Uncertainty is an abstract 

concept, it can be represented by a corresponding Measurement expressing in some 

concrete form the subjective degree of uncertainty held by the agent to a BeliefStatement. 

Since the latter is a subjective notion, a Measurement should not be confused with the 

degree of validity of a BeliefStatement. Instead, it indicates the level of confidence that the 

agent has in a statement8. 

Finally, note that this model is intentionally made very general, which allows it to be 

extended and customized for a variety of purposes, e.g., uncertainty model-based testing of 

CPS in the context of our project. Fig. A-3 does not show the complete model, e.g., to reduce 

visual clutter, some of the OCL constraints have been removed. The complete model is 

described in [10]. In the remainder of this section, we examine key concepts of the core 

model in more detail and illustrate some of them using the running VCS example (see Table 

A-1). 

6 In this case, the Beliefs would be reflected in the rules that are programmed into the system. 
7 However, more information does not necessarily imply a decrease in uncertainty. 
8 E.g, many people in the past were absolutely certain that the Earth was flat. 

52 
 
 
 
 
 
 

                                                           
 



 
 

 

 
Fig. A-3. The Core Belief Model 

3.1.1 Belief, BeliefAgent and BeliefStatement 
A Belief is an implicit subjective explanation or description of some phenomena or 

notions 9  held by a BeliefAgent. This is an abstract concept whose only concrete 

manifestation is as a BeliefStatement. In our running example, a test engineer at Cisco may 

have his/her own Beliefs about how a VCS works. When coding test cases, he/she 

concretizes his/her Beliefs as executable test scripts that may or may not correspond to the 

actual implementation the VCS. A BeliefStatement in this context could be manifested as 

one executable test case file and in other contexts it may correspond to other artifacts, e.g., 

source code.  

A BeliefAgent is a physical entity 10  owning one or more Beliefs about 

phenomena/notion. A BeliefAgent can take actions based on its Beliefs. In our example of 

CPS testing, BeliefAgents include: 1) Application level: software test engineers focusing on 

testing new versions of the VCS software, and 2) Infrastructure level: Network engineers 

focusing on testing a VCS under diverse network situations.  

A BeliefStatement is a concrete and explicit specification of some Belief held by a 

BeliefAgent about possible phenomena or notions belonging to a given subject area. A 

BeliefStatement can be an aggregate of two or more component BeliefStatements, or it 

may require one or more prerequisite BeliefStatements.  

9  “Phenomena” here is intended to cover aspects of objective reality, whereas “notion” covers abstract 
concepts, such those encountered in mathematics or philosophy. 
10 We exclude here from this definition “virtual” BeliefAgents, such as those that might occur in virtual reality 
systems and computer games. 

53 
 
 
 
 
 
 

                                                           
 



 
 

 
The concrete form of a BeliefStatement can vary, and may represent informal 

pronouncements made by individuals or groups, documented textual specifications 

expressed in either natural or formal languages, formal or informal diagrams, etc.  

Due to the complex nature of objective reality and our human and technical limitations, 

it may not always be possible to determine whether or not a BeliefStatement is valid. 

Furthermore, the validity of a statement may only be meaningfully defined within a given 

context or purpose at a given point of time. Thus, the statement that “the Earth can be 

represented as a perfect sphere” may be perfectly valid for some purposes but invalid or only 

partly valid for others. For our needs, we are more interested in analyzing uncertainties in a 

BeliefStatement rather than studying its validity. 

In our example, we define the following BeliefStatements: 1) Application level: The 

VCS will successfully connect to another VCS 70% of the time (see Table A-1); 2) 

Infrastructure level: The Expressway gateway is successful 99% of the time in connecting a 

Cisco VCS with a third party VCS (see Table A-1); and 3) Integration level: A VCS 

communicates with the Expressway gateway with a 90%-95% success rate.  

Table A-1. Running Example – Dial of VCS 

Package Concept Explanation 
Belief 
Model 

Level Application 
BeliefAgent Software testing engineers 
BeliefStatement The VCS successfully dials to another VCS 70% of the time. 
Indeterminacy 
Source 

Improper human behavior where he/she enters an incomplete 
name/number of VCS to dial IndeterminacyNature:: Non-
determinism, and IndeterminacyKnowledge.type= 
KnowledgeType::KnownUnknown 

Evidence Execution of 100 test cases on the VCS in the past week involving the 
dial command EvidenceKnowledge.type 
=KnowledgeType::KnownKnown 

Uncertainty Uncertainty in whether the dial to another VCS will be successful or not. 
This concept may depend on (see self-association of Uncertainty in Fig. 
A-4) another uncertainty composed by another BeliefStatement 
specified by the network engineer, e.g. "The Expressway gateway is 
99% of the time successful in connecting Cisco's VCS with third party 
VCS." 

Uncertai
nty 
Model 

Type  Occurrence 
Lifetime Difference of time that the dial was initiated and response from the 

system was received 
Locality Invocation of the dial API of VCS 
Pattern Derived pattern from the collection of values of lifetime of the 

uncertainty 
Risk Low or even can be ignored 
Measurement 70% of the time, derived from Evidence based on test execution history 

54 
 
 
 
 
 
 



 
 

 
Measure 
Model 

Measure Probability 

 

3.1.2 Evidence, EvidenceKnowledge, IndeterminacySource and 
IndeterminacyKnowledge.  

Evidence is either an observation or a record of a real-world event occurrence or, 

alternatively, the conclusion of some formalized chain of logical inference that provides 

information that can contribute to determining the validity (i.e., truthfulness) of a 

BeliefStatement. Evidence is inherently an objective phenomenon, representing something 

that actually happened. This means that we exclude here the possibility of counterfeit or 

invented evidence. Nevertheless, although Evidence represents objective reality, it needs 

not be conclusive in the sense that it removes all doubt (Uncertainty) about a 

BeliefStatement. In our example of an Application level BeliefStatement, i.e., “The VCS 

successfully dials to another VCS 70% of the time”. The Evidence of the 70% of success 

rate of dial may be obtained from the execution of 100 test cases on the VCS in the past 

week (see Evidence Table A-1).  

EvidenceKnowledge expresses an objective relationship between a BeliefStatement and 

relevant Evidence. It identifies whether the corresponding BeliefAgent is aware of the 

appropriate Evidence. Thus, an agent may be either aware that it knows something 

(KnownKnown), or it may be completely unaware of Evidence (UnknownKnown). This is 

formally expressed by the two constraints attached to EvidenceKnowledge (Fig. A-3). An 

example is provided in Table A-1.  

Indeterminacy is a situation whereby the full knowledge necessary to determine the 

required factual state of some phenomena/notions is unavailable 11 . This is an abstract 

concept whose only concrete manifestation is in the form of an IndeterminacySource. As 

noted earlier, this may be due either to subjective reasons (e.g., agent ignorance) or to 

objective reasons (e.g., the Heisenberg uncertainty). It is also useful to explicitly identify 

factors that lead to Uncertainty referred to as IndeterminacySources. This represents a 

situation whereby the information required to ascertain the validity of a BeliefStatement is 

indeterminate in some way, resulting in Uncertainty being associated with that statement. 

11 Care should be taken to distinguish between indeterminacy and non-determinism. The latter is only one possible source of indeterminacy. 

55 
 
 
 
 
 
 

                                                           
 



 
 

 
One possible source of indeterminacy can be another BeliefStatement, which is why the 

latter is a specialization of IndeterminacySource (Fig. A-3). For example, for the following 

BeliefStatement: “The VCS successfully dials to another VCS 70% of the time”, for which 

there might be several IndeterminacySources. A possibility is incorrect operator behavior, 

where an incomplete name of the target VCS specified (IndeterminacySource entry in 

Table A-1). 

IndeterminacyNature represents the specific kind of indeterminacy and can be one of 

the following: 1) InsufficientResolution – The information available about the phenomenon 

in question is not sufficiently precise; 2) MissingInfo – The full set of information about the 

phenomenon in question is unavailable at the time when the statement is made; 3) Non-

determinism – The phenomenon in question is either practically or inherently non-

deterministic; 4) Composite – A combination of more than one kinds of indeterminacy; 5) 

Unclassified – Indeterminate indeterminacy. 

IndeterminacyKnowledge expresses an objective relationship between an 

IndeterminacySource and the awareness that the BeliefAgent has of that source. So, even 

though it is agent specific, it is still an objective concept since it does not represent something 

that is declared by the agent. For instance, an agent may be aware that it does not know 

something about a possible source (KnownUnknown), or the agent may be completely 

unaware of a possible source of indeterminacy (UnknownUnknown). 

KnowledgeType (represented as enumeration) has four values: 1) KnownKnown 

indicates that an associated BeliefAgent is consciously aware of some relevant aspect; 2) 

KnownUnknown (Conscious Ignorance) indicates that an associated BeliefAgent 

understands that it is ignorant of some aspect; 3) UnknownKnown (Tacit Knowledge) 

indicates that an associated BeliefAgent is not explicitly aware of some relevant aspect, but 

may be able to exploit in some way; 4) UnknownUnknown (Meta Ignorance) indicates that 

an associated BeliefAgent is unaware of some relevant aspect. 

At a given point in time, a BeliefAgent always makes a statement based on a 

KnownKnown Evidence and a KnownUnknown IndeterminacySource. Splitting 

EvidenceKnowledge and IndeterminacyKnowledge provides the flexibility to enable 

transitions among different knowledge types (e.g., from UnknownKnown to 

56 
 
 
 
 
 
 



 
 

 
KnownKnown), based on the evolution of EvidenceKnowledge and 

IndeterminacyKnowledge related to the associated BeliefAgent. For the following 

BeliefStatement: “The VCS successfully dials to another VCS 70% of the time” and an 

IndeterminacySource is improper operator behavior, the KnowledgeType of 

IndeterminacyKnowledge is KnownUnknown. 

3.1.3 Measurement and Measure.  
Measurement when associated with a given IndeterminacySource represents the 

optional quantification (or qualification) that specifies the degree of indeterminacy of the 

IndeterminacySource. For example, in the case of a Non-determinism 

IndeterminacySource, its measurement could be expressed by a probability or a probability 

density function. For the example presented in Table A-1, ‘70%’ is the measurement of the 

IndeterminacySource improper operator behavior. 

Measurement when associated with Uncertainty is a subjective concept representing the 

actual measured value of an uncertainty defined by a BeliefAgent. It may be possible to 

specify a Measurement that quantifies in some way (e.g., as a probability) the degree of the 

uncertainty that a BeliefAgent associates with a BeliefStatement. Measurement when 

associated with Belief represents sets of measured values of all the uncertainties contained 

by a BeliefStatement defined by a BeliefAgent. Several constraints on Measurement 

ensure that each Measurement owned by either Belief, Uncertainty or 

IndeterminacySource has a unique Measure. Currently, we modeled three different 

measures, i.e., Probability, Ambiguity and Vagueness that are discussed in the Measure 

Model (Section 3.3). In the future, we will provide UML model libraries for Measurement 

when implementing U-Model as a UML profile. Measure is an objective concept specifying 

method of measuring uncertainty. More details are presented in Section 3.3. 

3.2 Uncertainty Model 
This model (Fig. A-4) was inspired by concepts defined in the literature on uncertainty 

[11-15] and is an adjunct to the Core Belief Model (Section 3.1). The uncertainty model 

expands on Uncertainty from several different viewpoints and introduces related 

abstractions. Notice that Uncertainty has a self-association. This self-association facilitates: 

57 
 
 
 
 
 
 



 
 

 
1) relating different Application level uncertainties to each other, 2) relating different 

Infrastructure level uncertainties to each other, 3) relating Application level and 

Infrastructure level uncertainties to each other, 4) relating Integration level uncertainties to 

each other, and 5) relating Application, Integration, and Infrastructure level uncertainties. 

This self-association can be specialized into different types of relationships such as ordering 

and dependencies. Here, we intentionally did not specialize it to keep the model general, so 

that it can be specialized for various purposes and contexts. In the rest of the section, we 

discuss each subtype of Uncertainty and its associated concepts. 

 
Fig. A-4. The Core Uncertainty Model 

3.2.1 Uncertainty, Lifetime and Pattern.  
Uncertainty represents a situation whereby a BeliefAgent lacks confidence in a 

BeliefStatement. Fig. A-4 shows a conceptual model for different types of Uncertainty 

inspired from the concepts reported in [12, 14, 15]. Uncertainty is specialized into the 

following types: 1) Content – represents a situation, whereby a BeliefAgent lacks 

confidence in content existing in a BeliefStatement; 2) Environment – represents a 

situation whereby a BeliefAgent lacks confidence in the surroundings of a physical system 

existing in a BeliefStatement; 3) GeographicalLocation –represents a situation whereby a 

BeliefAgent lacks confidence in geographical location existing in a BeliefStatement; 4) 

Occurrence – represents a situation whereby a BeliefAgent lacks confidence in the 

occurrence of events existing in a BeliefStatement; 5) Time –represents a situation whereby 

a BeliefAgent lacks confidence in time existing in a BeliefStatement. For example, for the 

BeliefStatement: “The VCS successfully calls another VCS 70% of the time”, the 

Uncertainty is whether the dialing to another VCS will be successful or not and classified 

as Occurrence uncertainty. In case of the BeliefStatement: “The Expressway gateway is 

58 
 
 
 
 
 
 



 
 

 
successful 99% of the time in connecting a Cisco VCS with a third party VCS”, the 

Uncertainty is in the connection of the gateway with the third party VCS, and type of 

uncertainty is again Occurrence (see type of Uncertainty in Table A-1). 

t0
…

t1 t2 t3 t1000 t1001

1  

Real timeB1.1 B1.2 B1.3

Testing time

19/7/2015

Real time

Testing time

map

0  

0 -- success; 1 -- failsure
B1.n: BeliefStatement from Software Testing 
Engineer is about occurrence of successful 
dial(Uncertainty) at specific time point.
LifeTime = tn  - tn-1, 
tn : time point of dial/getting response.

B1.1: I believe that the rate of successful dial 
will be 75% before 21/07/2015.
B1.2: I believe that the next dial will be 
successful with 72% of confidence.
B1.3: I believe that the probability of 
successful dial is 70%.  

Fig. A-5. Example of Lifetime and Pattern of Uncertainty 

Lifetime represents an interval of time, during which an Uncertainty exists. That is, an 

Uncertainty may appear temporarily and then disappear. On the other hand, an Uncertainty 

could be persistent, i.e., it remains until appropriate actions are taken to resolve it. An 

example of Lifetime is shown in Table A-1. We show two types of time in Fig. A-5: 1) Real 

Time showing the actual passing of the time, 2) Testing Time, i.e., a time point in real time, 

where a testing activity was performed, e.g., a call attempt to establish a videoconference 

(stimulus to the system under test) or a response from the system was received about success 

or failure of the call (test result). Time points tn are shown on Testing Time in Fig. A-5. A 

BeliefStatement can be made at any point in the real time, for example, three versions of 

BeliefStatement B1 (B1.1, B1.2, and B1.3) can be made at different points of time as shown in 

Fig. A-5. Lifetime of Uncertainty (the occurrence of successful dial) in BeliefStatement 

B1 should be tn – tn-1: difference of time that the dial was initiated and response from the 

system was received for B1.3.  

Fig. A-6 shows a conceptual model for the occurrence Pattern of Uncertainty inspired 

from concepts reported in [14, 16, 17]. Notice that in this section, patterns presented are by 

no means the representation of a complete set of patterns that may exist for an Uncertainty. 

Rather, we only present the most common patterns.  

Periodic uncertainty occurs at regular intervals of time, whereas Persistent uncertainty 

is the one that lasts forever. The definition of “forever” varies; e.g, an uncertainty may exist 

59 
 
 
 
 
 
 



 
 

 
permanently until appropriate actions are taken. On the other hand, an uncertainty may not 

be resolvable and remains forever. Both Periodic and Persistent inherit from Systematic, 

which means that these types of patterns occur in some methodical manners, i.e., a pattern 

that can be described in a mathematical way.  

An uncertainty with an Aperiodic pattern occurs at irregular intervals of time, which is 

further specialized into Sporadic and Transient. A Sporadic uncertainty occurs 

occasionally, whereas a Transient uncertainty occurs temporarily. Systematic and 

Aperiodic uncertainty patterns inherit from Temporal, which means that they both 

inherently have the notion of time. If an uncertainty occurs without a definite method, 

purpose or conscious decision, the type of the pattern it follows is referred to as Random. 

For example, when looking at Fig. A-5, a pattern of the Uncertainty (the occurrence of a 

successful call attempt) can be derived after collecting values of Lifetime of the Uncertainty 

(see Pattern in Table A-1). 

 
Fig. A-6. The Patterns of Uncertainty 

3.2.2 Locality and Risk.  
Locality (see Fig. A-4) is a particular place or a position where an Uncertainty occurs in 

a BeliefStatement. For example, for the BeliefStatement: “The VCS successfully dials to 

another VCS 70% of the time”, the Locality of the Uncertainty (whether the call attempt to 

another VCS will be successful or not) is in the invocation (position) of dial API of VCS 

(see Locality in Table A-1).  

An uncertainty may have an associated Risk and high-risk uncertainties deserve special 

attention. As shown in Fig. A-4, an Uncertainty might or might not associated to Risk, 

whose level can be classified into four levels according to the ISO 31000 – Risk Management 

standard [18]. Level/Rating is derived from Measurement owned by Uncertainty (e.g., 

Probability of the Occurrence of an Uncertainty) and Measurement owned by Effect (e.g., 

60 
 
 
 
 
 
 



 
 

 
high impact using the risk matrix in [19] or any other matrix). For example, for the 

BeliefStatement: “The VCS successfully calls another VCS 70% of the time”, the Risk 

associated with the Uncertainty in this BeliefStatement is low or the risk could be even 

ignored (see Risk in Table A-1). 

3.3 Measure Model 
Fig. A-7 shows the Measure Model of the U-Model, inspired from concepts reported in 

[12-14] and by no means complete. Depending on the type of Uncertainty, a variety of 

measures could be applied and new ones can also be proposed when needed. We aim to give 

a high-level introduction to commonly known measures. 

 
Fig. A-7. Measure Model 

An uncertainty may be described ambiguously (Ambiguity). For example, in statement 

“The camera is down”, the ambiguity is in the measurement, i.e., the camera is either facing 

down or disconnected. Interested readers may consult [20] for various measures of 

Ambiguity. Another common way of measuring Uncertainty is in a vague manner (i.e., 

Vagueness), which can be further classified into Fuzziness and NonSpecificity. Regarding 

Fuzziness, an uncertainty may be measured using fuzzy methods. More details can be 

referred to the fuzzy logic literature such as [20]. In certain cases, it may not be possible to 

measure an uncertainty using quantitative measurements and instead qualitative 

measurements can be used. Such qualitative measurements are classified under 

NonSpecificity methods. Finally, a common way of measuring uncertainty is via 

Probability. For example, for the BeliefStatement: “The VCS successfully calls another 

VCS 70% of the time”, the Uncertainty is measured by Probability (see Measure in Table 

A-1).  

61 
 
 
 
 
 
 



 
 

 

4 Evaluation 
This section presents the results of the industrial case studies that we conducted to 

evaluate the U-Model and collect uncertainty requirements. First case study is about 

Automated Warehouse (AW) provided by ULMA Handling Systems and the second case 

study is about Geo Sports (GS) by Future Position X (further details in [10]).   

4.1 Development and Validation of Uncertainty Requirements and U-
Model 

We collected uncertainty requirements from the two industrial case studies in the 

following ways. The uncertainty requirements were collected as part of an EU project on 

testing CPS under uncertainty (www.u-test.eu). An initial set of uncertainty requirements 

were collected by the industrial partners themselves and were later classified into the three 

CPS levels: Application, Infrastructure, and Integration. Later on, the researchers of Simula 

Research Laboratory conducted one workshop per partner to further refine the requirements. 

For AW, the onsite workshop took around three days, whereas in case of GS, a one-day 

onsite workshop was organized.  

The validation procedure is summarized in Fig. A-8 and comprises two parallel validation 

processes. The first validation process is related to the validation of the U-Model and was 

mainly conducted by the researchers. The second validation process focuses on the 

validation of uncertainty requirements and was mainly performed by the industrial partners.  

The validation was developed incrementally (Activities A1 and A2 in Fig. A-8), based on 

existing models in the literature and other related published works (see Section 2 for details). 

The Simula team validated the conceptual model using two types of examples shown as 

inputs to A2 in Fig. A-8: 1) Examples of uncertainties from domains other than CPS, and 2) 

A subset of VCS requirements. As a result an initial version of the U-Model was produced 

referred as U-Model V.1 in Fig. A-8.  

62 
 
 
 
 
 
 



 
 

 

A1: Developing Initial U-Model 

input

B1: Developing Initial Uncertainty 
Requirements 

Existing models

U-Model V.1

A2: Refining Initial U-Model 

VCS Reqs.Examples from 
physical, etc.

input input

output

Literature
input Domain 

Knowledge
Reqs.

Operational 
Data

input
input

Initial Uncertainty 
Reqs. (Reqs V.1)

output

A3: Refining U-Model V.1 & 
Validating Uncertainty Reqs V.1 

via Inspection

inputinput

U-Model V.2

Comments
output

input

Reqs V.2

output

input

A4/B3: Workshops to refine 
U-Model V.2 and Uncertainty Reqs V.2

input

Reqs V.3

U-Model V.3

A5: Identifying Unknown 
Uncertainties

inputinput

B4: Validating Refined Reqs V.3 Refined Reqs V.3
output input

Reqs V.4

output

Uncertainty Requirements
(Industrial Partners)U-Model (Researchers)

Stage 1: Collected data 
is shown as x in Table 2

Stage 2: Collected data 
is shown as y in Table 2

Stage 3: Collected data 
is shown as z in Table 2

output

Control flow
Data flow

input

input

B2: Refining Uncertainty 
Reqs V.1

output

 
Fig. A-8. Development and Validation of Uncertainty Requirement and U-Model 

In parallel, initial uncertainty requirements (Reqs V.1) were provided (Activity B1 in Fig. 

A-8) by the industrial partners based on their domain knowledge, existing requirements of 

their CPS, and some information from the real operation of the CPS. These initial uncertainty 

requirements were used as input for A3, focusing on further refining the U-Model. In 

addition, the researchers inspected the collected uncertainty requirements using a 

requirements inspection checklist provided in [21] and provided a set of comments for the 

industrial partners on how to improve their requirements. There were two key outputs of the 

A3 activity: U-Model V.2 and comments to refine the requirements. These comments were 

used by the industrial partners to produce a second version of requirements (Reqs V.2) in 

B2.  

63 
 
 
 
 
 
 



 
 

 
4.2 Evaluation Results 

For each of the industrial case studies, we mapped the three versions of uncertainty 

requirements (Reqs V.1, Reqs V.2, and Reqs V.4) to the three versions of U-Model (V.1 to 

V.3). The number of the instances of the concepts are shown in columns x (for mapping 

Reqs V.1 to U-Model V.1), y (for mapping Reqs. V.2 to U-Model V.2), and z (for mapping 

Reqs V.4 to U-Model V.3) of Table A-2, respectively. Notice that Reqs V.3 was the result 

of the onsite workshops together with U-Model V.3 and thus these requirements are not 

mapped to the model since both the conceptual model and requirements were refined 

together. We analyzed in total 20 use cases for AW and 18 use cases for GS. Notice that, the 

number of use cases for each case study did not change during the requirements collection 

and the U-Model validation process. They were selected at the beginning of the process to 

capture and specify the key functionalities of the CPS.  

Based on the final version of requirements, we can see from Table A-2 that most common 

types of identified uncertainties are Content uncertainties having 91 instances (the last 

column in Table A-2) and Occurrence uncertainties having 205 instances. On the other 

hand, a relatively lower number of Time uncertainties (50), Environment uncertainties (32), 

and GeographicalLocation uncertainties (31) were found in the case studies. Most of the 

time, uncertainties are due to InsufficientResolution (42 instances), MissingInfo (31 

instances) or Non-determinism (89 instances). In terms of Measure, our analysis revealed 

that 76 of the uncertainties across the case studies may be measured with the Fuzziness 

measures, 119 with NonSpecificity, whereas 148 with Probability. Notice that in Table A-

2, we do not show the concepts that have no instances identified from any of the case studies. 

In Table A-2, the R1 = y/x -1 column represents the increased percentage of mapping of 

concepts explicitly captured in Reqs V.2 as compared to Reqs V.1. The R2 = z/y -1 column 

shows the increased percentage of mapping of concepts explicitly captured in Reqs V.4, i.e., 

including unknown uncertainties that weren’t explicitly specified in Reqs V.2. As can be 

seen from Table A-2, in case of AW for R1, on average, we identified an additional 1.43 of 

uncertainties and in R2 we identified an additional 0.51 of uncertainties. For GS, these 

percentages are 2.39 in R1, and 0.72 in R2, respectively. In total, in R1 on average we 

identified additional 1.91 of uncertainties, whereas in R2 we identified on average 0.615 of 

unknown uncertainties. 

64 
 
 
 
 
 
 



 
 

 
In Table A-2, one can see that we didn’t have exact data (e.g., probability) and risk 

information available at the moment. Such data will be collected using questionnaire-based 

surveys in the future to quantify the identified uncertainties. In addition, we didn’t observe 

any pattern for the occurrences of the identified uncertainties. Moreover, the Belief part of 

the conceptual model (e.g., concepts Belief, BeliefAgent) was derived to understand 

Uncertainty and is not relevant for the validation.  

 

5 Related Work 
Uncertainty is a term that has been used in various fields such as philosophy, physics, 

statistics and engineering to describe a state of having limited knowledge where it is 

impossible to exactly tell the existing state, a future outcome or more than one possible 

outcome [18]. Various uncertainty models have been proposed in the literature from different 

perspectives for various domains. For instance, from an ethics perspective, uncertainties are 

classified as objective uncertainty and subjective uncertainty, both of which are further 

classified into subcategories to support decision-making [4]. In healthcare, uncertainty has 

often been defined as “the inability to determine the meaning of illness-related events” [5] 

Table A-2. Evaluation Results of Uncertainty Requirements and U-Model 

Concept 
AW GS Freq 
x y z R1* R2* x y z R1 R2 Total+ 

Uncertainty 

Content 14 36 55 1.57 0.53 16 20 36 0.25 0.80 91 
Time 6 16 28 1.67 0.75 5 11 22 1.20 1.00 50 
Occurrence 27 81 126 2.00 0.56 6 50 79 7.33 0.58 205 
Environment 13 15 22 0.15 0.47 4 6 10 0.50 0.67 32 
Geographical  
Location 4 11 14 1.75 0.27 3 11 17 2.67 0.55 31 

Sum for x, y, z / Average for R1, R2 64 159 245 1.43 0.51 34 98 164 2.39 0.72 409 

Indeterminacy 

Insufficient 
Resolution 7 18 24 1.57 0.33 11 14 18 0.27 0.29 42 

Non-determinism 7 45 52 5.43 0.16 11 20 37 0.82 0.85 89 
MissingInfo 2 19 24 8.50 0.26 0 5 7 N/A 0.40 31 

Sum for x, y, z / Average for R1, R2 16 82 100 2.67 0.43 22 39 62 0.55 0.57 162 

Measure 
Fuzziness 6 22 51 2.67 1.32 6 15 25 1.50 0.67 76 
NonSpecificity 16 40 73 1.50 0.83 12 26 46 1.17 0.77 119 
Probability 18 56 98 2.11 0.75 4 37 50 8.25 0.35 148 

Sum for x, y, z / Average for R1, R2 40 118 222 2.09 0.96 22 78 121 3.64 0.60 343 
*R1 = y/x – 1           *R2 = z/y – 1   +Total = AW(z)+GS(z)     Freq is Frequency  

 

65 
 
 
 
 
 
 



 
 

 
and comprehensive domain-specific uncertainty models (e.g., [6]) have been proposed, as 

discussed in [7]. 

Uncertainty is receiving more and more attention in recent years in both system and 

software engineering, especially for CPS, which are required to be more and more context 

aware [22-24]. Moreover, CPS inherently involves tight interactions between various 

engineering disciplines, information technology, and computer science. This magnifies 

uncertainties. Therefore, adequate treatment of uncertainty becomes increasingly more 

relevant for any non-trivial CPS. However, to the best of our knowledge, there is no 

comprehensive uncertainty conceptual model existing in literature that focused specifically 

on CPS design or on system/software engineering in general. In the remainder of the section, 

we discuss how the concepts uncovered during the literature review align with our proposed 

conceptual model. 

The U-Model concepts BeliefAgent, BeliefStatement, and Belief of the Belief model 

were adapted from [12]. The author of [12] postulates that uncertainty involves a statement 

whose truth is expected by a person, and therefore the truth might differ for different persons 

(defined as BeliefAgent in our model). However, as we discussed in Section 3.1, we assigned 

a broader meaning to BeliefAgent: which can be an individual, a community of individuals, 

or a technology. The U-Model concepts Environment and Locality were adapted from [12, 

25-27], and we related them to the other U-Model concepts. 

Our knowledge conceptual model aligns well with the model of knowledge reported in 

[28]. Here the authors looked at how to manage different types of known and unknown 

knowledge to distinguish what is known from what is not known. Knowledge is also 

classified from a different perspective: something that everyone knows, tacit knowledge, 

conscious ignorance and meta-ignorance. Their objective is to better understand ignorance. 

The author of [29] also studied unknowns and provided a taxonomy particularly focusing on 

ignorance (named as KnownUnknown and UnknownUnknown in our conceptual model). 

In our conceptual model, we further elaborate these concepts and captured them as 

KnowledgeType, which is associated to Evidence and IndeterminacySource via 

EvidenceKnowledge and IndeterminacyKnowledge.  

We classified uncertainties into various types including Content, Time and Occurrence. 

In [12], a chapter was dedicated to the discussion of content uncertainty and its measurement. 

66 
 
 
 
 
 
 



 
 

 
The other two types of uncertainties were mentioned in [12, 14, 15],  with examples but with 

no clear definitions provided. We adopted the measurements in our conceptual model. 

Different types of sources of uncertainty for various purposes have been identified in the 

literature. In [30], the authors captured sources of uncertainty by considering risk and 

reliability analyses, based on which they classified uncertainty. The authors of [15, 31] 

identified sources of uncertainty in active systems. In [23, 32], the authors described the 

sources of uncertainty in software engineering in general. We however proposed the U-

Model concepts IndeterminacySource and IndeterminacyNature to capture sources of 

uncertainty.   

Aleatory and Epistemic uncertainties are the two generic categories of uncertainties 

discussed in many works [30, 33]. According to the work reported in [30], Aleatory is due 

to the inherent randomness of phenomena, whereas the Epistemic uncertainty is mainly due 

to the lack of knowledge. These two types are also covered in the U-Model. For example, 

the Non-determinism (nature of indeterminacy in U-Model) represents the randomness as 

in Aleatory, and Epistemic is covered by MissingInfo — nature of indeterminacy.  

In [34], the author noted that uncertainty can occur in a random or systematic manner. In 

the Pattern part of the U-Model, we further elaborated the “systematic” concept by 

introducing Pattern and its sub categories. In literature, uncertainty is often related to Risk. 

The acquisition project team of the US Air Force Electronic System Center (ESC) has 

proposed a risk matrix for evaluating risks [19]. They introduced the concepts of Risk, 

impact, likelihood of occurrence, and rate of Risk and also identified their relations. We 

reused these concepts and linked them with Uncertainty. 

6 Conclusion 
Cyber-Physical Systems (CPS) often consist of heterogeneous physical units (e.g., 

sensors, control modules) communicating via various networking equipment, interacting 

with applications and humans. Thus, uncertainty is inherent in CPS due to tight interactions 

between hardware, software and humans, and the need for them to be increasingly context 

aware. To understand uncertainty in the context of CPS, unified and comprehensive 

uncertainty conceptual model should be derived. The U-Model is such a conceptual model 

developed in an EU project, based on a thorough literature review of existing uncertainty 

67 
 
 
 
 
 
 



 
 

 
models from various domains (e.g., philosophy, healthcare), and refined and validated with 

two industrial CPS case studies of various domains. Based on the results of several stages 

validation, we obtained the current version of the conceptual model in addition to refined 

uncertainty requirements. On average, we managed to learn 61.5% of unknown uncertainties 

that weren’t explicitly specified in the uncertainty requirements collected from the two case 

studies.   

References 
[1] M. Broy, Engineering Cyber-Physical Systems: Challenges and Foundations, in:   

Proceedings of the Third International Conference on Complex Systems Design & 

Management CSD&M 2012. pp. 1-13, 2013. 

[2] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao, and S. Dyke, Cyber-Physical 

Systems for Real-Time Hybrid Structural Testing: A Case Study, in:   Proceedings 

of the 1st ACM/IEEE International Conference on Cyber-Physical Systems. pp. 69-

78, 2010. 

[3] T. Tidwell, X. Gao, H.-M. Huang, C. Lu, S. Dyke, and C. Gil, Towards Configurable 

Real-Time Hybrid Structural Testing: A Cyber Physical Systems Approach, in:   

ISORC '09 Proceedings of the 2009 IEEE International Symposium on 

Object/Component/Service-Oriented Real-Time Distributed Computing. pp. 37-44, 

2009. 

[4] C. Tannert, H. D. Elvers, and B. Jandrig, The ethics of uncertainty, EMBO reports, 

vol. 8, no. 10 (2007) 892-896. 

[5] M. H. Mishel, Uncertainty in illness, Image: The Journal of Nursing Scholarship, 

vol. 20, no. 4 (1988) 225-232. 

[6] A. S. Babrow, C. R. Kasch, and L. A. Ford, The many meanings of uncertainty in 

illness: Toward a systematic accounting, Health communication, vol. 10, no. 1 

(1998) 1-23. 

[7] P. K. Han, W. M. Klein, and N. K. Arora, Varieties of Uncertainty in Health Care A 

Conceptual Taxonomy, Medical Decision Making, vol. 31, no. 6 (2011) 828-838. 

[8] S. Ali, and T. Yue, U-Test: Evolving, Modelling and Testing Realistic Uncertain 

Behaviours of Cyber-Physical Systems, in:   Proceedings of the IEEE 8th 

68 
 
 
 
 
 
 



 
 

 
International Conference on Software Testing, Verification and Validation (ICST). 

pp. 1-2, 2015. 

[9] Cisco, Cisco Preferred Architecture for Video - Design Overview, 2015; 

http://www.cisco.com/. 

[10] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, An Uncertainty 

Taxonomy to Support Model-Based Uncertainty Testing of Cyber-Physical Systems, 

Simula Laboratory Research, 2015; https://www.simula.no/publications/uncertainty-

taxonomy-support-model-based-uncertainty-testing-cyber-physical-systems. 

[11] G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives, 

Routledge, 2012. 

[12] D. V. Lindley, Understanding uncertainty (revised edition), John Wiley & Sons, 

2014. 

[13] K. Potter, P. Rosen, and C. R. Johnson, From quantification to visualization: A 

taxonomy of uncertainty visualization approaches, Uncertainty Quantification in 

Scientific Computing, pp. 226-249: Springer, 2012. 

[14] B. N. Taylor, Guidelines for Evaluating and Expressing the Uncertainty of NIST 

Measurement Results (rev, DIANE Publishing, 2009. 

[15] S. Wasserkrug, A. Gal, and O. Etzion, A taxonomy and representation of sources of 

uncertainty in active systems, Next Generation Information Technologies and 

Systems, pp. 174-185: Springer, 2006. 

[16] A. Cimatti, A. Micheli, and M. Roveri, Timelines with Temporal Uncertainty, in:   

Aaai, 2013. 

[17] B. Sprunt, L. Sha, and J. Lehoczky, Scheduling sporadic and aperiodic events in a 

hard real-time system, DTIC Document, 1989. 

[18] ISO, "ISO 31000: Risk management," 2009,  

http://www.iso.org/iso/home/standards/iso31000.htm. 

[19] P. R. Garvey, and Z. F. Lansdowne, Risk matrix: an approach for identifying, 

assessing, and ranking program risks, Air Force Journal of Logistics, vol. 22, no. 1 

(1998) 18-21. 

[20] G. Klir, Facets of systems science, Springer Science & Business Media, 2013. 

69 
 
 
 
 
 
 



 
 

 
[21] T. Yue, L. C. Briand, and Y. Labiche, Facilitating the transition from use case models 

to analysis models: Approach and experiments, ACM Transactions on Software 

Engineering and Methodology (TOSEM), vol. 22, no. 1 (2013) 5. 

[22] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, Cyber-physical systems: the next 

computing revolution, in:   Proceedings of the 47th Design Automation Conference. 

pp. 731-736, 2010. 

[23] M. Conti, S. K. Das, C. Bisdikian, M. Kumar, L. M. Ni, A. Passarella, G. Roussos, 

G. Tröster, G. Tsudik, and F. Zambonelli, Looking ahead in pervasive computing: 

Challenges and opportunities in the era of cyber–physical convergence, Pervasive 

and Mobile Computing, vol. 8, no. 1 (2012) 2-21. 

[24] D. Garlan, Software engineering in an uncertain world, in:   Proceedings of the 

FSE/SDP workshop on Future of software engineering research. pp. 125-128, 2010. 

[25] F. Hu, Cyber-Physical Systems: Integrated Computing and Engineering Design, 

CRC Press, 2013. 

[26] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, A goal-based modeling 

approach to develop requirements of an adaptive system with environmental 

uncertainty, Model Driven Engineering Languages and Systems, pp. 468-483 %@ 

3642044247: Springer, 2009. 

[27] K. Wan, K. L. Man, and D. Hughes, Specification, analyzing challenges and 

approaches for cyber-physical systems (CPS), Engineering Letters, vol. 18, no. 3 

(2010) 308 %@ 1816-093X. 

[28] A. Kerwin, None Too Solid Medical Ignorance, Science Communication, vol. 15, 

no. 2 (1993) 166-185. 

[29] M. Smithson, Ignorance and uncertainty: Emerging paradigms, Springer-Verlag 

Publishing, 1989. 

[30] A. Der Kiureghian, and O. Ditlevsen, Aleatory or epistemic? Does it matter?, 

Structural Safety, vol. 31, no. 2 (2009) 105-112 %@ 0167-4730. 

[31] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, L. Baresi, and B. 

Becker, Software engineering for self-adaptive systems, in, 2009. 

[32] H. Ziv, D. Richardson, and R. Klösch, The uncertainty principle in software 

engineering, in, 1997. 

70 
 
 
 
 
 
 



 
 

 
[33] H. G. Matthies, Quantifying uncertainty: modern computational representation of 

probability and applications, Extreme man-made and natural hazards in dynamics of 

structures, pp. 105-135 %@ 1402056540: Springer, 2007. 

[34] S. Bell, A beginner's guide to uncertainty of measurement, National Physical 

Laboratory Teddington, Middlesex, 2001. 

  

  

71 
 
 
 
 
 
 



 
 

 

Paper B 

 
 

Specifying Uncertainty in Use Case 
Models 

 
 
 

Man Zhang, Tao Yue, Shaukat Ali, Bran Selic 
Oscar Okariz, Roland Norgre, Karmele Intxausti 

 

 

 

 
 
 
 
 

 

Journal paper that has been submitted to the Journal of Systems and Software 

(JSS), second revision 

  

72 
 
 
 
 
 
 



 
 

 

Abstract 
Context: Latent uncertainty in the context of software-intensive systems (e.g., Cyber-

Physical Systems (CPSs)) demands explicit attention right from the start of development. 

Use case modeling—a commonly used method for specifying requirements in practice, 

should also be extended for explicitly specifying uncertainty. 

Objective: Since uncertainty is a common phenomenon in requirements engineering, it 

is best to address it explicitly by identifying, qualifying, and, where possible, quantifying 

uncertainty at the beginning stage. The ultimate aim, though not within the scope of this 

paper, was to use these use cases as the starting point to create test-ready models to support 

automated testing of CPSs under uncertainty.  

Method: We extend the Restricted Use Case Modeling (RUCM) methodology and its 

supporting tool to specify uncertainty as part of system requirements. Such uncertainties 

include those caused by insufficient domain expertise of stakeholders, disagreements among 

them, and known uncertainties about assumptions about the environment of the system. The 

extended RUCM, called U-RUCM, inherits the features of RUCM, such as automated 

analyses and generation of models, to mention but a few. Consequently, U-RUCM provides 

all the key benefits offered by RUCM (i.e., reducing ambiguities in requirements), but also, 

it allows specification of uncertainties with the possibilities of reasoning and refining 

existing ones and even uncovering unknown ones.  

Results: We evaluated U-RUCM with two industrial CPS case studies. After refining 

RUCM models (specifying initial requirements), by applying the U-RUCM methodology, 

we successfully identified and specified additional 306% and 512% (previously unknown) 

uncertainty requirements, as compared to the initial requirements specified in RUCM. This 

showed that, with U-RUCM, we were able to get a significantly better and more precise 

characterization of uncertainties in requirement engineering. 

Conclusion: Evaluation results show that U-RUCM is an effective methodology (with 

tool support) for dealing with uncertainty in requirements engineering. We present our 

experience, lessons learned, and future challenges, based on the two industrial case studies. 

Keywords. Use Case Modeling; Belief; Uncertainty. 

73 
 
 
 
 
 
 



 
 

 

1 Introduction 

The problem of uncertainty in software-intensive systems such as Cyber-Physical 

Systems (CPSs)), is familiar to the requirements engineering community. However, it has 

not been adequately addressed and, therefore, it lacks both methodological and tool support 

in both the literature and in practice. In their well-known use case modeling book, Bittner 

and Spence [1] pointed out that it is essential to take the time to fill out missing areas and 

drill down into uncertainty. Uncertainty can be due to diverse causes, such as insufficient 

domain expertise or lack of information. Given the significant increases in the complexity 

of modern CPS and the diversity of the environments in which they are deployed, it is 

becoming critical to address uncertainty up front; that is, right from the start of development. 

This includes not only uncertainties about the requirements, but also uncertainties about its 

assumed operating environment.  

Uncertainty in requirements has been studied in the context of dynamically adaptive 

systems in the presence of environmental uncertainty [2, 3]. Several goal-driven solutions 

[4, 5] have been proposed to handle uncertainty in similar contexts. Partial model-based 

solutions (e.g., [6, 7]) have been developed to support early requirements and architecture 

decision making. However, after conducting a literature review, we did not find any use case 

modeling methodology that explicitly handles uncertainty. Having such a methodology is 

important since use case modeling is a commonly used technique for specifying 

requirements in practice [6]. In our view, because uncertainty is a common phenomenon in 

requirements engineering, it is best to address it explicitly by identifying, qualifying, and, 

where possible, quantifying uncertainty.  

The need for such a methodology arose in the context of an EU Horizon 2020 project, 

which focused on testing CPSs under uncertainty. The crucial first step in this project was 

to collect use cases with known uncertainties for two industrial CPSs and their environments. 

This was done with three industrial partners (Future Position X12, ULMA13 and Ikerlan14, 

which are among the authors of this paper). The ultimate aim was to use these use cases as 

12 fpx.se/geo-sports/ 
13 www.ulmahandling.com/en/ 
14 www.ikerlan.es/ 

74 
 
 
 
 
 
 

                                                           
 



 
 

 
the starting point to create test-ready models to support automated testing of CPSs under 

uncertainty. To this end, we first introduced the RUCM methodology to our industrial 

partners and then extended it to enable specification of uncertainties. This led to the design 

of the U-RUCM methodology, which, to the best of our knowledge, is the first use case 

modeling methodology that explicitly addresses uncertainty.  

As noted, U-RUCM is based on a practical use case modeling solution, called Restricted 

Use Case Modeling (RUCM) [8, 9]. RUCM was initially proposed by Yue et al. [9], for 

reducing inherent ambiguity in textual Use Case Specifications (UCSs) and to enable 

automated generation of UML models. Later on, RUCM was extended to address various 

industrial challenges, including requirements based testing [10] and use case based 

requirements inspection [11]. RUCM and its extensions have been used to address industrial 

challenges from various domains (e.g., telecommunication [10, 12, 13], automotive [14]).  

To structure and specify uncertainties in use case models, two templates were proposed 

for specifying Belief Use Case Specifications (BUCS) and uncertainties. A BUCS annotates 

the UCS with uncertainty information, including the source of uncertainty, the degree 

(measurement) of uncertainty, the risk of uncertainty, etc., as perceived by stakeholders and 

based on available evidence. Such models can be automatically generated as instances of a 

formal U-RUCM metamodel. 

Evaluation of U-RUCM based on the two industrial case studies revealed that, with U-

RUCM, we were able to significantly improve on the characterization and understanding of 

uncertainties in the requirements (up to 306% and 512% for the two case studies) compared 

to base RUCM. In this paper, we summarize practical lessons learned in the course of this 

evaluation and also discuss future challenges.   

The rest of the paper is organized as follows: Section 2 presents the background. The U-

RUCM templates and keywords are explained in Section 3, followed by its formalization 

(Section 4). The tool support and recommended methodology are given in Section 5. Section 

6 reports user experience, evaluation, lessons learned and future challenges. We discuss the 

related work in Section 7 and conclude the paper in Section 8. 

75 
 
 
 
 
 
 



 
 

 

2 Background and Running Example 
In this section, we first briefly introduce the U-Model on which U-RUCM is based on, 

followed by the running example and a brief description of RUCM illustrated with the 

running example.  

2.1 U-Model 
To help us understand the nature of uncertainty in the general context of software 

engineering, in our previous work [15] we developed a conceptual model called U-Model to 

define uncertainty and its associated concepts. The U-Model was developed based on an 

extensive review of existing literature on uncertainty from several disciplines including 

philosophy, healthcare and physics, and two industrial case studies from the two industrial 

partners of the EU Horizon 2020 project. To keep the paper self-contained, we have provided 

U-Model and definitions of its concepts in Appendix A and in the rest of the section, we 

briefly summarize the fundamental concepts and their relationships. 

The U-Model takes a subjective approach to representing uncertainty. This means that 

uncertainty is modeled as a state (i.e., worldview) of some agents (called BeliefAgents), who, 

for whatever reason, do not have complete and fully accurate knowledge about some subjects 

of interest. In the U-Model, a Belief is an abstract concept, but it can be expressed in the 

concrete form via one or more explicit BeliefStatements (a concrete and explicit specification 

of some Belief held by a BeliefAgent about possible phenomena or notions belonging to a 

given subject area). Uncertainty (i.e., lack of confidence) represents a state of affairs 

whereby a BeliefAgent does not have full confidence in a belief that it holds. This may be 

due to any number of factors: lack of information, inherent variability in the subject matter, 

ignorance, or even due physical phenomena such as the Heisenberg uncertainty principle. 

While Uncertainty itself is an abstract concept, it can be quantified by a corresponding 

Measurement, which expresses in some concrete form the subjective degree of uncertainty 

that the agent ascribes to a BeliefStatement. As the latter is a subjective notion, a 

Measurement should not be confused with the degree of validity of a BeliefStatement. 

Instead, it merely indicates the level of confidence that the agent has in a statement.  

76 
 
 
 
 
 
 



 
 

 
Some of the U-Model concepts were further extended for supporting Model-Based 

Testing (MBT) of CPSs under uncertainty. More specifically, we developed the Uncertainty 

Modeling Framework (UncerTum) [16, 17] for supporting MBT of CPSs, which contains a 

UML profile, called the UML Uncertainty Profile (UUP), for specifying and measuring 

uncertainties as part of UML models. UUP was derived based on the U-Model. UncerTum 

has been successfully used for discovering unknown uncertainties [16, 18] and generating 

test cases [19]. In addition, we recently developed the UncerTolve framework [18, 20] to 

evolve test ready models and uncertainty measurements in UML models specified with 

UncerTum with real operational data.  

2.2 Running Example 
We illustrate U-RUCM using a modified version of the SafeHome case study provided 

in [21]. The SafeHome system implements various security and safety features in smart 

homes, including intrusion detection, fire detection, and flooding. One of the key 

functionalities of the system is that a homeowner activates the monitoring function of the 

system, which continuously checks for intrusions until it is explicitly disabled. During 

monitoring, any occurrence of an intrusion should be detected, immediately followed by 

sending an intrusion notification to the homeowner and the activation of an alarm. The 

corresponding use case for this example, named Monitor Windows and Doors, is shown in . 

In Section 2.3, we illustrate the key elements of RUCM with the running example. 

2.3 Restricted Use Case Modeling (RUCM) 
RUCM encompasses a use case template and 26 restriction rules for specifying textual 

UCSs [9]. RUCM aims to be easy to use, to reduce ambiguity and improve understanding, 

and to facilitate automated analysis. Results of two controlled experiments support these 

expectations [8, 9]. A RUCM UCS has one basic flow and, optionally, one or more 

alternative flows. An alternative flow always depends on a condition occurring in a specific 

step of another flow (referred to as the reference flow). We classify alternative flows into 

three types: A specific alternative flow refers to a specific step in the reference flow; a 

bounded alternative flow refers to more than one step (consecutive or not) in the reference 

flow; a global alternative refers to any step in the reference flow. For specific and bounded 

77 
 
 
 
 
 
 



 
 

 
alternative flows, a RFS (Reference Flow Step) section specifies one or more (reference 

flow) step numbers. For example, as shown in Fig. B-1, the use case has one basic flow, 

called Normal. The specific alternative flow of DetectIntrusion branches out from step 10 of 

the basic flow Normal, as indicated by keyword RFS and “Normal 10”. The global 

alternative flow CallPolice is triggered whenever the branching condition “The Alarm has 

been triggered for more than 5 minutes”. The bounded alternative flow of 

FailOnEnablingMonitoring refers to steps 5-7 of the basic flow Normal, as indicated by 

“URFS Normal 5-7”. URFS is a new keyword introduced to U-RUCM and will be discussed 

in Section 3. 

RUCM defines a set of keywords to specify sentences that involve conditional logic (IF-

THEN-ELSE-ELSEIF-ENDIF), concurrency (MEANWHILE), condition checking 

(VALIDATES THAT), and iteration (DO-UNTIL). For example, as shown in Fig. B-1, step 

6 of the basic flow (Normal) contains the keyword VALIDATES THAT, implying that the 

sentence of the step is a condition checking sentence.   

UCMeta is a metamodel that formalizes textual RUCM to facilitate automated analyses 

and generation of UML analysis models [8, 22]. UCMeta is specified using the OMG’s 

standard Meta-Object Facility (MOF) [23], while the formalization of RUCM models to 

UCMeta instances is done automatically, as described in [8]. For example, as shown on the 

left panel of Fig. B-1, the basic flow Normal is formalized as an instance of metaclass 

BasicFlow (i.e., basicFlow).  

Since RUCM was initially proposed by Yue et al. [24] in 2009, multiple extensions have 

been proposed. A restricted test case modeling methodology was presented in [10] to 

generate executable test cases automatically. In [14] , Wang et al. also presented another 

RUCM-based approach to generate test cases from use case models automatically. Both of 

these approaches have been evaluated using real industrial case studies. Wu et al. [25] 

extended RUCM for specifying safety requirements in the domain of safety-critical systems. 

The authors of [26] presented an approach for facilitating feature-oriented requirements 

validation in the context of automotive systems, where RUCM was used to specify system 

features. 

78 
 
 
 
 
 
 



 
 

 

 
*A2 Belief Agent is formalized into elements shown in A1; the properties of B1(D1) 
IndeterminacySource(Measurement) is shown in the property window B3 (D3); C2 is the set of knowledge that 
are formalized as elements shown in C1; E2 refers to a set of sentences indicated by E1; the belief sentences 
indicated by F2 are formalized into elements shown in F1. 

Fig. B-1. Specifying Belief Use Case Specification of Monitor Windows and Doors 

79 
 
 
 
 
 
 



 
 

 
 

 
*M1 and M2 are the two formalized measurement statements. M1.1 is a measurement statement defined for 
M1. 

Fig. B-2. Specifying the Belief Sentence and an Associated Uncertainty (NLUncertainty) of Normal step 5 
and Measurement Statement 

 

 
*A step highlighted with Green (or Red) means that the condition is validated to be true (or the uncertainty 

does not occur).   

Fig. B-3. An Example of Generated BranchUncertainty (across Normal and FailOnEnablingMonitoring) 

3 U-RUCM Templates and Keywords 
As noted in Section 2.3, the RUCM methodology has two key distinguishing features: 

specifying UCSs with the RUCM template, and applying the RUCM restrictions (including 

the keywords) to guide the way in which users use natural language to specify the control 

flows of UCSs. U-RUCM extends the RUCM template and proposes two U-RUCM 

templates and introduces two new keywords.  

One of the U-RUCM templates is for specifying BUCSs as shown in Table B-1. The 

BUCS template inherits the key heading fields of the RUCM template, such as Use Case 

Name and Brief Description. In addition, U-RUCM introduces six new fields to indicate: 1) 

80 
 
 
 
 
 
 



 
 

 
who specifies the BUCS (Belief Agent(s)), 2) when it was specified and the length of time 

during which the belief agent(s) holds the belief (Time Point and Duration), 3) the degree to 

which the belief agent(s) believes the specification (Belief Degree), 4) a set of indeterminacy 

sources that resulted in the uncertainties of the BUCS (Indeterminacy Source(s)), 5) evidence 

used to support this BUCS and its belief and uncertainty elements (Evidence), and 6) the 

precondition of the UCS on which the belief and uncertainties are founded (Belief 

Precondition). 

As discussed in Section 2, each RUCM UCS has one and only one basic flow and, 

optionally, three types of alternative flows. U-RUCM extends each type of event flows by 

1) introducing a belief degree, which measures the degree to which the belief agent(s) 

believes a specific flow, 2) introducing a new keyword, URFS (Uncertain Reference Flow 

Step(s)), from which an alternative flow of events branches out, 3) providing the capability 

to annotate sentences in steps of flows and postconditions with belief and uncertainty 

information, and 4) introducing the new concept of alternative steps to enable the 

specification of uncertainties for alternative steps across flows of events. Note that for the 

case of a global alternative flow, a condition for branching from any step in the flow, should 

be specified via the Belief Branching Condition field. In Section 4, we formally define each 

of these fields and concepts. 

We have developed an editor for U-RUCM (Section 5). The running example shown in 

Fig. B-1 is specified with the U-RUCM editor. The use case has one basic flow (called 

Normal) and several alternative flows. The complete specification is provided in [27] for 

reference. 

The other U-RUCM template is used for specifying uncertainty in the belief sentence 

(BS) as shown in Table B-1. An example is shown in Fig. B-2. This template has fields for 

identifying indeterminacy sources and evidence, and for specifying uncertainty properties 

such as Type, Pattern, and Measured Value. More details are provided in Section 4.   

In addition to the standard RUCM keywords (Section 2.3), REF is newly introduced for 

specifying associated indeterminacy sources and evidence so that they can be referenced in 

multiple places within a BUCS. For example, the field Indeterminacy Source(s) lists all the 

defined indeterminacy sources of the specification, each of which is referenced with REF 

(Fig. B-1, C1 and C2). Like the RUCM RFS keyword, the URFS keyword is used for 

81 
 
 
 
 
 
 



 
 

 
associating an alternative flow to the steps in its reference flow. However, RFS is used for 

branching out from a reference flow step under a clear condition. For example, in Fig. B-1 

the alternative flow DetectIntrusion uses RFS to indicate that it branches from step 10 of the 

basic flow (Normal). In contrast, URFS is provided to associate uncertainties across flows 

of events. For example, in the running example (Fig. B-1, E1 and E2), the URFS keyword 

is applied to FailOnDetectingIntrusion to show that, in an uncertain unknown condition, it 

is possible that the alternative sentence A1 can “replace” step 2 of the alternative flow 

DetectIntrusion.  

Table B-1. The U-RUCM Template for Belief Use Case Specifications (BUCSs) 

The template for specifying a BUCS 
Use Case Name The name of the use case. It usually starts with a verb. 
Brief Description Summarizes the use case in a short paragraph. 
Primary Actor The actor who initiates the use case. 
Secondary Actor(s) Other actors the system relies on to accomplish the services of the use case. 
Dependency Include and extend relationships to other use cases. 
Generalization Generalization relationships to other use cases. 
Belief Agent(s) One or more agents who hold belief about this BUCS. 
Time Point and 
Duration 

The time point when the BUCS/BS is specified and the duration in which 
the belief agent(s)’s belief on the BUCS holds. 

Belief Degree The degree to which the belief agent(s) believe the BUCS. 
Indeterminacy 
Source(s) 

The set of indeterminacy sources related to the BUCS (REF is used). 

Evidence Evidence to support the BUCS, and its contained belief and uncertainty 
elements (REF is used). 

Belief Precondition Belief agent(s)’ belief on the precondition of the BUCS, which describes 
what should be true before the use case is executed. 

Belief Basic Flow  
(Belief degree) 

Specifies the main successful path, also called “happy path”. 
Steps 
(numbered) 

A set of ordered belief sentences. 

Belief 
Postcondition 

Belief agent(s)’ belief on what should be true after the 
basic flow executes. 

Belief Specific  
Alternative Flow 
(Belief degree) 

Applies to one specific step of the reference flow. 
URFS The reference flow step where the belief agent(s) believe 

there are uncertainties. 
Alternative 
Step 

An alternative to the reference flow step. 

Steps 
(numbered) 

A set of ordered belief sentences. 

Belief 
Postcondition 

Belief agent(s)’ belief on what should be true after the 
specific alternative flow executes. 

Belief Bounded  
Alternative Flow 
(Belief degree) 

Applies to more than one step of the reference flow, but not all of them. 
URFS A list of reference flow steps where the belief agent(s) 

believe there are uncertainties. 

82 
 
 
 
 
 
 



 
 

 
Alternative 
Steps 

A set of alternatives to the reference flow steps. 

Steps 
(numbered) 

A set of ordered belief sentences. 

Belief 
Postcondition 

Belief agent(s)’ belief on what should be true after the 
bounded alternative flow executes. 

Belief Global  
Alternative Flow 
(Belief degree) 

Applies to all the steps of the reference flow. 
Belief 
Branching 
Condition 

Belief agent(s)’ belief on the condition, which describes 
what should be true when branching from any of the steps 
of the reference flow. 

Steps 
(numbered) 

The set of ordered beliefs sentences. 

Belief 
Postcondition 

Belief agent(s)’ belief on what should be true after the 
global flow executes. 

The template of specifying an Uncertainty in a belief sentence 
Uncertainty Details Specifies the details of the Uncertainty in the BS. 

Type The type of this uncertainty 
 
(Occurrence/Content/Time/Environment/Geographical
Location) 

Indeterminac
y Source(s) 

The set of indeterminacy sources related to this 
Uncertainty (REF is used). 

Measure 
Value 

The measurement of this uncertainty. 

