Uncertainty-wise Cyber-Physical Systems Testing

Man Zhang

Thesis submitted for the degree of Ph.D.

Department of Informatics
Faculty of Mathematics and Natural Sciences
University of Oslo
2018

Abstract

A Cyber-Physical Systems (CPS), as an integration of computing, communication, and
control for making intelligent and autonomous systems, has been widely applied in various
safety-critical domains, e.g., avionics and automotive. However, uncertainty is inherent in
CPSs due to various reasons such as unpredictable environment under which the CPSs are
operated. And, uncertainties may cause irreparable accidents once they cannot be handled
properly by CPSs. Therefore, it is crucial to identify uncertainties in CPSs and test CPSs
under the uncertainties, to ensure that CPSs are capable of handling the uncertainties during
their actual operations, i.e., making CPSs less uncertain.

Towards this direction, five contributions were made in the thesis corresponding to five
papers respectively: (C1) a conceptual model, named as U-Model, for helping develop a
systematic and comprehensive understanding of uncertainty in CPSs; (C2) an use case
modeling methodology, named as U-RUCM, for identifying, qualifying, and, where
possible, quantifying uncertainty in requirements engineering; (C3) a test modeling
methodology, named as UncerTum, for supporting the construction of test ready models with
the explicit representation of uncertainties in CPSs; (C4) an evolution framework, named as
UncerTolve, for interactively evolving test ready models specified with UncerTum based on
real operational data; and (C5) a testing framework, named as UncerTest, for testing CPSs
in the presence of uncertainties in their operating environments in a cost-effective manner
using model-based and search-based testing techniques.

Based on our evaluations of the five contributions with the industrial CPS case studies,
we observed that U-Model, as the foundation for this research, is sufficiently complete for
characterizing and classifying uncertainties in CPSs. Then, the U-Model based modeling
methodologies U-RUCM and UncerTum offer solutions to enable the identification and
specification of uncertainties at two critical phases of a system development lifecycle:
requirements engineering and testing. Furthermore, UncerTolve can successfully evolve
model elements of the test ready models specified with UncerTum and calculate objective
uncertainty measurements based on real operational data. Last, UncerTest managed to cost-
effectively test CPSs in the presence of uncertainties and proactively identify unknown
uncertainties by introducing the sources of the uncertainties into the test environments during

test case execution.

Acknowledgments

When writing the last part of the thesis, a feeling of gratitude welled up in my heart for
the people who helped me to make the thesis possible.

First and foremost, |1 would like to express my deepest gratitude to my supervisors:
Shaukat Ali and Tao Yue. They have both consciously and unconsciously taught me how to
think, how to express and how to do research. | appreciated their immense knowledge,
professional guidance, continues supports, patience and time to make my uncertain Ph.D.
pursuit be towards certain. In addition, the enthusiasm and enjoy they presented for their
research motived me when | met the bottle-neck in my research.

I would like to thank all the members of our group for their caring and help in my research
and daily life. Without them, | cannot have this great time after | moved away from my
country for the first time. Also, | would like to thank the members of the U-Test project, who
provided me invaluable suggestions and case studies for conducting the evaluation of the
solutions proposed in this thesis. Moreover, | would like to thank all colleagues at Simula
Research Laboratory, who altogether create a pleasant research environment.

Last, I would like to express my special gratitude to my parents for their encouragement
and support. Whenever I need help, you are always there. Thank you.

List of papers

The following papers are included in this thesis:
Paper A. Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz and R. Norgren.

In: Proceedings of the 12th European Conference on Modelling Foundations and Applications

(ECMFA 2016), pp. 247-264, 2016. DOI: 10.1007/978-3-319-42061-5_16
Paper B. Specifying Uncertainty in Use Case Models

M. Zhang, T. Yue, S. Ali, B. Selic, O. Okariz, R. Norgren and K. Intxausti.

Journal paper that has been submitted to the Journal of Systems and Software (JSS), second

revision.

Paper C. Uncertainty-Wise Cyber-Physical System Test Modeling

M. Zhang, S. Ali, T. Yue, R. Norgren and O. Okariz

Journal of Software & Systems Modeling (SOSYM). DOI: 10.1007/s10270-017-0609-6
Paper D. Uncertainty-Wise Evolution of Test Ready Models

M. Zhang, S. Ali, T. Yue and R. Norgren.

Journal of Information and Software Technology (IST). DOI: 10.1016/j.infsof.2017.03.003
Paper E. Uncertainty-wise Test Case Generation and Minimization for Cyber-Physical
Systems: A Multi-Objective Search-based Approach

M. Zhang, S. Aliand T. Yue.

Journal paper that has been submitted to ACM Transactions on Software Engineering and

Methodology (TOSEM).

Contents

N 0] 1 - Tod AT P USRI i
ACKNOWIEAGMENTS.......eeiieiice et re e e e nneenaenneas ii
LIST OF PAPEIS. ...t bbbt ii
(O0] 01 =] 1 KT TSP PRTRPRPR iv
PArt | SUMIMATY ...ttt bbb e be e sae e e beesnneene e 1
1 INTrOAUCTION ..ttt 2
2 BACKGIOUNG ...ttt ettt et nbe e nreas 7
2.1 Cyber-Physical System and itS UNCErtaintyccceoveivriiririninereeee e 7
2.2 Restricted Use Case Modeling (RUCM)......cccooviiiiiiiiiiciece e 7
2.3 Model-based TeStiNG (MBT)......coviieieiice ettt ene 8
2.4 Search-based SOftWare TeSHINGc.ooiiiiieie e e 9
2.5 UNCEIAINLY TREOTY ..ottt ettt este st e seesaeeneeneenneas 10
2.5.1 Probability Theory vs. Uncertainty TheOry.ccccoviiiiieieiicicce e 10
2.5.2 Uncertainty Measure and Uncertainty SPace........cccccevereeeerereeieneeeene e e 10

3 Research Methodologyc.cooeiiiieiieiece e 12
3.1 RESEAICN ACTIVITIES. .. cviiviiiieieieee et 12
0 [4]0] [=] 1= 01 - 4 o] LSRR 13
4 Uncertainty-wise CPSs Testing MethodologIes.........cccoovvvveieiiiiniere e, 15
A1 U-MOUEL ...ttt b e 16
4.2 U-RUCM ...ttt ettt ettt ne sttt ne e ne e 17
4.3 UNCEITUM Lttt bbbt bbbttt s bt b e bt s bt e st e sbe et e b sbe e e e nbeeees 20
A4 UNCEITOIVE. ..ottt bbb bbb 21
A5 UNCEITESE .ttt b ettt e s b e b bt b bt e s bt e be e e be e sbe e sae e enr e beees 23
5 EVAIUALION.couiiiiciieieiee bbb bbbt 25
TR A O 1T I (U0 V2SSOSR 25
ST O © =0 A oo TP PRSPPI 25
5.1.2 Automated War€hOUSE.........cceiiiiiiiiieiie e 26

I U Yoo [T 1o L] g A SRS S 27
5.3 U-RUCM (PAPET B) ...ovciiiciiieisiee ettt sttt 29
5.4 UNCEITUM (PAPEE C) .ttt sttt seeste s et neeeesneeneeneeenes 30
5.5 UNCEITOIVE (PAPEI D) ..ooveeeecie ettt sttt sre e 32
5.6 UNCEITESE (PAPEE E) ..ottt neeenes 33
B DISCUSSION ...ttt sttt bbbttt e et e bbb bttt b et e e e e 35
7 Conclusion and FULUIE WOTKcoieeiieiieesie et e 38
RETEIBNCE ... bbb bbbt 39
=L A | TP OPP PP 46
PP A bbbt a e nes 47
AADSTIACT. ...ttt bttt b ettt b e be et b e bt e nreas 48
R [11 oo 11 Tox { To] o ISP PR PSRRI 48

2 Background and Running EXample........cccoeiieiiic i 49

3 Uncertainty Conceptual MOGEL...........covoiiiiiiiiiiiie e s 51
0t N =TT Ty 1Y, oo L] SRR 51
3.1.1 Belief, BeliefAgent and BeliefStatement............c.cccoovveveiiiiiciiiie e 53
3.1.2 Evidence, EvidenceKnowledge, IndeterminacySource and
INdeterminaCyKNOWIBAGE.ooveiiieee et 55
3.1.3 Measurement and MEASUIE.c.civiieiueiieie e e et se et st sreenaesae s 57
3.2 UNCEraiNty MOGELooviiiiieceee e e 57
3.2.1 Uncertainty, Lifetime and Pattern..........ccocooeiireiieiieee e 58
3.2.2 LOCAlILY QNG RISK. .. .eiiiieieiieiee ettt nae s 60
3.3 MEASUIE IMOUENccveeeeeie ettt re et 61
O 7 1= U1 o] oSS USSP 62
4.1 Development and Validation of Uncertainty Requirements and U-Model..................... 62
4.2 EValUtioN RESUILS.c.eiiiiiece ettt 64
I T - =0 IRYAY o] o SR 65
LI o4 T 111 [OSSPSR 67
RETEIENCES. ... ettt et e r e te et e r e s ta e aeeneenre e reenae e e re s 68
PAPEE B .. 72
N 013 1 (! USSP 73
R [] 1 0 To [0 Tox T o S U P SUPPPRTSPR 74
2 Background and Running EXample........cccooviieiiiic e 76
22 A O 1V [o[- SRS 76
2.2 RUNNING EXAMPIE.....oiiiiiiiee et 77
2.3 Restricted Use Case Modeling (RUCM).......ccooiiiiiiiiiiieese e 77
3 U-RUCM Templates and KeYWOIdScccceiveiveieiieresieseesie e siee e see e esae e e 80
4 U-RUCM FOrmaliZation...........ccoviiiiiiieiiic it 83
4.1 Relationships of BeliefUCMeta with UCMeta and U-Model..............ccooevviveiiinennnn. 83
4.2 Belief Use Case Model, Element, and CIasSifiercccoovevevvieviesiecie s 84
4.3 Belief Use Case SPeCITICALION..........cocoiiiiiiee et 85
4.4 Belief FIOW OF EVENLSooociic ettt ettt st teepeenne e 89
4.5 Belief SENLENCEviiviiie e rn 92
O I U1 Tor=T o - [1] USSR PS 94
4.6.1 Uncertainty in Belief Sentences (NLUNCErtainty)ccoceevervrieeienienieenesee e 95
4.7 Branch UNCEIAINTYccueiieiiiicic sttt ettt te et sre e nnas 96
O T AV [T U €10 1T o SRS SPRR 97
5 Tool Support and MethodolOgYc.coivererieiieii e 99
LTS A o To VT o] oo o ARSI 99
T2 |V 1< g0 o (o] (oo V2SRRI 99
I AV 1 VT 11 o] o SRR 104
TR A OF I 11 o[- TSR 104
6.2 Context, Design, and Execution of Evaluationcccccoeeieeene e 105
8.3 RESUIS.....eecec e e e ae e be e reenre e 107
6.4 Experience, Lessons Learned, and Future Challenges..........cccccoevviveveiisveccnseesiee, 111
T REIAIEA WOTK ... et 113
8 Conclusion and FULUIE WOTK.........c.ccueiieieeiecie s esie e et see e sis et anee e nne s 115

ACKNOWIBAGMENLot e e e neenes 116

RETEIBINCES ...ttt b et bt nbe et e ne e b e 116
PAPEE C ettt r e 122
AADSEIACT. ...ttt bbb b re e enes 123
R [oo 11 Tox ([0 o ISP UR PRSP 123
2 BACKGIOUNG ...ttt 127
2.1 Cyber-Physical Systems and Testing Levels..........ccccoviiiiiiiiiinccee e 127
2.2 U=MOOEL ... bbb 128
2.3 UML Testing Profile (UTP) ..ottt 128

3 RUNNING EXAMPIE ...ttt te e sraesaeeneennees 129
4 OVErVIEW OF UNCEITUM ..ottt e 134
5 UUP and CPS Testing Levels Profilecccveiviieiieeiisecece e 136
5.1 UUP BEIHET ..ottt 137
5.2 UUP Uncertainty and MeaSUIEMENTcceuerereeiireie e see e enee st 139
5.3 CPS Testing Levels Profilecoo oo 141

IV (oo (=] I o] =V PSR URRPRTORPPRPRS 141
6.1 IMEASUIE LIDIAIIES.iieieeieieceieeee ettt ne e seeeneenee e e 142
6.2 PAttern LIDIary ... e 145

7 UncerTum Modeling Methodologyccooiiiiiiiieiiieecee e 145
8 R @ T 1 USSR 147
7.2 Application Level MOAelingc.cooiiiiiiiiiie e 148
7.3 Infrastructure Level MOGEIINGcovvvviiiiicece e 149
7.4 Integration Level Modeling.........ccoouo i 150
7.5 APPIY UUP (AP2/IF2/TT2) .o cuiieieieeeiieie et siee sttt sa s s s 151
7.5.1 Measurement Modelingccooiiieiiiiiicc e 153
7.5.2 Uncertainty MOGEIINGcoiiieieiece e 155

8 UncerTum Validation PrOCESSccceieiiirierieiisiesisieee et 158
8.1 UAL Executable Modeling GUIAEIINESc.cviiveiiiiiiiecc e 159
8.2 Recommendations to Fix Problems in Test Ready Modelscccoovvieiiiiiiinnnnnnn. 160

9 EVAIUALION. ...ttt bbb 161
9.1 Development and Validation of UncerTum and Test Ready Modelsc.cu....... 162
9.2 EVAlUALION RESUILS.....cceeiieiieececei et 165
9.2.1 Mapping UUP/Model Libraries to U-Model and MARTE..........c.cccocvinineniennn. 166
9.2.2 Application of UUP/Model Librariescccccoveviiieieiieie e 169
9.2.3 Validation of Test Ready Models via Model Execution.............cccocevevveinnnnnnnn 170
9.24 Application OF UTP V.2, ..ottt 171

9.3 Overall Discussion and LIMitationSccoeverieiiiininininienese e 172
10 REIAIEA WOKK ..ottt e 173
11 Conclusion and FUtUIE WOTKccueieieiiieiesiseneeeee e 175
ACKNOWIEAGMENL. ... et neenes 176
RETEIBNCES ... ettt bbb bt bttt n e 177
PAPEE D oo 183

Vi

DS TG .t e et e e e e ——————ae e e e e ——— 184

R 101 oo [0 Tox T o TSRO PTR 185
1.1 Challenges and ODJECTIVEScoiiieieieeeeie ettt see e 186
1.2 Context, SCOPE aNd OVEIVIEW.........ciuiiiiieieieiisiisie sttt 187
1.3 CONITDULIONS. ...ttt bbb sn e 190
1.4 Results and the Structure of the Paperccoiiiiieie e 191

2 REIALEA WOTKottt sttt sne b 192
2.1 Comparison With EXiStING WOFKScceiieiiiiee e e 192
2.2 Comparison with OUr Previous WOTKScoooiiiiiiiiiiese e 195

3 BACKGIOUNG....ceeiitiiiiee ettt ettt sne b 196
3.1 Cyber-Physical Systems and Uncertainty LEVEIS...........cccooereiiiiiiiiniiiicesceeis 196
3.2 UML TeStiNg Profile.......coooieieee e 197
38 U-MOOEL ... et 198
e UNCEITUIM Lttt b bbbt a bt et e e b e e sb e e sbe e she e et e e be e ebeenbeenbeesenas 198
T U [0 (00T - USRS PRTOPROPR 199

4 Terminologies And RUNNING EXAMPIE.......oiiiiiiiiiiiii e 200
4.1 Belief Test Ready MOEIcc.ooiiiiiiiiee e 200
4.2 Executable Belief Test Ready MOGEL..........cccooiiiiiiiiiiieceee e 203
4.3 DIIVEIN IMIOUBL. ..ot bbbttt 203

5 Architecture and Current Implementation of UncerTolve..........cccocoveniieninnnnnn 205
5.1 ATCRITECIUIE. ...ttt bbbttt bbbt et ene s 205
5.2 Current Implementation of UNCerTOIVE.......c.ccveviiiiie i 208

6 Recommended MethodoIOgY.......cccveiiiieiieieeie e 211
6.1 Creating BM and Driver Model (S1)ccoooviieiiiiceece s 212
6.2 Validate BM and Driver Model, and Evolve Objective Uncertainty Measurements (S2)

214
6.2.1 Analysis of Errors and Fixing Models (S2A2, S2A3, and S2M1).........ccccevveunne. 215
6.2.2 Identifying Objective Uncertainty Measurements (S2A4)cccccvvvvcvevevvivenenn, 216
6.3 Evolve Belief State Machines with Dynamic Invariant Analysis (S3)c.ccccevenee. 217

T EVAIUALION ...ttt bbb 219
7.1 Results of Creating BM and DM (S1)......cccocviiveiiiiiieiesiece et 220
7.2 Results of Validation and Evolution via Model Execution (S2)ccccovvnvieiicnennn 220
7.3 Results of Dynamic INTErenCe (S3)ccviieiiiieie et 221
7.4 OVErall Validation..........cooiiiiiiiiiisiie e 222
7.5 Effort to Build Belief Test Ready Models and Adoption of UncerTolve.................... 223
7.6 DISCUSSION ANG EXPEIIENCES ... ceviieieeeiteeiie st eteeie sttt sie st eee e sre e see e e seesneeneeneas 224
7.7 ThreatS to Validitycccoveiiiiiice st 225

ST O] 0 [od [V (o] o H SRR UR PRSI 226

ACKNOWIBAGMENT ...t e e ra e re e e sneenne s 226

RETEIBINCES. ...t ettt b bt b ettt e e te e rs 227

PAPEE B s 232

o1 L= To! SRS 233

R 10T 11 Tox { To] 4 I USSP PR PR PUTPTPRPRPRORIN 233

2 BACKGIOUNG.. ..ottt sttt st et sbe b 235
2.1 Uncertainty Modeling Framework (UNCerTum)cccocvveerereeieneneee e 236

vii

2.2 UNCEIAINLY TREOTMY ..ottt sttt seesre s e saeereeneenee e 236

2.2.1 Probability Theory vs. Uncertainty ThEOIYccccveviiivciiiiiicceseese e 236
2.2.2 Summary of Uncertainty ThEOIYcccvcvieiiiieiecece e 237

2.3 Example of the Application of UncerTum and Uncertainty Theory.............cccceeuenen. 237

3 OVBIVIBW .ttt ettt et b e et a e et e e e b e et e e sae e e b e e e beeebeesneeebeennee s 239
4 Test Case Generation and MiNiMIZatioN...........cocviieieeresiee e 240
4.1 ADStract TeSt Case GENEIALIONcoeieiriiiie st 240
411 DEFINITIONS.....oiiiiiiiiciesee bbbt 240
412 SHAIEOIES. ..o neeieeeie ettt e ettt et et te et e nteeneenaesreenaeneeenean 243

4.2 Uncertainty-Wise Test Case Minimizationccoccovoieiriiviiieiene e 245
4.2.1 Problem RepreSentationccccviieiiiieie st 245
4.2.2 Definitions and Functions of the Six Minimization Objectives...........cc.cccccevennee. 246
4.2.3 Uncertainty-wise Test Case Minimization Problems.............ccccooniiiiiiiiinnnnnnn 247

4.3 Executable Test Case GENEIAtION........ccccviiiiiiierieieieiee st 248
4.3.1 Enabling INAEterMiNACYcccoviiiiiiiiie ettt 248
4.3.2 Test Setup and Test Data GeNEration..........ccocevveeerierieieene e e 251

4.4 Test Execution and REPOITINGccvoiiiieiiiieeie et 252

5 EVAIUALION. ..ottt e 253
B.1 CASE SHUAY .. .oeieiieiie ettt ettt sttt ettt e ne e b ere st eaeeneerenee e 254
5.2 RESEArCh QUESTIONSciviiiieiite ettt ettt ettt be e st saa et e be e beesre e 256
5.3 Design of the EVAIUALIONccceeiiiiiiie e 257
5.4 RESUILS AN ANAIYSES.cuiiiiiieieieie ittt ettt ne e st sreeneesaeeneeeennens 259
54.1 ResUltS TOr RQL.....cooi i sttt ee e e re e re e e 259
542 ReSUIS FOr RQ2Z.....ccuiiiieiiice ettt sttt be e sbe e st st be e be e ere e 260
54.3 ResUltS TOr RQS.....ccooi i te et e e st nee e re e re e 261

TR T I 1] o]0 11 o] o SRR 263
5.6 Threats t0 Validity.......ccocoviiiiiiiec et et 264

LI AN 1 (o]0 0T L1 o] o S PSRROPRUPPR 265
T REIALEA WOTK.....eevieii ettt sttt ste e e sraenaeeneenneas 267
ST O] 0 [od [V [o O PSSP RPTORPPRRPRS 269
ACKNOWIBAGMENL ..o e e e neanes 270
RETEIBICES ...t e e et e e e e et e e e rre e beesnneenes 270
N o] 0T o [SR 277
Appendix A. Definitions of U-Model CONCEPLS........covvererriiieiiiienie e 277
Al [T 1= 1Y oo] SR 277
A2 uncertainty MOEl...........cooiviiee e 280
A3 MEASUIE MOTEN ...ttt enes 283
Appendix B. An Example of Questionnaire of the AW Case Studycccevenenne. 284
Appendix C. An Example of BUCS Specified with the U-RUCM Editor 289
ApPPendiX D, tOIVER-Ecvi et 290
APPeNdiX E. tOIVER-D.....oiiiiiei e s 291

viii

Part 1
Summary

Summary

1 Introduction

A Cyber-Physical Systems (CPS), as an integration of computing, communication, and
control for making intelligent and autonomous systems [1], has been widely applied in
various safety-critical domains, e.g., avionics and automotive [1-3]. However, uncertainty
is inherent in CPSs, due to various reasons such as unpredictable operating environments of
CPSs [1-3]. And, uncertainties may cause irreparable accidents once they cannot be handled
properly by CPSs. Therefore, it is crucial to identify the uncertainties and test CPSs under
the uncertainties, to ensure that CPSs are capable of handling the uncertainties during their
actual operations, i.e., making CPSs less uncertain.

In the thesis, we investigated uncertainty in CPSs from the subjective view. This means
that uncertainty is considered as a state of affairs whereby, for whatever reason, participants
who are involved in the phase of CPSs lifecycle (e.g., designer) lack perfect knowledge about
some interests of CPSs (e.g., a state of CPSs during the actual operations). Thus, the
identification of the uncertainties in CPSs originates from the participants according to their
knowledge at a given point of time. More specifically, the identification is about sufficiently
and explicitly capturing uncertainties known by the participants. In addition, the
identification is also about to exploring unknown uncertainties, which might be known at
some point in the future. However, the identified uncertainties in CPSs may be not valid.
Therefore, it is also required to take an objective approach (e.g., testing) to validate the

identified uncertainties based on CPSs. Towards this direction, a series of systematic,

uncertainty-wise, model-based methodologies (Figure 1) was proposed with respect to five
contributions (C1-- C5).

Understanding Uncertainty in Cyber-Physical Systems o---- Cl: U-Model

C2: U-RUCM C3: UncerTum C4: UncerTolve C5: UncerTest
I : : ”______.-A-n.._._‘________ o
H ' ' 4: Generate Test | 6: Execute Test
i =0 2: Model | Cases with | Cases with
i Uncertainty | m Uncertainty | Uncertainty
1 . | |
! Reguirements : — :. m
1 | -
E S 0 SUT (CPS)
o 1: Speafy 3: Evolve Mudel 5: Minimize Test

Cases regarding

Uncertalnty with Uncertalnty :
Uncertainty
= uncertainties specified in the
Uncertainty Requirements Belief Test Ready Models (BMs) Test Cases outputs at the different phase

Figure 1. The scope of the Uncertainty-wise Cyber-Physical Systems Testing

As shown in Figure 1, the first contribution (C1) is U-Model, which is a conceptual model
for understanding uncertainty in CPSs. The conceptual model takes a subjective approach to
represent uncertainties, i.e., lack of knowledge about some interests of CPSs held by some
agents or agencies (i.e., belief agents). In addition, the classification and abstractions of
uncertainties in CPSs were defined in U-Model. Furthermore, a set of the commonly known
measures of uncertainty were also introduced in U-Model. Note that all proposed
uncertainty-wise methodologies share the same definition of uncertainty at the conceptual
level based on U-Model.

To handle uncertainty at the early stage of the development of CPSs, we developed U-
RUCM (C2 in Figure 1) for specifying uncertainty as a part of requirements of CPSs, i.e.,
uncertainty requirements. In terms of testing CPSs under uncertainty using MBT as shown
in Figure 1, U-RUCM also aims to provide the precise uncertainty requirements for
supporting further modeling activities (e.g., constructing test ready models with
uncertainties). In U-RUCM, two templates were introduced for structuring and specifying
the uncertainty requirements. Such requirements can be automatically formalized as
instances of a formal U-RUCM metamodel.

To enable MBT of CPSs under uncertainty, an uncertainty modeling methodology, named
as UncerTum, was developed (C3 in Figure 1), for constructing belief test ready models

(BMs). BMs annotate the test ready models with uncertainties, describing the uncertain

behaviors of CPSs and/or their uncertain operating environments. Moreover, the
methodology also allowed to specify the measurements and characteristics of the
uncertainties as parts of BMs. The core of UncerTum is the UML Uncertainty Profile (UUP),
which was implemented based on U-Model. In addition, we also developed three model
libraries (i.e., time library, pattern library and measure library) in UncerTum for constructing
BMs with the advanced modeling features.

To evolve and validate BMs, we developed an uncertainty-wise evolving framework (C4
in Figure 1), called UncerTolve. Asshown in Figure 1, since BMs are produced by modelers,
BMs may be not complete and correct due to their mistakes made accidentally. Therefore, it
is vital to validate the BMs based on some objective evidence. In addition, the BMs are the
inputs of MBT of CPSs, which decides whether CPSs can be tested sufficiently with
uncertainties. Thus, the sources of uncertainty in the BMs are required to be identified
sufficiently and correctly before testing. Otherwise, it might be time-consuming to observe
the occurrence of uncertainty during testing, due to the randomness of the appearance of the
sources. As such, UncerTolve was proposed to be interactive to evolve BMs based on
available evidence, i.e., real operational data collected from real applications of CPSs. To
achieve the evolution, three main features were implemented: 1) validating BMs based on
the data via model execution; 2) deriving objective uncertainty measurements (i.e.,
frequency) based on the result of the model execution; 3) evolving state invariants and
guards of transitions of BMs together with the data using a dynamic invariant detector.

Last but not least, we developed a search-based and model-based framework to test CPSs
in the presence of uncertainty, called UncerTest (C5 in Figure 1). To be uncertainty oriented
and cost-effective, we implemented three features in UncerTest for supporting three testing
activities shown as 4-6 steps in Figure 1: (1) Test Case Generation: Two test case generation
strategies were proposed in UncerTest corresponding to two coverage criterions, All Simple
Belief Path Coverage (ASiBP) and All Specified Length Belief Path Coverage (ASIBP); (2)
Test Case Minimization: To reduce the number of the generated test cases, we defined four
test cases minimization strategies based on multi-objective search; and (3) Test Case
Execution: A set of an uncertainty-wise test verdicts were defined for evaluating the

occurrence of uncertainty during test case execution.

Through the entire process (1-6 steps) as shown in Figure 1, uncertainties in CPSs can
be gained step by step. More concretely, the modeling methodologies (i.e., U-RUCM and
UncerTum) is potential to help modelers to identify more known uncertainties by
characterizing and structuring the uncertainties explicitly. In addition, the evolution provided
by UncerTolve helps to validate the known uncertainties and identify new uncertainties
which are not obvious to modelers but exist according to available evidence, i.e., real
operational data. Last, UncerTest enables to test CPSs under uncertainty by introducing
various sources of uncertainty into test environments, and thus we are also able to observe
new (i.e., previously unknown) uncertainties during testing.

The structure of this thesis is presented in Figure 2, which includes two parts.

Part I. Summary

] Legends
' — next
(Section 1. Introduction) O— details
Section 6. Conclusion C] .
(Section 2. Backgraund)
+ Section 5. Evaluation
Section 3. Research Methodology
(Case Study) Part Il. Collection of Papers
Section 5.1.
¢ Case Studies)
Section 4. Contributions —r ‘L
Section 4.1. Understanding Section 5.2.
[uncertainties in CPSs (U-Model) j (Results of U-Model) Paper A (C1)
Section 4.2. Speafymg Uncertainties Section 5.3.
Oo—— P B(C2
[in Use Case Models (U-RUM) Results of U-RUCM aper B(C2)
Section 4.3. Uncertamty -wise CPS Section 5.4.
[Test Modelmg (UncerTum)] [Results of UncerTum) Paper C (C3)
Section 4.4. Uncertamty wise Section 5.5
Evolution of Test Ready Models Results of U) .T " O——— PaperD(C4)
(UncerToIve] esults of UncerTolve
Section 4.5. Urlcertaunt'..r wise Test Section 5.6 :
Case Generation and Minimization Results of i 'T Oo— Paper E (C5)
for CPSs (UncerTest) esults of UncerTest

Figure 2. The structure of the thesis

The first part (Part 1) is about summarizing the research work for the entire thesis, which
is organized as the following: Section 2 is the background that provides the necessary
information for understanding the thesis; The research methodology is presented in Section
3; Section 4 briefly presents the contributions of the thesis, followed by the summary of the
key results (Section 5); and Section 6 concludes the thesis. The second part (Part 1) is about
collecting the related papers with respect to the five contributions (C1-- C5). The mapping

between the summary and the collection of papers is shown in Figure 2.

2 Background

2.1 Cyber-Physical System and its uncertainty

As defined in [4], a CPS is composed of ““a set of heterogeneous physical units (e.g.,
sensors, control modules) communicating via heterogeneous networks (using networking
equipment) and potentially interacting with applications deployed on cloud infrastructures
and/or humans to achieve a common goal.”

According to the definition, uncertainty in CPSs can be categorized as the three logical
levels [4] as shown in Figure 3. First, the uncertainty at the application level originates from
an application (one or more software components) of a physical unit of CPS, which can be
one software component, or the interaction between human being and applications, or the
interaction among software components within one physical unit. Second, the uncertainty at
the infrastructure level originates from the hardware of a physical unit, or networking
infrastructure and/or cloud infrastructure built on the set of physical units, or data
transmission via information network enabled through the infrastructure. Last, the
uncertainty at the integration level originates from either the interaction of applications
across physical units at the application level or the interactions of physical units across the

application and infrastructure levels.

e
(Physical Unit Physical Unit)

- — e e ——— (L

| Application Lev:

el | |Integration
| o perfofms (Toofy Soft |y + —Lg— i
| ﬂ' 7 ware ware eve
—)

/_ Physical Un_it\ h

lication |
Level |
——

deplpyed on deployed on
s —_——ti e —] L — =

Hardware

® Uncertainty U1: Application Level Uncertainty U2: Infrastructure Level Uncertainty U3: Integration Level Uncertainty

Figure 3. Uncertainty in Cyber-Physical Systems (CPSs)

2.2 Restricted Use Case Modeling (RUCM)
RUCM is a methodology for specifying textual use case specifications [5, 6], aiming at

being easy to use, reducing the ambiguity of the textual specification, and supporting further

automated analyses. Two controlled experiments were conducted to evaluate RUCM, and
the results showed that it is overall easy to use and achieved a significant improvement of
the understandability of use case specifications [5, 6].

RUCM is composed of a use case template, a set of keywords, and a formalization
mechanism. A use case specification structured with the RUCM use case template has a
mandatory basic flow and optional alternative flow(s). An alternative flow always depends
on a condition occurring in a specific step of another flow (reference flow). Accordingly,
alternative flows are classified into three types: a specific alternative flow refers to one
specific step of a reference flow; a bounded alternative flow refers to more than one specific
steps of reference flow(s); a global alternative flow refers to any step in any other flow. By
such template, the interactions among flows of events in the system are able to be precisely
defined. In RUCM, a set of keywords were proposed for specifying control structures, such
as IF-THEN-ELSE-ELSEIF-ENDIF for conditional logic, DO-UNTIL for iteration, and
VALIDATE THAT for the condition check. The introduction of these keywords helps to
reduce ambiguities in the use case specifications and facilitates the automated analysis model
transformation. In addition, a metamodel, UCMeta, was developed for formalizing RUCM
using the OMG’s standard Meta-Object Facility (MOF) [7]. The metamodel not only covers
all concepts in the RUCM use case template and keywords, but also captures the natural-
language (NL) concepts in a sentence, e.g., subject, object, and verb. Moreover, an
automated solution was provided in the RUCM framework, called aToucan [5], to
automatically extract the NL information and generate three types of UML analysis models:
class, sequence and activity diagrams.

Several extension works [8-11] have been developed since RUCM was initially
introduced by Yue et al. [12] in 2009. In the thesis, an extension of RUCM (Section 4.2) for

explicitly specifying uncertainty in use case specifications was proposed.

2.3 Model-based Testing (MBT)
Model-based Testing (MBT) is a technique for performing software system testing using
models [13]. In MBT, models can be used to express the expected behavior of the system

under test, and/or its environment to be tested.

MBT has been in use since the 1980s [14]. With the rapid expansion of the interest in
MBT from the industry and academia, the feasibility and cost-effectiveness of MBT have
been demonstrated by the intensive research work and industrial practices [14, 15].

The typical process of MBT includes five steps [15]: (1) construct models with respect to
the system under tested and/or its environment; (2) generate a set of abstract test cases based
on the constructed models according to the defined test selection criteria; (3) concretize the
abstract test cases to executable ones; (4) execute the test cases on test infrastructures and
assign verdicts; and (5) analyze execution results of the test cases. The constructed models
can be reused for generating abstract test cases according to the different criteria. In addition,
the same set of abstract test cases can be made executable in different environments by
changing the adaptation layer for converting abstract test cases into executable ones.

In the thesis, we developed a modeling framework (Section 4.3) for constructing test
ready models with uncertainty. Such models can be used to test CPSs under uncertainty by
the proposed testing framework (Section 4.5).

2.4 Search-based Software Testing

Search-based Software Testing (SBST) is about applying a meta-heuristic optimizing
search technique to tackle software testing problems, such as automatic generation of test
data [16-20]. In SBST, these testing problems are normally reformulated as search problems
for seeking optimal or near-optimal solutions in a search space. The process is guided by
fitness functions that are defined to evaluate the sought solution for seeking the better ones.
The applicability and effectiveness of SBST can be demonstrated by many successful works
and related surveys [21-25].

Recently, multi-objective approaches are increasingly applied for optimizing the test
process, such as test set selection, minimization, and prioritization [20, 25]. One possible
reason is that the problem in software testing faces multiple objectives in nature [20], and it
may be conflict among the objectives, such as time budget and the coverage of selected test
cases. In SBST, Pareto optimality is one commonly applied approach to deal with such
situation by outputting a set of trade-off optimal solutions [18, 20, 26, 27]. A multi-objective
optimization problem can be formulated as a set of fitness functions corresponding to the

objectives being achieved. In Pareto optimality, a solution S1 is said to dominate (implies

better) other solution S2 if S1 is strictly better than S2 in at least one fitness function and S1
Is no worse than S2 in all other fitness functions. Then a solution is called Pareto optimal if
no existing another solution can dominate it. To solve a multi-objective problem using search
algorithms based on Pareto optimality, a set of Pareto optimal solutions are produced.

In the thesis, a set of multi-objective problems for minimizing the automatically
generated test cases were defined with considerations of the cost-effectiveness and
uncertainty during testing CPSs (Section 4.5). In addition, eight Pareto-based search
algorithms were selected for assessing the performances of the algorithms in solving the

defined test case minimization problems.

2.5 Uncertainty Theory

2.5.1 Probability Theory vs. Uncertainty Theory.

To measure uncertainty, Probability Theory is commonly applied method (e.g., [28, 29])
in the practice to treat the measurement of uncertainty as a frequency. But, the application
of this theory is built on an amount of data collected from the long-run experiment (i.e.,
being “close enough to the long-run frequency” [30]). However, in the context of software
testing, it is quite common that data is not able to be obtained at the startup phase of the test
design for enabling MBT, due to, e.g., budget issues [30]. Therefore, it is not ideal to apply
Probability Theory to obtain the frequency in such context with its usage of guiding the test
phases, €.g., test design and test optimization.

Uncertainty Theory defined by Liu [31] is ““a branch of mathematics for modeling human
uncertainty””. Uncertainty Theory is to measure uncertainty as a belief degree from the
subjective perspective, heavily depending on the knowledge and experience of the domain
expert. It is a natural fit for our context, i.e., handling uncertainty even lacking observed data
and treating uncertainty from the subjective perspective (U-Model [4]). It is also important
to note that Uncertainty Theory has been applied to solve various problems from different
domains, e.g., [32-35]. In the thesis, an application of Uncertainty Theory for obtaining the
uncertainty measurement of a test case is presented in Section 4.5, and the related definitions

are described in Section 2.5.2.

2.5.2 Uncertainty Measure and Uncertainty Space

Uncertainty Measure (UM) is defined in Uncertainty Theory that is a specific value (i.e.,
a number) assigned to the belief degree of an event [31] by a belief agent, indicating
his/her/its confidence about the occurrence of the event [4]. In Uncertainty Theory, UM is
represented as the M symbol. As Liu suggested in [31], M respects the following three
axioms:

Axiom 1. (Normality) M’ (T") = 1, (T is the universal set).

Axiom 2. (Duality) M{A} + M{A°} = 1, where A shows a particular event, whereas A°
shows all the elements in the universal set excluding A.

Axiom 3. (Subadditivity) M{U2; Ai} < X2y M{A;} (every countable sequence of
events Ay, Ay, ...).

In addition, Uncertainty Space and its related theorem which are relevant to the thesis are
presented as below. For more details of Uncertainty Theory, readers may consult [31].

Uncertainty Space: A triplet (T', £, M), where T is the universal set, £ is a o-algebra [36]
over I', and M is UM.

Theorem: Let (T}, Ly, M) be uncertainty spaces and Ay, € Ly, fork = 1,2,... n. Then
Ay, A,,... A, are always independent of each other if they are from different uncertainty

spaces.

3 Research Methodology

This section presents the research method we applied in the entire thesis. This research
work was funded by an EU project, U-Test, which involved two use cases providers from
two distinct domains of CPSs and two testbed providers. Such participants provide a rare
opportunity to develop and evaluate the proposed approaches with the support of the
industry. From the research perspective, the industrial partners and industrial case studies
help to identify the research problems based on their needs. In our case, it is particularly
helpful since the existing study about uncertainty in CPSs is not mature [4, 37, 38]. From
the engineering perspective, the developed approaches may work in theory, but it might be
not applicable in the industry due to various factors, such as its usability and scalability.
Thus, by conducting the research with the industrial case studies, such problems can be

revealed and might be solved further.

3.1 Research activities

The research activities are shown in Figure 4, which has two parallel processes conducted
by the researchers and U-Test industrial partners respectively.

The overall research problem was initially defined based on the objectives of the U-Test
project (Al in Figure 4), i.e., testing CPSs with uncertainties for ensuring that CPSs can
operate properly in the presence of uncertainties.

In order to solve it, the five approaches were proposed in the following activities (A2-A6
in Figure 4). Overall, the activities can be divided into two phases (i.e., the development
phase and evaluation phase) for each proposed approach. For the development phase, all
developing actions (i.e., A2.1, A3.1, A4.1, A5.1, A6.1 in Figure 4) took inputs from the
industrial partners whether directly or indirectly. Based on the domain knowledge of the
industrial partners, some feedbacks regarding their understanding and representations of
uncertainty in CPSs could be collected in the forms of meetings or questionnaires. So, the
process of the development of U-Model, U-RUCM, and UncerTum is iterative, by refining
the approaches with the accumulated feedbacks from the industrial partners, shown as A2.2
& B2, A3.2 & B3, and A4.3 & B4 in Figure 4. For the evaluation phase, all approaches were

evaluated with at least one industrial case study to assess the performances, shown as A2.3,

A3.4, Ad.4, A5.3, and A6.3 in Figure 4. The design and key results of the evaluations with

the industrial case studies are reported in Section 5.

The last activity (A7 in Figure 4) is to conclude the research work in the forms of this

thesis.

3.2 Implementations
Finally, we produced the five uncertainty-wise approaches with tool supports, denoted by

the underlined text in Figure 4. The implementations of all approaches are described in Table

1, together with the accessible links to view or download the implementations.

Table 1. Implementations of the proposed approaches

50], Eclipse OCL and JUnit

Approach | Techniques/tools/languages Implementations
U-Model UML [39], OCL [40], IBM | U-Model was implemented by UML class diagram with
Rational Software Architect (RSA) | constraints using RSA, which is available in [41].

U-RUCM Eclipse [42], LMF, Java U-RUCM was implemented as an eclipse plugin, and the
metamodel (BeliefUCMeta) is available in [43]. In
addition, a video to demonstrate the U-RUCM editor and
the formalization from U-RUCM to instances of metaclass
can be found in [44].

UncerTum | UML [39], RSA A prototype implementation of UncerTum by RSA can be
found in [45], which includes a set of UML profiles and
model libraries. The detailed specification and guidelines
are available in [46].