Risk The possible risk led by this uncertainty. 
Pattern The pattern of the occurrence of this uncertainty 

4 U-RUCM Formalization 
The formalization of U-RUCM is realized via integration of an extended version of 

UCMeta and U-Model. The full formalization is captured in a distinct metamodel, called 

BeliefUCMeta.  

4.1 Relationships of BeliefUCMeta with UCMeta and U-Model 
As shown in Fig. B-4, the BeliefUCMeta imports elements from U-Model and UCMeta, 

which formalizes RUCM. UCMeta is composed four packages: UCTemplate (corresponding 

to the RUCM template and formalizing template fields such as use case name, flows of 

events), SentenceStructure (formalizing sentence constructs such as noun phrase, subject), 

SentenceSemantics (formalizing different types of simple sentence patterns such as subject-

verb-direct object) and SentencePattern (formalizing semantics functions of a use case 

model such as Validation for describing that the system validates a request and data).  

83 
 
 
 
 
 
 



 
 

 
Concepts of U-Model (Section 2.1) are divided into three groups and implemented as a 

metamodel, which is named as the Technological U-Model metamodel to distinguish itself 

from the U-Model conceptual model. BeliefUCMeta is composed of three packages, as 

shown in Fig. B-4: BeliefUCM, BeliefTemplate and BeliefSentence. Since BeliefUCMeta 

imports UCMeta, BeliefUCMeta can naturally benefit from the existing capability of 

UCMeta for automatically formalizing, by relying on natural language processing 

techniques, sentences into instances of metaclasses of packages SentenceSemantics, 

SentencesStructure and SentencePattern [8]. The complete lists of metaclasses of UCMeta, 

Technological U-Model and BeliefUCMeta are provided in [27] for reference.  

 

4.2 Belief Use Case Model, Element, and Classifier 
BUElement, which specializes UseCaseElement of UCMeta, is the root of all the other 

elements of BeliefUCMeta (Fig. B-5). In other words, all the other metaclasses of 

BeliefUCMeta specialize BUElement.  

 

 
Fig. B-4. Relationships between BeliefUCMeta with UCMeta and Technological U-Model Metamodel 

 
Fig. B-5. Root Elements of BeliefUCMeta 

  
84 

 
 
 
 
 
 



 
 

 
BeliefClassifier (Fig. B-6) is an abstract metaclass, introduced in U-RUCM to support the 

classification of a set of BUCS elements (e.g., BeliefPrecondition, BeliefFlowOfEvents), to 

which belief and uncertainty information can be attached. BeliefClassifier specializes 

BeliefStatement of U-Model (Appendix A.1), through which a belief classifier is associated 

with Uncertainty.  

BeliefClassifier has three attributes: isUncertainty : Boolean (indicating if a belief 

classifier is associated to any known or unknown uncertainty), isComposite : Boolean 

(indicating if a belief classifier can be decomposed into finer belief elements), and 

beliefDegree : Measurement (formalizing the degree to which a belief agent believes in a 

belief classifier). More details on measurements are provided in Section 4.6. A belief 

classifier may be associated to one or more BeliefAgents, which is defined, in U-Model, as 

an individual, a community of individuals sharing the same set of beliefs, or technology, 

such as a software system, with built-in beliefs (Appendix A.1). For example, as shown in 

Fig. B-1, the belief agent of the BUCS is SRL, the Simula team who developed the case 

study. 

A belief classifier may be associated with IndeterminacyKnowledge and/or 

EvidenceKnowledge. IndeterminacyKnowledge is defined, in U-Model, to describe an 

objective relationship between an IndeterminacySource and the awareness that the 

BeliefAgent has of that source (Appendix A.1) and whereas EvidenceKnowledge in U-Model 

captures an objective relationship between an IndeterminacySource and Evidence (Appendix 

A.1). As the subtypes of metaclass Knowledge, IndeterminacyKnowledge and 

EvidenceKnowledge inherit the attribute of Knowledge, i.e., type typed with enumeration 

KnowledgeType with four literals: KnownKnown, KnownUnknown, UnknownKnown, and 

UnknownUnknown, definitions of which are provided in Appendix A.1 for reference. The 

two types of knowledge are respectively associated with IndeterminacySource and Evidence, 

which are discussed in the next sections with details. 

4.3 Belief Use Case Specification 
As shown in Fig. B-6, BeliefUseCaseSpecification specializes BeliefClassifier and 

UseCaseSpecification of UCMeta. Same as for RUCM specifications, a U-RUCM 

specification is composed of a set of flows of events, precondition, each flow of event is 

85 
 
 
 
 
 
 



 
 

 
composed of one postcondition, and each specification is associated to one primary actor 

and optionally associated to one or more secondary actors. In general, 

BeliefUseCaseSpecification is a concrete specification of a use case specified by a 

BeliefAgent. It includes information about the agent’s confidence that the use case will 

execute as specified. For example, as shown in Fig. B-1, the Monitor Windows and Doors 

use case of the SafeHome case study is specified as a BeliefUseCaseSpecification (a subtype 

of BeliefClassifier), with its belief degree specified as 80%. A BUCS has two attributes: 

from and duration, which indicates when it was specified and the validity period of the belief. 

For example, for the running example, the use case was specified on March 3rd of 2016 and 

the belief is valid since after. Notice that these two attributes are inherited from 

BeliefStatement of U-Model (Appendix A.1).  

86 
 
 
 
 
 
 



 
 

 

 

 
U

C
M

et
a 

m
et

ac
la

ss
es

 a
re

 in
di

ca
te

d 
w

ith
 «

U
C

M
et

a»
; U

-M
od

el
 e

le
m

en
ts

 a
re

 h
ig

hl
ig

ht
ed

 w
ith

 «
U

-M
od

el
»;

 th
e 

ot
he

r m
et

ac
la

ss
es

 a
re

 n
ew

ly
 p

ro
po

se
d 

in
 U

-R
U

C
M

. 
C

on
st

ra
in

ts 
sp

ec
ifi

ed
 o

n 
th

is
 p

ar
t o

f t
he

 m
et

am
od

el
 a

re
 p

ro
vi

de
d 

in
 T

ab
le

 B
-2

. 

Fi
g.

 B
-6

. T
he

 c
or

e 
of

 B
el

ie
fU

C
M

et
a 

 

87 
 
 
 
 
 
 



 
 

 
The BUCS template of U-RUCM (Table B-1) conforms to BeliefUCMeta. An instance of 

BeliefUseCaseSpecification is created for each BUCS and serves as the container of other 

belief-related elements (e.g., BeliefPrecondition, BeliefFlowOfEvents, BeliefSentence). 

Different from a traditional UCS of RUCM, a BUCS includes specifications of 

IndeterminacySource and Evidence relevant to the use case. For example, as shown in Fig. 

B-1, the fields of Indeterminacy Source (s) and Evidence of the U-RUCM editor should be 

used for listing all indeterminacy sources and evidence relevant to the Monitor Windows and 

Doors use case. Notice that, the REF keyword should be used to refer to existing instances 

of IndeterminacySource and Evidence metaclasses of U-RUCM, definitions of which are 

from U-Model and provided in Appendix A for references. For example, all the 

indeterminacy sources defined for the belief use case model are displayed on the left side of 

Fig. B-1, starting with “INT”. Furthermore, in the property window (e.g., the B2 section of 

Fig. B-1) of an indeterminacy source, one can specify its name and nature (e.g., 

Nondeterminism of IndeterminacyNature). The attribute nature of IndeterminacySource is 

typed with IndeterminacyNature defined by five enumeration literals representing five 

possible indeterminacy sources. Notice that indeterminacy sources owned by BUCSs can be 

referenced by other belief elements such as Uncertainty. Such references are formalized as 

instances of IndeterminacyKnowledge and EvidenceKnowledge of BeliefUCMeta (Fig. B-6) 

such as C1 and C2 shown in Fig. B-1.  

88 
 
 
 
 
 
 



 
 

 

 

4.4 Belief Flow of Events 
BeliefFlowOfEvents is a subtype of BeliefClassifier and also extends FlowOfEvents of 

UCMeta (Fig. B-7). Hence, it inherits BasicFlow and the three types of alternative flows: 

Specific, Bounded and Global of RUCM and therefore UCMeta, as shown in Fig. B-7. A 

belief flow of events is composed of a set of sentences, which are all belief sentences 

(Section 4.5), as enforced by the Con9 constraint (Table B-3). BeliefFlowOfEvents, as a 

specific type of BeliefClassifier, has a derived association to Knowledge (Fig. B-7), through 

Table B-2. Constraints defined on the core part of BeliefUCMeta (Fig. B-6) 

ID Name Constraints in Object Constraint Language (OCL) 
Con1 The belief degree of a belief 

classifier is 100% if its 
isUncertainty attribute takes 
value of False. 

Context BeliefClassifier 

Inv: (not self.isUncertainty) implies (self.beliefDegree = 

null or (self.beliefDegree <> null and 

self.beliefDegree.value = 1.0)) 

Con2 If a belief sentence has at 
least one uncertainty 
specified, then the belief 
degree of the belief sentence 
must not be null. 

Context BeliefClassifier 

Inv: self.uncertainty->size()>0 and self.beliefDegree <> 

null  

Con3 An uncertainty’s kind should 
not be null. 

Context Uncertainty 

Inv: self.kind <> null 

Con4 An uncertainty’s from and 
duration should not be null. 

Context BeliefUseCaseSpecification 

Inv: self.from <> null and self.duration <> null 

Con5 The precondition of a BUCS 
should be a 
BeliefPrecondition. 

Context BeliefUseCaseSpecification 

Inv: self.precondition.oclIsKindOf(BeliefPrecondition) 

Con6 All FlowOfEvents of a 
BUCS should be 
BeliefFlowOfEvents. 

Context BeliefUseCaseSpecification 

Inv: self.flows->forAll(f:UCMeta::UCTemplate::FlowOfEvents| 

f.oclIsKindOf(BeliefFlowOfEvents)) 

Con7 All the uncertainties owned 
by a BUCS are 
BranchUncertainty. 

Context BeliefUseCaseSpecification 

Inv: 

self.uncertainty->forAll(u:Uncertainty|u.oclIsKindOf(BranchU

ncertainty))  

Con8 Knowledge associated to 
BeliefSentence, 
BeliefFlowOfEvents and 
Uncertainty must belong to 
the knowledge owned by 
BeliefUseCaseSpecification. 

Context BeleifUseCaseSpecification 

Inv:self.flows-

>forAll(f:UCMeta::UCTemplate::FlowOfEvents|self.ownedKnowledg

e-> 

includesAll(f.oclAsType(BeliefFlowOfEvents).knowledge) and 

f.steps->forAll 

(bs:UCMeta::UCTemplate::Sentence|self.ownedKnowledge-

>includesAll( 

bs.oclAsType(BeliefSentence).knowledge) and 

(bs.oclAsType(BeliefSentence).uncertainty->size() > 0 

implies bs.oclAsType(BeliefSentence).uncertainty-

>forAll(u:Uncertainty| 

self.ownedKnowledge->includesAll(u.knowledge))))) 

 

89 
 
 
 
 
 
 



 
 

 
which a belief flow of events can be associated with indeterminacy sources and evidence if 

needed.  

Specific and bounded alternative flows can be differentiated based on whether RFS or 

URFS is used to refer to one or more steps of a reference flow. RFS is used only when the 

branching condition is fully clear to the belief agent. In other words, the belief sentence 

corresponding to the branching condition has its belief degree specified at 100% and its 

isUncertainty attribute specified as False (the Con1 constraint, Table B-2). For example, the 

DetectIntrusion flow in Fig. B-1 branches out from step 10 of the basic flow under the 

condition that “the windows and doors are open”. The belief degree to the sentence (step 1 

of DetectIntrusion) corresponding to this condition is 100%.  

 
In contrast, URFS is used when the belief agent is not fully confident about a particular 

system behavior or condition (represented by one or more steps in a flow). In principle, an 

URFS alternative flow should always be linked to one or more indeterminacy sources. If 

such indeterminacy sources are known, U-RUCM provides a way to specify them (see 

Section 4.3). For example, the FailOnEnablingMonitoring flow is defined as the belief agent 

is not fully confident that “the system enables the monitoring function” (step 5 of the basic 

flow, Fig. B-1) will actually occur. URFS (instead of RFS) is used in this context because in 

which condition the event occurs and in which condition it does are not known at the time 

when the flow of events was specified. 

 
Constraints specified on this part of the metamodel are provided in Table B-3. 

Fig. B-7. BeliefFlowOfEvents of BeliefUCMeta  

90 
 
 
 
 
 
 



 
 

 

 
For global alternative flows, there is no need to use RFS and URFS. However, a global 

condition must be defined for a global alternative flow (Fig. B-7), which is a constraint 

defined by RUCM and also applies to U-RUCM. For example, as shown in Fig. B-1, 

CallPolice is a global alternative flow, which defines the global condition: “The Alarm has 

been triggered for more than 5 minutes.” Since the condition is a belief sentence, one can 

associate uncertainties with it if needed.  

In summary, U-RUCM provides four different ways of specifying alternative flows: 

Bounded with RFS, Specific with RFS, Bounded with URFS and Specific with URFS. Global 

alternative flows cannot be combined with RFS and therefore URFS, as we discussed above. 

For any URFS alternative flow, there should be at least one alternative sentence specified in 

the alternative flow, which “replaces” the referenced steps of the reference flows of events 

Table B-3. Constraints defined on the BeliefFlowOfEvents part of BeliefUCMeta (Fig. B-7) 

# Name Constraint 
Con9 All sentences in belief flows 

of events are BeliefSentences. 
Context BeliefFlowOfEvents 

Inv: self.steps-

>forAll(bs:UCMeta::UCTemplate::Sentence|bs.oclIsKindOf(Belief

Sentence)) and (self.oclIsKindOf(AlternativeFlow) implies 

self.rfs-

>forAll(s:UCMeta::UCTemplate::Sentence|s.oclIsKindOf(BeliefSe

ntence))) 

Con10 All altSteps of a 
BeliefAlternativeFlow are 
alternative sentences (with 
isAlternative being true) and 
urfs of Sentence is a subset of 
urfs of the 
BeliefAlternativeFlow 

Context BeliefAlternativeFlow 

Inv: self.altSteps->size()>0 implies self.altSteps->forAll( 

s:UCMeta::UCTemplate::Sentence|s.oclAsType(BeliefSentence).is

Alternative and self.urfs-

>includesAll(s.oclAsType(BeliefSentence).urfs)) 

Con11 The condition sentence of a 
BeliefGlobalAlt must not be 
null and it must be a 
BeliefSentence. 

Context BeliefGlobalAlt 

Inv: self.condition->size()>0 and 

self.condition.oclIsKindOf(BeliefSentence) 

Con12 There must be no uncertainties 
specified in any RFS referred 
sentences. 

Context BeliefAlternativeFlow 

Inv: self.rfs->size()>0 and self.urfs->size()=0 and 

self.rfs-> 

forAll(s:UCMeta::UCTemplate::Sentence|s.oclAsType(BeliefSente

nce).uncertainty->size()=0) 

Con13 At least one uncertainty must 
be specified in URFS referred 
sentences and the size of 
altSteps is more than 1. 

Context BeliefAlternativeFlow 

Inv: self.rfs->size()=0 and self.urfs->size()>0 and 

self.urfs-> 

forAll(s:UCMeta::UCTemplate::Sentence|s.oclAsType(BeliefSente

nce).uncertainty->size()>0) and self.altSteps->size()>0 

Con14 At least one 
AlternativeSentence must be 
specified for a URFS 
alternative flow. 

Context BeliefAlternativeFlow 

Inv: self.urfs->size()>0 and self.altSteps->size()>0 and 

self. altSteps->select(a:AlternativeSentence| a.urfs-

>size()>0)->size()>0 and self.altSteps-

>forAll(a:AlternativeSentence|self.urfs->includesAll(a.urfs))  

 

91 
 
 
 
 
 
 



 
 

 
defined in the URFS statement (the Con14 constraint, Table B-3). Any RFS alternative flow 

should not contain any alternative step (the Con12 constraint, Table B-3). Note that 

alternative sentences (which are ordered as sequential steps) are defined at the beginning of 

an URFS alternative flow, followed by a sequence of regular belief sentences.  

4.5 Belief Sentence 
All sentences in a BUCS are belief sentences, which are formalized as BeliefSentence 

elements (specializing the Sentence concept of UCMeta). Since BeliefSentence is a subtype 

of BeliefClassifier, belief sentences inherit all the attributes of BeliefClassifier (e.g., 

beliefDegree, isUncertainty, Fig. B-6), which distinguish themselves from regular RUCM 

sentences. In RUCM and UCMeta, sentences are classified into simple, complex and special 

sentences. Consequently, U-RUCM and BeliefUCMeta classify belief sentences into 

BeliefSimpleSentence, BeliefComplexSentence and BeliefSpecialSentence (Fig. B-8).  

 
Constraints specified on this part of the metamodel are provided in Table B-4. 

Fig. B-8. BeliefSentence of BeliefUCMeta 

A belief sentence can be associated with Uncertainty via BeliefClassifier and 

BeliefStatement and with IndeterminacySource and Evidence via Knowledge and 

BeliefClassifier as shown in Fig. B-6. A belief sentence uncertainty must be a NLUncertainty 

(the Con15 constraint, Table B-4) and the String value of its nl attribute should be part of 

the content of the belief sentence (the Con16 constraint, Table B-4). More details about 

NLUncertainty are discussed in Section 4.6. 

92 
 
 
 
 
 
 



 
 

 
A belief simple sentence is an atomic belief statement, which, from the sentence structure 

perspective, is composed of only one subject and one predicate. Belief simple sentences can 

appear in action steps of flows, preconditions, postconditions, and other fields of a BUCS. 

Belief complex sentences are sentences with the following RUCM keywords applied: IF-

THEN-ELSE-ELSEIF-THEN-ENDIF for conditions, DO-UNTIL for iterations, 

MEANWHILE for concurrency, and VALIDATE THAT for validation. A complex sentence 

can consist of one or more belief simple sentences. Belief special sentences are sentences 

involving keywords RESUME STEP, ABORT, RFS, EXTENDED BY, INCLUDE and 

URFS. Notice that special sentences involving keywords URFS are newly introduced in U-

RUCM, and all the other special sentences are inherited from RUCM. It is important to point 

it out that U-RUCM benefits from the existing capability of UCMeta (which formalizes 

RUCM) for providing the formalization of the sentence structures, sentence patterns and 

sentence semantics (Section 4.1). U-RUCM can also benefit from the automated solution 

(i.e., aToucan [8]) of formalizing natural language sentences into instances of the 

metaclasses of these UCMeta packages. Doing so provides opportunities for automatically 

analyzing formalized belief use case models and transforming them into other artifacts when 

needed. For example, one possibility is to transform belief use case models into UML models 

specified in UncerTum [16] for facilitating MBT. However, providing such capability is 

beyond the scope of this paper.  

In U-RUCM, we also introduce alternative sentences, which are formalized as the 

isAlternative attribute of BeliefSentence (Table B-4). From the natural language perspective, 

alternative sentences have no difference with other belief sentences. The only difference is 

that alternative sentences can only appear in URFS alternative flows as action steps (Section 

4.4). In the current implementation of the U-RUCM editor, alternative sentences (e.g., A1 

and A2 of FailOnEnablingMonitoring, Fig. B-1) are denoted with A1, A2, etc. An alternative 

sentence can be any type of belief sentences: simple, complex or special, as shown in Table 

B-4. 

We also define, in U-Model, MeasurementStatement, a special type of 

BeliefSpecialSentence (Fig. B-8). For example, as shown in Fig. B-2, the Measured Value 

field of the uncertainty specifies two measurement statements, i.e., 

UModel.Measure.Probability::2% and UModel.Measure.Fuzziness::Likely. Since it is a 

93 
 
 
 
 
 
 



 
 

 
special type of belief special sentences, a measurement statement can be associated with all 

the belief sentence properties (including derived ones) such as Uncertainty. Please refer to 

Section 4.8 for detailed discussions of measurement statements, measurements and 

measures.  

 

4.6 Uncertainty 
Uncertainty is defined, in U-Model, for “representing a state of affairs whereby a belief 

agent does not have full confidence in a belief that it holds” (Appendix A.1). We adopt the 

definition of uncertainty from U-Model to U-RUCM and associate it with BeliefClassifier, 

as shown in Fig. B-6. 

In U-Model, uncertainties are classified into five different types, which are inherited by 

U-RUCM and formalized as the five literals of enumeration UncertaintyKind in 

BeliefUCMeta (Fig. B-6): Content, Time, Occurrence, Environment, and 

GeographicalLocation. Definitions of these uncertainty types are provided in Appendix A.2 

for reference. For example, the type of the uncertainty described in Fig. B-2 is Occurrence 

as indicated by the content in the field of Type of the editor.  

Table B-4. Constraints defined on the BeliefSentence part of BeliefUCMeta (Fig. B-8) 

# Name Constraint 
Con15 All the uncertainties 

associated to a belief 
sentence are of the 
NLUncertainty type. 

Context BeliefSentence 

Inv: self.uncertainty->size()>0 implies self.uncertainty-> 

forAll(u:Uncertainty|u.oclIsKindOf(NLUncertainty)) 

Con16 The attribute of nl of an 
NLUncertainty must 
not be null and it 
should be part of 
content of the belief 
sentence. 

Context BeliefSentence 

Inv: self.uncertainty->size()>0 implies self.uncertainty-> 

forAll(u:Uncertainty| u.oclAsType(NLUncertainty)<> null and 

self.content.contains(u.oclAsType(NLUncertainty).nl))  

Con17 The attribute of nl of an 
NLUncertainty must 
not be null and it 
should be part of value 
of the measurement 
statement. 

Context MeasurementStatement 

Inv: self.uncertainty->size()>0 implies self.uncertainty-> 

forAll(u:Uncertainty| u.oclAsType(NLUncertainty)<> null and 

self.value.contains(u.oclAsType(NLUncertainty).nl)) 

Con18 The Measure of each 
Measurement owned by 
the same Uncertainty is 
different. 

Context Uncertainty 

Inv: self.measurement->size()>0 implies self.measurement-> 

forAll(u1,u2:Measurement| u1.kind <> u2.kind) 

 

94 
 
 
 
 
 
 



 
 

 
Each uncertainty has a time point describing when the uncertainty is initialized. This 

attribute is formalized as an attribute of metaclass Uncertainty of BeliefUCMeta (Fig. B-6). 

For example, the uncertainty in Fig. B-2 was specified in March-03-2016 and is active since 

then. An uncertainty can be optionally associated with Risk. Currently, in U-Model and 

therefore in U-RUCM, we define four risk levels: Low, Medium, High and Extreme 

(enumeration RiskLevel, Fig. B-6). For example, the uncertainty in Fig. B-2 is of low risk. 

To further characterize an uncertainty, it can be optionally (if information available) 

associated with one or more patterns (e.g., Aperiodic, Sporadic), which are formalized as 

enumeration PatternKind in BeliefUCMeta (Fig. B-6). For the uncertainty described in Fig. 

B-2, the belief agent is not aware of in which pattern the uncertainty appears, and therefore 

it is not specified.  An uncertainty can be measured (i.e., measuredValue: Measurement, Fig. 

B-6) in different ways (i.e., MeasureKind, Fig. B-6). Details are described in Section 4.8. 

In U-RUCM, we classify uncertainties into two basic types: NLUncertainty and 

BranchUncertainty (Fig. B-6). NLUncertainty(s) are defined at the level of belief sentences. 

Branch uncertainties can be derived automatically from flows of events and are owned by 

BUCSs (the Con7 of Table B-2). In addition to these two categories, in U-RUCM, 

uncertainties in flows of events can also be captured via URFS and alternative flows (Section 

4.4). 

4.6.1 Uncertainty in Belief Sentences (NLUncertainty) 
An NLUncertainty refers to a Part of Speech (PoS) (e.g., noun, verb) of a belief sentence, 

about which a belief agent lacks confidence. This is enabled by the nl attribute of 

NLUncertainty (Fig. B-6). For example, one instance of NLUncertainty in step 5 of the basic 

flow (Fig. B-2) shows that the belief agent is 98% confident about the occurrence of the 

event. The uncertainty is associated with “enables”, which is the predicator verb of the belief 

sentence. Notice that the nl attribute is typed with String. However, if automated solutions 

can always be proposed to parse a belief statement and automatically associate an 

NLUncertainty (through specified nl information) with constructs of a belief sentence (e.g., 

subjects, predicators, objects) if needed. As we discussed in Section 4.5, UCMeta and 

aToucan provide such a capability, from which U-RUCM can benefit.  

95 
 
 
 
 
 
 



 
 

 
An NLUncertainty in a belief sentence can be optionally associated with one or more 

indeterminacy sources owned by the BUCS, the container of all belief sentences and 

therefore uncertainties (Fig. B-6). Doing so helps to provide additional information 

describing situations whereby the information required to ascertain the validity of the belief 

sentence is indeterminate (Appendix A.1). For example, as shown in Fig. B-2, the 

uncertainty is associated with two indeterminacy sources, implying that the belief agent 

believes that there is a 98% probability (not 100%) that the system enables the monitoring 

function and therefore 2% probability that the system does not enable monitoring under 

unknown conditions due to the broken control panel or improper implementation of the 

monitoring functionality. Furthermore, the predefined indeterminacy source categories (e.g., 

MissingInfo, Non-determinism, defined in Appendix A.1), formalized as the literals of 

enumeration IndeterminacyNature (Fig. B-6) provides more information about 

indeterminacy sources and therefore uncertainties. For example, the indeterminacy source 

of Broken Control Panel (Button or Screen) is of a Nondeterminism indeterminacy nature 

(as shown in the left bottom corner of Fig. B-1), implying that the phenomenon of the control 

panel being broken is either practically or inherently non-deterministic.  

It is also worth mentioning that U-Model allows one to specify uncertainties in 

measurement statements, which is enabled by the fact that a measurement statement is a 

belief sentence and therefore it can have uncertainties specified. We, however, in U-Model, 

enforce that when specifying such an uncertainty, its nl attribute should be part of the value 

or the whole of it (Con17, Table B-4). Notice that a measurement statement is composed of 

two parts: measure and value (Section 4.8). Such an uncertainty should be a Content type of 

uncertainty. For the example given in Fig. B-2, if an uncertainty is associated with the 

measurement statement (i.e., UModel.Measure.Probability::98%), nl of the uncertainty 

should be 98%.  

4.7 Branch Uncertainty 
A set of branches can be derived from a BUCS, systematically by following different 

strategies. For example, in [10], we defined three test coverage strategies: all branch 

coverage strategy (covering all branches), all condition coverage strategy (covering all 

conditions of all branches at least once), and loop coverage strategy (ensuring that each loop 

96 
 
 
 
 
 
 



 
 

 
(DO-UNTIL) is exercised exactly one, none, and x number of times, where x can be specified 

beforehand). We adopt these three coverage strategies and use them to generate branches 

systematically from U-RUCM models. Each of these derived branches represents a straight 

path from the precondition of the specification all the way to a postcondition of a flow of 

events. One example of such a branch is provided in Fig. B-3, which is automatically 

generated from the use case specification provided in Fig. B-1.  

The occurrence of a particular path might be uncertain, which therefore forms a branch 

uncertainty. Such an uncertainty is an instance of BranchUncertainty with the 

Occurrence::UncertaintyKind kind. Since such branches can be automatically generated, 

measurements of the branch uncertainties can be automatically calculated when needed, if 

and only if uncertainties of the belief sentences of the specifications are specified. For 

example, as shown in Fig. B-3, the branch takes the path of branching from step 5 and 

executing the FailOnEnablingMonitoring alternative flow and finishing at its last step. Since 

the chance of the system does not enable the monitoring is 1-0.98=0.02 as indicated at step 

5 of the branch, the overall branch uncertainty can then be defined as 0.02 if we follow the 

simple strategy of taking the lowest value of the belief degrees of the belief sentences as the 

branch uncertainty measurement. We acknowledge that there are many alternatives 

regarding how to systematically obtain branch uncertainty measurements. Users can also 

manually define such measurements if they want. However, studying such strategies is out 

of the scope of this paper.  

4.8 Measurement 
As discussed in Section 4.5, in U-RUCM, we define MeasurementStatement as a special 

type of BeliefSpecialSentence (Fig. B-8). MeasurementStatement also inherits U-Model’s 

Measurement; therefore, each measurement statement should be associated with a specific 

type of Measures (Fig. B-8). A U-RUCM measurement can take different kinds of measures 

such as Probability, Vagueness, and Ambiguity, which are formalized as enumeration 

MeasureKind of BeliefUCMeta (Fig. B-6). For example, as shown in Fig. B-2, two 

measurements are specified for the uncertainty in the field of Measured Value as 

UModel.Measure.Probability::98% and UModel.Measure.Fuzziness::Likely indicating that 

the probability the occurrence of enabling monitoring is 98% if measured with Probability 

97 
 
 
 
 
 
 



 
 

 
and it likely occurs if it is measured with Fuzziness. Note that U-Model defines a taxonomy 

of measures (Appendix A.3), which is integrated in U-RUCM as it is.  

In U-RUCM, there are two situations where measurement statements should be specified: 

1) for quantifying the belief degree of a belief classifier, and 2) for quantifying uncertainty. 

We would like to point it out that all belief degree and uncertainty measurements are 

subjective. This is because, at the requirements level, domain experts specify belief degrees 

and uncertainty measurements based on their experience, knowledge, and even preferences, 

as opposed to basing them on available hard data.  

One special case is to define uncertainties in measurement statements as the way how 

uncertainties are specified for other types of belief sentences. This is enabled because 

measurement statements are defined as a special type of belief sentence, as we discussed 

earlier. In other words, the belief agent can attach an uncertainty (e.g., with the measurement 

statement specified as: UModel.Measure.Probability::95%, M1.1 as shown in Fig. B-2) to 

the value of a measurement statement (e.g., 98%) to indicate that she/he is not fully confident 

about the measurement statement (e.g., UModel.Measure.Probability::98%).   

Since different belief agents might have different views on belief degree and uncertainty 

measurements, U-Model enables this by specifying a belief degree (or uncertainty 

measurement) as a specific type of BeliefClassifier, which is associated with one or more 

BeliefAgents as shown in Fig. B-6. Moreover, U-Model also allows a belief agent to specify 

more than one measurements for an uncertainty; however, each of these measurements is 

enforced to take different kinds of measures (Con18, Table B-4).  

U-RUCM (along with its editor) also provides the capability of specifying measurement 

statements as belief special sentences in the sense that a measurement statement is divided 

into two parts: the measure and the value with the format of measure::value. For example, 

as shown in Fig. B-2, one measurement statement corresponding to the uncertainty is 

specified as UModel.Measure.Probability::98%. Notice that the measure taxonomy of U-

Model (Appendix A.3) has been embedded as part of the U-RUCM editor. Therefore, when 

typing “UModel.Measure.”, all the measures of the taxonomy will automatically be listed in 

a drop list for selection. Based on this format, a measurement statement can be automatically 

parsed, and an instance of Measurement will be automatically created and a value will be 

assigned to the value attribute of the measurement statement.  

98 
 
 
 
 
 
 



 
 

 

5 Tool Support and Methodology 

5.1 Tool Support 
BUCSs are specified in the U-RUCM editor, which is implemented in a modeling 

framework, called the Lightweight Modeling Framework (LMF [28]). This framework 

implements functionality similar to those of the Eclipse Modeling Framework (EMF), but 

with a lightweight design with the aim of reducing tight coupling with Eclipse to facilitate 

easier porting to other platforms. LMF has two editors: a reflective model editor and a 

metamodel editor. The LMF Reflective Editor is a simple model editor implemented with 

the LMF metamodel reflection mechanism. The metamodel editor allows editing a LMF 

metamodel. 

BUCSs specified with the editor can be automatically formalized into instances of 

BeliefUCMeta concepts. In the past, we have developed the transformation from RUCM to 

UCMeta, based on natural language processing techniques [8]. The transformation from U-

RUCM to BeliefUCMeta is just an extension of the transformation from RUCM to UCMeta. 

The formalized specifications can be directly used for performing different kinds of analyses 

and generations of other artifacts when needed.  

We have made a video to demonstrate the U-RUCM editor and the formalization from U-

RUCM to BeliefUCMeta, along with the metamodel of BeliefUCMeta, UCMeta and U-

Model in [15] for references. Note that Fig. B-1, Fig. B-2, Fig. B-3 and Fig. Appx-7 also 

demonstrate the user interfaces of the tool. 

5.2 Methodology 
Though U-RUCM can be used in many different ways, in this section, we recommend 

one methodology based on our own experience. It starts with the creation of a use case 

model, specifying the actors, use cases, and relationships among them (Fig. B-9). The belief 

agents in this case are the requirements engineers who capture the information, including 

indeterminacy sources, evidence, and uncertainty degrees from the various stakeholders. Of 

course, it is always possible to revisit the initial specifications subsequently should new 

evidence or indeterminacy sources be uncovered. 

99 
 
 
 
 
 
 



 
 

 
When the overall context of a belief use case model is established, one can start to develop 

a BUCS for each use case. The key steps of developing BUCSs are presented as a UML 

activity diagram in Fig. B-10. There is no particular order for specifying primary and 

secondary actors, belief agents. We recommend a sequence for guiding requirements 

engineers through the process that proceeds from simple tasks to more complicated ones. 

Specifying flows of events is the most challenging task, as it requires a lot of careful analysis, 

discussions, and design. The process is always iterative, although we do not show this in Fig. 

B-10 for reasons of simplicity.  

When specifying belief alternative flows (Fig. B-10), belief global alternative flows are 

often used to specify exceptions and behaviors crosscutting all the steps of a reference flow. 

The key task here is to identify the proper branching condition. If one needs to refer to one 

or more (but not all) steps of a reference flow, belief specific or bounded alternative flows 

can be created. As discussed in Section 4.4, U-RUCM provides four different ways of 

specifying belief alternative flows and some constraints (e.g., alternative sentences only 

appear in URFS alternative flows) should be applied when using U-RUCM in this aspect. In 

our current implementation of the editor, we have enforced these constraints (all the 

constraints specified in Table B-2, Table B-3 and Table B-4) so that chances of violating 

them are eliminated. By definition, URFS and RFS are different and therefore should be 

applied in different situations, as discussed in Section 4.4. We highly recommend using 

URFS to identify uncertain alternative flows only after the entire structure of flows of events 

(using RFS) of a BUCS is defined.  

Each flow of events consists of a set of steps, which are specified as belief sentences. For 

each belief sentence, one should refer to one or more relevant indeterminacy sources and 

evidence, based on which, one can define the belief degree and associated uncertainties. The 

essential activity of specifying a belief sentence is about specifying associated uncertainties 

if there are any. The key steps of specifying uncertainties of the NLUncertainty type for 

belief sentences are presented as a UML activity diagram in Fig. B-11.  

As discussed in Section 4.6, uncertainties can be more precisely characterized by pattern 

and risk information and measured in different ways. In practice, it is not always possible to 

obtain and enter all of this information at once. So, a rule of thumb is to first identify as many 

uncertainties as possible and only then refine them with more detailed information. The 

100 
 
 
 
 
 
 



 
 

 
recommendation is also based on the fact that it is more important, at the requirements 

specification stage, to spend time (which is often limited) on identifying more uncertainties 

than elaborating on details of already identified uncertainties. If one wants to elaborate on 

the details of an already identified uncertainty, it is recommended to start from identifying 

associated indeterminacy sources. This is because identifying indeterminacy sources (e.g., 

REF Broken Control Panel (Button or Screen) in Fig. B-2) might lead to the discovery of 

previously-unknown uncertainties that might be caused by this indeterminacy (e.g., 

uncertainties due to a broken control panel). 

We also recommend a methodology for specifying measurement statements. The key 

steps of the methodology are presented in Fig. B-12 as a UML activity diagram. If a 

measurement statement contains uncertainties, then a procedure similar to the one for 

specifying NLUncertainty for belief sentences can be followed.  

 

Fig. B-9. Methodology for creating a use case model (in UML Activity Diagram) 

101 
 
 
 
 
 
 



 
 

 

 

Fig. B-10. Methodology for specifying BUCSs (in UML Activity Diagram) 

102 
 
 
 
 
 
 



 
 

 

 
Fig. B-11. Methodology for specifying belief sentences (in UML Activity Diagram) 

 
Fig. B-12. Methodology for specifying measurements (in UML Activity Diagram) 

103 
 
 
 
 
 
 



 
 

 

6 Evaluation 
The overall objective of the evaluation was to assess, in an industrial setting, whether U-

RUCM was effective regarding facilitating the development of use case models with the 

explicit focus on uncertainty. In U-Model Section 6.1, we briefly describe the two industrial 

case studies. In Section 6.2, we present the context, design, and execution of the evaluation. 

Results of the case studies are presented in Section 6.3. In Section 6.4, we share our 

experience, lessons learned and identified future challenges. 

6.1 Case Studies 
One of the two industrial case studies involved the Automated Warehouse (AW) from 

ULMA Handling Systems. These complex systems serve to monitor, control, and manage 

warehouses for goods of different types, such as food and beverages and textiles. Each 

handling facility (e.g., crane, conveyor) forms a physical unit, and together they are 

dedicated to one handling system application (e.g., storage).  

The second industrial case study used the Geo Sports (GS) system from Future Position 

X [29], Sweden. This system measures the performance of an individual or a team as well 

as the conditions of athletes over a sustained period in actual game environments (e.g., a 

soccer field). The measurements (e.g., heartbeat, speed, location) are made continuously and 

in real time using geo-position sensors during both training and competition. These 

measurements are communicated during a game via a receiver station to the OpenField15 

system, where coaches can monitor them at runtime and take actions when needed. In 

addition, these measurements can also be used offline for analyses, for example, aimed at 

improving the performance of an individual player or a team. Our case study involved 

Bandy, a form of ice hockey played predominantly in Northern Europe and Russia. To the 

best of our knowledge, this project was the first to monitor sports on ice using sensors. We 

consider GS as a human-in-the-loop CPS [30]. 

15 A cloud-based analytics platform for reporting and presenting data (see 
https://www.catapultsports.com/products/openfield for more information).  

104 
 
 
 
 
 
 

                                                           
 

https://www.catapultsports.com/products/openfield


 
 

 
6.2 Context, Design, and Execution of Evaluation 

The work was conducted in the context of the U-Test16 project. The development of U-

RUCM is an iterative process and interwoven with the activities of developing U-Model, 

eliciting, refining and validating uncertainty requirements of the two industrial case studies.  

Both researchers and industrial partners were involved in the process, during which 

intermediate versions of U-RUCM were developed. We consider that being transparent and 

therefore reporting the process in the paper are important since it provides an opportunity 

for readers to comprehend the rigorousness of the process and therefore gain confidence on 

the derived U-RUCM methodology. Moreover, interesting readers might consider following 

similar procedures to develop similar approaches in similar contexts.  

The development and validation procedure of U-RUCM is shown in Fig. B-13 comprising 

of two parallel processes: 1) related to the development of U-RUCM mainly conducted by 

the researchers; 2) validation of uncertainty requirements mainly performed by the industrial 

partners. At the start of the project (before developing U-RUCM), RUCM was introduced to 

both industrial partners (i.e., ULMA and FPX) as a means for eliciting and specifying the 

initial versions of their uncertainty requirements as shown as step B1 in Fig. B-13. In Fig. 

Appx-7 of Appendix B, we provide a sanitized example of UCSs capturing uncertainty 

requirements with an extended RUCM template. This example was documented by our 

industrial partners. Results of this activity are 20 use cases for each case study, 93 RUCM 

flows of events (52 for AW and 41 for GS), as shown in column RUCM Model of Table B-

6. In total, the RUCM model for AW had 229 sentences, while the GS model had 256. About 

uncertainties specified in the RUCM models, 33 (for AW) and 26 (for GS) sets of steps of 

flows of events describing alternative scenarios were considered as involving uncertainties. 

It is important to point it out that at this stage, uncertainty requirements (i.e., Uncertainty 

Req.V1, Fig. B-13) were specified in a coarse-grained manner, which clearly justified the 

need of developing U-RUCM.  

Second, we conducted a questionnaire-based survey to collect data to detail and quantify 

the identified uncertainties (step A1, Fig. B-13). During this non-trivial process, RUCM was 

deemed adequate to provide initial data, but it captured uncertainty requirements at a coarse-

16 http://www.u-test.eu/ 

105 
 
 
 
 
 
 

                                                           
 



 
 

 
grained level. The output of this step is the initial version of U-RUCM V1, Fig. B-13. The 

questionnaire was derived from the RUCM models developed by the industrial partners 

(Uncertainty Req.V1, Fig. B-13) and it was designed for each use case specification. As 

summarized in Table B-5, the first two types of questions were meant for inspecting a UCS 

from the use case modeling perspective and they are generic; the third to sixth types of 

questions were proposed with the aim to elicit new uncertainty requirements; the last five 

types of questions were proposed with the aim to detail already specified uncertainty 

requirements. To get a concrete idea, we provide in Appendix B a list of questions derived 

for a particular use case (the original version of which is given inTable. Appx-6, a slightly 

improved version (refined by researchers with the RUCM editor) of which are provided in 

Fig. Appx-5 and Fig. Appx-6) as an example.  

According to the questionnaire and comments provided by researchers (step A1), 

industrial partners developed the second version of the uncertainty requirements 

(Uncertainty Req. V2), which are specified using U-RUCM V1. Subsequently, two onsite 

workshops, i.e., one for each partner were conducted to further refine the collected 

requirements, i.e., Uncertainty Req V2 (step A2/B3). The output of the step is Uncertainty 

Req. V3, which is input to the A3 step for refining U-RUCM V1 into U-RUCM V2 and 

developing and formalizing Uncertainty Req. V4 (step A3). U-RUCM V2 is the final version 

presented in this paper, and the current U-RUCM editor was developed based on this version 

of the U-RUCM methodology, and Uncertainty Req. V4 is the final version of uncertainty 

requirements, which is specified with U-RUCM V2. The collected results of the evaluation 

are based on the comparison of Uncertainty Req. V1 and Uncertainty Req. V4 as presented 

in Section 6.3. We also provide a sanitized example of the AW industrial case study in 

Appendix C for reference, which was a final use case specification specified with the latest 

version of the U-RUCM tool.  

106 
 
 
 
 
 
 



 
 

 

 

Fig. B-13. Development and Validation of U-RUCM 

 

6.3 Results 
As previously discussed, all the RUCM models developed by the industrial partners were 

refined using U-RUCM to capture all the identified uncertainties. Descriptive statistics of 

Table B-5. Design of the questionnaire (A1, Fig. B-13) 

# Explanation 
1 Inquiry the boundary of the system to define actors in the use case model. 
2 Check the completeness of the flow of events of each use case specification. 
3 Inquiry the existence of sources related to an actor. 
4 Inquiry the existence of potential uncertainties related to system properties or behaviors. 
5 Inquiry existence of the potential uncertainties regarding time, nature and human being. 
6 Inquiry if a potential uncertainty is valid by checking if it is derived based on system properties or 

behaviors. 
7 Inquiry the completeness of the types of uncertainties defined in U-Model. 
8 Inquiry the type of a specified uncertainty. 
9 Inquiry the measure and measurement of a specified uncertainty. 
10 Inquiry the risk of a specified uncertainty. 
11 Inquiry the evidence to support the specified measurement and risk of a specified uncertainty. 

 

107 
 
 
 
 
 
 



 
 

 
the resulted U-RUCM models, i.e., Uncertainty Req. V1, are reported in the Key RUCM 

Element columns of Table B-6. The table shows how many elements were added, modified, 

and removed during the process for the two case studies reported in the Refinement column. 

The elements existing in the final U-RUCM models, i.e., Uncertainty Req. V4, are reported 

in the U-RUCM Model column.  

Recall that U-RUCM realizes the Uncertainty concept of U-Model by three concrete 

means: 1) NLUncertainty for belief sentences (Section 4.6.1), 2) BranchUncertainty for 

possible executions of BUCSs from the beginning to end (Section 4.7), 3) uncertainties in 

flows of events captured via URFS and alternative flows (Section 4.4). We applied these 

four U-RUCM mechanisms systematically by following the guidelines described in Section 

5 and then carefully examined all the specified BUCSs to refine the U-RUCM models 

further.  

As shown in Table B-6, we refactored the design of the RUCM use case model of AW 

by merging three use cases describing similar scenarios into one, which led to the deletion 

of 2 use cases (as shown in the table). We also added two use cases to the RUCM model of 

GS as the result of the refactoring, as these two use cases can be invoked (via the include 

relationships) by multiple use cases.  

Table B-6 also indicates that three uncertainties in the AW RUCM model were removed 

and four from the GS model. This was because: 1) We optimized the design of the use case 

model by removing duplicated uncertainties, i.e., one from AW and two from GS. For 

example, uncertainties describing improper wearing of positioning devices is the same for 

both indoor and outdoor games; 2) We identified uncertainties from the RUCM models that 

are indeterminacy sources, which were two for AW and two for GS. For example, the long 

distance between a positioning device and the satellites is an indeterminacy source 

(previously identified as an uncertainty), which can lead to the failure of locating the 

satellites with insufficient resolution nature. 

The uncertainty-specific concepts Indeterminacy Source, Alternative Sentence, and 

BranchUncertainty were only introduced in U-RUCM. Consequently, there were no 

corresponding elements in the RUCM models. After carefully going through details of the 

RUCM models using steps described previously, we derived a total of 23 indeterminacy 

sources for AW and 18 for GS, 45 alternative sentences for AW and 76 for GS. Furthermore, 

108 
 
 
 
 
 
 



 
 

 
we discovered 32 instances of NLUncertainty for AW and 48 for GS. These turned out to be 

cases of “unknown knowns” for our industrial partners, that is, tacit knowledge that was not 

explicit initially. This activity led to the addition of 18 belief flows of events for AW and 31 

for GS, 72 new branch uncertainties for AW and 89 for GS, and 43 additional alternative 

flows with URFS applied for AW and 48 for GS.  

In summary, the total numbers of the instances of metaclasses NLUncertainty and 

BranchUncertainty of U-Model, populated for each of the industrial case studies are 

62+72=134 for AW and 70+89=159 for GS. When comparing this with their corresponding 

“rough” RUCM models, we conclude that, by using U-RUCM, we were able to significantly 

enhance the extent and precision of modeling uncertainties in requirements (i.e., (134-

33)/33=306% for AW and (159-26)/26=512% for GS). This suggests that U-RUCM is an 

important improvement in dealing with uncertainty in requirements engineering. More 

specifically, to compare with RUCM, U-RUCM provides a way to elicit, specify and model 

1) uncertainty alternative flows describing scenarios that the belief agent lacks confidence 

about which flow of events occurs given an indeterminacy source, 2) uncertainty alternative 

actions where the belief agent lacks confidence about which action occurs, given an 

indeterminacy source, and 3) measurements of uncertainty, such as probability, interval, 

which are useful when analyzing/reasoning uncertainty. 

In our EU project, the U-RUCM models capturing uncertainty requirements were used as 

the input for developing the test ready models [16, 18] represented as UML class diagrams 

and state machines using UncerTum (see Section 2.1). The test ready models were used to 

generate test cases, which were then executed successfully in actual systems [19]. There are 

clear correspondences between the scenarios and uncertainties defined in the test ready 

models and the ones defined in the U-RUCM models. Note that uncertainty measurements, 

risk information, among others, were directly migrated from the U-RUCM models to the test 

ready models. Doing so significantly reduced the effort required to develop the test ready 

models. Also, throughout the project, the elicited and validated uncertainty requirements 

were used as the communication medium among the partners. 

109 
 
 
 
 
 
 



 
 

 

 
 

Ta
bl

e 
B

-6
. D

es
cr

ip
tiv

e 
St

at
is

tic
s o

f t
he

 R
U

C
M

 M
od

el
s, 

U
-R

U
C

M
 M

od
el

s a
nd

 R
ef

in
em

en
ts

 

 
A

W
 

K
ey

 U
-R

U
C

M
  

El
em

en
ts

 

G
S 

K
ey

 R
U

C
M

  
El

em
en

ts
 

R
ef

in
em

en
t 

U
-R

U
C

M
 

M
od

el
 

U
-R

U
C

M
 

M
od

el
 

R
ef

in
em

en
t 

K
ey

 R
U

C
M

 
El

em
en

ts
 

#A
 

#M
 

#R
 

#A
 

#M
 

#R
 

U
se

 C
as

e 
20

 
0 

20
 

2 
18

 
U

se
 C

as
e 

23
 

3 
20

 
0 

20
 

U
se

 C
as

e 

Fl
ow

O
fE

ve
nt

s 
52

 
18

 
23

 
4 

66
 

(B
el

ie
f) 

Fl
ow

 O
f 

Ev
en

ts
 

71
 

31
 

21
 

1 
41

 
Fl

ow
O

fE
ve

nt
s 

Se
nt

en
ce

 
22

9 
63

 
56

 
16

 
27

6 
(B

el
ie

f) 
Se

nt
en

ce
 

34
8 

97
 

46
 

5 
25

6 
Se

nt
en

ce
 

45
 

0 
0 

45
 

A
lte

rn
at

iv
e 

Se
nt

en
ce

 
76

 
76

 
0 

0 

U
nc

er
ta

in
ty

 
33

 
32

 
18

 
3(

1,
2)

+  
62

 
(N

L)
U

nc
er

ta
in

ty
 

70
 

48
 

15
 

4 
(2

,2
)+

 
26

 
U

nc
er

ta
in

ty
 

 
72

 
0 

0 
72

 
Br

an
ch

U
nc

er
ta

in
ty

 
89

 
89

 
0 

0 
 

43
 

 
0 

43
 

U
RF

S 
48

 
48

 
0 

0 
23

 
0 

0 
23

 
In

de
te

rm
in

ac
y 

So
ur

ce
 

18
 

18
 

0 
0 

#A
 is

 th
e 

nu
m

be
r o

f a
dd

ed
 e

le
m

en
ts

, #
M

 is
 th

e 
nu

m
be

r o
f m

od
ifi

ed
 e

le
m

en
ts

, a
nd

 #
R

 is
 th

e 
nu

m
be

r o
f r

em
ov

ed
 e

le
m

en
ts

;  
*(

n,
m

)+  -
- n

 is
 th

e 
nu

m
be

r o
f u

nc
er

ta
in

tie
s r

em
ov

ed
 d

ue
 to

 re
fa

ct
or

in
g;

 m
 is

 th
e 

nu
m

be
r o

f u
nc

er
ta

in
tie

s t
ha

t a
re

 c
ha

ng
ed

 to
 in

de
te

rm
in

ac
y 

so
ur

ce
. 

110 
 
 
 
 
 
 



 
 

 
6.4 Experience, Lessons Learned, and Future Challenges 

This section presents our experience, lessons learned, and future challenges.  

Identifying common uncertainties, measurements, and indeterminacy sources. From 

the GS case study, we noted that human behavior was the key indeterminacy source of 

uncertainties, due to incorrect interactions with the system. For the AW case study, on the 

other hand, uncertainties and indeterminacy sources centered mainly on the data 

communications between control units and their controlled devices. From these types of 

observations, we can conclude that it is possible in principle to identify common sources, 

types, and measurements of uncertainties that occur in a given domain or even across 

domains. This knowledge can be then used to define reusable uncertainty specifications and 

their corresponding behaviors.  

Specializing U-RUCM. RUCM can be specialized for different purposes and domains. 

For example, in another research project, we developed a version of RUCM specifically for 

real-time systems [31]. In such cases, the standard RUCM template and keywords were 

extended to allow the specification of time constraints. These are also subject to uncertainty. 

Based on that, we anticipate that U-RUCM will also need to be extended to specific domains. 

Learning about uncertainty by applying U-RUCM. In the past, we experienced that one 

can learn how to better design use case models by using RUCM. This is why RUCM is used 

as a teaching method for requirements engineering and software engineering courses both at 

the undergraduate and graduate levels17. Similarly, based on the results of this project, we 

surmise that it is possible to gain more precise and more direct understanding of both 

uncertainty and indeterminacy sources by using U-RUCM.  

Automated, scalable, and systematic reasoning. For effective coping with uncertainty, 

automated/semi-automated reasoning about uncertainty and indeterminacy sources can 

indeed be helpful. This is because, for any non-trivial system, a use case model might be 

large and may contain a large number of potentially inter-related uncertainties. From our 

experience during the initial phases of our study when we were not using U-RUCM, we 

learned that unassisted human reasoning tends to be time-consuming and unsystematic. This 

is why we chose a more formal approach when developing U-RUCM – via the 

17 http://www.zen-tools.com/rucm/index.html 

111 
 
 
 
 
 
 

                                                           
 



 
 

 
BeliefUCMeta metamodel – which provides a formal foundation for future, automated 

reasoning techniques.  

Harvesting the benefits of natural language processing techniques. When deriving U-

RUCM and performing the two industrial case studies, we noticed that there is an 

opportunity to further refine NLUncertainty, the core concept for representing uncertainties 

in belief sentences (see Section 4.6). The general idea here is to rely on natural language 

processing techniques to automatically identify grammatical structures (e.g., Subject), PoSs 

(e.g., Verb), sentence structures (e.g., Subject-Verb-Object), and/or sentence semantics (e.g., 

an actor) sends a request to the system in belief sentences. With this, heuristics can be defined 

to automatically identify potential uncertainties and/or verify already specified ones in belief 

sentences. For example, a verb of the predicator of a sentence might have an Occurrence 

uncertainty associated with it. A noun being the direct object of a simple sentence might be 

associated with a Content uncertainty. 

Reckoning on branch uncertainties. It may be possible to automatically derive values of 

branch uncertainties (A branch uncertainty indicates a belief agent’s confidence in the 

possibility that the execution of the use case takes this particular branch.) At the very least, 

branch uncertainties can help to 1) identify critical paths to reduce uncertainties or perform 

risk analyses (if the postcondition that a branch leads to is considered as the consequence of 

the branch), 2) verify the overall belief degree that a belief agent has in a belief specification, 

and 3) derive test cases targeting branches particularly with high uncertainty. This is a 

possible avenue of further research. 

Systematically discovering unknown known indeterminacy sources and uncertainties 

and transforming them into known unknown uncertainties and known known 

indeterminacy sources. As the case study results showed, it is possible to systematically 

identify previously unknown known based on already-specified (known) uncertainties and 

indeterminacy sources. A systematic methodology (ideally with tool support) can be 

followed to identify more unknown knowns and currently known unknown uncertainties 

(e.g., by combining already identified uncertainties that are associated with the same part of 

system behavior). 

Transforming U-RUCM models into other downstream artifacts. To maximize the 

benefit of U-RUCM models, one possibility is to transform them automatically or semi-

112 
 
 
 
 
 
 



 
 

 
automatically into other artifacts that need to be developed during system development. For 

example, U-RUCM models can be transformed into UML state machines via the UUP 

profile (Section 2.1), for supporting MBT of CPSs under uncertainties. This is feasible as 

RUCM models can be transformed into UML models and test cases (Section 2.3). 

7 Related Work 
Runtime detection, monitoring, reasoning, and managing of requirements, generally 

referred to as being requirements-aware, is necessary for self-adaptive systems [32], due to 

inherent changes in operational environments and contextual uncertainties. For this purpose, 

RELAX [2, 3] – a representative requirements specification and reasoning solution – was 

proposed to support the development of requirements for dynamically adaptive systems with 

environmental uncertainty. RELAX consists of a set of keywords, which are classified into 

modal, temporal, ordinal and uncertainty operators. Uncertainty factors aim to indicate 

where a relaxation of requirements is warranted and, therefore, adaptive behavior is needed. 

Based on a structured natural language based notation, the authors also proposed a 

methodology for relaxing requirement statements with the RELAX keywords. Also, RELAX 

requirements can be formalized using fuzzy logic and reasoning can be performed, when 

needed.  

RELAX has been also integrated with goal-modeling notations (i.e., KAOS [33]) to allow 

for fuzzy goals [2]. Along the same line, Luciano et al. [4] proposed FLAGS for enabling 

the specification of adaptive goals, which are of two types: crisp goals (specified via linear 

temporal logic) and fuzzy goals (specified using a fuzzy temporal logic). Chen et al. [34] 

proposed a goal-driven self-optimization framework to handle three different types of 

uncertainty in goal models: contribution, preference, and effect uncertainty. ReAssuRE was 

proposed by Welsh et al. [5] to attach claims to softgoal contribution links of goal models, 

with the aim to record the rationale for selecting a goal realization strategy when the 

optimum choice is uncertain. Later on, Ramirez et al. [35] integrated ReAssuRE with 

RELAX to assess the validity of claims at runtime, for dealing with environmental 

uncertainty in dynamic adaptive systems.  

Compared to these goal-based approaches, U-RUCM is more generic, as it is not targeting 

dynamic adaptive systems in particular. Second, U-RUCM is built on a use case modeling 

113 
 
 
 
 
 
 



 
 

 
methodology, such that it can naturally facilitate the specification of uncertain alternative 

scenarios. Furthermore, U-RUCM also enables the specification of various types of 

uncertainties (e.g., Time, Occurrence), more precise characterization of uncertainties with 

information such as Pattern, and the ability to quantify uncertainties in different ways (e.g., 

Probability, Fuzziness). Currently, U-RUCM has a dedicated template for specifying 

uncertainty. In the future, it would be useful to investigate using keywords (similar to 

RELAX) to reduce the effort in specifying uncertainties.  

Uncertainty is also considered as an important factor that complicates early requirements 

definition and decision making. Salay et al. [6] proposed the MAVO annotations for 

modeling uncertainty in requirements engineering models, based on the concept of partial 

models (with their properties checked as True, False or Maybe) [36]. The MAVO partiality 

annotations consist of: May partiality (indicating that an element should exist in the model), 

Abs partiality (indicating that an element is a collection of elements), and Var partiality 

(indicating that it is unclear if an element should be merged with others). Famelis and 

Santosa [7] proposed to use colored Entity-Relation models for explicitly capturing the 

MAVO partiality, as well as Points of Uncertainty, a concept representing a specific decision 

about which there is uncertainty. Compared to these partial-model solutions, U-RUCM is 

systematically derived from U-Model, and it is integrated with RUCM, which enables the 

specification of uncertain alternative scenarios.  

Uncertainty can hinder organizations in making strategic decisions due to, for example, 

uncertain stakeholders’ goals and priorities. In this context, uncertainty is defined as the lack 

of knowledge of the consequences of decision alternatives. Letier et al. [37] proposed ways 

for reasoning about uncertainties to support early requirements and architecture decision 

analysis. Uncertainties are represented as probability distributions, while Monte-Carlo 

simulations are used for simulating the impact of alternative decisions. That paper, however, 

does not provide a solution for uncertainty specification and elicitation. Similarly, Esfahani 

et al. [38] proposed GuideArch, a framework for the quantitative exploration of the 

architectural solution space under uncertainty, which is based on fuzzy mathematical 

methods for reasoning about uncertainty. Although these works support means for reasoning, 

simulation, and exploration in the presence of uncertainty, they lack the capability specifying 

and modeling of uncertainty in the context of requirements engineering.  