UncerTolve | RSA, IBM Simulation Toolkit | An implementation of UncerTolve was built on IBM

[47], Eclipse OCL [48], Java, | Simulation Toolkit, by integrating eclipse OCL for
Daikon Invariant Detector evaluating the state invariant and daikon for detecting the
invariants. More details about the implementation are
described in Paper D and [37].
UncerTest | Eclipse, EMF, Java, jMetal [49, | A prototype implementation of UncerTest by java is

available in [51]. Note that we used multi-objective search
algorithms implemented by jMetal for performing the test
case minimization.

U-Test Proje
Objectives

Al: Identifying the
research problems

O—{

U-Mode
(Initial)

A2.1: Developing U-Model for
understanding uncertainties in CPSs

'

Domain @
Knowledge
Uncertainty
Req. VO

B1: Developing the
uncertainty requirements

‘)

ncertainty Requirements

A3.1: Developing U-RUCM for L

i

Uncertainty
Reg. V1

;

specifying uncertainties of CPSs in
use case models J\

v

|

|

1

@ A2.2 & B2: Refining U-Model and U
v i
A2.3:Validating U-Model and |
analyzing results |

|

v |

|

|

|

|

|

Y

A3.2 & B3: Refining U-RUCM and Uncertainty Requirements specified with

e
U-RUCM ‘1

¢ |
A3.3:Implementing U-RUCM editor J

v

A3.4:Validating U-RUCM and analyzing results

}

A4.1: Developing UncerTum for constructing
test ready models with uncertainties

-RUCM

editor

Uncertainty
Regq. V2

v ;

A4.2: Constructing test ready
models specified with UncerTum

BMs
(Initial)

N

) |

L

A4.3 and B4: Refining UncerTum, BMs a

nd Uncertainty Requirements

‘)

I
Qoo ;

A4 .4: Validating UncerTum using
BMs and analyzing results

v

AS5.1: Developing UncerTolve
Methodology for evolving BMs

UncerTolve

AS5.2: Selecting the technique and
Implementing UncerTolve

ncerTolve

{Tool)

l

G
)|

—

)

AS.3: Validating UncerTolve and
analyzing results

A6.1: Developing UncerTest Methodology
with test case generation and minimization

)

ncerTes!

(Tool)

AB.2: Selecting the technique and
Implementing UncerTest

A6.3: Validating UncerTest and
analyzing results

Uncertainty
Reg. V3

Operational
Data

Y

B5: Implementing Test
Infrastructures and Test Beds

est Beds and Test é
Infrastructures

Lengends
= Action Flow

< Data [__] Action Iterative Action

Reriodofthe 0 u-modet [u-rucm [uncerTum
' D UncerTolve D UncerTest

J

> Data Flow () $tart () Final

i
ﬂ.&;

Bunsa] swalsAs [eaISAYd-180AD asIM-AlUIeLIaduN 3Yl JO MBIAIBAQ °§ aInbi

Aq pasnposd

wajshs
|easAyd-12gAd

pakojdap

ejeq uonesadg (eay

Jopa3ag Jueneau Ag uopnjong I
uoRIpUO) PIENS R'F JUBLEAU| BIBIS | |

ﬁ (Aauanbayy) uopeasag uAWAINSEIN _ I

ﬁ uonnaax3 [apolN Ag uoneplep [2PoN _ “

(sa08 "swsg saig)

uonEIaUAY 3SE) 1531 PENSY

['C)) uOpeIBUAD BSE) 3S3Y 7

&35

|
|
(s1d¥ 1521 yum Suiddeyy)
uojjeIaUAD) 35E) 159 A|GEINIANT I
|
(dgisv dgisy] mu |

@ ..
=
T T
S <
o 2
wn S O
L = 2
" — m mu\
[«B}
o £ §
S 25
(B}
g C
o c £
c Z 2
(%]
= 3 <
D »
) <r (sanuiouaun fo a3uannaag)
M o synsay 3sa)
C m wdoq jsaLw
mv % .m \P swyode yueas 011343
.M > 5 annaalgo-1nyy _F_r
" — S 4 |||||||||| - -
.q.u > = — | (swaiqoid yauvas aandalgo-minm)
..m o (TS UoIEZIW|UA
(¢D) ‘= M = ase) 1sa] asim-AJulenaaun
(S
T ..n_rl.“ nUv O ——————-—
w Sz <L
N S 353
= 13 ‘NN ‘win)
_ _ (¢B) - sase) 1531 1esqy
< o LFINEL] |
@) e d @ I
) 4 (] |
[<b) 5 _
» 3 5 2 |
» — .ﬂlb o o] adhh «w Pepue |
> = [- = |
W ﬂrb % (4] indino *—fll yomawey = |
1 W N ~ wnduy [Je— =epfsay —
y N—r 4
c - spuadal
L < D <t
n 17 e} c
" — .m_ o m
© § = 3
) [72]] D
- S DO v
(D) Q|
O w g g
C = ©
S &
2D 2 8 5
— o e}
L s ©
o [
<t s D

(Moay) Auiouasun wi wn)
uopIBINI|E] JUBWaINSeay Ajuleisaoun

I

s|apoln Apeay 1531 J3ljeg - anjoLiadun |
e e

| saujjaping |

I === H IIIIIIII “ Suijapon = S3INY UoKILISIY _ _

|

|

|

I

1epijep pue Sulapoiy w_ __ TR IEIEY] __ saje|dwal omL _
|
|

€3) 1s9da0un

.... !
_ sauesqr |apoN _ _ $3|yosd _ I (zn Wany-n

Y e e e e o — — — —
(€73) wnpJaoun I 1 PEME_E:S
|||||||||||||||| J Lioyuod

TAbay Ajujelsasun
.—EUD&-_J_'

To be consistent and systematic to define and identify uncertainties in CPSs, we

developed U-Model (C1 in Figure 5) for providing a unified conceptual understanding of

uncertainty that is the base of the entire research work. Based on U-Model, two modeling

methodologies, U-RUCM (C2 in Figure 5) and UncerTum (C3 in Figure 5), were developed

for annotating requirements and test ready models of CPSs with the explicit representation
of uncertainty, denoted as uncertainty requirements and belief test ready models respectively
in Figure 5. Moreover, the belief test ready models are able to be evolved by UncerTolve
(C4 in Figure 5) based on real operational data collected from the real applications of CPSs.
Furthermore, by taking the belief test ready models as input, UncerTest can produce a set of
test cases (i.e., abstract test cases and executable test cases) embedded with uncertainty
information, e.g., the source of uncertainty, the uncertainty measure (measurement) of
uncertainty, by the test case generation (C5.1 in Figure 5) and/or uncertainty-wise test case
minimization (C5.2 in Figure 5). The executable test cases can be executed on the test
infrastructure for testing CPSs with the sources of uncertainties seeded in the test
environment. After the execution, the occurrences of the uncertainties are allowed to be
observed using the test results specified with the uncertainty-wise verdicts (C5.3 in Figure
5).

4.1 U-Model

To investigate uncertainty in CPSs, a unified and comprehensive uncertainty conceptual
model should be derived. As such, we developed U-Model based on the accessible CPSs
industrial case studies and a thorough literature review of existing uncertainty models from
various domains [52-55], e.g., physics and statistics.

Figure 6 presents the top-level model of U-Model, which is composed of three packages:

Belief Model, Uncertainty Model, and Measure Model.

1
«import» ---->BealiefModel [€------- y «lmport»
1 i]
MeasureMocdel UncertaintyModel

Figure 6. The top-level model of U-Model

U-Model was proposed for taking a subjective approach to representing uncertainty. This
means that uncertainty is modeled as a state (i.e., worldview) of some agent or agency
(referred to as a BeliefAgent) that lacks perfect knowledge about some subject of interest. A
BeliefAgent holds a set of subjective Beliefs about the subject. A Belief is an abstract concept,
but it can be expressed in concrete form i.e., an explicit specification (BeliefStatement).

Thus, Uncertainty represents a state of affairs whereby a BeliefAgent does not have full

confidence in a BeliefStatement that it holds. Note that all subjective concepts mentioned
above are represented by the grey-filled boxes in Figure 7. In addition, some objective

e.g.,
IndeterminacySource. Evidence is inherently an objective phenomenon (e.g., an observation

concepts were also defined, reflecting objective reality, Evidence and
of a real-world event occurrence) that provides information for supporting a BeliefStatement.
IndeterminacySource represents a situation whereby the information required to ascertain
the validity of a BeliefStatement is indeterminate, resulting in Uncertainty being associated
with that statement. Moreover, we defined the concept of Measurement, representing

measured values of the associated Belief, Uncertainty or IndeterminacySource.

«enumeration»
KnowledgeType
Frnownknown
FrnownUnlnown
Unknownknown
UnknownUnlnown

*

Measure

beliefdegree

Measurement

«enUmeration» EvidenceKnowledge | {self.type= KnowledgeType:Knownknown or «dataType» «dataType»
IndeterminacyNature ||ty pe : FrowledaeType self.type=KnowledgeType:Unknownknownt Timepoint Duration
InsufficientResolution \ -

MissingInfo * A BeliefStatement IndeterminacyKnowledge
Non-deterrminism @gl Belief < from : Timepoint type ¢ l’.nowled‘qe'il'vpe
COT’TDOS_]Lted . * duration : Duration =T

Unclassifie ¥+ evidence {self.type=KnowledgeTyp

b
0.1
1.% ﬁprerequisites*J I * T ’

BeliefAgent

Uncertainty

: g + [source
from : Timepoint —;

*+ measured
1. .*

* | + substaterments

exknownUnknown or
self.type=KnowledgeType
sUnknownUnknown}

*

IndeterminacySource

+ indeterminacydegree

nature : IndeterminacyMature

Figure 7. The Core Belief Model

To expand on Uncertainty from several different viewpoints and introduce the related
abstractions (e.g, Risk, Pattern), we proposed Uncertainty Model, inspired by the concepts
defined in the literature on uncertainty [56-60]. Besides, we defined Measure Model for
introducing the commonly known ways of measuring uncertainty, inspired by the concepts

reported in [57-59] and by no means complete. More details are represented in Paper A.

4.2 U-RUCM
Given the complexity and intrinsic uncertainty of CPSs, it is best to address uncertainty
at the early stage of the software development. Therefore, we developed U-RUCM by

extending RUCM (Section Section 2.2) for specifying uncertainty in use case models.

. snstantiales el

«U-RUCM» «U-RUCM» «metamodel, LMF»
BeliefUseCaseSpecification UncertaintySpecification BeliefUCMeta

Restricted Use Case Modeling (RUCM) |

-«instantiatex-. |

| UCSTemplate || 26 Restriction Rules |

specified in

~ extension atools i
B eeeeeeeemeee e eee e e U-RUCM Editor

1 gimports |
IBelieﬂ.I oM i seeeee 3‘| Belieﬂ'emplalel

I | 1 - L
- H BeliefSentence| POt
wguidelings —A—I o) ('S
U-RUCM Guidelines
Specifying Uncertainty in Use Case Models (U-RUCM) : :
1 conforms to N '
Create BUCSs ifyil i H extension |
] |Sne‘="‘""9 Belief Sentence | HZ | BUCSTemplate | | UncertaintyTemp | I Key I W —1 v
- - - LMF»
| Specifying uncenamty’l | Specifying JI U-Model ‘ ‘ UCMeta

Figure 8. Overview of U-RUCM

Figure 8 shows an overview of U-RUCM. In U-RUCM, we proposed two new templates
(i.e., BUCSTemplate and UncertaintyTemplate) and two keywords (i.e., REF and URFS) for
stakeholders (i.e., BeliefAgent) to specify belief use case specifications (BUCSs) and
uncertainty specifications using natural language as shown in Table 2. BUCSTemplate
inherits the key heading fields of the RUCM template (grey in Table 2) and introduces six
new fields to denote belief and uncertainty information (white in the top of Table 2), e.g.,
Indeterminacy Source(s) indicates a set of indeterminacy sources which resulted in the
uncertainties of the BUCS. In addition, BUCSTemplate extends all types the flows of events
of RUCM (basic flow, specific althernative flow, bounded althernative flow and global
althernative flow as described in Section 2.2) by introducing: (1) a belief degree, which
measures the degree to which the belief agent(s) believes a specific flow; (2) a new keyword,
URFS, from which step(s) of a reference flow branches out; (3) the new concept of
alternative steps, which enables the specification of uncertainties for alternative steps across
flows of events; (4) the concepts, belief sentence (BS) and belief postcondition, which
provides the capability to annotate sentences in steps of flows and postconditions with belief
and uncertainty information. Moreover, we developed UncertaintyTemplate to specify the
details of an uncertainty in the BS as shown in the bottom of Table 2.

As discussed in Section 2.2, UCMeta which formalizes RUCM covers not only all
concepts in the RUCM use case template and keywords but also the NL concepts in a
sentence. The formalization of U-RUCM was implemented as a metamodel, called
BeliefUCMeta, which extends UCMeta [6, 61] based on U-Model [4]. BeliefUCMeta imports
all elements of UCMeta, thus, BeliefUCMeta can naturally benefit from the existing
capability of UCMeta for formalizing sentences into instances of metaclass [5], e.g.,

formalizing sentence constructs such as noun phrase, subject. As shown in Figure 8, the U-

RUCM editor was implemented for providing a graphical user interface to specify BUCSs
and uncertainty specifications along with the automatic formalization from U-RUCM to

BeliefUCMeta. Besides, a set of guidelines on the usage of U-RUCM and the editor were

proposed (Figure 8).

Table 2. The U-RUCM templates for specifying BUCS and uncertainty

The template for specifying a BUCS

Use Case Name

The name of the use case. It usually starts with a verb.

Brief Description

Summarizes the use case in a short paragraph.

Primary Actor

The actor who initiates the use case.

Secondary Other actors the system relies on to accomplish the services of the use case.
Actor(s)
Dependency Include and extend relationships to other use cases.

Generalization

Generalization relationships to other use cases.

Belief Agent(s)

One or more agents who hold a belief about this BUCS.

Time Point and
Duration

on the BUCS holds.

The time point when the BUCS/BS is specified and the duration in which the belief agent(s)’s belief

Belief Degree

The degree to which the belief agent(s) believe the BUCS.

Indeterminacy

The set of indeterminacy sources related to the BUCS (REF is used).

Precondition

Source(s)
Evidence Evidence to support the BUCS, and its contained belief and uncertainty elements (REF is used).
Belief Belief agent(s)’ belief on the precondition of the BUCS, which describes what should be true before

the use case is executed.

Belief Basic Flow
(Belief degree)

Specifies the main successful path, also called “happy path”.

Steps (numbered)

A set of ordered belief sentences.

Belief Postcondition

Belief agent(s)” belief on what should be true after the basic flow executes.

Belief Specific
Alternative Flow
(Belief degree)

Applies to one specific step of the reference flow.

URFS

The reference flow step where the belief agent(s) believe there are
uncertainties.

Alternative Step

An alternative to the reference flow step.

Steps (numbered)

A set of ordered belief sentences.

Belief Postcondition

Belief agent(s)’ belief on what should be true after the specific alternative
flow executes.

Belief Bounded
Alternative Flow
(Belief degree)

Applies to more than one step of the reference flow, but not all of them.

URFS

A list of reference flow steps where the belief agent(s) believe there are
uncertainties.

Alternative Steps

A set of alternatives to the reference flow steps.

Steps (numbered)

A set of ordered belief sentences.

Belief Postcondition

Belief agent(s)’ belief on what should be true after the bounded alternative
flow executes.

Belief Global
Alternative Flow
(Belief degree)

Applies to all the steps of the reference flow.

Belief Branching
Condition

Belief agent(s)’ belief on the condition, which describes what should be true
when branching from any of the steps of the reference flow.

Steps (numbered)

The set of ordered beliefs sentences.

Belief Postcondition

Belief agent(s)’ belief on what should be true after the global flow executes.

The template of specifying an uncertainty in a belief sentence

Uncertainty
Details

Specifies the details of the uncertainty in the belief sentence.

Type

The type of this uncertainty
(Occurrence/Content/Time/Environment/GeographicalLocation)

Indeterminacy

The set of indeterminacy sources related to this Uncertainty (REF is used).

Source(s)

Measure Value The measurement of this uncertainty.

Risk The possible risk led by this uncertainty.
Pattern The pattern of the occurrence of this uncertainty

4.3 UncerTum

To enable MBT of CPSs with uncertainty, an uncertainty-wise modeling framework
(UncerTum) was proposed based on U-Model for constructing test ready models with
uncertainty.

An overview of UncerTum is represented in Figure 9. The UML Uncertainty Profile
(UUP) is the core of UncerTum, which defined a set of modeling notations based on U-
Model. To adopt U-Model into UUP from the modeling perspective, we made three types of
decisions: 1) Some concepts from U-Model can be incorporated into UUP as it is, e.g.,
IndeterminacySource for specifying the source of uncertainty; 2) Some concepts from U-
Model do not need to be implemented in UUP, e.g., Belief is an abstract concept to implicitly
describe some phenomena or notions, which is not necessary to be implemented since model
can be regarded as the explicit description by modeler ; 3) Some concepts from U-Model
need to be refined in UUP, e.g., BeliefStatement was implemented as «BeliefElement» in
UUP for adjusting to an explicit representation of model elements in the modeling context.
Thus, the modeling notations of UUP are composed of stereotypes and classes for Belief,
Uncertainty, and Measurement (Figure 9) corresponding to U-Model. In addition, an
Internal_Library was implemented to define the necessary enumerations required in UUP.
Besides, UncerTum also consists of a small CPS Testing Levels profile which allows the
modeler to label the testing level of CPSs (Section 2.1), i.e., Application, Infrastructure, and
Integration, just for MBT.

Three model libraries, Measure Library, Pattern Library, and Time Library (Figure 9),
were implemented in UncerTum, which defined a set of the reusable data types that are
commonly used for specifying the characteristics of uncertainty and measuring uncertainty.

Finally, UncerTum provides a set of the step-wise guidelines on how to use the modeling
notions (UUP and CPS Testing Levels profile) and datatype (model libraries) to construct
test ready models with uncertainty, named Belief Test Ready Models (BMs), to enable MBT
of CPSs with uncertainty (Figure 9).

UTP MARTE «modelLibrary»
Measure_Library
«profile» || «modelLibrary» «profile» | |«modelLibrary»
uTp UTP Libraries MARTE MARTE_Library - «modelLibrary» | |«modelLibrary» | |«modelLibrary»
«import A -
Ambiguity Probability Vagueness
A extension A o
i | «conceptualModel» | ; extension ——— cmports —" «import» I
U-Model ERPR > UML : «modelLibrary» |€imports| «<modelLibrary»
~ ~ i Pattern_Library Time_Library
§ i ; «import» T 5 7
«import» : conforms to extension ; | ® wimports é
CPS Uncertainty Modeling Framework (UncerTum) ‘
«profile»
uup @ GP
] «import» !]
«profile» «use» «profile» : «guideline»
Belief Measurement | «profile» Uncertum Modeling Guidelines
7 imports,. . CPS Testing
N «im S v . . o
: ks «import>, Levels profile I Application Level ModelingJ [Infrastructure Level ModelingJ
«profilex» e «profile» - N
Uncertainty | <import2 | internal_Library l Integration Level Modelng l Measurement ModelingJ

Figure 9. Overview of UncerTum

4.4 UncerTolve

UncerTolve is an uncertainty-wise evolution framework that can interactively evolve
BMs of CPSs based on real operational data collected from real CPS applications. Thus, the
uncertainties in the BMs can be systematically validated and explicitly identified.

A CPS may be deployed to more than one applications from the same or different
application domains. One example can be illustrated by the industrial case study of CPSs
used in the thesis, GeoSports (Section 5.1.1). GeoSports was deployed on a variety of sports,
e.g., Bandy and soccer. Each application regarding a different type of sports corresponds to
a different deployment, and real operational data can be collected from already developed
applications of CPSs, represented as D1, D2, ... Dn (Figure 10). Thus, the collected
operational data (i.e., objective evidence) are a valuable resource to validate BMs, including
uncertainty information, test oracles, and test data specifications. Such evolved models can
be used to generate new test cases to test future developments of the CPS with the explicitly
identified subjective and objective uncertainties. UncerTolve was so designed to evolve BMs
with the real operational data as shown in Figure 10. In UncerTolve, three activities and four
components were implemented (Figure 10).

The first activity is to construct initial BMs, which contain known subjective uncertainties

specified by modelers (i.e., belief agents [4]). Moreover, to make BMs executable for the

next activity, a modeling methodology (which extends UncerTum) was proposed as a part
of UncerTovle, particularly for constructing executable features in BMs.

The second activity is to execute (initial) BMs against the real operational data. By the
execution, syntactic and semantic errors may be identified by checking the execution logs
based on a set of heuristics defined in UncerTolve. In addition, UncerTolve also calculates
the frequency of traversing a state or transition (i.e., objective measurement) based on the
execution logs. As shown in Figure 10, (initial) BMs are updated with the removal,
modification, and addition of model elements by the model execution component (blue), and
the objective uncertainty measurements are appended in BMs by the derivation of
measurements (orange).

The third activity is about the invariant inference using dynamic invariant detection
techniques [62-64]. In UncerTolve, we used Daikon [62] that enables to produce a set of
invariants (i.e., test oracle and test data specification) by executing BMs together with the
real operational data. To merge the invariants into BMs, UncerTolve defined a set of
heuristics, for providing recommendations to modeler about restructuring test oracles and

test data specifications in BMs.

UncerTolve

UncerTum o ——mmmmmmmm
el uses | Model I
| uup | |G”' ta"'“E"‘| — Model Belief Test Ready Model — Belief Test Ready Model
H "Belief Tes
earty Modes

[Model Libraries | | UTP |

I[_ﬁniﬂ_ - - - - -l _M_Dl [~~~ “emoved UncerTest
P—— . | Execution | petetltest Reatycds | : Belief Test Ready Model abif: Ml | Uncertainty-wise Test Case ‘
modified Minimization
“": tonal I Derivation of Objective |iBelied Test added Bielief Tes
_______ Lﬁlfriafliﬂcisu_m_mfris_ - JREW ot W feady Mo | Test Case Generation ‘
=== = = = = — — LSt Tet Bendy hioddl =
Belief Test Ready Model “test cases

]
Test Oracles/Test Data !
Belief Test

e Specifications Infererence "| Re-structured Test Oracles/
__________ N a | Bata Ifeady Model | Test Data Specifications b L—‘---,_“
wgends YV | | VTEEEEE e N

[Features

1
|
|
O inputs : produces /—\ — J execute on
W Outputs 1 —{ Real Op Data D, Dz, ..., Dn
sy File e
: deployed for

¢y Deployment

— — |
O 2 Qber-r’hysical“\ ployed far - rew Deol AN

Systems

& Iterative Process >

Figure 10. Overview of UncerTolve

Note that the model execution activity and invariant inference activity are independent of
each other, by evolving BMs from different aspects. But we recommend to apply them

sequentially, resulting in the improvement of the overall quality of evolved BMs by avoiding

the syntactic errors in the invariant inference activity. This is also how the industrial case
study was conducted in the thesis.

4.5 UncerTest
To perform an automated testing of CPSs with uncertainty, uncertainty is required to be
considered in the test case generation, test optimization and test case execution. Driven by

such needs, an uncertainty-wise testing framework, named as UncerTest, was developed

using model-based and search-based software testing techniques. An overview of UncerTest
is presented in Figure 11, which is composed of three components: test case generation,
uncertainty-wise test case minimization and uncertainty-wise test verdicts.

As shown in Figure 11, UncerTest facilitates to generate abstract test cases and
executable test cases based on BMs. In UncerTest, two strategies, All Simple Belief Paths
(ASiBP), All Specified Length Belief Paths (ASIBP), were proposed for deriving abstract test
cases based on BMs, inspired by Prime Path Coverage [65] and Specified Path Coverage
presented in [65]. In addition, UncerTest also calculates uncertainty measurements (i.e.,
Uncertainty Measure) for all the generated test cases using Uncertainty Theory. Note that
each generated test cases contain uncertainty information, e.g., the number of uncertainties,
uncertainty measure. Moreover, the executable test case generation enables to seed the
executable test cases with indeterminacy sources which might lead to the occurrence of the
uncertainties specified in BMs.

To reduce the number of automatically generated abstract test cases when needed, an
uncertainty-wise test minimization approach was proposed in UncerTest using multi-
objective search algorithms (e.g., NSGA-II). As shown in Figure 11, four uncertainty-wise
minimization strategies were defined, which were formulated as multi-objective search
problems. All of these four problems aim to minimize the number of test cases and maximize
the transition coverage. But the problems distinguish themselves by four uncertainty related
objectives for different purposes of testing CPSs under uncertainty: (1) Prob. 1 aims to
observe the reaction of CPSs in the presence of maximum uncertainties with minimum
possible test cases by covering the maximum number of known uncertainties possible (2nd
objective of Prob. 1 in Figure 11); (2) Prob. 2 aims to observe the reaction of CPSs in the

presence of uncertainties from all the known uncertainty spaces with the minimum possible

test cases by covering at least one uncertainty from each uncertainty spaces (2nd objective

of Prob. 2 in Figure 11); (3) Prob. 3 aims to test the parts of the system with high degree of

confidence by selecting the high value of the uncertainty measure of test cases (2nd objective
of Prob. 3 in Figure 11); (4) Prob. 4 aims to test the behavior of CPSs under diverse

uncertainties with the minimum number of test cases by maximizing the coverage of the

different uncertainties (2nd objective of Prob. 4 in Figure 11).

In UncerTest, a set of the uncertainty-wise test verdicts (Figure 11) were defined to assign

the result of occurrences of uncertainties during test execution. For instance, we are able to

identify the situation whereby known uncertainty occurred under the occurrence of a

specified indeterminacy source, based on the test results.

«UncerTum:»
Belief Test Ready Models
(BCDs, BSMs, BODs)

Test Case Generation

Abstract Test Case Generation

wlavan
Executable Test Cases
(Test Configuration & Seeded
Indeterminacy Source)

[
Test Case Execution

ASIBP: All Simple Belief Paths
(Ef:_%_fr;;l;i_ti_t;r; “C_Z_:_% Uncertainty
C3: % State

=

Uncertainty Measurement
Calculation
(UM in Uncertainty Theory)

e
I Legends

I
I
! 1
:CJ files/data —] input !
I

-

«Test Log»
Test Results
(Occurrence of Uncertainties)

* Executable Test Case Generation
(Mapping with Test APIs)
T

: @ type B—» output

:

«EMF»
Abstract Test Cases
(UM, NUU, etc)

Multi-objective search
algorithms.

?‘

Uncerlféinty-wise Test Case Minimization

L uses

Uncertainty-wise Test Verdicts

refer to [Uncertainty-wise Test Case Verdict

)

[Uncertainty-wise Uncertainty Verdict J

Multi-Objective Search Problems
Prob 1: #TC. #Uncertainty T %Transition T
Prob 2: #TC..%Uncertainty Space T%Transition‘T
Prob 3: #TC.| %Uncertainty T %TransitionT*
Prob 4: #TC. Uncertainty Measure T %Transition T

Figure 11. Overview of UncerTest

5 Evaluation

This section describes the process and key results of the evaluation for the entire thesis.
First, two industrial case studies are described in Section 5.1. Following, the summaries of
key results of the evaluation of the five proposed approaches with the industrial case studies

are reported from Sections 5.2 to 5.6.

5.1 Case Study

To take the benefits of the U-Test project, two industrial CPS case studies with the
available testbeds are accessible for developing and evaluating the research works in the
thesis. One is GeoSports system from the healthcare domain described in Section 5.1.1, and
another is an automated warehouse system from the automation domain described in Section
5.1.2. Note that each of the proposed approaches was evaluated with at least one of the
industrial case studies from the U-Test project.

5.1.1 GeoSports

GeoSports system (GS) by Future Position X (FPX) [66] is to monitor performances and
health conditions of each player and the whole team in the game. As shown in Figure 12, the
system integrates a set of endpoint devices (i.e., tag), a set of receiver stations (i.e., locator),
a set of servers (i.e., QPE server), and a set of applications. Each tag embeds a set of various
types of sensors (e.g., accelerometer and gyroscope) for collecting data regarding the
individual performance. A locator communicates with surrounding tags by collecting the
data at runtime, and the data allows to be visualized using applications of Quuppa, e.g.,
visualizing a position of a tag. All the data will be maintained in QPE servers.

The case study of GS involved in this thesis is about a sport, Bandy, using the Quuppa
system [67]. The testbed provider of the U-Test project, Nordic Med Test [68] developed
the testing infrastructure for testing GS with uncertainties for the Bandy setting as shown in
Figure 12. Instead of using real player to perform test case execution, the test rig is used to
carry the Quuppa tag (Figure 12). In addition, a set of REST APIs was developed for
controlling the test rigs and accessing the status of GS.

Quuppa System

Test API e — .
p \ 2
Quuppa Rest AP QPE Server <~
GET /getInfoOfTag — © i — @ @
GET /getinfoOfLocator [# ~ = —. e 0=
Rest AP E=lppt 000
~
- J v —e= | l
) T=o Ta Ta
(Test Infrastructure ’l g | | g l
GET /getPosition
GET /getDistance
PUT /moveRig SUT Server
PUT /setRigPoistion | ¢ S=T¢ » Testhig | [Testrig | +e
See
L) Rest API Rest API < |
\ ‘ Test Infrastructure (Physical Devices)
— . Test APIs access to CPS —— Test APIs access to Test Infrastructure

Figure 12. The Test Execution Solution for GS

5.1.2 Automated Warehouse

Automated Warehouse (AW) system by ULMA [69] provides an automated solution to
monitor, control, and manage warehouses. Each handling facility (e.g., cranes, conveyors)
performs as a physical unit, and together they are deployed to one handling system
application.

The case study of AW involved in this thesis includes several key industrial scenarios of
an automated warehouse system, e.g., introducing a large number of pallets to the
warehouse. Instead of using real devices to test the scenarios, ULMA [69] and IK4-lkerlan
[70] developed relevant simulators and emulators (Figure 13). As shown in Figure 13, the
test infrastructure includes two handling systems that are deployed at two different sites (Site
1 and Site 2). In each site, a local superior collects data by monitoring all types of devices
and services (e.g., WMS), and uploads the data to a cloud superior through the network.
Each physical device is developed as a simulator where services, i.e., WMS and MFC, are
deployed on. Also, a set of emulators are developed for manipulating the real physical
environment, e.g., putting a pallet on the conveyor. To access the devices, software, and

environment, a set of Testing APIs were implemented.

Cloud Supervisor Handling System (Cloud Solution)

Test API L -4— _

Handling System Sitel

Local Warehouse Management Software

(h
Handling System Supervusor v v
GET /getReadingOfBR . (WMS) ;
GET /getStatusOfOrder ' * <+ - .
PUT /executeOrder . I‘

5| Material Flow Controller (MFC)
J
Handllng System Site2 o - -7 \
~ - O 2
Test Infrastructure A \ N g “/ \

GET /getPalletLocation + . " VAR .
PUT /setPalletLocation N R “ T~ ‘k
PUT /stopDevice ’\b Test Infrastructure
Site2 I Stacker Crane " Conveyor ” Barcode Reader (BR) | 2isls
\ <

s o Test Infrastructure (Emulators) Sitel

—

— - Test APIs access to CPS —— Test APIs access to Test Infrastructure
Figure 13. The Test Execution Solution for AW

5.2 U-Model (Paper A)

Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model. M. Zhang,
B. Selic, S. Ali, T. Yue, O. Okariz and R. Norgren. In: Proceedings of the 12th European
Conference on Modelling Foundations and Applications (ECMFA 2016), pp. 247-264, 2016.
DOI: 10.1007/978-3-319-42061-5_16

In this paper, U-Model was proposed with aims of identifying, defining, and classifying
uncertainties at the three-logical level of CPSs, i.e., Application, Infrastructure, and
Integration.

Figure 14 shows the overall process of the development and validation of U-Model and
uncertainty requirements. An initial uncertainty conceptual model (U-Model V.1) was
developed incrementally (Al and A2 in Figure 14) based on existing models in the literature
and other related examples. The activities were mainly conducted by researchers. In parallel,
the U-Test industrial partners developed the initial uncertainty requirements (Regs V.1),
denoted as B1 in Figure 14. The researchers took these initial uncertainty requirements as
inputs for refining the U-Model (A3 in Figure 14) by outputting U-Model V.2, and further
provided some comments on how to improve the requirements using a requirements
inspection checklist [71]. Based on the comments, the industrial partners refined the
uncertainty requirements (Regs V.2). Then, Reqgs V.2 and U-Model V.2 were used as inputs
for the onsite workshops conducted by both the researchers and the two industrial partners
(A4/B3 in Figure 14). These workshops aimed at discussing the uncertainty requirements,

presenting U-Model to the industrial partners and collecting their feedback. The outputs were
U-Model V.3 (the final version of U-Model) and Regs. V.3. Using the U-Model V.3 as a

reference model, we identified all uncertainties in uncertainty requirements (Regs V.3) that

produced the final version of uncertainty requirements (Reqs V.4).

To assess the performance of U-Model in terms of identifying uncertainties in CPSs, we

compared the identified uncertainties among Regs V.1, Regs V.2, and Regs V.4 with GS and

AW as discussed in Section 5.1. On average, U-Model was managed to identify 61.5% of

unknown uncertainties in Regs V.4 that weren’t explicitly specified in uncertainty

requirements (Regs V.1) collected from the two case studies.

M- TTTT T oo oo oo oo M T T T T e e e T S T T T T T 1
| I

| I

-

Al: Developing Initial U-Model

Uncertainty Requirements
(Industrial Partners)

Domain
Knowledge

input ?m i
P . input imput

B1: Developing Initial Uncertainty
Requirements

input

xamples from input | input

physical, etc.

output ; A2: Refining Initial U-Model) v output
input input -)
Cltaterus > il ey
A3: Refining U-Model V.1 &
Validating Uncertainty Regs V.1

via Inspection input \

Reqgs V.1

+/~ B2:Refining Uncertainty)
|

input

A4/B3: Workshops to refine
U-Model V.3 U-Model V.2 and Uncertainty Reqs V.2

AS5: Identifying Unknown
Uncertainties

Regs V.3

Refined Regs V.3

l |

output

— Control flow

—» Data flow

Figure 14. The process of development and validation of U-Model and uncertainty requirements

5.3 U-RUCM (Paper B)
"Specifying Uncertainty in Use Case Models". M. Zhang, T. Yue, S. Ali, B. Selic, O.
Okariz, R. Norgren and K. Intxausti. Journal paper that has been submitted to the Journal of

Systems and Software (JSS), second revision.

In this paper, U-RUCM was designed for explicitly specifying uncertainty as a part of
requirements of CPSs, which extends a practical use case modeling solution, RUCM. The
process of the development of U-RUCM is presented in Figure 15.

First, U-RUCM was developed based on U-Model and existing uncertainty requirements
of AW and GS (A1l in Figure 15). In addition, a questionnaire was conducted for collecting
information about detailing and quantifying known uncertainties in the requirements with
the current development (U-RUCM V1). The questionnaire was derived by reviewing use
case specifications specified by industrial partners using RUCM (Uncertainty Req.V1).
According to the questionnaire, the industrial partners refined Uncertainty Req. V2 using
proposed U-RUCM templates. Subsequently, several workshops (A2/B2 in Figure 15) were
held for each industrial case study with aims of presenting RUCM V1 to the industrial
partners and collecting their feedbacks. Based on these workshops, the industrial partners
refined Uncertainty Req. V2 to Uncertainty Req. V3 based on RUCM V1. Then, the
researchers refined U-RUCM V1 to U-RUCM V2 (A3 in Figure 15) based on Uncertainty
Req.V3. When U-RUCM is stable, i.e., U-RUCM V2, the U-RUCM editor was implemented.
Consequently, we obtained Uncertainty Req. V4 specified with the U-RUCM editor.

To compare Uncertainty Req.V1 with Uncertainty Req. V4 in terms of 20 use cases from
GS and AW industrial case studies (Section 5.1), results showed that additional 512% for
GS (306% for AW) of uncertainties were learned by applying the U-RUCM methodology.
This implies that U-RUCM performed a significant improvement in dealing with
uncertainties in requirements engineering, resulting in a more precise characterization of

uncertainties.

| U-RUCM | Uncertainty Requirements |
| (Researchers) (Industrial Partners) |

I
AO: Developing and Modifying |
I

U-Model
Uncertainty Req.
V1 (RUCM)
I

Al: Developing U-RUCM and making
questionnaire and comments to modify
uncertainty requirements

BO: Developing the uncertainty
requirements using RUCM

B1:Refining the uncertainty
requirements

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Uncertainty Req. V2 :
(U-RUCM template) |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

U-RUCM V1

A2/B2: Workshops to refine uncertainty requirements
with necessary uncertainty-related information (e.g.
risk, measurement)

A3:Refining U-RUCM and formalizing
uncertainty requirements (e.g. risk,
measurement)

Uncertainty Req. V3
(U-RUCM V1)

Y
B3:Validating the uncertainty
requirements

»> Action Flow > Data Flow [Data C—3 Action

- Note that U-RUCM was developed following U-Model, so U-Model is the final version of the development
of U-Model (Figure 14) and Uncertainty Req. V1 is the final version of uncertainty requirements specified by
RUCM (Figure 14).

Figure 15. The process of the development and validation of U-RUCM

5.4 UncerTum (Paper C)

"Uncertainty-Wise Cyber-Physical System Test Modeling"”. M. Zhang, S. Ali, T. Yue, R.
Norgren and O. Okariz. Journal of Software & Systems Modeling (SOSYM). DOI:
10.1007/s10270-017-0609-6

An uncertainty modeling framework, named as UncerTum, was proposed in this paper,
for supporting MBT of CPSs with explicitly represented uncertainties, e.g., the uncertain
behavior of CPSs.

As shown in Figure 16, the process of developing UncerTum is iterative, which was
intertwined with the incremental development of test ready models. The development of

UncerTum and test ready models were mainly conducted by researchers (A1-A3 and B1-B3

in Figure 16), by taking inputs of industrial requirements and scenarios provided by
industrial use case providers (FPX and ULMA). During the development phase of
UncerTum, a modeling workshop (A4/B4/C1/D1 in Figure 16) was conducted to initially
present UncerTum (UncerTum V2) and test ready models (Test Ready Models V1) specified
with UncerTum, and collect feedbacks about UncerTum and test ready models from the use
case providers and testbed providers. Based on the collected feedbacks, the researchers
developed UncerTum V3 and Test Ready Models V2. Moreover, two workshops for each
case study (A5/B6/C3/D3/E2 in Figure 16) were held with aims of the validation of test
ready models and discussion on implementations of test beds and test infrastructures. Thus,
Test Ready Models V2 was modified as Test Ready Models V3. At last, the final version of
test ready models is Test Ready Models V4 that was obtained by validating Test Ready
Models V3 using model execution (B7 in Figure 16).

Simula Researchers Legend

—3 hctionFlow () Action
| — Dot Few = nama

UncerTum

I

Test Ready Models

-
1
| I
: Safetome and) :
| =3 nen |
i l 1
1
1
I
I
I
I
I
I
I

|

1 |

| |

| |

| |

| |

] I

: Al Bwelgrp Initial UncerTur Bl: Dewa[op Initial Test Ready] GS and AW D |

ncerTum — Req. H

| C"'ml e Models using Initial UncerTum Aeb :

i Ready Model |

| A2: Refine UncerTum 1 |

| I B2: Develop Test Ready |

: UncerTum VD Models using UncerTum V1 :

| — N I |

| A3/B3: Refine Test Ready Madels and Verify est ngau\}“\' !

ncerfum v I
: m)“[Correctness and Completeness of UncerTum V1 | Fes———————==——1;
| T] | Test Bed Providers |,
| _—
ModelingTechanue “O !
Wurkshoﬁ i
: | HE
Berlin (2 days) — T P K

{ TestAPI ™

Ql“'—wm—w) - Documentation . 4 :
....................................... | Piyrraed) I
1

Tool Vendor

D2:Develop Initial Test
Bed I
C2: Present Real Tritial Test API from
Industrial Scenarios Test Bed Provider

AS\BBACI\DINE2: Verify UncerTum V3 and Refine Test Ready Models V2

anned necessary Test Integrate
AP UncerTum

Case Study Wol;itshops

* Spain (3 days) for AW
Sweden (2 dayy) for G5

El:Present Taaols

I

|

Cj-g_g; Ready Models v?) :
S —— |

1

Figure 16. The process of the development of UncerTum and test ready models

Except for these two industrial case studies, UncerTum was also evaluated with one real-
world case study of videoconference system (VCS) [72] developed by Cisco, Norway, and

one open source CPS case study that is modified SafeHome system provided in [73].

The evaluation of UncerTum with these four case studies (i.e., AW, GS, VCS and
SafeHome) was conducted from three main perspectives: (1) Completeness of profiles and
model libraries: results showed that UncerTum is sufficiently complete to model all
uncertainties identified in the four case studies; (2) Effort required to model uncertainty with
UncerTum: On average, UncerTum required 18.5% more time to apply stereotypes from
UUP and use datatypes from model libraries on test ready models; and (3) Correctness of
developed test ready models by validation process: UncerTum identified seven types of

problems in test ready models from two main categories (i.e., incorrect and incomplete).