114 
 
 
 
 
 
 



 
 

 

8 Conclusion and Future Work 
The impact of uncertainty, which is increasingly being recognized as an inherent and 

crucial property of non-trivial software-intensive systems (e.g., CPSs), needs to be better 

understood and addressed explicitly in all phases of system development. In particular, it has 

to be explored and characterized as much as possible during requirements engineering (e.g., 

elicitation, specification, and verification). Use case modeling is a well-known and 

commonly applied requirements specification/modeling method in practice. Specifying 

uncertainty as part of use case models is therefore particularly useful. In this paper, we 

described a methodology and a corresponding tool (U-RUCM) for helping practitioners to 

specify uncertainties in requirements as part of use case models.  

U-RUCM originated in the context of the EU project [39], which involved a consortium 

of nine partners. The initial version of the uncertainty requirements was developed by our 

industrial partners using the basic RUCM methodology, on which U-RUCM was founded. 

After refining the RUCM models, by applying the U-RUCM methodology, we successfully 

identified and specified more than 300% and 500% (previously unknown) uncertainty 

requirements for the two case studies. The resulting U-RUCM models were used as a 

reference to develop test ready models for generating executable test cases to test the two 

industrial applications. As users of U-RUCM ourselves during the evaluation (i.e., case 

studies), we gained invaluable experience about its use and future potential. 

In the future, we plan to enrich the capabilities of U-RUCM from the following aspects: 

1) identifying and specifying common uncertainties within and across domains, 2) 

specializing U-RUCM for the real-time domain, 3) reasoning uncertainties at various levels 

such as at the sentence level by relying on NL techniques, the structure level of use case 

specifications by, e.g., analyzing the cause-effect of the sequential order of steps of flows of 

events, and 4) automated transformation of U-RUCM models into other artifacts such as test 

cases. We also plan to conduct controlled experiments to evaluate the applicability of U-

RUCM and conduct more industrial case studies to understand its potential and limitations 

better. 

115 
 
 
 
 
 
 



 
 

 

Acknowledgment 
This research was supported by the EU Horizon 2020 funded project (Testing Cyber-

Physical Systems under Uncertainty, Project Number: 645463). Tao Yue and Shaukat Ali 

are also supported by RCN funded Zen-Configurator project, RFF Hovedstaden funded 

MBE-CR project, RCN funded MBT4CPS project, RCN funded Certus SFI and the EU 

COST action MPM4CPS. Man Zhang is funded by the EU Horizon 2020 funded project 

(Testing Cyber-Physical Systems under Uncertainty, Project Number: 645463). 

References 
[1] K. Bittner, and I. Spence, Use Case Modeling, Addison-Wesley, 2003. 

[2] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, A Goal-Based Modeling 

Approach to Develop Requirements of an Adaptive System with Environmental 

Uncertainty, Model Driven Engineering Languages and Systems: 12th International 

Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009. Proceedings, A. 

Schürr and B. Selic, eds., pp. 468-483, Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2009. 

[3] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel, RELAX: a 

language to address uncertainty in self-adaptive systems requirement, Requirements 

Engineering, vol. 15, no. 2 (2010) 177-196. 

[4] L. Baresi, L. Pasquale, and P. Spoletini, Fuzzy goals for requirements-driven 

adaptation, in:   2010 18th IEEE International Requirements Engineering 

Conference. pp. 125-134, 2010. 

[5] K. Welsh, P. Sawyer, and N. Bencomo, Towards requirements aware systems: Run-

time resolution of design-time assumptions, in:   Automated Software Engineering 

(ASE), 2011 26th IEEE/ACM International Conference on. pp. 560-563, 2011. 

[6] R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro, Managing requirements 

uncertainty with partial models, Requirements Engineering, vol. 18, no. 2 (2013) 

107-128,  10.1007/s00766-013-0170-y. 

116 
 
 
 
 
 
 



 
 

 
[7] M. Famelis, and S. Santosa, MAV-Vis: a notation for model uncertainty, in:   

Modeling in Software Engineering (MiSE), 2013 5th International Workshop on. pp. 

7-12, 2013. 

[8] T. Yue, L. C. Briand, and Y. Labiche, aToucan: An Automated Framework to Derive 

UML Analysis Models from Use Case Models, ACM Transactions on Software 

Engineering and Methodology (TOSEM), vol. 24, no. 3 (2015) 13. 

[9] T. Yue, L. C. Briand, and Y. Labiche, Facilitating the transition from use case models 

to analysis models: Approach and experiments, ACM Transactions on Software 

Engineering and Methodology (TOSEM), vol. 22, no. 1 (2013) 5. 

[10] T. Yue, S. Ali, and M. Zhang, "Applying A Restricted Natural Language Based Test 

Case Generation Approach in An Industrial Context," International Symposium on 

Software Testing and Analysis (ISSTA), 2015. 

[11] H. Zhang, T. Yue, S. Ali, and C. Liu, Facilitating requirements inspection with 

search-based selection of diverse use case scenarios, in:   proceedings of the 9th EAI 

International Conference on Bio-inspired Information and Communications 

Technologies (formerly BIONETICS) on 9th EAI International Conference on Bio-

inspired Information and Communications Technologies (formerly BIONETICS). 

pp. 229-236, 2016. 

[12] M. Zhang, T. Yue, S. Ali, H. Zhang, and J. Wu, A Systematic Approach to 

Automatically Derive Test Cases From Use Cases Specified in Restricted Natural 

Languages, in:  D. Amyot, P. F. i. Casas and G. Mussbacher, eds. 8th System 

Analysis and Modelling Conference (SAM 2014), Switzerland, 2014. 

[13] T. Yue, and S. Ali, Bridging the gap between requirements and aspect state machines 

to support non-functional testing: industrial case studies, in:   European Conference 

on Modelling Foundations and Applications. pp. 133-145, 2012. 

[14] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, Automatic generation of 

system test cases from use case specifications, in Proceedings of the 2015 

International Symposium on Software Testing and Analysis, Baltimore, MD, USA, 

2015, pp. 385-396. 

117 
 
 
 
 
 
 



 
 

 
[15] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, Understanding 

Uncertainty in Cyber-Physical Systems: A Conceptual Model, in:   Proceedings of 

the 12th European Conference on Modelling Foundations and Applications 

(ECMFA). pp. 247-264, 2016. 

[16] M. Zhang, S. Ali, T. Yue, and R. Norgren, An Integrated Modeling Framework to 

Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty, 2016; 

https://www.simula.no/publications/integrated-modeling-framework-facilitate-

model-based-testing-cyber-physical-systems. 

[17] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, Uncertainty-Wise Cyber-

Physical System test modeling, Software & Systems Modeling (2017), 2017/07/25,  

10.1007/s10270-017-0609-6. 

[18] M. Zhang, S. Ali, T. Yue, and R. Norgren, Interactively Evolving Test Ready Models 

with Uncertainty Developed for Testing Cyber-Physical Systems,  Technical Report 

2016-12, Simula Research Laboratory, 2016; 

https://www.simula.no/publications/interactively-evolving-test-ready-models-

uncertainty-developed-testing-cyber-physical. 

[19] M. Zhang, S. Ali, and T. Yue, Uncertainty-wise Test Case Generation and 

Minimization for Cyber-Physical Systems: A Multi-Objective Search-based 

Approach,  Technical report 2016-13, Simula Research Laboratory, 2016; 

https://www.simula.no/publications/uncertainty-based-test-case-generation-and-

minimization-cyber-physical-systems-multi. 

[20] M. Zhang, S. Ali, T. Yue, and R. Norgre, Uncertainty-wise evolution of test ready 

models, Information and Software Technology (2017),  

http://dx.doi.org/10.1016/j.infsof.2017.03.003. 

[21] R. S. Pressman, Software engineering: a practitioner's approach 7th edition, Palgrave 

Macmillan, 2010. 

[22] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, A genetic algorithm for optimized 

feature selection with resource constraints in software product lines, Journal of 

Systems and Software, vol. 84, no. 12 (2011) 2208-2221. 

118 
 
 
 
 
 
 



 
 

 
[23] OMG, "Meta Object Facility (MOF) Core Specification (Version 2.4.2)," 2014,  

http://www.omg.org/spec/MOF/2.4.2. 

[24] T. Yue, L. Briand, and Y. Labiche, A Use Case Modeling Approach to Facilitate the 

Transition Towards Analysis Models: Concepts and Empirical Evaluation, in:  A. 

Schürr and B. Selic, eds. Model Driven Engineering Languages and Systems 

(MODELS 2009), 2009. 

[25] J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu, Assessing the Quality of Industrial 

Avionics Software: An Extensive Empirical Evaluation, Empirical Software 

Engineering (2016). 

[26] T. Yue, H. Zhang, S. Ali, and C. Liu, A Practical Use Case Modeling Approach to 

Specify Crosscutting Concerns: Industrial Applications, 2015. 

[27] "U-RUCM: Specifying Uncertainty in Use Case Models," accessed; http://zen-

tools.com/rucm/U_RUCM.html. 

[28] G. Zhang, T. Yue, J. Wu, and S. Ali, Zen-RUCM: A Tool for Supporting a 

Comprehensive and Extensible Use Case Modeling Framework, in:   

Demos/Posters/StudentResearch@ MoDELS. pp. 41-45, 2013. 

[29] "Future Position X," accessed  2017; http://www.fpx.se/. 

[30] D. S. Nunes, P. Zhang, and J. S. Silva, A survey on human-in-the-loop applications 

towards an internet of all, IEEE Communications Surveys & Tutorials, vol. 17, no. 

2 (2015) 944-965. 

[31] H. Zhang, T. Yue, S. Ali, J. Wu, and C. Liu, A Restricted Natural Language Based 

Use Case Modeling Methodology for Real-Time Systems, in:   9th Workshop on 

Modelling in Software Engineering (MiSE’2017), 2017. 

[32] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein, Requirements-

Aware Systems: A Research Agenda for RE for Self-adaptive Systems, in:   2010 

18th IEEE International Requirements Engineering Conference. pp. 95-103, 2010. 

[33] A. Van Lamsweerde, Requirements engineering: from system goals to UML models 

to software specifications, Wiley Publishing, 2009. 

119 
 
 
 
 
 
 



 
 

 
[34] B. Chen, X. Peng, Y. Yu, and W. Zhao, Uncertainty handling in goal-driven self-

optimization–limiting the negative effect on adaptation, Journal of Systems and 

Software, vol. 90 (2014) 114-127. 

[35] A. J. Ramirez, B. H. C. Cheng, N. Bencomo, and P. Sawyer, Relaxing Claims: 

Coping with Uncertainty While Evaluating Assumptions at Run Time, Model Driven 

Engineering Languages and Systems: 15th International Conference, MODELS 

2012, Innsbruck, Austria, September 30–October 5, 2012. Proceedings, R. B. 

France, J. Kazmeier, R. Breu and C. Atkinson, eds., pp. 53-69, Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2012. 

[36] M. Famelis, R. Salay, and M. Chechik, Partial models: Towards modeling and 

reasoning with uncertainty, in:   Software Engineering (ICSE), 2012 34th 

International Conference on. pp. 573-583, 2012. 

[37] E. Letier, D. Stefan, and E. T. Barr, Uncertainty, risk, and information value in 

software requirements and architecture, in:   Proceedings of the 36th International 

Conference on Software Engineering. pp. 883-894, 2014. 

[38] N. Esfahani, S. Malek, and K. Razavi, GuideArch: guiding the exploration of 

architectural solution space under uncertainty, in:   2013 35th International 

Conference on Software Engineering (ICSE). pp. 43-52, 2013. 

[39] S. Ali, and T. Yue, U-Test: Evolving, Modelling and Testing Realistic Uncertain 

Behaviours of Cyber-Physical Systems, in:   Proceedings of the IEEE 8th 

International Conference on Software Testing, Verification and Validation (ICST). 

pp. 1-2, 2015. 

[40] P. R. Garvey, and Z. F. Lansdowne, Risk matrix: an approach for identifying, 

assessing, and ranking program risks, Air Force Journal of Logistics, vol. 22, no. 1 

(1998) 18-21. 

[41] G. Klir, Facets of systems science, Springer Science & Business Media, 2013. 

 

  

120 
 
 
 
 
 
 



 
 

 
 

121 
 
 
 
 
 
 



 
 

 

Paper C 

 
 

Uncertainty-Wise Cyber-Physical 
System Test Modeling 

 
 
 

Man Zhang, Shaukat Ali, Tao Yue, Roland Norgren and Oscar Okariz 

 

 

 
 
 
 
 

 

Journal of Software & Systems Modeling (SOSYM).  

DOI: 10.1007/s10270-017-0609-6.  

122 
 
 
 
 
 
 



 
 

 

Abstract 
It is important that a Cyber-Physical System (CPS) deals with uncertainty in its behavior 

caused by its unpredictable operating environment, to ensure its reliable operation. One 

method to ensure that the CPS will handle such uncertainty during its operation is by testing 

the CPS with Model-based Testing (MBT) techniques. However, existing MBT techniques 

do not explicitly capture uncertainty in test ready models i.e., capturing the uncertain 

expected behavior of a CPS in the presence of environment uncertainty. To fill this gap, we 

present an Uncertainty-Wise test-modeling framework, named as UncerTum, to create test 

ready models to support MBT of CPSs facing uncertainty. UncerTum relies on the definition 

of a UML profile (the UML Uncertainty Profile (UUP)) and a set of UML model libraries 

extending the UML profile for Modeling and Analysis of Real-Time and Embedded Systems 

(MARTE). UncerTum also benefits from the UML Testing Profile (UTP) V.2 to support 

standard-based MBT. UncerTum was evaluated with two industrial CPS case studies, one 

real-world case study, and one open source CPS case study from the following four 

perspectives: 1) Completeness and Coverage of the profiles and model libraries in terms of 

concepts defined in their underlying uncertainty conceptual model for CPSs (i.e., U-Model 

and MARTE, 2) Effort required to model uncertainty with UncerTum, and 3) Correctness of 

the developed test ready models, which was assessed via model execution. Based on the 

evaluation, we can conclude that we were successful in modeling all the uncertainties 

identified in the four case studies, which gives us an indication that UncerTum is sufficiently 

complete. In terms of modeling effort, we concluded that on average UncerTum 

requires18.5% more time to apply stereotypes from UUP on test ready models.  

Keywords. Uncertainty; Cyber-Physical System; UML; Model-based Testing 

1 Introduction 

“Cyber-Physical Systems (CPS) are integrations of computation, networking, and 

physical processes. Embedded computers and networks monitor and control the physical 

processes, with feedback loops where physical processes affect computations and vice 

versa” [1]. These systems often function in the unpredictable physical environment, leaving 

them vulnerable to uncertainty during their operation [2-4]. CPSs are often designed and 

123 
 
 
 
 
 
 



 
 

 
developed with known assumptions on their operating physical environment, which may not 

hold during their operation. Currently, a common practice is to develop CPSs by integrating 

physical units without knowing their internals. Consequently, even during testing, 

assumptions about the expected behavior of CPSs and their operating environment are often 

made. Thus, we argue that when applying Model-Based Testing (MBT), uncertainty (i.e., 

“lack of knowledge” [5, 6] about the internal behavior of a CPS and its composed physical 

units, and its operating environment) must be explicitly captured in test ready models, i.e., 

the models representing the expected behavior of the CPS being tested and are detailed 

enough such that test cases can be generated from them. We took a subjective approach to 

capture uncertainty since a test modeler(s) creates test ready models, during which 

assumptions are made by the modeler(s) about the internal behavior of a CPS and its physical 

units, and its operating environment, based on her/his (their) belief at the time the models 

are created. 

Uncertainty in the context of CPSs is an immature area of research in general and several 

efforts have just begun to study uncertainty in CPSs [7]. In this paper, we report one such 

effort, where we aim to devise a set of modeling methodologies for explicitly modeling test 

ready models (with uncertainty) for CPSs under test with the ultimate aim of automatically 

generating test cases from test ready models with MBT techniques. We report an 

Uncertainty-Wise Modeling Framework, named as UncerTum (Fig. C-1), which is 

developed as part of an EU project [8]. The project has various types of partners contributing 

to the overall approach such as researchers, use case providers, tool vendor, and test bed 

providers, as shown in Fig. C-1. UncerTum, developed by researchers, supports modeling 

test ready models with known uncertainty based on uncertainty test requirements provided 

by use case providers (Fig. C-1). In the project, the first use case provider is Future Position 

X, Sweden [9], who provides the CPS case study about GeoSports (GS) from the healthcare 

domain, whereas the second use case provider is ULMA Handling Systems [10] who 

provides case study about Automated Warehouse (AW) from the logistics domain.  

The core of UncerTum is the UML Uncertainty Profile (UUP) (Fig. C-1), which is defined 

based on the uncertainty conceptual model for CPSs (U-Model) [7]. The UUP profile 

consists of three parts (i.e., Belief, Uncertainty, and Measurement profiles) and an internal 

library containing enumerations required in the profiles. In addition, UncerTum also defines 

124 
 
 
 
 
 
 



 
 

 
an extensive set of UML model libraries (Model Libraries in Fig. C-1) by either extending 

the UML profile for Modeling and Analysis of Real-Time and Embedded Systems 

(MARTE) [11] or defining new ones that were not covered by existing standards. The key 

libraries include Uncertainty Pattern Library, Measure Library, and Time Library. 

Moreover, UncerTum relies on the UML Testing Profile (UTP) V.2 to model test ready 

models for the purpose of enabling MBT. Last, UncerTum includes a set of guidelines (Fig. 

C-1) with recommendations and alternative scenarios for applying the proposed modeling 

notations.  

UncerTum was deployed on IBM Rational Software Architect (RSA) [12] as shown in 

Fig. C-1. Once test ready models are created, they are inputted into the CertifyIt[13] MBT 

tool, which is a plugin to IBM RSA. With this tool, a set of executable test cases can be 

generated based on various test strategies that are devised and prototyped by researchers. 

Both the implementation of UncerTum and test case generation strategies will be integrated 

into CertifyIt by the tool vendor (EGM [14]). Finally, test bed providers provide facilities to 

execute generated test cases on the provided CPSs case studies. This includes Test 

Infrastructure (physical infrastructures and test emulators/simulators) and Test APIs to 

control and monitor both the test infrastructure itself and the CPS being tested. In the context 

of the U-Test project, Nordic Med Test [15] (NMT) provides the facility to execute test cases 

on GS, whereas in the case of AW, ULMA [10], and IK4-Ikerlan [16] provide the 

corresponding facility. Finally, the tool vendor implements the Test Case Execution 

Platform, which executes test cases on the CPS (Fig. C-1). Note that the focus of this paper 

is only on UncerTum, which is indicated by a dashed line box of Fig. C-1 (i.e., “Scope of 

the paper”) and the rest is ongoing.      

125 
 
 
 
 
 
 



 
 

 

 

Fig. C-1. Overall Workflow of the U-Test EU Project 

UncerTum was evaluated with two industrial case studies, one real world, and one open 

source case study from the literature. The first two case studies are GS and AW available to 

us as part of the project, whereas the third case study is embedded Videoconferencing 

Systems (VCSs) developed by Cisco, Norway [17] and was used in the second author’s 

previous work [18]. Currently, we have access to several VCSs in our research laboratory 

due to our long-term collaboration with Cisco and we modeled them ourselves for the 

purpose of evaluating UncerTum. Thus, this case study is a real case study, but using it to 

evaluate UncerTum is not performed in a real industrial setting. The GS and AW case studies 

were however performed in real industrial settings. The fourth case study (SafeHome) is an 

open source case study from [19] and we extended it for our purpose. With these case studies, 

we performed evaluation from these three perspectives: 1) Completeness and Coverage of 

UUP/Model Libraries to U-Model and MARTE, 2) Effort required to model uncertainty 

using UncerTum in terms of the number of model elements and effort measured in terms of 

time, and 3) Correctness of the developed models by executing the models. 

In our previous work, we developed a generic conceptual model (called U-Model) to 

understand uncertainty independent of its final use [7]. Notice that to keep the paper self-

contained, we have provided U-Model and definitions of its concepts in Appendix A and we 

126 
 
 
 
 
 
 



 
 

 
refer to it when necessary. In this paper, U-Model was implemented as UUP, i.e. one of the 

key contributions of this paper, to enable the development of test ready models for 

supporting MBT. Other contributions include a set of model libraries to model (partially 

extending MARTE), for example, various types of uncertainties and their measures and a set 

of precise guidelines to create test ready models using UUP, UTP V.2 and model libraries. 

Note that the development of UTP V.2 is not a contribution of this paper; rather its 

application to create test ready models with uncertainty is one of our contributions. Notice 

that this is one of the first papers reporting the application of UTP V.2 to industrial case 

studies. Another contribution of the paper is our modeling approach to check the correctness 

of test ready models through model execution. Finally, we consider the extensive evaluation 

of the applicability of UncerTum with the three real industrial case studies as a contribution 

as well.  

The rest of the paper is organized as below. Section 2 presents the background, followed 

by a running example (Section 3). Section 4 presents the overview of UncerTum. Section 5 

discusses details of the UUP profile and Section 6 discusses the model libraries. Section 7 

presents the guidelines for applying UncerTum. Section 8 presents our modeling approach 

for checking the correctness of test ready models with model execution. Section 9 provides 

the evaluation and Section 10 presents the related work. We conclude the paper in Section 

11. 

2 Background 

2.1 Cyber-Physical Systems and Testing Levels 
A CPS is defined in [7] as: “A set of heterogeneous physical units (e.g., sensors, control 

modules) communicating via heterogeneous networks (using networking equipment) and 

potentially interacting with applications deployed on cloud infrastructures and/or humans 

to achieve a common goal” and is conceptually shown in Fig. C-2. Uncertainty can occur at 

the following three logical levels [7] (Fig. C-2): 1) Application level, due to events/data 

originating from an application (one or more software components) of a physical unit of the 

CPS; 2) Infrastructure level, due to data transmission via information network enabled 

through networking infrastructure and/or cloud infrastructure; 3) Integration level, due to 

127 
 
 
 
 
 
 



 
 

 
either interactions of applications across the physical units at the application level, or 

interactions of physical units across the application and infrastructure levels. Notice that we 

chose the definition of CPS from [7] as it was defined in the context of our project and was 

further used to define the three levels of uncertainties in CPS that are modeled in this paper 

and conforms to the well-known definition in [1].  

 

Fig. C-2. Conceptual model of a Cyber-Physical System and the Three Levels 

2.2 U-Model 
In our previous work [7], to understand uncertainty in CPSs, we developed a conceptual 

model called U-Model to define uncertainty and associated concepts, and their relationships 

at a conceptual level. Some of the U-Model concepts were extended for supporting MBT of 

all the three levels of CPS under uncertainty (Section 2.1). U-Model was developed based 

on an extensive review of existing literature on uncertainty from several disciplines 

including philosophy, healthcare and physics, and two industrial CPS case studies from the 

two industrial partners of the U-Test-EU project. In this paper, we implement U-Model as 

UncerTum to support the construction of test ready models with uncertainty. Details of U-

Model is given in [7] and part of U-Model is provided in Appendix A for the purpose of 

keeping this paper self-contained.  

2.3 UML Testing Profile (UTP) 
UML Testing Profile (UTP) [20, 21] is a standard at Object Management Group (OMG) 

for enabling MBT. With UTP, the expected behavior of a system under test can be modeled, 

128 
 
 
 
 
 
 



 
 

 
from where test cases can be derived. UTP can be also used to directly model test cases. 

Transformations from models specified with UTP to executable test cases can be performed 

using specialized test generators. Since UTP is defined as a UML profile, it is often applied 

to UML sequence, activity diagrams, and state machines for describing behaviors of a system 

under test or test cases. The key purpose is to introduce testing related concepts (e.g., Test 

Case, Test Data, and Test Design Model and model libraries such as various types of test 

case Verdict (pass, fail)) to UML models for the purpose of enabling automated generation 

of test cases. UTP V.2 [21] is the latest revision of the UTP profile, which is conceptually 

composed of five packages of concepts: Test Analysis and Design, Test Architecture, Test 

Behavior, Test Data, and Test Evaluations. Various numbers of stereotypes have been 

defined for some concepts of these packages. Similar to other modeling notations, it is never 

been an objective to exhaustively apply all the stereotypes when using UTP V.2 to annotate 

UML models with testing concepts [21]. Which stereotypes to apply and how to apply them 

are however problem/purpose specific and should be defined by users of the profile. More 

information about the UTP V.2 standardization and the team can be found in [22, 23].  

To enable MBT of CPSs under uncertainty, we rely on UTP V.2 to model the testing 

aspect of test ready models. In our context, only a subset of UTP V.2 was used. 

3 Running Example 
To illustrate UncerTum throughout the paper, we present a running example in this 

section, which is a simplified security function of the SafeHome system described in [19]. 

The developed test ready model of the running example includes a class diagram (Fig. C-3), 

a composite structure diagram (Fig. C-4), and a set of state machines (Fig. C-5, Fig. C-6, 

and Fig. C-7) using IBM Rational Software Architect (RSA) 9.1 [12]. For the sake of 

simplicity, we only show one security function related to intrusion detection. Notice that, 

even though we present all the diagrams of the model of the running example in this section 

(including the application of the profiles and model libraries), we illustrate them using the 

running example when they are discussed in later sections. 

In general, the security system controls and configures Alarm and related Sensors through 

their corresponding interfaces (class diagram in Fig. C-3, detailed explanation in Table C-

1). In Fig. C-4, we show a composite structure of the security system. Notice that the alarm 

129 
 
 
 
 
 
 



 
 

 
and sensors do not talk to each other directly. Instead, they communicate via the provided 

interface of the port of the system: ISecuritySystem. For example, the security system 

receives the IntrusionOccurred signal via portSecurity, which is sent by a sensor from 

portSensor when an intrusion is detected (see the implementation of effect notifyIntrusion 

in Fig. C-6).  

 
-- «TestItem» is from UTP V.2; «ApplicationElement», «InfrastructureElement» and 

«IntegrationElement» are from the CPS Testing Levels profile; «IndeterminacySource» is from UUP; Note 
that «enumeration» and «signal» are not stereotypes. They are used in IBM RSA to denote different types of 

UML model elements.  

Fig. C-3. Class diagram of the Simplified Security System 

. 
-- «TestItem» is from UTP V.2; «ApplicationElement», «InfrastructureElement» and «IntegrationElement» 

are from the CPS Testing Levels profile; Connectors between two ports are applied with 
«IntegrationElement», but IBM RSA does not visualize them in the diagram. 

Fig. C-4. Composite Structure diagram of the Security System 

Behaviors of the alarm, sensors, and the system were specified as the three state machines 

by the first author of the paper (modeled in Fig. C-10) shown in Fig. C-5, Fig. C-6, and Fig. 

C-7, respectively. The alarm state machine has two states: AlarmDeactivated and 

AlarmActivated. AlarmDeactivated represents the state that the alarm is not ringing, whereas 

130 
 
 
 
 
 
 



 
 

 
the AlarmActivated state denotes that the alarm is ringing. The sensor state machine has two 

states (Fig. C-6): SensorDeactivated denoting the state that a sensor is deactivated to detect 

intrusion, whereas SensorActivated represents that a sensor is activated to sense intrusion. 

The security system state machine (Fig. C-7) has two concurrent regions in the composite 

state MonitoringAndAlarm and a set of sequential states (e.g., Idle and Ready). The top 

region (Monitor Intrusion) of the MonitoringAndAlarm composite state has two states: 

Normal and IntrusionDetected, which represent that an intrusion is not detected and 

detected, respectively. The bottom region (Timer Control) has three states: Timer Stopped, 

Timer Started, and Police Notified, representing the states that the timer of the system is 

stopped to notify the police (TimerStopped), the timer is activated to wait for 3 minutes 

before notifying the police (TimerStarted), and the police is notified (PoliceNotified). 

 
Fig. C-5. State Machine of Alarm 

 
Fig. C-6. State Machine of Sensor 

These three state machines communicate via signals using the ports defined in the 

composite structure (Fig. C-4). One typical scenario in case of security breach is: 1) When a 

sensor is in the state of SensorActivated, it sends the IntrusionOccurred signal to the security 

system (UML Action Language (UAL) [24] code in the comment in Fig. C-6) once the 

intrusion is detected via the effect notifyIntrusion defined in the self-transition (Fig. C-6, A) 

of the SensorActivated state; 2) When the Security System receives the IntrusionOccurred 

signal, it transits to the IntrusionDetected state from the Normal state (Fig. C-7, B.1). In 

parallel, as one can see from the bottom region (Timer Control) of the MonitoringAndAlarm 

(A) 

(C) 

131 
 
 
 
 
 
 



 
 

 
composite state of the system (Fig. C-7), the system sends the StartAlarm signal to the Alarm 

state machine via activateAlarm (Fig. C-7 and effect* in the Table C-1) and triggers 

StartTimer() when entering the IntrusionDetected state (Fig. C-7, B.2), which leads to the 

transition from TimerStopped to TimerStarted (Fig. C-7). From TimerStarted, after 3 

minutes (time event), the system notifies the police and transits to PoliceNotified; 3) The 

Alarm state machine receives the StartAlarm signal in the AlarmDeactivated state and 

activates the alarm and transits to AlarmActivated. 

 

Fig. C-7. State Machine of the Security System 

 
StateInvariant «CheckPropertyAction» of IntrusionDetected 

(self.systemStatus = SecuritySystemStatus:: Monitoring or (self.systemStatus = SecuritySystemStatus:: 
MonitoringAndAlarm and self.alarm.isRinging)) and self.sensors->forAll (s:Sensor|s.isActivated) and 

self.sensors->one(s:Sensor|s.isIntrusionOccured) 

Fig. C-8. StateInvariant (in OCL) of IntrusionDetected (B.2) 

 
Fig. C-9 and Fig. C-10 illustrates how we model uncertainty using UUP/Model Libraries, 

whereas Fig. C-3 and Fig. C-4 show the application of the CPS Testing Levels profile and 

UTP V.2 on the models of the running example. As an example, the detailed description for 

classifier SecuritySystem is shown in Table C-1. An example of using the model libraries is 

shown in Table C-1, on transition B.1, where the probability of successful intrusion detection 

is measured in a 7-scale of probability (Probability_7Scale defined in the probability library) 

as VeryLikely (see the Transition row in Table C-1 and Success:ReceiveIntrsionOccurred in 

Fig. C-9). More details are presented in the following sections. 

(B.2) (B.1) 

132 
 
 
 
 
 
 



 
 

 
Table C-1. An Example of Classifier SecuritySystem using UncerTum 

Name SecuritySytem (Fig. C-3) 
Description The security system controls and configures Alarm and related Sensors through their 

corresponding interfaces. 
Stereotype «TestItem, IntegrationElement» 
Provided 
Interface 

«ApplicationElement» ISecuritySystem 

Is Composed Of «InfrastructureElement, IndeterminacySource» Sensor [*] 
«InfrastructureElement, IndeterminacySource» Alarm [1] 

Ports portSecurity: «ApplicationElement» ISecuritySystem (Fig. C-4) 
communicates with portSensor of Sensor:«ApplicationElement» ISensor 
communicates with portAlarm of Alarm: «ApplicationElement» IAlarm 

State Machine 
 
  

«IntegrationElement, BeliefElement» SecuritySytem (Fig. C-7) 
Stereotypes 
agent: «BeliefAgent» Man_Simula (Fig. C-10) 
Transition «BeliefElement» Normal: State→IntrusionDetected: State (Fig. C-7, B.1) 

trigger*: <SignalEvent>IntrusionOccurred(sensorID:String) 
effect*: activateAlarm() the body of this operation is: portSecurity.send(new 
StartAlarm()) 
Stereotypes 
agent: «BeliefAgent» Man_Simula (Fig. C-10) 
measurement: 
-measureInDTViaClass: «BeliefMeasure» ReceiveIntrusionOccurred (Fig. C-
9) 
-measurementInVS:<InstanceValue>VeryLikely 
uncertainty: 
-kind: UncertaintyKind::Occurrence 
-referredIndeterminacySourceInClassifier: «IndeterminacySource, 
InfrastructureElement»Sensor 
-referredCause: «BeliefElement, Cause» notifyIntrusion (see Fig. C-6, A) 
-referredEffect: «BeliefElement, Effect» AlarmActivated (C) 

trigger * represents the “triggers” attribute of Transition in UML. effect * represents the “effects” attribute 
of Transition in UML. 

 
-- Probability, Probability_7Scale and BeliefInterval are from the Measure library 

Fig. C-9. The Example of Modeling Measurement/Measure 

133 
 
 
 
 
 
 



 
 

 

 
Fig. C-10. The Example of Modeling BeliefAgent 

4 Overview of UncerTum 
Fig. C-11 shows the overall flow of using UncerTum and an overview of UncerTum is 

presented in Fig. C-12. Step 1 in Fig. C-11 is about creating test ready models using the 

UML profiles (e.g., UUP), model libraries, and guidelines defined in UncerTum. Section 5 

presents the profiles in detail, Section 6 presents the model libraries, whereas Section 7 

presents the guidelines. Step 2 in Fig. C-11 involves developing executable test ready models 

to support validation of these model based on the guidelines defined in Section 8.1. Step 3 

executes these executable test ready models and in case errors are found a test modeler can 

use our guidelines defined in Section 8.2 to fix these errors. Notice that our framework only 

supports test modeling, i.e., creating test ready models that can be used to generate 

executable test cases. Such type of modeling is less detailed as compared to, e.g., modeling 

for automated code generation. This is mainly because, during test modeling, we are only 

interested in modeling test interfaces (e.g., APIs to send a stimulus to the system and 

capturing state variables) and the expected behavior of a system.  

134 
 
 
 
 
 
 



 
 

 

 
Fig. C-11. Overall Flow of Using UncerTum 

The core of UncerTum is the implementation of U-Model (relevant part of U-Model in 

Appendix A and complete details in [7]) as UUP (Fig. C-12). Notice that U-Model was used 

as the reference model to create UUP. While developing UUP based on U-Model, we took 

three types of decisions: 1) Some concepts from U-Model (e.g., Uncertainty) were 

incorporated into UUP as it is; 2) Some concepts from U-Model (e.g., Belief, which is an 

abstract concept) were not implemented in UUP; 3) Some concepts from U-Model were 

refined in UUP. For example, the BeliefStatement concept was implemented as 

«BeliefElement» in UUP since it corresponds to an explicit representation of model elements 

in the modeling context. At a high level, the core part of U-Model is implemented as UUP 

comprising of three parts: Belief, Uncertainty, and Measurement. All these profiles import 

Internal_Library that define necessary enumerations required in the profiles. The framework 

also consists of a small CPS Testing Levels profile, which permits modeling specific aspects 

of the three testing levels of CPSs, i.e., Application, Infrastructure, and Integration, just for 

MBT. 

The framework also consists of three UML model libraries: Measure Library, Pattern 

Library, and Time Library (which extend MARTE [11]). We would like to highlight that we 

imported Time Library from MARTE without any modifications and thus we will not 

describe it in the paper. The framework relies on UTP V.2 to bring necessary MBT concepts 

135 
 
 
 
 
 
 



 
 

 
to test ready models. Finally, the framework provides a set of guidelines on how to use its 

modeling notations to construct test ready models for enabling MBT of CPSs under 

uncertainty.  

 

Fig. C-12. Overview of UncerTum 

5 UUP and CPS Testing Levels Profile 
This section presents UUP, whose modeling notations are composed of stereotypes and 

classes for Belief (Section 5.1), Uncertainty, and Measurement (Section 5.2), as shown in 

Fig. C-13, Fig. C-14 and Fig. C-15. The complete profile documentation (including 

constraints) is provided in [25] and the mapping between concepts in UUP and U-Model is 

provided in Table C-2. We also present the CPS Testing Levels profile in Section 5.3. Notice 

that in this section, we describe the UUP concepts at a high level and please refer to 

definitions of the U-Model concepts in Appendix A and the detailed profile specification in 

[25]. 

Table C-2. Definitions of the Stereotypes and Classes in UUP 

 Profile Stereotype/Class in UUP Concept in U-Model (Appendix A) 

Belief 

«BeliefStatement» BeliefModel::BeliefStatement 
«BeliefElement» - 
«BeliefAgent» BeliefModel::BeliefAgent 
«Indeterminacy 
Source» 

BeliefModel::IndeterminacySource 

136 
 
 
 
 
 
 



 
 

 
 Profile Stereotype/Class in UUP Concept in U-Model (Appendix A) 

Uncertainty BeliefModel::Uncertainty 
Measurement BeliefModel::Measurement 
«Evidence» BeliefModel::Evidence 

Uncertainty 

«Cause» - 
«Effect» UncertaintyModel::Effect 
«Lifetime» UncertaintyModel::Lifetime 
«Risk» UncertaintyModel::Risk 
«Pattern» UncertaintyModel::Pattern 

Measurement/ 
Measure 

«Measurement» BeliefModel::Measurement 
«BeliefDegree» “beliefDegree” attribute of Belief 
«Indeterminacy 
Degree» 

“indeterminacyDegree “attribute of 
IndeterminacySource 

«EffectMeasurement» “measurement” attribute of Effect 
«RiskMeasurement» - 
«UncertaintyMeasurement» “measuredValue” attribute of Uncertainty 
«Measure» MeasureModel::Measure 
«BeliefDegreeMeasure» “measure” attribute of Measurement 
«IndeterminacyDegreeMeasure» “measure” attribute of Measurement 
«RiskMeasure» - 
«UncertaintyMeasure» “measure” attribute of Measurement 
«EffectMeasure» “measure” attribute of Measurement 

5.1 UUP Belief 
The Belief part of UUP is one of the key components of UUP since we focus on subjective 

uncertainty (“lack of knowledge”), where a test modeler(s) (BeliefAgent(s), see Appendix 

A) creates test ready models of a CPS based on her/his/their assumptions (Belief, see 

Appendix A) about the expected behavior of the CPS and its operating environment. The 

Belief part of UUP thus defines concrete concepts to model Belief of test modelers with 

UML. As shown in Fig. C-13, it implements the high-level concepts defined in U-

Model:BeliefModel provided in Appendix A.1 (the mapping is provided in Table C-2 and 

further discussion is provided in Section 9.2.1). As shown in Fig. C-13 and Table C-2, five 

stereotypes are defined, among which «BeliefElement» is the key stereotype associated to 

various UML metaclasses. This stereotype is used to signify which UML model elements 

are representing belief of belief agent(s). Generally speaking, any model element may 

represent a belief, but in the context of our work, we only extend UML metaclasses that are 

required to support MBT. For example, a StateMachine (subtype of metaclass Behavior) 

itself can be a belief element (i.e., expected state-based behavior of a CPS and its operating 

environment), such that «BeliefElement» can be applied on it to characterize it with 

additional information such as to which extent a test modeler (stereotyped with 

«BeliefAgent») is confident about the state machine (i.e., beliefDegree of BeliefStatement), 

137 
 
 
 
 
 
 



 
 

 
all uncertainties (i.e., Uncertainty) associated with the state machine, and their 

Measurements. In our context, we extend UML state machines; however, it is worth 

mentioning that «BeliefElement» can be used, for example, with activity and sequence 

diagrams if needed. We intentionally kept the profile generic (e.g., by making 

«BeliefElement» extend the UML metaclass Behavior) such that different MBT techniques 

based on different diagrams can be defined when needed.  

 

Fig. C-13. The Belief Profile 

In case that there is some evidence, e.g., existing data to support the belief, «Evidence» 

can be used. It is defined to capture any evidence for supporting the definition of a 

measurement for an uncertainty. The stereotype extends UML metaclass Element, implying 

that any UML model element (e.g., Class) can be used to specify evidence, e.g., as a 

ValueSpecification. Each uncertainty is also associated with a set of indeterminacy sources 

(definition in Appendix A), which can be explicitly specified using «IndeterminacySource» 

and classified with enumeration IndeterminacyNature (Fig. C-13) as defined in Appendix 

A.   

The profile also implements OCL constraints defined in U-Model. For example, as shown 

in Fig. C-13, each beliefDegree (an instance of Measurement) of a «BeliefStatement» must 

have exactly one measure associated with it, which can be specified in three different ways: 

a «Measure» (via attribute measure of Measurement), DataType (via measureInDT) or Class 

(via measureInDTViaClass). This OCL constraint is given below:  
context BeliefStatement: 
self.beliefDegree->size()>0 and self.beliefDegree->select(measurement:Measurement|measurement-
>size()>0)->forAll(measurement:Measurement|(measurement.measureInDT-
>size()+measurement.measureInDTViaClass->size()=1) xor (not 
measurement.measure.oclIsUndefined())) 

138 
 
 
 
 
 
 



 
 

 
When we look at the running example, the belief agent (Fig. C-10) is Man_Simula 

(stereotyped with «BeliefAgent») who defines three state machines: one for the alarm, one 

for the sensors, and one for the security system itself. As shown in Table C-1, 

«BeliefElement» is applied on the IntrusionOccurred transition from Normal to 

IntrusionDetected (Fig. C-7, B.1). The belief agent of this belief element is specified as class 

Man_Simula (stereotyped with «BeliefAgent» shown in Fig. C-10). The belief degree of this 

belief element is specified as a value specification “VeryLikely” and measured as 

Probability_7Scale. The belief element has one occurrence uncertainty, which is associated 

to «BeliefElement, Cause» notifyIntrusion of «IndeterminacySource» Sensor (Table C-1). 

5.2 UUP Uncertainty and Measurement  
The second key component of UUP is about the implementation of concepts related to 

Uncertainty («BeliefElement» composed of Uncertainty in Fig. C-14) and is presented in 

Fig. C-14. In addition, each Uncertainty may have associated measurements that are 

captured in the Measurement part as shown in Fig. C-15. In Fig. C-14, the key element is 

Uncertainty, which is characterized with a list of attributes such as kind (typed with 

enumeration UncertaintyKind) indicating a particular type of uncertainties. All of the 

attributes (except for kind and field) are optional. For example, an uncertainty might or might 

not have an indeterminacy source (i.e., indeterminacySource as defined in Appendix A).  

The U-Model concepts of Effect, Pattern, Lifetime, and Risk (Appendix A) can be 

specified with UUP in difference ways. For example, one can specify the effect (i.e., the 

result of an uncertainty, as defined in Appendix A) of an uncertainty simply as a string 

(attribute effect of Uncertainty). One can also create a UML model element and stereotype 

it with «Effect» and the uncertainty can then be associated with it (i.e., referredEffect). More 

details regarding the possible alternatives can be found in Section 7. 
 

139 
 
 
 
 
 
 



 
 

 

 

Fig. C-14. The Uncertainty Profile 

«IndeterminacySource», «BeliefStatement», Uncertainty, «Effect», and «Risk» can be 

further elaborated with Measurement. A measurement can be specified in different ways: 1) 

as a string (attribute measurement of class Measurement), 2) as a value specification 

(measurementInVS), 3) as a package stereotyped with a subtype of «Measurement», and 4) 

a constraint stereotyped with «MeasurementConstraint». «Measurement» is further 

classified into five subtypes, corresponding to the five types of elements to be measured. 

 

Fig. C-15. The Measurement Profile 

«Measure» is defined to classify different types of measures and provide users an option 

to denote classes and data types with concrete measure types such as «EffectMeasure». Such 

a stereotyped class or data type is linked via Measurement to «IndeterminacySource», 

«Effect», Uncertainty, «Risk» or «BeliefStatement».        

A set of OCL constraints has been implemented in UUP. One of the examples is that 

Element with applied «Effect» should be referred at least once via the “referredEffect” 

attribute of the Uncertainty instance:  

140 
 
 
 
 
 
 



 
 

 
context Effect: 

self.base_Element.getAppliedStereotype('UUP::Uncertainty::Effect')<>null implies 

Uncertainty.allInstances()->one(u:Uncertainty|u.referredEffect->includes(self)) 

For the running example, «BeliefElement, Effect» ActivatedAlarm is associated with 

Uncertainty of «BeliefStatement» IntrusionOccurred via the “referredEffect” attribute 

(Table C-1). 

5.3 CPS Testing Levels Profile 
We define a small CPS Testing Levels profile with the three stereotypes (Fig. C-16) to 

denote which model element belongs to which level of the three: «Application», 

«Infrastructure», and «Integration». This enables a test generator to use different 

mechanisms (if used) to control and access elements from different levels. For example, 

infrastructure-level variables may be accessed with different tools/APIs as compared to 

application-level variables. All the three stereotypes extend the UML metaclass Element, as 

one can apply them to a class, a state, a state machine and many other model elements.  

Note that this profile is defined for enabling MBT of CPS under uncertainty from the 

three logical levels and we have no intention to break down CPS according to their system 

architectures by denoting physical units, sensors, network, etc. For example, class Sensor in 

Fig. C-3 is stereotyped with «IndeterminacySource» and «InfrastructureElement», meaning 

that sensors are infrastructure elements. As shown in Fig. C-4, the composite structure of the 

system describes the interactions between the infrastructure elements (Alarm and Sensors) 

and the application level elements: portSensor, portAlarm, and portSecurity, which are typed 

by three interfaces (i.e., ISensor, IAlarm, and ISecuritySystem) as shown in Fig. C-3. This is 

the reason that the composite structure is stereotyped as «IntegrationElement».  

 
Fig. C-16. The CPS Testing Level Profile 

6 Model Libraries 
To model uncertainty with advanced modeling features, we define three model libraries 

that can be used together with UUP for modeling uncertainty Patterns (in Fig. C-20), 

141 
 
 
 
 
 
 



 
 

 
uncertainty Measurements (corresponding to Probability, Vagueness, and Ambiguity inFig. 

C-17, Fig. C-18 and Fig. C-19), and Time-related properties. Measure, Pattern, and Time 

libraries import the MARTE_PrimitiveTypes library [11] to facilitate the expression of data 

in the domain of CPSs such as Real. Respectively, the Measure library adapts the operation 

of NFP_CommonType of MARTE [11] related to probability distributions. The Pattern 

library imports elements related to Pattern from the BasicNFP_Types library of MARTE 

[11] (e.g., AperiodicPattern) and further extends them. For example, the Transient pattern 

does not exist in MARTE [11] and has been newly defined. The Time library imports the 

time concepts from MARTE_DataTypes library [11] to facilitate the expression of time, e.g., 

Duration and Frequency, thus do not discuss these in this paper. 

6.1 Measure Libraries 
We define three measure packages (Probability, Ambiguity, and Vagueness) to facilitate 

modeling with different uncertainty measures (Fig. C-17, Fig. C-18, Fig. C-19, and Table C-

3). Notice that in U-Model (Appendix A), these three concepts were defined only at a very 

high level; no breakdown of Probability, Ambiguity, and Vagueness was provided in U-

Model. In this paper, we largely extended and implemented the detailed measures belonging 

to these three categories/packages, based on various theories such as Fuzzy Set and 

Probability Theory. 

In the Ambiguity library, we define the data types corresponding to the relevant Ambiguity 

measures published in the literature (Fig. C-17). Since these measures are well known, we 

do not provide further details in this paper; however, interested readers may consult the 

provided references listed in Table C-3 for more details and the technical report 

corresponding to this paper [25]. The concepts of the fuzzy set theory [26] are defined in the 

Vagueness library (Fig. C-18) and Table C-3 lists the relevent references.  

142 
 
 
 
 
 
 



 
 

 

 
Fig. C-17. The Ambiguity Model Library 

Various data types related to the probability are defined in the Probability library (Fig. 

C-19). All the modeled probability distributions are well known and thus we do not present 

further details in this paper. Some details of these distributions are provided in the technical 

report corresponding to this paper [25]. The other data types such as Percentage, Probability, 

Probability_Interval, and different qualitative scales of probability (e.g., 

Probability_4Scale) are from basic statistics and thus are not further explained. 

 

Fig. C-18. The Vagueness Model Library 

143 
 
 
 
 
 
 



 
 

 

 

Fig. C-19. The Probability Model Library 

For example, as shown in Fig. C-9, the IndeterminacyDegree of Sensor_IntrusionSensed, 

which is used to measure the occurrence of successful sensing intrusion of Sensor, the self-

transition of SensorActivated (Fig. C-6), is expressed by BeliefInterval  [27], which is 

composed of belief (97%) and plausibility (99%), which are pre-defined in the Ambiguity 

library (Fig. C-17). Further details are provided in the technical report corresponding to this 

paper [25] for references. 

Table C-3. The Main Concepts in Measure Libraries 

Measure Library Concept Reference 

Ambiguity 

BeliefInterval, Belief, Plausibility, ShannonEntropy, Belief Theory [27] 
Conflict [28] 
HartleyMeasure [29] 
AlternativeMeasure [30] 
DissonanceMeasure [31] 
U_Uncertainty [32] 
PossibleDistribution [33] 
PignisticDistribution [34] 

Vagueness 

MembershipDegree, FuzzySet, FuzzySetOperationKind, 
FuzzyLogicOperation, FuzzyLogic, FuzzyNumber 

Fuzzy Set  and Fuzzy Logic theory 
[26] 

FuzzySetCut [35] 
FuzzyEntropy [36] 
Fuzziness, EuclidFuzziness, HammingFuzziness, 
MinkowskiFuzziness 

[37, 38] 

Roughness and RoughSet [39] 
LFuzzySet [40] 
IntuitionisticFuzzySet [41] 

144 
 
 
 
 
 
 



 
 

 
IntervalValuedFuzzySet [42-44] 
VagueSet [45] 
Sharpness [46] 

Probability 

NormalDistribution, BernoulliDistribution, 
ExponentialDistribution, GammaDistribution, 
PoissonDistribution, UniformDistribution, 
GeometricDistribution,TriangularDistribution, 
LogarithmicDistribution 

Probability Distribution [47] 

Probability, ConfidenceLevel, ConfidenceInterval [47] 
 

6.2 Pattern Library 
This section presents Pattern Library shown in Fig. C-20 to support modeling various 

known patterns, in which an uncertainty may occur. All the patterns except for Transient 

and PersistentPattern are imported from MARTE [11]. Details of these patterns can be 

consulted from the MARTE specification and the technical report corresponding to this 

paper [25]. The definition of Transient is adopted from [7], i.e., “Transient is the situation 

whereby an uncertainty does not last long”. Transient inherits from IrregularPattern. The 

newly introduced attributes are minDuration and maxDuration describing the duration for 

which the uncertainty lasts. The definition of PersistentPattern is adopted from [7], i.e., “the 

uncertainty that lasts forever”. The definition of “forever” varies. For example, an 

uncertainty may exist permanently until appropriate actions are taken to deal with the 

uncertainty. On the other hand, an uncertainty may not be able to resolve and stays forever. 

The duration attribute of PersistentPattern is set to “forever” to indicate that the uncertainty 

with this pattern stays forever until resolved. In the context of testing, “forever” may be the 

duration for which a test case is being executed on a CPS. 

 

Fig. C-20. Pattern Library 

7 UncerTum Modeling Methodology 
In this section, we present our modeling methodology for UncerTum. The rest of this 

section is organized as follows: Section 7.1 presents the overview of modeling activities, 

145 
 
 
 
 
 
 



 
 

 
Section 7.2 presents modeling activities at Application Level, Section 7.3 presents modeling 

activities at Infrastructure Level, Section 7.4 presents modeling activities at Integration 

level, and Section 7.5 presents the modeling activities of applying UUP which is invoked at 

the above three level. Notice that we used the activity diagram to provide a step-wise 

procedure to create test ready models and this activity diagram is not used for testing. We 

used structured activities in the activity diagram when it was necessary to break an activity 

down. Whenever an activity is used by multiple activity diagrams, we created the activity 

and call it from the multiple activity diagrams using call behavior activity nodes.  

To facilitate the construction of test ready models, we made a set of design decisions, 

which are summarized, along with the rationales behind, in Table C-4. We refer to them in 

the text whenever those are discussed. 

Table C-4. Design Decisions in UncerTum to Model Test Ready Models 

# Scope Decision Justification 
DD1 Package Group model elements 

belonging to different levels 
in different packages.  

The purpose is to enable separation of 
concerns, based on each logical level, 
e.g., application, and enable reuse of 
model elements.   

DD2 Class Diagram Use Class Diagram to 
model the structure of a 
CPS. 

Class diagrams are commonly used to 
capture the structure of a CPS as state 
variables, test APIs (as operations), 
configuration variables, signals, and 
receptions. 

DD3 Class Diagram 
/Signal 

Use Signals to facilitate 
sending stimulus from one 
physical unit to another. 

Signals can model asynchronous 
communication across various physical 
units of a CPS, which is the purpose of 
UML defining signals.  

DD4 Class Diagram 
/Reception 

Use signal Reception to 
model the stimulus that a 
physical unit can receive 
from another. 

The rationale conforms to the purpose of 
UML defining signal Reception. 

DD5 State Machine Use State Machines to 
model the expected 
behavior of a CPS and its 
operating environment with 
uncertainty. 

The reason is that a large number of 
CPSs exhibit state-based behaviors [48, 
49]. In addition, we have already 
developed test generators to generate 
test cases from UML state machines 
[50], some part of which can be 
extended for testing CPSs under 
uncertainty when needed.   

DD6 State Machine  
/Guard, State 
Invariants 

Specify a State Invariant as 
an OCL constraint modeling 
test oracles. Guard 
conditions are also specified 
as OCL constraints that are 
used to generate test data to 
fire triggers on transitions. 

OCL is a standard language for 
specifying constraints on UML models. 
Several tools for evaluating OCL 
constraints (e.g., Eclipse OCL [51] and 
Dresden OCL [52]) and solving OCL 
constraints (e.g., EsOCL) are available. 

146 
 
 
 
 
 
 



 
 

 
# Scope Decision Justification 
DD7 State Machine/ 

Transition 
Triggers on transitions are 
specified as SignalEvent, 
CallEvent, TimeEvent or 
ChangeEvent. 

1) SignalEvent is used to facilitate 
communication across state machines of 
different physical units of a CPS; 2) 
CallEvent is used to model invocation of 
a testing API or manual operation to a 
CPS; 3) TimeEvent models time-related 
events; 4) ChangeEvent models changes 
in values of state variables. All these 
elements are used as they are intended in 
UML. 

DD8 State Machine 
/Terminate 

Terminate is used to 
interrupt the State Machine. 

The purpose is to indicate the 
termination of the execution of a test 
case on a CPS. 

DD9 Class Diagram and 
State Machine 

UAL is used to enable the 
execution of models. 

Our overall approach is implemented in 
CertifyIt, i.e., a plug-in to IBM RSA 
(Section 1). UAL [24] is implemented 
based on the OMG Alf standard and in 
IBM RSA Simulation Toolkit. Thus, we 
used it to fit in the overall approach. 

DD10 Composite Structure 
Diagram 

Use Composite Structure 
Diagrams to model 
interactions of a CPS with 
outside the world and 
among different physical 
units of the CPS. 

In UML, Composite Structure Diagrams 
are for capturing the internal structure of 
a classifier, its interaction with 
environment or other physical units via 
Ports. Our use of composite structure 
diagrams conforms to UML. 

DD11 Composite Structure 
Diagram/Port, 
Connector 

Use Ports/Connectors to 
model communication of a 
CPS with outside the world 
and communications across 
physical units of a CPS. 

Ports/Connectors in the UML are 
defined to facilitate communication in 
the same way as we intend. 

DD12 UUP/ Belief Agent, 
Evidence, Lifetime, 
Measurement, Cause, 
Pattern, Effect, Risk, 
IndeterminacySource  

Model these concepts as 
String values. 

It is recommended if test ready models 
are annotated with information 
describing these concepts not for 
enabling test generation. Doing so can 
help reducing modeling effort. 

DD13 UUP/ Belief Agent, 
Evidence, Lifetime, 
Measurement, Cause, 
Pattern, Effect, Risk, 
IndeterminacySource 

Model these concepts by 
applying stereotypes on 
model elements (e.g., 
classes, packages) and 
group them in dedicated 
packages. 

This option facilitates defining specific 
test strategies based on the captured 
information via these stereotypes. In 
addition, it helps to facilitate reuse of 
model elements. 

7.1 Overview 
The modeling methodology is naturally organized from the viewpoints of the three types 

of stakeholders: Application Modeler, Infrastructure Modeler, and Integration Modeler, as 

shown in Fig. C-21. For activities performed by each type of modelers, we distinguish them 

by tagging each of them (in their names) using “AP”, “IF”, and “IT”, respectively.  

147 
 
 
 
 
 
 



 
 

 
As shown in Fig. C-21, all modelers are recommended to start from creating a package 

(i.e., AP1, IF1, and IT1), which is used to group and contain model elements for each 

respective level (DD1 in Table C-4). Next, application and infrastructure modelers apply the 

UUP notations to model system behaviors of the application and infrastructure levels, 

respectively (i.e., AP2 and IF2). These two structured activities are further elaborated in 

Sections 7.2 and 7.3. When these two activities are finished, integration modelers take their 

results as inputs and perform IT2: Model Integration Behavior. Details of this structured 

activity are further discussed in Section 7.4. 

 
Fig. C-21. The Top Level Guideline 

7.2 Application Level Modeling 
The application level modeling activities include four sequential steps: creating 

application level class diagrams (AP2.1, DD2 in Table C-4), creating application level state 

machines (AP2.2, DD5 in Table C-4), apply CPS testing levels profile (AP2.3) and applying 

the UUP notations on the created class and state machines (AP2.4).  

A class diagram (DD2) created for the application level captures application level state 

variables (attributes), whose values either can be accessed directly or with dedicated APIs. 

We also model operations representing APIs to send stimuli to the CPS being tested. Also, 

it is important to mention that such a class diagram usually needs to specify Signal, which is 

a Classifier for specifying communication of send requests across different state machines. 

In addition, a class in the class diagram may receive signals from other classes (even across 

148 
 
 
 
 
 
 



 
 

 
levels) that are modeled as signal reception (DD3/DD4 in Table C-4). When creating a class 

diagram for the application level, for each class, each of its attributes captures an observable 

system attribute, which may be typed by a DataType in the UUP’s Model Libraries (Section 

[25]) or MARTE_Library [11]. An attribute may represent a physical observation on a 

device (e.g., battery status on an X4 device). Each operation of a class in a class diagram 

represents either an API of the application software or an action physically performed by an 

operator (e.g., switching on or off of an X4 device). Each signal reception represents the 

stimulus that can be received from a different state machine. 

In a state machine (DD5-DD8 in Table C-4), each state is precisely defined with an OCL 

constraint specifying its state invariants (DD6 in Table C-4). Such an OCL constraint is 

constructed, based on one or more attributes of one or more classes of an application level 

class diagram. Each transition in a state machine should have its trigger defined as a call 

event corresponding to an API or a physical action defined in the class diagrams of the 

application level and has its guard condition modeled as an OCL constraint on the input 

parameters of the transition’s trigger (DD6/DD7 in Table C-4). 

Next, application modelers need to apply UUP on state machines (AP2.4) to specify 

uncertainties and apply the UTP profile to add testing information (e.g., indicating TestItem). 

The application of UUP is the same for the three levels and thus we only describe it under 

the Integration Level Modeling section (Section 7.4.).   

 

Fig. C-22. Application Level Guidelines 

7.3 Infrastructure Level Modeling 
For the infrastructure level, a similar modeling procedure as the one defined for the 

application level should be followed to derive class diagrams and state machines, apply UUP 

and UTP (further details in Section 7.4), as shown in Fig. C-23. One difference is that 

attributes of infrastructure level class diagrams should capture observable infrastructure 

attributes. For example, an attribute (isIntrusionOccurred in Fig. C-3) can reflect the 

occurrence of intrusion sensed by Sensor. Operations of infrastructure level class diagrams 

149 
 
 
 
 
 
 



 
 

 
represent APIs for manipulating infrastructure level components. Regarding state machines, 

they should be consistent with the infrastructure level class diagrams. In other words, states 

should have their invariants defined as OCL constraints based on the attributes defined in 

the infrastructure level class diagrams, and transitions having their triggers defined as call 

events or time/change events (DD5-DD7 in Table C-4).  

 

Fig. C-23. Infrastructure Level Guideline 

7.4 Integration Level Modeling 
Recall that, activity IT2 is started after class diagrams and state machines created for the 

application and infrastructure levels. As shown in Fig. C-24, the IT2 activity starts from 

creating integration level class diagrams (IT2.1) and state machines (IT2.2) and applying the 

CPS testing levels profile (IT2.3), followed by applying UUP and UTP.  

Regarding creating class diagrams for the integration level, such a class diagram should 

focus on specifying interactions between the application software and infrastructure. 

Particularly, signal receptions should be defined to model events that a class can receive 

from the infrastructure and/or application levels (DD3-DD4). Each signal reception 

corresponds to an instance of UML Signal defined in a created integration level class 

diagram (DD3-DD4). Notice that creating class diagrams for the integration level is not 

mandatory (DD1). Model elements that have been defined in the application and 

infrastructure level class diagrams can appear in the integration level class diagrams and they 

should be specified from the perspective of integration level modelers. 

There are different ways of defining model elements for the integration level. One way is 

to refine the created application and infrastructure level state machines by directly 

introducing new model elements to them. For example, a state in the application level can 

send a Signal to the infrastructure level and vice versa. Transitions of a state machine in the 

application (infrastructure) level should capture triggers of type Signal Reception and effects 

containing Signals from the infrastructure (application) level. Another way is to keep 

application and infrastructure level state machines untouched by applying a specific 

150 
 
 
 
 
 
 



 
 

 
modeling methodology (e.g., Aspect Oriented Modeling methodologies) to specify 

crosscutting behaviors separately. In addition, one should also benefit from advanced 

features of UML state machines (e.g., concurrent state machines, parallel regions) to for 

example refer to existing state machines defined in the application and infrastructure levels.   

 

Fig. C-24. Integration Level Guidelines 

 

7.5 Apply UUP (AP2/IF2/IT2) 
Since test ready models can be created in several different ways, we propose a set of 

options to restrict the way, in which test modelers apply UUP. Notice that our test generators 

will only be able to generate test cases when one of these options is followed. The same 

modeling decisions (D12, D13 in Table C-4) are taken for several concepts in UUP including 

Belief Agent, Evidence, Measurement, Lifetime, Cause, Pattern, Effect, 

IndeterminacySource, and Risk. All these can be simply modeled as String values. This 

option is informal since a test modeler is allowed to provide any string value. Second, a more 

formal way is to model these concepts as Fig. C-10 (e.g., a phd student at Simula class for a 

particular BeliefAgent) with possible attributes and operations inside a dedicated package 

(e.g., for all BeliefAgents for a CPS under test). Followed by this, we recommend applying 

dedicated stereotypes (e.g., «BeliefAgent») either on classes, package, or both. The 

justification of these design decisions is summarized in Table C-4.  

Recall that the activity of applying UUP is invoked at all the three levels. We tag each 

type of the activities of the activity diagrams from Fig. C-25 to Fig. C-33 with S, C, and A 

to represent structured activities, call behavior and normal activity nodes (standard semantics 

as in UML). Note that these activity diagrams are developed to explain the step-wise 

procedure to create test ready models and themselves are not part of the test ready models. 

As shown in Fig. C-25, applying UUP starts from applying «BeliefElement» on any UUP 

allowed state machine model element. Then a modeler can specify values for the “from” and 

151 
 
 
 
 
 
 



 
 

 
“duration” attributes of the stereotype, model belief agents, model belief degree, and/or 

model uncertainties (Fig. C-25).   

 
Fig. C-25. Applying UUP 

As shown in Fig. C-26, there are two ways (D12, D13) to model belief agents (S1.1 and 

S1.2). A modeler can specify belief agents simply as one or more strings via the 

“beliefAgent” attribute of «BeliefElement» (S1.1). She/he can also create a package to 

organize all the belief agents (S1.2). In this case, each belief agent can be modeled as a class 

in the package and the package is stereotyped with «BeliefAgent». Alternatively, one can 

model each belief agent as a class and stereotype it with «BeliefAgent». The other option is 

to model each belief agent as a class and stereotype it with «BeliefAgent» and also stereotype 

the package with «BeliefAgent». When choosing to apply options 2, 3, and 4, one needs to 

link a created belief agent package to the agent attribute of «BeliefElement» (S2). For 

example, we modeled the belief agent, Man_Simula, using Option 3 as shown in Fig. C-10. 

152 
 
 
 
 
 
 



 
 

 

 
Fig. C-26. Model «BeliefAgent» 

 
Modeling BeliefDegree is presented in Section 7.5.1 and modeling uncertainties is 

discussed in Section 7.5.2. 

7.5.1 Measurement Modeling 
Modeling measurements and measures are important for applying UUP. These activities 

are used to measure beliefDegree, Uncertainty, indeterminacyDegree, Risk, and Effect. As 

shown in Fig. C-27, one first needs to create a package to contain measurements for 

indeterminacyDegree, beliefDegree, uncertaintyMeasurement, measurement of Risk and 

measurement of Effect (A1). Then, a modeler can optionally specify Evidence (S1), followed 

by the specification of each measurement instance and its corresponding measure (S3 and 

S2).    

 

Fig. C-27. Common Measurement Modeling Activity 

153 
 
 
 
 
 
 



 
 

 
A. Specify Evidence 

As shown in Fig. C-28, there are two ways (D12, D13) to specify evidence. Option 1 is 

to specify evidence as a String value (in the “measurement” attribute of Measurement). 

Option 2 is to create a package for evidence if such a package does not exist and optionally 

stereotype it with «Evidence» (S1.2.1). One can then create any UML model element to 

represent evidence, according to UUP and optionally stereotype it with «Evidence» (S1.2.2). 

The last step of Option 2 is to link either the package or UML model elements representing 

evidence to the “referredEvidence” attribute of Measurement (S1.2.3).  

 

Fig. C-28. Specify Evidence 

B. Specify Measure 
As shown in Fig. C-29, to specify a measure, a modeler needs to create a class diagram 

(A1) and then create instances of Measures (for measurements of either 

“indeterminacyDegree”, “beliefDegree”, “uncertaintyMeasurement”, measurement of Risk 

or measurement of Effect) as classes or data types (A2). One then needs to add attributes to 

these classes or data types by using the data types defined in the Measure Libraries (Section 

6.1). One can optionally apply corresponding measure stereotypes (e.g., 

«UncertaintyMeasure») to the classes or datatypes (A4). The last step is to link a measure to 

an instance of Measurement (A5).   

154 
 
 
 
 
 
 



 
 

 

 

Fig. C-29. Specify Measure 

C. Specify Measurement 
There are three ways (D12, D13) to specify measurements (in Fig. C-30): specifying a 

measurement as a String of the measurement attribute of Measurement (A1), 

ValueSpecification (A2), and an OCL constraint owned by a class or datatype representing 

a measure, based on the attributes defined in the class or datatype (A3.1). One can also 

optionally apply «MeasurementConstraint» to an OCL constraint defined to specify a 

measurement (A3.2).  

 
Fig. C-30. Specify Measurement 

7.5.2 Uncertainty Modeling 
As shown in Fig. C-31, one first needs to specify the kind of an uncertainty (A1), 

optionally specify values for attributes “from”, “field”, and “locality” of the uncertainty, 

155 
 
 
 
 
 
 



 
 

 
optionally model Lifetime (or Cause, Pattern, Effect) of the uncertainty, optionally define 

IndeterminacySource(s), optionally model uncertaintyMeasurement and Risk.  

 

Fig. C-31. Model Uncertainty 

A. Model Lifetime/Cause/Pattern/Effect of Uncertainty 
A modeler has two options (D12, D13) to specify Lifetime/Cause/Pattern/Effect of an 

uncertainty, as shown in Fig. C-32. One option is to simply specify an instance of these as a 

String value owned by the uncertainty (via attributes “lifetime”, “cause”, “effect”, “pattern” 

or “risk” of Uncertainty). The second option needs to start from creating a package for 

Lifetime/Cause/Pattern/Effect if such a package does not exist, and optionally apply 

«Lifetime», «Cause», «Pattern», or «Effect» (S1.2.1). After creating packages, one needs to 

create Lifetime/Cause/Pattern/Effect as any UML model element and optionally apply the 

corresponding stereotypes. Since Effect can be measured, an instance of it can be optionally 

associated with one or more measurements (Section 7.5.1). The last step of Option 2 is to 

associate each created package or element to corresponding attributes of Uncertainty, i.e., 

“referredPattern”, “referredEffect”, “referredLifetime”, or “referredCause”. 

156 
 
 
 
 
 
 



 
 

 

 

Fig. C-32. Model Lifetime/Cause/Patten/Effect of Uncertainty 

B. Model IndeterminacySource 
As shown in Fig. C-33, a modeler can simply specify an indeterminacy source as a String 

value (D12) of attribute “indeterminacySource” of Uncertainty (Option 1). Alternatively, 

one can create a package (D13) to organize indeterminacy sources (A2.2.1), create instances 

of any UML Classifier to represent an indeterminacy source and apply 

«IndeterminacySource» on them (A2.2.2), specify the nature and description of each 

indeterminacy source (A2.2.3), specify measurements for each indeterminacy source (C1), 

and associate the created classifiers to the “referredIndeterminacySource” attribute of 

Uncertainty. 

 
Fig. C-33. Model IndeterminacySource 

157 
 
 
 
 
 
 



 
 

 
C. Model Risk 

A modeler can optionally associate an uncertainty to Risk (D12, D13). As shown in Fig. 

C-34, one can simply specify Risk as a String value of the “riskLevel” attribute of 

Uncertainty (Option 1) or one of the predefined risk levels in enumeration RiskLevel (Option 

2). Alternatively, one can create a package for Risk if such a package does not exist, followed 

by creating classes and/or data types to represent Risks and optionally applying «Risk» 

(A4.3.2). Afterward, a modeler can also optionally specify measurement for Risk (C1), and 

link the created classes and datatypes to Uncertainty via the “riskInDTViaClass” and/or 

“riskInDT” attributes (A4.3.3).  

 
Fig. C-34. Model Risk  

8 UncerTum Validation Process 
In this section, we explain our validation process, which ensures that test ready models 

are syntactically correct and communication across state machines of various physical units 

constituting a CPS takes place correctly. Such validation is aimed at finding modeling errors 

that may have been introduced by a test modeler accidently. Once test ready models have 

been validated without any problems, test cases can be then generated from them. Since the 

execution of test ready models requires data to execute triggers, we generate data manually 

as follows: 1) if a trigger (Call Event/Signal Event) is guarded with a guard condition, we 

generate random values for all the variables involved in the guard condition that satisfy the 

guard condition and use these values to fire the trigger, and generate random values for all 

the other parameters of the call event/signal event, 2) if a trigger (Call Event/Signal Event) 

158 
 
 
 
 
 
 



 
 

 
is not guarded, we generate random values for all the parameters of the Call Event/Signal 

Event to fire the trigger, 3) if a trigger corresponds to a Change Event, we randomly generate 

values that satisfy the change condition, 4) if a trigger corresponds to a Time Event, we 

ensure that the specified period of time in the event is elapsed.  

To validate test ready models, we apply UAL [24] to execute them with IBM RSA 

Simulation Toolkit [53] (DD9 in Table C-4). We decided to use UAL and IBM RSA 

Simulation Toolkit since our test generators are built in CertifyIt [13], which is a plugin for 

IBM RSA as we discussed in Section 1. Further, we provide a set of guidelines as an activity 

diagram to add UAL code on the test ready models in Section 8.1 and propose a set of 

recommended actions in Section 8.2, based on various types of problems identified while 

executing test ready models to help test modelers fix them.  

8.1 UAL Executable Modeling Guidelines 
In this section, we describe the guidelines (in Fig. C-35) to convert test ready models that 

were created based on the guidelines in the last section into executable models to facilitate 

validation.  

 

Fig. C-35. Guidelines to Create Executable Test Ready Models 

As shown in Fig. C-35, 1) In the CD1 activity, a test modeler can optionally specify UAL 

code on the model elements of classes (e.g., specifying default values for attributes and 

159 
 
 
 
 
 
 



 
 

 
implementing bodies of operations). For example, the UAL code of the timeout attribute of 

SecuritySystem (Fig. C-3) is false, i.e., its default value. 2) As shown in the CSD2 activity 

in Fig. C-35, a test modeler should create a composite structure diagram (DD10, DD11 in 

Table C-4) to model the internal structure of the Classifier (e.g., a physical unit) and 

interactions with other associated Classifiers (other physical units) or the operating 

environment of the CPS. For example, the portSecurity port of SecuritySystem (Fig. C-4) 

specifies an interaction point, through which SecuritySystem can communicate with its 

surrounding environment or with Alarm or Sensor. The provided interface of the 

portSecurity is ISecuritySystem, which enables the reception of the IntrusionOccured signal 

and other Signal Receptions in Fig. C-3. Two connectors between portSecurity and 

portSensor (Fig. C-4) are created to enable two-way communications between 

SecuritySystem and Sensor. 3) As shown in SM3 in Fig. C-17, a test modeler can specify 

UAL code on the effect and entry/do/exit activity of a state in a state machine to implement 

a specific activity, especially the ones that involve sending signals across state machines. 

For example, the effect of the A transition in Fig. C-6 is implemented with UAL as 

portSensor.send(new IntrusionOccurred(this.ID)). Since portSensor and 

portSecurity are connected (Fig. C-4) and provided interface ISecuritySystem of portSecurity 

has the capability to receive the IntrusionOccurred signal (in Fig. C-3), the B.1/B.2 transition 

(in Fig. C-7) can be triggered when SecuritySystem receives the IntrusionOccurred signal 

through portSecurity. 

8.2 Recommendations to Fix Problems in Test Ready Models 
This section represents our recommendations (Table C-5) to fix test ready models, once 

these are executed and problems are observed. For example, one observed problem is that 

the IntrusionOccurred signal event cannot be triggered (Fig. C-7) even when it was sent out 

(O4, Table C-5). One possible reason is that the IntrusionOccurred Signal Reception in the 

ISecuritySystem interface of SecuritySystem is missing (SA7). 

Table C-5. Recommended Actions to Fix Test Ready Models based on Observed Problems 

No. Observed Problem Related Problems and Recommended Action 
O1 State change does not happen 

 
State Machines 
SA1: Check the Exit activity of this State; 

160 
 
 
 
 
 
 



 
 

 

9 Evaluation 
In this section, we present the process of the development and validation of UncerTum 

with two industrial case studies (i.e., GS and AW), which were available to us as part of the 

project, one real world case study (VCS), and one case study from the literature in Section 

9.1, the results are described in Section 9.2, and overall discussion and limitations are 

presented in Section 9.3. 

SA2: Check Guards of all the outgoing Transitions of this 
State; 
SA3: Check if one or more outgoing Transitions are missing; 
Related Problems 
O4, O5, O6 

O2 State invariant cannot be satisfied State Machines 
SA4: Check the State Invariant of this State 
SA5: Check the incoming Transition(s) of this State;  
SA6: Check if one or more States are missing; 
Related Problems 
O7 

O3 State cannot be reached Related Problems 
O7, O9 

O4 Signal Event cannot be triggered Class Diagrams 
SA7: Check the Reception of the Interface/Class/Component 
Composite Structure Diagrams 
SA8: Check if the Port related to this signal event is linked 
with the correct Provided Interface;  
SA9: Check the Connectors between Ports; 
State Machines 
SA10: Check if the Signal corresponding to this SignalEvent is 
modeled; 

O5 Call Event cannot be triggered State Machines 
SA11: Check the invocation of the Operation corresponding 
to the CallEvent; 

O6 Change Event cannot be triggered State Machines 
SA12: Check the specified condition of this ChangeEvent; 
SA13: Check activities in parallel regions that manipulate the 
same attributes; 

O7 Transition happens without any trigger State Machines 
SA14: Check the Trigger of this Transition, especially for 
ChangeEvent and TimeEvent;  
SA15: Check the Guard of this Transition; 

O8 State invariant of this state is 
overlapping with another state 
invariant(s) leading to firing an 
unexpected transition.  

State Machines 
SA16: Check if the Guard conditions of all or subset of the 
outgoing Transitions of this state have overlapping. 
SA17: Check if Uncertainty(ies) of this Transition are 
missing; 

O9 Unexpected loop in the State Machine Related Problems 
O7 

161 
 
 
 
 
 
 



 
 

 
9.1 Development and Validation of UncerTum and Test Ready Models 

As previously discussed, the project has two official CPS case study providers. First, the 

first one is from the healthcare domain, which is about GeoSports (GS) provided by Future 

Position X (FPX) [9] Sweden. This case study includes attaching devices to Bandy18 players 

that record various measurements (e.g., heartbeat, speed, location) periodically. These 

measurements are communicated during a Bandy game via a receiver station to the sprint 

system, where coaches can monitor them at runtime. In addition, these measurements can 

also be used offline for analyses, for example, aimed at improving the performance of an 

individual player or a team. To test this CPS in a lab setting without real players, Nordic 

Med Test (NMT) [15] provides a test infrastructure to execute test cases. The second case 

study is about Automated Warehouse (AW) provided by ULMA Handling Systems [10], 

Spain. ULMA develops automated handling systems for worldwide warehouses of different 

natures such as Food and Beverages, Industrial, Textile, and Storage. Each handling facility 

(e.g., cranes, conveyors, sorting systems, picking systems, rolling tables, lifts, and 

intermediate storage) forms a physical unit and together they are deployed to one handling 

system application (e.g., Storage). A handling system cloud supervision system (HSCS) 

generally interacts with diverse types of physical units, network equipment, and cloud 

services. Application-specific processes in HSCS are executed spanning clouds and CPS 

requiring different configurations. This case study implements several key industrial 

scenarios, i.e. introducing a large number of pallets to the warehouse, transferring the items 

by Stacker Crane. To test these scenarios, ULMA [10], and IK4-Ikerlan [16] developed and 

provided relevant simulators and emulators. Further details on the case studies can be 

consulted in [54]. 

In addition, we used a real-world case study of embedded Videoconferencing System 

(VCS) developed by Cisco Systems, Norway. Simula has been collaborating with Cisco 

since 2008. As part of our long-term collaboration under the umbrella of Certus Center [55], 

we have access to real VCS systems. We created test ready models for one of the real CPSs 

ourselves without involving Cisco, based on the previous work [18] of the second author of 

this paper. The fourth case study is a modified version of the SafeHome case study provided 

18 Bandy is a variation of ice hockey commonly played in Northern Europe. 

162 
 
 
 
 
 
 

                                                           
 



 
 

 
in [19]. This case study implements various security and safety features in smart homes 

including intrusion detection, fire detection, and flooding.  

The development and validation procedure of UncerTum and test ready models is 

summarized in Fig. C-36, which involves four stakeholders: 1) Simula Researchers 

(including the first three authors of this paper) play the key role of developing UncerTum 

and creating test ready models; 2) Use Case Providers (i.e., FPX and ULMA) provided 

uncertainty test requirements and real operational data from previous Bandy games in the 

case of GS, and manually checked the conformance of the developed test ready models to 

their corresponding uncertainty test requirements; 3) Test Bed Providers (NMT and 

ULMA/IK4-Ikerlan) provide physical and software infrastructures (including test APIs) to 

automate the execution of test cases and manually checked that the test ready models 

conform to the provided implementation of the test APIs; 4) Tool Vendor is responsible to 

integrate UncerTum and the proposed test case strategies to facilitate test case generation 

and execution. Please note that the UncerTum methodology reported in this paper is fully 

developed by Simula Research Laboratory, which is generic and therefore can be applied to 

test CPS at the three levels. Notice that it is also possible to develop different modeling 

methodologies than the one proposed in this paper, e.g., one such instance is reported in [56] 

for the application level by one of the our project partners. Such modeling methodologies 

can be potentially compared when needed in the future.      

The development of UncerTum took place incrementally (Activities A1 and A2 in Fig. 

C-36). First, UncerTum (A1) was developed by researchers based on U-Model and MARTE, 

in parallel to creating the initial test ready models (B1) for VCS, SafeHome, GS, and AW 

with this initial version of UncerTum. For GS and AW, uncertainty test requirements were 

provided by FPX and ULMA; for VCS, we had some requirements available to us from our 

previous work [18]; SafeHome is from the literature. Based on our experience of creating 

these test ready models, we further refined UncerTum (A2) and as a result UncerTum V.1 

was developed. This was in turn used to further refine the initial test ready models (B2). At 

this point, both versions of the test ready models and UncerTum were refined once again by 

researchers. As a result, Test Ready Model V.1 and UncerTum V.2 were produced (Fig. C-

36).  

163 
 
 
 
 
 
 



 
 

 
UncerTum V2 and Test Ready Models V1 were then used in the modeling technique 

workshop (two days) conducted with the industrial use case providers (FPX and ULMA), 

test bed providers (ULMA/IK4-Ikerlan and NMT), tool vendor (Easy Global Market 

(EGM)) [14], and two other research partners who focused on their own modeling 

methodologies and models. During the workshop, UncerTum and test ready models were 

presented to the participants of the workshop and their feedback was collected. In addition, 

the test API documentation was also presented. Based on the feedback and test APIs, a plan 

was devised to further refine the test ready models after the workshop. The key output of the 

workshop from our side was UncerTum (V.3), which is presented in this paper. Based on the 

feedback and test API documentation, we refined the test ready models (i.e., Test Ready 

Models V2 in Fig. C-36) after the workshop. In parallel, the test bed providers started to 

develop the test infrastructures to enable the execution of test cases, which is not in the scope 

of this paper. 

 

Fig. C-36. Development and Validation of UncerTum and Test Ready Models 

 
 

164 
 
 
 
 
 
 



 
 

 
To further refine the test ready models, another two workshops were conducted: one for 

AW and one for GS arranged by the respective industrial partners. The first workshop took 

place at IK4-Ikerlan [16], where Simula researchers and ULMA participated and the 

workshop lasted for three days. During the workshop, detailed uncertainty test requirements, 

test ready models, and detailed implementation of test execution were discussed. The second 

workshop lasted for two days and took place at the NMT’s site in Sweden. FPX, EGM, and 

other research partners participated. Similar discussion as with ULMA took place with 

FPX/NMT. In addition, EGM presented their tool (CertifyIt) and their plans to integrate 

UncerTum and further implementation of test execution APIs. The outputs of these 

workshops were Test Ready Models V3 as shown in Fig. C-36. Finally, we validated Test 

Ready Models V3 using IBM RSA Simulation Toolkit (see Section 9.2.3 for results). 

9.2 Evaluation Results 
Descriptive statistics of the test ready models developed for the four case studies are 

provided in Table C-6. For each case study, 1) the number of modeled UML diagrams is 

presented in the first row, 2) the second, third, and fourth rows represent the number of 

application, infrastructure, and integration level elements respectively, 3) the last row shows 

the number of uncertainties and indeterminacy sources modeled for each case study. Notice 

that these statistics provide an indication of the complexity and scale of the developed test 

ready models. 

Table C-6. Descriptive Statistics of the Case Studies 

Case Study CPS Profile Class Diagram/Composite 
Structure Diagram 

State Machine Total 

SafeHome # of diagrams 2 3 5 
# Application Elements 15 10 66 
# Infrastructure Elements 16 19 
# Integration Elements 3 3 
# Uncertainties/IndeterminacySource 7 10 17 

VCS # of diagrams 6 12 18 
# Application Elements 92 59 442 
# Infrastructure Elements 103 67 
# Integration Elements 51 70 
# Uncertainties/IndeterminacySource  24 83 107 

GS # of diagrams 3 4 7 
# Application Elements 31 99 226 
# Infrastructure Elements 36 34 
# Integration Elements 6 20 

165 
 
 
 
 
 
 



 
 

 
# Uncertainties/IndeterminacySource  10 29 39 

AW # of diagrams 4 11 15 
# Application Elements 39 52 91 
# Infrastructure Elements 52 75 127 
# Integration Elements 11 33 44 
# Uncertainties/IndeterminacySource  20 52 72 

9.2.1 Mapping UUP/Model Libraries to U-Model and MARTE 
This section provides the descriptive statistics for the mapping of the UUP model 

elements and the model libraries to concepts defined in U-Model and elements in MARTE.  

Table C-6 is divided into four main sections. First, we provide the statistics of elements 

in UUP/Model Libraries that can be directly mapped to U-Model. For example, 

«BeliefStatement» in UUP can be directly mapped to the BeliefStatement concept defined 

in U-Model. Second, we provide the statistics of elements in UUP/Model Libraries (e.g., 

BeliefInterval) that can be indirectly mapped to U-Model concepts (e.g., Ambiguity). Third, 

we provide statistics of elements that are introduced to UUP/Model Libraries (e.g., 

«BeliefElement») by extending U-Model concepts (e.g., BeliefStatement). Fourth, since the 

model libraries are developed via extending MARTE, we also provide statistics for mapping 

elements in UUP/Model Libraries to elements in MARTE. For example, 10 data types in the 

Measure library can be mapped to MARTE. 

As we can see from the last row of Table C-6, 33% of the elements in UUP/Model 

Libraries can be directly mapped to U-Model, whereas 13% of elements can be indirectly 

mapped to U-Model, 54% of elements were newly introduced by extending U-Model 

concepts, most of which are for measures. In addition, 10% of UUP/Model Libraries 

elements were either directly adopted from MARTE or are extensions of MARTE elements. 

The last column of Table C-6 shows the coverage of the U-Model concepts, from which, one 

can observe that 83% of the U-Model concepts were implemented in UUP, whereas 9% of 

the U-Model concepts were implemented in the model libraries. The remaining 8% of the 

concepts that were not mapped to any element of UUP and the model libraries are the ones 

related to Knowledge. Such concepts are important at the conceptual level and are defined 

based on well-defined taxonomies of Knowledge [57], but are not required to be 

implemented in UUP and the model libraries. From these results, we can see that U-Model 

is comprehensive enough to develop UncerTum and it has potential to be used as the basis 

for other researchers and practitioners to develop similar kinds of uncertainty related 

166 
 
 
 
 
 
 



 
 

 
modeling solutions in the future. We, therefore, consider data reported here as a useful 

experience that can be shared with the community. On the other side, from the reported data, 

one can get confidence about UncerTum, as it was indeed developed by following a rigor 

process and a comprehensive conceptual model. 

167 
 
 
 
 
 
 



 
 

 

 

Ta
bl

e 
C

-7
. M

ap
pi

ng
 U

U
P/

M
od

el
 L

ib
ra

rie
s t

o 
U

-M
od

el
 a

nd
 M

A
R

TE
 

U
nc

er
Tu

m
 

 M
od

el
 E

le
m

en
ts

 
 

U
-M

od
el

 
D

ir
ec

tly
 M

ap
pe

d 
(x

,y
,z,

t) 
In

di
re

ct
ly

 M
ap

pe
d 

(x
,y

,z,
t) 

N
ew

ly
 A

dd
ed

 
(x

,y
,z,

t) 
M

A
R

T
E 

C
ov

er
ag

e 
(n

,p
) 

U
U

P 
B

el
ie

f 
8 

13
 

3 
24

 
0 

6 
0 

6 
1 

0 
0 

1 
0 

27
 

30
%

 
U

nc
er

ta
in

ty
 

7 
12

 
7 

26
 

1 
9 

0 
10

 
1 

3 
0 

4 
0 

32
 

36
%

 
M

ea
su

re
 

7 
5 

5 
17

 
0 

1 
12

 
13

 
12

 
10

 
0 

22
 

0 
15

 
17

%
 

To
ta

l 
22

 
30

 
15

 
67

 
1 

16
 

12
 

29
 

14
 

13
 

0 
27

 
0 

74
 

83
%

 
M

od
el

 
Li

br
ar

y 
R

is
k 

1 
0 

0 
1 

0 
0 

0 
0 

9 
0 

0 
9 

0 
0*

 
0%

 
Pa

tte
rn

 
7 

4 
0 

11
 

0 
0 

0 
0 

4 
0 

0 
4 

8 
6 

7%
 

M
ea

su
re

 
0 

0 
0 

0 
3 

0 
0 

3 
55

 
34

 
3 

92
 

10
 

0*
 

0%
 

Ti
m

e 
2 

0 
0 

2 
0 

0 
0 

0 
4 

0 
0 

4 
6 

2 
2%

 
To

ta
l 

10
 

4 
0 

14
 

3 
0 

0 
3 

72
 

34
 

3 
10

9 
24

 
8 

9%
 

To
ta

l 
32

 
34

 
15

 
81

 
4 

16
 

12
 

32
 

86
 

47
 

3 
13

6 
24

 
82

 
92

%
 

Pe
rc

en
ta

ge
 

13
%

 
14

%
 

6%
 

33
%

 
2%

 
6%

 
5%

 
13

%
 

35
%

 
19

%
 

1%
 

54
%

 
10

%
 

 
 

#x
 is

 th
e 

nu
m

be
r o

f C
la

ss
/S

te
re

ot
yp

e/
 E

nu
m

er
at

io
n/

D
at

aT
yp

e 
in

 U
U

P/
M

od
el

 
Li

br
ar

ie
s 

#y
 is

 th
e 

nu
m

be
r o

f A
ttr

ib
ut

es
/A

ss
oc

ia
tio

ns
 in

 U
U

P/
M

od
el

 L
ib

ra
ri

es
 

#z
 is

 th
e 

nu
m

be
r o

f C
on

st
ra

in
t(s

) i
n 

U
U

P/
M

od
el

 L
ib

ra
ri

es
 

#t
 is

 th
e 

su
m

 o
f #

x,
 #

y 
an

d 
#z

 

#n
 is

 th
e 

nu
m

be
r o

f c
on

ce
pt

s (
C

la
ss

/E
nu

m
er

at
io

n/
 A

ss
oc

ia
tio

n)
 in

 U
-M

od
el

 th
at

 a
re

 
m

ap
pe

d 
to

 U
U

P 
#p

 is
 th

e 
pe

rc
en

ta
ge

 o
f c

ov
er

ag
e,

 𝑝𝑝
=

𝑛𝑛 89
 (t

he
 to

ta
l n

um
be

r o
f c

on
ce

pt
s o

f U
-M

od
el

 is
 8

9)
 

0*
 m

ea
ns

 th
e 

nu
m

be
r t

ha
t i

s c
ov

er
ed

 b
y 

ot
he

rs
. 

 
 

168 
 
 
 
 
 
 



 
 

 
9.2.2 Application of UUP/Model Libraries 

In this section, we present the results of our evaluation with the aim of assessing the 

applicability of UncerTum in terms of effort required to create test ready models. We 

conducted the evaluation from two aspects: 1) the percentage of the applied UUP/Model 

Libraries elements in all the test ready models (UML class diagrams and state machines) 

developed for all the four case studies, and 2) the effort in terms of time required to apply 

UUP/Model Libraries. The first aspect focuses on assessing the effort in terms of the number 

of model elements and gives us a surrogate measure of measuring effort, whereas the second 

aspect focuses on measuring the effort in terms of time taken by the test modelers to create 

the test ready models. In our case studies, the first author (second year Ph.D. candidate) 

created the first version of the test ready models, which were iteratively discussed with the 

second (a senior scientist) and third (a chief scientist) authors of this paper. In addition, as 

we discussed in Section 9.1, the test ready models were discussed with other partners 

involved in the project. As it does not exist an approach comparable with UncerTum in the 

literature (see more discussions in Section 10), we, therefore, do not have a comparison 

baseline. Conducting controlled experiments with test modelers could be a better option, 

which is fortunately under the plan and is a future work item, though it is notably that 

conducting such controlled experiments are often time and monetary wise expensive. 

As shown in Table C-8, for the SafeHome case study, in total we modeled 21 classes in 

the class diagrams, 7 out of which have UUP stereotypes applied (e.g., the 

«IndeterminancySource» sensor is applied to Sensor, see Fig. C-3). For the modeled state 

machines, three out of 17 states and seven out of 29 transitions require the application of 

UUP/Model Libraries. In total, as shown in the last column of the table, around 20% of the 

modeling elements of the SafeHome case study required the application of UUP/Model 

Libraries. Similarly, 12% (16%, 17%) of the modeling elements for the VCS (GS, AW) case 

study required the application of UUP/Model Libraries. For all the four case studies, on 

average 16.25% of the model elements require applying UUP/Model Libraries.  

Table C-8. Percentage of UUP/Model Libraries Concepts to UML Concepts 

Case Study Class Diagram State Machine % UUP/Model 
Libraries Elements Class (u/t) Relationship (t) State (u/t) Transition (u/t) 

SafeHome 7/21 18 3/17 7/29 20 
VCS 24/197 303 39/216 61/278 12 
GeoSports 10/62 56 13/82 26/106 16 

169 
 
 
 
 
 
 



 
 

 
AW 20/92 166 17/88 42/122 17 

Average Percentage of Effort in Terms of Additional Model Elements: 16.25% 
#u: the number of elements with applied UUP/Model Libraries; #t: the total number of elements modeled using UML 
Table C-9 summarizes effort (measured in time (hours)) spent by the first author (the 

modeler) on constructing the test ready models for the four case studies. The effort is divided 

into two parts: time for applying standard UML notations and additional effort required for 

applying UUP/Model Libraries. For example, as shown in Table C-9, for SafeHome, it took 

the modeler 4.5 hours for modeling the UML class diagrams, whereas additional 0.5 hour 

was spent on applying UUP/Model Libraries. For the UML state machines, it took 22.5 

hours, whereas additional 7.5 hours were spent on applying UUP/Model Libraries. For 

SafeHome, as shown in the last column (%Time) of Table C-9, it took additional 22% of 

time to apply UUP/Model Libraries. Similarly, for VCS it took additional 23% of time, 15% 

of additional time for GS and 14% of additional time for AW. On average, for all the four 

case studies, modeling with UUP/Model Libraries required additional 18.5% of the total 

modeling effort. 

Table C-9. Effort (Time in Hours) of Applying UUP/Model Libraries 

Case Study Class Diagram State Machine % Time 
UML Modeling UUP/Model libraries 

Modeling  
UML Modeling  UUP/Model libraries 

Modeling  
SafeHome 4.5 0.5 22.5 7.5 22% 
VCS 22.5 6 45 15 23% 
GeoSports 37.5 3.5 52.5 12.5 15% 
AW 39.5 5.5 75 12.5 14% 

Average Percentage of Effort in Time: 18.5% 
 

9.2.3 Validation of Test Ready Models via Model Execution 
In this section, we present the results of the validation of the test ready models developed 

with UncerTum for the four case studies. The overall aim is to check the correctness of the 

test ready models against collected (uncertainty) requirements. The test ready models were 

enriched with UAL (a implementation of the Action Language For Foundational UML [24], 

Alf [58]))—a formal language supported in IBM RSA [12] for executing UML models 

implemented in Java. UML models with UAL can be executed with IBM RSA Simulation 

Toolkit [53] as we discussed in Section 8.  

Table C-10 shows the results of the validation. We classified identified problems during 

the validation process into two main categories: Incorrect and incomplete model elements 

(states and transitions) for each case study. For State, we report problems identified in state 

170 
 
 
 
 
 
 



 
 

 
invariants and «BeliefElement». For Transition, we report problems identified in Guard, 

Trigger, Effect, and «BeliefElement». For State, in total, 79 problems (17+62) were identified 

across the four case studies, where 17 problems were related to Incorrectness and 62 were 

related to Incompleteness. For «BeliefElement» related to State, we identified 32 missing 

stereotypes. For Transition, we discovered 122 problems, 22 (100) of which were related to 

Incorrectness (Incompleteness). For «BeliefElement» related to Transition, we identified 32 

missing stereotypes. 

Table C-10. Results of the Validation of the Test Ready Models 

Case Study State Transition Total 
StateInvariant  «BeliefElement» Guard Trigger  Effect «BeliefElement» 

Incorrect SafeHome 1 0 0 0 1 0 38 
VCS 6 0 0 5 0 0 
GeoSports 3 0 2 1 0 0 
AW 7 0 1 8 3 0 

Incomplete SafeHome 5 2 0 7 2 3 226 
VCS 30 13 15 23 21 18 
GeoSports 11 9 2 4 2 4 
AW 16 8 12 6 6 7 

Total 79 (17, 62) 32 122(22, 100) 32 264 
 

#Incorrect: the number of elements corrected after simulation; #Incomplete: the number of concepts newly added 
after simulation; 

# of triggers: #CallEvent + #SignalEvent + #TimeEvent 
The typical problems identified include: 1) a transition between two states was fired 

without any event (O7 in Table C-5); 2) after firing a transition the state change did not occur 

or the state changed to an unexpected one (O1, O2 in Table C-5); 3) failed to send signals 

across concurrent state machines (O4 in Table C-5); 4) there were no non-deterministic 

transitions from a state (O8 in Table C-5); 5) unexpected exit, block, or deadlock were 

observed in a state machine (O1, O9 in Table C-5); 6) unreachable states were discovered 

(O3 in Table C-5); and 7) a guard condition was always true (O2, O7 in Table C-5). Notice 

that these problems are not a comprehensive set of problems, but demonstrate the most 

commonly observed ones. After simulating the test ready models, we ensure that our models 

are correct and complete and hence can be used for facilitating MBT. 

9.2.4 Application of UTP V.2 
Applying UTP V.2 is the last step of UncerTum modeling as shown in Fig. C-24. In the 

running example, «TestItem» from the Test Context package of UTP V.2 was applied on 

171 
 
 
 
 
 
 



 
 

 
SecuritySystem (Fig. C-3) and «CheckPropertyAction» from the Arbitration Specification 

package of UTP V.2 was applied to the state invariant of IntrusionDetected (Fig. C-7). 

Table C-11 reports the results of the application of UTP V.2 to the models of the case 

studies. Notice that we only report the descriptive statistics of the high-level packages (e.g., 

Arbitration Specification) of UTP V.2 instead of the number of applications of each 

stereotype. Notice that each high-level package contains a set of related stereotypes. For 

SafeHome, in total UTP V.2 stereotypes were applied 54 times, whereas 551 for VCS, 209 

for GS and 247 for AW. 

Table C-11. Applications of UTP V.2 Stereotypes 

Category SafeHome VCS GeoSports AW 
Arbitration Specification 20 246 92 101 
Test Data 29 278 106 122 
Test Configuration 2 15 7 12 
Test Context 3 12 4 12 
Total 54 551 209 247 
 
Based on our experience of applying UTP V.2, we discovered that it is a generic UML 

profile for MBT and does meet all our needs. However, we discovered that combining 

UUP/Model Libraries and UTP V.2 together is sufficient to model test ready models with 

uncertainty in our case. 

9.3 Overall Discussion and Limitations 
Based on the results presented in Section 9.2, we conclude our findings as follows: 1) 

With UncerTum, we were able to model all the identified uncertainties in the four case 

studies. Such modeling suggests that UncerTum is sufficiently complete to create test ready 

models of CPS with explicit consideration of various types of uncertainties to support testing 

of CPS in the presence of such uncertainties; 2) In terms of estimating the effort required to 

apply the UUP stereotypes and model libraries, we conclude that we need to apply them to 

on average 16.25% of model elements (Table C-8). When estimating effort in terms of time, 

we observed that we needed on average additional 18.5% of time to apply UUP (Table C-

9); 3) With our model execution based model validation, we managed to identify and fix in 

total 264 problems across the four case studies (Table C-10) which are necessary before test 

case generation as otherwise generated test cases would have been incorrect. 

172 
 
 
 
 
 
 



 
 

 
In terms of evaluation, we would like to highlight the fact this section reported a 

preliminary evaluation of UncerTum from various perspectives. A more thorough evaluation 

would require conducting surveys and questionnaires from the participants from our 

industrial partners to solicit their views about the modeling methodology in terms of, for 

example, understandability and usability. We plan to conduct such evaluation at the end of 

our project when the complete results have been transferred to the industry partners with the 

participants who are not the co-authors of this paper in order to obtain unbiased feedback 

about UncerTum. 

We would also like to mention that UncerTum cannot be used to model detailed 

continuous behaviors of a CPS, to support, for example, analyses during the system design 

and analysis phase or to generate code. UncerTum only supports test modeling for enabling 

the generation of executable test cases. Such types of models are less detailed as compared 

to models used for code generation or models for design time analyses. This is due to the 

fact that testing is always concerned with sending a stimulus to the system and observing 

whether the system transits to a correct state because of the stimulus according to the 

expected behavior specified in a test ready model, developed for the system. 

10 Related Work 
There are some works in the literature that attempt to deal with modeling uncertainty with 

UML. For example, the authors of [59] proposed to perform fuzzy modeling with UML 1.5 

without violating its semantics, based on theoretical analyses of UML 1.5. However, the 

proposed extensions to UML 1.5 were not implemented and validated. Moreover, there is no 

evidence to show the proposed extensions can be applicable for UML 2.x. 

To model uncertainty (inherent in real world applications) with UML class diagrams, an 

extension was proposed in [60-62], which is referred to as fuzzy UML data modeling. The 

extension relies on two theories: fuzzy set and possibility distribution, and was later on 

further extended in [63] to transform fuzzy UML data models into representations in the 

fuzzy description logic (FDLR) to check the correctness of fuzzy properties. Furthermore, 

another automated transformation was proposed in [64] to transform fuzzy UML data 

models into web ontologies to support automated reasoning on fuzzy properties in the 

context of web services.  

173 
 
 
 
 
 
 



 
 

 
In [65], the UML profile (named as fuzzy UML) was proposed to model uncertainty on 

use case diagrams, sequence diagrams, and state machines. Another work in [66] formalizes 

UML state diagrams with fuzzy information and transforms them into fuzzy petri nets for 

supporting automated verification and performance analysis. In [67], the authors developed 

two stereotypes: moveTo and moveTo? for UML collaboration diagrams. The first stereotype 

is applied when a modeler has full confidence, whereas the second stereotype is used when 

the modeler lacks confidence.  

In comparison to these works, UncerTum focuses on modeling uncertainty in a 

comprehensive and precise manner by considering various types of measures such as 

probability, vagueness, and fuzziness. The methodologies proposed in [60-62] for specifying 

fuzzy UML data can easily be integrated with our model libraries when needed. Notice that 

UncerTum is proposed to explicitly capture the uncertainty of CPSs for the purpose of 

supporting MBT of CPSs under uncertainty and there is no evidence showing that these 

works can be used for this purpose.    

The work reported in [68] is the closest to our work, where uncertainty in time is modeled 

in UML sequence diagrams applied with the UML-SPT profile [69]. These sequence 

diagrams are then used for test case generation by taking into consideration the uncertainties 

in time. This work, however, only supports modeling uncertainty in time on messages of 

sequence diagrams. In contrast, UncerTum covers other types of uncertainties, in addition to 

time, such as content and environment. Moreover, the work does not account for sources of 

time uncertainties that are essential to be explicitly captured in order to introduce 

uncertainties for test execution. 

In [70], the authors presented a solution to transform UML use case diagrams and state 

diagrams into usage graphs appended with probability information about expected use of the 

software. Such probability information can be obtained in several ways by relying on domain 

expertise or usage profiles of software, for example. Usage graphs with probability can be 

eventually used for testing. This work only deals with modeling uncertainty using 

probabilities and does not support other types of uncertainty measures such as ambiguity as 

supported in UncerTum. In addition, the work only supports modeling application level 

uncertainties and cannot be used to model uncertainties in the other two CPS levels as 

UncerTum. 

174 
 
 
 
 
 
 



 
 

 
In [71], a language-independent solution was proposed for Partial Modeling with four 

types of partialities: May partiality, Abs partiality, Var partiality and OW partiality, to 

denote the degree of incompleteness specified by model designers. The work also provides 

a solution for merging and reasoning possible partial models with tool support [72, 73]. The 

approach was demonstrated on UML class and sequence diagrams [71]. This work is related 

to our work in terms of expressing the uncertainty of modelers. In UUP, the Belief related 

stereotypes and classes capture subjective views of modelers and provide modeling notations 

for specifying the degree of their confidence (uncertainty) on the models they built. A set of 

possible models may have different belief degrees provided by different belief agents at the 

same time. In the context their work, the focus is on uncertainty in partial models for 

supporting model refinement and evolution. In contrast, UUP focuses on modeling 

uncertainty (lack of confidence) in test ready models to support MBT of CPSs under 

uncertainty.  

11 Conclusion and Future Work 
To facilitate Model-Based Testing (MBT) of Cyber-Physical Systems (CPSs) under 

uncertainty, we proposed in this paper Uncertainty Modeling Framework (UncerTum). 

UncerTum allows creating test ready models with uncertainty at three logical testing levels 

of CPSs: Application, Infrastructure, and Integration. The core of UncerTum is the UML 

Uncertainty Profile (UUP), which implements an existing uncertainty conceptual model, 

called U-Model. In addition, UncerTum defines a comprehensive set of UML model libraries 

extending the UML profile for Modeling and Analysis of Real-Time and Embedded Systems 

(MARTE), which can be used together with UUP. UncerTum also relies on UML Testing 

Profile (UTP) V.2 to construct test ready models. Finally, UncerTum defines concrete 

guidelines for supporting the use of UncerTum for creating and validating test ready models 

with uncertainty. We evaluated UncerTum with two industrial, one real world case study, 

and one open source case studies. As a future work, we are implementing test generators that 

can take test ready models created with UncerTum as input and generate executable test 

cases. 

175 
 
 
 
 
 
 



 
 

 

Acknowledgment 
This research was supported by the EU Horizon 2020 funded project (Testing Cyber-

Physical Systems under Uncertainty, Project Number: 645463). Tao Yue and Shaukat Ali 

are also supported by RCN funded Zen-Configurator project, RFF Hovedstaden funded 

MBE-CR project, RCN funded MBT4CPS project, and RCN funded Certus SFI.  

176 
 
 
 
 
 
 



 
 

 

References 
[1] E. A. Lee, "Cyber physical systems: Design challenges," in Object Oriented Real-

Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium 

on. pp. 363-369. 

[2] D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from 

theory to practice: CRC Press, 2015. 

[3] S. Sunder, "Foundations for Innovation in Cyber-Physical Systems," in Proceedings 

of the NIST CPS Workshop, Chicago, IL, USA. 

[4] E. Geisberger, and M. Broy, Living in a networked world: Integrated research 

agenda Cyber-Physical Systems (agendaCPS): Herbert Utz Verlag, 2015. 

[5] G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives: 

Routledge, 2012. 

[6] D. V. Lindley, Understanding uncertainty (revised edition): John Wiley & Sons, 

2014. 

[7] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding 

Uncertainty in Cyber-Physical Systems: A Conceptual Model," in Proceedings of the 

12th European Conference on Modelling Foundations and Applications (ECMFA). 

pp. 247-264. 

[8] S. Ali, and T. Yue, "U-Test: Evolving, Modelling and Testing Realistic Uncertain 

Behaviours of Cyber-Physical Systems," in Proceedings of the IEEE 8th 

International Conference on Software Testing, Verification and Validation (ICST). 

pp. 1-2. 

[9] "Future Position X," accessed  2017; http://www.fpx.se/. 

[10] "ULMA Handling System," accessed  2017; http://www.ulmahandling.com/en/. 

[11] OMG, "UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded 

Systems," 2011. 

[12] "IBM Rational Software Architect Modeling Tool," accessed  2016; 

https://www.ibm.com/developerworks/downloads/r/architect/. 

[13] "CertifyIt," accessed  2017; http://www.smartesting.com/en/certifyit/. 

[14] "Easy Global Market," accessed  2017; http://www.eglobalmark.com/. 

177 
 
 
 
 
 
 

http://www.fpx.se/
http://www.ulmahandling.com/en/
https://www.ibm.com/developerworks/downloads/r/architect/
http://www.smartesting.com/en/certifyit/
http://www.eglobalmark.com/


 
 

 
[15] "Nordic Med Test," accessed  2017; http://www.nordicmedtest.se/. 

[16] "IK4-IKERLAN," accessed  2017; http://www.ikerlan.es/eu/. 

[17] "Cisco," accessed  2017; http://www.cisco.com/. 

[18] S. Ali, L. C. Briand, and H. Hemmati, “Modeling robustness behavior using aspect-

oriented modeling to support robustness testing of industrial systems,” Software & 

Systems Modeling, vol. 11, no. 4, pp. 633-670, 2012. 

[19] R. S. Pressman, Software engineering: a practitioner's approach 7th edition: 

Palgrave Macmillan, 2010. 

[20] OMG, "UML Testing Profile," 2013. 

[21] S. Ali, T. Yue, A. Hoffmann, M. F. Wendland, A. Bagnato, E. Brosse, M. Schacher, 

and Z. R. Dai, "How Does the UML Testing Profile Support Risk-Based Testing," in 

2014 IEEE International Symposium on Software Reliability Engineering 

Workshops. pp. 311-316. 

[22] "UML Testing Profile™(UTP) 2.0," accessed; http://utp.zen-tools.com/. 

[23] OMG, "UML Testing Profile," 2016. 

[24] IBM, "UML Action Language (UAL)," accessed  2017; 

https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.mod

el.ual.doc/topics/c_umlactionlanguage.html. 

[25] M. Zhang, S. Ali, T. Yue, and P. H. Nguyen, Uncertainty Modeling Framework for 

the Integration Level V.1,  Technical Report 2016-01 Simula Research Laboratory, 

2016; https://www.simula.no/publications/uncertainty-modeling-framework-

integration-level-v1. 

[26] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353, 1965. 

[27] A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,” 

The annals of mathematical statistics, pp. 325-339, 1967. 

[28] G. Shafer, A mathematical theory of evidence: Princeton university press Princeton, 

1976. 

[29] R. V. L. Hartley, “Transmission of information,” Bell System Technical Journal, pp. 

535-563, 1928. 

[30] M. T. Lamata, and S. Moral, “Measures of entropy in the theory of evidence,” 

International Journal Of General System, vol. 14, no. 4, pp. 297-305, 1988. 

178 
 
 
 
 
 
 

http://www.nordicmedtest.se/
http://www.ikerlan.es/eu/
http://www.cisco.com/
http://utp.zen-tools.com/
https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html
https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html
https://www.simula.no/publications/uncertainty-modeling-framework-integration-level-v1
https://www.simula.no/publications/uncertainty-modeling-framework-integration-level-v1


 
 

 
[31] R. R. Yager, “Entropy and specificity in a mathematical theory of evidence,” 

International Journal of General System, vol. 9, no. 4, pp. 249-260, 1983. 

[32] M. Higashi, and G. J. Klir, “Measures of uncertainty and information based on 

possibility distributions,” International Journal of General Systems, vol. 9, no. 1, pp. 

43-58, 1982. 

[33] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy sets and 

systems, vol. 1, no. 1, pp. 3-28, 1978. 

[34] P. Smets, and R. Kennes, “The transferable belief model,” Artificial intelligence, vol. 

66, no. 2, pp. 191-234, 1994. 

[35] K. George J, and Y. Bo, “Fuzzy sets and fuzzy logic, theory and applications,” -, 

2008. 

[36] B. Kosko, “Fuzzy entropy and conditioning,” Information sciences, vol. 40, no. 2, 

pp. 165-174, 1986. 

[37] D. Didier, and P. Henri, “Fuzzy sets and systems: Theory and Applcation.,” 

Mathematics in Scince and Engineering, vol. 144, 1980. 

[38] H.-J. Zimmermann, Fuzzy set theory—and its applications: Springer Science & 

Business Media, 2011. 

[39] Z. Pawlak, “Rough sets,” International Journal of Computer & Information 

Sciences, vol. 11, no. 5, pp. 341-356, 1982. 

[40] J. A. Goguen, “L-fuzzy sets,” Journal of mathematical analysis and applications, 

vol. 18, no. 1, pp. 145-174, 1967. 

[41] K. Atanassov, and C. Georgiev, “Intuitionistic fuzzy prolog,” Fuzzy Sets and 

Systems, vol. 53, no. 2, pp. 121-128, 1993. 

[42] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate 

reasoning—I,” Information sciences, vol. 8, no. 3, pp. 199-249, 1975. 

[43] I. Grattan‐Guinness, “Fuzzy Membership Mapped onto Intervals and Many‐Valued 

Quantities,” Mathematical Logic Quarterly, vol. 22, no. 1, pp. 149-160, 1976. 

[44] K. U. Jahn, “Intervall‐wertige Mengen,” Mathematische Nachrichten, vol. 68, no. 1, 

pp. 115-132, 1975. 

[45] W. L. Gau, and D. J. Buehrer, “Vague sets,” Systems, Man and Cybernetics, IEEE 

Transactions on, vol. 23, no. 2, pp. 610-614, 1993. 

179 
 
 
 
 
 
 



 
 

 
[46] A. De Luca, and S. Termini, “A definition of a nonprobabilistic entropy in the setting 

of fuzzy sets theory,” Information and control, vol. 20, no. 4, pp. 301-312, 1972. 

[47] W. Feller, An introduction to probability theory and its applications: John Wiley & 

Sons, 2008. 

[48] H. Song, D. B. Rawat, S. Jeschke, and C. Brecher, Cyber-Physical Systems: 

Foundations, Principles and Applications: Morgan Kaufmann, 2016. 

[49] C. Talcott, "Cyber-Physical Systems and Events," Software-Intensive Systems and 

New Computing Paradigms: Challenges and Visions, M. Wirsing, J.-P. Banâtre, M. 

Hölzl and A. Rauschmayer, eds., pp. 101-115, Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2008. 

[50] S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar, M. Z. Z. Iqbal, and A. Nadeem, 

“A state-based approach to integration testing based on UML models,” Inf. Softw. 

Technol., vol. 49, no. 11-12, pp. 1087-1106, 2007. 

[51] "Eclipse OCL," accessed  2016; http://www.eclipse.org/modeling/mdt/?project=ocl 

- ocl. 

[52] "Dresden OCL," accessed  April, 2016; 

https://marketplace.eclipse.org/content/dresden-ocl. 

[53] "IBM RSA Simulation Toolkit," accessed  2016; http://www-

03.ibm.com/software/products/en/ratisoftarchsimutool. 

[54] "Use Cases - Industrial Case Studies," accessed  2017; http://www.u-test.eu/use-

cases/. 

[55] "Certus," accessed  2017; http://certus-sfi.no/. 

[56] M. Schneider, and M.-F. Wendland, “Gaining Certainty about Uncertainty: Testing 

for Uncertainties of Cyber-Physical Systems at the Application Level,” in 4th 

International Workshop on Risk Assessment and Risk-driven Quality Assurance 

(RISK), In conjunction with 28th International Conference on Testing Software and 

Systems (ICTSS), 2016. 

[57] A. Kerwin, “None Too Solid Medical Ignorance,” Science Communication, vol. 15, 

no. 2, pp. 166-185, 1993. 

[58] OMG, "Concrete Syntax For A UML Action Language: Action Language For 

Foundational UML (ALF)," 2013. 

180 
 
 
 
 
 
 

http://www.eclipse.org/modeling/mdt/?project=ocl%23ocl
http://www.eclipse.org/modeling/mdt/?project=ocl%23ocl
https://marketplace.eclipse.org/content/dresden-ocl
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www.u-test.eu/use-cases/
http://www.u-test.eu/use-cases/
http://certus-sfi.no/


 
 

 
[59] M.-A. Sicilia, and N. Mastorakis, “Extending UML 1. 5 for fuzzy conceptual 

modeling: An strictlyadditive approach,” WSEAS Transactions on Systems, vol. 3, 

no. 5, pp. 2234-2239, 2004. 

[60] Z. Ma, “Fuzzy information modeling with the UML,” Idea, 2005. 

[61] Z. M. Ma, F. Zhang, and L. Yan, “Fuzzy information modeling in UML class 

diagram and relational database models,” Applied Soft Computing, vol. 11, no. 6, pp. 

4236-4245, 2011. 

[62] L. Yan, and Z. M. Ma, "Extending nested relational model for fuzzy information 

modeling," in 2009 WASE International Conference on Information Engineering. 

pp. 587-590. 

[63] Z. M. Ma, F. Zhang, L. Yan, and J. Cheng, “Representing and reasoning on fuzzy 

UML models: A description logic approach,” Expert Systems with Applications, vol. 

38, no. 3, pp. 2536-2549, 2011. 

[64] F. Zhang, and Z. M. Ma, “Construction of fuzzy ontologies from fuzzy UML 

models,” International Journal of Computational Intelligence Systems, vol. 6, no. 3, 

pp. 442-472, 2013. 

[65] A. Haroonabadi, M. Teshnehlab, and A. Movaghar, “A novel method for behavior 

modeling in uncertain information systems,” World Academy of Science, 

Engineering and Technology, vol. 41, pp. 959-966, 2008. 

[66] H. Motameni, I. Daneshfar, J. Bakhshi, and H. Nematzadeh, “Transforming fuzzy 

state diagram to fuzzy Petri net,” Journal of Advances in Computer Research, vol. 1, 

no. 1, pp. 29-44, 2010. 

[67] V. Grassi, and R. Mirandola, "UML modelling and performance analysis of mobile 

software architectures," UML 2001—The Unified Modeling Language. Modeling 

Languages, Concepts, and Tools, pp. 209-224: Springer, 2001. 