5.5 UncerTolve (Paper D)

"Uncertainty-Wise Evolution of Test Ready Models". M. Zhang, S. Ali, T. Yue and R.
Norgren. Journal of Information and Software Technology (IST). DOI:
10.1016/j.infsof.2017.03.003

This paper proposed an approach (UncerTolve) to interactively evolve BM against real
operational data, which is composed of three features: (1) validation of BMs based the real
operational data via model execution for correcting syntactic problems, (2) derivation of
objective uncertainty measurements in BMs based on the execution log, and (3) inference of
state invariants and guards of transitions in BMs by a dynamic invariant detector. To evaluate
UncerTolve, we applied UncerTolve on one industrial case study?, GS, by the following
steps: (1) we developed initial BMs for GS, denoted as BM V1; (2) we executed the initial
BMs via model execution for validating BMs against real operational data of GS and
updating objective measurements of uncertainty, which produced the evolved BMs, denoted
as BM V2; (3) then we used Daikon to derive invariants based on the data that were used to
further evolve BMs (denoted as BM V3) by integrating the derived invariants into the BMs;
(4) since the integration may lead to new errors, we performed the model validation via
model execution again. After these four steps, we obtained the final version of BMs, denoted
as BM V3.

! Since the operational data is not available for AW case study, we only applied GS to evaluate UncerTolve.

To assess the performance of UncerTolve, we collected the number of evolved model
elements regarding belief element, state, and transition. By comparing BM V1 with BM V3',
we found that UncerTolve managed to evolve 51% of belief elements, 18% of states and

21% of transitions.

5.6 UncerTest (Paper E)

"Uncertainty-wise Test Case Generation and Minimization for Cyber-Physical Systems:
A Multi-Objective Search-based Approach”. M. Zhang, S. Ali and T. Yue. Journal paper
that has been submitted to ACM Transactions Software Engineering and Methodology
(TOSEM).

UncerTest is an approach for involving uncertainty aspect into MBT of CPSs. In
UncerTest, two test case generation strategies (ASiBP and ASIBP) and four uncertainty-wise
test case minimization problems (Probl -- Prob4) were developed. By combining ?
generation and minimization to get a test set, five combined strategies were identified in
total: 1) Strl: ASiBP, 2) Str2: ASIBP and Prob1, 3) Str3: ASIBP and Prob2, 4) Str4: ASIBP
and Prob3, 5) Str5: ASIBP and Prob4.

First, to evaluate the strategies (Str2 -- Str5) that require test case minimization, we
conducted an experiment by investigating uncertainty-wise test case minimization problems
with eight multi-objective search algorithms (i.e., NSGA-II [74], NSGA-III [75], MOCell
[76, 77], SPEA2 [78], CellDE [78], AbYSS [79], GDE3 [80] and SMPSO [81]) and random
search algorithm using five use cases from two industrial case studies, i.e., four for AW and
one for GS. Such experiment aims at answering two research questions (RQ1 and RQ2), and
results are also reported as follows.

RQ1: How does the selected multi-objective search algorithms compare to RS regarding
solving uncertainty-wise minimization problems (Str2 -- Str5)?

Results for RQ1: Results showed RS obtained the low confidence in order to become
the best algorithm for Str2 -- Str5 among two case studies, which implies that problems

2 The number of test cases generated by ASiBP is small in our case study, ASiBP does not need to combine
with test case minimizations.

(Probl -- Prob4) couldn’t have been solved effectively with RS and thus provides the
evidence of using complex multi-objective search algorithms.

RQ2: Which algorithm is the best among selected ones to solve uncertainty-wise
minimization problems (Str2 -- Str5) respectively?

Results for RQ2: To obtain the result of RQ2, 36 pair-wise comparisons among selected
algorithms (C,°%) need to be made for each of five use cases for four uncertainty-wise
minimization problems (Str2 -- Str5), and the total is 720 (36x4x5). Results showed SPEA2
is the consistently best, or the second best (only in three instances). Thus, SPEA2 was
recommended to solve uncertainty-wise minimization problems (Str2 -- Str5) to find the
most optimal test set.

The next evaluation was designed about assessing the performance of the test set obtained
by uncertainty-wise strategies (Strl -- Str5) in term of the cost-effectiveness of observing
uncertainties in CPSs with two industrial case studies (Section 5.1). For measuring cost, we
defined one metric, ET, that is the time taken for executing the test set produced by one of
the uncertainty-wise strategies (Strl -- Str5). To measure effectiveness, two aspects were
mainly considered in the evaluation: known uncertainties observed and unknown
uncertainties detected.

For observing uncertainties in CPSs, the test set obtained by each uncertainty-wise
strategy for each case study was required to be executed on the test infrastructures as shown
in Figure 12 and Figure 13. Based on results, we were able to answer the following research
question.

RQ3: Which uncertainty-wise strategy (Str2 -- Str5) is effective to discover uncertainties
in the real CPS?

Results for RQ3: By analysing the results of the execution of test sets applied with the
five strategies (Str2 -- Str5) for the five use cases, Str2 with SPEA2 performed best, which
observed on average 51% more uncertainties due to unknown indeterminacy sources as
compared to the rest of test strategies for all the use cases. Moreover, it managed to discover

13 unknown uncertainties due to unknown indeterminacy sources across all the use cases.

6 Discussion

Uncertainty-wise Modeling. Currently our modeling methodologies are for specifying
uncertainty at two phases: requirement engineering (use case models with U-RUCM) and
test design (test ready models with UncerTum). From the uncertainty perspective,
measurements, sources and characteristics of uncertainties are all allowed to be specified in
models, which help to support uncertainty related reasoning (e.g., discovering unknown
uncertainties and inferring measurements) and analyses (e.g., risk and reliability analyses).

In terms of use case modeling, our methodology (i.e., U-RUCM) is applicable for
specifying uncertainty at the use case level (i.e., use case specification), scenario level (i.e.,
flow of events) and action level (i.e., sentence). In addition, we introduced the causality of
uncertainty occurrences into the structure of use case specifications. That is, a use case level
uncertainty can originate from one or more indeterminacy sources; a scenario level
uncertainty can originate from an action level uncertainty; an action level uncertainty can
originate from an indeterminacy source or another action level uncertainty. This can help to
validate specified uncertainties and derive new uncertainty at the structure level.

In term of test modeling, with the defined profile (UUP) and model libraries, our
methodology (i.e., UncerTum) can be used to specify uncertainty information (e.g., sources
of uncertainty) in structure models (i.e., class diagram), and capture uncertain behaviors of
system under test in behavior models (i.e., state machines). Such test ready models can be
used to generate test cases and optimize test process with for example UncerTest, and can
be evolved when taking uncertainty into account with for example UncerTolve. In the future,
investigation should be conducted to integrate uncertainty modeling with other modeling
notations such as activity diagrams and SysML.

Uncertainty-wise Modeling with U-Model. U-RUCM and UncerTum were proposed by
establishing on U-Model for representing uncertainty and its characteristics in use case
models and test ready models. Based on the evaluation of these two approaches with two
industrial case studies, we observed that with our uncertainty modeling methodologies, all
the identified uncertainties for the two case studies can be adequately captured. It gives us
an indication that U-Model as an uncertainty conceptual model is sufficiently complete for

classifying and characterizing uncertainty in the context of CPSs. Therefore, in the future,

we are confident that U-Model can be adopted or adapted for enabling uncertainty modeling
at other phases of the software/system development lifecycle such as design, and it also can
be used to support model-based uncertainty testing with other modeling languages such as
SysML.

Uncertainty-wise Evolution. Currently UncerTolve managed to evolve model elements
(e.g., states, transition, uncertainty) of behavior models (i.e., state machines) specified with
UncerTum, but it is only applicable when real operational data is available. To ensure the
quality of test ready models, it is required to develop an approach to evolve the models with
uncertainty when lacking real operational data. One possible solution is to proactively evolve
such models by directly executing the models on test infrastructures with seeded
indeterminacy sources. To make the execution cost-effective, an execution strategy can be
also evolved with the help of artificial intelligence techniques (e.g., genetic programming
[82]) for achieving the high efficiency of detecting unknown behaviors (e.g., uncertainty).

Uncertainty-wise Testing with the UncerTum models. Our methodology supports to
introduce uncertainty to test generation, test optimization and test execution. More
specifically, for test case generation, we applied Uncertainty Theory to calculate
measurements for each generated test cases. But Uncertainty Theory [31] is applicable when
only subjective measurements are accessible. We will investigate more about measuring
uncertainty and its derived test cases with different theories (e.g., Probability theory [28, 29],
Dempster—Shafer theory [83]). For test optimization, we applied multi-objective search by
reformulating test minimization problems as search problems. Each of the problems involves
one uncertainty related objective for testing CPSs with different settings of uncertainties
from thee perspectives of amount, coverage, measurement and space of uncertainty. In the
future, the correlations between these uncertainty related objectives and unknown
uncertainty detection will be investigated further. For test case execution, our methodology
supports the generation of executable test cases with seeded indeterminacy sources, resulting
in executing test cases with different environments and observing occurrences of
uncertainties along with their indeterminacy sources. Doing so helps to observe previously
unknown uncertainties during execution, study and examine relationships between

uncertainties and their indeterminacy sources.

CPS Uncertainty-wise Testing. In this thesis, our empirical study was mainly conducted
with two CPS domains (Automation, Healthcare) and thus additional case studies from more
CPS domains are required to further generalize the evalutaion results.

Applying Uncertainty-wise approaches in industry. By benefiting from the U-Test
project, all the proposed uncertainty-wise approaches were evaluated with the industrial case
studies. The evaluation results are summarized in Section 5, which gives us an indication
that the uncertainty-wise approaches are to certain extent applicable in industry for testing
industrial CPSs with uncertainty. Encouraged by the positive feedback from the evaluation
and industrial partners, our test modelling (UncerTum) and testing methodology (UncerTest)
have been partially implemented in a commercial MBT tools, CertifylT3. This provides a
unique opportunity to attract more interests of industry in the uncertainty-wise modelling

and testing and exploit their potential in real industrial contexts in the future.

3 http://www.smartesting.com/en/certifyit/

7 Conclusion and Future Work

Uncertainty is inherent in Cyber-physical systems (CPSs) due to various reasons, e.g.,
CPSs often operate in unpredictable environments. Therefore, a systematic approach to
handling uncertainty in CPSs is required, for ensuring that CPSs are capable of operating
properly in the presence of uncertainties during their actual operations.

In the thesis, an uncertainty-wise CPSs testing was realized via the integration of the five
proposed approaches: (1) U-Model, which is an unified and comprehensive uncertainty
conceptual model; (2) U-RUCM, which facilitates a more precise characterization of
uncertainty in requirement engineering; (3) UncerTum, which provides the modeling
features to construct test ready models with uncertainty; (4) UncerTolve, which enables the
evolution of the test ready models and subjective uncertainties; and (5) UncerTest, which
offers a cost-effective manner to test CPSs under uncertainty by taking uncertainty into
consideration in test generation, test optimization, and test case execution.

In total, by conducting the evaluation with at least one industrial case study for each of
the five approaches, we found that (1) the modeling methodologies (i.e., U-RUCM and
UncerTum) are sufficiently complete and comprehensive with the support of guidelines; (2)
the testing methodology (i.e., UncerTest) implemented a cost-effective solution for
observing CPSs under uncertainty; (3) all approaches together served a more comprehensive
identification of uncertainty in CPSs; and (4) the overall uncertainty-wise CPSs testing is
systematic by considering uncertainty in requirements elicitation, test models construction,
test design, test optimization and test case execution.

In the future, some possible directions may be conducted: (1) evolving uncertainty in
requirements specified with U-RUCM, by reasoning relationships (e.g., causality,
dependency) and measurements among uncertainties in use case specifications, sentences
and parts of sentences; (2) instead of evolving BMs against the past evidence (e.g., collected
real operational data), developing the proactive evolution of BMs by directly executing
models on the test infrastructure with seeded indeterminacy sources; (3) further studying
correlations between the uncertainty-related objective (e.g., UM) and the identification of

unknown uncertainties.

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from
theory to practice, CRC Press, 2015.

S. Sunder, Foundations for Innovation in Cyber-Physical Systems, in: Proceedings
of the NIST CPS Workshop, Chicago, IL, USA, 2012.

E. Geisberger, and M. Broy, Living in a networked world: Integrated research agenda
Cyber-Physical Systems (agendaCPS), Herbert Utz Verlag, 2015.

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, Understanding
Uncertainty in Cyber-Physical Systems: A Conceptual Model, in: Proceedings of
the 12th European Conference on Modelling Foundations and Applications
(ECMFA). pp. 247-264, 20186.

T. Yue, L. C. Briand, and Y. Labiche, aToucan: An Automated Framework to Derive
UML Analysis Models from Use Case Models, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 24, no. 3 (2015) 13.

T.Yue, L. C. Briand, and Y. Labiche, Facilitating the transition from use case models
to analysis models: Approach and experiments, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, no. 1 (2013) 5.

OMG, "Meta Object Facility (MOF) Core Specification (Version 2.4.2)," 2014,
http://www.omg.org/spec/MOF/2.4.2.

T. Yue, S. Ali, and M. Zhang, "Applying A Restricted Natural Language Based Test
Case Generation Approach in An Industrial Context,” International Symposium on
Software Testing and Analysis (ISSTA), 2015.

C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Igbal, Automatic generation of
system test cases from use case specifications, in Proceedings of the 2015
International Symposium on Software Testing and Analysis, Baltimore, MD, USA,
2015, pp. 385-396.

J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu, Assessing the Quality of Industrial
Avionics Software: An Extensive Empirical Evaluation, Empirical Software
Engineering (2016).

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

T. Yue, H. Zhang, S. Ali, and C. Liu, A Practical Use Case Modeling Approach to
Specify Crosscutting Concerns: Industrial Applications, 2015.

T. Yue, L. Briand, and Y. Labiche, A Use Case Modeling Approach to Facilitate the
Transition Towards Analysis Models: Concepts and Empirical Evaluation, in: A.
Schurr and B. Selic, eds. Model Driven Engineering Languages and Systems
(MODELS 2009), 2009 20009.

M. Shafique, and Y. Labiche, A systematic review of model based testing tool
support, Carleton University, Canada, Tech. Rep. Technical Report SCE-10-04
(2010) 01-21.

P. C. Jorgensen, The Craft of Model-based Testing, CRC Press, 2017.

M. Utting, and B. Legeard, Practical model-based testing: a tools approach, Morgan
Kaufmann, 2010.

P. McMinn, Search-based software test data generation: A survey, Software Testing
Verification and Reliability, vol. 14, no. 2 (2004) 105-156.

M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, Search based software
engineering: Techniques, taxonomy, tutorial, Empirical software engineering and
verification, pp. 1-59: Springer, 2012,

M. Harman, S. A. Mansouri, and Y. Zhang, Search-based software engineering:
Trends, techniques and applications, ACM Comput. Surv., vol. 45, no. 1 (2012) 1-
61, 10.1145/2379776.2379787.

P. McMinn, Search-Based Software Testing: Past, Present and Future, in: 2011
IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops. pp. 153-163, 2011 21-25 March 2011.

M. Harman, Y. Jia, and Y. Zhang, Achievements, Open Problems and Challenges
for Search Based Software Testing, in: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST). pp. 1-12, 2015 13-17 April
2015.

W. Afzal, R. Torkar, and R. Feldt, A systematic review of search-based testing for
non-functional system properties, Information and Software Technology, vol. 51, no.
6 (2009) 957-976, 2009/06/01/, https://doi.org/10.1016/j.infsof.2008.12.005.

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]
[32]

S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, A systematic review
of the application and empirical investigation of search-based test case generation,
IEEE Transactions on Software Engineering, vol. 36, no. 6 (2010) 742-762.

M. Harman, S. A. Mansouri, and Y. Zhang, Search based software engineering: A
comprehensive analysis and review of trends techniques and applications,
Department of Computer Science, King’s College London, Tech. Rep. TR-09-03
(2009).

S. Yoo, and M. Harman, Regression testing minimization, selection and
prioritization: a survey, Software Testing, Verification and Reliability, vol. 22, no. 2
(2012) 67-120.

M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R. Tumeng, Test case
prioritization approaches in regression testing: A systematic literature review,
Information and Software Technology (2017).

K. Deb, and K. Deb, Multi-objective Optimization, Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques, E. K.
Burke and G. Kendall, eds., pp. 403-449, Boston, MA: Springer US, 2014.

S. Yoo, and M. Harman, Pareto efficient multi-objective test case selection, in. pp.
140-150, 2007.

P. C. Jorgensen, Software testing: a craftsman’s approach, CRC press, 2016.

Z. Xuemei, T. Xiaolin, and P. Hoang, Considering fault removal efficiency in
software reliability assessment, IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 33, no. 1 (2003) 114-120,
10.1109/TSMCA.2003.812597.

B. Liu, Why is there a need for uncertainty theory, Journal of Uncertain Systems,
vol. 6, no. 1 (2012) 3-10.

B. Liu, Uncertainty theory, Springer, 2015.

Y. Zhu, UNCERTAIN OPTIMAL CONTROL WITH APPLICATION TO A
PORTFOLIO SELECTION MODEL, Cybernetics and Systems, vol. 41, no. 7
(2010) 535-547, 2010/09/24, 10.1080/01969722.2010.511552.

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

L. Yang, K. Li, and Z. Gao, Train Timetable Problem on a Single-Line Railway With
Fuzzy Passenger Demand, IEEE Transactions on Fuzzy Systems, vol. 17, no. 3
(2009) 617-629, 10.1109/TFUZZ.2008.924198.

J. Peng, Risk metrics of loss function for uncertain system, Fuzzy Optimization and
Decision Making, vol. 12, no. 1 (2013) 53-64, 2013//, 10.1007/s10700-012-9146-5.
S. Han, Z. Peng, and S. Wang, The maximum flow problem of uncertain network,
Information Sciences, vol. 265 (2014) 167-175, 5/1/,
http://dx.doi.org/10.1016/j.ins.2013.11.029.

W. Rudin, Real and complex analysis, Tata McGraw-Hill Education, 1987.

M. Zhang, S. Ali, T. Yue, and R. Norgre, Uncertainty-wise evolution of test ready
models, Information and Software Technology (2017),
http://dx.doi.org/10.1016/j.infsof.2017.03.003.

M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, Uncertainty-Wise Cyber-
Physical System test modeling, Software & Systems Modeling (2017), 2017/07/25,
10.1007/s10270-017-0609-6.

OMG, Unified Modeling Language 2.5 (UML), June 2015,
http://www.omg.org/spec/UML/.

OMG, "Object Constraint Language (OCL)," 2014,
http://www.omg.org/spec/OCL/.

"U-Model,"” accessed,; http://www.zen-
tools.com/rucm/metamodels/U_Model/content/ Z4.v.f. wA.h.KE.eW31.c7B.e8.r.j_
Q_root.html.

accessed.

"BeliefUCMeta," accessed,; http://www.zen-
tools.com/rucm/metamodels/belief_ucmeta/content/_.h.n.c.j.cJ.nFE.eW.a-.f8-
JXNWILw_root.html.

"U-RUCM: Specifying Uncertainty in Use Case Models," accessed; http://zen-
tools.com/rucm/U_RUCM.html.

"UncerTum," accessed; https://bitbucket.org/ManZH/uncertum-v1.

M. Zhang, S. Ali, T. Yue, and R. Norgre, An Integrated Modeling Framework to
Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty,

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Technical report 2016-02, Simula Research Laboratory, 2016;
https://www.simula.no/publications/integrated-modeling-framework-facilitate-

model-based-testing-cyber-physical-systems.

"IBM RSA Simulation Toolkit,” accessed 2016; http://www-
03.ibm.com/software/products/en/ratisoftarchsimutool.
"Eclipse OCL," accessed 2016;

http://www.eclipse.org/modeling/mdt/?project=ocl#ocl.

"[Metal,"” accessed 2016; http://jmetal.sourceforge.net/.

J. J. Durillo, and A. J. Nebro, jMetal: A Java framework for multi-objective
optimization, Advances in Engineering Software, vol. 42, no. 10 (2011) 760-771.
"UncerTest: an uncertainty-wise testing tool for test generation and optimization,"
accessed; https://bitbucket.org/ManZH/uncertest-v1.

C. Tannert, H. D. Elvers, and B. Jandrig, The ethics of uncertainty, EMBO reports,
vol. 8, no. 10 (2007) 892-896.

M. H. Mishel, Uncertainty in illness, Image: The Journal of Nursing Scholarship,
vol. 20, no. 4 (1988) 225-232.

A. S. Babrow, C. R. Kasch, and L. A. Ford, The many meanings of uncertainty in
illness: Toward a systematic accounting, Health communication, vol. 10, no. 1
(1998) 1-23.

P. K. Han, W. M. Klein, and N. K. Arora, Varieties of Uncertainty in Health Care A
Conceptual Taxonomy, Medical Decision Making, vol. 31, no. 6 (2011) 828-838.
G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives,
Routledge, 2012.

D. V. Lindley, Understanding uncertainty (revised edition), John Wiley & Sons,
2014,

K. Potter, P. Rosen, and C. R. Johnson, From quantification to visualization: A
taxonomy of uncertainty visualization approaches, Uncertainty Quantification in
Scientific Computing, pp. 226-249: Springer, 2012.

B. N. Taylor, Guidelines for Evaluating and Expressing the Uncertainty of NIST
Measurement Results (rev, DIANE Publishing, 2009.

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]

S. Wasserkrug, A. Gal, and O. Etzion, A taxonomy and representation of sources of
uncertainty in active systems, Next Generation Information Technologies and
Systems, pp. 174-185: Springer, 2006.

T. Yue, L. Briand, and Y. Labiche, aToucan: An Automated Framework to Derive
UML Analysis Models from Use Case Models, ACM Transactions on Software
Engineering and Methodology (2014).

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, Dynamically discovering
likely program invariants to support program evolution, IEEE Transactions on
Software Engineering, vol. 27, no. 2 (2001) 99-123, 10.1109/32.908957.

C. Csallner, N. Tillmann, and Y. Smaragdakis, DySy: dynamic symbolic execution
for invariant inference, in Proceedings of the 30th international conference on
Software engineering, Leipzig, Germany, 2008, pp. 281-290.

I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic, Using dynamic
execution traces and program invariants to enhance behavioral model inference, in:
2010 ACM/IEEE 32nd International Conference on Software Engineering. pp. 179-
182, 2010 2-8 May 2010.

P. Ammann, and J. Offutt, Introduction to software testing, Cambridge University
Press, 2016.

"Future Position X," accessed 2017; http://www.fpx.se/.

"Quuppa - Do more with Location,” accessed 2017; http://quuppa.com/.

"Nordic Med Test," accessed 2017; http://www.nordicmedtest.se/.

"ULMA Handling System," accessed 2017; http://www.ulmahandling.com/en/.
"IK4-IKERLAN," accessed 2017; http://www.ikerlan.es/eu/.

T. Yue, L. C. Briand, and Y. Labiche, Facilitating the Transition From Use Case
Models to Analysis Models: Approach and Experiments, ACM Transactions on
Software Engineering and Methodology, vol. 22, no. 1 (2013).

S. Ali, L. C. Briand, and H. Hemmati, Modeling robustness behavior using aspect-
oriented modeling to support robustness testing of industrial systems, Software &
Systems Modeling, vol. 11, no. 4 (2012) 633-670.

R. S. Pressman, Software engineering: a practitioner's approach 7th edition, Palgrave
Macmillan, 2010.

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, vol. 6,
no. 2 (2002) 182-197.

K. Deb, and H. Jain, An Evolutionary Many-Objective Optimization Algorithm
Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving
Problems With Box Constraints, IEEE Transactions on Evolutionary Computation,
vol. 18, no. 4 (2014) 577-601, 10.1109/TEVC.2013.2281535.

A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Mocell: A cellular
genetic algorithm for multiobjective optimization, International Journal of Intelligent
Systems, vol. 24, no. 7 (2009) 726-746.

A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Design issues in a
multiobjective cellular genetic algorithm, in: S. Obayashi, K. Deb, C. Poloni, T.
Hiroyasu and T. Murata, eds. International Conference on Evolutionary Multi-
Criterion Optimization. pp. 126-140, 2007 2007.

E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto
evolutionary algorithm, in: Evolutionary Methods for Design, Optimization and
Control with Applications to Industrial Problems (EUROGEN 2001), Athens.
Greece, International Center for Numerical Methods in Engineering, 2001.

A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, AbYSS:
Adapting scatter search to multiobjective optimization, IEEE Transactions on
Evolutionary Computation, vol. 12, no. 4 (2008) 439-457.

S. Kukkonen, and J. Lampinen, GDE3: The third evolution step of generalized
differential evolution, in. pp. 443-450, 2005.

A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba,
SMPSO: A new pso-based metaheuristic for multi-objective optimization, in: 2009
IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making
(MCDM), Nashville, TN, USA. pp. 66-73, 2009 2009.

J. R. Koza, “Genetic programming IlI: Automatic discovery of reusable
subprograms,” Cambridge, MA, USA, 1994,

A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,”
The annals of mathematical statistics, pp. 325-339, 1967.

Part 11
Papers

Paper A

Understanding Uncertainty in Cyber-
Physical Systems: A Conceptual Model

Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz and Roland.
Norgren

In: Proceedings of the 12th European Conference on Modelling Foundations and
Applications (ECMFA 2016), pp. 247-264, 2016.
DOI: 10.1007 /978-3-319-42061-5_16

Abstract

Uncertainty is intrinsic in most technical systems, including Cyber-Physical Systems
(CPS). Therefore, handling uncertainty in a graceful manner during the real operation of
CPS is critical. Since designing, developing, and testing modern and highly sophisticated
CPS is an expanding field, a step towards dealing with uncertainty is to identify, define, and
classify uncertainties at various levels of CPS. This will help develop a systematic and
comprehensive understanding of uncertainty. To that end, we propose a conceptual model
for uncertainty specifically designed for CPS. Since the study of uncertainty in CPS
development and testing is still irrelatively unexplored, this conceptual model was derived
in a large part by reviewing existing work on uncertainty in other fields, including
philosophy, physics, statistics, and healthcare. The conceptual model is mapped to the three
logical levels of CPS: Application, Infrastructure, and Integration. It is captured using UML
class diagrams, including relevant OCL constraints. To validate the conceptual model, we

identified, classified, and specified uncertainties in two distinct industrial case studies.

Keywords. Uncertainty; Cyber-Physical Systems; Conceptual Model.

1 Introduction

Cyber-Physical Systems (CPS) are present in a variety of safety/mission critical domains
[1-3]. Given the pervasiveness of CPS and their criticality to the daily functioning of society,
it is vital for such systems to operate in a reliable manner. However, since they generally
function in an inherently complex and unpredictable physical environment, a major
difficulty with these systems is that they must be designed and operated in the presence of
uncertainty. By uncertainty we mean here the lack of certainty (i.e., knowledge) about the
timing and nature of inputs, the state of a system, a future outcome, as well as other relevant
factors.

As a first crucial step in such an investigation, we feel that it is necessary to understand
the phenomenon of uncertainty and all its relevant manifestations. This means to
systematically identify, classify and specify uncertainties that might arise at any of the three
levels of CPS: Application, Infrastructure, and Integration. Based on studying and analyzing

existing uncertainty models developed in other fields, including philosophy, physics,

statistics and healthcare [4-7], we have defined an uncertainty conceptual model for CPS (U-
Model) with the following objectives: 1) provide a unified and comprehensive description
of uncertainties to both researchers and practitioners, 2) classify uncertainties with the aim
of identifying common representational patterns when modeling uncertain behaviors, 3)
provide a reference model for systematically collecting uncertainty requirements, 4) serve
as a methodological baseline for modeling uncertain behaviors in CPS, and, last but not least,
5) provide a basis for standardization of the conceptual model leading to its broader
application in practice.

To verify the completeness and validity of the U-Model, we validated it using uncertainty
requirements* collected from two industrial case studies from two different domains: 1)
Automated Warehouses developed by ULMA Handling Systems
(www.ulmahandling.com/en/), Spain, 2) GeoSports (fpx.se/geo-sports/) developed by
Future Position X, Sweden. This empirical validation was systematically performed in
several stages and, as a result, several revisions of the U-Model were obtained in addition to
a refined set of uncertainty requirements. The version of the U-Model that emerged from this
work is presented in this paper. Based on the results of this validation, we discovered 61.5%
(averaged across the two case studies) additional uncertainties not identified in the initial
specifications. The rest of this paper is organized as follows: Section 2 presents the
background and a running example. Section 3 presents the U-Model. Section 4 presents
evaluation and discussion. Section 5 discusses related work and we conclude the paper in

Section 6.

2 Background and Running Example

A CPS is defined in [8] as: ““A set of heterogeneous physical units (e.g., sensors, control
modules) communicating via heterogeneous networks (using networking equipment) and
potentially interacting with applications deployed on cloud infrastructures and/or humans
to achieve a common goal” and is conceptually shown in Fig. A-1. As defined in [8],
uncertainty can occur at the following three levels (Fig. A-1): 1) Application level: Due to

events/data originating from the application of the CPS; 2) Infrastructure level: Due to

+Use cases containing scenarios having uncertainty.

interactions including events/data among physical units, networking infrastructure, and/or
cloud infrastructure, 3) Integration level: Due to either interaction among uncertainties at

the first two levels or due to interactions between application and infrastructure levels.

Cyber-Physical System

4 Physical Unit:

Pl : PU:
L J

%

Applicasion ey Application Legends
Level Hardware H =
s [& lfjj @ tou 8 wirelass
'@ Co : 'y -
E E[I]* ; E—E WValve @ Actuztor
O oowd . X Number
— -
— T ~ |E| Sensor E Network
- Infrastructure Leveal - E Actuator [0 Hydraulics
—_ I —

Integration Level

Fig. A-1. Conceptual model of a Cyber-Physical System [8]

Due to confidentiality constraints, the actual industrial CPS case studies that we used to
evaluate the U-Model (Section 4) cannot be described in detail. Instead, we chose a
Videoconferencing Systems (VCS) developed by Cisco, Norway, as an example to illustrate
the conceptual model that has been used in our previous projects.

A typical VCS sends and receives audio/video streams to other VCS in a videoconference
including dedicated hardware-based VCS, software-based VCS for PCs, and cloud-based
VCS solutions (e.g., WebEx) as shown in Fig. A-2 (inspired from [9] and our existing
collaboration with Cisco). To support videoconferences a complex infrastructure is provided
by Cisco (Fig. A-2) comprising of a variety of hardware such as gateways (e.g., Expressway)
and dedicated servers (e.g., Telepresence and unified Call Management servers). In Fig. A-
2, we also show the various levels at which the uncertainties can occur in the context of our
running example. For example, as shown in Fig. A-2, at Site 2, the interactions of Application
level uncertainties in VCS 2 and uncertainties in the Telepresence Servers are shown as
Integration level uncertainties.

To facilitate the understanding of concepts, a VCS represents aspects of the physical
world in a somewhat simplified form. Among other functions, the VCS controls the
movement of a set of cameras that are directly attached to it via wired/wireless media. This
can also be performed via a cloud-based VCS application (i.e., WebEX) in addition to

dedicated hardware-based solutions. In the course of a videoconference, a number of

different uncertainties exist due to the complex and heterogeneous collection of networks,
cloud-based infrastructures, and VCSs.

Cloud-based VC5 — 1 Cloud-based VC5
Application Level — WebEx_at | Application Level
Site 4 = s Site 3
ves1 Unified CM Expressway Level Level , Expressway Unified CM ves2
oF OF o= 4 - d L_ . P [
j j: :’3"_ 2@(; :‘,; K= .Internet _:))Ey: __ ;}E](_—).__ I:I:} I:h} I:I:j:

Telepresence - Telepresence

Tablet Video terminal ; | < " Conductor | g T, T———— wr. Video terminal Tablet
aras e T e T - -t
L= | é MPLSWAN) _— e e
P L é L -_— - — ,_—"___/ Cisco Telepresence l'm "" LR
Application Level _ -—— Management Suite Application Level
} aut
| — — SIP—— HTTP(sjmmmmiedia+Content Legends and Definitions 4 1
Intergartion Level Diy D:): D}: High Definition Video Cameras Integration Level
Unified CM: Call Control Server, Exp y e interoperability with
third part VCSs and firewalls and registration on Cisco CM, Telepresence
Cog_ductald: M:_n:ages CO?fE‘ren_cing resources, Ti;epp:sesenr:‘oel Server: Plrotri::’esl
. lenraeanes Sare audio and wvideo conferencing resources, d ultiprotocol Label Telepresence Servers I
Site 1 Telepresence Server Switching, Webex: Cloud-based WVCS solution, Cisco Telepresence ’ Site 2
Management Suite: Facilitates scheduling meetings Infrastructure Level

Fig. A-2. Running Example — Videoconferencing System (VCS)

3 Uncertainty Conceptual Model

The U-Model includes Belief Model, Uncertainty Model and Measure Model. Their key

details are presented below, whereas more details are presented in [10].

3.1 Belief Model

The U-Model takes a subjective approach to representing uncertainty. This means that
uncertainty is modeled as a state (i.e., worldview) of some agent or agency — henceforth
referred to as a BeliefAgent — that, for whatever reason, is incapable of possessing complete
and fully accurate knowledge about some subject of interest. Since it lacks perfect
knowledge, a BeliefAgent possesses a set of subjective Beliefs about the subject. These may
be valid, if the beliefs accurately represent facts, or invalid, if they do not®. A Belief is an
abstract concept, but can be expressed in concrete form via one or more explicit
BeliefStatements. Different BeliefAgents may hold different views about a given subject,
which is why each BeliefStatement is associated with a particular BeliefAgent. Note that a

BeliefAgent does not necessarily represent a human individual; it could constitute a

s Such a strictly binary categorization may not be always realistic, since Beliefs could be characterized by
degrees of validity. However, in this model, we choose to ignore such subtleties. Specifically, a
BeliefStatement is deemed to be valid if it is a sufficient approximation of the truth for the purpose on hand.

community of individuals, some non-human organism, or even some technological system,
such as a computer system®.

These and other core concepts of the U-Model are represented as a class diagram in Fig.
A-3, where subjective concepts are represented by the grey-filled boxes and objective
concepts as the unfilled boxes in Fig. A-3. Subjective concepts are manifestations of the
imperfect knowledge of a BeliefAgent. Conversely, objective concepts reflect objective
reality and are, therefore, independent of BeliefAgents and their imperfections. One
significant characteristic of the subjective concepts is that they can vary over time, as might
occur, e.g., when more information becomes available’.

Uncertainty (lack of confidence) represents a state of affairs whereby a BeliefAgent does
not have full confidence in a Belief that it holds. This may be due to various factors: lack of
information, inherent variability in the subject matter, ignorance, or even due to physical
phenomena, e.g., the Heisenberg uncertainty principle. While Uncertainty is an abstract
concept, it can be represented by a corresponding Measurement expressing in some
concrete form the subjective degree of uncertainty held by the agent to a BeliefStatement.
Since the latter is a subjective notion, a Measurement should not be confused with the
degree of validity of a BeliefStatement. Instead, it indicates the level of confidence that the
agent has in a statement®,

Finally, note that this model is intentionally made very general, which allows it to be
extended and customized for a variety of purposes, e.g., uncertainty model-based testing of
CPS in the context of our project. Fig. A-3 does not show the complete model, e.g., to reduce
visual clutter, some of the OCL constraints have been removed. The complete model is
described in [10]. In the remainder of this section, we examine key concepts of the core
model in more detail and illustrate some of them using the running VCS example (see Table
A-1).

s In this case, the Beliefs would be reflected in the rules that are programmed into the system.
" However, more information does not necessarily imply a decrease in uncertainty.
8 E.g, many people in the past were absolutely certain that the Earth was flat.

«enumeration» EvidenceKnowledge | {self.type=KnowledgeType:knownknown or «dataType» «dataTypes»
IndeterminacyNature | pe : Krowledge Type selfitype=KnowledgeType:Unknownknown} Timepoint Duration
"

InsufficientR esclution \ -
MissingInfo * L BeliefStatement IndeterminacyKnowledge
r(\:Jon—deEer minism Evidence Belief <—— from : Timepaint type . }’.nowle’d‘ge'il'vpe
orr|1po__7]|0te d _ * *(7| duration : Duration T
|Unclassifie * + evidence " L " 0.1 (self-type=KknowledgeTyp
R beliefdeqree L. prerequisites euknownUnknown or

«enumeraton» Jl BeliefAgent * + substaterments Is.elf.ty|)e= KnowledgeType

KnowledgeType * g :UnknownUnknown}
i *

Knownt nown Measurement Uncertainty + /source

FrownUnlnown *+ measured
Unknownknown

UnlnownUnlknown

from : Timepoint % 1] IndeterminacySource
nature : IndeterminacyMNature

Measure

+ indeterminacydegree

Fig. A-3. The Core Belief Model

3.1.1 Belief, BeliefAgent and BeliefStatement

A Belief is an implicit subjective explanation or description of some phenomena or
notions ® held by a BeliefAgent. This is an abstract concept whose only concrete
manifestation is as a BeliefStatement. In our running example, a test engineer at Cisco may
have his/her own Beliefs about how a VCS works. When coding test cases, he/she
concretizes his/her Beliefs as executable test scripts that may or may not correspond to the
actual implementation the VCS. A BeliefStatement in this context could be manifested as
one executable test case file and in other contexts it may correspond to other artifacts, e.g.,
source code.

10 owning one or more Beliefs about

A BeliefAgent is a physical entity
phenomena/notion. A BeliefAgent can take actions based on its Beliefs. In our example of
CPS testing, BeliefAgents include: 1) Application level: software test engineers focusing on
testing new versions of the VCS software, and 2) Infrastructure level: Network engineers
focusing on testing a VCS under diverse network situations.

A BeliefStatement is a concrete and explicit specification of some Belief held by a
BeliefAgent about possible phenomena or notions belonging to a given subject area. A
BeliefStatement can be an aggregate of two or more component BeliefStatements, or it

may require one or more prerequisite BeliefStatements.

® “Phenomena” here is intended to cover aspects of objective reality, whereas “notion” covers abstract
concepts, such those encountered in mathematics or philosophy.

0 \We exclude here from this definition “virtual” BeliefAgents, such as those that might occur in virtual reality
systems and computer games.

The concrete form of a BeliefStatement can vary, and may represent informal
pronouncements made by individuals or groups, documented textual specifications
expressed in either natural or formal languages, formal or informal diagrams, etc.

Due to the complex nature of objective reality and our human and technical limitations,
it may not always be possible to determine whether or not a BeliefStatement is valid.
Furthermore, the validity of a statement may only be meaningfully defined within a given
context or purpose at a given point of time. Thus, the statement that “the Earth can be
represented as a perfect sphere” may be perfectly valid for some purposes but invalid or only
partly valid for others. For our needs, we are more interested in analyzing uncertainties in a
BeliefStatement rather than studying its validity.

In our example, we define the following BeliefStatements: 1) Application level: The
VCS will successfully connect to another VCS 70% of the time (see Table A-1); 2)
Infrastructure level: The Expressway gateway is successful 99% of the time in connecting a
Cisco VCS with a third party VCS (see Table A-1); and 3) Integration level: A VCS
communicates with the Expressway gateway with a 90%-95% success rate.

Table A-1. Running Example — Dial of VCS

Package | Concept Explanation

Belief Level Application

Model BeliefAgent Software testing engineers
BeliefStatement The VCS successfully dials to another VCS 70% of the time.
Indeterminacy Improper human behavior where he/she enters an incomplete
Source name/number of VCS to dial IndeterminacyNature:: Non-

determinism, and IndeterminacyKnowledge.type=
KnowledgeType : : KnownUnknown

Evidence Execution of 100 test cases on the VCS in the past week involving the
dial command EvidenceKnowledge. type
=KnowledgeType: : KnownKnown

Uncertainty Uncertainty in whether the dial to another VCS will be successful or not.
This concept may depend on (see self-association of Uncertainty in Fig.
A-4) another uncertainty composed by another BeliefStatement
specified by the network engineer, e.g. "The Expressway gateway is
99% of the time successful in connecting Cisco's VCS with third party

VCS."
Uncertai | Type Occurrence
nty Lifetime Difference of time that the dial was initiated and response from the
Model system was received
Locality Invocation of the dial API of VCS
Pattern Derived pattern from the collection of values of lifetime of the
uncertainty
Risk Low or even can be ignored
Measurement 70% of the time, derived from Evidence based on test execution history

Measure | Measure Probability
Model

3.1.2 Evidence, EvidenceKnowledge, IndeterminacySource and
IndeterminacyKnowledge.

Evidence is either an observation or a record of a real-world event occurrence or,
alternatively, the conclusion of some formalized chain of logical inference that provides
information that can contribute to determining the validity (i.e., truthfulness) of a
BeliefStatement. Evidence is inherently an objective phenomenon, representing something
that actually happened. This means that we exclude here the possibility of counterfeit or
invented evidence. Nevertheless, although Evidence represents objective reality, it needs
not be conclusive in the sense that it removes all doubt (Uncertainty) about a
BeliefStatement. In our example of an Application level BeliefStatement, i.e., “The VCS
successfully dials to another VCS 70% of the time”. The Evidence of the 70% of success
rate of dial may be obtained from the execution of 100 test cases on the VCS in the past
week (see Evidence Table A-1).