[68] V. Garousi, "Traffic-aware stress testing of distributed real-time systems based on 

UML models in the presence of time uncertainty," in Software Testing, Verification, 

and Validation, 2008 1st International Conference on. pp. 92-101. 

[69] OMG, "UML Profile For Schedulability, Performance, And Time," 2005. 

181 
 
 
 
 
 
 



 
 

 
[70] M. Riebisch, I. Philippow, and M. Götze, "UML-based statistical test case 

generation," Objects, Components, Architectures, Services, and Applications for a 

Networked World, pp. 394-411: Springer, 2002. 

[71] R. Salay, M. Famelis, and M. Chechik, "Language independent refinement using 

partial modeling," Fundamental Approaches to Software Engineering, pp. 224-239: 

Springer, 2012. 

[72] M. Famelis, R. Salay, and M. Chechik, "Partial models: Towards modeling and 

reasoning with uncertainty," in Software Engineering (ICSE), 2012 34th 

International Conference on. pp. 573-583. 

[73] M. Famelis, and S. Santosa, "MAV-Vis: a notation for model uncertainty," in 

Modeling in Software Engineering (MiSE), 2013 5th International Workshop on. pp. 

7-12. 

[74] P. R. Garvey, and Z. F. Lansdowne, “Risk matrix: an approach for identifying, 

assessing, and ranking program risks,” Air Force Journal of Logistics, vol. 22, no. 1, 

pp. 18-21, 1998. 

[75] G. Klir, Facets of systems science: Springer Science & Business Media, 2013. 
 

182 
 
 
 
 
 
 



 
 

 

Paper D 

 
 

Uncertainty-Wise Evolution of Test 
Ready Models 

 
 
 

Man Zhang, Shaukat Ali, Tao Yue and Roland Norgre 

 

 

 
 
 
 
 

 

Journal of Information and Software Technology (IST).  

DOI: 10.1016/j.infsof.2017.03.003.  

183 
 
 
 
 
 
 



 
 

 

Abstract 
Context: Cyber-Physical Systems (CPSs), when deployed for operation, are inherently 

prone to uncertainty. Considering their applications in critical domains (e.g., healthcare), it 

is important that such CPSs are tested sufficiently, with the explicit consideration of 

uncertainty. Model-based testing (MBT) involves creating test ready models capturing the 

expected behavior of a CPS and its operating environment. These test ready models are then 

used for generating executable test cases. It is, therefore, necessary to develop methods that 

can continuously evolve, based on real operational data collected during the operation of 

CPSs, test ready models and uncertainty captured in them, all together termed as Belief Test 

Ready Models (BMs) 

Objective: Our objective is to propose a model evolution framework that can 

interactively improve the quality of BMs, based on operational data. Such BMs are 

developed by one or more test modelers (belief agents) with their assumptions about the 

expected behavior of a CPS, its expected physical environment, and potential future 

deployments. Thus, these models explicitly contain subjective uncertainty of the test 

modelers. 

Method: We propose a framework (named as UncerTolve) for interactively evolving 

BMs (specified with extended UML notations) of CPSs with subjective uncertainty 

developed by test modelers. The key inputs of UncerTolve include initial BMs of CPSs with 

known subjective uncertainty and real data collected from the operation of CPSs. 

UncerTolve has three key features: 1) Validating the syntactic correctness and conformance 

of BMs against real operational data via model execution, 2) Evolving objective uncertainty 

measurements of BMs via model execution, and 3) Evolving state invariants (modeling test 

oracles) and guards of transitions (modeling constraints for test data generation) of BMs with 

a machine learning technique.  

Results: As a proof-of-concept, we evaluated UncerTolve with one industrial CPS case 

study, i.e., GeoSports from the healthcare domain. Using UncerTolve, we managed to evolve 

51% of belief elements, 18% of states, and 21% of transitions as compared to the initial BM 

developed in an industrial setting.  

184 
 
 
 
 
 
 



 
 

 
Conclusion: UncerTolve can successfully evolve model elements of the initial BM, in 

addition to objective uncertainty measurements using real operational data. The evolved 

model can be used to generate additional test cases covering evolved model elements and 

objective uncertainty. These additional test cases can be used to test the current and future 

deployments of a CPS to ensure that it will handle uncertainty gracefully during its 

operations.       

Keywords. Uncertainty; Belief Model; Belief Test Ready Model; Model Evolution; Model-

Based Testing.  

1 Introduction 

Handling the inherent uncertainty in Cyber-Physical Systems (CPSs) is a well-known 

challenge, which requires novel approaches for understanding, discovering and modeling 

uncertainty, and verifying and validating CPSs under uncertainty [5-8]. Typically, a CPS is 

developed by integrating various physical units (e.g., devices), which are usually black-

boxes (with or without the API access) with known and uncertain assumptions on its physical 

operating environments and deployments. Thus, when testing a CPS, not only assumptions 

are made about the internal behavior of the CPS, but also its operating environments and 

deployments. More specifically, when performing model-based testing (MBT), the expected 

behavior of a CPS is modeled with the explicit consideration of uncertainty, including 

uncertain behaviors of its physical environments and uncertain deployments (the focus of 

our previous work [9]). Such models are typically created by one or more test modelers 

(belief agent(s)) based on his/her/their assumptions about a CPS, its operating environments, 

and deployments and thus the captured uncertainty is subjective to the test modeler(s).  

Naturally, these test ready models, named as Belief Test Ready Models (BMs) in the rest 

of the paper, can be continuously evolved based on real operational data (which introduce 

objective uncertainty) of the current deployment of the CPS such that the evolved models 

can be used to generate new test cases to test future deployments of the CPS with both 

captured subjective uncertainty and evolved objective uncertainty.    

185 
 
 
 
 
 
 



 
 

 
1.1 Challenges and Objectives 

Testing is mainly concerned with sending stimulus (via e.g., test APIs) with test data to a 

CPS and checking the correctness of changes of corresponding states (e.g., test oracles). In 

the uncertainty-wise MBT context, BMs are the key artifacts for generating executable test 

cases. Therefore, the quality of BMs is critical for ensuring the quality of generated test cases 

and consequently the quality of the CPS under various deployments. Hence, the overall 

scientific challenge is how to ensure the quality of BMs such that they are ready for being 

used to generate test cases. It is challenging because in the context of uncertainty-wise MBT 

for CPSs such BMs are complex (e.g., specified in multiple UML state machines) and 

subjective uncertainty (reflecting test modelers’ belief and specified as part of BMs) need to 

be continuously validated with evidence (e.g., real operational data) continuously collected 

from existing deployments of the CPS.  

Correspondingly, our overall objective is to address this challenge by proposing a model 

evolution framework, called UncerTolve, for evolving BMs, with real operational data 

collected from real CPS applications. This is feasible, as in the context of continuously 

deploying a CPS for various applications (details in Section 1.2), real operational data can 

be collected from already deployed applications of the CPS. Collected real operational data 

are valuable resources to enhance the initial BMs from the perspective of the correctness and 

completeness, including uncertainty information, test oracles, and test data specifications. 

Moreover, such a process can be continuous in the sense that as long as there is new 

operational data available, the BMs can be evolved to accommodate information contained 

in the data. Evolved BMs will be therefore more complete and correct. Subsequently, testing 

the CPS for future deployments, based on the evolved BMs, will be much better supported. 

We provide a clear correspondence between the sub-challenges and sub-objectives in Table 

D-1. 

Table D-1. Sub-challenges and Sub-objectives of UncerTolve 

Sub-challenges Sub-objectives 
How to ensure the syntactic and 
semantic correctness of BMs? 

Model Validation: Validate and update (with proposed 
heuristics) BMs with real operational data, via model execution. 

How to ensure the quality of uncertainty 
information captured in BMs? 

Derivation of Objective Uncertainty Measurements: Derive 
objective uncertainty measurements from real operational data 
and enhance BMs by integrating them with subjective uncertainty 
measurements already specified in the BMs. 

How to ensure the quality of test oracles Inference of Test Oracles/Test Data Specifications: Abstract 

186 
 
 
 
 
 
 



 
 

 
(represented as state invariants) and test 
data specifications (represented as 
guard conditions) of BMs? 

invariants (both related to test oracles and test data specifications) 
from real operational data, by relying on existing dynamic 
invariant inference techniques.  

How to achieve the above sub-
challenges in an integrated manner? 

Methodologies/Heuristics/Process: Define methodologies and 
heuristics on how to update BMs. Suggest a practical process that 
integrates model validation, objective uncertainty measurement 
derivation, and test oracles and test data specification inferences, 
based on real operational data and model execution. 

1.2 Context, Scope and Overview 
In the context of an EU project [10], we are developing a model-based and search-based 

framework for testing CPSs under known and unknown uncertainties to assure that CPSs 

deal with uncertainty during their operation and do not harm anyone or anything. Evolving 

BMs in a systematic manner for preparing them for enabling the generation of executable 

test cases is one of the key components of the model-based and search-based framework.  

The overall context is presented in Fig. D-1, where UncerTum [9] is a UML-based, 

uncertainty modeling framework for constructing BMs, and UncerTest [11] is a model-based 

and search based test case generation and minimization framework. UncerTolve (with its 

key features, inputs and outputs indicated as white boxes in Fig. D-1) is the framework we 

propose in the paper for evolving BMs developed with UncerTum. Evolved BMs are input 

for UncerTest to generate executable test cases.  

A CPS may be deployed to more than one applications of the same or different application 

domains. For example, as discussed in [12], in the avionics industry, multiple system 

instances (i.e., multiple deployments) of the same CPS type can be deployed to achieve a 

common goal. In the context of our project, the industrial CPS of GeoSports19 can be 

deployed for a variety of sports including Bandy and Ice Hockey. Each application 

corresponds to a unique deployment, denoted as D1, D2, ..Dn. UncerTolve evolves BMs 

developed for a CPS with real operational data collected from available deployments of the 

CPS. Test cases generated using UncerTest from the BM evolved with UncerTolve can be 

used to test both existing deployments (D1, D2, …Dn) and new ones (Fig. D-1). Note that the 

process is naturally iterative as the process of introducing new deployments, collecting real 

19 http://www.u-test.eu/use-cases/ 

187 
 
 
 
 
 
 

                                                           
 



 
 

 
operational data, based on which the BM is updated, testing new deployments based on the 

evolved BMs, are all iterative.  

 

 
Fi

g.
 D

-1
. T

he
 O

ve
ra

ll 
C

on
te

xt
 a

nd
 S

co
pe

 o
f U

nc
er

To
lv

e 

188 
 
 
 
 
 
 



 
 

 
UncerTolve consists of three activities (i.e., Modeling, Model Execution, and Invariant 

Inference) and four components (denoted with different colors in the UncerTolve box), as 

shown in Fig. D-1.  

The kickoff activity of UncerTolve is about modeling BM. We develop the initial BM for 

a CPS, specified with the Unified Modeling Language (UML) [13]. Such a UML model 

includes composite structure diagrams, class diagrams, constraints specified in the Object 

Constraint Language (OCL) [14], and state machines capturing testing interfaces and 

behaviors of the application, infrastructure, and integration levels of the CPS [9, 15]. 

UncerTolve relies on UncerTum [9] to explicitly model known and subjective uncertainties 

specified by modelers (i.e., belief agents [15]), as part of the initial BM. UncerTum consists 

of the UML Uncertainty Profile (UUP) [9] and a set of model libraries and utilizes the UML 

Testing Profile (UTP) V.2 [16]. To enable model execution, as part of the UncerTolve 

framework, in this paper, we also propose a modeling methodology (which extends 

UncerTum) particularly for the purpose of developing executable BMs.   

The second activity is to execute BMs with real operational data. This activity involves 

two components: validation of BM and derivation of objective uncertainty measurements. 

The initial BM created in the first activity is executed to validate their syntactic correctness 

and conformance against real operational data. Missing or incorrect model elements might 

be identified during the model execution process and therefore the initial BM can be updated 

accordingly, based on a set of heuristics newly defined as part of UncerTolve. Through 

model execution with real operational data, objective uncertainty measurements can also be 

obtained. During this activity, existing model elements in the initial BM can be removed or 

modified, and new ones can be added. Obtained objective uncertainty measurements can 

also be appended to the BM. 

In the third activity is about inferring test oracles (i.e., state invariants) and test data 

specifications (guard conditions) with real operational data using dynamic invariant 

inference techniques [4, 17, 18]. In this paper, we apply one solution, Daikon [4], which 

produces a set of invariants (corresponding to test oracles and test data specifications) with 

an implemented machine learning technique. These invariants are then merged with OCL 

constraints specified as part of the BM, based on newly defined heuristics, which therefore 

leads to another round of the updating of the BM, i.e., restructuring test oracles and test data 

189 
 
 
 
 
 
 



 
 

 
specifications. Numerous techniques (e.g., aka automata learning [19], data mining [20, 21]) 

have been proposed in the literature in the field of automated inferences of various types of 

information (e.g., properties, protocols, interfaces, specifications) from programs. Although, 

our work relies on an existing work, i.e., Daikon, our work differentiates itself from the 

existing works in terms of the core challenge it tackles, i.e., evolving BMs with both 

subjective and objective uncertainty to eventually support MBT of CPSs under known and 

evolved uncertainties discovered based on real operational data. 

Note that the modeling activity of UncerTolve is the foundation of the other two activities. 

The other two activities are independent to each other, although we recommend to apply 

them sequentially as doing so will improve the overall quality of evolved BMs and this is 

also how our industrial case study was conducted. In summary, theoretically, the output of 

each activity can be used as the input to UncerTest; however, sequentially applying model 

execution and invariant inference are strongly recommended in practice for ensuring the 

quality of delivered BMs. This is especially important when BMs are complex, which is 

quite common in industrial settings.  

1.3 Contributions 
UncerTolve evolves BMs specified with UncerTum [9], which are essentially stereotyped 

UML class diagrams, composite structure diagrams, and state machines, and therefore 

contain richer information than a typical specification representation (e.g., Finite State 

Machines (FSMs)) that can be inferred with existing techniques (e.g., [19, 22]).  

Distinguishing itself from existing works, UncerTolve takes into account both subjective 

uncertainty information specified as belief elements of the BM and objective uncertainty 

information derived from real operational data and evolves them as part of the integrated 

BM evolving process.  

Similar to some existing dynamic inference approaches (e.g., [1-3]), UncerTolve uses a 

machine learning technique implemented in Daikon to dynamically infer state invariants 

(modeling test oracles) and guard conditions (modeling test data specification) of UML state 

machines. However, UncerTolve relies on real operational data collected from real 

applications of CPSs, instead of execution traces of programs. Note that UncerTolve aims to 

evolve BMs developed for CPSs and therefore existing approaches relying on execution 

190 
 
 
 
 
 
 



 
 

 
traces of programs cannot be applied or at least cannot be directly applied without adaptation 

for the CPS context.  

In conclusion, we summarize the key contributions of UncerTolve as below: 

1 UncerTolve has a modeling methodology for creating executable BMs with real 

operational data to support validation of the syntactic correctness of a BM modeled using 

UncerTum and checking conformance of the BM with the real operational data; 

2 UncerTolve defines a systematic and automated process for validating a BM with both 

subjective and objective uncertainty and defines a set of heuristic rules (named as tolveR-

E) to guide test modeler(s) to update the BM based on validation results;  

3 UncerTolve is equipped with an automated solution for calculating and abstracting 

objective uncertainty measurements from the real operational data and the obtained 

measurements are appended to the BM; 

4 UncerTolve applies a machine learning technique to infer test oracles (state invariants in 

UML state machines) and test data specifications (guard conditions in UML state 

machines); 

5 UncerTolve defines a set of heuristic rules to evolve a BM with inferred state invariants, 

guard conditions and objective/subjective uncertainty measurements; 

6 UncerTolve, as a proof-of-concept, is evaluated with one industrial CPS, i.e., GeoSports 

from the healthcare domain. 

1.4 Results and the Structure of the Paper 
With UncerTolve, we managed to evolve 51% of belief elements, 18% of states, and 21% 

of transitions as compared to the initial BM. Thus, we conclude that UncerTolve is successful 

in evolving BMs with subjective and objective uncertainty information. 

The rest of the paper is organized as follows: Section 2 discusses the related work. Section 

3 represents the background. Section 4 represents terminology and running example. Section 

5 represents the overall workflow of UncerTolve. Section 6 represents the methodology of 

UncerTolve. Section 7 presents the evaluation and discussion, whereas we conclude the 

paper in Section 8. 

191 
 
 
 
 
 
 



 
 

 

2 Related Work 
In this section, we compare UncerTolve with existing works in Section 2.1, whereas 

comparison with our own previous related works in Section 2.2. 

2.1 Comparison with Existing Works 
Several works (e.g., [4, 23-31]) have been published in the literature that infer, e.g., FSMs, 

their extensions, Live Sequence Charts (LSCs), and properties of software applications from 

execution traces. Most of these works rely on Daikon [4] to dynamically infer invariants 

from execution traces. 

The work reported in [23] infers deterministic FSMs of black box components from their 

execution information to understand their behavior in the absence of a formal specification. 

The inferred FSMs are further generalized into intentional behavior models by synthesizing 

graph transformation rules. The process involves identifying invariant properties in a similar 

way as Daikon. The approach was evaluated with three different sets of classes 

implementing data abstractions such as Queue and MinSet. 

An empirical study is reported in [24] to evaluate four strategies of inferring FSMs: 1) 

traces-only, 2) invariants-only, 3) invariant-enhanced-traces, i.e., inferring models from 

execution traces followed by enhancing them with invariants), and 4) trace-enhanced-

invariants, i.e., inferring models from invariants followed by enhancing them with execution 

traces). Nine open-source libraries were used to compare the four strategies based on the 

quality of the resultant FSMs. The second and third strategies were evaluated to be the best 

ones.   

Lo et al. [25] proposed an approach with a tool to enhance the precision of mining FSMs 

from code and traces by inferring temporal properties and incrementally merging equivalent 

states. Similarly, Walkinshaw and Bogdanov [26] proposed an approach to allow additional 

inference of state machines, based on temporal logic formulas and an extra capability to 

introduce new formulas during the inference process. The proposed approach was evaluated 

with two software applications. Gabel and Du [32] presented a general specification mining 

framework (Javert) for learning complex temporal properties (specified as specification 

patterns in FSMs) from execution traces.  

192 
 
 
 
 
 
 



 
 

 
Krka et al. [18] proposed an automated approach to infer object-level FSMs from 

execution traces and program invariants. First, it derives an FSM that captures legal 

invocation sequences of an object’s public interfaces based on inferred data-value invariants. 

Second, it uses collected dynamic invocation traces to refine the invariant-based FSM to an 

object-level FSM.  

Tonella et al [27] [28] proposed an approach to infer FSMs for supporting MBT based on 

a combination of clustering, invariant inference and genetic algorithm (GA). GA was used 

to optimize the quality attributes of inferred FSMs. The approach was evaluated with a small 

e-commerce application.  

Walkinshaw and Taylor [33] proposed an approach to infer deterministic Extended FSMs 

(EFSMs) with WEKA [34] and Daikon and evaluated the approach with five Java and Erlang 

programs.  

An algorithm is proposed in [26] to extract FSMs with parameters (FSAMs) from 

interaction traces: sequences of method invocations. FSAMs put constraints on the values of 

parameters. The algorithm has three sequential steps: merging similar traces, deriving 

constraints with Daikon, and merging equivalent states. The Builder design pattern was used 

to evaluate the proposed approach.  

In [29], an approach was proposed to infer communicating FSMs (CFSMs) from 

execution traces of concurrent programs that has three steps: 1) mining temporal properties 

(invariants), 2) creating an initial CFSM model, and 3) refining the CFSM model. The 

proposed approach was evaluated with three networked systems. The authors of [31] 

proposed an approach to infer resource-aware FSMs from execution logs of the software 

application by following similar steps. The proposed approach was evaluated with a case 

study on the TCP protocol. 

Berg et al. [30] proposed a way to adapt regular inferences of FSMs from observations of 

component behaviors to construct models of communication protocol entities. The challenge 

that the authors tried to tackle is to infer state machines where messages have arbitrary 

parameters; however, it only handles Boolean parameters. Later on, Berg et al. [19] also 

made an effort to infer state machines with an infinite state space. First, the proposed 

approach infers finite-state Mealy machines by observing the behavior of a communication 

193 
 
 
 
 
 
 



 
 

 
protocol from a small domain. Second, it transforms them into infinite-state Mealy machines 

by folding the inferred finite-state Mealy machines into compact symbolic models.  

Lo et al. [20] presented an approach to mine specifications as restricted LSCs from 

execution traces that are transformed into UML sequence diagrams with a modal profile 

applied. Later on, Lo and Maoz [21] made an effort to integrate the value-based specification 

mining approach of Daikon with a sequence-based approach to mine specifications as LSCs. 

A scenario-based slicing technique was applied to obtain sliced traces. Value-based 

invariants mining is then applied to both on the original traces and the sliced traces to identify 

scenario-specific invariants. Four software applications were used to evaluate the proposed 

approach.  

Beschastnikh et al. [35] proposed an automated approach to infer invariant constrained 

models from system execution logs, by intentionally reducing the involvement of 

developers. First, the approach mines temporal invariants from logs and generates trace 

models, from which it generates initial models (in the form an authors-defined, edge and 

node style graphical representation). These initial models are then refined and coarsened to 

explore the space of models.  

Raz et al. [36] proposed a way to infer invariants based on the observations of the behavior 

of dynamic data feeds (i.e., a time-ordered sequence of observations) to detect semantic 

anomalies in online data sources. The approach relies on an augmented Daikon and Mean 

(i.e., a statistical method for estimating a confidence level for the mean of a distribution). 

The approach was evaluated with real-world data. In [37], the authors proposed a heuristics 

based algorithm to scale up dynamic inferences of properties/invariants of software 

applications from execution traces. The approach was evaluated on JBoss and the Windows 

kernel. Hangal and Lam [38] proposed an approach (similar to Daikon) to detect program 

invariants from program executions. It also reports detected dynamic invariant violations. 

The work reported in this paper builds on an existing work, i.e., Daikon to infer invariants 

based on execution information. However, in our case, real operational data was used from 

real applications of CPSs. To compare with these related works, we distinguish UncerTolve 

from the following four aspects. First, most of the related work directly take programs as 

input to infer, e.g., specifications and API. UncerTolve, however, takes test ready UML 

models together with explicitly captured subjective uncertainty as input and evolve them 

194 
 
 
 
 
 
 



 
 

 
based on model execution using real operational data, based on dynamic inference with 

Daikon. Second, UncerTolve aims to handle CPSs, not just programs. This means that we 

not only evolve models of applications but also infrastructures and their interactions. Third, 

UncerTolve evolves belief models including discovering previously unknown belief 

elements (in stereotypes), states, and transitions. Fourth, the ultimate objective of 

UncerTolve is to facilitate MBT of CPSs under known and unknown uncertainty, instead of 

program comprehension and bug detection like most of the related works do.  

2.2 Comparison with Our Previous Works 
To understand uncertainty in general, in our previous work [15], we developed a generic 

conceptual model called U-Model. Our aim was to precisely define uncertainty and its 

associated concepts for CPSs. The U-Model was implemented in two ways: 1) As an 

extension of an existing restricted use case specification language (named as RUCM) [35], 

to specific uncertainty in use case specifications called as U-RUCM [39], 2) Implementation 

of U-Model as a UML profile—the UML Uncertainty Profile (UUP) to enable MBT of CPSs 

under uncertainty. UUP together with other related profiles and model libraries were 

implemented as a modeling framework—UncerTum [9]. With UncerTum, test modelers can 

create BMs with explicit consideration of subjective uncertainty. As shown in Fig. D-1, BMs 

created with UncerTum [9] are the key inputs of UncerTolve—the key contribution of this 

paper. UncerTum only focuses on creating BMs for test case generation and cannot be used 

to further enhance BMs into executable ones such that these models can be validated with 

real operational data. In the context of UncerTolve, we propose an extension to UncerTum 

for converting BMs developed with UncerTum into executable ones.  

In [11], we reported UncerTest [11], an uncertainty-wise testing framework. UncerTest 

implements various uncertainty-wise test case generation and minimization strategies that 

can be used to generate test cases from BMs developed with UncerTum [9]. UncerTest [11] 

can be used to generate test cases from BMs evolved with UncerTolve to test CPSs. However, 

we may need to define additional test strategies in UncerTest [11] to focus specifically on 

the evolved parts of the evolved models. We plan to implement these test strategies in our 

future work.  

195 
 
 
 
 
 
 



 
 

 

3 Background 
In this section, we present the background that is necessary to understand the rest of the 

paper. In Section 3.1, we define a CPS at a generic level, along with three logical levels, at 

which uncertainty may occur. In Section 3.2, we introduce UTP, which is one of the key 

profiles applied to BMs to enable MBT. Section 3.3 presents U-Model, a conceptual model 

defining uncertainty and its associated concepts. Section 3.4 introduces UncerTum, an 

uncertainty-wise modeling framework to create BMs of CPSs with subjective uncertainty, 

i.e., the key input of UncerTolve. Section 3.5 presents UncerTest, an uncertainty-wise test 

case generation, and minimization framework to generate test cases from BMs created with 

UncerTum and evolved with UncerTolve. 

3.1 Cyber-Physical Systems and Uncertainty Levels 
A CPS is defined as [15]: “A set of heterogeneous physical units (e.g., sensors, control 

modules) communicating via heterogeneous networks (using networking equipment) and 

potentially interacting with applications deployed on cloud infrastructures and/or humans 

to achieve a common goal” and is conceptually shown in Fig. D-2. Uncertainty in a CPS can 

occur at the following three logical levels [15]. First, uncertainty at the Application level is 

due to events/data originating from an application (one or more software components) of a 

physical unit of the CPS. An example of application-level uncertainty is the indeterminate 

behavior of a human interacting with a CPS, e.g., not wearing a device sensing heart rate 

properly which leads to uncertain heart rate readings. Second, uncertainty at the 

Infrastructure level is due to data transmission via information network enabled through 

networking infrastructure and/or cloud infrastructure. An example of infrastructure level 

uncertainty includes the uncertain behavior of a CPS due to packet loss in an information 

network. The third level is the Integration level, due to either interactions of applications 

across the physical units at the application level, or interactions of physical units across the 

application and infrastructure levels (e.g. the abnormal heart rate captured by heart rate 

sensor due to the loss of the connection between heart rate sensor and a computer system 

analyzing the heart rate assuming the heart rate sensor and a computer system are connected 

via wireless network). More details and examples are provided in [15].  

196 
 
 
 
 
 
 



 
 

 

 

3.2 UML Testing Profile  
UML Testing Profile (UTP) [39] is a standard at Object Management Group (OMG) for 

enabling MBT. With UTP, the expected behavior of a system under test can be modeled, 

from where test cases can be derived. UTP can be also used to directly model test cases. 

Transformations from models specified with UTP to executable test cases can be performed 

using specialized test generators. Since UTP is defined as a UML profile, it is often applied 

on UML sequence, activity diagrams and state machines for describing behaviors of a system 

under test or test cases. The key purpose is to introduce testing related concepts (e.g., Test 

Case, Test Data, and Test Design Model and model libraries such as various types of test 

case Verdict (pass, fail)) to UML models for the purpose of enabling automated generation 

of test cases. UTP V.2 is the latest revision of the UTP profile, which is conceptually 

composed of five packages of concepts: Test Analysis and Design, Test Architecture, Test 

Behavior, Test Data and Test Evaluations. Various numbers of stereotypes have been 

defined for some concepts of these packages. Similar to other modeling notations, it is never 

been an objective to exhaustively apply all the stereotypes when using UTP V.2 to annotate 

UML models with testing concepts. Which stereotypes to apply and how to apply them are 

however problem/purpose specific and should be defined by users of the profile. More 

information about UTP V.2 and the team can be found in [27; 38].  

To enable MBT of CPSs under uncertainty, we rely on UTP V.2 to model the testing 

aspect of BMs. In our context, only a subset of UTP V.2 was used. 

 

Fig. D-2. The Overall Context and Scope of UncerTolve 

197 
 
 
 
 
 
 



 
 

 
3.3 U-Model 

To understand uncertainty in the general context of software engineering, we developed 

a conceptual model called U-Model [15] to define uncertainty and its associated concepts. 

The U-Model was developed based on an extensive review of existing literature on 

uncertainty from several disciplines including philosophy, healthcare and physics and two 

industrial case studies.  

The U-Model takes a subjective approach to represent uncertainty, which is modeled as 

a state (i.e., worldview) of some agents (called BeliefAgents), who, for whatever reason, do 

not have complete and fully accurate knowledge about some subjects of interest. A Belief is 

an abstract concept that can be expressed in the concrete form via one or more explicit 

BeliefStatements (a concrete and explicit specification of some Belief held by a BeliefAgent 

about possible phenomena or notions belonging to a given subject area). Uncertainty (i.e., 

lack of confidence) represents “a state of affairs whereby a BeliefAgent does not have full 

confidence in a belief that it holds” [15]. This may be due to several factors: lack of 

information, inherent variability in the subject matter, ignorance, or even due physical 

phenomena such as the Heisenberg uncertainty principle [21]. While uncertainty itself is an 

abstract concept, it can be quantified by a corresponding Measurement, which expresses in 

some concrete form the subjective degree of uncertainty that the agent ascribes to a 

BeliefStatement. As the latter is a subjective notion, a Measurement should not be confused 

with the degree of validity of a BeliefStatement. Instead, it merely indicates the level of 

confidence that the agent has in a statement. Further details on U-Model may be consulted 

in [15]. 

3.4 UncerTum 
UncerTum [9] (Fig. D-1) is uncertainty-wise modeling framework to support the 

development of BMs of CPSs, which consists of specialized UML-based modeling notations 

(named as UUP) for specifying uncertainties to enable MBT of CPSs under uncertainty.  

UUP is at the core of UncerTum and implements U-Model [15] (Section 3.3). UUP 

consists of three parts (i.e., Belief, Uncertainty, and Measurement profiles) and an internal 

library containing enumerations required in the profiles. To ease the development of BMs 

with uncertainty, UncerTum additionally defines four sets of UML model libraries: Pattern, 

198 
 
 
 
 
 
 



 
 

 
Time, Measure, and Risk libraries, by extending an existing UML profile for Modeling and 

Analysis of Real-Time and Embedded Systems (MARTE) [40]. UncerTum also includes a 

small UML profile called the CPS testing levels profile to allow stereotyping (labeling) test 

ready model elements with three CPS test levels (e.g., integration level). The purpose is to 

differentiate model elements from different levels and facilitate defining level specific test 

strategies. Moreover, UncerTum relies on UTP V.2 (Section 3.2) to model BMs for the 

purpose of enabling MBT. Finally, UncerTum defines a set of concrete guidelines (i.e. 

Measurement Modeling) on how to use its modeling notations to construct BMs with 

uncertainty explicitly specified. 

3.5 UncerTest 
UncerTest [11] (shown in Fig. D-1) consists of two main part: test case generation and 

uncertainty-wise test case minimization. Test case generation takes the BM using UncerTum 

as input to automatically and systematically generate abstract test cases, according to two 

proposed test case generation strategies: All Simple Paths (No Loops) and All Paths with a 

Fixed Maximum Length. These two strategies were inspired from the ones reported in [41], 

but were extended for BMs specified in UncerTum and considered various uncertainty aspects 

such as the number of uncertainties in a test path and overall uncertainty of a test path, 

defined based on Uncertainty Theory [42]. Uncertainty-wise test case minimization was 

proposed because the number of abstract test cases generated by Test Case Generation is 

typically very large for any non-trivial CPS and it is impossible to execute all of them. The 

uncertainty-wise test case minimization problem is a multi-objective search problem with 

four objectives: 1) The average number of uncertainties covered by the subset of the test 

cases after minimization; 2) The average percentage of uncertainty space (defined in 

Uncertainty Theory [42]) covered by the subset of the test cases after minimization; 3) The 

average uncertainty measure (defined in Uncertainty Theory [42]) of the subset of test cases 

after minimization; and 4) The average number of unique uncertainties covered by the subset 

of test cases after minimization.  

199 
 
 
 
 
 
 



 
 

 

4 Terminologies And Running Example  
In this section, we will briefly present a running example together with relevant 

terminologies. The running example will be used in the rest of the paper to explain the key 

steps of UncerTolve. The UncerTolve itself will be presented in Sections 5-6. 

4.1 Belief Test Ready Model 
A belief test ready model (BM) consists of three types of models: a Composite Structure 

(CS) diagram, a set of class diagrams (CDs), and a set of Belief State Machines (BSMs). 

The belief aspect of BMs is from the perspective of modelers (i.e., belief agents), who create 

the BMs and therefore the BMs reflect their (subjective) beliefs on the information specified 

in the models.  

 

 

 
Fig. D-3. Composite Structure Diagram of BM (Running Example) 

 
Fig. D-4. Class Diagram of BM (Running Example) 

200 
 
 
 
 
 
 



 
 

 
The CS diagram of a BM model represents a high-level test/model evolution 

configuration (referred as Configuration in Fig. D-3) of a CPS under Test. It captures various 

physical units that constitute the CPS, such as components A and B with «PhysicalUnit» 

applied. The stereotype is defined in the CPS profile of UncerTum [9]. Application and 

infrastructure level testing ports and interfaces of each physical unit are also explicitly 

modeled in the CS diagram. For example, as shown in Fig. D-3, A has one application-level 

port (aport :: AInterface) and one infrastructure level port (aiport :: IAInterface), which are 

stereotyped with «ApplicationElement» and «InfrastructureElement», respectively. Each 

port has a corresponding interface specified in the class diagram (Fig. D-4) such as 

AInterface. The integration level interface is stereotyped with «IntegrationElement» 

(represented as class BACommunication in Fig. D-4) and it is associated with A and B. 

The structure of physical units is modeled as a set of UML class diagrams. Classes in the 

UML class diagrams capture various types of information required for testing, including 

APIs (e.g., the reset() operation of B in Fig. D-4), state variables (e.g., the active:Boolean 

attribute of A in Fig. D-4), test configuration parameters (e.g., the cardinality of instances of 

A in Fig. D-3), signals (e.g., AdminCancel in Fig. D-4), and signal receptions (e.g., 

AdminCancel() in BInterface in Fig. D-4). The class diagrams have the CPS profile (Section 

3.1) applied to distinguish model elements of the three different levels. For example, 

AInterface is stereotyped as «ApplicationElement» to signify that it is an application level 

interface.  

 
Fig. D-5. Belief State Machine of A (V1.1) (Running Example) 

 

201 
 
 
 
 
 
 



 
 

 

 

Fig. D-6. Belief State Machine of B (V1.1) (Running Example) 

Each physical unit’s test behavior is modeled as one or more BSMs using UncerTum 

(Section 3.4), e.g., as shown in Fig. D-5 and Fig. D-6 for A and B respectively. For example, 

as shown in the BSM for physical unit A (Fig. D-5), «BeliefElement» from UUP is applied 

to the state machine for A, where the confidence of the belief agent about this state machine 

is specified as 95%. Two key types of OCL constraints are defined in BSMs. Each basic 

state in a BSM is precisely defined with a state invariant (e.g., not active associated with the 

Start state of A, Fig. D-5) specified as an OCL constraint based on state variables defined in 

the CDs (e.g., attribute active of class A in Fig. D-4). These state invariants serve as test 

oracles and can be checked at runtime using existing OCL evaluators such as Eclipse OCL 

[43]. Second, each guard condition (e.g., guard [times<3] on the transition from Start to B1 

in B, Fig. D-5) is specified as an OCL constraint on the input parameters of the associated 

trigger, which defines the valid range of inputs. These constraints in our case are used to 

automatically generate test data to trigger transitions. An OCL solver (e.g., EsOCL [44]) can 

take these constraints as input and automatically generate test data [45]. BSMs are further 

enriched with UAL such that they can be directly executed with the IBM Rational Simulation 

Toolkit [46]. For example, the self-transition of State A1 (Fig. D-5) has an effect whose body 

is written in UAL as below: 
aport.send(new A2B_Info(msg.x_, msg.y_)); 

This effect simply sends signal A2B_Info from A to B via aport. Notice that A2B_Info is 

a signal reception in BInterface. Notice that signals in UML are typically used for modeling 

communications across state machines. In our running example, for instance, the state 

machine of physical unit A (Fig. D-5) communicates with the state machine of physical unit 

202 
 
 
 
 
 
 



 
 

 
B (Fig. D-6) via the UAL code of the effect of self-transition of state A1 (Fig. D-5) as also 

shown in the last paragraph. Similarly, the state machine of physical unit B (Fig. D-6) 

communicates with the state machine of physical unit B (Fig. D-5) via the UAL code written 

in the effect of the transition from B1 to Start in Fig. D-6. 

4.2 Executable Belief Test Ready Model 
An executable BM is a Java code, which is semantically equivalent to a BM discussed in 

Section 4.1. Executable BM Java code can be executed either directly with the IBM Rational 

Simulation Toolkit or as a standalone application by simply introducing a main() method. In 

Section 6.1, how to develop executable BM will be discussed in details. 

4.3 Driver Model 
In order to apply UncerTolve, we need to develop a component called Driver Component 

(e.g., dc: Driver Component in the composite structure diagram in Fig. D-3). A Driver 

Component is connected to physical units of a CPS via UML ports and connectors (Fig. D-

3). A Driver Component has its own class diagram (e.g., Fig. D-7) and state machine (Driver 

State Machine (DSM), e.g., Fig. D-8). The class diagram contains attributes and operations 

that are specifically needed to model DSM such as attribute isCorrectInput of Driver 

Component in Fig. D-7. A DSM is a UML state machine that is specifically defined to trigger 

the execution of BSMs based on real operational data. Data types of the real operational data 

(e.g., x and y) are specified in the class diagrams of BM. Data on signals (e.g., SignalD of 

Fig. D-4) are sent via ports (e.g., dcport in Fig. D-3) from DSM to BSMs. Such data includes 

the input of a system actor, environment changes, etc. A DSM can also be enriched with 

UAL to make it executable. The class diagram and DSMs are all together called Driver 

Model (DM).  

203 
 
 
 
 
 
 



 
 

 

 
The DSM of our running example is shown in Fig. D-8. The DSM has two regions, i.e., 

the top region is used to communicate with A, whereas the bottom region is for 

communicating with B. In the top region, there is only one state called Sending Data having 

a self-transition “after 0.01s”. This means that every 0.01 seconds, data is sent from Driver 

Component to A. The following UAL code is embedded inside the entry activity of the 

Sending Data state:  
dcPort.send(new SignalD(getX(time), getY(time))); 

The above code obtains values of x and y at a given point in time (from real operational 

data) and sends them to A via SignalD through dcPort. In the bottom region, in the Sending 

Input Data state, the following UAL code is added: 
String pwd_ = parseRealData("input_pwd"); 

dcPort.send(new Input(pwd_)); 
isCorrectInput = checkCorrectInput(pwd_); 

The above code obtains the password from real operational data (the first line), sends it 

to B via the Input signal through dcPort (the second line), and checks whether or not the 

password is correct with the checkCorrectInput (pwd_) operation in the class diagram of 

Driver Component. 

 
Fig. D-7. Class Diagram of DM (Running Example) 

 

204 
 
 
 
 
 
 



 
 

 

 

5 Architecture and Current Implementation of UncerTolve 

In the rest of the section, we first present the overall architecture of UncerTolve (Section 

5.1), followed by the current implementation of UncerTolve (Section 5.2).  

5.1 Architecture 
The architecture of UncerTolve is represented in Fig. D-9. The key input of the 

architecture is real operational data collected from existing deployments. Real operational 

data can be collected continuously; therefore a process of using UncerTolve for evolving 

BMs can be iterative. As long as new operational data available, UncerTolve can be used to 

evolve the current BM and therefore the evolved BM can be used to generate new test cases 

for testing new/future deployments. Real operational data are invoked by Driver Model and 

Executable Belief Test Ready Model (executable UML) for enabling model execution. Model 

execution results (i.e., discovered previously unknown objective uncertainty measurements 

and errors in the initial BM) are used to evolve the BM with a set of heuristics (i.e., tolveR-

E). Real operational data are also used to support the dynamic invariant inference, which 

produces Invariants, representing either test oracles (i.e., state invariants) or test data 

specifications (i.e., guard conditions). Results of the inference are used to further evolve the 

belief BM, based on another set of heuristics: tolveR-D.  

 
Fig. D-8. State Machine of DM (Running Example) 

 

205 
 
 
 
 
 
 



 
 

 
Fig. D-9 shows the necessary components of the UncerTolve architecture. An initial 

Belief Test Ready Model, semantically equivalent Executable Belief Test Ready Model, 

Driver Model, and Real Operational Data are key artifacts that need to be constructed in 

order to use UncerTolve. Definitions and examples of these artifacts are presented in Section 

4 for references. For each of the activities (i.e., modeling, model execution and invariant 

inference), a set of guidelines (i.e., S1, S2, and S3) is also defined to guide users through a 

non-trivial model evolution process. As part of the guidelines, tolveR-E and tolveR-D are the 

two sets of heuristics defined for refining the initial BM based on model execution and 

invariant inference results.  

There are three evolution ports defined on Belief Test Ready Model: 1) following tolveR-

E, based on Execution Log (output of model execution), to evolve UML class diagrams, 

composite structure diagrams and BSMs, 2) following tolveR-D, based on invariants derived 

via Dynamic Invariant Inference, to evolve test oracle and test data specifications specified 

as state invariants and guard conditions of BSMs, and 3) appending objective uncertainty 

measurements derived from model execution to the BM. Though, the UncerTolve 

architecture provides these three evolution ports, it is not necessary to use them all at once. 

Depending on needs and contexts, which one(s) to use and how to use them can be 

customized. 

Note that this architecture is generic since it can be integrated with different technologies 

(e.g., different invariant inference engines) to achieve the same or similar objectives. Section 

5.2 discusses the current implementation of this architecture.  

206 
 
 
 
 
 
 



 
 

 

 

 
Fi

g.
 D

-9
. T

he
 O

ve
ra

ll 
A

rc
hi

te
ct

ur
e 

of
 U

nc
er

To
lv

e 

 

207 
 
 
 
 
 
 



 
 

 
5.2 Current Implementation of UncerTolve 

In this section, we discuss our current implementation of UncerTolve, focusing on the 

selection of technologies and the integration of them. The overall workflow of the current 

implementation of UncerTolve is presented in Fig. D-10. The selection of technologies and 

corresponding justifications are summarized in Table D-2. The recommended methodology 

for using the current implementation of UncerTolve is however discussed in Section 6. 

Table D-2. Steps, techniques/tools/languages, and corresponding justifications of the current implementation 
of UncerTolve 

Step Techniques/tools/languag
es 

Justification of using selected techniques/tools/languages 

S1, 
S2 

IBM Rational Software 
Architect (RSA) 
IBM Simulation Toolkit 
UML Action Language 
(UAL) 
Eclipse OCL 
Java Implementation of 
heuristics tolveR-E: 
Execution Logger and Log 
Analyzer 

The overall approach of the U-Test project is implemented in the 
CertifyIt22 tool, which is a plug-in to IBM RSA. UAL is implemented 
based on the OMG Alf standard and is used by the IBM RSA 
Simulation Toolkit. Thus, IBM RSA, Simulation Toolkit, and UAL 
were selected in the current implementation of UncerTolve.  
Eclipse OCL is one of the commonly used OCL evaluation tools, 
which is built on EMF and fits well with the tooling of our overall 
technical solution.  
Given that execution log cannot be used automatically to modify 
BMs, heuristics tolveR-E are implemented to propose a set of actions 
to the user to modify BMs with uncertainty. 

S2 Java Implementation of 
Objective Uncertainty 
Measurement Analyzer 

Our approach is based on subjective uncertainty. To further validate 
it, we calculate the frequency (objective uncertainty measurements) 
based on the real operational data.  

S3 Daikon Invariant Detector 
Invariant Converter (Java 
Implementation planned) 

Several dynamic inference tools exist in the literature [1-3]; however, 
we decided to use Daikon because it implements a set of optimizations 
that facilitates its applications to complex problems [4]. 

S3 Java Implementation of 
heuristics tolveR-D: 
Invariant Analyzer 

Daikon outputs invariants. Links must be established between the 
inferred invariants and models elements of BMs. Thus, we developed 
heuristics tolveR-D to link Daikon invariants with state invariants and 
guard conditions (specified as OCL constraints and representing test 
oracles and test data specifications) of the BMs. 

S1-
S3 

Java implementation of the 
integrated solution (Fig. D-
10) 

None 

 

The first activity is to develop and execute BMs (S1/S2 in Fig. D-10). This activity takes 

place in IBM’s Rational Software Architect (RSA) and its Simulation Toolkit plugin [46]. 

As shown in Fig. D-10, UncerTum (Section 3.4) is currently implemented in IBM RSA. A 

user of UncerTolve develops BMs (S1 in Fig. D-10) using the guidelines developed for 

UncerTum (see [9]). To validate BMs, such models must be executed with real operational 

data. To achieve so, we extended UncerTum to provide a set of new guidelines to convert 

BMs into executable ones. The methodology for creating executable models is described in 

208 
 
 
 
 
 
 



 
 

 
Section 6.1. Corresponding to BMs, equivalent Java code is automatically generated by the 

Simulation Toolkit [46], which can either be executed with the Simulation Toolkit or as a 

standalone Java application. The user executes the developed BMs with the real operational 

data (S1 in Fig. D-10) using the Simulation toolkit [46].  

209 
 
 
 
 
 
 



 
 

 

 

 
Fi

g.
 D

-1
0.

 T
he

 O
ve

ra
ll 

W
or

k 
Fl

ow
 o

f t
he

 C
ur

re
nt

 Im
pl

em
en

ta
tio

n 
of

 U
nc

er
To

lv
e 

 

 

210 
 
 
 
 
 
 



 
 

 
The second activity of is Execution Analyzer (S2), which is used to analyze the results of 

the execution of BMs based on real operational data. Execution Analyzer is composed of 

Execution Logger, Log Analyzer, and Objective Measure Analyzer. Once the BMs are 

executed, Execution Logger logs the execution as execution log. The execution log includes 

information such as at one point of time, which trigger was fired with which data. Such log 

is used by Log Analyzer as an input to suggest various actions for the user to update BMs 

based on the set of heuristics of tolveR-E (Section 6.2.1). Based on suggested actions, the 

user may update BMs (S1’ in Fig. D-10). This log is also used by Objective Uncertainty 

Measurement Analyzer to calculate conditional probabilities, e.g., the frequency of 

occurrence of a particular transition (details in Section 6.2.2).  

The third activity is about the analysis of invariants using a machine learning technique 

implemented in the Daikon Invariant Detector [4]. The user may command (S3 in Fig. D-

10) to infer invariants based on real operational data using the API we developed to invoke 

Daikon and access the real operational data. As a result, Daikon outputs a set of invariants, 

which are converted to OCL constraints by the Invariant Converter that we implemented in 

Java. The converted OCL constraints are inputted to Invariant Analyzer to further evolve 

invariants in BMs based on the set of heuristics of tolveR-D (Section 6.3), and the output is 

suggested OCL constraints as a feedback to the user. The user may accept, reject, or modify 

the suggested OCL constraints. 

6 Recommended Methodology 
The recommended methodology for applying the current implementation of UncerTolve 

is presented in Fig. D-11, from which one can see that it is iterative and has three sequential 

steps. In the rest of the section, each of these steps is discussed in details. Section 6.1 presents 

our proposed modeling methodology to create executable BMs including activities for 

creating BMs and UML models for Driver Component; Section 6.2 presents a set of activities 

for validation BMs and DMs and evolve objective uncertainty measurements (S2); Section 

6.3 presents the process of evolving BMs in terms of invariants using dynamic invariant 

inference (S3). 

211 
 
 
 
 
 
 



 
 

 

 

Fig. D-11. Recommended Methodology of using the Current Implementation of UncerTolve 

6.1 Creating BM and Driver Model (S1) 
As we previously discussed, with UncerTum [9], BMs can be created. Using UncerTest, 

executable test cases can be generated from the BMs specified in UncerTum. However, an 

extension of UncerTum is required to make BMs executable such that they can be validated 

against real operational data. This section only focuses on the aspects that are required to 

make BMs executable and other details on UncerTum are provided in [9]. As shown in Fig. 

D-12, S1 is broken down into three activities: S1M1, S1A1, and S1M2.  

As the first step of the UncerTolve methodology, a modeler (belief agent) needs to apply 

UncerTum (which integrates the modeling notations of UML, UUP for specifying 

uncertainty, UAL for model execution, OCL for specifying constraints, and UTP V.2 for 

capturing testing aspects, e.g., «BeliefElement» in Fig. D-5 and Fig. D-6) to create BM (V1), 

i.e., the initial version of BM for a CPS under test (S1M1). UUP and UTP V.2 profiles are 

implemented in IBM RSA. As discussed in Section 4.1, the BM created by the modeler based 

on her/his subjective opinions and the BM is composed of a set of class diagrams, a 

composite structure diagram and a set of BSMs. 

212 
 
 
 
 
 
 



 
 

 

 
S1M1, S1M2 – manual action; S1A1  -- automated action 

Fig. D-12. The Structured Activity of Create Belief Model and Driver Model 

To make the BM executable, UAL code should be added to relevant model elements of 

BSMs of the BM such as entry, exit, and do activities of a state and effect on a transition. 

The second output of S1M1 is Executable BM (V1), which is Java code automatically 

generated from the initial version of BM (V1) by IBM RSA, and can be automatically 

executed by the IBM Simulation Toolkit [46] or as a standalone program. For example, Fig. 

D-5 and Fig. D-6 present the diagrams of the BM (V1) of the running example. The key 

elements of the model have been discussed in Section 4. 

Note that a modeler can specify a subjective uncertainty measurement as part of the 

applied «BeliefElement» on a model element on the BM model. For example, as shown in 

Fig. D-6, the subjective uncertainty measurement (denoted as SM B1.2) for «BeliefElement» 

applied on the transition from Start to B1 is ‘Likely’. The transition from Start to B2 however 

‘Unlikely’ occurs (see SM B1.1). Note that SM means Subjective Measurement and encoding 

of BX.Y means that the X round of the derivation of subjective uncertainty measurement for 

the Y element with «BeliefElement» applied. 

Since the executable UML implemented in IBM RSA doesn’t support converting OCL 

constraints into Java code and consequently cannot evaluate constraints at the runtime, we 

implemented OCLUtility in Java. This utility links IBM Simulation Toolkit with the Eclipse 

OCL library to evaluate OCL constraints at runtime (S1A2). Using this activity together with 

S1M1, executable BM (V1) is developed. Notice that OCLUtility is generic and needed to 

be developed once. 

Activity S1M2 is to connect the Driver Component to the BM using the same composite 

structure diagram developed for the BM (e.g., Fig. D-3), create class diagrams to keep 

information required to create a DSM, and create DSMs to drive the execution of BSMs for 

213 
 
 
 
 
 
 



 
 

 
the purpose of validating and evolving them (Section 4.3). Recall that all these models 

together are called DM. The outputs of this activity are then DM (V1) and its equivalent Java 

code Executable DM (V1).  

For our running example, we show the composite structure diagram of the BM in Fig. D-

3 (which is shared with the DM), the class diagram in Fig. D-7, particularly developed for 

the Driver Component, and the DSM in Fig. D-8. Please refer to Section 4.3 for a detailed 

discussion of the DM model. 

6.2 Validate BM and Driver Model, and Evolve Objective Uncertainty 
Measurements (S2) 

The second step (Fig. D-13) is to validate the BM and DM against real operational data 

and evolve objective uncertainty measurements on the BSMs based on the real operational 

data. Note that subjective uncertainty measurements are the ones defined by the belief agent 

when the initial version of the BM was created. 

 
* S2M1 – manual action; S2A1~S2A4—automated action 

Fig. D-13. The Structured Activity of Validating BM, DM and Evolving Objective Uncertainty 
Measurements 

The first step (S1A1) automatically executes the BM with real operational data using the 

DM. Results of the execution are stored in the Execution Log. Note that the UAL code for 

generating the execution log is added in the DSM and BSMs for this purpose. The second 

step (S2A2) automatically analyzes the generated execution log to identify errors and obtain 

objective uncertainty measurements such as the frequency of the occurrences of a transition 

in a BSM. If an error is obtained, manual correction and completion of BSMs (S2M1), based 

on the analysis results obtained in S2A2 are then required. Sequentially, UncerTolve 

automatically establishes the link with Eclipse OCL (S2A3). The process of identifying 

errors continues until no error is identified, in which case UncerTolve automatically adds 

214 
 
 
 
 
 
 



 
 

 
discovered objective uncertainty measurements to the BM (S2A4). Notice that the whole 

process of keeping updating the BM (V1) is continued until the validation is finished. At this 

moment, the BM (V2), along with the Executable BM (V2), DM (V2) and Executable DM 

(V2) are generated for S3 to take them as input to evolve BM (Fig. D-11). In the rest of the 

section, we discuss the key steps of S2. 

6.2.1 Analysis of Errors and Fixing Models (S2A2, S2A3, and S2M1) 
In S2A2, UncerTolve systematically and automatically checks the execution log for 

various types of errors. We classify errors into two high-level categories: Syntactic and 

Semantic errors. Syntactic errors are related to missing, incorrect, and redundant model 

elements in the BM and DM. For example, a redundant state means that its state invariant is 

subsumed by the state invariant of another state. A semantic error occurs when the models 

are syntactically correct, but the semantics of the models introduced using the UAL code 

have logical errors.  

We proposed a set of heuristics for the validation purpose (i.e., tolveR-E, 0) in 

UncerTolve. We provide below a subset of tolveR-E as examples:  

O 1. If the state invariant of a state in a BSM evaluates to be false, then it leads to three 

possible fixing scenarios: adding a new state, changing an existing one, and/or deleting 

an existing one.  

O 2. If a guard condition evaluates to be false, then it leads to two options: adding a new 

transition with an unknown trigger to an unknown state and changing an existing 

transition. 

O 3. If a signal is sent from the DSM to a BSM (which is supposed to transit to a known 

state) but the signal is not received by the BSM, then this indicates that one or more 

model elements (e.g., connector) are missing from the BM model. 

O 4. If a signal is sent from the DSM to a BSM (which it is supposed to transit to a known 

state) but the BSM transits to an unexpected state, it means that one or more model 

elements (e.g., the expected state) are incorrect. 

O 5. If a signal is sent from the DSM to a BSM and more than one states of the BSM 

become active in one region at the same time, this may suggest redundant states. 

215 
 
 
 
 
 
 



 
 

 
Regarding the running example, one can observe the following changes to the 

StateMachine_B BSM of the BM (V1) (Fig. D-6): 1) adding new state B3 (along with the 

definition of its state invariant as an OCL constraint), 2) adding two new transitions (between 

states Start and B3) and 3) applying «BeliefElement» on the two new transitions. The 

changes are reflected in the new version of the BSM (blue in Fig. D-14). This series of 

changes were triggered because, in S2A2, UncerTolve identified that the real operational 

data reflects the situation that from state Start, under the condition of times=4, the systems 

ends up at the B3 state.  

 
Fig. D-14. Belief State Machine of B (V2.1) 

As discussed in Section 4, OCL constraints are used to specify state invariants (serving 

as test oracles) and guard conditions, which are for generating test data for the input 

parameters of associated triggers. Based on the real operational data, these OCL constraints 

are validated by executing the executable BM and as the result, new constraints may be 

added or existing ones are changed by a user based on the suggested actions provided by 

UncerTolve. For example, as shown in Fig. D-14, a new OCL constraint is added to state B3 

as its state invariant. 

6.2.2 Identifying Objective Uncertainty Measurements (S2A4) 
UncerTolve analyzes the execution log and calculates the frequency of traversing a state 

or transition, based on which it defines an objective uncertainty measurement for the state or 

transition. Especially for transitions, UncerTolve calculates conditional probabilities of the 

transitions leaving from the same state. For example, as shown in Fig. D-14, the 

216 
 
 
 
 
 
 



 
 

 
StateMachine_B BSM of the BM (V2) contains three objective uncertainty measurements 

(i.e., OM B1.1, OM B1.2 and OM B1.3). Note that OM means Objective Measurement and 

encoding of BX.Y means that the X round of the derivation of the objective uncertainty 

measurement for the Y element with «BeliefElement» applied. OM B1.2=92.1% implies that 

based on the real operational data, the probability of transiting from Start to B1 via the 

transition is 92.1%. Note that the subjective uncertainty measurement for this transition was 

initially defined as ‘Unlikely’ by the modeler (Fig. D-6). In this case, the objective 

uncertainty measurement conforms to the subjective uncertainty measurement. In the case 

that a nonconformity is observed, UncerTolve alerts the modeler, but the evolving process 

of the models continues, as in steps S3 and S4, the objective uncertainty measurements might 

be updated, which provides more evidence to the modeler. The modeler can then decide 

whether or not to adjust her/his belief on the subjective uncertainty measurement in the next 

or future rounds of S2. Notice that more real operational data used in the evolving process 

leads to the higher precision of derived objective uncertainty measurements. 

Intermediate versions of the subjective and objective uncertainty measurements can be 

saved such that different types of analyses can be performed and eventually advanced test 

generation strategies can be derived, which is one of the items of our future work. 

6.3 Evolve Belief State Machines with Dynamic Invariant Analysis (S3) 
In the first step (S3A1), UncerTolve executes the Executable BM (V2), together with the 

real operational data in the Daikon tool, which produces a set of invariants (Fig. D-15). In 

S3A2, UncerTolve automatically converts Daikon invariants into OCL constraints. The 

obtained OCL constraints are then taken as the input of S3M1/A3 to evolve the BM (V2) to 

BM (V3). UncerTolve implements a set of heuristics for this step (see details in Appendix 

D), some of which are listed below as examples:  

Problem 1. If an invariant inferred by Daikon supersedes an existing constraint, then 

there are three options for the modeler to manually evolve the models: 1) keep the 

original constraint, 2) split the original constraint such that one or more states 

(transitions) are newly introduced, or 3) keep the original state (transition) but 

update the constraint. 

217 
 
 
 
 
 
 



 
 

 
Problem 2. If an invariant inferred by Daikon subsumes a set of existing constraints 

(named as EConstraints), there are three options for the modeler to manually 

evolve the models: 1) keep things unchanged (if the invariant inferred by Daikon 

is irrelevant), 2) merge the invariant inferred by Daikon with a set of existing states 

and transitions, corresponding to EConstraints, 3) create a composite state to group 

a set of existing states and transitions that are associated to EConstraints. 

 
* S3A1 – manual action; S3A2 -- automated action; S3M1/A3 – semi-automated action 

Fig. D-15. The Structured Activity of Evolve BM with Dynamic Invariant Analysis 

In the running example, the input of S3 is Fig. D-14, and the output of S3 is Fig. D-16. In 

Fig. D-16, newly added and changed model elements are highlighted as green. Note that in 

the figure that state B4 is newly introduced to the StateMachine_B BSM of the BM (V3). As 

a result, two transitions are added between B4 and Start. Introducing the transition from Start 

to B4 leads to the updates of a list of objective uncertainty measurements: OM B1.1-OM 

B1.3. This is because the sum of the objective uncertainty measurements for all the four 

transitions leaving state Start (to states B1, B2, B3, and B4) is 100%; therefore, introducing 

a new transition triggers the change of OM B1.2 (=92.1% in Fig. D-14) to OM B2.2 (=91.0% 

in Fig. D-16). The objective uncertainty measurement for the newly added transition from 

Start to B4 is calculated as: OM B2.4 = OM B1.2 – OM B2.2 = 92.1% - 91.0% =1.1%. The 

rationale behind the calculation is that in S3, UncerTolve, based on the real operational data, 

evolves the state invariant of B1 by adding clause ‘a.active’ to it, which leads to the discovery 

of the new state B4 (whose state invariant contains the clause ‘not a.active’, the negation of 

the newly added clause of B1’s state invariant). Therefore, OM B2.2 and OM B2.4 are the 

results of the splitting of OM B1.2. As also shown in Fig. D-16, the state invariants of states 

B2 and B3 are also updated in S3 by introducing the same clause ‘not a.active’ to each of 

the invariant. The objective uncertainty measurements of OM B1.1 and OM B1.3 remain 

unchanged. 

218 
 
 
 
 
 
 



 
 

 

 
Fig. D-16. Belief State Machine of B (V3.1) 

7 Evaluation 

In this section, we present the evaluation of UncerTolve as a proof-of-concept using the 

industrial case study available to us as part of the project. The case study is called GeoSports 

(GS) from the healthcare domain provided by Future Position X, Sweden20. The GeoSports 

case study is about monitoring Bandy players for their performance and health conditions 

during the game for early intervention and prevention. Coaches use data produced by the 

GeoSports system to improve the performance of individual players and the team together. 

We had access to real operational data of five real games that were used to evaluate 

UncerTolve. The first versions of the BMs with uncertainty were developed with UncerTum, 

together with the industrial partner during the four workshops hosted at its site. Below, we 

present the results of evaluation according to each key activity (i.e., S1, S2 and S3, Section 

7.1 to Section 7.3). Section 7.4 presents the results of the overall validation of the final 

evolved models. Section 7.5 presents discussion and experiences. In 7.5, we report the effort 

required to build the test ready model of the GS case study, and the possibility of adopting 

UncerTolve in a commercial tool setting. The threats to validity are discussed in Section 7.7. 

20 www.fpx.se 

219 
 
 
 
 
 
 

                                                           
 



 
 

 
7.1 Results of Creating BM and DM (S1) 

Table D-3 presents the descriptive statistics of the initial versions (V1) of BMs and driver 

models for the case study. The #C column shows the total number of classifiers (including 

classes, components, signals, interfaces and data types) defined in a BM/DM. The #R 

column presents the total number of relationships among the classifiers such as associations 

and compositions. The #RP column presents the total number of signal receptions specified 

in all the class diagrams of a BM/DM. Similarly, for the composite structure diagram (CSD) 

developed for a BM, we present the total number of ports (#P) and connectors (#CN). For 

the state machines, we present the total number of states (#S) and transitions (#T). The #BE 

column presents the total number of model elements in a BM, where the «BeliefElement» 

stereotype was applied. For each driver model, we present the total number of classes and 

components (#C), states (#S) and transitions (#T). 

Based on the descriptive statistics shown in Table D-3, GS has the belief model with 62 

classifiers, 56 relationships and 37 signal receptions in the class diagrams, 10 ports and 11 

connectors in the composite structure diagram, and 82 states and 106 transitions in all the 

state machines of its BM.  

Table D-3. Descriptive statistics of the initial BMs (V1)* of the GS case study 

# Class Diagram 
Composite 

Structure Diagram State Machine #BE 
#C #R #RP #P #CN #S #T 

Belief Model (BM) 62 56 37 10 11 82 106 49 
Driver Model (DM) 1 0 0 2 NA 5 11 NA 

C: Classifiers, R: Relationships, RP: Signal Receptions, P: Ports, CN: Connectors, BE: Belief Elements 

7.2 Results of Validation and Evolution via Model Execution (S2) 
Table D-4 summarizes the results of S2 for the GS case study. We provide the total 

number of missing model elements (#MS), incorrect model elements (#IN), and redundant 

model elements (#RD). In addition, we report the total number of errors discovered in the 

semantics of the models (#SM). We report these descriptive statistics for the model elements 

of the BSMs of a BM: states (S), transitions (T), and elements with «BeliefElement» (BE) 

applied. Similarly, we report the statistics for the DSM of a BM, communications between 

the BSMs and the DSM and vice versa (BSM2DSM and DSM2BSM). In addition, we 

present the percentage of the elements evolved as compared to V1 in the % row with the 

220 
 
 
 
 
 
 



 
 

 
following formula: (#MS - #RD)/(#V1 + #MS - #RD), where #V1 is the total number of the 

model elements of a BM V1 (the initial version of the BM, comparison baseline). 

Table D-4. Results of BM V2 and DM V2* 

 Belief Model Driver Model 
 BSM BSM2DSM DSM DSM2BSM 
 #BE #S #T #RP #P #CN #S #T #RP #P 

#Missing 9 11 12 1 0 1 0 0 0 0 
#Incorrect 0 3 3 2 1 2 0 1 0 0 

# Redundant 0 1 2 1 0 0 0 0 0 0 
#Semantic Problems 0 2 1 0 0 0 1 1 0 0 

% 37% 11% 9% 0% 0% 8% 0% 0% 0% 0% 
* BSM: Belief State Machine, DSM: Driver State Machine, RP: Signal Receptions, P: Ports, CN: 

Connectors, BE: Belief Elements, BSM2DSM: BSM to DSM communication, DSM2BSM: DSM to BSM 
communication, MS: Missing Model Elements, IN: Incorrect Model Elements, RD: Redundant Model 
Elements, SM: Semantic Problems, %: Percentage of evolved elements as compared to V1. 
 

As it can be seen from Table D-4, UncerTolve evolved 37% of the belief elements, 11% 

and 9% of states and transitions in the BM V2 as compared to the BM V1. Notice that the 

loop inside the S2 activity (S2A1S2A2S2M1S2A3S2A1, Fig. D-14) was executed 

seven times until no further errors were discovered. In addition, 8% of connectors for 

enabling the communications from the BSMs to the DSM (BSM2DSM) were evolved as 

shown in Table D-4. 

Table D-4 also presents the errors discovered in the BMs and DMs of GS. For example, 

as shown in Table D-4  (#SM row, DSM column in GS block), UncerTolve found two 

semantic errors in its DSM, one error state, and one error transition. These two semantic 

errors are located in the UAL code in the entry/do/exit activity of the error state and the 

effect of the error transition. Notice that since the semantic errors were located in the UAL 

code of the DSM, it does not result in the evolution of any BM model element. This is why 

the % row in the DSM column for GS shows 0% for both #S and #T.  

7.3 Results of Dynamic Inference (S3) 
Table D-5 shows the results of activity S3 for the case study. The #EP column presents 

the total number of model elements in the BSMs of a BM. These model elements were the 

points of evolution (e.g., State S4 in Fig. D-16). The #RF column presents the total number 

of refined model elements (e.g., state invariants in OCL and belief elements). The #ES 

column presents the total number of states that were newly added to or deleted from BSM 

221 
 
 
 
 
 
 



 
 

 
V3 as the result of evolution. The #ET column represents the total number of transitions that 

were added to and deleted from BSM V3 as the result of evolution. Finally, the #EB column 

represents the total number of belief elements that were added to or deleted from BSM V3. 

The % row for #EP provides the percentage of model evolution points as compared to the 

total number of model elements in BSM, i.e., #EP/(#S+#T). Similarly, the percentage of #RF 

is calculated as #RF/(#S+#T). For ES, the percentage is calculated as #ES/#S, for ET as 

#ET/#T, and for EB as #EB/(#S+#T). In these formulas, #S and #T represent the total 

number of states and transitions in BSM V3. 

Table D-5. Results of the evolution of BSM V3* 

Model Element Type # Evolution 
points 

# Modified/ 
Refined 

Elements 

# Evolved 
States 

# Evolved 
Transitions 

# Evolved 
Belief 

Elements 
# 5 56 8 18 32 
% 2% 27% 8% 13% 29% 

*#Evolved States: the total number of evolved states excluding the modified ones, #Evolved Transition: total 
number of evolved transitions excluding the modified ones, #EB: total number of evolved belief elements 
excluding the modified ones 
 

As shown in Table D-5, UncerTolve identified 5 model elements (2%) that can be 

evolved, whereas 27% of the existing model elements were refined. In the case of states, 

transitions, and belief elements, 8% of states, 13% of transitions, and 29% of belief elements 

were added/deleted to BSM V3 as compared to V2.  

7.4 Overall Validation  
Once the evolved version V3 of the BSMs was obtained after the S3 activity, we verified 

it with the real operational data by performing the S2 activity once again. Results are shown 

in Table D-6. As one can see from the table, we found 11 validation problems in belief 

elements, whereas we discovered 3 validation problems with states and 2 with transitions. 

In total, we verified 99 belief elements. For states, we verified in total 100 states. Similarly, 

for transitions, we verified in total 134 transitions, but we couldn’t verify 5 transitions once 

again due to unavailability of real operational data.  

Table D-6. Results of the validation of BSM V3* 

Model Element Type #Belief Elements #States #Transitions 
#Missing 0 0 0 

#Incorrect 0 0 0 

222 
 
 
 
 
 
 



 
 

 
#Redundant  11 0 0 

#Semantic Problems 0 3 2 
#Model Elements 99 100 134 

Table D-7. Overall results of the evolution across the versions (%) 

Model Element Type % Belief Elements %States %Transitions %Evolution Points 
V1     
V2 37% 11% 9% 19% 
V3 29% 8% 13% 11% 
V3' -11% 0% 0% 1% 

M= (#V3’-#V1)/#V3’ 51% 18% 21%  
* V3’: Verified version of V3 with S2, M is (#V3’-#V1)/#V3’, - means not applicable. 

 
Table D-7 shows the results of the percentage increase in the number of evolved model 

elements of BM across the three versions (V1 to V3). In addition, we also show the 

percentages for the verified version of V3, i.e., V3’. The last column shows the mean 

percentage of increase in the number of model elements in V3’ as compared to V1 and is 

calculated as M=(#V3’-#V1)/#V3’, where #V3’ is the number of model elements in V3’ and 

#V1 is the number of model elements in V1. For EP, we also show the mean percentage of 

increase in the evolution points in BM from V1 to V2, from V2 to V3 and from V3 to V3’.  

As shown in Table D-7, in the stage of V3’, 51% of belief elements, 18% of states, and 

21% of transitions were evolved as compared to the first version (V1). For EP, 19% of new 

evolution points were discovered in V2, 11% in V3, and 1% in V3’. 

7.5 Effort to Build Belief Test Ready Models and Adoption of UncerTolve 
The BMs of GS were initially built by Simula researchers (the first three authors of the 

paper). These models were further confirmed with the industrial partner (last author of the 

paper). First, the first author (second year Ph.D. candidate) created the first version of the 

models, which were iteratively discussed with the second (a senior scientist) and third (a 

chief scientist) authors. Second, two workshops (2 days each) were held to present and 

discuss the models with the industrial partner to check their conformance with real scenarios. 

Third, the Simula researchers modified the models and as a result, the final version of models 

was produced that was used as input of UncerTolve (Fig. D-11). Table D-8 shows the rough 

estimate of efforts for developing the models and presenting them to the industrial partner. 

We classify effort in terms of how much time it took to build the models using standard 

UML notations and additional effort to apply various profiles and model libraries defined in 

223 
 
 
 
 
 
 



 
 

 
UncerTum. As shown in Table D-8, for standard Class/Composite structure diagrams, it took 

37.5 hours (about a week), whereas it took additional 3.5 hours to apply UncerTum profiles 

and model libraries. For standard UML state machines, it took 52.5 hours and an additional 

12.5 hours for UncerTum modeling. The last column shows additional effort required with 

UncerTum as compared to standard UML, i.e., roughly 15%. The last row of Table D-8 

shows the effort we spent to present the models to our industrial partner.  

Table D-8. Efforts in terms of time (hours) to develop and present BMs 

 Class/Composite Structure 
Diagrams 

State Machine % of Time 

Standard UML 
Modeling 

UncerTum 
Modeling 

Standard UML 
Modeling 

UncerTum 
Modeling 

Effort to develop 37.5 3.5 52.5 12.5 15% 
Effort to present 7.5 15 - 

 

In the project [10], we have a dedicated tool vendor (Easy Global Market21) responsible 

for implementing research results including UncerTolve into Smartesting’s commercial 

model-based testing tool called CertifyIt 22  and transfer of the results to the industrial 

partners. Such adoption of the UncerTum, UncerTest, and UncerTolve is on-going and will 

be completed by the end of the project.  

7.6 Discussion and Experiences  
In this section, we present discussion and our experiences of applying UncerTolve to the 

industrial case study, based on the results presented in Sections 7.1-7.4.  

Based on our experience of designing drivers for model execution and evolution, we 

discovered that the design of a driver is highly dependent on the characteristics of a CPS. 

For example, in our case, we have no direct access to its testing API or internal states. In 

addition, GS doesn’t provide feedback to its users, i.e., Bandy players. It only records the 

readings from the Bandy players and transmits these via radio connections to the central 

system, where these data are processed. Because of these two characteristics of the CPS, the 

driver for GS was simpler since there was less information available for GS. In addition, the 

feedback from the CPS to the driver was not required to be modeled in GS. This might not 

21 www.eglobalmark.com 
22 www.smartesting.com/en/certifyit/ 

224 
 
 
 
 
 
 

                                                           
 



 
 

 
be the case for other CPS case studies where we may have direct access to testing APIs and 

there is feedback from CPS, which will consequently lead to complex driver design.  

In our case study, time events were used in models to capture timing aspects. 

Consequently, this had an impact on designing BMs, DMs and model evolution. However, 

GS only sampled data after a fixed interval of time and thus the design of BMs was simpler, 

which may not be the case for other case studies that have much more complex timing 

constraints.    

In terms of the generalization of UncerTolve, theoretically speaking, as long as BMs of a 

CPS is specified in UncerTum [9] (a generic modeling methodology to create BMs of CPSs 

with subjective uncertainty) and real operational data are available, it is applicable to any 

case study. Our proposed modeling methodology (reported in Section 6.1) to create 

executable BMs is also generic and can, therefore, be tailored. In addition, our heuristics 

rules to update models based on the results of validation of executable models (Section 6.2), 

the process of calculating and abstracting objective uncertainty and reflecting them in BMs 

(Section 6.2.2), and rules to evolve BMs (Section 6.3) are not specific to any case study and 

are thus generic. At its current state, we assessed UncerTolve with one CPS case study from 

the EU project as a proof-of-concept. In order to provide further evidence related to the 

generalization of UncerTolve, we indeed need to conduct additional case studies, which will 

be the focus of our near future work.  

7.7 Threats to Validity 
Internal validity threats in our context are due to the use of existing tools, including 

Daikon and IBM Rational Simulation Toolkit. Notice that Daikon has been extensively used 

in the literature for dynamic inference of invariants as we discussed in Section 2 and thus 

the chances of results being impacted by its use are minimum. IBM Rational Simulation 

Toolkit is a commercial product that we used for model execution and has a well-tested 

implementation. Therefore, it is highly unlikely that the results were impacted by its use as 

well. As part of an academic initiative by IBM, we were able to use fully functional version 

free of any cost. 

Currently, we evaluated UncerTolve with only one industrial case study; however, to 

generalize the results, UncerTolve must be evaluated with other case studies. We plan to 

225 
 
 
 
 
 
 



 
 

 
conduct additional industrial CPS case studies in addition to using the same case study with 

additional real operational data. 

8 Conclusion 
Given that Cyber-Physical Systems (CPSs) are tested with the assumptions on its internal 

behavior, its operating environment, and potential deployments, it is necessary that belief 

test ready models (BMs) developed to test the CPSs are continuously evolved using their 

real operational data including observed uncertainties. Such evolved models can be used to 

generate additional test cases to be executed on the current and future deployments of the 

same CPS. To this end, we proposed a test ready model evolution framework called 

UncerTolve. The framework was specially designed and developed to evolve BMs of CPSs 

with explicitly captured subjective uncertainty. Our aim is to not only improve the quality 

of BMs and evolve captured uncertainty, but also potentially discover unspecified 

uncertainty.  

UncerTolve used several methods to evolve the models and uncertainty measurements 

including validation and evolution using model execution with real operational data 

collected from the application of a CPS and evolving constraints with a machine learning 

technique implemented in Daikon—dynamic invariant detection tool based on real 

operational data. UncerTolve was evaluated as a proof-of-concept with one industrial CPS 

case study from the healthcare domain, where we managed to evolve 51% of belief elements, 

18% of states, and 21% of transitions. In the future, we are planning to use the evolved 

models to generate additional test cases by defining new test strategies focusing on the 

evolved parts of BM. Such test strategies will be implemented in our uncertainty-based test 

case generation and minimization framework called UncerTest. In addition, we are planning 

to conduct further case studies to evaluate UncerTolve.  

Acknowledgment 
This research was supported by the EU Horizon 2020 funded project (Testing Cyber-

Physical Systems under Uncertainty). Tao Yue and Shaukat Ali are also supported by RCN 

funded Zen-Configurator project, RFF Hovedstaden funded MBE-CR project, RCN funded 

226 
 
 
 
 
 
 



 
 

 
MBT4CPS project, RCN funded Certus SFI and the EU COST action MPM4CPS. 

References 
[1] M. Boshernitsan, R. Doong, and A. Savoia, “From daikon to agitator: lessons and 

challenges in building a commercial tool for developer testing,” in Proceedings of 

the 2006 international symposium on Software testing and analysis, Portland, Maine, 

USA, 2006, pp. 169-180. 

[2] S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty, “IODINE: a tool to 

automatically infer dynamic invariants for hardware designs,” in Proceedings of the 

42nd annual Design Automation Conference, Anaheim, California, USA, 2005, pp. 

775-778. 

[3] C. Ackermann, R. Cleaveland, S. Huang, A. Ray, C. Shelton, and E. Latronico, 

"Automatic Requirement Extraction from Test Cases," Runtime Verification: First 

International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. 

Proceedings, H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace, 

G. Roşu, O. Sokolsky and N. Tillmann, eds., pp. 1-15, Berlin, Heidelberg: Springer 

Berlin Heidelberg, 2010. 

[4] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discovering 

likely program invariants to support program evolution,” IEEE Transactions on 

Software Engineering, vol. 27, no. 2, pp. 99-123, 2001. 

[5] D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from 

theory to practice: CRC Press, 2015. 

[6] S. Sunder, "Foundations for Innovation in Cyber-Physical Systems," in Proceedings 

of the NIST CPS Workshop, Chicago, IL, USA. 

[7] E. Geisberger, and M. Broy, Living in a networked world: Integrated research 

agenda Cyber-Physical Systems (agendaCPS): Herbert Utz Verlag, 2015. 

[8] S. Hangal, and M. S. Lam, "Tracking down software bugs using automatic anomaly 

detection," in Proceedings of the 24th International Conference on Software 

Engineering. ICSE 2002. pp. 291-301. 

[9] M. Zhang, S. Ali, T. Yue, and R. Norgre, An Integrated Modeling Framework to 

Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty,  

227 
 
 
 
 
 
 



 
 

 
Technical report 2016-02, Simula Research Laboratory, 2016; 

https://www.simula.no/publications/integrated-modeling-framework-

facilitate-model-based-testing-cyber-physical-systems. 

[10] S. Ali, and T. Yue, "U-Test: Evolving, Modelling and Testing Realistic Uncertain 

Behaviours of Cyber-Physical Systems," in Proceedings of the IEEE 8th 

International Conference on Software Testing, Verification and Validation (ICST). 

pp. 1-2. 

[11] M. Zhang, S. Ali, T. Yue, and M. Hedman, Uncertainty-based Test Case Generation 

and Minimization for Cyber-Physical Systems: A Multi-Objective Search-based 

Approach,  Technical report 2016-13, Simula Research Laborabory, 2016; 

https://www.simula.no/publications/uncertainty-based-test-case-

generation-and-minimization-cyber-physical-systems-multi. 

[12] M. Daun, J. Brings, T. Bandyszak, P. Bohn, and T. Weyer, “Collaborating multiple 

system instances of smart cyber-physical systems: a problem situation, solution idea, 

and remaining research challenges,” in Proceedings of the First International 

Workshop on Software Engineering for Smart Cyber-Physical Systems, Florence, 

Italy, 2015, pp. 48-51. 

[13] OMG, "Unified Modeling Language (UML)," June 2015. 

[14] O. M. Group, "Object Constraint Language (OCL)," February 2014. 

[15] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding 

Uncertainty in Cyber-Physical Systems: A Conceptual Model," in Proceedings of the 

12th European Conference on Modelling Foundations and Applications (ECMFA). 

pp. 247-264. 

[16] OMG, "UML Testing Profile," April, 2013. 

[17] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: dynamic symbolic execution 

for invariant inference,” in Proceedings of the 30th international conference on 

Software engineering, Leipzig, Germany, 2008, pp. 281-290. 

[18] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic, "Using dynamic 

execution traces and program invariants to enhance behavioral model inference," in 

2010 ACM/IEEE 32nd International Conference on Software Engineering. pp. 179-

182. 

228 
 
 
 
 
 
 

https://www.simula.no/publications/integrated-modeling-framework-facilitate-model-based-testing-cyber-physical-systems
https://www.simula.no/publications/integrated-modeling-framework-facilitate-model-based-testing-cyber-physical-systems
https://www.simula.no/publications/uncertainty-based-test-case-generation-and-minimization-cyber-physical-systems-multi
https://www.simula.no/publications/uncertainty-based-test-case-generation-and-minimization-cyber-physical-systems-multi


 
 

 
[19] T. Berg, B. Jonsson, and H. Raffelt, "Regular Inference for State Machines Using 

Domains with Equality Tests," Fundamental Approaches to Software Engineering: 

11th International Conference, FASE 2008, Held as Part of the Joint European 

Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, 

March 29-April 6, 2008. Proceedings, J. L. Fiadeiro and P. Inverardi, eds., pp. 317-

331, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. 

[20] L. David, M. Shahar, and K. Siau-Cheng, “Mining modal scenario-based 

specifications from execution traces of reactive systems,” in Proceedings of the 

twenty-second IEEE/ACM international conference on Automated software 

engineering, Atlanta, Georgia, USA, 2007. 

[21] D. Lo, and S. Maoz, “Scenario-based and value-based specification mining: better 

together,” Automated Software Engineering, vol. 19, no. 4, pp. 423-458, 2012. 

[22] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy, 

“Using Declarative Specification to Improve the Understanding, Extensibility, and 

Comparison of Model-Inference Algorithms,” IEEE Transactions on Software 

Engineering, vol. 41, no. 4, pp. 408-428, 2015. 

[23] G. Carlo, M. Andrea, and M. Mattia, “Synthesizing intensional behavior models by 

graph transformation,” in Proceedings of the 31st International Conference on 

Software Engineering, 2009. 

[24] I. Krka, Y. Brun, and N. Medvidovic, "Automatic mining of specifications from 

invocation traces and method invariants," in Proceedings of the 22nd ACM 

SIGSOFT International Symposium on Foundations of Software Engineering. pp. 

178-189. 

[25] D. Lo, L. Mariani, and M. Pezzè, "Automatic steering of behavioral model 

inference," in Proceedings of the the 7th joint meeting of the European software 

engineering conference and the ACM SIGSOFT symposium on The foundations of 

software engineering. pp. 345-354. 

[26] L. Davide, M. Leonardo, and P. Mauro, “Inferring state-based behavior models,” in 

Proceedings of the 2006 international workshop on Dynamic systems analysis, 

Shanghai, China, 2006. 

229 
 
 
 
 
 
 



 
 

 
[27] D. Lorenzoli, L. Mariani, and M. Pezzè, "Automatic generation of software 

behavioral models," in Proceedings of the 30th international conference on Software 

engineering. pp. 501-510. 

[28] P. Tonella, C. D. Nguyen, A. Marchetto, K. Lakhotia, and M. Harman, "Automated 

generation of state abstraction functions using data invariant inference," in 

Automation of Software Test (AST), 2013 8th International Workshop on. pp. 75-

81. 

[29] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, "Inferring models of 

concurrent systems from logs of their behavior with CSight," in Proceedings of the 

36th International Conference on Software Engineering. pp. 468-479. 

[30] T. Berg, B. Jonsson, and H. Raffelt, "Regular Inference for State Machines with 

Parameters," Fundamental Approaches to Software Engineering: 9th International 

Conference, FASE 2006, Held as Part of the Joint European Conferences on Theory 

and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006. 

Proceedings, L. Baresi and R. Heckel, eds., pp. 107-121, Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2006. 

[31] O. Tony, H. Michael, F. Sebastian, H. Armand, P. Marc, B. Ivan, and B. Yuriy, 

“Behavioral resource-aware model inference,” in Proceedings of the 29th 

ACM/IEEE international conference on Automated software engineering, Vasteras, 

Sweden, 2014. 

[32] G. Mark, and S. Zhendong, “Javert: fully automatic mining of general temporal 

properties from dynamic traces,” in Proceedings of the 16th ACM SIGSOFT 

International Symposium on Foundations of software engineering, Atlanta, Georgia, 

2008. 

[33] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite state machine 

models from software executions,” Empirical Software Engineering, pp. 1-43, 2015. 

[34] I. H. Witten, and E. Frank, Data Mining: Practical machine learning tools and 

techniques: Morgan Kaufmann, 2005. 

[35] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst, "Leveraging 

existing instrumentation to automatically infer invariant-constrained models," in 

230 
 
 
 
 
 
 



 
 

 
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European 

conference on Foundations of software engineering. pp. 267-277. 

[36] O. Raz, P. Koopman, and M. Shaw, "Semantic anomaly detection in online data 

sources," in proceedings of the 24th International Conference on Software 

Engineering. pp. 302-312. 

[37] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, "Perracotta: mining temporal 

API rules from imperfect traces," in Proceedings of the 28th international conference 

on Software engineering. pp. 282-291. 

[38] S. Hangal, and M. S. Lam, "Tracking down software bugs using automatic anomaly 

detection," in Proceedings of the 24th international conference on Software 

engineering. pp. 291-301. 

[39] "U-RUCM: Specifying Uncertainty in Use Case Models," accessed 2017; 

http://zen-tools.com/rucm/U_RUCM.html. 

[40] OMG, "UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded 

Systems," June, 2011. 

[41] "JGrapht," accessed  2016; http://jgrapht.org/. 

[42] B. Liu, Uncertainty theory: Springer, 2015. 

[43] "Eclipse OCL," accessed  2016; 

http://www.eclipse.org/modeling/mdt/?project=ocl - ocl. 

[44] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating Test Data from OCL 

Constraints with Search Techniques,” IEEE Transactions on Software Engineering, 

vol. 39, no. 10, pp. 1376-1402, 2013. 

[45] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "A Search-Based OCL Constraint 

Solver for Model-Based Test Data Generation," in 2011 11th International 

Conference on Quality Software. pp. 41-50. 

[46] "IBM RSA Simulation Toolkit," accessed  2016; http://www-

03.ibm.com/software/products/en/ratisoftarchsimutool. 

 

231 
 
 
 
 
 
 

http://zen-tools.com/rucm/U_RUCM.html
http://jgrapht.org/
http://www.eclipse.org/modeling/mdt/?project=ocl%23ocl
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool


 
 

 

Paper E 

 
 

Uncertainty-wise Test Case Generation 
and Minimization for Cyber-Physical 
Systems: A Multi-Objective Search-

based Approach 
 
 
 

Man Zhang, Shaukat Ali, Tao Yue 

 

 

 
 
 
 
 

 

Journal paper that has been submitted to ACM Transactions on Software 

Engineering and Methodology (TOSEM) 

  

232 
 
 
 
 
 
 



 
 

 

Abstract 
Cyber-Physical Systems (CPSs) typically operate in highly indeterminate environmental 

conditions, which require the development of testing methods that must explicitly consider 

uncertainty in test design, test generation, and test optimization. Towards this direction, we 

propose uncertainty-wise test case generation and test case minimization strategies that rely 

on test ready models explicitly specifying subjective uncertainty. We propose two test case 

generation strategies and four test case minimization strategies based on Uncertainty Theory 

and multi-objective search. These strategies include a novel methodology for designing and 

introducing indeterminacy sources in the environment during test execution and a novel set 

of uncertainty-wise test verdicts. We performed an extensive empirical study to select the 

best algorithm out of eight commonly used multi-objective search algorithms, for each of 

the four minimization strategies, with five use cases of two industrial CPS case studies. The 

minimized set of test cases obtained with the best algorithm for each minimization strategy 

were executed on the two real CPSs. The results showed that our best test strategy managed 

to observe 51% more uncertainties due to unknown indeterminate behaviors of the physical 

environment of the CPSs as compared to the rest of the test strategies. Also, the same test 

strategy managed to observe 118% more unknown uncertainties as compared to the unique 

number of known uncertainties. 

CCS Concepts. Software and its engineering →  Software creation and management →  

Software verification and validation →  Software defect analysis →  Software testing and 

debugging. 

Keywords. Uncertainty, Cyber-Physical Systems, Test Case Generation, Test Case 

Minimization, Multi-Objective Search, Uncertainty Theory.  

1 Introduction 

Cyber-Physical Systems (CPSs) are destined to face uncertainty in their operation due to 

close interactions with the physical environment [1]. Thus, classical testing methods (e.g., 

regression testing [2], conformance testing [3, 4]) must be extended to consider uncertainty 

explicitly. There exist a few methods in the literature that explicitly take uncertainty into 

233 
 
 
 
 
 
 



 
 

 
account while designing methods for testing CPSs [5, 6]. We present, in this paper, one such 

work but mainly focus on uncertainty-wise test case generation and minimization. 

Our test case generation and minimization approaches are model-based, in the sense that 

these rely on test ready models explicitly specifying subjective uncertainty, which is defined 

as “lack of knowledge” [7, 8] about the expected behavior of a CPS in the presence of 

uncertainty in its operating environment. Such test ready models are developed with the 

Uncertainty Modeling Framework (UncerTum) [9, 10], which defines a set of UML Profiles 

(e.g., the UML Uncertainty Profile (UUP)) and model libraries. With UncerTum, one can 

create test ready models, called Belief Test Ready Models (BMs). These models are 

composed of two types of UML diagrams: 1) Belief Class Diagrams (BCDs) capturing 

testing interfaces (e.g., observable states and operations to send stimulus) and 2) Belief State 

Machines (BSMs) modeling the expected behavior of a CPS with explicitly captured 

subjective uncertainty. Note that both BCDs and BSMs are standard UML class diagrams 

and state machines with stereotypes from the UUP applied. 

We developed two test case generation strategies, named as All Simple Belief Paths (No 

Loops) and All Specified Length Belief Paths on BSMs. These two strategies are inspired 

from the ones reported in [11], but are extended for BSMs and considered various 

uncertainty aspects such as the number of uncertainties in a test path and overall uncertainty 

of a test path based on Uncertainty Theory [12]. Moreover, we take into account the 

advanced features of standard UML state machines such as composite states, submachine 

states, and orthogonal regions. Using the tool developed for our approach, test cases 

satisfying a selected test case generation strategy can be automatically and systematically 

generated. 

 Depending on the complexity of a CPS and a chosen test case generation strategy, the 

number of generated test cases might be huge. Automatically executing all generated test 

cases, especially for complex CPSs, is impractical since test execution may require setting 

up special hardware, simulators, and emulators. Therefore, we need an approach that can 

minimize the number of test cases to be executed and maximize the coverage of transitions, 

meanwhile maximizing the following four uncertainty related objectives: 1) the number of 

uncertainties covered, 2) the number of unique uncertainties covered, 3) the overall 

uncertainty (computed based on the Uncertainty Theory [12]) of all the selected test cases, 

234 
 
 
 
 
 
 



 
 

 
and 4) the coverage of uncertainty space (from the Uncertainty Theory [12]). To achieve 

this, we decided to benefit from the commonly-applied, eight multi-objective search 

algorithms from the Evolutionary Algorithm, Hybrid Algorithm, and Swarm Algorithm 

classifications of such algorithms [13]. Also, we used Random Search (RS) to assess the 

complexity of the problem at hand, i.e., if our problem can be solved with RS, it means that 

our problem is simple and doesn’t need a complicated search algorithm to solve it. Based on 

the above four uncertainty related objectives, we defined four uncertainty-wise multi-

objective test case minimization strategies, which share the objectives of minimizing the 

number of test cases and maximizing the transition coverage. 

To assess the cost-effectiveness of the proposed test case generation and test case 

minimization strategies, we performed an empirical evaluation using two industrial case 

studies: GeoSports (GS) [14] (with one use case) and Automotive Warehouse (AW) [15] 

(with four use cases). Regarding the comparison across the test strategies to discover 

uncertainties in the behaviors of CPSs, our best strategy managed to discover 51% more 

uncertainties as compared to the rest of the test strategies due to unknown indeterminacy 

sources in the physical environments of the two industrial case studies. Also, the same test 

strategy observed 118% more unknown uncertainties due to unknown indeterminate 

behaviors of the physical environments as compared to the already known uncertainties. 

The rest of the paper is organized as follows. In Section 2, we briefly summarize 

UncerTum [10] and the Uncertainty Theory. The overview of the proposed approach is 

presented 3. In Section 4, we describe details of the test case generation and minimization. 

The evaluation is discussed in Section 5, followed by the tool implementation (Section 6), 

related work (Section 7) and conclusion (Section 8). 

2 Background 
Section 2.1 presents the Uncertainty Modeling Framework (UncerTum) [9, 10] for 

developing test ready models to support Model-based Testing (MBT). Section 2.2 introduces 

Uncertainty Theory [12], for calculating uncertainty related objectives, and Section 2.3 

presents the running example. 

235 
 
 
 
 
 
 



 
 

 
2.1 Uncertainty Modeling Framework (UncerTum) 

UncerTum [9, 10] was proposed to develop test ready models for enabling MBT of CPSs 

in the presence of environmental uncertainty. UncerTum is equipped with specialized 

modeling notations (named as the UML Uncertainty Profile (UUP)) for specifying 

uncertainties. UUP is the core of UncerTum and UUP implements an uncertainty conceptual 

model, named as U-Model [16]. U-Model was developed to understand uncertainties in 

CPSs by defining, characterizing and classifying uncertainties and associated concepts (e.g., 

Belief, BeliefStatement, IndeterminacySource, Measure, and Measurement), and their 

relationships at a conceptual level. 

UncerTum additionally defines four sets of UML model libraries: Pattern, Time, 

Measure, and Risk libraries, by extending the existing UML profile: Modeling and Analysis 

of Real-Time and Embedded Systems (MARTE) [17]. The purpose of defining these 

libraries is to ease the development of test ready models with uncertainty. 

In summary, key notations used in UncerTum are standard UML state machines and class 

diagrams with UUP stereotypes and the model libraries applied. Such diagrams are referred 

as BMs. Details of UncerTum with examples can be found in our previous work [9, 10]. 

2.2 Uncertainty Theory 

2.2.1 Probability Theory vs. Uncertainty Theory 
Probability Theory is commonly used to measure uncertainty based on a long-run 

experiment [18]. However, in the context of testing, it is quite common that observed data 

is not ready (i.e., being “close enough to the long-run frequency” [18]) at the initial stage of 

a test design for enabling MBT, due to, for example, economic reasons and/or technical 

difficulties [18]. Therefore, Probability Theory is not ideal for measuring uncertainty in such 

a context to guide the testing phases, e.g., test design, test execution, and test results. 

Although we acknowledge that there exist testing techniques (e.g.,[19, 20]) that are built on 

Probability Theory that are described in the related work section of this paper. 

Uncertainty Theory is an attempt for weakening the prerequisite of applying Probability 

Theory [18]—not having sufficient observed data for developing an uncertainty-wise MBT 

technique. Uncertainty Theory is defined by Liu [12] as “a branch of mathematics for 

modeling human uncertainty” to deal with uncertainty in the situation of lacking observed 

236 
 
 
 
 
 
 



 
 

 
data [18]. Notably, Uncertainty Theory has been applied to solve various problems, 

including optimal control [21], optimal scheduling (the train timetable problem [22]), risk 

assessment [23] and the maximum flow problem of the network [24]. In Uncertainty Theory, 

uncertainty is considered as the degree of the belief of a belief agent about a particular 

“thing,” estimated by one or more domain experts (i.e., the belief agent) [12, 18]. This 

definition well fits the situation in the test design phase. Notably, our definition of 

uncertainty in U-Model [16] conforms to this definition, on which UncerTum was proposed. 

Therefore, our testing technique UncerTest being presented in this paper is established on 

Uncertainty Theory.  

2.2.2 Summary of Uncertainty Theory  
Uncertainty Theory defines a term called Uncertainty Measure (UM), which captures a 

specific uncertainty value (a number) related to an event. This number assigns the belief 

degree [16] of a belief agent [16] to the event, to indicate her/his confidence about the 

occurrence of the event [12]. UM is represented as the ℳ symbol. As Liu suggested in [12], 

ℳ respects the following three axioms:  

Axiom 1. (Normality) ℳ(Γ) = 1, (Γ is the universal set). 

Axiom 2. (Duality) ℳ{Λ} + ℳ{Λ𝑐𝑐} = 1, where Λ shows a particular event, whereas Λ𝑐𝑐 

shows all the elements in the universal set excluding Λ. 

Axiom 3. (Subadditivity) ℳ{⋃ Λ𝑖𝑖∞
𝑖𝑖=1 } < ∑ ℳ{Λ𝑖𝑖}∞

𝑖𝑖=1  (every countable sequence of 

events Λ1,Λ2, …). 

Below, we define Uncertainty Space and the related theorem, which are relevant to our 

work. Readers may consult [12] for more details about the theory.  

Uncertainty Space: A triplet (Γ,ℒ,ℳ), where Γ is the universal set, ℒ  is a 𝜎𝜎-algebra [37] 

over Γ, and ℳ is UM. 

Theorem: Let (Γ𝑘𝑘,ℒ𝑘𝑘,ℳ𝑘𝑘) be uncertainty spaces and Λ𝑘𝑘 ∈ ℒ𝑘𝑘, for 𝑘𝑘 = 1, 2, …  𝑛𝑛. Then 

Λ1, Λ2,… Λ𝑛𝑛 are always independent of each other if they are from different uncertainty 

spaces. 

2.3 Example of the Application of UncerTum and Uncertainty Theory  
 

237 
 
 
 
 
 
 



 
 

 
This section presents a running example of the application of UncerTum and Uncertainty 

Theory. The example will also be used in the rest of the paper to explain various concepts.  

 

Fig. E-1. Belief State Machines (BSMs) of the Running Example 

Fig. E-1 shows a standard UML state machine of a CPS with UUP stereotypes applied. 

The state machine is stereotyped as «BeliefElement» to indicate that it is a belief state 

machine, i.e., test modeler lacks complete knowledge about at least one model element in 

the state machine. The S2 state also has the «BeliefElement» stereotype applied to present 

the situation that the test modeler («BeliefAgent») lacks the confidence that whether the CPS 

being model will transit to the S2 state by theT2 transition from the S1 state. From State S1, 

the transition T2 also has the chance to trigger the occurrence of State S3. Thus, two 

uncertainties are captured in this case, U1 (S1, T2, S2) and U2 (S1, T2, S3). To model 

uncertainty specified by UncerTum, the kind of uncertainty, related cause, evidence, and 

measurements are recommended to be specified in the testing phase [9, 10]. In terms of the 

state machine (event-driven) [26], the kind of uncertainty is recognized as an occurrence, 

which is caused by transition T2. The measurement of Uncertainty can be measured by the 

different way. In this paper, we apply Uncertainty Theory to measure uncertainty, which 

allows the modeler to specify the measurement of uncertainty from the subjective 

perspective of test modeler(s) according to their experience and knowledge that can be 

supported by evidence or not as discussed in Section 2.2. For example, Uncertainty Measure 

of U1 is 0.8 as a measurement of uncertainty (in Fig. E-1), which implies that the test modeler 

238 
 
 
 
 
 
 



 
 

 
(«BeliefAgent») believes that the occurrence of the State S2 is possible to be triggered by 

transition T2 from State S1 with the 80% confidence. Since U1 and U2 are oriented from the 

same state S1 and triggered by the same transition T2, we recognize that U1 and U2 belong 

to the same uncertainty space. 

In the context of the testing phase, we developed strategies to generate abstract test cases 

from test ready models developed with UncerTum. Accordingly, a set of uncertainty related 

properties, such as Uncertainty Measure, are calculated for each abstract test case (Section 

4.1.1), and those properties can be regarded as objectives of the test case minimization using 

multi-objective search algorithms (Section 4.2). 

3 Overview 

An overview of UncerTest is presented in Fig. E-2. The only input for the test case 

generation is BMs developed using UncerTum (Section 2.1). Two test generation strategies 

are proposed in UncerTest: 1) All Simple Belief Paths (ASiBP): A set of all simple paths (no 

loops) in a BSM, each of which contains unique states and transitions; and 2) All Specified 

Length Belief Paths (ASlBP): A set of all paths in a BSM, the maximum length of each of 

which can be set to any positive number. Each path is an abstract test case.  

For each abstract test case, UncerTest automatically calculates UM (Def17), based on the 

Uncertainty Theory (Section 2.2). Followed by that, it applies the Uncertainty-wise Test 

Minimization approach as the number of automatically generated abstract test cases is often 

large for any non-trivial CPS and it is practically impossible to execute all of them. Test case 

minimization strategies of UncerTest can be formulated as multi-objective search problems, 

and thus we opted for multi-objective search algorithms (e.g., NSGA-II) to address them. To 

reduce a number of test cases and maintain the coverage of a test ready model, all the search 

problems are developed, aiming to minimize the number of test cases and maximize the 

transition coverage. Regarding uncertainty, we futher proposed four uncertainty related 

objectives: 1) maximizing the average number of uncertainties covered by the selected test 

cases, which aims to test more defined uncertainties; 2) maximizing the average percentage 

of uncertainty space covered by the selected test cases, which aims to test more uncertainties 

from the different uncertainty space; 3) maximizing the average UM of the selected test 

cases, which aims to test the paths with high confidence; and 4) maximizing the average 

239 
 
 
 
 
 
 



 
 

 
number of unique uncertainties covered by selected test cases, which aims to test more 

different defined uncertainties. A minimized set of abstract test cases is then converted into 

executable test cases (Section 4.3) with the consideration of the source of uncertainties 

(indeterminacy source), which are executed to test a CPS.  

 

4 Test Case Generation and Minimization 

First, we present the test case generation approach of UncerTest (Section 4.1), followed 

by its test minimization strategies (Section 4.2). Section 4.3 discusses the process of 

executable test case generation; and Section 4.4 discusses our test execution and reporting 

mechanisms.  

4.1 Abstract Test Case Generation 
UncerTest automatically generates abstract test cases from BMs, based on the test case 

generation strategies that are applied on BSMs. In the rest of the section, we first provide 

necessary definitions (Section 4.1.1), followed by the test case generation strategies (Section 

4.1.2). 

4.1.1 Definitions 
To measure uncertainties specified by UncerTum and apply them and their measurements 

(Section 2.3), we formalize related concepts (e.g., Path, UM) in Table E-1, and exemplify 

them with the running example presented in Fig. E-1. In Table E-1, we formalized the state 

machine (BSM), region, states, and transitions (Def1 and Def2). To adopt Uncertainty 

 
Fig. E-2. Overview of UncerTest 

 

240 
 
 
 
 
 
 



 
 

 
Theory in UncerTest to specify and calculate measurements of uncertainties, we further 

define U (Def3), UM (Def4) and USP (Def5) in terms of the elements in BSM.  

Table E-1. Definitions 

Def# Name Definitions 
Def1 R Suppose a region of a BSM can be represented as a tuple  R={is, ST, TR, FS}, where is is 

the initial state of R; ST = {𝑠𝑠𝑠𝑠𝑖𝑖  | 0 < i ≤ nst} is the set of states (i.e., simple, choice, 
submachine, and composite states), each of which may have a UUP stereotype (Section 
2.1) applied; TR = {𝑡𝑡𝑡𝑡𝑖𝑖  | 0 < i ≤ ntr} is the set of transitions, which may have UUP 
stereotypes (Section 2.1) applied; and FS = {𝑓𝑓𝑓𝑓𝑖𝑖|0 < i ≤ nfs} is the set of final points (i.e., 
final state, exit point, and terminate) in R. 
Example: The Region 1 in the top of  Fig. E-1 is an R. 

Def2 BSM A BSM can be viewed as a set of orthogonal regions [27]: BSM ={𝑅𝑅𝑖𝑖 | 0<i≤nr, ∀𝑅𝑅𝑖𝑖 ⊥ ∀𝑅𝑅𝑗𝑗, 
iff nr>1, i≠j}. If a state is composite or a submachine, it is equivalent to a state machine. 
Example: The state machine in Fig. E-1 is a BSM. 

Def3 U Uncertainty (U) of (𝑠𝑠𝑠𝑠𝑥𝑥 , 𝑡𝑡𝑡𝑡𝑦𝑦 , 𝑠𝑠𝑠𝑠𝑧𝑧) is a situation whereby the belief agent does not have full 
confidence that 𝑠𝑠𝑠𝑠𝑥𝑥  transits to 𝑠𝑠𝑠𝑠𝑧𝑧 through the 𝑡𝑡𝑡𝑡𝑦𝑦transition in the BSM. 
Example: In Fig. E-1, U1 = (S1, T1, S2) indicates that the belief agent does not have full 
confidence that S1 will transit to S2 by T2.  

Def4 UM(U) In Uncertainty Theory, U can be measured by Uncertainty Measure (UM(U)), which is a 
belief degree ranging from 0 to 1 and is represented as 𝑈𝑈𝑈𝑈(𝑠𝑠𝑠𝑠𝑥𝑥 , 𝑡𝑡𝑡𝑡𝑦𝑦 , 𝑠𝑠𝑠𝑠𝑧𝑧) =
ℳ{(𝑠𝑠𝑠𝑠𝑥𝑥 , 𝑡𝑡𝑡𝑡𝑦𝑦 , 𝑠𝑠𝑠𝑠𝑧𝑧)}. 
Example: In Fig. E-1, UM = ℳ{(S1, T2, S2)}=0.8 indicates that the belief agent 
believes that S1 will transit to S2 by T2 with a probability of 0.8. 

Def5 USP Uncertainty Space (USP) of (𝑠𝑠𝑠𝑠𝑥𝑥, 𝑡𝑡𝑡𝑡𝑦𝑦) is a triplet: 𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠𝑠𝑠𝑥𝑥 , 𝑡𝑡𝑡𝑡𝑦𝑦) =  (𝛤𝛤,ℒ,ℳ), where Γ is 
the universal set that contains all the options (i.e. (𝑠𝑠𝑠𝑠𝑥𝑥, 𝑡𝑡𝑡𝑡𝑦𝑦 , 𝑠𝑠𝑠𝑠𝑧𝑧1) , (𝑠𝑠𝑠𝑠𝑥𝑥, 𝑡𝑡𝑡𝑡𝑦𝑦 , 𝑠𝑠𝑠𝑠𝑧𝑧2) ) of 
transiting from 𝑠𝑠𝑠𝑠𝑥𝑥 via 𝑡𝑡𝑡𝑡𝑦𝑦 , about which a belief agent hold beliefs; ℒ  is a 𝜎𝜎-algebra over 
𝛤𝛤; and ℳ is the uncertainty measure of the elements in ℒ.  
Example: USP(S1, T2) is (Γ,ℒ,ℳ), where Γ = {(S1, T2, S2), (S1, T2, S3)}; ℒ =
 {∅, {(𝑆𝑆1,𝑇𝑇2, 𝑆𝑆2)}, {(𝑆𝑆1,𝑇𝑇2, 𝑆𝑆3)}, Γ}; ℳ{∅} = 0, ℳ{(𝑆𝑆1,𝑇𝑇2, 𝑆𝑆2)} =0.8, 
ℳ{(𝑆𝑆1,𝑇𝑇2, 𝑆𝑆3)} = 0.2 and ℳ{Γ} =1. 

Def6 P A Belief Path (P) in a region of belief state machine (BSM) is a sequence of states and 
transitions represented as 𝑃𝑃 = �𝑒𝑒0, … , 𝑒𝑒𝑖𝑖 , … , 𝑒𝑒𝑛𝑛𝑛𝑛 �, where 𝑒𝑒0 is 𝑖𝑖𝑖𝑖 (the initial state of the 
region); 𝑒𝑒𝑛𝑛𝑛𝑛 is an element from 𝐹𝐹𝐹𝐹, (𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖+1) = ��𝑠𝑠𝑠𝑠𝑥𝑥 , 𝑡𝑡𝑟𝑟𝑦𝑦�� 𝑖𝑖 < 𝑛𝑛𝑛𝑛, 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,  𝑠𝑠𝑠𝑠𝑥𝑥  is the 
source state of 𝑜𝑜𝑜𝑜 𝑡𝑡𝑟𝑟𝑦𝑦}; and (𝑒𝑒𝑖𝑖, 𝑒𝑒𝑖𝑖+1) = ��𝑡𝑡𝑡𝑡𝑥𝑥 , 𝑠𝑠𝑠𝑠𝑦𝑦��𝑖𝑖 < 𝑛𝑛𝑛𝑛, 𝑖𝑖 is odd, 𝑠𝑠𝑠𝑠𝑦𝑦 is target state of 
𝑡𝑡𝑡𝑡𝑥𝑥}.  
Example: As shown in Fig. E-1, P�1.1= (S0, T1, S1, T2, S3, T3, F1) is a path in Region 1. 
In Region 2 (Fig. E-1), 𝑃𝑃�2 = (S5, T6, S6, T7, S7, T8, S8, T9, S7, T8, S8, T10, F4), which 
can be seen as a sequence of (S5, T6, S6), (S6, T7, S7), (S7, T8, S8), (S8, T9, S7), (S7, T8, 
S8) and (S8, T10, F4). 

Def7 Us(P) Us in a belief path P presents a multiset23 [28] of uncertainties that appear along the P.  
Example: U(𝑃𝑃�2) ={(S7, T8, S8), (S8, T9, S7), (S7, T8, S8)}. 

Def8 USP(P)/ 
NUSP(P) 

USP in a P �e0, … , ei, … , enp � is a set of uncertainty spaces covered by it, which can be 
represented as: USP(P)={𝑈𝑈𝑈𝑈𝑈𝑈𝑗𝑗(𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖+1) | j < nusp, i < np, i is even}.The number of 
Uncertainty Spaces (Def5) NUSP in a P �e0, … , ei, … , enp � is the number of uncertainty 
spaces that appear along the P.  
Example: USP(𝑃𝑃�2) = {USP(S7, T8), USP(S8, T9)}; NUSP(𝑃𝑃�2) = 2. 

23 A multiset is a generalization of the concept of a set that allows multiple instances of the multiset's 
elements. 

241 
 
 
 
 
 
 

                                                           
 



 
 

 
Def9 NU(P)/ 

NUU(P) 
The number of Uncertainties (Def3) NU of a 𝑃𝑃 = �𝑒𝑒0, … , 𝑒𝑒𝑖𝑖 , … , 𝑒𝑒𝑛𝑛𝑛𝑛 � is the number of 
uncertainties that appear along the P. Further, NUU represents the number of unique 
uncertainties in the P. 
Example: NU(𝑃𝑃�2) =3, NUU (𝑃𝑃�2) = 2. 

Def10 UM(P) Uncertainty Measure of a belief path (UM(P))  �e0, … , ei, … , enp � is a belief degree, with 
which a belief agent believes that e0 arrives enp by following the sequence of (e1….enp−1). 
It can be represented as 𝑈𝑈𝑈𝑈(𝑃𝑃) = ℳ{⋂ {(𝑒𝑒2𝑖𝑖 , 𝑒𝑒2𝑖𝑖+1, 𝑒𝑒2𝑖𝑖+2)(np−1) 2⁄

i=0 }}. 
Example: Along the path, two uncertainty spaces are encountered: USP(S7, T8) and 
USP(S8, T9). UM(𝑃𝑃�2) is therefore calculated as ℳ�{𝑆𝑆5,𝑇𝑇6, 𝑆𝑆6} ∩ …∩ {𝑆𝑆8,𝑇𝑇10,𝐹𝐹4}�. 
Since each (𝑠𝑠𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑖𝑖+1, 𝑠𝑠𝑠𝑠𝑖𝑖+2) is from different USPs, UM(𝑃𝑃�2) = ℳ{𝑆𝑆5,𝑇𝑇6, 𝑆𝑆6} ∧ …∧
ℳ{𝑆𝑆8,𝑇𝑇10,𝐹𝐹4} = 0.4. 

Def11 PP A Parallel Belief Path (PP) is a sequence of Ps represented as 𝑃𝑃𝑃𝑃 = {𝐵𝐵𝐵𝐵𝑖𝑖| 0 < 𝑖𝑖 ≤
𝑛𝑛𝑛𝑛𝑛𝑛,∀𝑃𝑃𝑖𝑖  ⊥ ∀𝑃𝑃𝑗𝑗  , 𝑖𝑖 ≠ 𝑗𝑗}. 
Example: As shown Fig. E-1, P�1.1 is a belief path in Region 1, and 𝑃𝑃�2 is a belief path in 
Region 2. PP1 = {𝑃𝑃�1.1, P�2} 

Def12 𝑃𝑃  A Simple Belief Path (𝑃𝑃) is a sequence of unique states and transitions represented as 𝑃𝑃 =
�𝑒𝑒0, … , 𝑒𝑒𝑖𝑖 , … , 𝑒𝑒𝑛𝑛𝑛𝑛 �, where ∀𝑒𝑒𝑖𝑖  ≠ ∀𝑒𝑒𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗). 
Example: 𝑃𝑃�2= (S5, T6, S6, T7, S7, T8, S8, T9, S7, T8, S8, T10, F4) is a path in Region 2, 
and 𝑃𝑃�2 is not deep since S7 and S8 appear more than one times (Fig. E-1). 

Def13 𝑃𝑃′  A Deep Belief Path (𝑃𝑃′) is a P that does not contain any composite or submachine states, 
which can be represented as 𝑃𝑃′=�𝑒𝑒0, … , 𝑒𝑒𝑖𝑖, … , 𝑒𝑒𝑛𝑛𝑛𝑛 � , where ∀𝑒𝑒𝑖𝑖  is not a composite or 
submachine state. 

Example: In Fig. E-1. Belief State Machines (BSMs) of the Running Example 
, 𝑃𝑃�1.2= (S0, T1, S1, T2, S2, T4, S4, T5, F1) is a belief path in Region 2, and 𝑃𝑃�1.2 is not 
simple since it contains the composite state S4. Further, we flatten the composite state 
S4, which leads to two simple belief paths (i.e., (S4.0, T4.1, S4.1,T4.2,F2) and 
(S4.0,T4.1,S4.1,T4.3,S4.2,T4.5,F3)). We, thus, extend 𝑃𝑃�1.2 with these two simple belief 
paths into two deep simple paths (𝑃𝑃�1.2.1

′ and 𝑃𝑃�1.2.2
′  in Fig. E-1). 

Def14 t A test case 𝑡𝑡 in a state machine is a deep belief path (𝑃𝑃′), which can be parallel (𝑃𝑃𝑃𝑃′) or 
simple (𝑃𝑃�′). 
Example: PBP1 = {𝑃𝑃�1.1, 𝑃𝑃�2} is a test case. 

Def15 Us(t)/ 
NU/ 
NUU(t) 

Us in a test case presents a multiset23 of uncertainties covered by it, calculated as： 

𝑈𝑈𝑈𝑈(𝑡𝑡) = �⋃ 𝑈𝑈(𝑃𝑃𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=0 , 𝑡𝑡 = 𝑃𝑃𝑃𝑃′

𝑈𝑈(𝑃𝑃), 𝑡𝑡 = 𝑃𝑃′
. NU/NUU in a test case represents the total number of 

uncertainties/unique uncertainties covered by it, calculated as: 𝑁𝑁𝑁𝑁(𝑡𝑡) =

�
∑ 𝑁𝑁𝑁𝑁(𝑃𝑃𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=0 𝑡𝑡 = 𝑃𝑃𝑃𝑃′
𝑁𝑁𝑁𝑁(𝑃𝑃) 𝑡𝑡 = 𝑃𝑃′

, 𝑈𝑈𝑈𝑈𝑈𝑈(𝑡𝑡) = �
∑ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑃𝑃𝑃𝑃𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=0 𝑡𝑡 = 𝑃𝑃𝑃𝑃′
𝑁𝑁𝑁𝑁𝑁𝑁(𝑃𝑃) 𝑡𝑡 = 𝑃𝑃′

. 

Example: Us(PP1) = {(S1, T1, S2), (S7, T8, S8), (S8, T9, S7), (S7, T8, S8)}, NU(PP1) = 4 
and NUU(PP1) = 3 

Def16 USP(t) USP in a test case presents a set of uncertainty spaces covered by it, calculated as： 

𝑈𝑈𝑈𝑈𝑈𝑈(𝑡𝑡) = �⋃ 𝑈𝑈𝑈𝑈𝑈𝑈(𝑃𝑃𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖=0 , 𝑡𝑡 = 𝑃𝑃𝑃𝑃′

𝑈𝑈𝑈𝑈𝑈𝑈(𝑃𝑃), 𝑡𝑡 = 𝑃𝑃′
. 

Example: USP(PP1) = {USP(S1, T1), USP(S7, T8), USP(S8, T9)} 
Def17 UM(t) UM of a test case t is a number, indicating the belief degree, with which a belief agent 

believes that the test case will be executed successfully. UM is calculated as 𝑈𝑈𝑈𝑈(𝑡𝑡) =

�⋀ 𝑈𝑈𝑈𝑈(𝑃𝑃𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛
𝑖𝑖 𝑡𝑡 = 𝑃𝑃𝑃𝑃′
𝑈𝑈𝑈𝑈(𝑃𝑃) 𝑡𝑡 = 𝑃𝑃′

. 