EvidenceKnowledge expresses an objective relationship between a BeliefStatement and
relevant Evidence. It identifies whether the corresponding BeliefAgent is aware of the
appropriate Evidence. Thus, an agent may be either aware that it knows something
(KnownKnown), or it may be completely unaware of Evidence (UnknownKnown). This is
formally expressed by the two constraints attached to EvidenceKnowledge (Fig. A-3). An
example is provided in Table A-1.

Indeterminacy is a situation whereby the full knowledge necessary to determine the
required factual state of some phenomena/notions is unavailable!. This is an abstract
concept whose only concrete manifestation is in the form of an IndeterminacySource. As
noted earlier, this may be due either to subjective reasons (e.g., agent ignorance) or to
objective reasons (e.g., the Heisenberg uncertainty). It is also useful to explicitly identify
factors that lead to Uncertainty referred to as IndeterminacySources. This represents a
situation whereby the information required to ascertain the validity of a BeliefStatement is

indeterminate in some way, resulting in Uncertainty being associated with that statement.

** Care should be taken to distinguish between indeterminacy and non-determinism. The latter is only one possible source of indeterminacy.

One possible source of indeterminacy can be another BeliefStatement, which is why the
latter is a specialization of IndeterminacySource (Fig. A-3). For example, for the following
BeliefStatement: “The VCS successfully dials to another VCS 70% of the time”, for which
there might be several IndeterminacySources. A possibility is incorrect operator behavior,
where an incomplete name of the target VCS specified (IndeterminacySource entry in
Table A-1).

IndeterminacyNature represents the specific kind of indeterminacy and can be one of
the following: 1) InsufficientResolution — The information available about the phenomenon
in question is not sufficiently precise; 2) Missinglnfo — The full set of information about the
phenomenon in question is unavailable at the time when the statement is made; 3) Non-
determinism — The phenomenon in question is either practically or inherently non-
deterministic; 4) Composite — A combination of more than one kinds of indeterminacy; 5)
Unclassified — Indeterminate indeterminacy.

IndeterminacyKnowledge expresses an objective relationship between an
IndeterminacySource and the awareness that the BeliefAgent has of that source. So, even
though it is agent specific, it is still an objective concept since it does not represent something
that is declared by the agent. For instance, an agent may be aware that it does not know
something about a possible source (KnownUnknown), or the agent may be completely
unaware of a possible source of indeterminacy (UnknownUnknown).

KnowledgeType (represented as enumeration) has four values: 1) KnownKnown
indicates that an associated BeliefAgent is consciously aware of some relevant aspect; 2)
KnownUnknown (Conscious Ignorance) indicates that an associated BeliefAgent
understands that it is ignorant of some aspect; 3) UnknownKnown (Tacit Knowledge)
indicates that an associated BeliefAgent is not explicitly aware of some relevant aspect, but
may be able to exploit in some way; 4) UnknownUnknown (Meta Ignorance) indicates that
an associated BeliefAgent is unaware of some relevant aspect.

At a given point in time, a BeliefAgent always makes a statement based on a
KnownKnown Evidence and a KnownUnknown IndeterminacySource. Splitting
EvidenceKnowledge and IndeterminacyKnowledge provides the flexibility to enable

transitions among different knowledge types (e.g.,, from UnknownKnown to

KnownKnown), based on the evolution of EvidenceKnowledge and
IndeterminacyKnowledge related to the associated BeliefAgent. For the following
BeliefStatement: “The VCS successfully dials to another VCS 70% of the time” and an
IndeterminacySource is improper operator behavior, the KnowledgeType of

IndeterminacyKnowledge is KnownUnknown.

3.1.3 Measurement and Measure.

Measurement when associated with a given IndeterminacySource represents the
optional quantification (or qualification) that specifies the degree of indeterminacy of the
IndeterminacySource. For example, in the case of a Non-determinism
IndeterminacySource, its measurement could be expressed by a probability or a probability
density function. For the example presented in Table A-1, ‘70%’ is the measurement of the
IndeterminacySource improper operator behavior.

Measurement when associated with Uncertainty is a subjective concept representing the
actual measured value of an uncertainty defined by a BeliefAgent. It may be possible to
specify a Measurement that quantifies in some way (e.g., as a probability) the degree of the
uncertainty that a BeliefAgent associates with a BeliefStatement. Measurement when
associated with Belief represents sets of measured values of all the uncertainties contained
by a BeliefStatement defined by a BeliefAgent. Several constraints on Measurement
ensure that each Measurement owned by either Belief, Uncertainty or
IndeterminacySource has a unique Measure. Currently, we modeled three different
measures, i.e., Probability, Ambiguity and Vagueness that are discussed in the Measure
Model (Section 3.3). In the future, we will provide UML model libraries for Measurement
when implementing U-Model as a UML profile. Measure is an objective concept specifying

method of measuring uncertainty. More details are presented in Section 3.3.

3.2 Uncertainty Model

This model (Fig. A-4) was inspired by concepts defined in the literature on uncertainty
[11-15] and is an adjunct to the Core Belief Model (Section 3.1). The uncertainty model
expands on Uncertainty from several different viewpoints and introduces related

abstractions. Notice that Uncertainty has a self-association. This self-association facilitates:

1) relating different Application level uncertainties to each other, 2) relating different
Infrastructure level uncertainties to each other, 3) relating Application level and
Infrastructure level uncertainties to each other, 4) relating Integration level uncertainties to
each other, and 5) relating Application, Integration, and Infrastructure level uncertainties.
This self-association can be specialized into different types of relationships such as ordering
and dependencies. Here, we intentionally did not specialize it to keep the model general, so
that it can be specialized for various purposes and contexts. In the rest of the section, we

discuss each subtype of Uncertainty and its associated concepts.

«enurmeratons «[SO 31000% ‘ Locality | | Effect |’g Measurement ‘
Level /Rating Risk M /t Mo

" ; - 0.1 (0.1
Low Jevel : Level/Ratng 0.1
el ifetime |
High W Uncertainty W
Exgtreme == from @ Timepoint 0..

A

[)
| Occurrence || Content | | Time | | Geographicall ocation }% Environment ‘

Fig. A-4. The Core Uncertainty Model

3.2.1 Uncertainty, Lifetime and Pattern.
Uncertainty represents a situation whereby a BeliefAgent lacks confidence in a

BeliefStatement. Fig. A-4 shows a conceptual model for different types of Uncertainty
inspired from the concepts reported in [12, 14, 15]. Uncertainty is specialized into the
following types: 1) Content — represents a situation, whereby a BeliefAgent lacks
confidence in content existing in a BeliefStatement; 2) Environment — represents a
situation whereby a BeliefAgent lacks confidence in the surroundings of a physical system
existing in a BeliefStatement; 3) GeographicalLocation —represents a situation whereby a
BeliefAgent lacks confidence in geographical location existing in a BeliefStatement; 4)
Occurrence — represents a situation whereby a BeliefAgent lacks confidence in the
occurrence of events existing in a BeliefStatement; 5) Time —represents a situation whereby
a BeliefAgent lacks confidence in time existing in a BeliefStatement. For example, for the
BeliefStatement: “The VCS successfully calls another VCS 70% of the time”, the
Uncertainty is whether the dialing to another VCS will be successful or not and classified

as Occurrence uncertainty. In case of the BeliefStatement: “The Expressway gateway is

successful 99% of the time in connecting a Cisco VCS with a third party VCS”, the
Uncertainty is in the connection of the gateway with the third party VCS, and type of

uncertainty is again Occurrence (see type of Uncertainty in Table A-1).

(——— * N
! . B1‘2’

Real time Bi.1 | Bl,al Real time
1 /[\ / 19/7/2015|
map l
d / | I
0 Testing time / I I R
see | 4
to t1 t2 t3 t1000 tioo1 Testing time
0 -- success; 1 -- failsure Bai.1: | believe that the rate of successful dial
Ba1.n: BeliefStatement from Software Testing willbe 75% before 21/07/2015.
Engineer is about occurrence of successful Bi.2: | believe that the next dial will be
dial(Uncertainty) at specific time point. successful with 72% of confidence.
LifeTime = tn - tn-1, B1.3: | believe that the probability of
tn : time point of dial/getting response. successful dial is 70%.

Fig. A-5. Example of Lifetime and Pattern of Uncertainty

Lifetime represents an interval of time, during which an Uncertainty exists. That is, an
Uncertainty may appear temporarily and then disappear. On the other hand, an Uncertainty
could be persistent, i.e., it remains until appropriate actions are taken to resolve it. An
example of Lifetime is shown in Table A-1. We show two types of time in Fig. A-5: 1) Real
Time showing the actual passing of the time, 2) Testing Time, i.e., a time point in real time,
where a testing activity was performed, e.g., a call attempt to establish a videoconference
(stimulus to the system under test) or a response from the system was received about success
or failure of the call (test result). Time points t, are shown on Testing Time in Fig. A-5. A
BeliefStatement can be made at any point in the real time, for example, three versions of
BeliefStatement Bz (B11, B1.2, and B1.3) can be made at different points of time as shown in
Fig. A-5. Lifetime of Uncertainty (the occurrence of successful dial) in BeliefStatement
B1 should be tn — ty-1: difference of time that the dial was initiated and response from the
system was received for By 3.

Fig. A-6 shows a conceptual model for the occurrence Pattern of Uncertainty inspired
from concepts reported in [14, 16, 17]. Notice that in this section, patterns presented are by
no means the representation of a complete set of patterns that may exist for an Uncertainty.
Rather, we only present the most common patterns.

Periodic uncertainty occurs at regular intervals of time, whereas Persistent uncertainty

is the one that lasts forever. The definition of “forever” varies; e.g, an uncertainty may exist

permanently until appropriate actions are taken. On the other hand, an uncertainty may not
be resolvable and remains forever. Both Periodic and Persistent inherit from Systematic,
which means that these types of patterns occur in some methodical manners, i.e., a pattern
that can be described in a mathematical way.

An uncertainty with an Aperiodic pattern occurs at irregular intervals of time, which is
further specialized into Sporadic and Transient. A Sporadic uncertainty occurs
occasionally, whereas a Transient uncertainty occurs temporarily. Systematic and
Aperiodic uncertainty patterns inherit from Temporal, which means that they both
inherently have the notion of time. If an uncertainty occurs without a definite method,
purpose or conscious decision, the type of the pattern it follows is referred to as Random.
For example, when looking at Fig. A-5, a pattern of the Uncertainty (the occurrence of a
successful call attempt) can be derived after collecting values of Lifetime of the Uncertainty
(see Pattern in Table A-1).

Uncertainty Pattern <— Temporal
0.1 0.1 4%5.
Random Systematic Aperiodic

2 S

Persistent Perodic || Sporadic || Transient

Fig. A-6. The Patterns of Uncertainty

3.2.2 Locality and Risk.

Locality (see Fig. A-4) is a particular place or a position where an Uncertainty occurs in
a BeliefStatement. For example, for the BeliefStatement: “The VCS successfully dials to
another VCS 70% of the time”, the Locality of the Uncertainty (whether the call attempt to
another VCS will be successful or not) is in the invocation (position) of dial APl of VCS
(see Locality in Table A-1).

An uncertainty may have an associated Risk and high-risk uncertainties deserve special
attention. As shown in Fig. A-4, an Uncertainty might or might not associated to Risk,
whose level can be classified into four levels according to the ISO 31000 — Risk Management
standard [18]. Level/Rating is derived from Measurement owned by Uncertainty (e.g.,

Probability of the Occurrence of an Uncertainty) and Measurement owned by Effect (e.g.,

high impact using the risk matrix in [19] or any other matrix). For example, for the
BeliefStatement: “The VCS successfully calls another VCS 70% of the time”, the Risk
associated with the Uncertainty in this BeliefStatement is low or the risk could be even
ignored (see Risk in Table A-1).

3.3 Measure Model

Fig. A-7 shows the Measure Model of the U-Model, inspired from concepts reported in
[12-14] and by no means complete. Depending on the type of Uncertainty, a variety of
measures could be applied and new ones can also be proposed when needed. We aim to give

a high-level introduction to commonly known measures.

Measurement Measure

.

Vagueness || Probability || Ambiguity
2

Fuzziness NonSpecificity

Fig. A-7. Measure Model

An uncertainty may be described ambiguously (Ambiguity). For example, in statement
“The camera is down”, the ambiguity is in the measurement, i.e., the camera is either facing
down or disconnected. Interested readers may consult [20] for various measures of
Ambiguity. Another common way of measuring Uncertainty is in a vague manner (i.e.,
Vagueness), which can be further classified into Fuzziness and NonSpecificity. Regarding
Fuzziness, an uncertainty may be measured using fuzzy methods. More details can be
referred to the fuzzy logic literature such as [20]. In certain cases, it may not be possible to
measure an uncertainty using quantitative measurements and instead qualitative
measurements can be used. Such qualitative measurements are classified under
NonSpecificity methods. Finally, a common way of measuring uncertainty is via
Probability. For example, for the BeliefStatement: “The VCS successfully calls another
VCS 70% of the time”, the Uncertainty is measured by Probability (see Measure in Table
A-1).

4 Evaluation

This section presents the results of the industrial case studies that we conducted to
evaluate the U-Model and collect uncertainty requirements. First case study is about
Automated Warehouse (AW) provided by ULMA Handling Systems and the second case
study is about Geo Sports (GS) by Future Position X (further details in [10]).

4.1 Development and Validation of Uncertainty Requirements and U-
Model

We collected uncertainty requirements from the two industrial case studies in the
following ways. The uncertainty requirements were collected as part of an EU project on
testing CPS under uncertainty (www.u-test.eu). An initial set of uncertainty requirements
were collected by the industrial partners themselves and were later classified into the three
CPS levels: Application, Infrastructure, and Integration. Later on, the researchers of Simula
Research Laboratory conducted one workshop per partner to further refine the requirements.
For AW, the onsite workshop took around three days, whereas in case of GS, a one-day
onsite workshop was organized.

The validation procedure is summarized in Fig. A-8 and comprises two parallel validation
processes. The first validation process is related to the validation of the U-Model and was
mainly conducted by the researchers. The second validation process focuses on the
validation of uncertainty requirements and was mainly performed by the industrial partners.

The validation was developed incrementally (Activities Al and A2 in Fig. A-8), based on
existing models in the literature and other related published works (see Section 2 for details).
The Simula team validated the conceptual model using two types of examples shown as
inputs to A2 in Fig. A-8: 1) Examples of uncertainties from domains other than CPS, and 2)
A subset of VCS requirements. As a result an initial version of the U-Model was produced
referred as U-Model V.1 in Fig. A-8.

. . |
L UModel Researchers) | ____nduswialparmners) -~ __ __|

eut et perationa Domain
.thg models Knowledge
H Al: Developing Initial U-Model input ?

xamples from input | input
physical, etc.

A2: Refining Initial U-Model)

input

input

y
B1: Developing Initial Uncertainty
Requirements

output

input input

A3: Refining U-Model V.1 &
Validating Uncertainty Regs V.1

Initial Uncertainty input
Regs. (Regs V.1

+/~ B2:Refining Uncertainty)
L

via Inspection Reqs V.1

output [
C LMol v >

A4/B3: Workshops to refine
U-Model V.2 and Uncertainty Regs V.2

AS: Identifying Unknown M ReqsV.3

Uncertainties Bede v

input

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
output |
I
I
I
I
I
I
I
I
I
I
I
|
I
Refined Regs V.3 |
I

b e e l _
— Stage 1: Collected data Stage 2: Collected data Stage 3: Collected data —> Control flow
is shown as x in Table 2 is shown as y in Table 2 is shown as zin Table2 —» Data flow

Fig. A-8. Development and Validation of Uncertainty Requirement and U-Model

In parallel, initial uncertainty requirements (Regs V.1) were provided (Activity B1 in Fig.
A-8) by the industrial partners based on their domain knowledge, existing requirements of
their CPS, and some information from the real operation of the CPS. These initial uncertainty
requirements were used as input for A3, focusing on further refining the U-Model. In
addition, the researchers inspected the collected uncertainty requirements using a
requirements inspection checklist provided in [21] and provided a set of comments for the
industrial partners on how to improve their requirements. There were two key outputs of the
A3 activity: U-Model V.2 and comments to refine the requirements. These comments were
used by the industrial partners to produce a second version of requirements (Regs V.2) in
B2.

4.2 Evaluation Results

For each of the industrial case studies, we mapped the three versions of uncertainty
requirements (Regs V.1, Regs V.2, and Regs V.4) to the three versions of U-Model (V.1 to
V.3). The number of the instances of the concepts are shown in columns x (for mapping
Regs V.1 to U-Model V.1), y (for mapping Regs. V.2 to U-Model V.2), and z (for mapping
Regs V.4 to U-Model V.3) of Table A-2, respectively. Notice that Regs V.3 was the result
of the onsite workshops together with U-Model V.3 and thus these requirements are not
mapped to the model since both the conceptual model and requirements were refined
together. We analyzed in total 20 use cases for AW and 18 use cases for GS. Notice that, the
number of use cases for each case study did not change during the requirements collection
and the U-Model validation process. They were selected at the beginning of the process to
capture and specify the key functionalities of the CPS.

Based on the final version of requirements, we can see from Table A-2 that most common
types of identified uncertainties are Content uncertainties having 91 instances (the last
column in Table A-2) and Occurrence uncertainties having 205 instances. On the other
hand, a relatively lower number of Time uncertainties (50), Environment uncertainties (32),
and GeographicalLocation uncertainties (31) were found in the case studies. Most of the
time, uncertainties are due to InsufficientResolution (42 instances), Missinglnfo (31
instances) or Non-determinism (89 instances). In terms of Measure, our analysis revealed
that 76 of the uncertainties across the case studies may be measured with the Fuzziness
measures, 119 with NonSpecificity, whereas 148 with Probability. Notice that in Table A-
2, we do not show the concepts that have no instances identified from any of the case studies.

In Table A-2, the R1 = y/x -1 column represents the increased percentage of mapping of
concepts explicitly captured in Regs V.2 as compared to Regs V.1. The R2 = z/y -1 column
shows the increased percentage of mapping of concepts explicitly captured in Reqs V.4, i.e.,
including unknown uncertainties that weren’t explicitly specified in Regs V.2. As can be
seen from Table A-2, in case of AW for R1, on average, we identified an additional 1.43 of
uncertainties and in R2 we identified an additional 0.51 of uncertainties. For GS, these
percentages are 2.39 in R1, and 0.72 in R2, respectively. In total, in R1 on average we
identified additional 1.91 of uncertainties, whereas in R2 we identified on average 0.615 of

unknown uncertainties.

In Table A-2, one can see that we didn’t have exact data (e.g., probability) and risk
information available at the moment. Such data will be collected using questionnaire-based
surveys in the future to quantify the identified uncertainties. In addition, we didn’t observe
any pattern for the occurrences of the identified uncertainties. Moreover, the Belief part of
the conceptual model (e.g., concepts Belief, BeliefAgent) was derived to understand

Uncertainty and is not relevant for the validation.

Table A-2. Evaluation Results of Uncertainty Requirements and U-Model

c AW GS Freq

oncept x| y | z |[RI\|R*|x|y] z | RL | R2 |Total’
Content 14 [36 |55 |1.57 [0.53 |16 |20 |36]0.25 [0.80 |91
Time 6 |16 [28 |[1.67 |0.75 |5 |11 (22 [1.20 |1.00 [50

Uncertainty Occ_urrence 27 181 (126 |2.00 |0.56 |6 |50 |79 |[7.33 [0.58 |205
Environment 13|15 |22 [0.15 |0.47 |4 |6 |10 [0.50 (0.67 |32

Geographical 1y |11 |14 |175 Jo27 |3 |11 |17 |2.67 055 |31

Location
Sum for X, y, z/ Average for R1, R2 |64 |159 (245 [1.43 [0.51 |34 (98 [164 |2.39 [0.72 [409
Insufficient 7 [18 |24 |157 [0.33 |11 [14 [18 [0.27 |0.29 |42
. Resolution
Indeterminacy Non determinism |7 |45 |52 |5.43 [0.16 |11 |20 |37 |0.82 |0.85 |89
MissingInfo 2 119 (24 1850 (0.26 |0 |5 |7 N/A (0.40 |31
Sum for x,y, z/ Average for R1, R2 |16 |82 100 [2.67 |0.43 |22 |39 [62 |0.55 [0.57 [162
Fuzziness 6 (22 |51 |2.67 [1.32 |6 (15|25 |1.50 |0.67 |76
Measure NonSpecificity 16 |40 |73 [1.50 [0.83 |12 (26 [46 |1.17 |0.77 [119
Probability 18 |56 [98 |2.11 |0.75 |4 |37 |50 [8.25 (0.35 [148
Sum for X, y, z/ Average for R1, R2 |40 |118 [222 [2.09 [0.96 [22 (78 (121 |3.64 [0.60 (343
Rl=yix-1 "R2=1z/y-1 *Total = AW(z2)+GS(z) Freq is Frequency

5 Related Work

Uncertainty is a term that has been used in various fields such as philosophy, physics,
statistics and engineering to describe a state of having limited knowledge where it is
impossible to exactly tell the existing state, a future outcome or more than one possible
outcome [18]. Various uncertainty models have been proposed in the literature from different
perspectives for various domains. For instance, from an ethics perspective, uncertainties are
classified as objective uncertainty and subjective uncertainty, both of which are further
classified into subcategories to support decision-making [4]. In healthcare, uncertainty has
often been defined as “the inability to determine the meaning of illness-related events” [5]

and comprehensive domain-specific uncertainty models (e.g., [6]) have been proposed, as
discussed in [7].

Uncertainty is receiving more and more attention in recent years in both system and
software engineering, especially for CPS, which are required to be more and more context
aware [22-24]. Moreover, CPS inherently involves tight interactions between various
engineering disciplines, information technology, and computer science. This magnifies
uncertainties. Therefore, adequate treatment of uncertainty becomes increasingly more
relevant for any non-trivial CPS. However, to the best of our knowledge, there is no
comprehensive uncertainty conceptual model existing in literature that focused specifically
on CPS design or on system/software engineering in general. In the remainder of the section,
we discuss how the concepts uncovered during the literature review align with our proposed
conceptual model.

The U-Model concepts BeliefAgent, BeliefStatement, and Belief of the Belief model
were adapted from [12]. The author of [12] postulates that uncertainty involves a statement
whose truth is expected by a person, and therefore the truth might differ for different persons
(defined as BeliefAgent in our model). However, as we discussed in Section 3.1, we assigned
a broader meaning to BeliefAgent: which can be an individual, a community of individuals,
or a technology. The U-Model concepts Environment and Locality were adapted from [12,
25-27], and we related them to the other U-Model concepts.

Our knowledge conceptual model aligns well with the model of knowledge reported in
[28]. Here the authors looked at how to manage different types of known and unknown
knowledge to distinguish what is known from what is not known. Knowledge is also
classified from a different perspective: something that everyone knows, tacit knowledge,
conscious ignorance and meta-ignorance. Their objective is to better understand ignorance.
The author of [29] also studied unknowns and provided a taxonomy particularly focusing on
ignorance (named as KnownUnknown and UnknownUnknown in our conceptual model).
In our conceptual model, we further elaborate these concepts and captured them as
KnowledgeType, which is associated to Evidence and IndeterminacySource vVia
EvidenceKnowledge and IndeterminacyKnowledge.

We classified uncertainties into various types including Content, Time and Occurrence.

In[12], a chapter was dedicated to the discussion of content uncertainty and its measurement.

The other two types of uncertainties were mentioned in [12, 14, 15], with examples but with
no clear definitions provided. We adopted the measurements in our conceptual model.
Different types of sources of uncertainty for various purposes have been identified in the
literature. In [30], the authors captured sources of uncertainty by considering risk and
reliability analyses, based on which they classified uncertainty. The authors of [15, 31]
identified sources of uncertainty in active systems. In [23, 32], the authors described the
sources of uncertainty in software engineering in general. We however proposed the U-
Model concepts IndeterminacySource and IndeterminacyNature to capture sources of
uncertainty.

Aleatory and Epistemic uncertainties are the two generic categories of uncertainties
discussed in many works [30, 33]. According to the work reported in [30], Aleatory is due
to the inherent randomness of phenomena, whereas the Epistemic uncertainty is mainly due
to the lack of knowledge. These two types are also covered in the U-Model. For example,
the Non-determinism (nature of indeterminacy in U-Model) represents the randomness as
in Aleatory, and Epistemic is covered by Missinglnfo — nature of indeterminacy.

In [34], the author noted that uncertainty can occur in a random or systematic manner. In
the Pattern part of the U-Model, we further elaborated the *“systematic” concept by
introducing Pattern and its sub categories. In literature, uncertainty is often related to Risk.
The acquisition project team of the US Air Force Electronic System Center (ESC) has
proposed a risk matrix for evaluating risks [19]. They introduced the concepts of Risk,
impact, likelihood of occurrence, and rate of Risk and also identified their relations. We

reused these concepts and linked them with Uncertainty.

6 Conclusion

Cyber-Physical Systems (CPS) often consist of heterogeneous physical units (e.g.,
sensors, control modules) communicating via various networking equipment, interacting
with applications and humans. Thus, uncertainty is inherent in CPS due to tight interactions
between hardware, software and humans, and the need for them to be increasingly context
aware. To understand uncertainty in the context of CPS, unified and comprehensive
uncertainty conceptual model should be derived. The U-Model is such a conceptual model
developed in an EU project, based on a thorough literature review of existing uncertainty

models from various domains (e.g., philosophy, healthcare), and refined and validated with
two industrial CPS case studies of various domains. Based on the results of several stages
validation, we obtained the current version of the conceptual model in addition to refined
uncertainty requirements. On average, we managed to learn 61.5% of unknown uncertainties
that weren’t explicitly specified in the uncertainty requirements collected from the two case
studies.

References

[1] M. Broy, Engineering Cyber-Physical Systems: Challenges and Foundations, in:
Proceedings of the Third International Conference on Complex Systems Desigh &
Management CSD&M 2012. pp. 1-13, 2013.

[2] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao, and S. Dyke, Cyber-Physical
Systems for Real-Time Hybrid Structural Testing: A Case Study, in: Proceedings
of the 1st ACM/IEEE International Conference on Cyber-Physical Systems. pp. 69-
78, 2010.

[3] T. Tidwell, X. Gao, H.-M. Huang, C. Lu, S. Dyke, and C. Gil, Towards Configurable
Real-Time Hybrid Structural Testing: A Cyber Physical Systems Approach, in:
ISORC '09 Proceedings of the 2009 IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing. pp. 37-44,
2009.

[4] C. Tannert, H. D. Elvers, and B. Jandrig, The ethics of uncertainty, EMBO reports,
vol. 8, no. 10 (2007) 892-896.

[5] M. H. Mishel, Uncertainty in illness, Image: The Journal of Nursing Scholarship,
vol. 20, no. 4 (1988) 225-232.

[6] A. S. Babrow, C. R. Kasch, and L. A. Ford, The many meanings of uncertainty in
illness: Toward a systematic accounting, Health communication, vol. 10, no. 1
(1998) 1-23.

[7] P. K. Han, W. M. Klein, and N. K. Arora, Varieties of Uncertainty in Health Care A
Conceptual Taxonomy, Medical Decision Making, vol. 31, no. 6 (2011) 828-838.

[8] S. Ali, and T. Yue, U-Test: Evolving, Modelling and Testing Realistic Uncertain
Behaviours of Cyber-Physical Systems, in: Proceedings of the IEEE 8th

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

International Conference on Software Testing, Verification and Validation (ICST).
pp. 1-2, 2015.

Cisco, Cisco Preferred Architecture for Video - Design Overview, 2015;
http://www.cisco.com/.

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, An Uncertainty
Taxonomy to Support Model-Based Uncertainty Testing of Cyber-Physical Systems,
Simula Laboratory Research, 2015; https://www.simula.no/publications/uncertainty-
taxonomy-support-model-based-uncertainty-testing-cyber-physical-systems.

G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives,
Routledge, 2012.

D. V. Lindley, Understanding uncertainty (revised edition), John Wiley & Sons,
2014,

K. Potter, P. Rosen, and C. R. Johnson, From quantification to visualization: A
taxonomy of uncertainty visualization approaches, Uncertainty Quantification in
Scientific Computing, pp. 226-249: Springer, 2012.

B. N. Taylor, Guidelines for Evaluating and Expressing the Uncertainty of NIST
Measurement Results (rev, DIANE Publishing, 2009.

S. Wasserkrug, A. Gal, and O. Etzion, A taxonomy and representation of sources of
uncertainty in active systems, Next Generation Information Technologies and
Systems, pp. 174-185: Springer, 2006.

A. Cimatti, A. Micheli, and M. Roveri, Timelines with Temporal Uncertainty, in:
Aaai, 2013.

B. Sprunt, L. Sha, and J. Lehoczky, Scheduling sporadic and aperiodic events in a
hard real-time system, DTIC Document, 1989.

ISO, "ISO 31000: Risk management,” 2009,
http://www.iso.org/iso/home/standards/is031000.htm.

P. R. Garvey, and Z. F. Lansdowne, Risk matrix: an approach for identifying,
assessing, and ranking program risks, Air Force Journal of Logistics, vol. 22, no. 1
(1998) 18-21.

G. Klir, Facets of systems science, Springer Science & Business Media, 2013.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

T.Yue, L. C. Briand, and Y. Labiche, Facilitating the transition from use case models
to analysis models: Approach and experiments, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, no. 1 (2013) 5.

R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, Cyber-physical systems: the next
computing revolution, in: Proceedings of the 47th Design Automation Conference.
pp. 731-736, 2010.

M. Conti, S. K. Das, C. Bisdikian, M. Kumar, L. M. Ni, A. Passarella, G. Roussos,
G. Troster, G. Tsudik, and F. Zambonelli, Looking ahead in pervasive computing:
Challenges and opportunities in the era of cyber—physical convergence, Pervasive
and Mobile Computing, vol. 8, no. 1 (2012) 2-21.

D. Garlan, Software engineering in an uncertain world, in: Proceedings of the
FSE/SDP workshop on Future of software engineering research. pp. 125-128, 2010.
F. Hu, Cyber-Physical Systems: Integrated Computing and Engineering Design,
CRC Press, 2013.

B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, A goal-based modeling
approach to develop requirements of an adaptive system with environmental
uncertainty, Model Driven Engineering Languages and Systems, pp. 468-483 %@
3642044247: Springer, 2009.

K. Wan, K. L. Man, and D. Hughes, Specification, analyzing challenges and
approaches for cyber-physical systems (CPS), Engineering Letters, vol. 18, no. 3
(2010) 308 %@ 1816-093X.

A. Kerwin, None Too Solid Medical Ignorance, Science Communication, vol. 15,
no. 2 (1993) 166-185.

M. Smithson, Ignorance and uncertainty: Emerging paradigms, Springer-Verlag
Publishing, 1989.

A. Der Kiureghian, and O. Ditlevsen, Aleatory or epistemic? Does it matter?,
Structural Safety, vol. 31, no. 2 (2009) 105-112 %@ 0167-4730.

R. de Lemos, H. Giese, H. A. Miiller, M. Shaw, J. Andersson, L. Baresi, and B.
Becker, Software engineering for self-adaptive systems, in, 20009.

H. Ziv, D. Richardson, and R. Kloésch, The uncertainty principle in software
engineering, in, 1997.

[33] H. G. Matthies, Quantifying uncertainty: modern computational representation of
probability and applications, Extreme man-made and natural hazards in dynamics of
structures, pp. 105-135 %@ 1402056540: Springer, 2007.

[34] S. Bell, A beginner's guide to uncertainty of measurement, National Physical

Laboratory Teddington, Middlesex, 2001.

Paper B

Specifying Uncertainty in Use Case
Models

Man Zhang, Tao Yue, Shaukat Ali, Bran Selic
Oscar Okariz, Roland Norgre, Karmele Intxausti

Journal paper that has been submitted to the Journal of Systems and Software

(JSS), second revision

Abstract

Context: Latent uncertainty in the context of software-intensive systems (e.g., Cyber-
Physical Systems (CPSs)) demands explicit attention right from the start of development.
Use case modeling—a commonly used method for specifying requirements in practice,
should also be extended for explicitly specifying uncertainty.

Objective: Since uncertainty is a common phenomenon in requirements engineering, it
is best to address it explicitly by identifying, qualifying, and, where possible, quantifying
uncertainty at the beginning stage. The ultimate aim, though not within the scope of this
paper, was to use these use cases as the starting point to create test-ready models to support
automated testing of CPSs under uncertainty.

Method: We extend the Restricted Use Case Modeling (RUCM) methodology and its
supporting tool to specify uncertainty as part of system requirements. Such uncertainties
include those caused by insufficient domain expertise of stakeholders, disagreements among
them, and known uncertainties about assumptions about the environment of the system. The
extended RUCM, called U-RUCM, inherits the features of RUCM, such as automated
analyses and generation of models, to mention but a few. Consequently, U-RUCM provides
all the key benefits offered by RUCM (i.e., reducing ambiguities in requirements), but also,
it allows specification of uncertainties with the possibilities of reasoning and refining
existing ones and even uncovering unknown ones.

Results: We evaluated U-RUCM with two industrial CPS case studies. After refining
RUCM models (specifying initial requirements), by applying the U-RUCM methodology,
we successfully identified and specified additional 306% and 512% (previously unknown)
uncertainty requirements, as compared to the initial requirements specified in RUCM. This
showed that, with U-RUCM, we were able to get a significantly better and more precise
characterization of uncertainties in requirement engineering.

Conclusion: Evaluation results show that U-RUCM is an effective methodology (with
tool support) for dealing with uncertainty in requirements engineering. We present our

experience, lessons learned, and future challenges, based on the two industrial case studies.

Keywords. Use Case Modeling; Belief; Uncertainty.

1 Introduction

The problem of uncertainty in software-intensive systems such as Cyber-Physical
Systems (CPSs)), is familiar to the requirements engineering community. However, it has
not been adequately addressed and, therefore, it lacks both methodological and tool support
in both the literature and in practice. In their well-known use case modeling book, Bittner
and Spence [1] pointed out that it is essential to take the time to fill out missing areas and
drill down into uncertainty. Uncertainty can be due to diverse causes, such as insufficient
domain expertise or lack of information. Given the significant increases in the complexity
of modern CPS and the diversity of the environments in which they are deployed, it is
becoming critical to address uncertainty up front; that is, right from the start of development.
This includes not only uncertainties about the requirements, but also uncertainties about its
assumed operating environment.

Uncertainty in requirements has been studied in the context of dynamically adaptive
systems in the presence of environmental uncertainty [2, 3]. Several goal-driven solutions
[4, 5] have been proposed to handle uncertainty in similar contexts. Partial model-based
solutions (e.g., [6, 7]) have been developed to support early requirements and architecture
decision making. However, after conducting a literature review, we did not find any use case
modeling methodology that explicitly handles uncertainty. Having such a methodology is
important since use case modeling is a commonly used technique for specifying
requirements in practice [6]. In our view, because uncertainty is a common phenomenon in
requirements engineering, it is best to address it explicitly by identifying, qualifying, and,
where possible, quantifying uncertainty.

The need for such a methodology arose in the context of an EU Horizon 2020 project,
which focused on testing CPSs under uncertainty. The crucial first step in this project was
to collect use cases with known uncertainties for two industrial CPSs and their environments.
This was done with three industrial partners (Future Position X*2, ULMA?® and Ikerlan4,

which are among the authors of this paper). The ultimate aim was to use these use cases as

2 fpx.se/geo-sports/
3 www.ulmahandling.com/en/
“www.ikerlan.es/

the starting point to create test-ready models to support automated testing of CPSs under
uncertainty. To this end, we first introduced the RUCM methodology to our industrial
partners and then extended it to enable specification of uncertainties. This led to the design
of the U-RUCM methodology, which, to the best of our knowledge, is the first use case
modeling methodology that explicitly addresses uncertainty.

As noted, U-RUCM is based on a practical use case modeling solution, called Restricted
Use Case Modeling (RUCM) [8, 9]. RUCM was initially proposed by Yue et al. [9], for
reducing inherent ambiguity in textual Use Case Specifications (UCSs) and to enable
automated generation of UML models. Later on, RUCM was extended to address various
industrial challenges, including requirements based testing [10] and use case based
requirements inspection [11]. RUCM and its extensions have been used to address industrial
challenges from various domains (e.g., telecommunication [10, 12, 13], automotive [14]).

To structure and specify uncertainties in use case models, two templates were proposed
for specifying Belief Use Case Specifications (BUCS) and uncertainties. A BUCS annotates
the UCS with uncertainty information, including the source of uncertainty, the degree
(measurement) of uncertainty, the risk of uncertainty, etc., as perceived by stakeholders and
based on available evidence. Such models can be automatically generated as instances of a
formal U-RUCM metamodel.

Evaluation of U-RUCM based on the two industrial case studies revealed that, with U-
RUCM, we were able to significantly improve on the characterization and understanding of
uncertainties in the requirements (up to 306% and 512% for the two case studies) compared
to base RUCM. In this paper, we summarize practical lessons learned in the course of this
evaluation and also discuss future challenges.

The rest of the paper is organized as follows: Section 2 presents the background. The U-
RUCM templates and keywords are explained in Section 3, followed by its formalization
(Section 4). The tool support and recommended methodology are given in Section 5. Section
6 reports user experience, evaluation, lessons learned and future challenges. We discuss the

related work in Section 7 and conclude the paper in Section 8.

2 Background and Running Example

In this section, we first briefly introduce the U-Model on which U-RUCM is based on,
followed by the running example and a brief description of RUCM illustrated with the

running example.

2.1 U-Model

To help us understand the nature of uncertainty in the general context of software
engineering, in our previous work [15] we developed a conceptual model called U-Model to
define uncertainty and its associated concepts. The U-Model was developed based on an
extensive review of existing literature on uncertainty from several disciplines including
philosophy, healthcare and physics, and two industrial case studies from the two industrial
partners of the EU Horizon 2020 project. To keep the paper self-contained, we have provided
U-Model and definitions of its concepts in Appendix A and in the rest of the section, we
briefly summarize the fundamental concepts and their relationships.

The U-Model takes a subjective approach to representing uncertainty. This means that
uncertainty is modeled as a state (i.e., worldview) of some agents (called BeliefAgents), who,
for whatever reason, do not have complete and fully accurate knowledge about some subjects
of interest. In the U-Model, a Belief is an abstract concept, but it can be expressed in the
concrete form via one or more explicit BeliefStatements (a concrete and explicit specification
of some Belief held by a BeliefAgent about possible phenomena or notions belonging to a
given subject area). Uncertainty (i.e., lack of confidence) represents a state of affairs
whereby a BeliefAgent does not have full confidence in a belief that it holds. This may be
due to any number of factors: lack of information, inherent variability in the subject matter,
ignorance, or even due physical phenomena such as the Heisenberg uncertainty principle.
While Uncertainty itself is an abstract concept, it can be quantified by a corresponding
Measurement, which expresses in some concrete form the subjective degree of uncertainty
that the agent ascribes to a BeliefStatement. As the latter is a subjective notion, a
Measurement should not be confused with the degree of validity of a BeliefStatement.
Instead, it merely indicates the level of confidence that the agent has in a statement.

Some of the U-Model concepts were further extended for supporting Model-Based
Testing (MBT) of CPSs under uncertainty. More specifically, we developed the Uncertainty
Modeling Framework (UncerTum) [16, 17] for supporting MBT of CPSs, which contains a
UML profile, called the UML Uncertainty Profile (UUP), for specifying and measuring
uncertainties as part of UML models. UUP was derived based on the U-Model. UncerTum
has been successfully used for discovering unknown uncertainties [16, 18] and generating
test cases [19]. In addition, we recently developed the UncerTolve framework [18, 20] to
evolve test ready models and uncertainty measurements in UML models specified with

UncerTum with real operational data.

2.2 Running Example

We illustrate U-RUCM using a modified version of the SafeHome case study provided
in [21]. The SafeHome system implements various security and safety features in smart
homes, including intrusion detection, fire detection, and flooding. One of the key
functionalities of the system is that a homeowner activates the monitoring function of the
system, which continuously checks for intrusions until it is explicitly disabled. During
monitoring, any occurrence of an intrusion should be detected, immediately followed by
sending an intrusion notification to the homeowner and the activation of an alarm. The
corresponding use case for this example, named Monitor Windows and Doors, is shown in .

In Section 2.3, we illustrate the key elements of RUCM with the running example.

2.3 Restricted Use Case Modeling (RUCM)

RUCM encompasses a use case template and 26 restriction rules for specifying textual
UCSs [9]. RUCM aims to be easy to use, to reduce ambiguity and improve understanding,
and to facilitate automated analysis. Results of two controlled experiments support these
expectations [8, 9]. A RUCM UCS has one basic flow and, optionally, one or more
alternative flows. An alternative flow always depends on a condition occurring in a specific
step of another flow (referred to as the reference flow). We classify alternative flows into
three types: A specific alternative flow refers to a specific step in the reference flow; a
bounded alternative flow refers to more than one step (consecutive or not) in the reference

flow; a global alternative refers to any step in the reference flow. For specific and bounded

alternative flows, a RFS (Reference Flow Step) section specifies one or more (reference
flow) step numbers. For example, as shown in Fig. B-1, the use case has one basic flow,
called Normal. The specific alternative flow of Detectintrusion branches out from step 10 of
the basic flow Normal, as indicated by keyword RFS and “Normal 10”. The global
alternative flow CallPolice is triggered whenever the branching condition “The Alarm has
been triggered for more than 5 minutes”. The bounded alternative flow of
FailOnEnablingMonitoring refers to steps 5-7 of the basic flow Normal, as indicated by
“URFS Normal 5-7”. URFS is a new keyword introduced to U-RUCM and will be discussed
in Section 3.

RUCM defines a set of keywords to specify sentences that involve conditional logic (IF-
THEN-ELSE-ELSEIF-ENDIF), concurrency (MEANWHILE), condition checking
(VALIDATES THAT), and iteration (DO-UNTIL). For example, as shown in Fig. B-1, step
6 of the basic flow (Normal) contains the keyword VALIDATES THAT, implying that the
sentence of the step is a condition checking sentence.

UCMeta is a metamodel that formalizes textual RUCM to facilitate automated analyses
and generation of UML analysis models [8, 22]. UCMeta is specified using the OMG’s
standard Meta-Object Facility (MOF) [23], while the formalization of RUCM models to
UCMeta instances is done automatically, as described in [8]. For example, as shown on the
left panel of Fig. B-1, the basic flow Normal is formalized as an instance of metaclass
BasicFlow (i.e., basicFlow).

Since RUCM was initially proposed by Yue et al. [24] in 2009, multiple extensions have
been proposed. A restricted test case modeling methodology was presented in [10] to
generate executable test cases automatically. In [14] , Wang et al. also presented another
RUCM-based approach to generate test cases from use case models automatically. Both of
these approaches have been evaluated using real industrial case studies. Wu et al. [25]
extended RUCM for specifying safety requirements in the domain of safety-critical systems.
The authors of [26] presented an approach for facilitating feature-oriented requirements
validation in the context of automotive systems, where RUCM was used to specify system

features.

[ue] SafeHome.ruem
¥ [UE] UCMode! (SateHome System)
¥ o modelElements (17}
?Q\ Home Owner
% WinDoorSensor
% Control Panel

Al §Fsm
B1 [, IND:Broken Contral Panel (Butten or Screen)
[@, INDamproper Operation of Home Owner
[@, IND:tmproper Implementation
[, IMD:Broken Alarm
[} EVi:Custom Fecdback of Pervious Version AZ
EQ IND:Unavailable Communication

@ IND:Broken WinBoorSensor D2
P <> Configure Monitoring Area
€|
f (Monitor Windows and C
[\' o knowledge () T T T T T =
C1, [(oased on) Custom Feedback of Pen|

l@, (based on) Improper Operation of Hol

[ﬂ% (based on) Broken Control Pancl (Bul

[I2; toased on) Unavatable Communieatif

|
I IQ; (based on) Improper Implementation|
|

ﬁ% (based on) Broken WinDoarSensor

l m‘; (based on) Improper Implemenlationl

D1 [~ ¥Fprobablity:g0%~ — — 1

B & uncertainties (12)
¥ o from
(@ from March-03-2016
¥ < branchSpecs (1)
¥ < basicFlow
BelietBasicFlow (Normal)
¥ < steps (14)

v

= "Home Owner ¢loses all windov

b+~ "INCLUDE USE CASE Configure
P *— “Home Owner presses the "Ena

F1 ¥+~ *The system enables the monit!

< natures (0)
¥ ¢ belief
| ¥ (& Belief Details
| b o duration
I B o knowledge (2)
B o measurcment
| ¥ & uncertainties (1)
| ¥ . “enables”
B & measuremont
| F < patterns {1)
L B_o fror

v

¥ < natures (1)
@ [ValidateThatNature)
b o belief
P == “The system displays the "The

1 :postCnndiﬂnn
< belief (null}
< duration
o preCondition
o briefDescription
© alternativeFlows (6)
BetiefBoundedAlternative (FailOnEnat

4vvwYy

native (O
BetiefSpecificAlternative (FailOnDete:
BelietGlobalAlternative (CallPolice)

Property Value

| deseription | B3

I name Broken Centra: Panel (Button or Screen)

I description
I kind Probability
| rame

|| WrFs) |'A1 The system VALIDATES THAT the status of the system is Running. U E2

“The system VALIDATES THAT -

Belief Use Case Specification

[Use Case Name Monitor Windows and Doors.

Brief Description ;f”hnec;z:t'em menitors the status of windows and doors when Home Owner enables the monitoring
Primary Actor Home Cwner

Secondary Actors WinDoorSensor, Control Panel

Dependency INCLUDE USE CASE Configure Monitoring Area

Generalization None

Belief Agent(s) SRL

Timepoint and Duration | March-03-2016, After

Belief Degree xdel.Measure.Probability::80% _.BZ

RE* Broken Control Panel (Button or Screen)l REF Improper Operation of Home Owner, REF Improper

Indeterminacy;Source(s) Implenientation, REF UnavaiTablé Commaunication, REF Broken WinDoorSensor

Evidence REF Custom Feedback of Pervious Version

Belief Precondition The system is Running. The system is displaying “The system is running.” message to Home Owner.
Belief Steps

Basic Flow

Home Owner closes all windows and doors properly.
iormany; 2 INCLUDE USE CASE Configure Monitoring Area
3 Home Owner presses the "Enable Monitoring™ button on the Control Panel properly.
4 | The system displays "Please wail. Enabling Monitoring.” message to Home Owner.
F _5 _Tigsv;e m_en;I:es_nhe_mc_maE\gﬁnct_ion._ __________ | El
6 The system VALIDATES THAT the status of the system is Monitering. —
7 | The system displays the “The home is under monitoring.” message to Home Owner. |
WinDoorSensor detects the existence of intrusion.
10 IF the windows and doors are closed THEN
11 The system VALIDATES THAT the statws of WinDoorSensor is Closed.
12 ENDIF
13 | UNTIL the status of the system is not Monitoring.
14 The system displays "Home is not under monitoring.” message 1o Home Owner.

Postcondition = The system s Running. No intrusion s detected.

Belief Bounded [URFS Nermal 5-7
Alternative Flow

FalonEnabingonioring- | AZ_The system displays Piase wa. Ensbing Monkorng: message toHome Ovner.
1 Home Owner contacts the company to fix the system.
2 ABORT.
Postcondition | The system is out of order,
Belief Specific RFS Normal 10
':g;;;;"aﬁve Flow 1 ELSEIF the windows and doors are open THEN
“Detectintrusion” ¥ 2 The system VALIDATES THAT the status of WinDoorSensor is Open.
3 The system sends the intrusion notification to Home Owner MEANWHILE the system triggers the Alarm,
4 The system displays “Intrusion is detected.” message.
5 Do
6 The system VALIDATES THAT the status of Alarm is Started.
7 UNTIL the status of Alarm is Stopped or the status of the system is Running.
8 ENDIF
Postcondition | The intrusion is detected.

Belief Specific URFS Detectintrusion 2
f&‘;g'f“"e Elow, Al The system VALIDATES THAT the status of WinDoorSensor s Closed.
“FallonDetectinglnirusion”y | L The system displays “The home is under monitoring. message.

2 RESUME STEP Normal 8

The system failed to detect the intrusion. The system is displaying "The home is

Postcondition iy
i under monitoring.” message.

| Belief Global The Alarm has been triggered for more than § minutes,

= | Alternative Flow

1 The system calls police.
CallPOlice™ 5 The system displays “Calling police.” message.
3 ABORT.

Postcondition | The system is displaying "Calling police.” message.

*A2 Belief Agent is formalized into elements shown in Al; the properties of B1(D1)
IndeterminacySource(Measurement) is shown in the property window B3 (D3); C2 is the set of knowledge that
are formalized as elements shown in C1; E2 refers to a set of sentences indicated by E1; the belief sentences
indicated by F2 are formalized into elements shown in F1.

Fig. B-1. Specifying Belief Use Case Specification of Monitor Windows and Doors

79

¥ == "The system enables the monitoring function.”

) =
% natures (0) 7 Normal 5 2% g
¥ < belief

¥ {& Belief Details

Belief Details
¥ < duration
P < knowledge (3) Sentence The system enables the monitoring function.
o mcertantes) Bief Description Untited
¥ © measurement | | Belief Agent(s) SRL

¥ »— "UModel.Measure.Probabil ity: 98%; UMDUE\,MEEsurE.FUZZinE:'

Timepoint and Duration March-06-2016, After
< natures {Q)

1
Belief Degree UModel.Measure.Probability::98%
< belief {null} | . i
¥ o substatements (2) 1 IndeterminacySource REF Broken Control Panel (Button or Screen), REF Improper Implementation
M1 |¥ *= "UModel Measure.Frobability::98%" | || Evidence REF Custom Feedback of Pervious Version
< natures {0) 1
v .
i D:I'Ef‘) | | Uncertainty Type UMedel.Uncertainty.Occurrence::enables
{8 Belief Details | | Details - -
o duration Decription Untitled
| | "FailOnEnabling" ¥ - - -
< knowledge (D) | \ Measured Value UModel.Measure.Probability::38%; UModel.Measure.Fuzziness::Likely
¥ ¢ uncertainties (1)
N REF Broken Centrol Panel (Button or Screen), REF Improper
" o Derived Source(s: '
YT‘ 98% | ! ! (s) Implementation
¥ & measurament | _ _ _ _ _ _ ! :
ML1 | b = "UModelMeasure.Probadiiity:85%°] | | RSk UModel.Risk.Low
< patterns (D) * Pattern UMeodel.Pattern.Random
< fom _f_
& measurement |Property Value Property Value 1
% substatements (0) agents (1 elements) name FailOnEnabling |
M2 IT :"U_M(;HIAB;SU;.FTZZFES_S:ﬂEEU] ! content enables type Occurrence]
v ¢ patterns (1) derivedSource (2 elements) riskLevel Low |
® Pattern description |
b o from | knowledge (2 elements)

_______________________________ 1

*M1 and M2 are the two formalized measurement statements. M1.1 is a measurement statement defined for
M1,

Fig. B-2. Specifying the Belief Sentence and an Associated Uncertainty (NLUncertainty) of Normal step 5
and Measurement Statement

¥ <> Monitor Windows and Doors
¥ < specification
¥ 5% BeliefSpecification (Menil

Branch Uncertainty [Properties 52

Property Value
ook Jedige (8] Steps 1 Home Owner closes all windows and doors properly. [1.00] agents (1 elements)
< knowledge 0.02
¥ % uncortainties (12) | | U0 2| INCLUDE USE CASE Configure Monitoring Area [0.80) derivedSource |(3 elements)
» R Branch_1 v 3| Home Owner presses the "Enable Menitering” button on the Control Panel properly. [1.00] flows (2 elements)
> R Branch_2 4 The system displays "Please wait. Enabling Monitoring.” message to Home Owner. [1.00] j=Calchiatec B (irie)
» . Branch_3 . - - isEnd true
> Ts Branch_4 _5 The system enables the monitoring function. [0.02] knowledga (4 elements)
» ‘R Branch_5 @ The system VALIDATES THAT the status of the system is Running. [1.00] type Occurrence
> % Branch_6 7 | The system displays "Please wait. Enabling Monitoring.” message to Home Owner. [1.00] value 0.02
¥ 'K Branch_7 narme Branch_5
» R aranch.6 8| Home Owner contacts the company to fix the system. (1.00] e TR
» ‘R Branch_a 9 ABORT. [1.00] riskLevel Low

*A step highlighted with Green (or Red) means that the condition is validated to be true (or the uncertainty
does not occur).

Fig. B-3. An Example of Generated BranchUncertainty (across Normal and FailOnEnablingMonitoring)

3 U-RUCM Templates and Keywords

As noted in Section 2.3, the RUCM methodology has two key distinguishing features:
specifying UCSs with the RUCM template, and applying the RUCM restrictions (including
the keywords) to guide the way in which users use natural language to specify the control
flows of UCSs. U-RUCM extends the RUCM template and proposes two U-RUCM
templates and introduces two new keywords.

One of the U-RUCM templates is for specifying BUCSs as shown in Table B-1. The
BUCS template inherits the key heading fields of the RUCM template, such as Use Case

Name and Brief Description. In addition, U-RUCM introduces six new fields to indicate: 1)

who specifies the BUCS (Belief Agent(s)), 2) when it was specified and the length of time
during which the belief agent(s) holds the belief (Time Point and Duration), 3) the degree to
which the belief agent(s) believes the specification (Belief Degree), 4) a set of indeterminacy
sources that resulted in the uncertainties of the BUCS (Indeterminacy Source(s)), 5) evidence
used to support this BUCS and its belief and uncertainty elements (Evidence), and 6) the
precondition of the UCS on which the belief and uncertainties are founded (Belief
Precondition).

As discussed in Section 2, each RUCM UCS has one and only one basic flow and,
optionally, three types of alternative flows. U-RUCM extends each type of event flows by
1) introducing a belief degree, which measures the degree to which the belief agent(s)
believes a specific flow, 2) introducing a new keyword, URFS (Uncertain Reference Flow
Step(s)), from which an alternative flow of events branches out, 3) providing the capability
to annotate sentences in steps of flows and postconditions with belief and uncertainty
information, and 4) introducing the new concept of alternative steps to enable the
specification of uncertainties for alternative steps across flows of events. Note that for the
case of a global alternative flow, a condition for branching from any step in the flow, should
be specified via the Belief Branching Condition field. In Section 4, we formally define each
of these fields and concepts.

We have developed an editor for U-RUCM (Section 5). The running example shown in
Fig. B-1 is specified with the U-RUCM editor. The use case has one basic flow (called
Normal) and several alternative flows. The complete specification is provided in [27] for
reference.

The other U-RUCM template is used for specifying uncertainty in the belief sentence
(BS) as shown in Table B-1. An example is shown in Fig. B-2. This template has fields for
identifying indeterminacy sources and evidence, and for specifying uncertainty properties
such as Type, Pattern, and Measured Value. More details are provided in Section 4.

In addition to the standard RUCM keywords (Section 2.3), REF is newly introduced for
specifying associated indeterminacy sources and evidence so that they can be referenced in
multiple places within a BUCS. For example, the field Indeterminacy Source(s) lists all the
defined indeterminacy sources of the specification, each of which is referenced with REF
(Fig. B-1, C1 and C2). Like the RUCM RFS keyword, the URFS keyword is used for

associating an alternative flow to the steps in its reference flow. However, RFS is used for
branching out from a reference flow step under a clear condition. For example, in Fig. B-1
the alternative flow Detectintrusion uses RFS to indicate that it branches from step 10 of the
basic flow (Normal). In contrast, URFS is provided to associate uncertainties across flows
of events. For example, in the running example (Fig. B-1, E1 and E2), the URFS keyword
is applied to FailOnDetectinglntrusion to show that, in an uncertain unknown condition, it
is possible that the alternative sentence Al can “replace” step 2 of the alternative flow

DetectIntrusion.

Table B-1. The U-RUCM Template for Belief Use Case Specifications (BUCSS)

The template for specifying a BUCS

Use Case Name

The name of the use case. It usually starts with a verb.

Brief Description

Summarizes the use case in a short paragraph.

Primary Actor The actor who initiates the use case.

Secondary Actor(s) Other actors the system relies on to accomplish the services of the use case.
Dependency Include and extend relationships to other use cases.

Generalization Generalization relationships to other use cases.

Belief Agent(s) One or more agents who hold belief about this BUCS.

Time Point and|The time point when the BUCS/BS is specified and the duration in which
Duration the belief agent(s)’s belief on the BUCS holds.

Belief Degree The degree to which the belief agent(s) believe the BUCS.

Indeterminacy The set of indeterminacy sources related to the BUCS (REF is used).
Source(s)

Evidence Evidence to support the BUCS, and its contained belief and uncertainty

elements (REF is used).

Belief Precondition

Belief agent(s)” belief on the precondition of the BUCS, which describes
what should be true before the use case is executed.

Belief Basic Flow

Specifies the main successful path, also called “happy path”.

(Belief degree) Steps A set of ordered belief sentences.
(numbered)
Belief Belief agent(s)” belief on what should be true after the
Postcondition | basic flow executes.
Belief Specific Applies to one specific step of the reference flow.
Alternative Flow URFS The reference flow step where the belief agent(s) believe
(Belief degree) there are uncertainties.
Alternative | An alternative to the reference flow step.
Step
Steps A set of ordered belief sentences.
(numbered)
Belief Belief agent(s)” belief on what should be true after the
Postcondition |specific alternative flow executes.
Belief Bounded Applies to more than one step of the reference flow, but not all of them.
Alternative Flow URFS A list of reference flow steps where the belief agent(s)
(Belief degree) believe there are uncertainties.

Alternative | A set of alternatives to the reference flow steps.

Steps

Steps A set of ordered belief sentences.

(numbered)

Belief Belief agent(s)” belief on what should be true after the
Postcondition | bounded alternative flow executes.

Belief Global
Alternative Flow
(Belief degree)

Applies to all the steps of the reference flow.

Belief Belief agent(s)’ belief on the condition, which describes
Branching what should be true when branching from any of the steps
Condition of the reference flow.

Steps The set of ordered beliefs sentences.

(numbered)

Belief Belief agent(s)” belief on what should be true after the
Postcondition | global flow executes.

The template of specifyin

an Uncertainty in a belief sentence

Uncertainty Details

Specifies the details of the Uncertainty in the BS.

Type The type of this uncertainty
(Occurrence/Content/Time/Environment/Geographical
Location)

Indeterminac |The set of indeterminacy sources related to this

y Source(s) | Uncertainty (REF is used).

Measure The measurement of this uncertainty.

Value

Risk The possible risk led by this uncertainty.

Pattern The pattern of the occurrence of this uncertainty

4 U-RUCM Formalization

The formalization of U-RUCM is realized via integration of an extended version of

UCMeta and U-Model. The full formalization is captured in a distinct metamodel, called

BeliefUCMeta.

4.1 Relationships of BeliefUCMeta with UCMeta and U-Model
As shown in Fig. B-4, the BeliefUCMeta imports elements from U-Model and UCMeta,

which formalizes RUCM. UCMeta is composed four packages: UCTemplate (corresponding

to the RUCM template and formalizing template fields such as use case name, flows of

events), SentenceStructure (formalizing sentence constructs such as noun phrase, subject),

SentenceSemantics (formalizing different types of simple sentence patterns such as subject-

verb-direct object) and SentencePattern (formalizing semantics functions of a use case

model such as Validation for describing that the system validates a request and data).

Concepts of U-Model (Section 2.1) are divided into three groups and implemented as a
metamodel, which is named as the Technological U-Model metamodel to distinguish itself
from the U-Model conceptual model. BeliefUCMeta is composed of three packages, as
shown in Fig. B-4: BeliefUCM, BeliefTemplate and BeliefSentence. Since BelieflUCMeta
imports UCMeta, BeliefUCMeta can naturally benefit from the existing capability of
UCMeta for automatically formalizing, by relying on natural language processing
techniques, sentences into instances of metaclasses of packages SentenceSemantics,
SentencesStructure and SentencePattern [8]. The complete lists of metaclasses of UCMeta,

Technological U-Model and BeliefUCMeta are provided in [27] for reference.

| |
Technological U-Model UCMeta

[] «import» ausen]

- «use» ucM UCTemplate [SentenceSemantics
BeliefMadel |- MeasureModel
A

: «usen 1 \ «import» «use»
«import» | UncertaintyModel SentenceStructure |<a USB®--oeees SentencePattern
] «import»

«import» % BeliefUCMeta

i1 B UML::UseCase
Y 7 «import»

BeliefucMI _____ «mport» - | BeliefTemplate | |

i «import»
BeliefSentence |

Fig. B-4. Relationships between BeliefUCMeta with UCMeta and Technological U-Model Metamodel

4.2 Belief Use Case Model, Element, and Classifier
BUElement, which specializes UseCaseElement of UCMeta, is the root of all the other
elements of BeliefUCMeta (Fig. B-5). In other words, all the other metaclasses of

BeliefUCMeta specialize BUElement.

+ modelElements «lJCMetan
-————
«UCMeta» * UseCaseElement

UCModel -
name : String
description : String
£

BUModel BUElement

Fig. B-5. Root Elements of BeliefUCMeta

BeliefClassifier (Fig. B-6) is an abstract metaclass, introduced in U-RUCM to support the
classification of a set of BUCS elements (e.g., BeliefPrecondition, BeliefFlowOfEvents), to
which belief and uncertainty information can be attached. BeliefClassifier specializes
BeliefStatement of U-Model (Appendix A.1), through which a belief classifier is associated
with Uncertainty.

BeliefClassifier has three attributes: isUncertainty : Boolean (indicating if a belief
classifier is associated to any known or unknown uncertainty), isComposite : Boolean
(indicating if a belief classifier can be decomposed into finer belief elements), and
beliefDegree : Measurement (formalizing the degree to which a belief agent believes in a
belief classifier). More details on measurements are provided in Section 4.6. A belief
classifier may be associated to one or more BeliefAgents, which is defined, in U-Model, as
an individual, a community of individuals sharing the same set of beliefs, or technology,
such as a software system, with built-in beliefs (Appendix A.1). For example, as shown in
Fig. B-1, the belief agent of the BUCS is SRL, the Simula team who developed the case
study.

A belief classifier may be associated with IndeterminacyKnowledge and/or
EvidenceKnowledge. IndeterminacyKnowledge is defined, in U-Model, to describe an
objective relationship between an IndeterminacySource and the awareness that the
BeliefAgent has of that source (Appendix A.1) and whereas EvidenceKnowledge in U-Model
captures an objective relationship between an IndeterminacySource and Evidence (Appendix
A.l). As the subtypes of metaclass Knowledge, IndeterminacyKnowledge and
EvidenceKnowledge inherit the attribute of Knowledge, i.e., type typed with enumeration
KnowledgeType with four literals: KnownKnown, KnownUnknown, UnknownKnown, and
UnknownUnknown, definitions of which are provided in Appendix A.1 for reference. The
two types of knowledge are respectively associated with IndeterminacySource and Evidence,

which are discussed in the next sections with details.

4.3 Belief Use Case Specification

As shown in Fig. B-6, BeliefUseCaseSpecification specializes BeliefClassifier and
UseCaseSpecification of UCMeta. Same as for RUCM specifications, a U-RUCM
specification is composed of a set of flows of events, precondition, each flow of event is

composed of one postcondition, and each specification is associated to one primary actor
and optionally associated to one or more secondary actors. In general,
BeliefUseCaseSpecification is a concrete specification of a use case specified by a
BeliefAgent. It includes information about the agent’s confidence that the use case will
execute as specified. For example, as shown in Fig. B-1, the Monitor Windows and Doors
use case of the SafeHome case study is specified as a BeliefUseCaseSpecification (a subtype
of BeliefClassifier), with its belief degree specified as 80%. A BUCS has two attributes:
from and duration, which indicates when it was specified and the validity period of the belief.
For example, for the running example, the use case was specified on March 3' of 2016 and
the belief is valid since after. Notice that these two attributes are inherited from
BeliefStatement of U-Model (Appendix A.1).

elaNDNJaII3Y JO 8100 8y L "9-g "Bi4

"Z-9 9|qe_L U1 papiaoid ale [apowelawl sy} Jo Led SIy} uo palioads sjurelisuo)
‘INDNY-N Ul pasodoid Ajmau ale Sassejaelalll JaY10 3yl ‘<[3POIA-N» Yim paybijybiy aie sjuswsja [3POIA-N “<EISNDNY YIIM Pajedipul aJe sassejoelaul e1alNdN

JuaIsuel 21150dWo; UMOUN UM
u_u,Eonw : J ujodawiy uopeing 10j0y pIA3 1seap UMOUNUMOURUT
weysisiag «adAeiep» «adAeiep» «eWIN» «|[@PON-N» «[@PON-N» LMOUNUNUMOUY
anewalsAs ssauanbep, sioloyhiepuosas + Joloyhiewnd + i UMOUAUMOUN
|esodway Aungeqolg . dALaBpaimouy
tuopey pupjainsean SUBAZJOMOId | swmoly + Bpajmouyaouapiag 6Bpa) Koeu pul :
u_uc__wn_ «UONEIBWNUD» «elPNIN» nesyoadsasenasn «[BPON-N» “lBPON-N»
sipouady “ -l «BlaNON» _.|,« J J
punjusaned -
aJmeNAdueiwalapu) : aJn
«uoljesawinuax» uony d uonpuodald adA|aBpajmouy : adhy JMENASUEIULIBIaPUI © 8imeu
tpuodSod e aounosAoeujwiaiapu|
awanx3 sweA3jomo|4jol1og | | «eionon> “elnon» PoIMoUNpaEME + . abpajmouy «[8pO-N»
uBIH n_v \w uoneing : uonemnp «|@pow-n» -
" julodau)] Wwouy K » aaunos| +
Eaﬂh | uomipuosisodsenisa | | uopipuosaidsaiiea | eelcaIes S0t 2bpamoun/ A [PASiSIY * [9A3]
[[> — [.] 1UBWaINSEa : BN[EAPaINSEaW NS
[2naysIy J
M« julodawi] : wouy «[@poy-n»
«uonesaWNUE» pUIAIUIELIUN ¢ PUB o
sofe + Juswainseayy : eaibaqyeljeq Buws * pi
¥ E S : pi
payisseoun uonesoedydesboas) wabyjaleg - ueajoog : ajsodwods! -
aysodwo) WBWUOIAUT «[apOW-N» 8s|e} = ueajoog : Auleyiacuns! ﬂuﬂmﬂ&ﬂﬁ: - Pupulaned - puly
WSIUIWIBIaPUON 82UaLIN220 «LspRlRg + Jaijisse|njaijag <> wialed
T - «|a| -n»
ojulBuissiy awiy m« . [Bpo-n
UOIIN|OSAYIURIDLNSY] Juajuo) P ——
aimeNAsuejwialapu| pujfujeriasun ﬁu_uos_.:u.e Bus : ju SIUBA3IOMO|4431198 * SMO|Y
«UONEIIWNUD» «UDNRIBWNUBY KurepaounIN Kuesosunyouesg

SluBWaIeISaNs +

87

The BUCS template of U-RUCM (Table B-1) conforms to BeliefUCMeta. An instance of
BeliefUseCaseSpecification is created for each BUCS and serves as the container of other
belief-related elements (e.g., BeliefPrecondition, BeliefFlowOfEvents, BeliefSentence).
Different from a traditional UCS of RUCM, a BUCS includes specifications of
IndeterminacySource and Evidence relevant to the use case. For example, as shown in Fig.
B-1, the fields of Indeterminacy Source (s) and Evidence of the U-RUCM editor should be
used for listing all indeterminacy sources and evidence relevant to the Monitor Windows and
Doors use case. Notice that, the REF keyword should be used to refer to existing instances
of IndeterminacySource and Evidence metaclasses of U-RUCM, definitions of which are
from U-Model and provided in Appendix A for references. For example, all the
indeterminacy sources defined for the belief use case model are displayed on the left side of
Fig. B-1, starting with “INT”. Furthermore, in the property window (e.g., the B2 section of
Fig. B-1) of an indeterminacy source, one can specify its name and nature (e.g.,
Nondeterminism of IndeterminacyNature). The attribute nature of IndeterminacySource is
typed with IndeterminacyNature defined by five enumeration literals representing five
possible indeterminacy sources. Notice that indeterminacy sources owned by BUCSs can be
referenced by other belief elements such as Uncertainty. Such references are formalized as
instances of IndeterminacyKnowledge and EvidenceKnowledge of BeliefUCMeta (Fig. B-6)
such as C1 and C2 shown in Fig. B-1.

Table B-2. Constraints defined on the core part of BeliefUCMeta (Fig. B-6)

ID Name Constraints in Object Constraint Language (OCL)
Conl The belief degree of a belief | Context BeliefClassifier
classifier is 100% if its Inv: (not self.isUncertainty) implies (self.beliefDegree =
isUncertainty attribute takes null or (self.beliefDegree <> null and
value of False. self.beliefDegree. value = 1.0))
Con2 If a belief sentence has at Context BeliefClassifier
least one uncertainty Inv: self.uncertainty—>size()>0 and self.beliefDegree <>
specified, then the belief null
degree of the belief sentence
must not be null.
Con3 An uncertainty’s kind should | Context Uncertainty
not be null. Inv: self.kind <> null
Con4 An uncertainty’s from and Context BeliefUseCaseSpecification
duration should not be null. Inv: self. from <> null and self.duration <> null
Con5 The precondition of a BUCS | Context BeliefUseCaseSpecification
should be a Inv: self.precondition. oc1TsKindOf (BeliefPrecondition)
BeliefPrecondition.
Conb All FlowOfEvents of a Context BeliefUseCaseSpecification
BUCS should be Inv: self. flows—>forAll (f:UCMeta: :UCTemplate: :FlowOfEvents |
BeliefFlowOfEvents. f. oc1IsKindOf (BeliefFlowOfEvents))
Con7 All the uncertainties owned Context BeliefUseCaseSpecification
by a BUCS are Inv:
BranchUncertainty. self. uncertainty—>forAll (u:Uncertainty|u. oc11sKindOf (BranchU
ncertainty))
Con8 Knowledge associated to Context BeleifUseCaseSpecification
BeliefSentence, Inv:self. flows-
BeliefFlowOfEvents and >forAll (f:UCMeta: :UCTemplate: :FlowOfEvents|self. ownedKnowledg
:;nckertair:t):j must belgr;)g o (ie;zludesAll (f. oc1AsType (BeliefFlowOfEvents). knowledge) and
€ . nowledge OWH?. y f. steps—>forAll
BeI|erseCaseSpeC|f|cat|on. (bs:UCMeta: :UCTemplate: :Sentence | self. ownedKnowledge—
>includesAll (
bs. oclAsType (BeliefSentence). knowledge) and
(bs. oc1AsType (BeliefSentence). uncertainty—>size() > 0
implies bs. oclAsType (BeliefSentence). uncertainty—-
>forAll (u:Uncertainty|
self. ownedKnowledge—>includesAll (u. knowledge)))))

4.4 Belief Flow of Events

BeliefFlowOfEvents is a subtype of BeliefClassifier and also extends FlowOfEvents of

UCMeta (Fig. B-7). Hence, it inherits BasicFlow and the three types of alternative flows:

Specific, Bounded and Global of RUCM and therefore UCMeta, as shown in Fig. B-7. A
belief flow of events is composed of a set of sentences, which are all belief sentences
(Section 4.5), as enforced by the Con9 constraint (Table B-3). BeliefFlowOfEvents, as a

specific type of BeliefClassifier, has a derived association to Knowledge (Fig. B-7), through

which a belief flow of events can be associated with indeterminacy sources and evidence if
needed.

Specific and bounded alternative flows can be differentiated based on whether RFS or
URFS is used to refer to one or more steps of a reference flow. RFS is used only when the
branching condition is fully clear to the belief agent. In other words, the belief sentence
corresponding to the branching condition has its belief degree specified at 100% and its
isUncertainty attribute specified as False (the Conl constraint, Table B-2). For example, the
DetectlIntrusion flow in Fig. B-1 branches out from step 10 of the basic flow under the
condition that “the windows and doors are open”. The belief degree to the sentence (step 1
of DetectIntrusion) corresponding to this condition is 100%.

«UCMeta» ; «UCMeta» + steps {ordered} «UCMeta»
BasicFlow FlowOfEvents - Sentence
T % “ | content : String
* /|\+ rfs
BeliefBasicFlow 0.1 ..
‘_D‘ BeliefFlowOfEvents] «UCMeta» "]* condition
AlternativeFlow + [urfs
«U-Model» +urfs *
Knowledge ? (: BeliefSentence
+ knowledge| * l BeliefAlternativeFlow "%‘ isAlternative : Boolean
+ altSteps {ordered}
BeliefClassifier 1 1
/isUncertainty : Boolean I BeliefBoundedAlt H BeliefGlobalAlt] [BeliefSpecificAlt l
isComposite : Boolean
beliefDegree : Measurement g

Constraints specified on this part of the metamodel are provided in Table B-3.
Fig. B-7. BeliefFlowOfEvents of BelieflUCMeta

In contrast, URFS is used when the belief agent is not fully confident about a particular
system behavior or condition (represented by one or more steps in a flow). In principle, an
URFS alternative flow should always be linked to one or more indeterminacy sources. If
such indeterminacy sources are known, U-RUCM provides a way to specify them (see
Section 4.3). For example, the FailOnEnablingMonitoring flow is defined as the belief agent
is not fully confident that “the system enables the monitoring function” (step 5 of the basic
flow, Fig. B-1) will actually occur. URFS (instead of RFS) is used in this context because in
which condition the event occurs and in which condition it does are not known at the time

when the flow of events was specified.

Table B-3. Constraints defined on the BeliefFlowOfEvents part of BeliefUCMeta (Fig. B-7)

Name Constraint
Con9 | All sentences in belief flows Context BeliefFlowOfEvents
of events are BeliefSentences. | Inv: self. steps-
>forAll (bs:UCMeta: :UCTemplate: :Sentence|bs. oc1TsKindOf (Belief
Sentence)) and (self.oclIsKindOf (AlternativeFlow) implies
self. rfs-
>forAll (s:UCMeta: :UCTemplate: :Sentence|s. oc1IsKindOf (BeliefSe
ntence)))
Conl0 | All altSteps of a Context BeliefAlternativeFlow
BeliefAlternativeFlow are Inv: self.altSteps—>size()>0 implies self.altSteps—>forAll(
alternative sentences (with s:UCMeta: :UCTemplate: :Sentence|s. oclAsType (BeliefSentence). is
isAlternative being true) and | Alternative and self.urfs= = ,
urfs of Sentence is a subset of >includesAll (s. oc1AsType (BeliefSentence). urfs))
urfs of the
BeliefAlternativeFlow
Conll | The condition sentence of a Context BeliefGlobalAlt
BeliefGlobalAlt must not be Inv: self.condition—>size()>0 and
null and it must be a self. condition. oc1IsKindOf (BeliefSentence)
BeliefSentence.
Conl12 | There must be no uncertainties | Context BeliefAlternativeFlow
specified in any RFS referred Inv: self.rfs—>size()>0 and self.urfs->size()=0 and
sentences. self. rfs—>
forAll (s:UCMeta: :UCTemplate: :Sentence | s. oc1AsType (BeliefSente
nce). uncertainty—>size ()=0)
Conl3 | At least one uncertainty must | Context BeliefAlternativeFlow
be specified in URFS referred Inv: self.rfs—>size()=0 and self.urfs->size()>0 and
sentences and the size of self. urfs—>
aItSteps is more than 1. forAll (s:UCMeta: :UCTemplate: :Sentence | s. oc1AsType (BeliefSente
nce). uncertainty—>size () >0) and self.altSteps—>size()>0
Conl4 | At least one Context BeliefAlternativeFlow
AlternativeSentence must be Inv: self.urfs—>size()>0 and self.altSteps—>size()>0 and
specified for a URFS self. altSteps—>select(a:AlternativeSentence| a.urfs—
alternative flow. >size () »0)—>size () >0 and self.altSteps-
>forAll (a:AlternativeSentence|self. urfs—>includesAll (a. urfs))

For global alternative flows, there is no need to use RFS and URFS. However, a global

condition must be defined for a global alternative flow (Fig. B-7), which is a constraint
defined by RUCM and also applies to U-RUCM. For example, as shown in Fig. B-1,
CallPolice is a global alternative flow, which defines the global condition: “The Alarm has

been triggered for more than 5 minutes.” Since the condition is a belief sentence, one can

associate uncertainties with it if needed.

In summary, U-RUCM provides four different ways of specifying alternative flows:
Bounded with RFS, Specific with RFS, Bounded with URFS and Specific with URFS. Global
alternative flows cannot be combined with RFS and therefore URFS, as we discussed above.
For any URFS alternative flow, there should be at least one alternative sentence specified in

the alternative flow, which “replaces” the referenced steps of the reference flows of events

defined in the URFS statement (the Con14 constraint, Table B-3). Any RFS alternative flow
should not contain any alternative step (the Conl2 constraint, Table B-3). Note that
alternative sentences (which are ordered as sequential steps) are defined at the beginning of

an URFS alternative flow, followed by a sequence of regular belief sentences.

4.5 Belief Sentence

All sentences in a BUCS are belief sentences, which are formalized as BeliefSentence
elements (specializing the Sentence concept of UCMeta). Since BeliefSentence is a subtype
of BeliefClassifier, belief sentences inherit all the attributes of BeliefClassifier (e.g.,
beliefDegree, isUncertainty, Fig. B-6), which distinguish themselves from regular RUCM
sentences. In RUCM and UCMeta, sentences are classified into simple, complex and special
sentences. Consequently, U-RUCM and BeliefUCMeta classify belief sentences into
BeliefSimpleSentence, BeliefComplexSentence and BeliefSpecialSentence (Fig. B-8).

* + substatements

«U-Model» «U-Model» y NLUncertainty
BeliefStatement [® ? Uncertainty nl : String
«U-Model» , + knowledge ? «U-Model» -
Knowledge T i Measurement «enumeration»
BeliefClassifier l . . MeasureKind
kind : MeasureKind —
«UCMeta» ? Probability
Sentence BeliefSentence Vagueness
content : String S —— MeasurementStatement Ambiguity
: isAlternative : Boolean value : String Unclassified
? <L Composite
[]
BeliefSimpleSentence l l BeliefComplexSentence H BeliefSpecialSentence
«UCMeta» «UCMeta» «UCMeta»
SimpleSentence ComplexSentence SpecialSentence

Constraints specified on this part of the metamodel are provided in Table B-4.
Fig. B-8. BeliefSentence of BeliefUCMeta

A Dbelief sentence can be associated with Uncertainty via BeliefClassifier and
BeliefStatement and with IndeterminacySource and Evidence via Knowledge and
BeliefClassifier as shown in Fig. B-6. A belief sentence uncertainty must be a NLUncertainty
(the Con15 constraint, Table B-4) and the String value of its nl attribute should be part of
the content of the belief sentence (the Conl6 constraint, Table B-4). More details about
NLUncertainty are discussed in Section 4.6.

A belief simple sentence is an atomic belief statement, which, from the sentence structure
perspective, is composed of only one subject and one predicate. Belief simple sentences can
appear in action steps of flows, preconditions, postconditions, and other fields of a BUCS.
Belief complex sentences are sentences with the following RUCM keywords applied: IF-
THEN-ELSE-ELSEIF-THEN-ENDIF for conditions, DO-UNTIL for iterations,
MEANWHILE for concurrency, and VALIDATE THAT for validation. A complex sentence
can consist of one or more belief simple sentences. Belief special sentences are sentences
involving keywords RESUME STEP, ABORT, RFS, EXTENDED BY, INCLUDE and
URFS. Notice that special sentences involving keywords URFS are newly introduced in U-
RUCM, and all the other special sentences are inherited from RUCM. It is important to point
it out that U-RUCM benefits from the existing capability of UCMeta (which formalizes
RUCM) for providing the formalization of the sentence structures, sentence patterns and
sentence semantics (Section 4.1). U-RUCM can also benefit from the automated solution
(i.e., aToucan [8]) of formalizing natural language sentences into instances of the
metaclasses of these UCMeta packages. Doing so provides opportunities for automatically
analyzing formalized belief use case models and transforming them into other artifacts when
needed. For example, one possibility is to transform belief use case models into UML models
specified in UncerTum [16] for facilitating MBT. However, providing such capability is
beyond the scope of this paper.

In U-RUCM, we also introduce alternative sentences, which are formalized as the
isAlternative attribute of BeliefSentence (Table B-4). From the natural language perspective,
alternative sentences have no difference with other belief sentences. The only difference is
that alternative sentences can only appear in URFS alternative flows as action steps (Section
4.4). In the current implementation of the U-RUCM editor, alternative sentences (e.g., Al
and A2 of FailOnEnablingMonitoring, Fig. B-1) are denoted with Al, A2, etc. An alternative
sentence can be any type of belief sentences: simple, complex or special, as shown in Table
B-4.

We also define, in U-Model, MeasurementStatement, a special type of
BeliefSpecialSentence (Fig. B-8). For example, as shown in Fig. B-2, the Measured Value
field of the uncertainty specifies two measurement statements, i.e.,
UModel.Measure.Probability::2% and UModel.Measure.Fuzziness::Likely. Since it is a

special type of belief special sentences, a measurement statement can be associated with all
the belief sentence properties (including derived ones) such as Uncertainty. Please refer to

Section 4.8 for detailed discussions of measurement statements, measurements and

measures.

Table B-4. Constraints defined on the BeliefSentence part of BeliefUCMeta (Fig. B-8)

Name Constraint

Conl5 | All the uncertainties Context BeliefSentence
associated to a belief Inv: self.uncertainty—>size()>0 implies self.uncertainty—>
sentence are of the forAll (u:Uncertainty |u. oc1TsKindOf (NLUncertainty))
NLUncertainty type.

Conl6 | The attribute of nl of an | Context BeliefSentence
NLUncertainty must Inv: self.uncertainty—>size()>0 implies self.uncertainty—>
not be null and it forAll (u:Uncertainty| u.oclAsType (NLUncertainty)<> null and
should be part of self. content. contains (u. oc1AsType (NLUncertainty). nl))
content of the belief
sentence.

Conl7 The attribute of nl of an | Context MeasurementStatement
NLUncertainty must Inv: self.uncertainty—>size()>0 implies self.uncertainty—>
not be null and it forAll (u:Uncertainty| u.oclAsType (NLUncertainty)<> null and
should be part of value self. value. contains (u. oc1AsType (NLUncertainty).nl))
of the measurement
statement.