Example: TR(PBP1) = {T1, T2, T3, T6, T7, T8, T9, T10} 
Def18 TR(t) TR in a test case is the set of transitions covered by it, which can be represented as TR(t) 

= {tri| 0 < i <ntrt}. 
Example: UM(PBP1) = UM(𝑃𝑃�1.1) ∧ UM(𝑃𝑃�2) = 0.2 ∧ 0.4 = 0.2 

242 
 
 
 
 
 
 



 
 

 
Def19 T A test set T is a set of test cases derived from a BSM using a test case generation strategy: 

𝑇𝑇 = {𝑡𝑡𝑖𝑖|0 < 𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛}. 
 

We also designed a class diagram shown in Fig. E-3 to conceptually describe how the 

defined concepts are related to each other. From a BM, a test set can be generated, based on 

the test case generation strategies. A test set is composed of a set of test cases, which can be 

a path or a parallel path. A path is characterized by two properties: isSimple and isDeep. A 

parallel path is a special type of paths, which should be composed of at least two paths. A 

deep (simple) parallel path has all its contained paths being all deep (simple) paths. Each test 

case is a deep path. A test case can be an abstract or executable test case. For each belief 

path, one can obtain information such as values for NU, UM, and TR, as shown in Fig. E-3. 

 
Fig. E-3. Key concepts of UncerTest and Their Relationships 

4.1.2 Strategies 
In the literature, some state machine-based test case generation strategies have been 

proposed, including All Transitions, All States, and All Predicates [29-32]. For UncerTest, 

we propose two test case generation strategies, inspired by Prime Path Coverage [11] and 

Specified Path Coverage presented in [11].  

All Simple Belief Path Coverage (ASiBP). Test set T satisfies ASiBP on BSM if and only 

if any belief simple deep path 𝑃𝑃′�  from initial state to one of final states in BSM is in T. 

As said in [11], "One useful aspect of the simple path is that any path can be created by 

composing simple paths". We propose ASiBP to cover all minimal paths based on which any 

path-based coverage criterion can be defined by extending a path generated with ASiBP (i.e., 

side trips and detours [11]). The test set generated using this strategy is the cross product of 

all the possible simple deep belief paths across all the regions. For example, in Region 1, 

there are two simple paths: 𝑃𝑃�1.1= (S0, T1, S1, T2, S3, T3, F1) and 𝑃𝑃�1.2= (S0, T1, S1, T2, S2, 

T4, S4, T5, F1). 𝑃𝑃�1.1 is deep, but 𝑃𝑃�1.2 is not. Further, we flatten the composite state S4, which 

leads to two simple paths (i.e., (S4.0, T4.1, S4.1, T4.2, F2) and (S4.0, T4.1, S4.1, T4.3, S4.2, 

243 
 
 
 
 
 
 



 
 

 
T4.5, F3)). We, thus, extend 𝑃𝑃�1.2 with these two simple paths into two deep simple paths 

(𝑃𝑃�1.2.1
′ and 𝑃𝑃�1.2.2

′ , Fig. E-1). The total number of deep paths in Region 1 is therefore three. In 

Region 2, there are three simple paths that are also deep. In total, the number of test cases 

generated with this strategy is 3 × 3 = 9. Table E-2 presents all generated test cases by 

applying ASiBP. Note that with ASiBP it is impossible to cover all uncertainties if any 

uncertainty is in any existing loop (Fig. E-1). For example, as shown in Fig. E-1, the 

uncertainty of (S8, T9, S7) is embedded in the side trip of (S7, T8, S8, T9, S7). 

All Specified Length Belief Path Coverage (ASlBP). Test set T satisfies ASlBP on belief 

state machine (BSM) if and only if any belief simple deep path 𝑃𝑃′�  of length less than 

specified length from initial state to one of final states in BSM is in T. 

We propose ASlBP because it can be configured 1) for specific needs (e.g., saving cost 

by generating less number of test cases), 2) to subsume All Transitions, All States, and All 

Predicates when needed, 3) to generate a larger size of test set from a BM (which are more 

diverse in terms of attached uncertainty information) to form a better pool for test 

minimization, and 4) to subsume the All Uncertainty coverage, which we define as covering 

all states and transitions with uncertainty. The test set generated with this strategy consists 

of all possible deep belief paths with loops allowed, and all the lengths of these paths should 

not be longer than the maximum allowed length, which is configurable (as discussed above) 

and should be pre-defined before applying the test generation strategy. For example, one 

way of defining the maximum allowed length for generating paths for a region is to calculate 

the total number of states and transitions contained in the region. For example, in Region 2, 

the maximum allowed length is 15. 

After applying the test case generation strategies, each abstract test case 𝑡𝑡𝑖𝑖 in T (Def19) 

has the following associated attributes: 1) the multiset of uncertainties in 𝑡𝑡𝑖𝑖 (Us(𝑡𝑡𝑖𝑖), NU(𝑡𝑡𝑖𝑖,), 

Def15); ); 2) the set of uncertainty spaces in 𝑡𝑡𝑖𝑖 (USP(𝑡𝑡𝑖𝑖), Def16); 3) the uncertainty measure 

(UM) of 𝑡𝑡𝑖𝑖  (UM(𝑡𝑡𝑖𝑖 ), Def17); and 4) the set of unique transitions (Def18) in 𝑡𝑡𝑖𝑖 , 𝑇𝑇𝑇𝑇𝑡𝑡𝑖𝑖 =

{𝑡𝑡𝑡𝑡𝑗𝑗′|0 < j < 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑖𝑖,}. 

Table E-2. Example of Abstract Test Case Generation* 

BSM # Abstract Test Case Us UM NUSP 
U and UM: 1 R1:(S0, T1, S1, T2, S3, T3, F1) 

R2:(S5, T6, S6, T7, S7, T8.1, S8, T9, S9, T11, F5) 
U2
U6 

0.2 2 

244 
 
 
 
 
 
 



 
 

 
U1=(S1, T2, S2), 
UM(U1) = 0.8;  
U2=(S1, T2, S3), 
UM(U2) = 0.2; 
U3=(S7, T8, S8), 
UM(U3) = 0.9; 
U4=(S7, T8, S9), 
UM(U4) = 0.1; 
U5=(S8, T9, S7), 
UM(U5) = 0.4; 
U6=(S8, T9, S9), 
UM(U6) = 0.6 
USP: 
USP(S1, T2) = 
{U1, U2}; 
USP(S7, T8) 
={U3, U4}; 
USP(S8, T9) 
={U5, U6} 

2 R1:(S0, T1, S1, T2, S3, T3, F1) 
R2:(S5, T6, S6, T7, S7, T8, S8, T10, F4) 

U2
U3 

0.2 2 

3 R1:(S0, T1, S1, T2, S3, T3, F1) 
R2:(S5, T6, S6, T7, S7, T8, S9, T11, F5) 

U2
U4 

0.1 2 

4 R1:(S0, T1, S1, T2, S2, T4, S4.0, T4.1, S4.1, T4.3, S4.2, T4.5, F3, 
T5, F1) 
R2:(S5, T6, S6, T7, S7, T8, S8, T9, S9, T11, F5) 

U1
U3
U6 

0.2 3 

5 R1:(S0, T1, S1, T2, S2, T4, S4.0, T4.1, S4.1, T4.3, S4.2, T4.5, F3, 
T5, F1) 
R2:(S5, T6, S6, T7, S7, T8, S8, T10, F4) 

U1
U3 

0.2 2 

6 R1:(S0, T1, S1, T2, S2, T4, S4.0, T4.1, S4.1, T4.3, S4.2, T4.5, F3, 
T5, F1) 
R2:(S5, T6, S6, T7, S7, T8, S9, T11, F5) 

U1
U4 

0.1 2 

7 R1:(S0, T1, S1, T2, S2, T4, S4.0, T4.1, S4.1, T4.2, F2) 
R2:(S5, T6, S6, T7, S7, T8, S8, T9, S9, T11, F5) 

U1
U3
U6 

0.2 3 

8 R1:(S0, T1, S1, T2, S2, T4, S4.0, T4.1, S4.1, T4.2, F2) 
R2:(S5, T6, S6, T7, S7, T8, S8, T10, F4) 

U1
U3 

0.8 2 

9 R1:(S0, T1, S1, T2, S2, T4, S4.0, T4.1, S4.1, T4.2, F2) 
R2:(S5, T6, S6, T7, S7, T8, S9, T11, F5) 

U1
U4 

0.1 2 

Summary: uncertainty coverage = 5/6 = 83.3%, uncertainty space coverage = 100%, 
transition coverage = 17/18 = 94.4% 

* R1 and R2 present two parallel test paths, generated from Region 1 and Region 2, respectively. 

4.2 Uncertainty-Wise Test Case Minimization 

4.2.1 Problem Representation 
Depending on which test case generation strategy to apply, how it is configured (for 

ASlBP) and how complex a CPS under test is, the number of generated abstract test cases 

can potentially be very large and it would be practically impossible to execute executable 

test cases generated from all of the abstract test cases within a limited time budget. It is, 

therefore, important to minimize the number of abstract test cases to be executed based on 

various attributes associated with each test case. 

T ={ti | 0 < i < nt} is a test set derived from BSM using the UncerTest generation strategies, 

each test case t has four uncertainty related attributed (Section 4.2.2).  S = {s1, …, sms} 

presents a set of potential solutions, i.e., a subset of T, where ms is the total number of 

potential solutions and ms is calculated as 2nt-1 except that the solution selects none. As the 

number of generated test cases increases, the search space will increase exponentially. For 

any test case minimization problem, the solution s contains a set of selected test cases, 

formalized as Tsub ={t'j | 0 < j < mt, t'j ∈ T} ⊆ T, where mt is the number of selected test cases. 

Each solution s is characterized by a set of values of cost and effectiveness measures. In 

UncerTest, we defined six objectives and four uncertainty-wise multi-objective 

245 
 
 
 
 
 
 



 
 

 
minimization problems with consideration of three aspects: cost, effectiveness, and 

uncertainty. 

4.2.2 Definitions and Functions of the Six Minimization Objectives 
Six minimization objectives are defined in this section. 

(1) Cost Measure 

O1. Percentage of Test Case Minimization (PTM) 

PTM measures the percentage of the selected test cases in a solution 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 , which is 

calculated as:  

𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛

 × 100% 

where 𝑛𝑛𝑛𝑛 is the number of test cases in T; and 𝑚𝑚𝑚𝑚 is the number of test cases in 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠.  

(2) Uncertainty-related Measure 

O2. Average Normalized Number of Uncertainties Covered (ANU) 

ANU measures the average normalized number of uncertainties covered by the selected 

test cases of a solution. For each test case 𝑡𝑡𝑖𝑖′  , the number of uncertainties covered 

is 𝑁𝑁𝑁𝑁(𝑡𝑡𝑖𝑖′), which can then be normalized [1] as: 𝑛𝑛𝑛𝑛𝑛𝑛(𝑁𝑁𝑁𝑁(𝑡𝑡𝑖𝑖′)) = 𝑁𝑁𝑁𝑁(𝑡𝑡𝑖𝑖′)
𝑁𝑁𝑁𝑁(𝑡𝑡𝑖𝑖′) +1 

. The ANU for 

the selected test cases is calculated as:  

𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑛𝑛𝑛𝑛𝑛𝑛(𝑁𝑁𝑁𝑁(𝑡𝑡𝑖𝑖′))𝑚𝑚𝑚𝑚
𝑖𝑖=1

𝑚𝑚𝑚𝑚
 

O3. Percentage of Uncertainty Space Covered (PUS) 

PUS measures the percentage of the total set of uncertainty spaces of a BSM covered by 

the selected test cases of a solution. Suppose, the set of uncertainty space of the BSM is 

𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆 = {𝑈𝑈𝑈𝑈𝑖𝑖| 0 < 𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} and the set of uncertainty spaces of the selected test cases is 

the intersection of the uncertainty spaces across each test case 𝑡𝑡𝑖𝑖′ , 𝑈𝑈𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 =

⋂ 𝑈𝑈𝑈𝑈𝑈𝑈𝑡𝑡𝑖𝑖′ =𝑚𝑚𝑚𝑚
𝑖𝑖 {𝑈𝑈𝑈𝑈𝑖𝑖′| 0 < 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚}  ⊆ 𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆. PUS is then defined as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

× 100% 

O4. Average Overall Uncertainty Measure (AUM) 

AUM is the overall uncertainty measure of the selected test cases of a solution. Note that 

for test case 𝑡𝑡𝑖𝑖′, UM(𝑡𝑡𝑖𝑖′)  is calculated using Uncertainty Theory (Section 4.1.1). The overall 

average uncertainty is thus calculated as: 

246 
 
 
 
 
 
 



 
 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑈𝑈𝑀𝑀(𝑡𝑡𝑖𝑖′)𝑚𝑚𝑚𝑚
𝑖𝑖=1

𝑚𝑚𝑚𝑚
 

O5. Percentage of Unique Uncertainties Covered (PUU) 

PUU measures the percentage of the total number of unique uncertainties covered by the 

selected test cases of a solution. Suppose that the set of unique uncertainties in a BSM is 

𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆 = {𝑈𝑈𝑖𝑖| 0 < 𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛} and the set of unique uncertainties of the selected test cases is 

the interaction of the unique uncertainties across each test case 𝑡𝑡𝑖𝑖′ , 𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 =

⋂ 𝑈𝑈𝑈𝑈𝑡𝑡𝑖𝑖′ =𝑚𝑚𝑚𝑚
𝑖𝑖 {𝑈𝑈𝑖𝑖′| 0 < 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚}  ⊆ 𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆, then 𝑃𝑃𝑃𝑃𝑃𝑃 is calculated as:  

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛𝑛𝑛

× 100% 

(3) Effectiveness Measure 

O6. Percentage of Transition Coverage (PTR) 

PTR measures the percentage of the total number of transitions in a BSM covered by the 

selected test cases of a solution. According to Def1, ntr is the total number of transitions in 

a BSM. Suppose that mtr is the number of transitions in the selected test cases (the size of 

the interactions among the transition sets of each selected test case 𝑡𝑡𝑖𝑖′ , 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 =

⋂ 𝑇𝑇𝑇𝑇𝑡𝑡𝑖𝑖′ =𝑚𝑚𝑚𝑚
𝑖𝑖 {𝑡𝑡𝑡𝑡𝑖𝑖′| 0 < 𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚}). PTR is calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛𝑛𝑛𝑛𝑛

× 100% 

4.2.3 Uncertainty-wise Test Case Minimization Problems 
To reduce the number of test cases to execute and maximize the coverage of transitions 

in test ready models, PTM and PTR are the necessary objectives for test case minimization. 

Further, we defined the following four test case minimization problems that minimize PTM, 

maximize PTR, and at the same time achieve four distinct uncertainty-related concerns. 

Problem 1. Search for a solution 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 to achieve: 1) low PTM; 2) high ANU; and 3) high 

PTR. We defined Problem 1 to select the minimum number of test cases to cover the 

maximum number of known uncertainties possible. We aim to observe the reaction of the 

CPS in the presence of maximum uncertainties with the minimum possible test cases. 

Problem 2.  Search for a solution 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 to achieve: 1) low PTM; 2) high PUS; and 3) high 

PTR. We defined Problem 2 to select the minimum number of test cases to cover at least one 

uncertainty from each uncertainty spaces. We aim to observe the reaction of the CPS in the 

247 
 
 
 
 
 
 



 
 

 
presence of uncertainties from all known uncertainty spaces with the minimum possible test 

cases. 

Problem 3.  Search for a solution 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 to achieve: 1) low PTM; 2) high AUM; and 3) high 

PTR. We defined Problem 3 to select the minimum number of test cases to maximize the 

coverage of the parts of the system with high degree of confidence. 

Problem 4.  Search for a solution 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 to achieve: 1) low PTM; 2) high PUU; and 3) high 

PTR. We defined Problem 4 to select the minimum number of test cases to maximize the 

coverage of different uncertainties. We aim to test the behavior of a CPS under diverse 

uncertainties with the minimum number of test cases. 

4.3 Executable Test Case Generation 
In our context, generating executable test cases from abstract test cases (Section 4.1) is 

mainly concerned with how to enable indeterminacy sources (i.e., sources of uncertainties) 

that are specified as part of the test ready models and how to generate test data. 

4.3.1 Enabling Indeterminacy 
Since we focus on testing a CPS in the presence of environmental uncertainties, we need 

to introduce uncertainties in the physical environment that lead to uncertain behaviors of the 

CPS. To achieve this, we need to model such environmental uncertainties (named as 

“Indeterminacy Sources” for being more precise) in the environment that lead to observe 

uncertainties in the CPS. 

 

Fig. E-4. Profile Diagram of IndeterminacySource (Partial) 

Fig. E-4 shows part of the UUP profile (Section 2.1) for modeling indeterminacy sources. 

We provide a set of options to model indeterminacy sources, e.g., as a UML Operation and 

a constraint specified in Object Constraint Language (OCL) [33].  An indeterminacy source 

248 
 
 
 
 
 
 



 
 

 
always has 1..* indeterminacy specifications, i.e., «IndeterminacySpecification» 

(conditions) that must be true for an indeterminacy source to occur. 

«IndeterminacySourceInput» specifies the action that triggers the occurrence of 

«IndeterminacySource».  

It is possible to model these indeterminacy-related concepts in different ways. Therefore, 

to ease the modeling process, we summarize our recommendations for applying this part of 

the profile in Table E-3, based on our experience. For example, in the first situation (as 

described as Smi1 in Table E-3), we recommend modeling an indeterminacy source as a 

UML Property, when states of a CPS or its environment can be directly accessed and are 

indeterminate. For example, as shown in Fig. E-5, the batteryStatus attribute in the Alarm 

class is an indeterminacy source. Its indeterminacy specification is modeled as an OCL 

constraint: “self.batteryStatus = BatteryLevel::Low”, whereas it can be triggered by 

setLowBattery() (the indeterminacy source input). Fig. E-5 also shows that «BeliefElement» 

is applied to the Alarm Not Ringing state and it is linked to the indeterminacy source of 

batteryStatus (via the Referred Indeterminacy Source attribute of «BeliefElement») to 

signify that it is one of the sources that lead to the uncertainty associated with the Alarm Not 

Ringing state.  

Note that for the first and third situations (S1 and S3 in Table E-3), we recommend 

specifying an indeterminacy source input either as an Operation without parameters (Op1) 

or as an Operation with parameter(s) constrained with a OCL constraint (Op2). Also, for 

Smi1 and Smi3, an indeterminacy source can be specified as a property (R1) or constraint 

(R2). If it is R2, its corresponding indeterminacy specification(s) can then be simply 

specified as FALSE by default and must be switched to TRUE to enable the related 

indeterminacy source.     

Table E-3. Recommendations For applying the Indeterminacy Source part of the UUP profile 

# Stereotype Applied Base Element 
S1: States of the environment of the CPS are indeterminate, such as the batteryStatus example shown in Fig. 
E-5 and described in Section 4.3.1. 
 R1 «IndeterminacySource» Property 
 «IndeterminacySpecification» Constraint 
 Op1 «IndeterminacySourceInput» Operation 
 Op2 «IndeterminacySourceInput» Operation, Constraint 
 R2 «IndeterminacySource» Constraint 
 «IndeterminacySpecification» FALSE (default) 

249 
 
 
 
 
 
 



 
 

 
 Op1 «IndeterminacySourceInput» Operation 
 Op2 «IndeterminacySourceInput» Operation, Constraint 
S2: Input data is indeterminate. 
 R1 «IndeterminacySource» Operation 
 «IndeterminacySpecification» Constraint 
 «IndeterminacySourceInput» Constraint 
S3: Occurrences of an event from the environment (e.g., “pressing the button”) are indeterminate. 
 R1 «IndeterminacySource» Property 
 «IndeterminacySpecification» Constraint 
 Op1 «IndeterminacySourceInput» Operation 
 Op2 «IndeterminacySourceInput» Operation, Constraint 
 R2 «IndeterminacySource» Constraint 
 «IndeterminacySpecification» FALSE (default) 
 Op1 «IndeterminacySourceInput» Operation 
 Op2 «IndeterminacySourceInput» Operation, Constraint 

 

In addition, we propose three mechanisms (i.e., EnablePattern, SelectSpecification and 

FindPosition), discussed below, to enable an indeterminacy source associated with a specific 

uncertainty, their corresponding indeterminacy specifications and inputs during test 

execution. 

EnablePattern provides four ways of enabling an indeterminacy source: 1) Random – the 

indeterminacy source is introduced randomly (from the uniform random distribution) during 

execution; 2) Always - the indeterminacy source is always enabled during execution; 3) 

Measured - the indeterminacy source is enabled during execution by a specified 

measurement, e.g., with a normal distribution; and 4) Never - the indeterminacy source is 

never enabled during the execution. Choosing which option is dependent on how much 

knowledge information (e.g., experience, historical data) one has about the system. 

SelectSpecification provides three ways of selecting which indeterminacy specification(s) 

of an indeterminacy source to be enabled during test execution: 1) All – all associated 

indeterminacy specifications are enabled; 2) Random – enable a random number of randomly 

selected specification(s) from all the specifications associated with the indeterminacy source 

during test execution; and 3) Specified – the indeterminacy specification(s) specified with 

the “enabled” attribute is enabled during the test execution. Similarly, which option to take 

is highly dependent on users’ experience, knowledge and available historical data.  

FindPosition is about finding a position of a path generated by the UncerTest abstract test 

case generation strategy, in which an indeterminacy source should be enabled. We define 

four options for FindPosition: 1) Random - the position is generated randomly; 2) 

250 
 
 
 
 
 
 



 
 

 
Any_Previous – the position can be any previous position before the occurrence of the 

associated uncertainty; 3) Just_Previous – the position is exactly the position right before 

the occurrence of the associated uncertainty; and 4) Specified – the exact position is modeled 

in the test ready model. Option 1 is recommended when we have no particular preferences 

or guidance. Option 2 is recommended when one wants to test, if possible, whether the 

uncertainty is actually due to the indeterminacy source enabled. Option 3 should be used 

when one wants to know whether the occurrence of the uncertainty is due to its previous 

step. Option 4 should be used when one has a specific position in mind, based on for example 

previous experience or historical data.  

Note that the three mechanisms can be configured by users to form a concrete strategy 

(as part of an overall test strategy) for enabling an indeterminacy source associated with an 

uncertainty and all or part of its associated indeterminacy specifications, at a particular 

position of a path, which is eventually transformed into executable test cases and executed. 

In Fig. E-5, we show an example of such configurations for enabling the indeterminacy 

source of batteryStatus, that is, the SelectSpecification::Specified indeterminacy 

specification (i.e., Low Battery) should be enabled by following the EnablePattern::Random 

pattern at the FindPosition::Any_Previous position during the execution.  

 

Fig. E-5. An IndeterminacySource Modeling Example for the SafeHome (Partial) 

4.3.2 Test Setup and Test Data Generation 
When generating executable test cases, test configuration and concrete test data are 

needed. When applying UncerTum, test configuration is recommended to be specified as a 

251 
 
 
 
 
 
 



 
 

 
UML object diagram organized in a package. All the objects and their relationships in this 

test configuration package will be instantiated before executing test cases.   

First, test data generation is needed for triggering call events on transitions. In this case, 

a guard condition (an OCL constraint) on a transition specifies the valid set of values, with 

which the call event can be invoked. We used an existing test data generation tool called 

EsOCL [34], which takes an OCL constraint as an input and generates a set of values that 

satisfy the constraint. These values are then used as test data in executable test cases.  

Second, test data might be needed to trigger occurrences of indeterminacy sources. For 

any indeterminacy source input that is specified as a stereotyped Constraint or as a 

stereotyped Operation with its parameters constrained with a constraint, we rely on the 

EsOCL tool [34] to solve the constraint to generate test data. For any indeterminacy source 

input specified as an operation with no any parameter, no data needs to be generated to 

trigger the operation and hence the indeterminacy input.  

4.4 Test Execution and Reporting 
In addition to test verdicts for test cases, to evaluate occurrences of uncertainties during 

test execution, we define uncertainty-wise test verdicts as shown in Fig. E-6 (the conceptual 

model) and Table E-4 (definitions). 

 
Fig. E-6. Uncertainty-wise Test Verdicts – Conceptual Model 

 

As shown in Fig. E-6 an UncerTestCaseVerdict is modeled as a sequence of 

UncerVerdicts for specifying a set of possible evaluations of a test case, including the 

uncertainty aspect (e.g., known uncertainty occurred (i.e., KnOccurred)) and classical test 

252 
 
 
 
 
 
 



 
 

 
case verdicts (e.g., Pass). An UncerVerdict specifies a set of possible evaluations of a test 

oracle in terms of a specific uncertainty. The seven kinds of uncertainty verdicts are listed 

as the seven literals of enumeration UncerVerdictKind. Their definitions are provided in 

Table E-4.  

Table E-4. Uncertainty-wise Test Verdicts – Definitions of the Literals of the Enumerations (Fig. E-6) 

Literal Definition 
UncerVerdictKind: It presents the kinds of verdicts for an uncertainty. 
KnOccurred-With-InS Known uncertainty occurred under the occurrence of a specified indeterminacy 

source. 
KnOccurred-Without-InS Known uncertainty occurred under the non-occurrence of any specified 

indeterminacy source. 
KnNotOccurred-With-InS Known uncertainty did not occur under the occurrence of any specified 

indeterminacy source, but at least one of alternative uncertainty occurred. 
KnNotOccurred-Without-
InS 

Known uncertainty did not occur under the non-occurrence of any specified 
indeterminacy source, but at least another uncertainty within the same 
uncertainty space occurred. 

KnOccurred-UkInS Known uncertainty occurred, but its related indeterminacy source is unknown. 
KnNotOccurred-UkInS Known uncertainty did not occur, and its related indeterminacy source is 

unknown. 
UkOccurred Known uncertainty did not occur, and none of the other uncertainties in the same 

uncertainty space occurred. 
UncerTestCaseVerdictKind: It presents the kinds of the verdicts for a test case. 
KnOccurred At least one known uncertainty (with any of the three KnOccurred types of 

UncerVerdictKind) occurred but no UkOccurred.   
UkOccurred At least one UkOccurred. 
NotOccurred All uncertainties are evaluated to be any of the three KnNotOccurred kinds of 

UncerVerdictKind. 
Pass The execution result of the test case, for which no uncertainty is specified, 

adheres to the expectations. 
Fail The execution result of the test case, for which no uncertainty is specified, 

differs from the expectations. 
Error An error is detected. 
Inconclusive The test case execution result cannot be classified as Pass, Fail, Error, 

KnOccurred, UkOccurred or NotOccurred. 
None A test case has not been executed yet. 

5 Evaluation 

Section 5.1 introduces case studies. Section 5.2 presents research questions. Section 5.3 

presents the design of our evaluation. Results are presented in Section 5.4, the overall 

discussion is presented in Section 5.5, and threats to validity are presented in Section 5.6. 

253 
 
 
 
 
 
 



 
 

 
5.1 Case Study 

To assess the cost-effectiveness of UncerTest, we selected two industrial CPS case 

studies.  

The first case study is GeoSports, and the system monitors the performance (e.g., speed 

and position) and health conditions of players both individually and as a team during a game 

with the ultimate objective of improving their performance. The GeoSports application that 

we tested is deployed for Bandy (a type of ice hockey commonly played in northern Europe) 

and uses the Quuppa system [35]. The testing infrastructure for Bandy is shown in Fig. E-7. 

Instead of using real players to execute test cases, our industrial partner, Nordic Med Test 

[36] has deployed a set of test rigs for replacing players. Each test rig has one Quuppa device 

attached to it. The device communicates its position with one or more locators (antennas) 

via Bluetooth connections and the locators receive those positions and send them to the 

Quuppa Server (QPE). The access to the devices, locators, and the QPE server are available 

as REST APIs. Also, a set of test APIs was implemented by the partner as REST APIs for 

controlling the test rigs. Notice that we only tested the positioning system in this paper, i.e., 

collecting the positions from Quuppa tags and transmitting them to the QPE server via 

locators. 

The second case study is Automated Warehouse (AW) provided by ULMA Handling 

Systems [15], Spain. ULMA develops automated handling systems for worldwide 

warehouses of different natures such as Food and Beverages, Industrial, Textile, and Storage. 

Each handling facility (e.g., cranes, conveyors, sorting systems, picking systems, rolling 

tables, lifts, and intermediate storage) forms a physical unit, and together they are deployed 

to one handling system application (e.g., Storage). A handling system cloud supervision 

system (HSCS) interacts with diverse types of physical units, network equipment, and cloud 

services. Application-specific processes in HSCS are executed spanning clouds and CPS 

requiring different configurations. This case study implements several key industrial 

scenarios, i.e., introducing a large number of pallets to the warehouse, transferring the items 

by Stacker Crane. Instead of using real devices to test these scenarios, ULMA [15] and IK4-

Ikerlan [37] developed and provided relevant simulators and emulators (Fig. E-7). For 

example, two handling systems are deployed at two different sites (Site 1 and Site 2). For 

each site, the local superior monitors software and all types of devices and services and 

254 
 
 
 
 
 
 



 
 

 
upload the data to the cloud superior through the network. Each physical device is developed 

as a simulator where the software, i.e., WMS and MFC, are deployed on. Also, a set of 

emulators are developed for manipulating the real physical environment, e.g., putting a pallet 

on the conveyor. To access the devices, software, and environment, the test APIs were 

implemented by the partner for controlling the physical device, sending requests to the 

software, and manipulating the physical environment. Further details on the case studies can 

be consulted in [38].  

 
Fig. E-7. The Test Execution Solution of the GS and AW Case Studies 

The descriptive statistics of the test ready models of GS and AW are given in Table E-5. 

We selected one use case for GS and four use cases for AW. For each use case, we selected 

the number of elements stereotyped as «BeliefElement» (#Belief), uncertainties (#U), known 

indeterminacy sources (#IndS), known indeterminacy source specifications (#IndSpec), 

states (#State), and transitions (#Transition). For AW, the percentage of uncertainties 

specified in the test ready model is more than 50%, which reflects that more than 50% 

255 
 
 
 
 
 
 



 
 

 
behavior specified in the test ready model is uncertain. This value is higher than the one for 

GS since the behavior and environment of AW is relatively complex, e.g., large number of 

devices. 

Table E-5. Descriptive statistics of the case studies 

Case  UC #Belief #U #IndS #IndSp #State #Transition #U/#State #U/#Transition 
AW AW1 7 11 2 4 12 15 91.7% 73.3% 

AW2 5 9 2 4 12 18 75.0% 50.0% 
AW3 6 10 - - 10 14 100.0% 71.4% 
AW4 7 8 1 2 16 16 50.0% 50.0% 

GS GS1 6 6 1 2 17 21 35.3% 28.6% 
- means unknown indeterminacy source 

5.2 Research Questions 
We aim to assess which combination of the two test case generation strategies and the 

four test case minimization strategies is cost-effective.  In total, we have five combined test 

strategies. The results for the two test case generation strategies are reported in Table E-6. 

First, test cases are generated from a BSM using ASiBP. With this strategy, the numbers of 

generated test cases for the two case studies are small, which thus doesn’t require test case 

minimization. The rest of the four strategies are based on test cases generated from a BSM 

using ASlBP, followed by test case minimization (Section 4.2.3) based on the uncertainty 

related strategies (Section 4.1.2): average normalized number of uncertainties covered 

(Problem 1), percentage of uncertainty space covered (Problem 2), average overall 

uncertainty measure (Problem 3), and percentage of unique uncertainties covered (Problem 

4). For simplicity, we refer to these strategies as GMS1 (ASiBP), Str2 (ASlBP +Problem 1), 

Str3 (ASlBP + Problem 2), Str4 (ASlBP + Problem 3) and Str5 (ASlBP + Problem 4) in the 

rest of the paper. We selected eight commonly used multi-objective search algorithms from 

the Evolutionary Algorithm, Hybrid Algorithm, and Swarm Algorithm classifications of 

algorithms. Moreover, we used random search (RS) for the sanity check to determine if 

complex multi-objective search algorithms are needed, or simply RS suffices. 

Table E-6. Results For the Test Case Generation Strategies 

Case UC Strategy #TC (nt) %Transition %UU 

AW 

AW1 ASP 20 91.3% 100% 
AMP 420 100% 100% 

AW2 ASP 8 88.8% 100% 
AMP 776 100% 100% 

AW3 ASP 5 85.7% 80% 

256 
 
 
 
 
 
 



 
 

 
AMP 857 100% 100% 

AW4 ASP 5 93.7% 100% 
AMP 296 100% 100% 

GS GS1 ASP 5 71.4% 83.3% 
AMP 1799 100% 100% 

 

Based on our overall objective, we would like to answer the following research questions. 

RQ1: How does the selected multi-objective search algorithms (e.g., NSGA-II) compare 

to RS in terms of solving uncertainty-wise minimization problems (S2—S5)? 

RQ2: Which algorithm is the best among selected ones to solve uncertainty-wise 

minimization problems (S2—S5) respectively? 

RQ3: Which uncertainty-wise strategy (S1-S5) is effective to discover uncertainties in 

the real CPS? 

5.3 Design of the Evaluation 
The design of our evaluation is shown in Table E-7. The table presents, for each research 

question, which task we perform, which strategies are compared, which metrics (Metrics 

column) are used, which statistical methods (Comparison Method column) are applied, 

which algorithms are applied, and which case studies are used. Notice that, to decrease the 

possibility of obtaining results by chance we ran all the algorithms 100 times for each case 

study and each strategy [39]. We used the implementation of the eight selected multi-

objective search algorithms provided by jMetal [40] and used the following default 

parameter settings: the Population Size of 100, the binary tournament for selecting parents, 

and the simulated binary criterion for recombination. A crossover rate of 90% was used, and 

mutation rate was polynomial with the rate of 1.0/n, where n is the number of the bit 

representation of a solution. 

Table E-7. Design of the Evaluation 

RQ Experiment 
Task Strategy Metric Comparison 

Method Algorithm Case  
Study 

1 
Compare each 
algorithm with 
RS 

Str2-Str5 

HV (All), 
PTM (All), 

ANU (Str2), 
PUS (Str3), 
AUM (Str4),  

PUU (Str5), PTR 
(All) 

Vargha and 
Delaney 
statistics 
(𝐴𝐴12� ), 
Kruskal–
Wallis Test, 
Mann-

Evolutionary 
Algorithm 

NSGA-II [41] 

AW, 
GS 

NSGA-III [42] 
MOCell [43, 44] 

2 

Compare each 
pair of the 
multi-
objective 
algorithms  

SPEA2 [45] 

Hybrid  
Algorithm 

CellDE [46] 
AbYSS [47] 
GDE3 [48] 

Swarm  SMPSO [49] 

257 
 
 
 
 
 
 



 
 

 
Whitney U 
Test (p-value) 

Algorithm 
Random Search (only for RQ1) 

3 
Compare each 
pair of the 
strategies 

Str1-Str5 
UUDP, NUO, 
Uk, UkDDP, 

EOT 

Simple 
Comparison The best algorithm  

 
For RQ1 and RQ2, we compared each pair of the algorithms using HyperVolume (HV) 

[50] and the individual objectives that are relevant for each strategy. For example, O2 is only 

valid for Str2. HV was selected based on the guidelines for choosing a quality indicator for 

search-based software engineering problems that require multi-objective optimization [51]. 

Based on the guidelines for reporting results for search-based software engineering problems 

[52], we chose Vargha and Delaney statistics (𝐴𝐴12� ) and the Mann Whitney U Test (p-value) 

to compare the eight selected multi-objective search algorithms with RS for Str2—Str5.  

Results of test case generation for each case study with each test strategy are represented 

in Table E-6. For Str1, the numbers of test cases generated with ASiBP for all the case studies 

were small and didn’t require minimization. For Str2 – Str5, we ran each problem 100 times, 

and thus we combined all the solutions from all the runs for comparison to answer RQ1 and 

RQ2. To compare the performance of the algorithms, we designed a mechanism to rank all 

the algorithms based on the 𝐴𝐴12�  values and p-values for each metric as shown in the rank 

algorithm (Fig. E-8). Furthermore, we calculate the confidence for nine algorithms as shown 

in Table E-8.  

 
1 Function better(algo1, algo2) compares algo1 with algo2. It returns the best algorithm based on the 

following two conditions: 1) for HV, p-value<0.05 and A12>0.5; 2) p-value<0.05 and A12<0.5 
Fig. E-8. Algorithm for Ranking 

For RQ3, we picked the best algorithms (BA) for Str2—Str5 based on the results of RQ1 

and RQ2, which were used to minimize test cases. The generated test cases for S1 and 

minimized test cases for Str2 – Str5 were executed on the current deployments of the GS 

258 
 
 
 
 
 
 



 
 

 
and AW case studies as shown in Fig. E-7. The execution results for Str1 – Str5 were 

evaluated based on various cost, effectiveness, and efficiency measures as shown in Table 

E-8. 
 

Table E-8. Definitions of Metrics for Each Research Question 

RQ Metric Definitions 
RQ1 
RQ2 

𝐴𝐴 = {𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐼𝐼𝐼𝐼,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐼𝐼𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝐺𝐺𝐺𝐺𝐺𝐺3, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑅𝑅𝑅𝑅},  
𝑆𝑆𝑆𝑆𝑆𝑆 = {𝑆𝑆𝑆𝑆𝑆𝑆2,𝑆𝑆𝑆𝑆𝑆𝑆3, 𝑆𝑆𝑆𝑆𝑆𝑆4, 𝑆𝑆𝑆𝑆𝑆𝑆5}, Str2={PTM, ANU, PTR, HV}, Str3={PTM, PUS, PTR, HV}, 
Str4={PTM, AUM, PTR, HV}, Str5={PTM, PUU, PTR, HV}. Note that 1) 𝐴𝐴𝑘𝑘 represents the kth 
Algorithm, e.g. 𝐴𝐴1  = NSGA-II; 2) 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 represents the jth objective of the ith strategy, e.g., 𝑆𝑆𝑆𝑆𝑆𝑆1 = 
Str2, 𝑆𝑆𝑆𝑆𝑆𝑆1,1 = PTM. 

Rank of Algorithm for 
the objectives of the 

strategies 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑘𝑘
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑗𝑗 is the rank value of the 𝐴𝐴𝑘𝑘  algorithm, for the jth objective of 

𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 strategy, which is calculated as rank[k] in Fig. E-8. . 

Confidence of Algorithm 
for the objectives of the 

strategies 

Confidence of each objective of each strategy is to calculate the 
percentage of being better than the other algorithms, which is 
calculated as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑘𝑘

𝑆𝑆𝑖𝑖𝑖𝑖   = (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑘𝑘
𝑆𝑆𝑖𝑖𝑖𝑖  ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐴𝐴𝑛𝑛

𝑆𝑆𝑖𝑖𝑖𝑖  9
𝑛𝑛=1� ) × 100%. 

Confidence of Algorithm 
for the strategies 

Confidence of each strategy is to calculate the average confidence of 
each objective, which is calculated as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑘𝑘

𝑆𝑆𝑖𝑖  =
(∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑘𝑘

𝑆𝑆𝑖𝑖𝑖𝑖4
𝑛𝑛=1 4⁄ ) × 100%. 

RQ3 Effectiveness UUDP Unique uncertainty detection percentage is calculated as UUDP = 
NUUO/NUU, where NUUO is the number of unique uncertainties 
occurred during the test set execution. 

NUO 
𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼  
𝑁𝑁𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

The number of uncertainties occurred during the test set execution, 
which includes the occurrence of the uncertainties with the occurrence 
of their specified indeterminacy sources (𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼) or unknown 
indeterminacy sources (𝑁𝑁𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢).  

Error The number of errors found during the test execution. 
Uk The number of unknown uncertainties occurred during the test set 

execution. 
UkDP Unknown uncertainty detection percentage is calculated as UkDP = 

Uk/NUU. 
Cost ET The execution time of the test set. 
Efficiency NT The number of executed test cases. 

EoT 
𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁  
𝐸𝐸𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈  

The efficiency in terms of time includes 1) 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁  is the efficiency of 
uncertainty detection calculated as 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁  = NUO/ET; 2) 𝐸𝐸𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈  is the 
efficiency of unknown uncertainty detection calculated as 𝐸𝐸𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈  = 
Uk/ET. 

5.4 Results and Analyses 
In this section, we present results and analyses for the three research questions. 

5.4.1 Results for RQ1 
Recall that RQ1 focuses on comparing the eight selected multi-objective search 

algorithms with RS based on the individual objectives, HV for (Str2—Str5) minimization 

259 
 
 
 
 
 
 



 
 

 
problems. Due to the large number of comparisons, the detailed results in terms of rank 

values, p-values and 𝐴𝐴12�   values are provided in the technical report corresponding to this 

paper [53] and submitted supplementary material. The summarized results in terms of 

confidence and risk (based on the rank of each algorithm) are presented in Table E-9 for 

each case study. For Str2—Str5, for each use case, we can see that RS has the lowest 

confidence to be the best algorithm (the Conf. column). These results suggest that our 

problems couldn’t have been solved effectively with RS and thus the use of complex multi-

objective search algorithms is justified.  

5.4.2 Results for RQ2 

For RQ2, the detailed results of the comparison of each pair of algorithms (𝐶𝐶29, i.e., 36 

pair-wise comparisons) for each case study for Str2—Str5, in terms of rank values, p-values 

and 𝐴𝐴12�   values are provided in the technical report corresponding to this paper [53] and 

submitted supplementary material. The summarized results in terms of confidence of each 

algorithm, for each use case are presented in Table E-9. As shown in Table E-9, in terms of 

confidence for Str2—Str5, SPEA2 is consistently the best, or the second best (only for three 

instances). Based on the results, we recommend using SPEA2 with Str2—Str5 to find the 

most optimal minimized test cases.  

Table E-9. Confidence For Each Algorithm For Each Strategy and Each Case Study 

Str. AW1 AW2 AW3 AW4 GS1 Algorithm AW1 AW2 AW3 AW4 GS1 Str. 
Str2 13% 12% 13% 9% 12% NSGA-II 13% 15% 14% 11% 14% Str4 

14% 14% 12% 12% 15% NSGA-III 13% 13% 13% 13% 13% 
8% 8% 8% 9% 9% MoCell 9% 7% 7% 8% 8% 

15% 17% 16% 15% 15% SPEA2 16% 17% 17% 16% 16% 
9% 13% 12% 10% 14% AbYSS 10% 10% 12% 10% 13% 
8% 5% 7% 8% 7% CellDE 6% 5% 5% 7% 5% 

14% 10% 10% 15% 10% GDE3 13% 10% 10% 15% 10% 
14% 15% 17% 14% 12% SMPSO 15% 16% 18% 14% 15% 
5% 5% 5% 7% 6% RS 6% 5% 5% 7% 5% 

Str3 13% 13% 13% 12% 11% NSGA-II 13% 13% 13% 11% 12% Str5 
13% 13% 13% 12% 13% NSGA-III 13% 13% 13% 11% 12% 
8% 9% 9% 9% 9% MoCell 8% 9% 9% 9% 9% 

14% 15% 15% 13% 15% SPEA2 13% 15% 15% 13% 15% 
10% 12% 12% 11% 14% AbYSS 10% 12% 12% 12% 13% 
8% 7% 7% 10% 7% CellDE 8% 7% 7% 10% 7% 

12% 10% 10% 13% 10% GDE3 12% 10% 10% 13% 10% 
14% 13% 13% 12% 14% SMPSO 13% 13% 13% 12% 14% 
8% 7% 7% 9% 7% RS 8% 7% 7% 9% 7% 

260 
 
 
 
 
 
 



 
 

 
5.4.3 Results for RQ3 

To answer RQ3, we chose SPEA2 to minimize test cases for Str2 – Str5 for the two case 

studies and executed the minimized test cases. The test execution results (together with the 

execution results for Str1) are provided in Table E-10. We compare Str1 – Str5 based on the 

cost, effectiveness, and efficiency measures (Table E-8). In terms of execution time (i.e., a 

cost measure, presented in column ET (s), Table E-10), we can observe that Str2 took the 

highest time to execute for all the use cases except for AW1, where Str4 took the highest 

time to execute test cases.   

Table E-10. Results For RQ3 

UC Str. NT PTR ET (s) UUDP NUO 𝑵𝑵𝑵𝑵𝑵𝑵𝑰𝑰𝑰𝑰𝑰𝑰 𝑵𝑵𝑵𝑵𝑵𝑵𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖 Uk Err. UkDP 𝑬𝑬𝑬𝑬𝑬𝑬𝑵𝑵𝑵𝑵𝑵𝑵 
/min 

𝑬𝑬𝑬𝑬𝑬𝑬𝒖𝒖𝒖𝒖 
/min 

AW1 Str1 20 91.3% 216 45% 25 16 9 10 0 91% 0.116 2.78 
Str2 22 100% 291 45% 36 23 13 13 1 118% 0.124 2.68 
Str3 17 100% 244 45% 30 18 12 11 0 100% 0.123 2.70 
Str4 20 96% 519 36% 29 15 14 16 1 145% 0.056 1.85 
Str5 14 100% 170 45% 22 13 9 11 0 100% 0.130 3.88 

AW2 Str1 8 88.8% 387 67% 11 8 3 0 0 0% 0.028 0 
Str2 106 100% 2134 78% 314 205 109 0 4 0% 0.147 0 
Str3 20 100% 866 78% 52 35 17 0 2 0% 0.060 0 
Str4 54 100% 1114 78% 148 97 51 0 3 0% 0.133 0 
Str5 30 100% 501 78% 91 58 33 0 2 0% 0.182 0 

AW3 Str1 5 85.7% 3156 60% 8 - - 0 0 0% 0.003 0 
Str2 138 100% 99414 100% 955 - - 0 1 0% 0.010 0 
Str3 45 100% 29147 100% 271 - - 0 0 0% 0.009 0 
Str4 92 100% 54990 100% 568 - - 0 1 0% 0.010 0 
Str5 47 100% 30663 100% 305 - - 0 0 0% 0.010 0 

AW4 Str1 4 93.7% 8 75% 9 5 4 0 0 0% 1.089 0 
Str2 24 100% 155 75% 296 163 133 0 0 0% 1.909 0 
Str3 2 81% 11 63% 23 11 12 0 0 0% 2.116 0 
Str4 7 94% 38 75% 79 38 41 0 0 0% 2.105 0 
Str5 4 94% 20 75% 38 20 18 0 0 0% 1.913 0 

GS1 Str1 5 71.4% 88 33% 2 1 1 0 0 0% 0.023 0 
Str2 393 95% 29300 83% 1767 569 1198 0 0 0% 0.060 0 
Str3 177 100% 12107 83% 717 211 506 0 0 0% 0.059 0 
Str4 203 100% 12717 67% 835 259 576 0 0 0% 0.066 0 
Str5 174 100% 11428 83% 715 243 472 0 0 0% 0.063 0 

 

In Table E-10, the nt column shows the number of test cases for each test strategy (Str1 

– Str5). Recall from Table E-8 that the UUDP column shows the percentage of times that 

the introduced indeterminacy sources led to observing corresponding uncertainties during 

test execution, whereas the NUO column represents the number of uncertainties that were 

observed as the result of test execution. As shown in Table E-10, consistently for all the five 

261 
 
 
 
 
 
 



 
 

 
use cases, test cases generated and minimized with Str2 always led to observe more 

uncertainties when comparing with the others (the NUO column). The NUOInd (Table E-10) 

column shows the number of uncertainties out of NUO that occurred because of known 

indeterminacy sources, whereas the NUOukInd column (definition in Table E-10) shows the 

number of uncertainties observed due to unknown indeterminacy sources. Once again Str2 

is the best across the case studies in terms of NUOInd. In terms of NUOukInd (except for AW1 

where Str4 is the best), Str2 is the best across the case studies. Even for AW1, Str4 observed 

only one more uncertainty than Str2. 

The Uk (defined in Table E-8) column represents the number of unknown uncertainties 

observed due to unknown indeterminacy sources. For AW1, with Str4, 16 uncertainties in 

this category were observed, whereas the second highest was 13 with Str2.  The Error 

column represents the number of error detected with each test strategy. For AW1 and AW2, 

both Str2 and Str4 observed one error each, whereas, for AW3, Str2 observed four errors, 

i.e., higher than the other strategies. 

Therefore, we recommend Str2 as it performed better than the others in terms of the 

studied effectiveness measures except for Uk and NUOukInd  for AW1, where Str4 was the 

second best.  

We also compare the strategies based on the efficiency measures. The results are given 

in the last two columns of Table E-10. Note that the efficiency measures simply tell that how 

many uncertainties (measured with Uk and NUO) were observed per minute. For AW1, 

AW2, and AW3, for the EoTNUO/min measure, Str5 is the best. For AW4, Str3 is the best 

with an efficiency value of 2.116 for EoTNUO/min, whereas, for GS, Str4 is the best with an 

efficiency value of 0.066 for EoTNUO/min. However, the differences of these two with the 

efficiency values of Str5 are not much. For example, for GS, Str5 has as efficiency value of 

0.063, i.e., the difference of 0.003 with Str4. This means that Str5 is likely to observe 0.003 

fewer uncertainties than Str4 per minutes. Such difference is negligible in practice. In terms 

of EoTUk/min for AW1, once again Str5 is the best strategy. Based on the above results, we 

suggest using Str2 when the test execution time is not a concern; otherwise, we recommend 

using Str5 since it is highly likely to be efficient.  

262 
 
 
 
 
 
 



 
 

 
5.5 Discussion 

Based on the results and analysis of RQ1, we can conclude that our uncertainty-wise test 

minimization approaches are complex and thus RS was not sufficient to solve our problems. 

RS has the lowest confidence to be the best algorithm (i.e., 5.28% on average) as compared 

to the rest of the algorithms when studying the results of all the use cases together. When 

comparing the selected multi-objective search algorithms for the four uncertainty-wise test 

minimization problems (RQ2), we found that SPEA2 has the highest confidence to be the 

best algorithm (i.e., 12.12% on average) as compared to the rest of the algorithms including 

RS. 

When comparing the five test strategies, we found Str2 (i.e., ASlBP with minimization 

focused on covering the number of uncertainties) with SPEA2 turned out to be the best. Str2 

with SPEA2 observed on average 51%24  more uncertainties than the rest of the strategies 

due to unknown indeterminacy sources when combining the results from all the use cases. 

Moreover, it managed to observe 13 unknown uncertainties due to unknown indeterminacy 

sources across all the use cases. In comparison, Str4 with SPEA2 managed to observe 16 

unknown uncertainties due to unknown indeterminacy sources, i.e., three more than the Str2 

and SPEA2 combination. 

In terms of practical implications, we have four key findings. First, the results of observed 

known uncertainties due to known indeterminacy sources (the NUOInd column) simply 

confirm our belief about known uncertainties of a CPS. If the belief is not confirmed, it 

means that the belief of the test modeler is far from truth. Then we recommend a test modeler 

to update her/his belief on the test ready model based on the results of test execution. Second, 

the results of observed known uncertainties due to unknown indeterminacy sources (the 

NUOukInd column) tell us that the known uncertainties can happen due to the indeterminacy 

sources that we were not aware of. As a result, such unknown indeterminacy sources need 

to be investigated and discovered with the help of our industrial partners. Once discovered, 

the test ready models must be updated to reflect these indeterminacy sources. Third, the 

24 The value is calculated as  
∑ ∑ (𝑁𝑁𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑈𝑈𝑈𝑈𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆2−𝑁𝑁𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑈𝑈𝑈𝑈𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗) (𝑁𝑁𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑈𝑈𝑈𝑈𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆2+𝑁𝑁𝑈𝑈)𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑈𝑈𝑈𝑈𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗)�𝑗𝑗=1,3,4,5

4
𝑖𝑖=1

4×4
, where UC={AW1, 

AW2, AW4, GS1}, Str = {Str1, Str2, Str3, Str4, Str5}. 𝑁𝑁𝑁𝑁𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑈𝑈𝑈𝑈1𝑆𝑆𝑆𝑆𝑆𝑆1  is the number of uncertainties observed with 

Str1 for the AW1 use case. 

263 
 
 
 
 
 
 

                                                           
 



 
 

 
discovery of unknown uncertainties due to unknown indeterminacy sources (the Uk column) 

need to be investigated once again together with our industrial partners and reflected in the 

test ready models as known uncertainties due to known indeterminacy sources (if 

investigated and found) for future testing. Fourth, the Error column tells the errors found 

during the test execution and must be fixed in the implementation of the CPSs. Note that we 

observed 15 times of occurrences of errors for the AW case study. Due to confidentiality 

issues, further details on the errors and uncertainties cannot be provided. Nonetheless, the 

results tell us that our proposed test strategies can help us confirming our belief about known 

uncertainties, discovering unknown uncertainties and unknown indeterminacy sources, and 

find errors. 

5.6 Threats to Validity 
External validity. A typical external validity threat with any empirical study is related to 

the generalization of results. Our experiment results are valid for two case studies (five use 

cases) from two CPS domains (Automation, Healthcare) and thus additional experiments 

with different case studies are required to further generalize the results.. 

Internal validity. . There are four main internal validity threats in our experiment. First, 

in terms of test case generation with ASlBP, we used the same criteria to generate test cases 

for all the use cases. This includes generating test cases that must achieve the 100% transition 

coverage and 100% unique uncertainty coverage. Second, as suggested in [52], all the SBSE 

problems face a common internal validity threat that is related to parameter settings used for 

the search algorithms. We used the default parameter settings for all the algorithms based on 

the existing guidelines [52, 54]. Third, we used the same criteria to introduce indeterminacy 

sources during the test execution for each use case. This means that we used the same values 

for EnablePattern, FindPosition, and SelectSpecification (Fig. E-5) when executing test 

cases generated from each test strategy across the use cases. Fourth, the fact that executing 

each test case more than once can lead to different execution results. Therefore, we executed 

a test case exactly once if it was included in the test case sets generated by multiple test 

strategies. 

Conclusion validity. There are two main conclusion validity threats in our experiment. 

First, as discussed in [55], due to randomness in search algorithms, results may have been 

264 
 
 
 
 
 
 



 
 

 
produced by chance. We handled this threat as suggested in [55], that is to repeat the 

experiments 100 times. Based on the standard guidelines [52] to report search-based 

software engineering experiments, we chose the Kruskal–Wallis test to calculate 𝑝𝑝-value for 

multiple comparisons with 5% significance level, the Mann-Whitney U test to calculate 𝑝𝑝-

value for pair comparison with 5% significance level, to determine practical and statistical 

significances of results. Second, our experiment results are based on one-time test execution 

due to limited resources available to execute test cases on the physical test infrastructures. 

Additional experiments are required in the future to execute test cases more than once to 

study whether executing one test case multiple times lead to observing different 

uncertainties.  

Construct validity. As suggested in [39, 56], the same stopping criterion must be used for 

all the evaluated algorithms to avoid any potential bias in results. Following the guidelines, 

we used the same number of fitness evaluations (25000) and thus dealt with this type of 

validity threat.  

6 Automation 

The (open source) tool support25 for UncerTest is shown in Fig. E-9, a user creates a BM, 

i.e., belief model (including BCDs and BSMs) in the IBM Rational Software Architect 

(RSA) using UncerTum implemented in the IBM RSA [9]. In addition to BCDs and BSMs, 

the BM also includes one or more object diagrams (corresponding to BCDs) that represent 

the test configuration of the CPS being tested. 

The first toolset of UncerTest is referred to as Abstract Test Case Generator. AG1 takes 

BSMs as input and convert them into graphs (SMGraph) in JGraph [57] based on a test case 

generation strategy (Section 4.1.2), which can be selected by a tester. AG2 takes the graph 

representation of BSMs as input and converts them into deep paths using the JGrapht tool 

[57]. Notice that multiple regions are not handled by JGrapht, and thus we extended it for 

this purpose. AG3 takes the generated deep paths as input and calculates UM for each path 

using the Uncertainty Measurement Calculator and produces abstract test cases and 

associated UM with each test case.  

25 The tool for UncerTest is open source, which is available at https://bitbucket.org/ManZH/uncertest-v1. 

265 
 
 
 
 
 
 

                                                           
 

https://bitbucket.org/ManZH/uncertest-v1


 
 

 
The second toolset is Uncertainty-Wise Test Case Minimization. Its Solution Solver uses 

jMetal’s implementation of the multi-objective search algorithms and RS to minimize the 

number of abstract test cases based on the four test case minimization strategies (Section 

4.2). A tester can select any algorithm and any of the four strategies to perform test case 

minimization. The output is a minimized set of test cases and values for the relevant 

objectives (Section 4.2). Solution Processor converts the output to an EMF model [58], 

which is the key input for the third toolset. 

The third toolset is Executable Test Case Generator. EG1 takes BCDs as input and 

converts them to Java Entities, which are further extended by a tester as Entities Adapter to 

provide actual implementation of operations, e.g., how to invoke REST APIs in GS. For 

each case study, a user has to manually implement Entities Adapters to bridge the gap 

between model elements and implementation of Test API. EG2 takes the object diagram as 

input and outputs Test Setup, which is required for execution of test cases. Finally, EG3 takes 

the EMF model file as the input and invokes EsOCL [34] to obtain concrete test data. EsOCL 

is a search-based OCL solver that takes input an OCL constraint and provides a set of data 

that satisfies the constraint. Using the output from EsOCL, EG3 produces executable test 

cases, where each executable test case imports Eclipse OCL [59] to check OCL constraints 

(state invariants) at runtime, which serve as test oracles. 

266 
 
 
 
 
 
 



 
 

 

 

7 Related Work 

Walkinshaw and Fraser [5] proposed a black-box testing framework to select test cases 

for execution to decrease uncertainty about the correctness of a software system. The 

proposed framework relies on Genetic Programming (GP) [60] to infer models of a system 

under test.  It generates random inputs and assesses them on the inferred models to select 

ones that create most uncertainty, and eventually only execute the selected ones on the real 

 
Fi

g.
 E

-9
. O

ve
ra

ll 
A

ut
om

at
io

n 
So

lu
tio

n 
of

 U
nc

er
Te

st
 

 

267 
 
 
 
 
 
 



 
 

 
system under test. Uncertainty was measured in their context as the level of confidence in 

the corresponding output of input (i.e., test data). UncerTest shares a similar objective, that 

is, selecting test cases for execution by taking into account uncertainty. Differences between 

the two approaches can be summarized from the three aspects: 1) UncerTest focuses on 

testing CPS under uncertainty, but their proposed framework is for software; 2) UncerTest 

requires initial BMs with subjective uncertainty specified as the input, whereas in their 

approach models are inferred by GP, which requires the execution of the software under test; 

and 3) UncerTest elaborates uncertainty from the four aspects (i.e., number of uncertainties, 

number of unique uncertainties, uncertainty space, and uncertainty measure from the 

Uncertainty Theory), whereas their approach is based on an existing uncertainty sampling 

technique.  

Another related work [6] focuses exclusively on time-related uncertainty. It relies on 

UML sequence diagrams together with the UML Profile for Schedulability, Performance, 

and Time (SPT) [61]. This work, however, only supports modeling uncertainty in time on 

messages of sequence diagrams. As discussed in Section 2.1, UncerTest is built on 

UncerTum [9], which is a comprehensive modeling framework for specifying various types 

of uncertainty (e.g., time, content and environment). The work presented in [6] focuses on 

stress testing of systems in the existence of time-related uncertainty on messages, which may 

complement the UncerTest framework, which can be investigated in the future. 

David et al. [62] presented some test generation principles and algorithms (e.g., the online 

testing tool UPPAAL-TRON [63]) and discussed the feasibility of applying them for testing 

timed systems under uncertainty, at a high level of abstraction. In their context, uncertainty 

is mainly caused by the inherent concurrent and indeterminate nature of timed systems. 

UncerTest, however, addresses uncertainty with a much broader scope and has an end-to-

end MBT solution. 

In [64], the authors presented a solution to transform UML use case diagrams and state 

diagrams into usage graphs appended with probability information about the expected use 

of the software. Such probability information can be obtained in several ways by relying on, 

e.g., domain expertise or usage profiles of software. Usage graphs with probability can be 

eventually used for testing. This work only deals with modeling uncertainty using 

probabilities and does not support other types of uncertainty measures such as ambiguity as 

268 
 
 
 
 
 
 



 
 

 
supported in UncerTum. In terms of testing, the authors proposed to use an existing work 

[65] to generate test cases. In the context of UncerTest, we focus on test generation based on 

the uncertainty theory [12]. 

To model uncertainty (inherent in real-world applications) with UML class diagrams, an 

extension was proposed in [66-68], which is referred to as fuzzy UML data modeling. The 

extension relies on two theories: fuzzy set and possibility distribution, and was later on 

further extended in [69] to transform fuzzy UML data models into representations in the 

fuzzy description logic (FDLR) to check the correctness of fuzzy properties. Furthermore, 

another automated transformation was proposed in [70] to transform fuzzy UML data 

models into web ontologies to support automated reasoning on fuzzy properties in the 

context of web services. These works focus on the analyses at the design time, whereas our 

work focuses on testing. Regarding modeling, our UncerTum focuses on uncertainty in a 

comprehensive and precise manner by considering various types of measures such as 

probability, vagueness, and fuzziness. The methodologies proposed in [66-68] for specifying 

fuzzy UML data can easily integrate with our model libraries when needed and potentially 

used to support MBT of CPSs under uncertainty. However, this requires further 

investigation. 

In [71], a language-independent solution was proposed partiality, Abs partiality, Var 

partiality and OW partiality, to denote the degree of incompleteness specified by model 

designers. The work also provides a solution for merging and reasoning possible partial 

models with tool support [72, 73]. The approach was demonstrated on UML class and 

sequence diagrams [71]. This work is related to our work regarding expressing the 

uncertainty of modelers. However, in the context their work, the focus is on uncertainty in 

partial models for supporting model refinement and evolution. In contrast, we focus on 

modeling uncertainty (lack of confidence) in test ready models that are in turn used for test 

case generation and minimization relying on the uncertainty theory. 

8 Conclusion 

Nowadays, Cyber-Physical Systems (CPSs) are everywhere in our daily life. It is 

forecasted that applications of CPSs will span over many different domains shortly, 

including autonomous vehicles, robotics, healthcare, industrial automation, among others. 

269 
 
 
 
 
 
 



 
 

 
One critical dimension of the complexity of developing and testing such systems is due to 

the inherent uncertainty of their operational environment and uncertain behaviors of 

themselves. To tackle this challenge, in this paper, we proposed a model-based and search-

based test case generation and minimization framework (named as UncerTest) for testing 

CPSs under uncertainty. UncerTest takes advantages of the uncertainty theory and search-

based optimization techniques, based on which, it also proposes an innovative set of 

uncertainty-related test case minimization strategies. We evaluated UncerTest with two 

industrial CPSs case studies and eight commonly used multi-objective search algorithms. 

The best test strategy managed to discover on average 51% more uncertainties due to 

unknown indeterminacy sources as compared to the rest of the test strategies across the case 

studies. The same test strategy managed to discover 118% more unknown uncertainties as 

compared to the already known ones.  

Acknowledgment 
This research was supported by the EU Horizon 2020 funded project U-Test (Testing 

Cyber-Physical Systems under Uncertainty, Project Number: 645463). Tao Yue and Shaukat 

Ali are also supported by RCN funded Zen-Configurator project, RFF Hovedstaden funded 

MBE-CR project, RCN funded MBT4CPS project, and RCN funded Certus SFI. The 

corresponding author of the paper is Tao Yue. We sincerely thank our industrial partners 

(ULMA Handlilng Systems and Nordic Medtest), especially Oscar Okariz and Malin 

Hedman, for their support on providing the case studies and conducting the experiment. 

References 

[1] D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from 

theory to practice, CRC Press, 2015. 

[2] P. Derler, E. A. Lee, and A. S. Vincentelli, Modeling Cyber-Physical Systems, 

Proceedings of the IEEE, vol. 100, no. 1 (2012) 13-28, 

10.1109/JPROC.2011.2160929. 

270 
 
 
 
 
 
 



 
 

 
[3] M. Woehrle, K. Lampka, and L. Thiele, Conformance testing for cyber-physical 

systems, ACM Transactions on Embedded Computing Systems (TECS) vol. 11, no. 

4 (2013) 1-23, 10.1145/2362336.2362351. 

[4] H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski, and K. Ueda, 

Conformance testing as falsification for cyber-physical systems, arXiv preprint 

arXiv:1401.5200 (2014). 

[5] N. Walkinshaw, and G. Fraser, Uncertainty-Driven Black-Box Test Data Generation, 

in: the 10th IEEE International Conference on Software Testing, Verification and 

Validation (ICST 2017), Tokyo, Japan. pp. 253-263, 2016. 

[6] V. Garousi, Traffic-aware stress testing of distributed real-time systems based on 

UML models in the presence of time uncertainty, in: Software Testing, Verification, 

and Validation, 2008 1st International Conference on. pp. 92-101, 2008. 

[7] G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives, 

Routledge, 2012. 

[8] D. V. Lindley, Understanding uncertainty (revised edition), John Wiley & Sons, 

2014. 

[9] M. Zhang, S. Ali, T. Yue, and R. Norgre, An Integrated Modeling Framework to 

Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty, 

Technical report 2016-02, Simula Research Laboratory, 2016; 

https://www.simula.no/publications/integrated-modeling-framework-facilitate-

model-based-testing-cyber-physical-systems. 

[10] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, Uncertainty-Wise Cyber-

Physical System test modeling, Software & Systems Modeling (2017), 2017/07/25, 

10.1007/s10270-017-0609-6. 

[11] P. Ammann, and J. Offutt, Introduction to software testing, Cambridge University 

Press, 2016. 

[12] B. Liu, Uncertainty theory, Springer, 2015. 

[13] J. Brownlee, Clever algorithms: nature-inspired programming recipes, First Edition 

ed., LuLu, 2012. 

[14] "Future Position X," accessed 2017; http://www.fpx.se/. 

[15] "ULMA Handling System," accessed 2017; http://www.ulmahandling.com/en/. 

271 
 
 
 
 
 
 



 
 

 
[16] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, Understanding 

Uncertainty in Cyber-Physical Systems: A Conceptual Model, in: Proceedings of the 

12th European Conference on Modelling Foundations and Applications (ECMFA). 

pp. 247-264, 2016. 

[17] OMG, UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded 

Systems™, 2011, http://www.omg.org/spec/MARTE/. 

[18] B. Liu, Why is there a need for uncertainty theory, Journal of Uncertain Systems, 

vol. 6, no. 1 (2012) 3-10. 

[19] P. C. Jorgensen, Software testing: a craftsman’s approach, CRC press, 2016. 

[20] Z. Xuemei, T. Xiaolin, and P. Hoang, Considering fault removal efficiency in 

software reliability assessment, IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, vol. 33, no. 1 (2003) 114-120, 

10.1109/TSMCA.2003.812597. 

[21] Y. Zhu, Uncertain optimal control with application to a portfolio selection model, 

Cybernetics and Systems, vol. 41, no. 7 (2010) 535-547, 2010/09/24, 

10.1080/01969722.2010.511552. 

[22] L. Yang, K. Li, and Z. Gao, Train Timetable Problem on a Single-Line Railway With 

Fuzzy Passenger Demand, IEEE Transactions on Fuzzy Systems, vol. 17, no. 3 

(2009) 617-629, 10.1109/TFUZZ.2008.924198. 

[23] J. Peng, Risk metrics of loss function for uncertain system, Fuzzy Optimization and 

Decision Making, vol. 12, no. 1 (2013) 53-64, 2013//, 10.1007/s10700-012-9146-5. 

[24] S. Han, Z. Peng, and S. Wang, The maximum flow problem of uncertain network, 

Information Sciences, vol. 265 (2014) 167-175, 5/1/, 

http://dx.doi.org/10.1016/j.ins.2013.11.029. 

[25] W. Rudin, Real and complex analysis, Tata McGraw-Hill Education, 1987. 

[26] OMG, Unified Modeling Language (UML), June 2015, 

http://www.omg.org/spec/UML/. 

[27] OMG, Unified Modeling Language™ (UML), 2015, 

http://www.omg.org/spec/UML/. 

[28] D. E. Knuth, "The art of computer programming, 3rd edn. seminumerical algorithms, 

vol. 2," Addison-Wesley, Reading, 1997. 

272 
 
 
 
 
 
 



 
 

 
[29] J. Offutt, and A. Abdurazik, Generating tests from UML specifications, in: 

International Conference on the Unified Modeling Language. pp. 416-429, 1999. 

[30] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, Generating test data from state-

based specifications, Software testing, verification and reliability, vol. 13, no. 1 

(2003) 25-53. 

[31] P. Samuel, R. Mall, and A. K. Bothra, Automatic test case generation using unified 

modeling language (UML) state diagrams, IET software, vol. 2, no. 2 (2008) 79-93. 

[32] L. C. Briand, Y. Labiche, and Y. Wang, Using simulation to empirically investigate 

test coverage criteria based on statechart, in: Proceedings of 26th International 

Conference on Software Engineering (ICSE 2004), Edinburgh, UK. pp. 86-95, 2004. 

[33] OMG, "Object Constraint Language™ (OCL™)," 2014, 

http://www.omg.org/spec/OCL/. 

[34] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, Generating test data from OCL 

constraints with search techniques, IEEE Transactions on Software Engineering, vol. 

39, no. 10 (2013) 1376-1402. 

[35] "Quuppa - Do more with Location," accessed 2017; http://quuppa.com/. 

[36] "Nordic Med Test," accessed 2017; http://www.nordicmedtest.se/. 

[37] "IK4-IKERLAN," accessed 2017; http://www.ikerlan.es/eu/. 

[38] "Use Cases - Industrial Case Studies," accessed 2017; http://www.u-test.eu/use-

cases/. 

[39] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, A systematic review 

of the application and empirical investigation of search-based test case generation, 

IEEE Transactions on Software Engineering, vol. 36, no. 6 (2010) 742-762. 

[40] "jMetal," accessed 2016; http://jmetal.sourceforge.net/. 

[41] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective 

genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, vol. 6, 

no. 2 (2002) 182-197. 

[42] K. Deb, and H. Jain, An Evolutionary Many-Objective Optimization Algorithm 

Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving 

Problems With Box Constraints, IEEE Transactions on Evolutionary Computation, 

vol. 18, no. 4 (2014) 577-601, 10.1109/TEVC.2013.2281535. 

273 
 
 
 
 
 
 



 
 

 
[43] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Mocell: A cellular 

genetic algorithm for multiobjective optimization, International Journal of Intelligent 

Systems, vol. 24, no. 7 (2009) 726-746. 

[44] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Design issues in a 

multiobjective cellular genetic algorithm, in: S. Obayashi, K. Deb, C. Poloni, T. 

Hiroyasu and T. Murata, eds. International Conference on Evolutionary Multi-

Criterion Optimization. pp. 126-140, 2007. 

[45] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto 

evolutionary algorithm, in: Evolutionary Methods for Design, Optimization and 

Control with Applications to Industrial Problems (EUROGEN 2001), Athens. 

Greece, International Center for Numerical Methods in Engineering, 2001. 

[46] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, Solving Three-Objective 

Optimization Problems Using a New Hybrid Cellular Genetic Algorithm, in: R. 

Günter, J. Thomas, L. Simon, P. Carlo and B. Nicola, eds. the 10th international 

conference on Parallel Problem Solving from Nature: PPSN X. pp. 661-670, 2008. 

[47] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, AbYSS: 

Adapting scatter search to multiobjective optimization, IEEE Transactions on 

Evolutionary Computation, vol. 12, no. 4 (2008) 439-457. 

[48] S. Kukkonen, and J. Lampinen, GDE3: The third evolution step of generalized 

differential evolution, in. pp. 443-450,  

[49] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba, 

SMPSO: A new pso-based metaheuristic for multi-objective optimization, in: 2009 

IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making 

(MCDM), Nashville, TN, USA. pp. 66-73, 2009. 

[50] E. Zitzler, and L. Thiele, Multiobjective evolutionary algorithms: a comparative case 

study and the strength Pareto approach, IEEE transactions on Evolutionary 

Computation, vol. 3, no. 4 (1999) 257-271. 

[51] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, A practical guide to select quality 

indicators for assessing pareto-based search algorithms in search-based software 

engineering, in: Proceedings of the 38th International Conference on Software 

Engineering (ICSE 2016), New York, NY, USA. pp. 631-642, 2016. 

274 
 
 
 
 
 
 



 
 

 
[52] A. Arcuri, and L. Briand, A practical guide for using statistical tests to assess 

randomized algorithms in software engineering, in: Proceedings of the 33rd 

International Conference on Software Engineering (ICSE 2011), Waikiki, Honolulu, 

HI, USA. pp. 1-10, 2011. 

[53] M. Zhang, S. Ali, T. Yue, and M. Hedman, Uncertainty-wise Test Case Generation 

and Minimization for Cyber-Physical Systems: A Multi-Objective Search-based 

Approach, Technical report 2016-13, Simula Research Laboratory, 2016; 

https://www.simula.no/publications/uncertainty-based-test-case-generation-and-

minimization-cyber-physical-systems-multi. 

[54] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures, 

CRC Press, 2003. 

[55] S. Wang, S. Ali, and A. Gotlieb, Minimizing test suites in software product lines 

using weight-based genetic algorithms, in: Proceedings of the 15th annual 

conference on Genetic and evolutionary computation. pp. 1493-1500, 2013. 

[56] M. de Oliveira Barros, and A. C. Dias-Neto, Threats to Validity in Search-based 

Software Engineering Empirical Studies, Technical Report 0006/2011, Universidade 

Federal Do Estado Do Rio de Janeiro, 2011; 

http://seer.unirio.br/index.php/monografiasppgi/article/viewFile/1479/1307. 

[57] "JGrapht," accessed 2016; http://jgrapht.org/. 

[58] "Eclipse Modeling Framework (EMF)," accessed 2016; 

https://eclipse.org/modeling/emf/. 

[59] "Eclipse OCL," accessed 2016; 

http://www.eclipse.org/modeling/mdt/?project=ocl#ocl. 

[60] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic 

programming, Lulu. com, 2008. 

[61] OMG, UML Profile For Schedulability, Performance, and Time™, 2005, 

http://www.omg.org/spec/SPTP/. 

[62] A. David, K. G. Larsen, S. Li, M. Mikucionis, and B. Nielsen, Testing real-time 

systems under uncertainty, in: International Symposium on Formal Methods for 

Components and Objects. pp. 352-371, 2010. 

275 
 
 
 
 
 
 



 
 

 
[63] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou, 

Testing real-time systems using UPPAAL, Formal methods and testing, pp. 77-117: 

Springer, 2008. 

[64] M. Riebisch, I. Philippow, and M. Götze, UML-based statistical test case generation, 

Objects, Components, Architectures, Services, and Applications for a Networked 

World, pp. 394-411: Springer, 2002. 

[65] J. M. Selvidge, Statistical Usage Testing: Expanding the Ability of Testing, in 

Software Testing, Analysis & Review, 1999. 

[66] Z. Ma, Fuzzy information modeling with the UML, Idea (2005). 

[67] Z. M. Ma, F. Zhang, and L. Yan, Fuzzy information modeling in UML class diagram 

and relational database models, Applied Soft Computing, vol. 11, no. 6 (2011) 4236-

4245. 

[68] L. Yan, and Z. M. Ma, Extending nested relational model for fuzzy information 

modeling, in: 2009 WASE International Conference on Information Engineering. pp. 

587-590, 2009. 

[69] Z. M. Ma, F. Zhang, L. Yan, and J. Cheng, Representing and reasoning on fuzzy 

UML models: A description logic approach, Expert Systems with Applications, vol. 

38, no. 3 (2011) 2536-2549. 

[70] F. Zhang, and Z. M. Ma, Construction of fuzzy ontologies from fuzzy UML models, 

International Journal of Computational Intelligence Systems, vol. 6, no. 3 (2013) 

442-472. 

[71] R. Salay, M. Famelis, and M. Chechik, Language independent refinement using 

partial modeling, Fundamental Approaches to Software Engineering, pp. 224-239: 

Springer, 2012. 

[72] M. Famelis, R. Salay, and M. Chechik, Partial models: Towards modeling and 

reasoning with uncertainty, in: Proceedings of the 34th International Conference on 

Software Engineering (ICSE 2012), Zurich, Switzerland. pp. 573-583, 2012. 

[73] M. Famelis, and S. Santosa, MAV-Vis: a notation for model uncertainty, in: 

Proceedings of the 5th International Workshop on Modeling in Software Engineering 

(MiSE 2013), San Francisco, CA, USA. pp. 7-12, 2013. 
 

276 
 
 
 
 
 
 



 
 

 

Appendixes 
Appendix A. Definitions of U-Model Concepts 

To understand uncertainty, in our previous work [15], we defined the conceptual model, 

U-Model, to specify, classify and identify uncertainty and its associated concepts. U-RUCM 

presented in this paper is an implementation of U-Model to enable the specification of 

uncertainty in use case models. U-Model  was published in [15] and we have added 

definitions of its concepts in this appendix to make the paper self-contained, which are 

organized into three parts: belief model, uncertainty model and measure model. 

A.1 Belief Model 
The Belief Model in Fig. Appx-1 takes the subjective way to represent uncertainty – 

Uncertainty is a subjective phenomenon that is indelibly bound to the worldview held by a 

belief agent, – that, for whatever reason, is incapable of possessing complete and fully 

accurate knowledge about some subject of interest [15]. In addition, the definitions of the 

concepts in Belief Model are represented in Table. Appx-1. 

 

Fig. Appx-1. Core Belief Model of U-Model 

Table. Appx-1. Definitions of the Concepts in the Belief Model 

Concept Definition 
Belief 
(abstract) 

A belief is an implicit subjective explanation or description of some 
phenomena or notions26 that is held by a BeliefAgent. 
Semantics: This is an abstract concept whose only concrete manifestation is in 
the form of a belief statement. 
Features: 

26 The term “phenomena” here is intended to cover aspects of objective reality, whereas “notion” covers 
abstract concepts, such those encountered in mathematics or philosophy. 

277 
 
 
 
 
 
 

                                                           
 



 
 

 
Concept Definition 

• beliefdegree [*] – The Measurement of Belief derived from Measurement 
of Uncertainties in this Belief. 
• beliefAgents [1..*] – The set of BeliefAgent held this Belief. 

BeliefAgent BeliefAgent represents an individual, a community of individuals sharing the 
same set of beliefs, or a technology, such as a software system, with built-in 
beliefs. 
Semantics: A belief agent is a physical entity27 that holds (i.e., owns) one or 
more beliefs about phenomena or notions associated with one or more 
subject areas derived from Indeterminacy. This could be a human individual 
or group, an institution, a living organism, or even a machine such as a 
computer. Crucially, a belief agent is capable of actions based on its beliefs. 
Features: 
• beliefs [*] – The set of Belief that represent the full set of beliefs held 
explicitly by the BeliefAgent. 

BeliefStatement A BeliefStatement is an explicit specification of some Belief about a possible 
phenomenon or notions belonging to a given subject area. 
Generalizations: Belief, IndeterminacySource 
Semantics: The concrete form of this statement can vary, and may represent 
informal pronouncements made by individuals or groups, documented 
textual specifications expressed in either natural or formal languages, formal 
or informal diagrams, etc. Since it represents a belief, which is a subjective 
concept, a BeliefStatement may not necessarily correspond to objective reality. 
This means that it could be completely false, or only partially true, or 
completely true. However, due to the complex nature of objective reality, it 
may not always be possible to determine whether or not a BeliefStatement is 
valid. Furthermore, the validity of a statement may only be meaningfully 
defined within a given context or purpose. Thus, the statement that “the 
Earth can be represented as a perfect sphere” may be perfectly valid for some 
purposes but invalid or only partly valid for others. For our needs, we are 
less interested in the validity of a BeliefStatement than we are in the level of 
Uncertainty that a belief agent associates with it. 
Features: 
• substatements [*] – The set of finer-grained BeliefStatements that are 
components of a composite BeliefStatement. 
• prerequisites [*] – The set of BeliefStatement on which this BeliefStatement 
depends. 
• indeterminacySource [*] – The set of IndeterminacySource that this 
BeliefStatement involves. 
• evidence [*] – The set of Evidence providing this BeliefStatement. 
• uncertainties [*] – The set of expressions of uncertainty that qualify 
and/or quantify the degree to which the BeliefAgent lacks confidence in this 
BeliefStatement; this attribute provides the core link between the Belief 
portion and the Uncertainty portion of the core uncertainty model. 
• from [0..1] – The Timepoint when BeliefStatement is initialized. 
• duration [0..1] – The Duration when BeliefStatement is active. 

Evidence Evidence is either the observation of or record of a real-world event 
occurrence or, alternatively, the conclusion of some formalized chain of 
logical inference, which provides information that may contribute to 
determining the validity (i.e., truthfulness) of a BeliefStatement. 
Semantics: Evidence is fundamentally an objective phenomenon, 
representing something that actually happened. This means that we do exclude 

27 We exclude here from this definition “virtual” belief agents, such as those that might occur in virtual reality 
systems and computer games. 

278 
 
 
 
 
 
 

                                                           
 



 
 

 
Concept Definition 

here the possibility of counterfeit or invented evidence. Nevertheless, 
although Evidence represents objective reality, it need not be conclusive in 
the sense that it removes all doubt (uncertainty) about a BeliefStatement. On 
the other hand, any valid BeliefStatement must have at least some Evidence to 
support it. 

EvidenceKnowledge EvidenceKnowledge expresses an objective relationship between a 
BeliefStatement and relevant Evidence.  
Semantics: EvidenceKnowledge identifies whether the corresponding 
BeliefAgent is aware of the appropriate Evidence. Thus, an agent may be either 
aware that it knows something (KnownKnown), or it may be completely 
unaware of Evidence (UnknownKnown).  

IndeterminacyNature IndeterminacyNature represents the kind of indeterminacy28. 
Enumeration literals: 
• InsufficientResolution – The information available about the 
phenomenon in question is not sufficiently precise. 
• MissingInfo – The full set of data is unavailable at the time the statement 
is made. 
• Non-determinism – The phenomenon in question is either practically or 
inherently non-deterministic. 
• Composite – This represents some combination of multiple other kinds 
of indeterminacy. 
• Unclassified – Indeterminate indeterminacy. 

IndeterminacySource IndeterminacySource represents a situation whereby the information required 
to ascertain the validity of a BeliefStatement is indeterminate in some way, 
resulting in uncertainty being associated with that statement. 
Semantics: One possible source of indeterminacy could be another 
BeliefStatement. A given indeterminacy source could in some cases be 
decomposed into more basic sources. 
Features: 
• indeterminacydegree [*] – This set of Measurement represents the 
quantification (or qualification) of this IndeterminacySource. 
• nature [1] – The IndeterminacyNature represents the kind of 
indeterminacy reason. 

IndeterminacyKnowledge IndeterminacyKnowledge expresses an objective relationship between an 
IndeterminacySource and the awareness that the BeliefAgent has of that source.  
Semantics: IndeterminacyKnowledge identifies whether the corresponding 
BeliefAgent is aware of the appropriate IndeterminacySource. So, even though 
it is agent specific, it is still an objective concept since it does not represent 
something that is declared by the agent. For instance, an agent may be aware 
that it does not know something about a possible source (KnownUnknown), 
or the agent may be completely unaware of a possible source of 
indeterminacy (UnknownUnknown). 

KnowledgeType KnowledgeType represents the type of the knowledge. 
Enumeration literals: 
• KnownKnown – Indicates that an associated BeliefAgent is consciously 
aware of some relevant aspect. 
• KnownUnknown (Conscious Ignorance) – Indicates that an associated 
BeliefAgent understands that it is ignorant of some aspect. 
• UnknownKnown (Tacit Knowledge) – Indicates that an associated 
BeliefAgent is not explicitly aware of some relevant aspect that it, 
nevertheless, may be able to exploit in some way 

28 Indeterminacy represents a situation whereby the full knowledge necessary to determine the required 
factual state of some phenomena or notions is unavailable. 

279 
 
 
 
 
 
 

                                                           
 



 
 

 
Concept Definition 

• UnknownUnknown (Meta Ignorance) – Indicates that an associated 
BeliefAgent is unaware of some relevant aspect. 

Measure Measure represents the way of measuring 
Belief/Uncertainty/IndeterminacySource. 
Semantics: Measure is objective concept, and specifies the existing way/theory 
to measure uncertainty. 

Measurement Measurement represents the optional quantification (or qualification) that 
specifies the degree of Belief/Uncertainty/IndeterminacySource. 
Semantics: It may be possible to specify a Measurement that quantifies in 
some way (e.g., as a probability or a percentage) the degree of Uncertainty by 
the agent making the belief statement. Note, however, that this is a subjective 
measure defined by the BeliefAgent. 
Features: 
• measure [1] – This Measure represents the related way of measuring 
Belief/Uncertainty/IndeterminacySource. 

Uncertainty Uncertainty (lack of confidence) represents a state of affairs whereby a 
BeliefAgent does not have full confidence in a Belief that it holds. 
Semantics: “Full confidence” here means that the agent does not have any 
doubts about the validity of a statement. It is important to distinguish here 
between certainty and validity. That is, an agent could have full confidence 
in a BeliefStatement that is actually false; i.e., a statement that does not match 
(objective) truth. In general, the source of uncertainty associated with a 
BeliefStatement is that, for some reason, the agent does not have full 
knowledge of all relevant facts pertaining to the phenomena or notions that 
are the subject of the statement. 
Features: 
• from [0..1]– The Timepoint when Uncertainty is initialized. 
• measured [*]– This Measurement is used for representing confidence 
degree of Uncertainty by the agent making the BeliefStatement. 
• source [1..*]– This set of IndeterminacySource derived from the involves 
association and generalization of BeliefStatement. 

 

A.2  Uncertainty Model 
The Uncertainty Model in Fig. Appx-2 inspired by the literature of uncertainty expands 

on Uncertainty from several different viewpoints and introduces related abstractions [15], 

i.e. risk, pattern, and the definitions of the concepts in Uncertainty Model are represented in 

Table. Appx-2. 

280 
 
 
 
 
 
 



 
 

 

 
Fig. Appx-2. Core Uncertainty Model of U-Model 

Table. Appx-2. Definitions of the Concepts in the Core Uncertainty Model 

Concept Definition 
Effect Effect represents the result of Uncertainty in the BeliefStatement. 

Semantics: An uncertainty may result into: 1) another known 
Uncertainty, 2) something known and is not Uncertainty, 3) anything 
unknown. 
Features: 
• locality [0..1] –  This value is used to represent that the Locality of 
the Effect. 
• measurement [*] –  This set of Measurement represents the 
quantification (or qualification) of this Effect. 

Lifetime Lifetime represents the duration of time for which an Uncertainty 
remains active. 
Semantics: The length of time for which Uncertainty exists. For 
example, an Uncertainty may appear temporarily for a short period of 
time and disappears itself. On the other hand, an Uncertainty could be 
persistent, i.e., it stays active until appropriate actions are taken to 
resolve the Uncertainty. 

Locality A particular place or a position where Uncertainty occurs in the 
BeliefStatement. 
Semantics: A location could be a geographical location or a position 
where Uncertainty occurs. The concept of location is different than the 
Uncertainty type GeographicalLocation, where Uncertainty is due to the 
geographical location, however in this concept Uncertainty occurred at 
a location may not be due to the geographical location. 

Pattern Pattern represents an intelligible way in which an Uncertainty appears. 
Semantics: An Uncertainty may occur without any Pattern, i.e. 
Random, or may have a pattern in which it may occur, for example, 
occurring at equal intervals of time, i.e., Periodic. 

Random An Uncertainty that occurs without definite method, purpose or 
conscious decision. 
Semantics: An Uncertainty occurring without any specific pattern. 

Risk Risk measures the risk associated with Uncertainty. 
Semantics: An uncertainty may have an associated risk and high-risk 
uncertainties deserve special attention. 

Level/Rating Level/Rating is derived from Measurement owned by Uncertainty 
(Probability of the Occurrence of an Uncertainty) and Measurement 
owned by Effect (e.g., high impact), for example, using the risk matrix 
[40] or any other matrices 

281 
 
 
 
 
 
 



 
 

 
Concept Definition 
Occurrence Occurrence represents a situation whereby a BeliefAgent lacks 

confidence in occurrence existing in a BeliefStatement. 
Generalizations: Uncertainty 

Content Content represents a situation whereby a BeliefAgent lacks confidence 
in content existing in a BeliefStatement. 
Generalizations: Uncertainty 

Time Time represents a situation whereby a BeliefAgent lacks confidence in 
time existing in a BeliefStatement. 
Generalizations: Uncertainty 

GeographicalLocation GeographicalLocation represents a situation whereby a BeliefAgent 
lacks confidence in geographical location existing in a BeliefStatement. 
Generalizations: Uncertainty 

Environment Environment represents a situation whereby a BeliefAgent lacks 
confidence in environment existing in a BeliefStatement. 
Generalizations: Uncertainty 

Uncertainty Semantics: The uncertainty model expands on Uncertainty from 
several different viewpoints and introduces related abstractions. 
Notice that Uncertainty has a self-association. This self-association 
facilitates: 1) relating different Application level uncertainties to each 
other, 2) relating different Infrastructure level uncertainties to each 
other, 3) relating Application level and Infrastructure level uncertainties 
to each other, 4) relating Integration level uncertainties to each other, 
and 5) relating Application, Integration, and Infrastructure level 
uncertainties. This self-association can be specialized into different 
types of relationships such as ordering and dependencies. Here, we 
intentionally did not specialize it to keep the model general, so that it 
can be specialized for various purposes and contexts. 
Features: 
• lifetime [1]– This value is used for representing the duration of 
this Uncertainty. 
• pattern [0..1]– This value is used for describing whether this 
Uncertainty happens in a pattern or what kind of the pattern this 
Uncertainty occurs in. 
• risk [0..1]– This value is used for whether this Uncertainty has a 
risk, and what kind of risk this Uncertainty causes.  
• locality [0..1] – This value is used for representing what location 
this Uncertainty occurs. 
• effect [*]– This value is used for describing what effect the 
uncertainty may produce. 
• dependency [*]– The set of Uncertainty represents the 
dependency relationship with other Uncertainty.  

 
The Pattern Model in Fig. Appx-3 shows the conceptual model for the occurrence pattern 

of Uncertainty [15], and the definitions of the concepts in Pattern Model are represented in 

Table. Appx-3. 

282 
 
 
 
 
 
 



 
 

 

 
Fig. Appx-3. The Pattern Model 

Table. Appx-3. Definitions of the Concepts in the Pattern Model 

Concept Definition 
Temporal Uncertainty occurring in a temporal pattern. 

Generalizations: Measure 
Semantics: Temporal describes the notion of time with the occurrence of 
uncertainty. 

Systematic Uncertainty occurring in a systematic pattern. 
Generalizations: Temporal 
Semantics: Uncertainty occurring in some methodical pattern, i.e., a pattern 
that can be described in a mathematical way. 

Persistent A permanent Uncertainty, i.e., lasting forever. 
Generalizations: Systematic 
Semantics The definition of “forever” varies. For example, an uncertainty may 
exist permanently until appropriate actions are taken to deal with the 
uncertainty. On the other hand, an uncertainty may not be able to resolve and 
stays forever. 

Periodic An Uncertainty that occurs in repeated periods or at regular intervals. 
Generalizations: Systematic 
Semantics: Uncertainty repeating itself after an equal interval of time. 

Aperiodic An Uncertainty that occurs at irregular intervals of time. 
Generalizations: Temporal 
Semantics: It is important to note that Aperiodic is inherited from Temporal; this 
means it has a notion of time in which the Uncertainty appears in an Aperiodic 
pattern. 

Sporadic Uncertainty occurring in a sporadic pattern. 
Generalizations: Aperiodic 
Semantics: Uncertainty occurring occasionally. 

Transient Uncertainty occurring temporarily. 
Generalizations: Aperiodic 
Semantics: Uncertainty that does not last long. 

 

A.3  Measure Model 
The Measure Model in Fig. Appx-4 describes the commonly known measures related to 

Uncertainty [15], and the definitions of the concepts in Measure Model are represented in 

Table. Appx-4. 

283 
 
 
 
 
 
 



 
 

 

 
Fig. Appx-4. Core Measure Model of U-Model 

Table. Appx-4. Definitions of the Concepts in the Core Measure Model 

Concept Definition 
Vagueness Uncertainty measured with the vagueness methods. 

Generalizations: Measure 
Fuzziness Uncertainty measured by fuzzy methods. More details can be referred to 

the fuzzy logic literature [41]. 
Generalizations: Vagueness 

NonSpecificity Uncertainty measured using non-specificity methods. 
Generalizations: Vagueness 
Semantics: In certain cases, it may not be possible to measure an 
uncertainty using quantitative measurements and instead qualitative 
measurements can be used. Such qualitative measurements are classified 
under Non-Specificity methods. 

Probability Uncertainty measured with the probability. 
Generalizations: Measure 
Semantics: A quantitative way of measuring uncertainty. 

Ambiguity Uncertainty in the BeliefStatement is measured using ambiguity way. 
Generalizations: Measure 
Semantics: An uncertainty may be described ambiguously. For example, 
in the following statement“: The food is hot”, the ambiguity is in the 
measurement, i.e., the food is either hot in terms of temperature or in terms 
of spices. 

Appendix B. An Example of Questionnaire of the AW Case Study 
As discussed in Section 6.2 of Paper B, we conducted a questionnaire-based survey. The 

summary of the questions is provided in Table. Appx-5 where we also indicate the example 

questions that are relevant to each type of the question. In Section B.1, we provide a sanitized 

uncertainty requirement of the AW case study, for which a list of questions was derived (Q1-

Q10). In Section B.2, after refining the RUCM specification (Fig. Appx-5), two questions 

(Q11-Q12) were derived. 

284 
 
 
 
 
 
 



 
 

 

 

B.1 Examples of Uncertainty Requirements Specified in RUCM and 
Corresponding Questions  

In Table. Appx-6, we provide an example of uncertainty requirements developed by our 

industrial partner. Note that the RUCM editor was not used because the partner wanted to 

add additional fields (e.g., Means for validation/verification, Models/Metrics, Change 

History), which were not part of the RUCM template. Therefore, Word was used as the tool 

to specify all the use case specifications.  

Table. Appx-6. An Example of uncertainty requirements specified in RUCM 

Scale Up for a Larger Number of Orders to Handle 
Use Case ID UC2_INTE_1.1 
Use Case Name Scale Up for a Larger Number of Orders to Handle 
Means for 
validation 
/verification 

A communication infrastructure among WMS, Production System Simulator 
and PLC Simulator is built: 
• The input buffer status is full or not modifying ad-hoc its status. 
• The Production System Simulator introduces a pallet. 

Models/Metric
s 

 

STORAGE 
AREA

STORAGE 
AREA

STORAGE 
AREA

STORAGE 
AREA

STORAGE 
AREA

CRANE

PLC

PLC

PLC
PLC

CRANE CRANE CRANE CRANE
PLCPLCPLCPLCPLCPLCPLCPLCPLCPLC

PLC

PLC

This conveyor comes from 
the production lines 

(external)

Production 
System

Table. Appx-5. Design of the Questionnaire and Example Questions 

# Explanation Index of 
Question 

1 Inquiry the boundary of the system to define actors in the use case 
model. 

Q1, Q2, Q3 

2 Check the completeness of the flow of events of each use case 
specification. 

Q4 

3 Inquiry the existence of sources related to an actor. Q5, Q6, Q7 
4 Inquiry the existence of potential uncertainties related to system 

properties or behaviors. 
Q7 

5 Inquiry existence of the potential uncertainties regarding time, 
nature and human being. 

Q8, Q9, Q10 

6 Inquiry if a potential uncertainty is valid by checking if it is 
derived based on system properties or behaviors. 

Q11-Q12.1) 

7 Inquiry the completeness of the types of uncertainties defined in 
U-Model. 

Q11-Q12.2) 

8 Inquiry the type of a specified uncertainty. Q11-Q12.2) 
9 Inquiry the measure and measurement of a specified uncertainty. Q11-Q12.3).a) 
10 Inquiry the risk of a specified uncertainty. Q11-Q12.3).b) 
11 Inquiry the evidence to support the specified measurement and 

risk of a specified uncertainty. 
Q11-Q12.3).a-b).i 

 

285 
 
 
 
 
 
 



 
 

 
Precondition The warehouse processes a limited (bounds set by design) number of pallets. 
Primary Actor - 
Secondary 
Actors 

- 

Dependencies - 
Generalization - 
Basic Flow Steps 

1 The Production System introduces a pallet into the warehouse by the 
production system. 

2 WMS VALIDATES THAT the input buffer has free space to store pallets. 
3 WMS sends the order to enter the new pallet into the input buffer. 
Post-condition: 
The pallet is located at the input buffer. 

Specific 
Uncertainty 
Alternative 
Flow 
(buffer hasn’t 
got free space) 

RFS BF 2 
1 WMS VALIDATES THAT the input buffer has not got any free space to 

store pallets. 
2 The Pallet waits indefinitely for free space in the buffer. 
3 ABORT 
Post-condition:  
Material flow stops are propagated upstream towards the production system. 

Additional 
Information 

- 

Responsibility Person A 
Change 
History 

2015-05-20 Person B – First Version 
2015-06-01 Person A – Reviewed 
2015-07-28 Person A – Refined Version 

 
Q1. What do you believe about Production System mentioned in Table. Appx-6? 

Actor (Third party)  or Part of Handling system  
Q2. What do you believe about Pallet mentioned in Table. Appx-6?  

Actor (Third party)  or Part of Handling system  
Q3. What do you believe about WMS mentioned in Table. Appx-6?  

Actor (Third party)  or Part of Handling system  
Q4. Do you believe the reason/source of Specific Uncertainty Alternative Flow is unknown? 

Yes, I have no idea at all   
Yes, I have some uncertain idea, but not complete.  Please specify what you know.  

 
No, I know it.  Please specify what you know. 

 
Q5. Do you believe the size of pallet can introduce uncertainty? 

Yes  No  
If no, does any other property of pallet can cause uncertainty? Please specify if possible. 

      
Q6. Do you believe that Production System introduces the pallet always one by one? 

Yes  No  
Q7. Please refer to step 3 in Error! Reference source not found., “WMS sends the order to enter the 

new pallet into the input buffer”. 

 

 

286 
 
 
 
 
 
 



 
 

 
1) Is it possible that “WMS does not send the order to enter the new pallet into the input 

buffer at all”? 
If yes, the reason is related to  
WMS  Pallet  Input buffer  none of them, please specify       

2) Is it possible that “WMS sends the order to enter the new pallet into the input 
improperly”? 
If yes, the reason is related to  
WMS  Pallet  Input buffer  none of them, please specify       

3) Is there any other possibility? 
If yes, please specify       

Q8. Do you believe any Time constraints may cause uncertainty in this case? 
If yes, please specify       
If yes, do you believe it is necessary to consider in this use case? Yes  No  

Q9. Do you believe any Nature phenomena may cause uncertainty in this case? 
If yes, please specify       
If yes, do you believe it is necessary to consider in this use case? Yes  No  

Q10. Do you believe any human behavior may cause uncertainty in this use case? 
If yes, please specify       
If yes, do you believe it is necessary to consider in this use case? Yes  No  
 

B.2 Example of Refined Uncertainty Requirements in RUCM and 
Corresponding Questions 

 
Fig. Appx-5. Uncertainty Requirement specified in RUCM (a revised version of Table. Appx-6) 

Please refer to Fig. Appx-5, 
Q11. Do you believe that uncertainties exist in Step 1? 

1) Yes  No  
 If yes, how many uncertainties do exist?             
 Please specify these uncertainties,     ,  

2) For each uncertainty, please specify its type? 
Occurrence  Content  Time  Environment  Geographical Location   Others    

3) Do you believe this uncertainty can be measured? 
Yes  No  If no, please specify the reason.       
If yes, please answer the following question. 

a. What do you believe the likelihood of this uncertainty is? 
Please specify the probability         if possible, otherwise please select one of the 

following options: 
Rare Unlikely Possible Likely Almost Certain 

287 
 
 
 
 
 
 



 
 

 
     
i. Do you have any evidence to support?  

Yes  No  if yes, please specify      . 
b. What level of risk is associated with this type of uncertainty?  

Please specify the exact percentage         (0-100, 100 is the highest level of risk) 
if possible; otherwise please select one of the options: 
Very Low Low Medium High Extreme 

     
i. Do you have any evidence to support?  

Yes  No  if yes, please specify      . 

 
Fig. Appx-6. Uncertainty RFS 2 

Q12. Please refer to Fig. Appx-6, did you specify this uncertainty as above? 
1) Yes  No   

If no, do you believe it is real? Yes  No . If no, please specify the reason      
If it is real, is it necessary to consider? Yes  No . If no, please specify the 

reason      
If it is real and it is necessary to consider, please answer the following 

2) For each uncertainty, please specify its type? 
Occurrence  Content  Time  Environment  Geographical Location   Others    

3) Do you believe this uncertainty can be measured? 
Yes  No  If no, please specify the reason       
If yes, please answer the following question. 
a. What do you believe the likelihood of this uncertainty is? 

Please specify the probability         if possible, otherwise please select one of the 
following options: 
Rare Unlikely Possible Likely Almost Certain 

     
i. Do you have any evidence to support?  

Yes  No  if yes, please specify      . 
b. What level of risk is associated with this type of uncertainty?  

Please specify the exact percentage         (0-100, 100 is the highest level of risk) 
if possible; otherwise please select one of the options: 
Very Low Low Medium High Extreme 

     
ii. Do you have any evidence to support?  

Yes  No  if yes, please specify      . 
 

288 
 
 
 
 
 
 



 
 

 

Appendix C. An Example of BUCS Specified with the U-RUCM 
Editor 

 
Fig. Appx-7. Belief Use Case Specification Scale up for a large number of orders 

289 
 
 
 
 
 
 



 
 

 
Fig. Appx-7 presents a sanitized belief use case specification of the AW case study 

specified with the U-RUCM Editor. 

Appendix D. tolveR-E 
Table. Appx-7 presents definitions of heuristics of tolveR-E. Note that ocl.evaluate is a 

function that is used to evaluate the constraint specified in OCL. The result of the evaluation 

is either true or false. The catch TriggerException represents the exception in case none of 

the specified triggers occur. For example, S1
Tran1
�⎯⎯�  S1, the event of the trigger of Tran1 is 

kind of TimeEvent and the effect of Tran1 is “throw new TriggerException(S1.name)”. 

Table. Appx-7. Definitions of heuristics of tolveR-E 

# Definition in OCL Suggested Action 
R1 context State 

not ocl.evaluate(self.stateInvariant)  
One of R1.1, R1.2, or R1.3 will be 
selected. 

R1.1 State.allInstance->excludes(self)-> 
select(s:State|ocl.evaluate(s.stateInvariant))-
>size()=0 

Modify this State or Add an 
unknown State with applied 
«BeliefElement» 

R1.2 State.allInstance-> excludes(self)-> 
select(s:State|ocl.evaluate(s.stateInvariant))-
>size()=1 

Add a new Transition with the 
same Trigger with applied 
«BeliefElement» 

R1.3 State.allInstance-> excludes(self)-> 
select(s:State|ocl.evaluate(s.stateInvariant))-
>size()>1 

Check the redundant problem, and 
add the transitions with the same 
Trigger with applied 
«BeliefElement» to these states if 
they are correct  

R2 context State 
catch TriggerException and 
ocl.evaluate(self.stateInvariant) 

One of R2.1, R2.2, or R2.3 will be 
selected. 

R2.1 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(CallEvent))) 

Check invocation of operation 

R2.2 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(SignalEvent)
)) 

Check composite structure diagram 
and state machine of  driver 

R2.3 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(TimeEvent))) 

Check the TimeExpression 

R2.4 context State 
self.outgoings->exists(t:Transition| t.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(ChangeEven
t))) 

Check the ChangeExpression 

R3 context State 
catch TriggerException and not 
ocl.evaluate(self.stateInvariant) 

One of R3.1, R3.2, or R3.3 will be 
selected. 

290 
 
 
 
 
 
 



 
 

 
R3.1 Refer to R1.1  Add an unknown transition to an 

unknown state with applied 
«BeliefElement» 

R3.2 Refer to R1.2 Add an unknown transition to a 
known state with applied 
«BeliefElement» 

R3.3 Refer to R1.3 Check the redundant problem, and 
add the unknown transitions to 
these states if they are correct. 

R4 context Transition 
not self.guards->forAll(c:Constraint| 
ocl.evaluate(c)) 

One of R4.1 or R4.2 will be selected. 

R4.1 context Transition 
self.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(CallEvent)) 

Modify the guard of call event / 
Add new transition with applied 
«BeliefElement» 

R4.2 context Transition 
self.triggers-> 
exists(t:Trigger|t.event.ockIsKindOf(SignalEvent)
) 

Modify the guard of signal event/ 
Add new transition with applied 
«BeliefElement»/ Check the signal 
from DM 

 

Appendix E.  tolveR-D 
Table. Appx-8 presents definitions of heuristics of tolveR-D.  

The value ranges to make constraint true is represented as below, 

C(x0, … xn) = C0(x0) ∩ …∩ Cn(xn) 

The possible situations whereby the invariant needs to be modified are described as 

follows (Corg  represents the original constraint, and Cdai  represents the invariant from 

daikon). Note that any of them should apply «BeliefElement» by default. 

Table. Appx-8. Definitions of heuristics of tolveR-D 

# Description 
D1 Corg  ⊃  Cdai , we suggest  

1 

The variables in both constraints are the same. For example, S1
Tran1
�⎯⎯�  S2 , the state 

invariant of S2 is {x > 1}, then the invariant from Daikon is {x > 2}, so 1) Split S2 into two 

states with the same trigger, S1
Tran1
�⎯⎯�  S2.1 {x > 2} and S1

Tran1
�⎯⎯�  S2.2 {x > 1 and x ≤ 2}; 2) 

Modify the state invariant of S2 to {x > 2}; 3) No change 

2 

The number of variables is more than the original constraints. For example, S1
Tran1
�⎯⎯�  S2, 

the state invariant of S2 is {x > 1}, then the invariant from Daikon is {x > 1 and y = 0}, so 

1) Split S2 to two states with the same trigger, S1
Tran1
�⎯⎯�  S2.1 {x > 1 and y = 0} and S1

Tran1
�⎯⎯�  S2.2 {x > 1 and y ≠ 0}, 2) Modify the state invariant of S2 to {x > 1 and y = 0}; 3) No 
change 

D2 Corg  ⊂  Cdai , we suggest 

291 
 
 
 
 
 
 



 
 

 

1 

The variables are the same. For example, S1
Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, 

then the invariant from Daikon is {x > 0}, so 1) Merge relevant states which may reach 
(e.g. S2

Tran2
�⎯⎯�  S3 {x > 0 and x < 1}) to a composite state S1

Tran1
�⎯⎯�  {S2

Tran2
�⎯⎯�  S3}, 2) Modify 

the state invariant of S2 to {x > 0}; 3) No change 

2 

The number of variables is less than in the original constraints. For example, S1
Tran1
�⎯⎯�  S2, 

the state invariant of S2 is {x > 1 and y = 0}, then the invariant from Daikon is {x > 1}, so 

1) Merge relevant states which may reach (S2
Tran2
�⎯⎯�  S3 {x > 1 and z > 2}, S2

Tran3
�⎯⎯�  S3 {x >

1 and t = 0}) to a composite state S1
Tran1
�⎯⎯�  {S2

Tran2
�⎯⎯�  S3, S2

Tran3
�⎯⎯�  S3}, 2) Modify the state 

invariant of S2 to {x > 1}; 3) No change 
D3 Corg  ∩  Cdai  ≠ ∅ and Corg ⊄  Cdai and Corg ⊅  Cdai ,  we suggest 

1 

The variables are the same. For example, S1
Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, 

then the invariant from Daikon is {x < 2}, so 1) Make intersections of  Corg  and  Cdai, then 
S1

Tran1
�⎯⎯�  S2{x > 1 and x < 2} , 2) Use constraint from Daikon S1

Tran1
�⎯⎯�  S2{x < 2} ; 3) No 

change 

2 

The variables are different. For example, S1
Tran1
�⎯⎯�  S2, the state invariant of S2 is {x >

1 and y = 0}, then the invariant from Daikon is {y = 0 and z > 2}, so 1) Make intersections 

of  Corg  and  Cdai, then  S1
Tran1
�⎯⎯�  S2{x > 1 and y = 0 and z > 2}, 2) Use the constraint from 

Daikon S1
Tran1
�⎯⎯�  S2{y = 0 and z > 2}; 3) No change 

D4 Corg  ∩  Cdai  = ∅ ,  we suggest 

1 

The variables are the same. For example, S1
Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, 

then the invariant from Daikon is {x < 0}, so 1) the first solution is to make unions of  

Corg   and  Cdai , then S1
Tran1
�⎯⎯�  S2 ¬{x ≤ 1 and x ≥ 0}, 2) use constraint from Daikon S1

Tran1
�⎯⎯�  S2{x < 0}; 3) unchanged 

2 

The variables are different. For example, S1
Tran1
�⎯⎯�  S2, the state invariant of S2 is {x > 1}, 

then the invariant from Daikon is {y = 0}, so 1) Make unions of  Corg  and  Cdai, then S1
Tran1
�⎯⎯�  S2 ¬{x ≤ 1 and y ≠ 0} , 2) Use constraint from Daikon S1

Tran1
�⎯⎯�  S2{y = 0} ; 3) No 

change 
 

292 
 
 
 
 
 
 


	Abstract
	Acknowledgments
	List of papers
	Contents
	Part I
	1 Introduction
	2 Background
	2.1 Cyber-Physical System and its uncertainty
	2.2 Restricted Use Case Modeling (RUCM)
	2.3 Model-based Testing (MBT)
	2.4 Search-based Software Testing
	2.5 Uncertainty Theory
	2.5.1 Probability Theory vs. Uncertainty Theory. 
	2.5.2 Uncertainty Measure and Uncertainty Space


	3 Research Methodology
	3.1 Research activities
	3.2 Implementations

	4 Uncertainty-wise CPSs Testing Methodologies
	4.1 U-Model
	4.2 U-RUCM
	4.3 UncerTum
	4.4 UncerTolve
	4.5 UncerTest

	5 Evaluation
	5.1 Case Study
	5.1.1 GeoSports
	5.1.2 Automated Warehouse

	5.2 U-Model (Paper A)
	5.3 U-RUCM (Paper B)
	5.4 UncerTum (Paper C)
	5.5 UncerTolve (Paper D)
	5.6 UncerTest (Paper E)

	6 Discussion
	7 Conclusion and Future Work
	Reference
	Part II
	Paper A
	Abstract
	1 Introduction
	2 Background and Running Example
	3 Uncertainty Conceptual Model
	3.1 Belief Model
	3.1.1 Belief, BeliefAgent and BeliefStatement
	3.1.2 Evidence, EvidenceKnowledge, IndeterminacySource and IndeterminacyKnowledge.
	3.1.3 Measurement and Measure.

	3.2 Uncertainty Model
	3.2.1 Uncertainty, Lifetime and Pattern.
	3.2.2 Locality and Risk.

	3.3 Measure Model

	4 Evaluation
	4.1 Development and Validation of Uncertainty Requirements and U-Model
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion
	References
	Paper B
	Abstract
	1 Introduction
	2 Background and Running Example
	2.1 U-Model
	2.2 Running Example
	2.3 Restricted Use Case Modeling (RUCM)

	3 U-RUCM Templates and Keywords
	4 U-RUCM Formalization
	4.1 Relationships of BeliefUCMeta with UCMeta and U-Model
	4.2 Belief Use Case Model, Element, and Classifier
	4.3 Belief Use Case Specification
	4.4 Belief Flow of Events
	4.5 Belief Sentence
	4.6 Uncertainty
	4.6.1 Uncertainty in Belief Sentences (NLUncertainty)

	4.7 Branch Uncertainty
	4.8 Measurement

	5 Tool Support and Methodology
	5.1 Tool Support
	5.2 Methodology

	6 Evaluation
	6.1 Case Studies
	6.2 Context, Design, and Execution of Evaluation
	6.3 Results
	6.4 Experience, Lessons Learned, and Future Challenges

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgment
	References
	Paper C
	Abstract
	1 Introduction
	2 Background
	2.1 Cyber-Physical Systems and Testing Levels
	2.2 U-Model
	2.3 UML Testing Profile (UTP)

	3 Running Example
	4 Overview of UncerTum
	5 UUP and CPS Testing Levels Profile
	5.1 UUP Belief
	5.2 UUP Uncertainty and Measurement
	5.3 CPS Testing Levels Profile

	6 Model Libraries
	6.1 Measure Libraries
	6.2 Pattern Library

	7 UncerTum Modeling Methodology
	7.1 Overview
	7.2 Application Level Modeling
	7.3 Infrastructure Level Modeling
	7.4 Integration Level Modeling
	7.5 Apply UUP (AP2/IF2/IT2)
	7.5.1 Measurement Modeling
	A. Specify Evidence
	B. Specify Measure
	C. Specify Measurement

	7.5.2 Uncertainty Modeling
	A. Model Lifetime/Cause/Pattern/Effect of Uncertainty
	B. Model IndeterminacySource
	C. Model Risk



	8 UncerTum Validation Process
	8.1 UAL Executable Modeling Guidelines
	8.2 Recommendations to Fix Problems in Test Ready Models

	9 Evaluation
	9.1 Development and Validation of UncerTum and Test Ready Models
	9.2 Evaluation Results
	9.2.1 Mapping UUP/Model Libraries to U-Model and MARTE
	9.2.2 Application of UUP/Model Libraries
	9.2.3 Validation of Test Ready Models via Model Execution
	9.2.4 Application of UTP V.2

	9.3 Overall Discussion and Limitations

	10 Related Work
	11 Conclusion and Future Work
	Acknowledgment
	References
	Paper D
	Abstract
	1 Introduction
	1.1 Challenges and Objectives
	1.2 Context, Scope and Overview
	1.3 Contributions
	1.4 Results and the Structure of the Paper

	2 Related Work
	2.1 Comparison with Existing Works
	2.2 Comparison with Our Previous Works

	3 Background
	3.1 Cyber-Physical Systems and Uncertainty Levels
	3.2 UML Testing Profile
	3.3 U-Model
	3.4 UncerTum
	3.5 UncerTest

	4 Terminologies And Running Example
	4.1 Belief Test Ready Model
	4.2 Executable Belief Test Ready Model
	4.3 Driver Model

	5 Architecture and Current Implementation of UncerTolve
	5.1 Architecture
	5.2 Current Implementation of UncerTolve

	6 Recommended Methodology
	6.1 Creating BM and Driver Model (S1)
	6.2 Validate BM and Driver Model, and Evolve Objective Uncertainty Measurements (S2)
	6.2.1 Analysis of Errors and Fixing Models (S2A2, S2A3, and S2M1)
	6.2.2 Identifying Objective Uncertainty Measurements (S2A4)

	6.3 Evolve Belief State Machines with Dynamic Invariant Analysis (S3)

	7 Evaluation
	7.1 Results of Creating BM and DM (S1)
	7.2 Results of Validation and Evolution via Model Execution (S2)
	7.3 Results of Dynamic Inference (S3)
	7.4 Overall Validation
	7.5 Effort to Build Belief Test Ready Models and Adoption of UncerTolve
	7.6 Discussion and Experiences
	7.7 Threats to Validity

	8 Conclusion
	Acknowledgment
	References
	Paper E
	Abstract
	1 Introduction
	2 Background
	2.1 Uncertainty Modeling Framework (UncerTum)
	2.2 Uncertainty Theory
	2.2.1 Probability Theory vs. Uncertainty Theory
	2.2.2 Summary of Uncertainty Theory

	2.3 Example of the Application of UncerTum and Uncertainty Theory

	3 Overview
	4 Test Case Generation and Minimization
	4.1 Abstract Test Case Generation
	4.1.1 Definitions
	4.1.2 Strategies

	4.2 Uncertainty-Wise Test Case Minimization
	4.2.1 Problem Representation
	4.2.2 Definitions and Functions of the Six Minimization Objectives
	4.2.3 Uncertainty-wise Test Case Minimization Problems

	4.3 Executable Test Case Generation
	4.3.1 Enabling Indeterminacy
	4.3.2 Test Setup and Test Data Generation

	4.4 Test Execution and Reporting

	5 Evaluation
	5.1 Case Study
	5.2 Research Questions
	5.3 Design of the Evaluation
	5.4 Results and Analyses
	5.4.1 Results for RQ1
	5.4.2 Results for RQ2
	5.4.3 Results for RQ3

	5.5 Discussion
	5.6 Threats to Validity

	6 Automation
	7 Related Work
	8 Conclusion
	Acknowledgment
	References
	Appendixes
	Appendix A. Definitions of U-Model Concepts
	A.1 Belief Model
	A.2  Uncertainty Model
	A.3  Measure Model

	Appendix B. An Example of Questionnaire of the AW Case Study
	B.1 Examples of Uncertainty Requirements Specified in RUCM and Corresponding Questions
	B.2 Example of Refined Uncertainty Requirements in RUCM and Corresponding Questions

	Appendix C. An Example of BUCS Specified with the U-RUCM Editor
	Appendix D. tolveR-E
	Appendix E.  tolveR-D