Conl8 | The Measure of each Context Uncertainty
Measurement owned by Inv: self.measurement—>size()>0 implies self.measurement—>
the same Uncertainty is forAll (ul, u2:Measurement| ul.kind <> u2.kind)
different.

4.6 Uncertainty

Uncertainty is defined, in U-Model, for “representing a state of affairs whereby a belief
agent does not have full confidence in a belief that it holds” (Appendix A.1). We adopt the
definition of uncertainty from U-Model to U-RUCM and associate it with BeliefClassifier,
as shown in Fig. B-6.

In U-Model, uncertainties are classified into five different types, which are inherited by
U-RUCM and formalized as the five literals of enumeration UncertaintyKind in
BeliefUCMeta (Fig. B-6):
GeographicalLocation. Definitions of these uncertainty types are provided in Appendix A.2

Content, Time, Occurrence, Environment, and

for reference. For example, the type of the uncertainty described in Fig. B-2 is Occurrence

as indicated by the content in the field of Type of the editor.

Each uncertainty has a time point describing when the uncertainty is initialized. This
attribute is formalized as an attribute of metaclass Uncertainty of BelieflUCMeta (Fig. B-6).
For example, the uncertainty in Fig. B-2 was specified in March-03-2016 and is active since
then. An uncertainty can be optionally associated with Risk. Currently, in U-Model and
therefore in U-RUCM, we define four risk levels: Low, Medium, High and Extreme
(enumeration RiskLevel, Fig. B-6). For example, the uncertainty in Fig. B-2 is of low risk.
To further characterize an uncertainty, it can be optionally (if information available)
associated with one or more patterns (e.g., Aperiodic, Sporadic), which are formalized as
enumeration PatternKind in BeliefUCMeta (Fig. B-6). For the uncertainty described in Fig.
B-2, the belief agent is not aware of in which pattern the uncertainty appears, and therefore
it is not specified. An uncertainty can be measured (i.e., measuredValue: Measurement, Fig.
B-6) in different ways (i.e., MeasureKind, Fig. B-6). Details are described in Section 4.8.

In U-RUCM, we classify uncertainties into two basic types: NLUncertainty and
BranchUncertainty (Fig. B-6). NLUncertainty(s) are defined at the level of belief sentences.
Branch uncertainties can be derived automatically from flows of events and are owned by
BUCSs (the Con7 of Table B-2). In addition to these two categories, in U-RUCM,
uncertainties in flows of events can also be captured via URFS and alternative flows (Section
4.4).

4.6.1 Uncertainty in Belief Sentences (NLUncertainty)

An NLUncertainty refers to a Part of Speech (PoS) (e.g., noun, verb) of a belief sentence,
about which a belief agent lacks confidence. This is enabled by the nl attribute of
NLUncertainty (Fig. B-6). For example, one instance of NLUncertainty in step 5 of the basic
flow (Fig. B-2) shows that the belief agent is 98% confident about the occurrence of the
event. The uncertainty is associated with “enables”, which is the predicator verb of the belief
sentence. Notice that the nl attribute is typed with String. However, if automated solutions
can always be proposed to parse a belief statement and automatically associate an
NLUncertainty (through specified nl information) with constructs of a belief sentence (e.g.,
subjects, predicators, objects) if needed. As we discussed in Section 4.5, UCMeta and

aToucan provide such a capability, from which U-RUCM can benefit.

An NLUncertainty in a belief sentence can be optionally associated with one or more
indeterminacy sources owned by the BUCS, the container of all belief sentences and
therefore uncertainties (Fig. B-6). Doing so helps to provide additional information
describing situations whereby the information required to ascertain the validity of the belief
sentence is indeterminate (Appendix A.1l). For example, as shown in Fig. B-2, the
uncertainty is associated with two indeterminacy sources, implying that the belief agent
believes that there is a 98% probability (not 100%) that the system enables the monitoring
function and therefore 2% probability that the system does not enable monitoring under
unknown conditions due to the broken control panel or improper implementation of the
monitoring functionality. Furthermore, the predefined indeterminacy source categories (e.g.,
MissingInfo, Non-determinism, defined in Appendix A.1l), formalized as the literals of
enumeration IndeterminacyNature (Fig. B-6) provides more information about
indeterminacy sources and therefore uncertainties. For example, the indeterminacy source
of Broken Control Panel (Button or Screen) is of a Nondeterminism indeterminacy nature
(as shown in the left bottom corner of Fig. B-1), implying that the phenomenon of the control
panel being broken is either practically or inherently non-deterministic.

It is also worth mentioning that U-Model allows one to specify uncertainties in
measurement statements, which is enabled by the fact that a measurement statement is a
belief sentence and therefore it can have uncertainties specified. We, however, in U-Model,
enforce that when specifying such an uncertainty, its nl attribute should be part of the value
or the whole of it (Conl7, Table B-4). Notice that a measurement statement is composed of
two parts: measure and value (Section 4.8). Such an uncertainty should be a Content type of
uncertainty. For the example given in Fig. B-2, if an uncertainty is associated with the
measurement statement (i.e., UModel.Measure.Probability::98%), nl of the uncertainty
should be 98%.

4.7 Branch Uncertainty

A set of branches can be derived from a BUCS, systematically by following different
strategies. For example, in [10], we defined three test coverage strategies: all branch
coverage strategy (covering all branches), all condition coverage strategy (covering all
conditions of all branches at least once), and loop coverage strategy (ensuring that each loop

(DO-UNTIL) is exercised exactly one, none, and x number of times, where x can be specified
beforehand). We adopt these three coverage strategies and use them to generate branches
systematically from U-RUCM models. Each of these derived branches represents a straight
path from the precondition of the specification all the way to a postcondition of a flow of
events. One example of such a branch is provided in Fig. B-3, which is automatically
generated from the use case specification provided in Fig. B-1.

The occurrence of a particular path might be uncertain, which therefore forms a branch
uncertainty. Such an uncertainty is an instance of BranchUncertainty with the
Occurrence::UncertaintyKind kind. Since such branches can be automatically generated,
measurements of the branch uncertainties can be automatically calculated when needed, if
and only if uncertainties of the belief sentences of the specifications are specified. For
example, as shown in Fig. B-3, the branch takes the path of branching from step 5 and
executing the FailOnEnablingMonitoring alternative flow and finishing at its last step. Since
the chance of the system does not enable the monitoring is 1-0.98=0.02 as indicated at step
5 of the branch, the overall branch uncertainty can then be defined as 0.02 if we follow the
simple strategy of taking the lowest value of the belief degrees of the belief sentences as the
branch uncertainty measurement. We acknowledge that there are many alternatives
regarding how to systematically obtain branch uncertainty measurements. Users can also
manually define such measurements if they want. However, studying such strategies is out

of the scope of this paper.

4.8 Measurement

As discussed in Section 4.5, in U-RUCM, we define MeasurementStatement as a special
type of BeliefSpecialSentence (Fig. B-8). MeasurementStatement also inherits U-Model’s
Measurement; therefore, each measurement statement should be associated with a specific
type of Measures (Fig. B-8). A U-RUCM measurement can take different kinds of measures
such as Probability, Vagueness, and Ambiguity, which are formalized as enumeration
MeasureKind of BeliefUCMeta (Fig. B-6). For example, as shown in Fig. B-2, two
measurements are specified for the uncertainty in the field of Measured Value as
UModel.Measure.Probability::98% and UModel.Measure.Fuzziness::Likely indicating that
the probability the occurrence of enabling monitoring is 98% if measured with Probability

and it likely occurs if it is measured with Fuzziness. Note that U-Model defines a taxonomy
of measures (Appendix A.3), which is integrated in U-RUCM as it is.

In U-RUCM, there are two situations where measurement statements should be specified:
1) for quantifying the belief degree of a belief classifier, and 2) for quantifying uncertainty.
We would like to point it out that all belief degree and uncertainty measurements are
subjective. This is because, at the requirements level, domain experts specify belief degrees
and uncertainty measurements based on their experience, knowledge, and even preferences,
as opposed to basing them on available hard data.

One special case is to define uncertainties in measurement statements as the way how
uncertainties are specified for other types of belief sentences. This is enabled because
measurement statements are defined as a special type of belief sentence, as we discussed
earlier. In other words, the belief agent can attach an uncertainty (e.g., with the measurement
statement specified as: UModel.Measure.Probability::95%, M1.1 as shown in Fig. B-2) to
the value of a measurement statement (e.g., 98%) to indicate that she/he is not fully confident
about the measurement statement (e.g., UModel.Measure.Probability::98%).

Since different belief agents might have different views on belief degree and uncertainty
measurements, U-Model enables this by specifying a belief degree (or uncertainty
measurement) as a specific type of BeliefClassifier, which is associated with one or more
BeliefAgents as shown in Fig. B-6. Moreover, U-Model also allows a belief agent to specify
more than one measurements for an uncertainty; however, each of these measurements is
enforced to take different kinds of measures (Conl18, Table B-4).

U-RUCM (along with its editor) also provides the capability of specifying measurement
statements as belief special sentences in the sense that a measurement statement is divided
into two parts: the measure and the value with the format of measure::value. For example,
as shown in Fig. B-2, one measurement statement corresponding to the uncertainty is
specified as UModel.Measure.Probability::98%. Notice that the measure taxonomy of U-
Model (Appendix A.3) has been embedded as part of the U-RUCM editor. Therefore, when
typing “UModel.Measure.”, all the measures of the taxonomy will automatically be listed in
adrop list for selection. Based on this format, a measurement statement can be automatically
parsed, and an instance of Measurement will be automatically created and a value will be
assigned to the value attribute of the measurement statement.

5 Tool Support and Methodology

5.1 Tool Support

BUCSs are specified in the U-RUCM editor, which is implemented in a modeling
framework, called the Lightweight Modeling Framework (LMF [28]). This framework
implements functionality similar to those of the Eclipse Modeling Framework (EMF), but
with a lightweight design with the aim of reducing tight coupling with Eclipse to facilitate
easier porting to other platforms. LMF has two editors: a reflective model editor and a
metamodel editor. The LMF Reflective Editor is a simple model editor implemented with
the LMF metamodel reflection mechanism. The metamodel editor allows editing a LMF
metamodel.

BUCSs specified with the editor can be automatically formalized into instances of
BelieflUCMeta concepts. In the past, we have developed the transformation from RUCM to
UCMeta, based on natural language processing techniques [8]. The transformation from U-
RUCM to BeliefUCMeta is just an extension of the transformation from RUCM to UCMeta.
The formalized specifications can be directly used for performing different kinds of analyses
and generations of other artifacts when needed.

We have made a video to demonstrate the U-RUCM editor and the formalization from U-
RUCM to BeliefUCMeta, along with the metamodel of BelieflUCMeta, UCMeta and U-
Model in [15] for references. Note that Fig. B-1, Fig. B-2, Fig. B-3 and Fig. Appx-7 also
demonstrate the user interfaces of the tool.

5.2 Methodology

Though U-RUCM can be used in many different ways, in this section, we recommend
one methodology based on our own experience. It starts with the creation of a use case
model, specifying the actors, use cases, and relationships among them (Fig. B-9). The belief
agents in this case are the requirements engineers who capture the information, including
indeterminacy sources, evidence, and uncertainty degrees from the various stakeholders. Of
course, it is always possible to revisit the initial specifications subsequently should new

evidence or indeterminacy sources be uncovered.

When the overall context of a belief use case model is established, one can start to develop
a BUCS for each use case. The key steps of developing BUCSs are presented as a UML
activity diagram in Fig. B-10. There is no particular order for specifying primary and
secondary actors, belief agents. We recommend a sequence for guiding requirements
engineers through the process that proceeds from simple tasks to more complicated ones.
Specifying flows of events is the most challenging task, as it requires a lot of careful analysis,
discussions, and design. The process is always iterative, although we do not show this in Fig.
B-10 for reasons of simplicity.

When specifying belief alternative flows (Fig. B-10), belief global alternative flows are
often used to specify exceptions and behaviors crosscutting all the steps of a reference flow.
The key task here is to identify the proper branching condition. If one needs to refer to one
or more (but not all) steps of a reference flow, belief specific or bounded alternative flows
can be created. As discussed in Section 4.4, U-RUCM provides four different ways of
specifying belief alternative flows and some constraints (e.g., alternative sentences only
appear in URFS alternative flows) should be applied when using U-RUCM in this aspect. In
our current implementation of the editor, we have enforced these constraints (all the
constraints specified in Table B-2, Table B-3 and Table B-4) so that chances of violating
them are eliminated. By definition, URFS and RFS are different and therefore should be
applied in different situations, as discussed in Section 4.4. We highly recommend using
URFS to identify uncertain alternative flows only after the entire structure of flows of events
(using RFS) of a BUCS is defined.

Each flow of events consists of a set of steps, which are specified as belief sentences. For
each belief sentence, one should refer to one or more relevant indeterminacy sources and
evidence, based on which, one can define the belief degree and associated uncertainties. The
essential activity of specifying a belief sentence is about specifying associated uncertainties
if there are any. The key steps of specifying uncertainties of the NLUncertainty type for
belief sentences are presented as a UML activity diagram in Fig. B-11.

As discussed in Section 4.6, uncertainties can be more precisely characterized by pattern
and risk information and measured in different ways. In practice, it is not always possible to
obtain and enter all of this information at once. So, a rule of thumb is to first identify as many

uncertainties as possible and only then refine them with more detailed information. The

recommendation is also based on the fact that it is more important, at the requirements
specification stage, to spend time (which is often limited) on identifying more uncertainties
than elaborating on details of already identified uncertainties. If one wants to elaborate on
the details of an already identified uncertainty, it is recommended to start from identifying
associated indeterminacy sources. This is because identifying indeterminacy sources (e.g.,
REF Broken Control Panel (Button or Screen) in Fig. B-2) might lead to the discovery of
previously-unknown uncertainties that might be caused by this indeterminacy (e.g.,
uncertainties due to a broken control panel).

We also recommend a methodology for specifying measurement statements. The key
steps of the methodology are presented in Fig. B-12 as a UML activity diagram. If a
measurement statement contains uncertainties, then a procedure similar to the one for

specifying NLUncertainty for belief sentences can be followed.

Overall Guideline

HCrealefModily Use Case Model]

[Creale hclorts])[ﬁ:reale Use Casets]] Create Belief [Create Evidence(s)] : estmchuads .
l, l/ Agentis) ! Create Indeterminacy Source(s) !

[Build Association, Include, Extend]

Relationships

!

|

astructureds
- .
Create Belief Use Case | Done? Yes

Specification (BUCS)
No

Fig. B-9. Methodology for creating a use case model (in UML Activity Diagram)

Create Belief Use Case Specification tBUCS]J

Actor BUCS (Behavior: Specify Measurement)

l

~
: Specify Primary and .) N) «Call Behaviors
- Specify Belief Specify Timepoint . ;
(Optionally) Secondary Agent(s) and Duration Specify the Overall Belief Degree of the

«Call Behavior» «Call Behavior» Refer to Related Indeterminacy
Specify Belief BasicFlow (Behavior: Specify Belief Precondition Sources and Evidence using the
Specify Belief FlowOfEvents) (Behavior: Specify Belief Sentence) "REF" keyword
vy
I “
«wstructured»

Specify Belief Global Alternative Flow

Specific/Bounded Flow Global Flow

ate Belief Alternali

«Call Behaviors
Flow?

Specify Belief Global Condition
(Behavior: Specify Belief Sentence)

No

«Call Behavior»
Specify FlowOfEvents (Behavior:
Specify Belief FlowOfEvents)

Generate
BranchUncertainty(s)

astructureds
Specify Belief Specific/Bounded Alternative Flow

Refer to 1 (for Specific Flow) or 2..* (for «Call Behaviors
Bounded Flow) Steps of the Reference Specify Belief FlowOfEvents
Flow(s) using "RFS" keyword

as Uncertainty in
Referred Steps?

Refer to 1 (for Specific Flow) or 2..* (for «CallBehaviors ,
Bounded Flow) Steps of the Reference Create Sentence (Behavior: Yéw Alternative
Flow(s) using "URFS" keyword Specify Belief Sentence)

l

«Call Behaviors
Optionally Specify the Measurement of Branching into
this Alternative Flow (Behavior: Specify Measurement)

-

Set "isAlternative"
true

Optionally Refer to
Replaced Steps

Fig. B-10. Methodology for specifying BUCSs (in UML Activity Diagram)

Specify Belief SentenceJ

Create Belief

Set the "isUncertainty"
Sentence

attribute true

|

Specify "content” of Belief
Sentence based on the RUCM 26

. e N Specify Related Indeterminacy
restriction rules Optionally Se;t:he ;leJncerlamly Source/Evidecen by "REF"
attribute false keyword

Mote that the default value of
"isUncerfainty" of BeliefClassifier is
false, so it is oplional to sef the
"isUncertainfy" attribute false.

«Call Behavior=
Specify Belief Degree of Belief Sentence
(Behavior: Specify Measurement)

wstructured»
Specify Uncertainites (NLUncertainty) of BeliefSentence

-

«Call Behavior»)
Create Specify Risk/Pattern/Source/Evidence of Specify the pa“" of Spe“ech

NLUncertainty NLUneertainty (Behavior: Specify {PoS] for the "content" of

Feature of Uncertainty) Sentence

!

Specify Kind of
Uncertainty

«Call Behaviors
Specify Measurement of Uncertainty
(Behavior: Specify Measurement)

Fig. B-11. Methodology for specifying belief sentences (in UML Activity Diagram)

Specify Measurement

Create/Modify

Specify the "content” attribute of
Measurement Statement

MeasurementStatement by the format "[Measure]::
[Valuel(;[Measurel::[Valuel)*"

Set the "isUncertainty"
attribute true

Optionally Set the "isUncertainty”
attribute false

<as Uncertainty O
Measurement?

«Call Behavior=
Specify Belief Degree of

Select Corresponding
Measurement Statement

Measurement Statement in
the Project Explorer

Mot allowed ko have any
uncerfainty in this
MeasuremeniStatement.

astructureds
Specify Uncertainties (NLUncertainty) of MeasurementStatement

«Call Behavior= .
Specify Risk/Pattern/Source/Evidence of ST:(;Q; [l:?lz:r,,lf;f:,,e:;:h
NLUncertainty (Behavior: Specify Feature MeasurementStatement
of Uncertainty)

«Call Behaviors T .
Specify Measurement of Uncertainty Se&:‘hceerramnc: aélor::::ﬁ of
(Behavior: Specify Measurement) Inty

Create
NLUncertainty

6 Evaluation

The overall objective of the evaluation was to assess, in an industrial setting, whether U-
RUCM was effective regarding facilitating the development of use case models with the
explicit focus on uncertainty. In U-Model Section 6.1, we briefly describe the two industrial
case studies. In Section 6.2, we present the context, design, and execution of the evaluation.
Results of the case studies are presented in Section 6.3. In Section 6.4, we share our

experience, lessons learned and identified future challenges.

6.1 Case Studies

One of the two industrial case studies involved the Automated Warehouse (AW) from
ULMA Handling Systems. These complex systems serve to monitor, control, and manage
warehouses for goods of different types, such as food and beverages and textiles. Each
handling facility (e.g., crane, conveyor) forms a physical unit, and together they are
dedicated to one handling system application (e.g., storage).

The second industrial case study used the Geo Sports (GS) system from Future Position
X [29], Sweden. This system measures the performance of an individual or a team as well
as the conditions of athletes over a sustained period in actual game environments (e.g., a
soccer field). The measurements (e.g., heartbeat, speed, location) are made continuously and
in real time using geo-position sensors during both training and competition. These
measurements are communicated during a game via a receiver station to the OpenField®®
system, where coaches can monitor them at runtime and take actions when needed. In
addition, these measurements can also be used offline for analyses, for example, aimed at
improving the performance of an individual player or a team. Our case study involved
Bandy, a form of ice hockey played predominantly in Northern Europe and Russia. To the
best of our knowledge, this project was the first to monitor sports on ice using sensors. We

consider GS as a human-in-the-loop CPS [30].

15 A cloud-based analytics platform for reporting and presenting data (see
https://www.catapultsports.com/products/openfield for more information).

https://www.catapultsports.com/products/openfield

6.2 Context, Design, and Execution of Evaluation

The work was conducted in the context of the U-Test!® project. The development of U-
RUCM is an iterative process and interwoven with the activities of developing U-Model,
eliciting, refining and validating uncertainty requirements of the two industrial case studies.
Both researchers and industrial partners were involved in the process, during which
intermediate versions of U-RUCM were developed. We consider that being transparent and
therefore reporting the process in the paper are important since it provides an opportunity
for readers to comprehend the rigorousness of the process and therefore gain confidence on
the derived U-RUCM methodology. Moreover, interesting readers might consider following
similar procedures to develop similar approaches in similar contexts.

The development and validation procedure of U-RUCM is shown in Fig. B-13 comprising
of two parallel processes: 1) related to the development of U-RUCM mainly conducted by
the researchers; 2) validation of uncertainty requirements mainly performed by the industrial
partners. At the start of the project (before developing U-RUCM), RUCM was introduced to
both industrial partners (i.e., ULMA and FPX) as a means for eliciting and specifying the
initial versions of their uncertainty requirements as shown as step B1 in Fig. B-13. In Fig.
Appx-7 of Appendix B, we provide a sanitized example of UCSs capturing uncertainty
requirements with an extended RUCM template. This example was documented by our
industrial partners. Results of this activity are 20 use cases for each case study, 93 RUCM
flows of events (52 for AW and 41 for GS), as shown in column RUCM Model of Table B-
6. In total, the RUCM model for AW had 229 sentences, while the GS model had 256. About
uncertainties specified in the RUCM models, 33 (for AW) and 26 (for GS) sets of steps of
flows of events describing alternative scenarios were considered as involving uncertainties.
It is important to point it out that at this stage, uncertainty requirements (i.e., Uncertainty
Req.V1, Fig. B-13) were specified in a coarse-grained manner, which clearly justified the
need of developing U-RUCM.

Second, we conducted a questionnaire-based survey to collect data to detail and quantify
the identified uncertainties (step Al, Fig. B-13). During this non-trivial process, RUCM was
deemed adequate to provide initial data, but it captured uncertainty requirements at a coarse-

16 http://www.u-test.eu/

grained level. The output of this step is the initial version of U-RUCM V1, Fig. B-13. The
questionnaire was derived from the RUCM models developed by the industrial partners
(Uncertainty Req.V1, Fig. B-13) and it was designed for each use case specification. As
summarized in Table B-5, the first two types of questions were meant for inspecting a UCS
from the use case modeling perspective and they are generic; the third to sixth types of
questions were proposed with the aim to elicit new uncertainty requirements; the last five
types of questions were proposed with the aim to detail already specified uncertainty
requirements. To get a concrete idea, we provide in Appendix B a list of questions derived
for a particular use case (the original version of which is given inTable. Appx-6, a slightly
improved version (refined by researchers with the RUCM editor) of which are provided in
Fig. Appx-5 and Fig. Appx-6) as an example.

According to the questionnaire and comments provided by researchers (step Al),
industrial partners developed the second version of the uncertainty requirements
(Uncertainty Req. V2), which are specified using U-RUCM V1. Subsequently, two onsite
workshops, i.e., one for each partner were conducted to further refine the collected
requirements, i.e., Uncertainty Req V2 (step A2/B3). The output of the step is Uncertainty
Req. V3, which is input to the A3 step for refining U-RUCM V1 into U-RUCM V2 and
developing and formalizing Uncertainty Req. V4 (step A3). U-RUCM V2 is the final version
presented in this paper, and the current U-RUCM editor was developed based on this version
of the U-RUCM methodology, and Uncertainty Req. V4 is the final version of uncertainty
requirements, which is specified with U-RUCM V2. The collected results of the evaluation
are based on the comparison of Uncertainty Req. V1 and Uncertainty Req. V4 as presented
in Section 6.3. We also provide a sanitized example of the AW industrial case study in
Appendix C for reference, which was a final use case specification specified with the latest
version of the U-RUCM tool.

U-RUCM (Researchers) Uncertainty Requirements {Industrial Partners)

AD: Developing and Domain Knowledge| | Req. | |0perationa| Data |
Modifying U-Model \%‘/

B1: Developing the uncertainty

L requirements using RUCM
[1 A1:Developing U-RUCM and Making
 auestionnaire and comments to modify
uncertainty reguirements i

B2:Refining the
[uncertainty requirements

Questionnaire and Comments |

U-RUCM V1

Uncertainty Req. V2

L Answers of Questionnaire

~
A2/B3: Refine uncertainty e

requirements with necessary
uncertainty-related information (e.g.

risk, measurement)
{ T

A3:Refining U-RUCM and formalizing - B4:Validating the uncertainty
uncertainty requirements (e.q. risk, requirements
measurement)

] 5 T
]
U-RUCM V2 |Unc:ertain'q.r Req. V4 (U-RUCM) |

Fig. B-13. Development and Validation of U-RUCM

Table B-5. Design of the questionnaire (A1, Fig. B-13)

Explanation
Inquiry the boundary of the system to define actors in the use case model.

Check the completeness of the flow of events of each use case specification.

Inquiry the existence of sources related to an actor.

Inquiry the existence of potential uncertainties related to system properties or behaviors.
Inquiry existence of the potential uncertainties regarding time, nature and human being.

Inquiry if a potential uncertainty is valid by checking if it is derived based on system properties or
behaviors.
Inquiry the completeness of the types of uncertainties defined in U-Model.

8 | Inquiry the type of a specified uncertainty.

Inquiry the measure and measurement of a specified uncertainty.

10 | Inquiry the risk of a specified uncertainty.

11 | Inquiry the evidence to support the specified measurement and risk of a specified uncertainty.

o O | W[N P|H

~

6.3 Results

As previously discussed, all the RUCM models developed by the industrial partners were
refined using U-RUCM to capture all the identified uncertainties. Descriptive statistics of

the resulted U-RUCM models, i.e., Uncertainty Req. V1, are reported in the Key RUCM
Element columns of Table B-6. The table shows how many elements were added, modified,
and removed during the process for the two case studies reported in the Refinement column.
The elements existing in the final U-RUCM models, i.e., Uncertainty Req. V4, are reported
in the U-RUCM Model column.

Recall that U-RUCM realizes the Uncertainty concept of U-Model by three concrete
means: 1) NLUncertainty for belief sentences (Section 4.6.1), 2) BranchUncertainty for
possible executions of BUCSs from the beginning to end (Section 4.7), 3) uncertainties in
flows of events captured via URFS and alternative flows (Section 4.4). We applied these
four U-RUCM mechanisms systematically by following the guidelines described in Section
5 and then carefully examined all the specified BUCSs to refine the U-RUCM models
further.

As shown in Table B-6, we refactored the design of the RUCM use case model of AW
by merging three use cases describing similar scenarios into one, which led to the deletion
of 2 use cases (as shown in the table). We also added two use cases to the RUCM model of
GS as the result of the refactoring, as these two use cases can be invoked (via the include
relationships) by multiple use cases.

Table B-6 also indicates that three uncertainties in the AW RUCM model were removed
and four from the GS model. This was because: 1) We optimized the design of the use case
model by removing duplicated uncertainties, i.e., one from AW and two from GS. For
example, uncertainties describing improper wearing of positioning devices is the same for
both indoor and outdoor games; 2) We identified uncertainties from the RUCM models that
are indeterminacy sources, which were two for AW and two for GS. For example, the long
distance between a positioning device and the satellites is an indeterminacy source
(previously identified as an uncertainty), which can lead to the failure of locating the
satellites with insufficient resolution nature.

The uncertainty-specific concepts Indeterminacy Source, Alternative Sentence, and
BranchUncertainty were only introduced in U-RUCM. Consequently, there were no
corresponding elements in the RUCM models. After carefully going through details of the
RUCM models using steps described previously, we derived a total of 23 indeterminacy
sources for AW and 18 for GS, 45 alternative sentences for AW and 76 for GS. Furthermore,

we discovered 32 instances of NLUncertainty for AW and 48 for GS. These turned out to be
cases of “unknown knowns” for our industrial partners, that is, tacit knowledge that was not
explicit initially. This activity led to the addition of 18 belief flows of events for AW and 31
for GS, 72 new branch uncertainties for AW and 89 for GS, and 43 additional alternative
flows with URFS applied for AW and 48 for GS.

In summary, the total numbers of the instances of metaclasses NLUncertainty and
BranchUncertainty of U-Model, populated for each of the industrial case studies are
62+72=134 for AW and 70+89=159 for GS. When comparing this with their corresponding
“rough” RUCM models, we conclude that, by using U-RUCM, we were able to significantly
enhance the extent and precision of modeling uncertainties in requirements (i.e., (134-
33)/33=306% for AW and (159-26)/26=512% for GS). This suggests that U-RUCM is an
important improvement in dealing with uncertainty in requirements engineering. More
specifically, to compare with RUCM, U-RUCM provides a way to elicit, specify and model
1) uncertainty alternative flows describing scenarios that the belief agent lacks confidence
about which flow of events occurs given an indeterminacy source, 2) uncertainty alternative
actions where the belief agent lacks confidence about which action occurs, given an
indeterminacy source, and 3) measurements of uncertainty, such as probability, interval,
which are useful when analyzing/reasoning uncertainty.

In our EU project, the U-RUCM models capturing uncertainty requirements were used as
the input for developing the test ready models [16, 18] represented as UML class diagrams
and state machines using UncerTum (see Section 2.1). The test ready models were used to
generate test cases, which were then executed successfully in actual systems [19]. There are
clear correspondences between the scenarios and uncertainties defined in the test ready
models and the ones defined in the U-RUCM models. Note that uncertainty measurements,
risk information, among others, were directly migrated from the U-RUCM models to the test
ready models. Doing so significantly reduced the effort required to develop the test ready
models. Also, throughout the project, the elicited and validated uncertainty requirements

were used as the communication medium among the partners.

*30n0s AdeUIWIRIBPUI 01 palueyd aJe Tey) SSNUILLIBdUN JO Jagquinu ay) S W BuLI01oBa) 01 aNP PSACLWSI S3IIUIELIBOUN JO Jaguinu 8y st U -, (W'u)x
‘SJUBLLIAI® PAAOLLAL JO JBGLUNU 3L SI H# PUR ‘SIUBLUIBIS PALLIPOW 10 JBGUNU U1 SI IAI# ‘SIUBLIBIS PaPPR 10 Jaguunu 8yl s W4

110

22INO0:
0 0 |81 8L foeuruoppuy €T 0 0 €t
0 0 8y 8 STIN £F 0 [
0 0 68 68 Ayurepdunypuerg 7 0 0 L
fureydun |9 wmm d Gl |87 0L Ayureyrodun (TN) 9 W(ne | st e |ee | KAureysoun
ERIEIVEN]
9DUAIUSG 96T 0 0 9L 9 QAL RUId} Y e 0 0 v 62T ERlICHIC
S 9% |[L6 8vE DULIURS (JO1[2g) 9.2 91 9 €9
SJUSAH
SJUSA MO SJUOA MO
TOMOII | T¥ I Iz |1€ 74 e 99 i € 8T |c< Fomorg
ase) asn 0T 0 0T € €T ase) asn 81T z 0T 0 0T ase) asn
syuawa[g q# N# |V# | [9POIN JE— [PPOIN A# W# | v# Sjuawaly
WDNY 43X JudWAULIY WONYI-N < INDNI-N JUBWAULIY WDNY 43X
o WDNYU-N £ MY

S1UBWAUIAY PUE SIAPOIA INDNY-N ‘SIPOIAI INDNY U} JO sonsnels aAndLosaq “9-g algeL

6.4 Experience, Lessons Learned, and Future Challenges

This section presents our experience, lessons learned, and future challenges.

Identifying common uncertainties, measurements, and indeterminacy sources. From
the GS case study, we noted that human behavior was the key indeterminacy source of
uncertainties, due to incorrect interactions with the system. For the AW case study, on the
other hand, uncertainties and indeterminacy sources centered mainly on the data
communications between control units and their controlled devices. From these types of
observations, we can conclude that it is possible in principle to identify common sources,
types, and measurements of uncertainties that occur in a given domain or even across
domains. This knowledge can be then used to define reusable uncertainty specifications and
their corresponding behaviors.

Specializing U-RUCM. RUCM can be specialized for different purposes and domains.
For example, in another research project, we developed a version of RUCM specifically for
real-time systems [31]. In such cases, the standard RUCM template and keywords were
extended to allow the specification of time constraints. These are also subject to uncertainty.
Based on that, we anticipate that U-RUCM will also need to be extended to specific domains.

Learning about uncertainty by applying U-RUCM. In the past, we experienced that one
can learn how to better design use case models by using RUCM. This is why RUCM is used
as a teaching method for requirements engineering and software engineering courses both at
the undergraduate and graduate levels'’. Similarly, based on the results of this project, we
surmise that it is possible to gain more precise and more direct understanding of both
uncertainty and indeterminacy sources by using U-RUCM.

Automated, scalable, and systematic reasoning. For effective coping with uncertainty,
automated/semi-automated reasoning about uncertainty and indeterminacy sources can
indeed be helpful. This is because, for any non-trivial system, a use case model might be
large and may contain a large number of potentially inter-related uncertainties. From our
experience during the initial phases of our study when we were not using U-RUCM, we
learned that unassisted human reasoning tends to be time-consuming and unsystematic. This

is why we chose a more formal approach when developing U-RUCM - via the

7 http:/ /www.zen-tools.com/rucm/index.html

BeliefUCMeta metamodel — which provides a formal foundation for future, automated
reasoning techniques.

Harvesting the benefits of natural language processing techniques. When deriving U-
RUCM and performing the two industrial case studies, we noticed that there is an
opportunity to further refine NLUncertainty, the core concept for representing uncertainties
in belief sentences (see Section 4.6). The general idea here is to rely on natural language
processing techniques to automatically identify grammatical structures (e.g., Subject), PoSs
(e.g., Verb), sentence structures (e.g., Subject-Verb-Object), and/or sentence semantics (e.g.,
an actor) sends a request to the system in belief sentences. With this, heuristics can be defined
to automatically identify potential uncertainties and/or verify already specified ones in belief
sentences. For example, a verb of the predicator of a sentence might have an Occurrence
uncertainty associated with it. A noun being the direct object of a simple sentence might be
associated with a Content uncertainty.

Reckoning on branch uncertainties. It may be possible to automatically derive values of
branch uncertainties (A branch uncertainty indicates a belief agent’s confidence in the
possibility that the execution of the use case takes this particular branch.) At the very least,
branch uncertainties can help to 1) identify critical paths to reduce uncertainties or perform
risk analyses (if the postcondition that a branch leads to is considered as the consequence of
the branch), 2) verify the overall belief degree that a belief agent has in a belief specification,
and 3) derive test cases targeting branches particularly with high uncertainty. This is a
possible avenue of further research.

Systematically discovering unknown known indeterminacy sources and uncertainties
and transforming them into known unknown uncertainties and known known
indeterminacy sources. As the case study results showed, it is possible to systematically
identify previously unknown known based on already-specified (known) uncertainties and
indeterminacy sources. A systematic methodology (ideally with tool support) can be
followed to identify more unknown knowns and currently known unknown uncertainties
(e.g., by combining already identified uncertainties that are associated with the same part of
system behavior).

Transforming U-RUCM models into other downstream artifacts. To maximize the
benefit of U-RUCM models, one possibility is to transform them automatically or semi-

automatically into other artifacts that need to be developed during system development. For
example, U-RUCM models can be transformed into UML state machines via the UUP
profile (Section 2.1), for supporting MBT of CPSs under uncertainties. This is feasible as

RUCM models can be transformed into UML models and test cases (Section 2.3).

7 Related Work

Runtime detection, monitoring, reasoning, and managing of requirements, generally
referred to as being requirements-aware, is necessary for self-adaptive systems [32], due to
inherent changes in operational environments and contextual uncertainties. For this purpose,
RELAX [2, 3] — a representative requirements specification and reasoning solution — was
proposed to support the development of requirements for dynamically adaptive systems with
environmental uncertainty. RELAX consists of a set of keywords, which are classified into
modal, temporal, ordinal and uncertainty operators. Uncertainty factors aim to indicate
where a relaxation of requirements is warranted and, therefore, adaptive behavior is needed.
Based on a structured natural language based notation, the authors also proposed a
methodology for relaxing requirement statements with the RELAX keywords. Also, RELAX
requirements can be formalized using fuzzy logic and reasoning can be performed, when
needed.

RELAX has been also integrated with goal-modeling notations (i.e., KAOS [33]) to allow
for fuzzy goals [2]. Along the same line, Luciano et al. [4] proposed FLAGS for enabling
the specification of adaptive goals, which are of two types: crisp goals (specified via linear
temporal logic) and fuzzy goals (specified using a fuzzy temporal logic). Chen et al. [34]
proposed a goal-driven self-optimization framework to handle three different types of
uncertainty in goal models: contribution, preference, and effect uncertainty. ReAssuRE was
proposed by Welsh et al. [5] to attach claims to softgoal contribution links of goal models,
with the aim to record the rationale for selecting a goal realization strategy when the
optimum choice is uncertain. Later on, Ramirez et al. [35] integrated ReAsSURE with
RELAX to assess the validity of claims at runtime, for dealing with environmental
uncertainty in dynamic adaptive systems.

Compared to these goal-based approaches, U-RUCM is more generic, as it is not targeting

dynamic adaptive systems in particular. Second, U-RUCM is built on a use case modeling

methodology, such that it can naturally facilitate the specification of uncertain alternative
scenarios. Furthermore, U-RUCM also enables the specification of various types of
uncertainties (e.g., Time, Occurrence), more precise characterization of uncertainties with
information such as Pattern, and the ability to quantify uncertainties in different ways (e.g.,
Probability, Fuzziness). Currently, U-RUCM has a dedicated template for specifying
uncertainty. In the future, it would be useful to investigate using keywords (similar to
RELAX) to reduce the effort in specifying uncertainties.

Uncertainty is also considered as an important factor that complicates early requirements
definition and decision making. Salay et al. [6] proposed the MAVO annotations for
modeling uncertainty in requirements engineering models, based on the concept of partial
models (with their properties checked as True, False or Maybe) [36]. The MAVO partiality
annotations consist of: May partiality (indicating that an element should exist in the model),
Abs partiality (indicating that an element is a collection of elements), and Var partiality
(indicating that it is unclear if an element should be merged with others). Famelis and
Santosa [7] proposed to use colored Entity-Relation models for explicitly capturing the
MAVO partiality, as well as Points of Uncertainty, a concept representing a specific decision
about which there is uncertainty. Compared to these partial-model solutions, U-RUCM is
systematically derived from U-Model, and it is integrated with RUCM, which enables the
specification of uncertain alternative scenarios.

Uncertainty can hinder organizations in making strategic decisions due to, for example,
uncertain stakeholders’ goals and priorities. In this context, uncertainty is defined as the lack
of knowledge of the consequences of decision alternatives. Letier et al. [37] proposed ways
for reasoning about uncertainties to support early requirements and architecture decision
analysis. Uncertainties are represented as probability distributions, while Monte-Carlo
simulations are used for simulating the impact of alternative decisions. That paper, however,
does not provide a solution for uncertainty specification and elicitation. Similarly, Esfahani
et al. [38] proposed GuideArch, a framework for the quantitative exploration of the
architectural solution space under uncertainty, which is based on fuzzy mathematical
methods for reasoning about uncertainty. Although these works support means for reasoning,
simulation, and exploration in the presence of uncertainty, they lack the capability specifying

and modeling of uncertainty in the context of requirements engineering.

8 Conclusion and Future Work

The impact of uncertainty, which is increasingly being recognized as an inherent and
crucial property of non-trivial software-intensive systems (e.g., CPSs), needs to be better
understood and addressed explicitly in all phases of system development. In particular, it has
to be explored and characterized as much as possible during requirements engineering (e.g.,
elicitation, specification, and verification). Use case modeling is a well-known and
commonly applied requirements specification/modeling method in practice. Specifying
uncertainty as part of use case models is therefore particularly useful. In this paper, we
described a methodology and a corresponding tool (U-RUCM) for helping practitioners to
specify uncertainties in requirements as part of use case models.

U-RUCM originated in the context of the EU project [39], which involved a consortium
of nine partners. The initial version of the uncertainty requirements was developed by our
industrial partners using the basic RUCM methodology, on which U-RUCM was founded.
After refining the RUCM models, by applying the U-RUCM methodology, we successfully
identified and specified more than 300% and 500% (previously unknown) uncertainty
requirements for the two case studies. The resulting U-RUCM models were used as a
reference to develop test ready models for generating executable test cases to test the two
industrial applications. As users of U-RUCM ourselves during the evaluation (i.e., case
studies), we gained invaluable experience about its use and future potential.

In the future, we plan to enrich the capabilities of U-RUCM from the following aspects:
1) identifying and specifying common uncertainties within and across domains, 2)
specializing U-RUCM for the real-time domain, 3) reasoning uncertainties at various levels
such as at the sentence level by relying on NL techniques, the structure level of use case
specifications by, e.g., analyzing the cause-effect of the sequential order of steps of flows of
events, and 4) automated transformation of U-RUCM models into other artifacts such as test
cases. We also plan to conduct controlled experiments to evaluate the applicability of U-
RUCM and conduct more industrial case studies to understand its potential and limitations
better.

Acknowledgment

This research was supported by the EU Horizon 2020 funded project (Testing Cyber-
Physical Systems under Uncertainty, Project Number: 645463). Tao Yue and Shaukat Ali
are also supported by RCN funded Zen-Configurator project, RFF Hovedstaden funded
MBE-CR project, RCN funded MBT4CPS project, RCN funded Certus SFI and the EU
COST action MPMA4CPS. Man Zhang is funded by the EU Horizon 2020 funded project
(Testing Cyber-Physical Systems under Uncertainty, Project Number: 645463).

References

[1] K. Bittner, and I. Spence, Use Case Modeling, Addison-Wesley, 2003.

[2] B. H. C. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, A Goal-Based Modeling
Approach to Develop Requirements of an Adaptive System with Environmental
Uncertainty, Model Driven Engineering Languages and Systems: 12th International
Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009. Proceedings, A.
Schirr and B. Selic, eds., pp. 468-483, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009.

[3] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel, RELAX: a
language to address uncertainty in self-adaptive systems requirement, Requirements
Engineering, vol. 15, no. 2 (2010) 177-196.

[4] L. Baresi, L. Pasquale, and P. Spoletini, Fuzzy goals for requirements-driven
adaptation, in: 2010 18th IEEE International Requirements Engineering
Conference. pp. 125-134, 2010.

[5] K. Welsh, P. Sawyer, and N. Bencomo, Towards requirements aware systems: Run-
time resolution of design-time assumptions, in: Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference on. pp. 560-563, 2011.

[6] R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro, Managing requirements
uncertainty with partial models, Requirements Engineering, vol. 18, no. 2 (2013)
107-128, 10.1007/s00766-013-0170-y.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Famelis, and S. Santosa, MAV-Vis: a notation for model uncertainty, in:
Modeling in Software Engineering (MiSE), 2013 5th International Workshop on. pp.
7-12, 2013.

T.Yue, L. C. Briand, and Y. Labiche, aToucan: An Automated Framework to Derive
UML Analysis Models from Use Case Models, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 24, no. 3 (2015) 13.

T. Yue, L. C. Briand, and Y. Labiche, Facilitating the transition from use case models
to analysis models: Approach and experiments, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 22, no. 1 (2013) 5.

T. Yue, S. Ali, and M. Zhang, "Applying A Restricted Natural Language Based Test
Case Generation Approach in An Industrial Context,” International Symposium on
Software Testing and Analysis (ISSTA), 2015.

H. Zhang, T. Yue, S. Ali, and C. Liu, Facilitating requirements inspection with
search-based selection of diverse use case scenarios, in: proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS) on 9th EAI International Conference on Bio-
inspired Information and Communications Technologies (formerly BIONETICS).
pp. 229-236, 2016.

M. Zhang, T. Yue, S. Ali, H. Zhang, and J. Wu, A Systematic Approach to
Automatically Derive Test Cases From Use Cases Specified in Restricted Natural
Languages, in: D. Amyot, P. F. i. Casas and G. Mussbacher, eds. 8th System
Analysis and Modelling Conference (SAM 2014), Switzerland, 2014.

T. Yue, and S. Ali, Bridging the gap between requirements and aspect state machines
to support non-functional testing: industrial case studies, in: European Conference
on Modelling Foundations and Applications. pp. 133-145, 2012.

C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Igbal, Automatic generation of
system test cases from use case specifications, in Proceedings of the 2015
International Symposium on Software Testing and Analysis, Baltimore, MD, USA,
2015, pp. 385-396.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, Understanding
Uncertainty in Cyber-Physical Systems: A Conceptual Model, in: Proceedings of
the 12th European Conference on Modelling Foundations and Applications
(ECMFA). pp. 247-264, 2016.

M. Zhang, S. Ali, T. Yue, and R. Norgren, An Integrated Modeling Framework to
Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty, 2016;
https://www.simula.no/publications/integrated-modeling-framework-facilitate-
model-based-testing-cyber-physical-systems.

M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, Uncertainty-Wise Cyber-
Physical System test modeling, Software & Systems Modeling (2017), 2017/07/25,
10.1007/s10270-017-0609-6.

M. Zhang, S. Ali, T. Yue, and R. Norgren, Interactively Evolving Test Ready Models
with Uncertainty Developed for Testing Cyber-Physical Systems, Technical Report
2016-12, Simula Research Laboratory, 2016;
https://www.simula.no/publications/interactively-evolving-test-ready-models-
uncertainty-developed-testing-cyber-physical.

M. Zhang, S. Ali, and T. Yue, Uncertainty-wise Test Case Generation and
Minimization for Cyber-Physical Systems: A Multi-Objective Search-based
Approach, Technical report 2016-13, Simula Research Laboratory, 2016;
https://www.simula.no/publications/uncertainty-based-test-case-generation-and-
minimization-cyber-physical-systems-multi.

M. Zhang, S. Ali, T. Yue, and R. Norgre, Uncertainty-wise evolution of test ready
models, Information and Software Technology (2017),
http://dx.doi.org/10.1016/j.infsof.2017.03.003.

R. S. Pressman, Software engineering: a practitioner's approach 7th edition, Palgrave
Macmillan, 2010.

J. Guo, J. White, G. Wang, J. Li, and Y. Wang, A genetic algorithm for optimized
feature selection with resource constraints in software product lines, Journal of
Systems and Software, vol. 84, no. 12 (2011) 2208-2221.

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

OMG, "Meta Object Facility (MOF) Core Specification (Version 2.4.2)," 2014,
http://www.omg.org/spec/MOF/2.4.2.

T. Yue, L. Briand, and Y. Labiche, A Use Case Modeling Approach to Facilitate the
Transition Towards Analysis Models: Concepts and Empirical Evaluation, in: A.
Schurr and B. Selic, eds. Model Driven Engineering Languages and Systems
(MODELS 2009), 2009.

J. Wu, S. Ali, T. Yue, J. Tian, and C. Liu, Assessing the Quality of Industrial
Avionics Software: An Extensive Empirical Evaluation, Empirical Software
Engineering (2016).

T. Yue, H. Zhang, S. Ali, and C. Liu, A Practical Use Case Modeling Approach to
Specify Crosscutting Concerns: Industrial Applications, 2015.

"U-RUCM: Specifying Uncertainty in Use Case Models," accessed; http://zen-
tools.com/rucm/U_RUCM.html.

G. Zhang, T. Yue, J. Wu, and S. Ali, Zen-RUCM: A Tool for Supporting a
Comprehensive and Extensible Use Case Modeling Framework, in:
Demos/Posters/StudentResearch@ MoDELS. pp. 41-45, 2013.

"Future Position X," accessed 2017; http://www.fpx.se/.

D. S. Nunes, P. Zhang, and J. S. Silva, A survey on human-in-the-loop applications
towards an internet of all, IEEE Communications Surveys & Tutorials, vol. 17, no.
2 (2015) 944-965.

H. Zhang, T. Yue, S. Ali, J. Wu, and C. Liu, A Restricted Natural Language Based
Use Case Modeling Methodology for Real-Time Systems, in: 9th Workshop on
Modelling in Software Engineering (MiSE’2017), 2017.

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein, Requirements-
Aware Systems: A Research Agenda for RE for Self-adaptive Systems, in: 2010
18th IEEE International Requirements Engineering Conference. pp. 95-103, 2010.
A. Van Lamsweerde, Requirements engineering: from system goals to UML models

to software specifications, Wiley Publishing, 2009.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

B. Chen, X. Peng, Y. Yu, and W. Zhao, Uncertainty handling in goal-driven self-
optimization-limiting the negative effect on adaptation, Journal of Systems and
Software, vol. 90 (2014) 114-127.

A. J. Ramirez, B. H. C. Cheng, N. Bencomo, and P. Sawyer, Relaxing Claims:
Coping with Uncertainty While Evaluating Assumptions at Run Time, Model Driven
Engineering Languages and Systems: 15th International Conference, MODELS
2012, Innsbruck, Austria, September 30-October 5, 2012. Proceedings, R. B.
France, J. Kazmeier, R. Breu and C. Atkinson, eds., pp. 53-69, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

M. Famelis, R. Salay, and M. Chechik, Partial models: Towards modeling and
reasoning with uncertainty, in: Software Engineering (ICSE), 2012 34th
International Conference on. pp. 573-583, 2012.

E. Letier, D. Stefan, and E. T. Barr, Uncertainty, risk, and information value in
software requirements and architecture, in: Proceedings of the 36th International
Conference on Software Engineering. pp. 883-894, 2014.

N. Esfahani, S. Malek, and K. Razavi, GuideArch: guiding the exploration of
architectural solution space under uncertainty, in: 2013 35th International
Conference on Software Engineering (ICSE). pp. 43-52, 2013.

S. Ali, and T. Yue, U-Test: Evolving, Modelling and Testing Realistic Uncertain
Behaviours of Cyber-Physical Systems, in: Proceedings of the IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST).
pp. 1-2, 2015.

P. R. Garvey, and Z. F. Lansdowne, Risk matrix: an approach for identifying,
assessing, and ranking program risks, Air Force Journal of Logistics, vol. 22, no. 1

(1998) 18-21.

G. Klir, Facets of systems science, Springer Science & Business Media, 2013.

Paper C

Uncertainty-Wise Cyber-Physical
System Test Modeling

Man Zhang, Shaukat Ali, Tao Yue, Roland Norgren and Oscar Okariz

Journal of Software & Systems Modeling (SOSYM).
DOI: 10.1007 /s10270-017-0609-6.

Abstract

It is important that a Cyber-Physical System (CPS) deals with uncertainty in its behavior
caused by its unpredictable operating environment, to ensure its reliable operation. One
method to ensure that the CPS will handle such uncertainty during its operation is by testing
the CPS with Model-based Testing (MBT) techniques. However, existing MBT techniques
do not explicitly capture uncertainty in test ready models i.e., capturing the uncertain
expected behavior of a CPS in the presence of environment uncertainty. To fill this gap, we
present an Uncertainty-Wise test-modeling framework, named as UncerTum, to create test
ready models to support MBT of CPSs facing uncertainty. UncerTum relies on the definition
of a UML profile (the UML Uncertainty Profile (UUP)) and a set of UML model libraries
extending the UML profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE). UncerTum also benefits from the UML Testing Profile (UTP) V.2 to support
standard-based MBT. UncerTum was evaluated with two industrial CPS case studies, one
real-world case study, and one open source CPS case study from the following four
perspectives: 1) Completeness and Coverage of the profiles and model libraries in terms of
concepts defined in their underlying uncertainty conceptual model for CPSs (i.e., U-Model
and MARTE, 2) Effort required to model uncertainty with UncerTum, and 3) Correctness of
the developed test ready models, which was assessed via model execution. Based on the
evaluation, we can conclude that we were successful in modeling all the uncertainties
identified in the four case studies, which gives us an indication that UncerTum is sufficiently
complete. In terms of modeling effort, we concluded that on average UncerTum

requires18.5% more time to apply stereotypes from UUP on test ready models.

Keywords. Uncertainty; Cyber-Physical System; UML; Model-based Testing

1 Introduction

“Cyber-Physical Systems (CPS) are integrations of computation, networking, and
physical processes. Embedded computers and networks monitor and control the physical
processes, with feedback loops where physical processes affect computations and vice
versa” [1]. These systems often function in the unpredictable physical environment, leaving

them vulnerable to uncertainty during their operation [2-4]. CPSs are often designed and

developed with known assumptions on their operating physical environment, which may not
hold during their operation. Currently, a common practice is to develop CPSs by integrating
physical units without knowing their internals. Consequently, even during testing,
assumptions about the expected behavior of CPSs and their operating environment are often
made. Thus, we argue that when applying Model-Based Testing (MBT), uncertainty (i.e.,
“lack of knowledge” [5, 6] about the internal behavior of a CPS and its composed physical
units, and its operating environment) must be explicitly captured in test ready models, i.e.,
the models representing the expected behavior of the CPS being tested and are detailed
enough such that test cases can be generated from them. We took a subjective approach to
capture uncertainty since a test modeler(s) creates test ready models, during which
assumptions are made by the modeler(s) about the internal behavior of a CPS and its physical
units, and its operating environment, based on her/his (their) belief at the time the models
are created.

Uncertainty in the context of CPSs is an immature area of research in general and several
efforts have just begun to study uncertainty in CPSs [7]. In this paper, we report one such
effort, where we aim to devise a set of modeling methodologies for explicitly modeling test
ready models (with uncertainty) for CPSs under test with the ultimate aim of automatically
generating test cases from test ready models with MBT techniques. We report an
Uncertainty-Wise Modeling Framework, named as UncerTum (Fig. C-1), which is
developed as part of an EU project [8]. The project has various types of partners contributing
to the overall approach such as researchers, use case providers, tool vendor, and test bed
providers, as shown in Fig. C-1. UncerTum, developed by researchers, supports modeling
test ready models with known uncertainty based on uncertainty test requirements provided
by use case providers (Fig. C-1). In the project, the first use case provider is Future Position
X, Sweden [9], who provides the CPS case study about GeoSports (GS) from the healthcare
domain, whereas the second use case provider is ULMA Handling Systems [10] who
provides case study about Automated Warehouse (AW) from the logistics domain.

The core of UncerTum is the UML Uncertainty Profile (UUP) (Fig. C-1), which is defined
based on the uncertainty conceptual model for CPSs (U-Model) [7]. The UUP profile
consists of three parts (i.e., Belief, Uncertainty, and Measurement profiles) and an internal
library containing enumerations required in the profiles. In addition, UncerTum also defines

an extensive set of UML model libraries (Model Libraries in Fig. C-1) by either extending
the UML profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE) [11] or defining new ones that were not covered by existing standards. The key
libraries include Uncertainty Pattern Library, Measure Library, and Time Library.
Moreover, UncerTum relies on the UML Testing Profile (UTP) V.2 to model test ready
models for the purpose of enabling MBT. Last, UncerTum includes a set of guidelines (Fig.
C-1) with recommendations and alternative scenarios for applying the proposed modeling
notations.

UncerTum was deployed on IBM Rational Software Architect (RSA) [12] as shown in
Fig. C-1. Once test ready models are created, they are inputted into the Certifylt[13] MBT
tool, which is a plugin to IBM RSA. With this tool, a set of executable test cases can be
generated based on various test strategies that are devised and prototyped by researchers.
Both the implementation of UncerTum and test case generation strategies will be integrated
into Certifylt by the tool vendor (EGM [14]). Finally, test bed providers provide facilities to
execute generated test cases on the provided CPSs case studies. This includes Test
Infrastructure (physical infrastructures and test emulators/simulators) and Test APIs to
control and monitor both the test infrastructure itself and the CPS being tested. In the context
of the U-Test project, Nordic Med Test [15] (NMT) provides the facility to execute test cases
on GS, whereas in the case of AW, ULMA [10], and IK4-lkerlan [16] provide the
corresponding facility. Finally, the tool vendor implements the Test Case Execution
Platform, which executes test cases on the CPS (Fig. C-1). Note that the focus of this paper
is only on UncerTum, which is indicated by a dashed line box of Fig. C-1 (i.e., “Scope of

the paper”) and the rest is ongoing.

|
|
|
|
|
: 2: develop
|
|
|
|
|
|
|
|
|
|

I
I
Uncertainty Modeling F k (UncerT ; . speci
ncertainty Modeling Framework (UncerTum) { Uncertainty Test™) 1: specify
UML Uncertainty o . Sy Requirements
[Profile (UUP) [Model Libraries Guidelines F -
{ conforms to
User Case

deployedon ~ ___ __ 1_________ Eroviders

«UncerTums»
Test Ready Models

B:inputs

Certifylt

l Executable Test Cases I* PS5: develop

6: to generate

7:to execute
Tool Vendor

7: outputs

Test Results

Cyber-Physical System }

deployed on
—————————————————————————————— | Legends

5: develop I |

ii . Tool

k‘: : elel # Step

Test Bed Providers | Physical Infrastructures Test Simulators/Emulators " Solution p# Parallel Steps
| I File

Fig. C-1. Overall Workflow of the U-Test EU Project

UncerTum was evaluated with two industrial case studies, one real world, and one open
source case study from the literature. The first two case studies are GS and AW available to
us as part of the project, whereas the third case study is embedded Videoconferencing
Systems (VCSs) developed by Cisco, Norway [17] and was used in the second author’s
previous work [18]. Currently, we have access to several VCSs in our research laboratory
due to our long-term collaboration with Cisco and we modeled them ourselves for the
purpose of evaluating UncerTum. Thus, this case study is a real case study, but using it to
evaluate UncerTum is not performed in a real industrial setting. The GS and AW case studies
were however performed in real industrial settings. The fourth case study (SafeHome) is an
open source case study from [19] and we extended it for our purpose. With these case studies,
we performed evaluation from these three perspectives: 1) Completeness and Coverage of
UUP/Model Libraries to U-Model and MARTE, 2) Effort required to model uncertainty
using UncerTum in terms of the number of model elements and effort measured in terms of
time, and 3) Correctness of the developed models by executing the models.

In our previous work, we developed a generic conceptual model (called U-Model) to
understand uncertainty independent of its final use [7]. Notice that to keep the paper self-

contained, we have provided U-Model and definitions of its concepts in Appendix A and we

refer to it when necessary. In this paper, U-Model was implemented as UUP, i.e. one of the
key contributions of this paper, to enable the development of test ready models for
supporting MBT. Other contributions include a set of model libraries to model (partially
extending MARTE), for example, various types of uncertainties and their measures and a set
of precise guidelines to create test ready models using UUP, UTP V.2 and model libraries.
Note that the development of UTP V.2 is not a contribution of this paper; rather its
application to create test ready models with uncertainty is one of our contributions. Notice
that this is one of the first papers reporting the application of UTP V.2 to industrial case
studies. Another contribution of the paper is our modeling approach to check the correctness
of test ready models through model execution. Finally, we consider the extensive evaluation
of the applicability of UncerTum with the three real industrial case studies as a contribution
as well.

The rest of the paper is organized as below. Section 2 presents the background, followed
by a running example (Section 3). Section 4 presents the overview of UncerTum. Section 5
discusses details of the UUP profile and Section 6 discusses the model libraries. Section 7
presents the guidelines for applying UncerTum. Section 8 presents our modeling approach
for checking the correctness of test ready models with model execution. Section 9 provides
the evaluation and Section 10 presents the related work. We conclude the paper in Section
11.

2 Background

2.1 Cyber-Physical Systems and Testing Levels

A CPS is defined in [7] as: ““A set of heterogeneous physical units (e.g., sensors, control
modules) communicating via heterogeneous networks (using networking equipment) and
potentially interacting with applications deployed on cloud infrastructures and/or humans
to achieve a common goal” and is conceptually shown in Fig. C-2. Uncertainty can occur at
the following three logical levels [7] (Fig. C-2): 1) Application level, due to events/data
originating from an application (one or more software components) of a physical unit of the
CPS; 2) Infrastructure level, due to data transmission via information network enabled

through networking infrastructure and/or cloud infrastructure; 3) Integration level, due to

either interactions of applications across the physical units at the application level, or
interactions of physical units across the application and infrastructure levels. Notice that we
chose the definition of CPS from [7] as it was defined in the context of our project and was
further used to define the three levels of uncertainties in CPS that are modeled in this paper

and conforms to the well-known definition in [1].

60

r __ -~
| Integration Level |
.) 4 . . 4 . . I
______ __Fnysical unl | | | |
: _ __(hysical Umt\ Physical Unit Physical Unit |
| | Application LE“eero..mS | |Integration |
| P Soft Soft T “Level — I
I k *0i ware ware) |
| _n__] | T = F—

| deplpyed on _\ieplove an :

fm—————— AR .) i
: I Infrastructure Level Hardware 2
Il |
R Nem—————— Y EELE |
| I
| |
| I
| I
|

® Uncertainty U1: Application Level Uncertainty U2: Infrastructure Level Uncertainty U3: Integration Level Uncertainty

Fig. C-2. Conceptual model of a Cyber-Physical System and the Three Levels

2.2 U-Model

In our previous work [7], to understand uncertainty in CPSs, we developed a conceptual
model called U-Model to define uncertainty and associated concepts, and their relationships
at a conceptual level. Some of the U-Model concepts were extended for supporting MBT of
all the three levels of CPS under uncertainty (Section 2.1). U-Model was developed based
on an extensive review of existing literature on uncertainty from several disciplines
including philosophy, healthcare and physics, and two industrial CPS case studies from the
two industrial partners of the U-Test-EU project. In this paper, we implement U-Model as
UncerTum to support the construction of test ready models with uncertainty. Details of U-
Model is given in [7] and part of U-Model is provided in Appendix A for the purpose of

keeping this paper self-contained.

2.3 UML Testing Profile (UTP)
UML Testing Profile (UTP) [20, 21] is a standard at Object Management Group (OMG)
for enabling MBT. With UTP, the expected behavior of a system under test can be modeled,

from where test cases can be derived. UTP can be also used to directly model test cases.
Transformations from models specified with UTP to executable test cases can be performed
using specialized test generators. Since UTP is defined as a UML profile, it is often applied
to UML sequence, activity diagrams, and state machines for describing behaviors of a system
under test or test cases. The key purpose is to introduce testing related concepts (e.g., Test
Case, Test Data, and Test Design Model and model libraries such as various types of test
case Verdict (pass, fail)) to UML models for the purpose of enabling automated generation
of test cases. UTP V.2 [21] is the latest revision of the UTP profile, which is conceptually
composed of five packages of concepts: Test Analysis and Design, Test Architecture, Test
Behavior, Test Data, and Test Evaluations. Various numbers of stereotypes have been
defined for some concepts of these packages. Similar to other modeling notations, it is never
been an objective to exhaustively apply all the stereotypes when using UTP V.2 to annotate
UML models with testing concepts [21]. Which stereotypes to apply and how to apply them
are however problem/purpose specific and should be defined by users of the profile. More
information about the UTP V.2 standardization and the team can be found in [22, 23].

To enable MBT of CPSs under uncertainty, we rely on UTP V.2 to model the testing

aspect of test ready models. In our context, only a subset of UTP V.2 was used.

3 Running Example

To illustrate UncerTum throughout the paper, we present a running example in this
section, which is a simplified security function of the SafeHome system described in [19].
The developed test ready model of the running example includes a class diagram (Fig. C-3),
a composite structure diagram (Fig. C-4), and a set of state machines (Fig. C-5, Fig. C-6,
and Fig. C-7) using IBM Rational Software Architect (RSA) 9.1 [12]. For the sake of
simplicity, we only show one security function related to intrusion detection. Notice that,
even though we present all the diagrams of the model of the running example in this section
(including the application of the profiles and model libraries), we illustrate them using the
running example when they are discussed in later sections.

In general, the security system controls and configures Alarm and related Sensors through
their corresponding interfaces (class diagram in Fig. C-3, detailed explanation in Table C-

1). In Fig. C-4, we show a composite structure of the security system. Notice that the alarm

and sensors do not talk to each other directly. Instead, they communicate via the provided
interface of the port of the system: ISecuritySystem. For example, the security system
receives the IntrusionOccurred signal via portSecurity, which is sent by a sensor from
portSensor when an intrusion is detected (see the implementation of effect notifylntrusion
in Fig. C-6).

«enumeration» «ApplicationElement» «IntegrationElement, TestTtem»
SecuritySystemStatus IAlarm SecuritySystem
Monitoring «signal» StopAlarm() adminlD : String «ApplicationElements
Inactive «signal= StartAlarm adminPwd : String ISecuritySystem
MonitoringAndAlarm isVerified : Boolean
W timedout : Boolean = false | <AoplicationElement» activateAlarm () “Tat:llo?ElgmeS? acg:{a;.e}\\arm
icati stemStatus : SecuritySystemStatus = Inactive “signate -ntrusiontccurr
«ApplicationElement» «InfrastructureElement, Sy : t‘{z)' «signal» StartMonitoringCommand()
ISensor IndeterminacySources numberTried : Integer = 0 1anals StopMonit Co d
Alarn notifyPolice () «signal» StopMonitoringCommand()
notifyIntrusion () _ ctopMonitoring () {)—— «signal» CancelAlarmCommand()
«signal» IntrusionDetected 1D : String - startMonitoring () «signal» RegisterSensor{)
- isRinging : Boolean verify { _id : String, _pwd : String) «signal» SystemResetFailed()
start () di_l;ahleNT)tif\;rPoh(e’(_) ’ «signal» SensorsnitalizedFailed()
«InfrastructureElement, stop diagnose {) «signal» SystemOK()
IndeterminacySources cancelAlarm () «gignal» SensorsOK()
Sensor * initializeSensor { id_: String) asignal» StopTimer()
I_ri.ActSt;tg% - Bool + sensors + SecuritySys «ApplicationElements ISecuritySystem L ssignal» StartTimer()
! i : Boolean «ApplicationElements activateAlarm {)

isIntrusionOccured : Boolean

«signal» «signal» asignal» «signale «signal» «signal» «signal»
CancelAlarmCi d StartMonitoringC d | StopMonitoringCi d || IntrusionDetected IntrusionOccurred StartTimer StopTimer
userlD : String userID : String userID : String dec : String sensorD : String current : String | | current : String
pwd : String pwd : String pwd : String
_«signal» «signal»
wgignal» «sgignals «gignal» «gignal» «sgignals «gignal» Acti
OK oK ¥ Failed itali ailed StopAlarm StartAlarm sensorlD : String sensorlD : String

-- «Testltem» is from UTP V.2; «ApplicationElement», «InfrastructureElement» and
«IntegrationElement» are from the CPS Testing Levels profile; «IndeterminacySource» is from UUP; Note
that «enumeration» and «signal» are not stereotypes. They are used in IBM RSA to denote different types of
UML model elements.

Fig. C-3. Class diagram of the Simplified Security System

«IntegrationElement, Testitem» Secu ﬂtys;rstemJ

alarm : «InfrastructureElements Alarm sensors : «InfrastructureElement»Sensor %
1 1

«ApplicationElement» «ApplicationElement»
partAlarm : IAlarm portSensor : 1Sensor

j «ApplicationElement» portSecurity
: ISecuritySystem

-- «Testltem» is from UTP V.2; «ApplicationElement», «InfrastructureElement» and «IntegrationElement»
are from the CPS Testing Levels profile; Connectors between two ports are applied with
«IntegrationElement», but IBM RSA does not visualize them in the diagram.

Fig. C-4. Composite Structure diagram of the Security System
Behaviors of the alarm, sensors, and the system were specified as the three state machines
by the first author of the paper (modeled in Fig. C-10) shown in Fig. C-5, Fig. C-6, and Fig.
C-7, respectively. The alarm state machine has two states: AlarmDeactivated and

AlarmActivated. AlarmDeactivated represents the state that the alarm is not ringing, whereas

the AlarmActivated state denotes that the alarm is ringing. The sensor state machine has two
states (Fig. C-6): SensorDeactivated denoting the state that a sensor is deactivated to detect
intrusion, whereas SensorActivated represents that a sensor is activated to sense intrusion.
The security system state machine (Fig. C-7) has two concurrent regions in the composite
state MonitoringAndAlarm and a set of sequential states (e.g., Idle and Ready). The top
region (Monitor Intrusion) of the MonitoringAndAlarm composite state has two states:
Normal and IntrusionDetected, which represent that an intrusion is not detected and
detected, respectively. The bottom region (Timer Control) has three states: Timer Stopped,
Timer Started, and Police Notified, representing the states that the timer of the system is
stopped to notify the police (TimerStopped), the timer is activated to wait for 3 minutes

before notifying the police (TimerStarted), and the police is notified (PoliceNotified).

wBeliefElement, InfrastructureElement» Alarm J
StartAlarm()
StopAlarm() _
Alarm «BeliefElement, Effect»
Deactived StartAlarm() AlarmActivated
vy A (C)

Fig. C-5. State Machine of Alarm

«BeliefElement, InfrastructureElement» Sensor J

A «BeliefElement:
Intruglor)Detected(senmrID:String),f
notifyIntrusion();

«CheckPropertyActions
{self.isActivated}

T,

Y,

Sensor
<Effect>notifyIntrusion j

Deactivated

Sensor
Activated

portSensor.send(new
when[TisActivated] IntrusionOccurred(this.ID));

Fig. C-6. State Machine of Sensor

These three state machines communicate via signals using the ports defined in the
composite structure (Fig. C-4). One typical scenario in case of security breach is: 1) When a
sensor is in the state of SensorActivated, it sends the IntrusionOccurred signal to the security
system (UML Action Language (UAL) [24] code in the comment in Fig. C-6) once the
intrusion is detected via the effect notifyIntrusion defined in the self-transition (Fig. C-6, A)
of the SensorActivated state; 2) When the Security System receives the IntrusionOccurred
signal, it transits to the IntrusionDetected state from the Normal state (Fig. C-7, B.1). In

parallel, as one can see from the bottom region (Timer Control) of the MonitoringAndAlarm

composite state of the system (Fig. C-7), the system sends the StartAlarm signal to the Alarm
state machine via activateAlarm (Fig. C-7 and effect* in the Table C-1) and triggers
StartTimer() when entering the IntrusionDetected state (Fig. C-7, B.2), which leads to the
transition from TimerStopped to TimerStarted (Fig. C-7). From TimerStarted, after 3
minutes (time event), the system notifies the police and transits to PoliceNotified; 3) The
Alarm state machine receives the StartAlarm signal in the AlarmDeactivated state and

activates the alarm and transits to AlarmActivated.

«BeliefElement, IntegrationElement» securitvsvsﬁemJ

e N
«BaliefElement»
Moriltor

SystamResetFailed| RegisterSensor(sensorID:String)f ¢~ - ~
¥ 0 initialzeSensor(msg.sensoriD); M‘;‘Bflll!fE\:msglt»
nitoringAndAlarm

Maonitor Intrusion
(B . 1) «BeliefElement»

Idle

Sensots «BeliefElement»

(B . 2)eBeliefElement»

= o IntrusionOccurred(sensorID: Strin
7ll reset Initialized |SensorsOK() activateAlam(); (o)/ ntrusionOccurred
«BeliefElements [Normal | d
SystemOK()
«BeliefElement» Tisverified] cancelAlarm(}/ Il start timer

o . SensorInitializeFailed ortSecurity.send(new...

[isverified]startMonitoring()/ 4” &l (tisVerified

isVerified = false; [tisVerified]

CancelAlarmCommand (userID:Stri...

Timer Control
disableNotifyPolice()

StartTimer —_— =
[lisVerified] - PoliceNotified
StartMonitoringCommand(userID:St... «BelielElement»
5 after 3 min[timedout]/
\ notifyPolice(); p,
[isverified JstopManitoring();/
IsVerified=ralse; ~ -

[lisVerified]StopMonitorCommand(userID:String,
pwd:String)/verify(msg.userlD, msg.pwd); ...

Fig. C-7. State Machine of the Security System

Statelnvariant «CheckPropertyAction» of IntrusionDetected

(self.systemStatus = SecuritySystemStatus:: Monitoring or (self.systemStatus = SecuritySystemStatus::
MonitoringAndAlarm and self.alarm.isRinging)) and self.sensors->forAll (s:Sensor|s.isActivated) and
self.sensors->one(s:Sensor|s.isIntrusionOccured)

Fig. C-8. Statelnvariant (in OCL) of IntrusionDetected (B.2)

Fig. C-9 and Fig. C-10 illustrates how we model uncertainty using UUP/Model Libraries,
whereas Fig. C-3 and Fig. C-4 show the application of the CPS Testing Levels profile and
UTP V.2 on the models of the running example. As an example, the detailed description for
classifier SecuritySystem is shown in Table C-1. An example of using the model libraries is
shown in Table C-1, on transition B.1, where the probability of successful intrusion detection
is measured in a 7-scale of probability (Probability_7Scale defined in the probability library)
as VeryLikely (see the Transition row in Table C-1 and Success:ReceivelntrsionOccurred in

Fig. C-9). More details are presented in the following sections.

Table C-1. An Example of Classifier SecuritySystem using UncerTum

Name SecuritySytem (Fig. C-3)

Description The security system controls and configures Alarm and related Sensors through their
corresponding interfaces.

Stereotype «Testltem, IntegrationElement»

Provided «ApplicationElement» 1SecuritySystem

Interface

Is Composed Of

«InfrastructureElement, IndeterminacySource» Sensor [*]
«InfrastructureElement, IndeterminacySource» Alarm [1]

Ports

portSecurity: «ApplicationElement» ISecuritySystem (Fig. C-4)
communicates with portSensor of Sensor:«ApplicationElement» 1Sensor
communicates with portAlarm of Alarm: «ApplicationElement» |Alarm

State Machine

«IntegrationElement, BeliefElement» SecuritySytem (Fig. C-7)
Stereotypes
agent: «BeliefAgent» Man_Simula (Fig. C-10)

Transition| «BeliefElement» Normal: State—IntrusionDetected: State (Fig. C-7, B.1)
trigger*: <SignalEvent>IntrusionOccurred(sensorID:String)

effect*: activateAlarm() the body of this operation is: portSecurity.send(new
StartAlarm())

Stereotypes

agent: «BeliefAgent» Man_Simula (Fig. C-10)

measurement:

-measurelnDTViaClass: «BeliefMeasure» ReceivelntrusionOccurred (Fig. C-
9)

-measurementIinVS:<InstanceValue>VeryLikely

uncertainty:

-kind: UncertaintyKind::Occurrence
-referredIndeterminacySourcelnClassifier: «IndeterminacySource,
InfrastructureElement»Sensor

-referredCause: «BeliefElement, Cause» notifyIntrusion (see Fig. C-6, A)
-referredEffect: «BeliefElement, Effect» AlarmActivated (C)

trigger * represents the “triggers” attribute of Transition in UML. effect * represents the “effects” attribute

of Transition in UML.

|
SafeHomeMeasure
«BeliefDegreeMeasure, UncertaintyMeasure:» «BeliefDegree, UncertaintyMeasurements
ReceiveIntrusionOccurred Success ! ReceiveIntrusionOccurred
conditionalProbability : Probability 75cale conditionalProbability = VeryLikely
«BeliefDegreeMeasure, UncertaintyMeasures «BeliefDegree, UncertaintyMeasurement:
IntrusionDetected Success ! IntrusionDetected
probability : Probability probability = 97.5
«BeliefDegree, UncertaintyMeasurement: «indeterminacyDegreas
Failure : IntrusionDetected Sensor IntrusionSensed : BeliefInterval
probability = 1.5 expression = [belief=97, plausibility=99]

-- Probability, Probability_7Scale and Beliefinterval are from the Measure library

Fig. C-9. The Example of Modeling Measurement/Measure

|
SafeHomeBeliefAgent

«BeliefAgents

Man_Simula

«BeliefAgents
beliefStatement = [«BeliefElements SecuritySystem,
«BeliefElement» Alarm, «BeliefElements Sensar]

Fig. C-10. The Example of Modeling BeliefAgent

4 Overview of UncerTum

Fig. C-11 shows the overall flow of using UncerTum and an overview of UncerTum is
presented in Fig. C-12. Step 1 in Fig. C-11 is about creating test ready models using the
UML profiles (e.g., UUP), model libraries, and guidelines defined in UncerTum. Section 5
presents the profiles in detail, Section 6 presents the model libraries, whereas Section 7
presents the guidelines. Step 2 in Fig. C-11 involves developing executable test ready models
to support validation of these model based on the guidelines defined in Section 8.1. Step 3
executes these executable test ready models and in case errors are found a test modeler can
use our guidelines defined in Section 8.2 to fix these errors. Notice that our framework only
supports test modeling, i.e., creating test ready models that can be used to generate
executable test cases. Such type of modeling is less detailed as compared to, e.g., modeling
for automated code generation. This is mainly because, during test modeling, we are only
interested in modeling test interfaces (e.g., APIs to send a stimulus to the system and

capturing state variables) and the expected behavior of a system.

Uncertum Section 5. Uncertum —
UUP, CPS Testing Levels
Profile and UTP V.2

using

Section 6. Uncertum —
? | using 2 Model Libraries
1

Section 7. Uncertum
Develop Test Ready Models H R e

guided by
2y
Develop Executable Test Ready Models Section 8.1. Uncertum
for Validation guided by Validation Guidelines
3
+ No
Execute Test Ready @ e
Models
4 Yes
uided by | Section 8.2. Uncertum
Modify Test Ready Models Hg Y{ Recommendations to
Fix Problems

Fig. C-11. Overall Flow of Using UncerTum

The core of UncerTum is the implementation of U-Model (relevant part of U-Model in
Appendix A and complete details in [7]) as UUP (Fig. C-12). Notice that U-Model was used
as the reference model to create UUP. While developing UUP based on U-Model, we took
three types of decisions: 1) Some concepts from U-Model (e.g., Uncertainty) were
incorporated into UUP as it is; 2) Some concepts from U-Model (e.g., Belief, which is an
abstract concept) were not implemented in UUP; 3) Some concepts from U-Model were
refined in UUP. For example, the BeliefStatement concept was implemented as
«BeliefElement» in UUP since it corresponds to an explicit representation of model elements
in the modeling context. At a high level, the core part of U-Model is implemented as UUP
comprising of three parts: Belief, Uncertainty, and Measurement. All these profiles import
Internal_Library that define necessary enumerations required in the profiles. The framework
also consists of a small CPS Testing Levels profile, which permits modeling specific aspects
of the three testing levels of CPSs, i.e., Application, Infrastructure, and Integration, just for
MBT.

The framework also consists of three UML model libraries: Measure Library, Pattern
Library, and Time Library (which extend MARTE [11]). We would like to highlight that we
imported Time Library from MARTE without any modifications and thus we will not

describe it in the paper. The framework relies on UTP V.2 to bring necessary MBT concepts

to test ready models. Finally, the framework provides a set of guidelines on how to use its
modeling notations to construct test ready models for enabling MBT of CPSs under

uncertalnty.
1 1 1
UTP MARTE «modelLibrary»
Measure_Library
«profile» || «<modelLibrary» «profile» | |«modelLibrary»
uTp UTP Libraries MARTE MARTE_Library : «modelLibrary» | |«modelLibrary» | [«modelLibrary»
«import: - L
Ambiguity Probability Vagueness
A : extension A yiwn
«conceptualModel» | extension ——— cimports — i«lmpor't» I
U-Model RRTR > UML : «modelLibrary» |€import2 | «modelLibrary»
A ~— i 7 Pattern_Library Time_Library
i «import» 7 _
<import» i conforms to extension ; 1 @ wimports é)
CPS Uncertainty Modeling Framework (Uncertum)
«profile»
uup @ 6?
«import» !]
«profile» «use» «profile» «guideline»
Belief Measurement «profile» Uncertum Guidelines
7 . CPS Testing
A «import»..- ‘ . : Level fil
: «import>y EVels protie [Application Level MndelingJ [Infrastructure Level ModelingJ
" 3
«profiles | “U5¢ «profile» = =
Uncertainty | «import2 | jnternal_Library { Integration Level MOde""QJ { Measurement ModelinJ

Fig. C-12. Overview of UncerTum

5 UUP and CPS Testing Levels Profile

This section presents UUP, whose modeling notations are composed of stereotypes and
classes for Belief (Section 5.1), Uncertainty, and Measurement (Section 5.2), as shown in
Fig. C-13, Fig. C-14 and Fig. C-15. The complete profile documentation (including
constraints) is provided in [25] and the mapping between concepts in UUP and U-Model is
provided in Table C-2. We also present the CPS Testing Levels profile in Section 5.3. Notice
that in this section, we describe the UUP concepts at a high level and please refer to
definitions of the U-Model concepts in Appendix A and the detailed profile specification in
[25].

Table C-2. Definitions of the Stereotypes and Classes in UUP

Profile Stereotype/Class in UUP Concept in U-Model (Appendix A)
«BeliefStatement» BeliefModel::BeliefStatement
«BeliefElement» -

Belief «BeliefAgent» BeliefModel::BeliefAgent
«Indeterminacy BeliefModel::IndeterminacySource
Source»

Profile

Stereotype/Class in UUP

Concept in U-Model (Appendix A)

Uncertainty

BeliefModel::Uncertainty

Measurement/

Measurement BeliefModel::Measurement
«Evidence» BeliefModel::Evidence
«Cause» N
«Effect» UncertaintyModel::Effect
Uncertainty «Lifetime» UncertaintyModel::Lifetime
«Risk» UncertaintyModel::Risk
«Pattern» UncertaintyModel::Pattern
«Measurements BeliefModel::Measurement

«BeliefDegree»

“beliefDegree” attribute of Belief

«Indeterminacy
Degree»

“indeterminacyDegree “attribute of
IndeterminacySource

«EffectMeasurement»

“measurement” attribute of Effect

«RiskMeasurement»

«UncertaintyMeasurement»

“measuredValue” attribute of Uncertainty

Measure
MeasureModel::Measure

«BeliefDegreeMeasure» “measure” attribute of Measurement
«IndeterminacyDegreeMeasure» “measure” attribute of Measurement
«RiskMeasure» -
«UncertaintyMeasure» “measure” attribute of Measurement
«EffectMeasure» “measure” attribute of Measurement

«Measure»

5.1 UUP Belief

The Belief part of UUP is one of the key components of UUP since we focus on subjective
uncertainty (“lack of knowledge”), where a test modeler(s) (BeliefAgent(s), see Appendix
A) creates test ready models of a CPS based on her/his/their assumptions (Belief, see
Appendix A) about the expected behavior of the CPS and its operating environment. The
Belief part of UUP thus defines concrete concepts to model Belief of test modelers with
UML. As shown in Fig. C-13, it implements the high-level concepts defined in U-
Model:BeliefModel provided in Appendix A.1 (the mapping is provided in Table C-2 and
further discussion is provided in Section 9.2.1). As shown in Fig. C-13 and Table C-2, five
stereotypes are defined, among which «BeliefElement» is the key stereotype associated to
various UML metaclasses. This stereotype is used to signify which UML model elements
are representing belief of belief agent(s). Generally speaking, any model element may
represent a belief, but in the context of our work, we only extend UML metaclasses that are
required to support MBT. For example, a StateMachine (subtype of metaclass Behavior)
itself can be a belief element (i.e., expected state-based behavior of a CPS and its operating
environment), such that «BeliefElement» can be applied on it to characterize it with
additional information such as to which extent a test modeler (stereotyped with

«BeliefAgent») is confident about the state machine (i.e., beliefDegree of BeliefStatement),

all uncertainties (i.e., Uncertainty) associated with the state machine, and their
Measurements. In our context, we extend UML state machines; however, it is worth
mentioning that «BeliefElement» can be used, for example, with activity and sequence
diagrams if needed. We intentionally kept the profile generic (e.g., by making
«BeliefElement» extend the UML metaclass Behavior) such that different MBT techniques
based on different diagrams can be defined when needed.

«metaclass» «metaclass» «metaclass» «metaclass» e—| «metaclass» «metaclass» 2 «enumeration»
Behavior Constraint Region Vertex State Transition IndeterminacyNature
L] 4 4 A 4 InsufficientResolution
A MissingInfo
«sterentypes» «metaclass» «sterentypes» «stereotype» Non-determinism
IndeterminacySource Package BeliefElement Evidence Composite
nature : IndeterminacyMature é, + substatements | + description : String LiEEIED
description : String ¥
; - . «stereotypes @
indeterminacyDegree : Measurement Beliefstat, " (__) “E}Etadas:v
.| from : String ¥ + referredEvidence
«MEetaC|asss | «stereotypes duration : String + prerequisites + measuredValue
Classifier | BeliefAgent * beliefDegree : Measurement prereq
+ agent|_beliefAgent : String

*
T‘r referredIndeterminacySource

Fig. C-13. The Belief Profile

In case that there is some evidence, e.g., existing data to support the belief, «Evidence»
can be used. It is defined to capture any evidence for supporting the definition of a
measurement for an uncertainty. The stereotype extends UML metaclass Element, implying
that any UML model element (e.g., Class) can be used to specify evidence, e.g., as a
ValueSpecification. Each uncertainty is also associated with a set of indeterminacy sources
(definition in Appendix A), which can be explicitly specified using «IndeterminacySource»
and classified with enumeration IndeterminacyNature (Fig. C-13) as defined in Appendix
A.

The profile also implements OCL constraints defined in U-Model. For example, as shown
in Fig. C-13, each beliefDegree (an instance of Measurement) of a «BeliefStatement» must
have exactly one measure associated with it, which can be specified in three different ways:
a «Measure» (via attribute measure of Measurement), DataType (via measurelnDT) or Class

(via measurelnDTViaClass). This OCL constraint is given below:

context BeliefStatement:

self. beliefDegree—>size () >0 and self.beliefDegree—>select (measurement:Measurement |measurement—
>size () >0)—>forAll (measurement :Measurement | (measurement. measureInDT—

>size () tmeasurement. measureInDTViaClass—>size ()=1) xor (not

measurement. measure. oclIsUndefined()))

When we look at the running example, the belief agent (Fig. C-10) is Man_Simula
(stereotyped with «BeliefAgent») who defines three state machines: one for the alarm, one
for the sensors, and one for the security system itself. As shown in Table C-1,
«BeliefElement» is applied on the IntrusionOccurred transition from Normal to
IntrusionDetected (Fig. C-7, B.1). The belief agent of this belief element is specified as class
Man_Simula (stereotyped with «BeliefAgent» shown in Fig. C-10). The belief degree of this
belief element is specified as a value specification “VeryLikely” and measured as
Probability_7Scale. The belief element has one occurrence uncertainty, which is associated

to «BeliefElement, Cause» notifylntrusion of «IndeterminacySource» Sensor (Table C-1).

5.2 UUP Uncertainty and Measurement

The second key component of UUP is about the implementation of concepts related to
Uncertainty («BeliefElement» composed of Uncertainty in Fig. C-14) and is presented in
Fig. C-14. In addition, each Uncertainty may have associated measurements that are
captured in the Measurement part as shown in Fig. C-15. In Fig. C-14, the key element is
Uncertainty, which is characterized with a list of attributes such as kind (typed with
enumeration UncertaintyKind) indicating a particular type of uncertainties. All of the
attributes (except for kind and field) are optional. For example, an uncertainty might or might
not have an indeterminacy source (i.e., indeterminacySource as defined in Appendix A).

The U-Model concepts of Effect, Pattern, Lifetime, and Risk (Appendix A) can be
specified with UUP in difference ways. For example, one can specify the effect (i.e., the
result of an uncertainty, as defined in Appendix A) of an uncertainty simply as a string
(attribute effect of Uncertainty). One can also create a UML model element and stereotype
it with «Effect» and the uncertainty can then be associated with it (i.e., referredEffect). More

details regarding the possible alternatives can be found in Section 7.

2l «enumeration» ametaclasss astereotypes «metaclasss» - «stereptypes
UncertaintyKind Package Cause Element Lifetime
Environment h description : String s * *] description : String
%gﬁfhica'mcaﬁo” + referredLifetime + referredPattern H referredCause
«stereotypes
Time aste;z_oivpe» Uncertainty + referredEffect
Occurrence X kind : UncertaintyKind astereotype» description : String
description : S.trlng from : String Pattern measurement : Measurement
measurement : Measurement field : TimeField description : String
+ riskInDTViaClasq lifeTime : String «metaclass»
Fkenumerations - locality : String + measurementInVs 5..1 ValueSpecification
RiskLevel ﬂenumer_atmn» «metaclass» 0..1 |indeterminacySource : String Measurement [measurelnDT,
o TimeField Class " cause : String _ - «metaclasss
- Past effect : String s Evidence : String 0.1 pataType
High Present «metaclasse 1 |pattem : String +| measure : Measure
Ex?creme Future DataType 0. risk : RiskLevel measurement : String 5] «metaclass»
+ riskInDT LriskLevel : String + measuredValue + measureInDTViaCl Class

Fig. C-14. The Uncertainty Profile

«IndeterminacySource», «BeliefStatement», Uncertainty, «Effect», and «Risk» can be
further elaborated with Measurement. A measurement can be specified in different ways: 1)
as a string (attribute measurement of class Measurement), 2) as a value specification
(measurementInVS), 3) as a package stereotyped with a subtype of «Measurement», and 4)
a constraint stereotyped with «MeasurementConstraint». «Measurement» is further

classified into five subtypes, corresponding to the five types of elements to be measured.

st ati
oo || e e e
description : 5tring B Probability
kind : Measurekind Vagueness
Ambiguity
[[5 5]
«stereotypes «stereotypes «stereatypes «stereatypes «stereotypes
EffectMeasure UncertaintyMeasure IndeterminacyDegreeMeasure BeliefDegreeMeasure RiskMeasure

«metaclasss (o Jmt «metaclasss M mu?‘zt:ﬁtt‘gf:straint «metaclass»
Package — . ValueSpecification =y 5 Constraint
description : String description : String
[1 1 1 i
«stereptypes «stereptypes «stereatypes «stereptypes «stereptypes
EffectMeasurement UncertaintyMeasurement IndeterminacyDegree BeliefDegree RiskMeasurement

Fig. C-15. The Measurement Profile

«Measure» is defined to classify different types of measures and provide users an option
to denote classes and data types with concrete measure types such as «EffectMeasure». Such
a stereotyped class or data type is linked via Measurement to «IndeterminacySource»,
«Effect», Uncertainty, «Risk» or «BeliefStatement».

A set of OCL constraints has been implemented in UUP. One of the examples is that

Element with applied «Effect» should be referred at least once via the “referredEffect”
attribute of the Uncertainty instance:

context Effect:
self. base Element. getAppliedStereotype ('UUP: :Uncertainty: :Effect')<>null implies
Uncertainty. allInstances () —>one (u:Uncertainty|u. referredEffect—>includes (self))

For the running example, «BeliefElement, Effect» ActivatedAlarm is associated with
Uncertainty of «BeliefStatement» IntrusionOccurred via the “referredEffect” attribute
(Table C-1).

5.3 CPS Testing Levels Profile

We define a small CPS Testing Levels profile with the three stereotypes (Fig. C-16) to
denote which model element belongs to which level of the three: «Application»,
«Infrastructure», and «Integration». This enables a test generator to use different
mechanisms (if used) to control and access elements from different levels. For example,
infrastructure-level variables may be accessed with different tools/APIs as compared to
application-level variables. All the three stereotypes extend the UML metaclass Element, as
one can apply them to a class, a state, a state machine and many other model elements.

Note that this profile is defined for enabling MBT of CPS under uncertainty from the
three logical levels and we have no intention to break down CPS according to their system
architectures by denoting physical units, sensors, network, etc. For example, class Sensor in
Fig. C-3 is stereotyped with «IndeterminacySource» and «InfrastructureElement», meaning
that sensors are infrastructure elements. As shown in Fig. C-4, the composite structure of the
system describes the interactions between the infrastructure elements (Alarm and Sensors)
and the application level elements: portSensor, portAlarm, and portSecurity, which are typed
by three interfaces (i.e., ISensor, IAlarm, and 1SecuritySystem) as shown in Fig. C-3. This is

the reason that the composite structure is stereotyped as «IntegrationElement».

«metaclass»
Element
3
r 1
wstereotyper «stereotypes wstereptypes
ApplicationElement InfrastructureElement IntegrationElement

Fig. C-16. The CPS Testing Level Profile

6 Model Libraries

To model uncertainty with advanced modeling features, we define three model libraries
that can be used together with UUP for modeling uncertainty Patterns (in Fig. C-20),

uncertainty Measurements (corresponding to Probability, Vagueness, and Ambiguity inFig.
C-17, Fig. C-18 and Fig. C-19), and Time-related properties. Measure, Pattern, and Time
libraries import the MARTE_PrimitiveTypes library [11] to facilitate the expression of data
in the domain of CPSs such as Real. Respectively, the Measure library adapts the operation
of NFP_CommonType of MARTE [11] related to probability distributions. The Pattern
library imports elements related to Pattern from the BasicNFP_Types library of MARTE
[11] (e.g., AperiodicPattern) and further extends them. For example, the Transient pattern
does not exist in MARTE [11] and has been newly defined. The Time library imports the
time concepts from MARTE_DataTypes library [11] to facilitate the expression of time, e.g.,
Duration and Frequency, thus do not discuss these in this paper.

6.1 Measure Libraries

We define three measure packages (Probability, Ambiguity, and Vagueness) to facilitate
modeling with different uncertainty measures (Fig. C-17, Fig. C-18, Fig. C-19, and Table C-
3). Notice that in U-Model (Appendix A), these three concepts were defined only at a very
high level; no breakdown of Probability, Ambiguity, and Vagueness was provided in U-
Model. In this paper, we largely extended and implemented the detailed measures belonging
to these three categories/packages, based on various theories such as Fuzzy Set and
Probability Theory.

In the Ambiguity library, we define the data types corresponding to the relevant Ambiguity
measures published in the literature (Fig. C-17). Since these measures are well known, we
do not provide further details in this paper; however, interested readers may consult the
provided references listed in Table C-3 for more details and the technical report
corresponding to this paper [25]. The concepts of the fuzzy set theory [26] are defined in the
Vagueness library (Fig. C-18) and Table C-3 lists the relevent references.

Various data types related to the probability are defined in the Probability library (Fig.
C-19). All the modeled probability distributions are well known and thus we do not present
further details in this paper. Some details of these distributions are provided in the technical

report corresponding to this paper [25]. The other data types such as Percentage, Probability,
(e.g.,

Probability_Interval, and

«dataType» «dataType» «dataType» «dataType»
ShannonEntropy HartleyMeasure AlternativeMeasure U_Uncertainty
h : Real h : Real a : Real u : Real

+ left «dataType»

«dataType» “dataType» |x DissonanceMeasure «dataType»
Belief |+ right Conflict e Real Distribution
degree : Real weight : Real co.mplementray . Real expression : String

+ min
+ max| «dataType» [
«dataType» | g Plausilriliity «dataType» «dataType»
BeliefInterval PossibleDistribution PignisticDistribution
degree : Real

Fig. C-17. The Ambiguity Model Library

different

qualitative

scales

of probability

Probability_4Scale) are from basic statistics and thus are not further explained.

“Enumer$i0n9 {self.value < 1.0 «dataTypes {self.lambda <= 1.0 and
HedgeKind and self.value > FuzzySetCut .| self.lambda >= 0.0}
A_Little 0.0} lambda : Real «dataType»
Slightly _ isStrong : Boolean EuclidFuzziness
Very : kind : FuzzySetCutKind «dataTypes
Extremely «dataType» FuzzyEntropy “
Very_Very MembershipDegree * * Hamnflji;'latglipf;nm
More_or_Less value ; Real 1.* 0.1 ‘
Somewhat hedge : HedgeKind < “* dataType» I pm—
Indead element : String + items FuzzySet Fuzzi:g:s «dataTyper
[} T MinkowskiFuzziness
0..1
\L [i 1 1
«dataTypes «dataTypes «dataTypes «dataTypes «dataTypes
Roughness IntervalValuedFuzzySet LFuzzySet IntuitionisticFuzzySet VagueSet
«dataType» wenumerations»
«dataType» «dataType» «dataType» FuzzyLogic FuzzySetCutKind
Fi Interval R hSet Sh
ey e = operator : FuzzyLogicOperation Supp
P ’ var : 5tring Ker
i H max set : FuzzySet Bd
+ min «dataType»
«dataType» TriangularFuzzyNumber «enumeration» «enumeration»
FuzzyNumber |, issharped : Boalean FuzzySetOperationKind FuzzyLogicOperation
number : String a: Real Union AND
b : Real Intersection OR
C : Real Complement NOT

Fig. C-18. The Vagueness Model Library

«dataType» «dataTypes «dataTypes «dataTypes «dataTypes
BinomialDistribution ExponentialDistribution PoissonDistribution GeometricDistribution LogarithmicDistribution
prob : Probg[bilit\,r mean : Real mean : RealJ : Real] theta : Real

S GE— Lp : heal
«dataTypes «dataTypes
Distribution ProbabilityDistribution
r I ? T «dataType»
«dataTypes «dataType» «dataType» «dataType» TriangularDistribution
NormalDistribution BernoulliDistribution GammaDistribution UniformDistribution min : Real
standDev : Real prob : Probability k : Integer min : Real max : Real
mean : Real trials : Integer mean : Real max : Real mode : Real
~_ «bind» N «enumeration» «enumerations
GenericType -> Probability @ - Probability_4Scale Probability_3Scale
dataType
«dataTypes «dataType» ConfidenceInterval Impassible Impossible
Interval Probability_Interval - Unlikel Likel
i - e _ = value : GenericType 'niikely IKely
min : GenericType min : Probability error : GenericType Likely Certain
max : GenericType max : Probability level * Confidencelevel Certain
’ «enumeration»
«dataType» «dataTypes «dataTypes ! ~_ «bind» N Probability 7Scale
Percentage | | Probability | | ConfidenceLevel i GenericType -> Probability wenumeration» Dty
1 e Impaossible
value : Real value : Real value : Real L Probability_55cale VeryUnlikely
=dataType» Impossible Unlikely
i i Probability_ConfidenceInterval Unlikely Even
{self.value <= 1.0 {self.value <= 1.0 vaule : Probability Even Likely
and self.value >=0.0} and self.value >=0.0} error : Probability Likely VeryLikely
level : Confidencelevel Certain Certain

Fig. C-19. The Probability Model Library

For example, as shown in Fig. C-9, the IndeterminacyDegree of Sensor_IntrusionSensed,
which is used to measure the occurrence of successful sensing intrusion of Sensor, the self-
transition of SensorActivated (Fig. C-6), is expressed by Belieflnterval [27], which is
composed of belief (97%) and plausibility (99%), which are pre-defined in the Ambiguity
library (Fig. C-17). Further details are provided in the technical report corresponding to this
paper [25] for references.

Table C-3. The Main Concepts in Measure Libraries

Measure Library Concept Reference

Belieflnterval, Belief, Plausibility, ShannonEntropy, Belief Theory [27]
Conflict [28]
HartleyMeasure [29]

Ambiguity AlternativeMeasure [30]
DissonanceMeasure [31]
U_Uncertainty [32]
PossibleDistribution [33]
PignisticDistribution [34]
MembershipDegree, FuzzySet, FuzzySetOperationKind, | Fuzzy Set and Fuzzy Logic theory
FuzzyL ogicOperation, FuzzylL ogic, FuzzyNumber [26]
FuzzySetCut [35]
FuzzyEntropy [36]

Vagueness Fuzziness, EuclidFuzziness, HammingFuzziness, | [37, 38]
MinkowskiFuzziness
Roughness and RoughSet [39]
LFuzzySet [40]
IntuitionisticFuzzySet [41]

IntervalVValuedFuzzySet [42-44]

VagueSet [45]
Sharpness [46]
NormalDistribution, BernoulliDistribution, | Probability Distribution [47]

ExponentialDistribution, GammaDistribution,
PoissonDistribution, UniformDistribution,
GeometricDistribution, TriangularDistribution,
LogarithmicDistribution

Probability, ConfidenceLevel, Confidencelnterval [47]

Probability

6.2 Pattern Library

This section presents Pattern Library shown in Fig. C-20 to support modeling various
known patterns, in which an uncertainty may occur. All the patterns except for Transient
and PersistentPattern are imported from MARTE [11]. Details of these patterns can be
consulted from the MARTE specification and the technical report corresponding to this
paper [25]. The definition of Transient is adopted from [7], i.e., “Transient is the situation
whereby an uncertainty does not last long”. Transient inherits from IrregularPattern. The
newly introduced attributes are minDuration and maxDuration describing the duration for
which the uncertainty lasts. The definition of PersistentPattern is adopted from [7], i.e., “‘the
uncertainty that lasts forever”. The definition of “forever” varies. For example, an
uncertainty may exist permanently until appropriate actions are taken to deal with the
uncertainty. On the other hand, an uncertainty may not be able to resolve and stays forever.
The duration attribute of PersistentPattern is set to “forever” to indicate that the uncertainty
with this pattern stays forever until resolved. In the context of testing, “forever” may be the

duration for which a test case is being executed on a CPS.

«dataType» «dataType» «dataType» «dataType»
«dataType» AperiodicPattern Random SystematicPattern cl osedP:I:tern
IrregularPattern distribution : ProbabilityDistribution distribution : Distribution population : Integer
phase : Duration extDelay : Duration
interarrivals : Duration | «dataType» 4
BurstPattern «dataType»
«dataType» minlnterarrival : Duration PeriodicPattern «dataType» «dataTyper
"leataT!'PE” SporadicPattern maxinterarrival : Duration P_erioc! : Duration PersistentPattern OpenPattern
ans 7 minnterarrival : Duration minEventinterval : Duration jitter : Duration period : Duration interArrivalTime : Duration
m‘_axDum?mnb. Duration maxinterarrival : Duration maxEventInterval : Duration phase : Duration arrivalRate : Frequency
minDuration : Duration jitter : Duration burstSize : Integer occurrences : Integer

Fig. C-20. Pattern Library

7 UncerTum Modeling Methodology

In this section, we present our modeling methodology for UncerTum. The rest of this

section is organized as follows: Section 7.1 presents the overview of modeling activities,

Section 7.2 presents modeling activities at Application Level, Section 7.3 presents modeling
activities at Infrastructure Level, Section 7.4 presents modeling activities at Integration
level, and Section 7.5 presents the modeling activities of applying UUP which is invoked at
the above three level. Notice that we used the activity diagram to provide a step-wise
procedure to create test ready models and this activity diagram is not used for testing. We
used structured activities in the activity diagram when it was necessary to break an activity
down. Whenever an activity is used by multiple activity diagrams, we created the activity
and call it from the multiple activity diagrams using call behavior activity nodes.

To facilitate the construction of test ready models, we made a set of design decisions,
which are summarized, along with the rationales behind, in Table C-4. We refer to them in

the text whenever those are discussed.

Table C-4. Design Decisions in UncerTum to Model Test Ready Models

Scope

Decision

Justification

DD1

Package

Group model elements
belonging to different levels
in different packages.

The purpose is to enable separation of
concerns, based on each logical level,
e.g., application, and enable reuse of
model elements.

DD2

Class Diagram

Use Class Diagram to
model the structure of a
CPS.

Class diagrams are commonly used to
capture the structure of a CPS as state
variables, test APIs (as operations),
configuration variables, signals, and
receptions.

DD3

Class Diagram
/Signal

Use Signals to facilitate
sending stimulus from one
physical unit to another.

Signals can model asynchronous
communication across various physical
units of a CPS, which is the purpose of
UML defining signals.

DD4

Class Diagram
/Reception

Use signal Reception to
model the stimulus that a
physical unit can receive
from another.

The rationale conforms to the purpose of
UML defining signal Reception.

DD5

State Machine

Use State Machines to
model the expected
behavior of a CPS and its
operating environment with
uncertainty.

The reason is that a large number of
CPSs exhibit state-based behaviors [48,
49]. In addition, we have already
developed test generators to generate
test cases from UML state machines
[50], some part of which can be
extended for testing CPSs under
uncertainty when needed.

DD6

State Machine
/Guard,
Invariants

State

Specify a State Invariant as
an OCL constraint modeling
test oracles. Guard
conditions are also specified
as OCL constraints that are
used to generate test data to
fire triggers on transitions.

OCL is a standard language for
specifying constraints on UML models.
Several tools for evaluating OCL
constraints (e.g., Eclipse OCL [51] and
Dresden OCL [52]) and solving OCL
constraints (e.g., ESOCL) are available.

Scope Decision Justification

DD7 State Machine/ Triggers on transitions are | 1) SignalEvent 1s used to facilitate
Transition specified as SignalEvent, | communication across state machines of

CallEvent, TimeEvent or | different physical units of a CPS; 2)

ChangeEvent. CallEvent is used to model invocation of
a testing APl or manual operation to a
CPS; 3) TimeEvent models time-related
events; 4) ChangeEvent models changes
in values of state variables. All these
elements are used as they are intended in
UML.

DD8 State Machine Terminate is used to | The purpose is to indicate the
/Terminate interrupt the State Machine. | termination of the execution of a test

case on a CPS.

DD9 Class Diagram and | UAL is used to enable the | Our overall approach is implemented in
State Machine execution of models. Certifylt, i.e., a plug-in to IBM RSA

(Section 1). UAL [24] is implemented
based on the OMG Alf standard and in
IBM RSA Simulation Toolkit. Thus, we
used it to fit in the overall approach.

DD10 Composite Structure | Use Composite Structure | In UML, Composite Structure Diagrams
Diagram Diagrams to model | are for capturing the internal structure of

interactions of a CPS with | a classifier, its interaction with
outside the world and | environment or other physical units via
among different physical | Ports. Our use of composite structure
units of the CPS. diagrams conforms to UML.

DD11 Composite Structure | Use Ports/Connectors to | Ports/Connectors in the UML are
Diagram/Port, model communication of a | defined to facilitate communication in
Connector CPS with outside the world | the same way as we intend.

and communications across
physical units of a CPS.

DD12 UUP/ Belief Agent, | Model these concepts as | It is recommended if test ready models
Evidence, Lifetime, | String values. are annotated with information
Measurement, Cause, describing these concepts not for
Pattern, Effect, Risk, enabling test generation. Doing so can
IndeterminacySource help reducing modeling effort.

DD13 UUP/ Belief Agent, | Model these concepts by | This option facilitates defining specific
Evidence, Lifetime, | applying stereotypes on | test strategies based on the captured
Measurement, Cause, | model elements (e.g., | information via these stereotypes. In
Pattern, Effect, Risk, | classes, packages) and | addition, it helps to facilitate reuse of
IndeterminacySource | group them in dedicated | model elements.

packages.

7.1 Overview

The modeling methodology is naturally organized from the viewpoints of the three types
of stakeholders: Application Modeler, Infrastructure Modeler, and Integration Modeler, as
shown in Fig. C-21. For activities performed by each type of modelers, we distinguish them
by tagging each of them (in their names) using “AP”, “IF”, and “IT”, respectively.

As shown in Fig. C-21, all modelers are recommended to start from creating a package
(i.e., AP1, IF1, and IT1), which is used to group and contain model elements for each
respective level (DD1 in Table C-4). Next, application and infrastructure modelers apply the
UUP notations to model system behaviors of the application and infrastructure levels,
respectively (i.e., AP2 and IF2). These two structured activities are further elaborated in
Sections 7.2 and 7.3. When these two activities are finished, integration modelers take their
results as inputs and perform IT2: Model Integration Behavior. Details of this structured

activity are further discussed in Section 7.4.

Uncertum Modeling EuidelinesJ

Application Modeler Integration Modeler Infrastructure Modeler
APT: i’ealtigaﬁacnkfgﬁ;"’ the IT1: Create Package for the IF1: Create Package for the
pp Integration Level Infrastructure Level

{ J; '\}_ J’

| «structureds T w T

!) . . | I] ' wstructurads |

! AP2: Model Apilil_clatlon Behavior | J’ i IF2: Model Infrastructure Behavior |
- - |
. «structured» | rh 4
i 1T2: Model Integration Behavior |

® J

Fig. C-21. The Top Level Guideline

7.2 Application Level Modeling

The application level modeling activities include four sequential steps: creating
application level class diagrams (AP2.1, DD2 in Table C-4), creating application level state
machines (AP2.2, DD5 in Table C-4), apply CPS testing levels profile (AP2.3) and applying
the UUP notations on the created class and state machines (AP2.4).

A class diagram (DD2) created for the application level captures application level state
variables (attributes), whose values either can be accessed directly or with dedicated APIs.
We also model operations representing APIs to send stimuli to the CPS being tested. Also,
it is important to mention that such a class diagram usually needs to specify Signal, which is
a Classifier for specifying communication of send requests across different state machines.

In addition, a class in the class diagram may receive signals from other classes (even across

levels) that are modeled as signal reception (DD3/DD4 in Table C-4). When creating a class
diagram for the application level, for each class, each of its attributes captures an observable
system attribute, which may be typed by a DataType in the UUP’s Model Libraries (Section
[25]) or MARTE_Library [11]. An attribute may represent a physical observation on a
device (e.g., battery status on an X4 device). Each operation of a class in a class diagram
represents either an API of the application software or an action physically performed by an
operator (e.g., switching on or off of an X4 device). Each signal reception represents the
stimulus that can be received from a different state machine.

In a state machine (DD5-DD8 in Table C-4), each state is precisely defined with an OCL
constraint specifying its state invariants (DD6 in Table C-4). Such an OCL constraint is
constructed, based on one or more attributes of one or more classes of an application level
class diagram. Each transition in a state machine should have its trigger defined as a call
event corresponding to an API or a physical action defined in the class diagrams of the
application level and has its guard condition modeled as an OCL constraint on the input
parameters of the transition’s trigger (DD6/DD7 in Table C-4).

Next, application modelers need to apply UUP on state machines (AP2.4) to specify
uncertainties and apply the UTP profile to add testing information (e.g., indicating Testltem).
The application of UUP is the same for the three levels and thus we only describe it under

the Integration Level Modeling section (Section 7.4.).

APZ: Model Application Beh aviorJ

AP2.1: Create Application AP2.2: Create Application APZ.3: Apply CPS AP2.4: Apnly UUP ‘ «structured» ;ﬁ©
Level Class Diagram(s) Level State Machine(s) Testing Levels Profile -4 ApplY | APZ.5: Apply the UTP Profile |

J

Fig. C-22. Application Level Guidelines

7.3 Infrastructure Level Modeling

For the infrastructure level, a similar modeling procedure as the one defined for the
application level should be followed to derive class diagrams and state machines, apply UUP
and UTP (further details in Section 7.4), as shown in Fig. C-23. One difference is that
attributes of infrastructure level class diagrams should capture observable infrastructure
attributes. For example, an attribute (isIntrusionOccurred in Fig. C-3) can reflect the

occurrence of intrusion sensed by Sensor. Operations of infrastructure level class diagrams

represent APIs for manipulating infrastructure level components. Regarding state machines,
they should be consistent with the infrastructure level class diagrams. In other words, states
should have their invariants defined as OCL constraints based on the attributes defined in
the infrastructure level class diagrams, and transitions having their triggers defined as call
events or time/change events (DD5-DD?7 in Table C-4).

IF2: Model Infrastructure BehaviorJ
IF2.1: Create Infrastructure IF2.2: Create Infrastructure IF2.3: Apply CPS
Level Class Diagram(s) Level State Machine(s) Testing Levels Profile

Fig. C-23. Infrastructure Level Guideline

«structureds»

i |
! IF2.5: Apply the UTP Profile @

IF2.4: Apply UUP

7.4 Integration Level Modeling

Recall that, activity I1T2 is started after class diagrams and state machines created for the
application and infrastructure levels. As shown in Fig. C-24, the IT2 activity starts from
creating integration level class diagrams (IT2.1) and state machines (1T2.2) and applying the
CPS testing levels profile (1T72.3), followed by applying UUP and UTP.

Regarding creating class diagrams for the integration level, such a class diagram should
focus on specifying interactions between the application software and infrastructure.
Particularly, signal receptions should be defined to model events that a class can receive
from the infrastructure and/or application levels (DD3-DD4). Each signal reception
corresponds to an instance of UML Signal defined in a created integration level class
diagram (DD3-DD4). Notice that creating class diagrams for the integration level is not
mandatory (DD1). Model elements that have been defined in the application and
infrastructure level class diagrams can appear in the integration level class diagrams and they
should be specified from the perspective of integration level modelers.

There are different ways of defining model elements for the integration level. One way is
to refine the created application and infrastructure level state machines by directly
introducing new model elements to them. For example, a state in the application level can
send a Signal to the infrastructure level and vice versa. Transitions of a state machine in the
application (infrastructure) level should capture triggers of type Signal Reception and effects
containing Signals from the infrastructure (application) level. Another way is to keep
application and infrastructure level state machines untouched by applying a specific

modeling methodology (e.g., Aspect Oriented Modeling methodologies) to specify
crosscutting behaviors separately. In addition, one should also benefit from advanced
features of UML state machines (e.g., concurrent state machines, parallel regions) to for

example refer to existing state machines defined in the application and infrastructure levels.

IT2: Model Integration BehaviorJ

IT2.1: Create Integrat IT2.2: Create Integrat IT2.3: Apply CPS | aeructurd L «structured» li @
- . .
L . 'I C|;ea eD[w egraf t|o)n i 8 '| S:e? eMn ehgra [lo]n o 8 .L DDIY brofil ' (IT2: Model Integration Behavior) :._)g: IT2.5: Apply the UTP Profile |
evel ass Diagramis evel ate Machine(s, esting Levels Profile i AP2/IF2/1T2: Apply UUP i i r|_| i
= h !

Fig. C-24. Integration Level Guidelines

7.5 Apply UUP (AP2/IF2/1T2)

Since test ready models can be created in several different ways, we propose a set of
options to restrict the way, in which test modelers apply UUP. Notice that our test generators
will only be able to generate test cases when one of these options is followed. The same
modeling decisions (D12, D13 in Table C-4) are taken for several concepts in UUP including
Belief Agent, Evidence, Measurement, Lifetime, Cause, Pattern, Effect,
IndeterminacySource, and Risk. All these can be simply modeled as String values. This
option is informal since a test modeler is allowed to provide any string value. Second, a more
formal way is to model these concepts as Fig. C-10 (e.g., a phd student at Simula class for a
particular BeliefAgent) with possible attributes and operations inside a dedicated package
(e.g., for all BeliefAgents for a CPS under test). Followed by this, we recommend applying
dedicated stereotypes (e.g., «BeliefAgent») either on classes, package, or both. The
justification of these design decisions is summarized in Table C-4.

Recall that the activity of applying UUP is invoked at all the three levels. We tag each
type of the activities of the activity diagrams from Fig. C-25 to Fig. C-33 with S, C, and A
to represent structured activities, call behavior and normal activity nodes (standard semantics
as in UML). Note that these activity diagrams are developed to explain the step-wise
procedure to create test ready models and themselves are not part of the test ready models.
As shown in Fig. C-25, applying UUP starts from applying «BeliefElement» on any UUP
allowed state machine model element. Then a modeler can specify values for the “from” and

“duration” attributes of the stereotype, model belief agents, model belief degree, and/or

model uncertainties (Fig. C-25).

AP2/IF2/1T2: Apply UUPJ

Al: Apply «BeliefElements AZ: Optionally specify the values wstructureds .
to any allowed State for the "from" and "duration” |51 Optionally Model :
Machine model element attributes of the applied Belief Agent |
defined in the profile «BeliefElement» i

r *y
i «structureds i «Call Behaviors
@H S2: Optionally Model Uncertainty(ies) for | C1: Optionally model Belief
- the belief elementql.la «BeliefElements ; Degree

Fig. C-25. Applying UUP

As shown in Fig. C-26, there are two ways (D12, D13) to model belief agents (S1.1 and
S1.2). A modeler can specify belief agents simply as one or more strings via the
“beliefAgent” attribute of «BeliefElement» (S1.1). She/he can also create a package to
organize all the belief agents (S1.2). In this case, each belief agent can be modeled as a class
in the package and the package is stereotyped with «BeliefAgent». Alternatively, one can
model each belief agent as a class and stereotype it with «BeliefAgent». The other option is
to model each belief agent as a class and stereotype it with «BeliefAgent» and also stereotype
the package with «BeliefAgent». When choosing to apply options 2, 3, and 4, one needs to
link a created belief agent package to the agent attribute of «BeliefElement» (S2). For
example, we modeled the belief agent, Man_Simula, using Option 3 as shown in Fig. C-10.

51: Optionally Model Belief AgentJ

. -

Option 1 51.1: Specify Belief Agent(s) as one or more .
O Options Strings in the "beliefAgent” attribute of the

concept seterotyped as «BeliefElements

-
[51.2: Create a UUP J 51.2.1: Model Belief Agent(s) as

Belief Agent Package Class(es) inside the UUP Belief Agent
5 L Package stereotyped as «BeliefAgent»)
Option 2
82

51.2.2: Model| Belief Agent(s) as . 5
Class(es) stereotyped as «BeliefAgents : Link the UUP Belief

iy inside the UUP Belief Agent Package Agent Packaga with the
Option 3 M J/ agent" attribute of

~ «BellefElements
51.2.3: Model Belief Agent(s) as
Class(es) stersotyped as «BeliefAgent»
inside the UUP Belief Agent Package
also stereotyped as «BeliefAgent»

Option &4

Fig. C-26. Model «BeliefAgent»

Modeling BeliefDegree is presented in Section 7.5.1 and modeling uncertainties is

discussed in Section 7.5.2.

7.5.1 Measurement Modeling

Modeling measurements and measures are important for applying UUP. These activities
are used to measure beliefDegree, Uncertainty, indeterminacyDegree, Risk, and Effect. As
shown in Fig. C-27, one first needs to create a package to contain measurements for
indeterminacyDegree, beliefDegree, uncertaintyMeasurement, measurement of Risk and
measurement of Effect (A1). Then, amodeler can optionally specify Evidence (S1), followed
by the specification of each measurement instance and its corresponding measure (S3 and
S2).

Common Measurement ActivityJ

(‘f i wstructureds |

i 51: Optionally Specify Evidence !

Al: Create a package to i +H !

contain measurements for . A

indeterminacyDegree, l/
beliefDegree, - " N
uncertaintyMeasurament, ! egtructureds wstructureds i
measurement of Risk and | s2: Specify Measure 53: Specify Measurement |
measurement of Effect i I'|‘I I‘h |
kS . .

Fig. C-27. Common Measurement Modeling Activity

A. Specify Evidence
As shown in Fig. C-28, there are two ways (D12, D13) to specify evidence. Option 1 is

to specify evidence as a String value (in the “measurement” attribute of Measurement).
Option 2 is to create a package for evidence if such a package does not exist and optionally
stereotype it with «Evidence» (S1.2.1). One can then create any UML model element to
represent evidence, according to UUP and optionally stereotype it with «Evidence» (S1.2.2).
The last step of Option 2 is to link either the package or UML model elements representing

evidence to the “referredEvidence” attribute of Measurement (S1.2.3).

S1: Optionally Specify Evidencej

Option 1 S1.1: Specify evidence as a String
value in the attribute of Measurement

-
51.2.3: Link either the Package or Elements
with the "referredEvidence” attribute of
Measurement

Option 2 51.2.1: Create a package for - 1\
Evidence if it doesn't exist and $1.2.2: Create evidence with any UML
optionally stereotype it with model element and optionally stereotype it
«Evidence» as «Evidence»
.

Fig. C-28. Specify Evidence

B. Specify Measure

As shown in Fig. C-29, to specify a measure, a modeler needs to create a class diagram
(Al) and then create instances of Measures (for measurements of either
“indeterminacyDegree”, “beliefDegree”, “uncertaintyMeasurement”, measurement of Risk
or measurement of Effect) as classes or data types (A2). One then needs to add attributes to
these classes or data types by using the data types defined in the Measure Libraries (Section
6.1). One can optionally apply corresponding measure stereotypes (e.g.,
«UncertaintyMeasure») to the classes or datatypes (A4). The last step is to link a measure to

an instance of Measurement (A5).

52: Specify MeasureJ

(Integration Modeler)
(Integration Modeler) A2: Create Measures (Integration Modeler)
A1: Create a class diagram (Uncertainty/Risk/Effect/ A3: Add Attributes to the Class/DataType of
@ IndeterminacyDegree/ types defined in the Measure Model Library

BeliefDegree) as Class/DataType

(Integration Modeler)

A5 Link the Measure to the corresponding
Model Element stereotyped with
«BeliefElement» in the attribute of the
sterectype

T no

{Integration Modeler)
Ad: Apply the stereotypes on
the Class/DataType

ondition1: Apply corresponding Measure
stereotypes on the Class/DataType?

Fig. C-29. Specify Measure

C. Specify Measurement
There are three ways (D12, D13) to specify measurements (in Fig. C-30): specifying a

measurement as a String of the measurement attribute of Measurement (Al),
ValueSpecification (A2), and an OCL constraint owned by a class or datatype representing
a measure, based on the attributes defined in the class or datatype (A3.1). One can also
optionally apply «MeasurementConstraint» to an OCL constraint defined to specify a

measurement (A3.2).

S3: Specify MeasurementJ

option 1
(Integration Modeler)
A1: Specify as a String
Options >—option 2 (Integration Modeler)
A2: Specify as a ValueSpecification

(Integration Modeler)

option 3 A3.1: Specify a Constraint in OCL owned by

Measure (DataType/Class) based on the attributes
defined in the defined DataType/Class

v

(Integration Modeler)
A3.2: Optionally apply
«MeasurementConstraint» on the
constraint

Fig. C-30. Specify Measurement

7.5.2 Uncertainty Modeling
As shown in Fig. C-31, one first needs to specify the kind of an uncertainty (Al),

optionally specify values for attributes “from”, “field”, and “locality” of the uncertainty,

optionally model Lifetime (or Cause, Pattern, Effect) of the uncertainty, optionally define
IndeterminacySource(s), optionally model uncertaintyMeasurement and Risk.

52: Optionally Model Uncertainty({ies) for the belief element via -:BeliefEIementh
i Y
‘") . | astructureds]
A1: Specify Uncertainty e e IR ey A E I | 51: Optionally model Lifetime/Cause/ |
Kind for Uncertainty(ies) et ancyoea i | Pattern/Effect of Uncertainty(ies) I
attributes i |_|_| |
L . L J

y ™ ' . { A
| wstructureds | «Call Behavior» I wstructureds: |
©ﬁ 53: Optionally model Risk | C1: Optionally model one or | $2: Optionally model |
| i .] e i ; |
| associated to Uncertainty | more UncertaintyMeasurement i IndeterminacySources i

| |
i | " ' |
I

\ m J L th)

Fig. C-31. Model Uncertainty

A. Model Lifetime/Cause/Pattern/Effect of Uncertainty
A modeler has two options (D12, D13) to specify Lifetime/Cause/Pattern/Effect of an
uncertainty, as shown in Fig. C-32. One option is to simply specify an instance of these as a

» “« ” o«

String value owned by the uncertainty (via attributes “lifetime”, “cause”,

»n o«

effect”, “pattern”
or “risk” of Uncertainty). The second option needs to start from creating a package for
Lifetime/Cause/Pattern/Effect if such a package does not exist, and optionally apply
«Lifetime», «Cause», «Pattern», or «Effect» (S1.2.1). After creating packages, one needs to
create Lifetime/Cause/Pattern/Effect as any UML model element and optionally apply the
corresponding stereotypes. Since Effect can be measured, an instance of it can be optionally
associated with one or more measurements (Section 7.5.1). The last step of Option 2 is to
associate each created package or element to corresponding attributes of Uncertainty, i.e.,

“referredPattern”, “referredEffect”, “referredLifetime”, or “referredCause”.

51: Optionally model Lifetime/Cause/Pattern/Effect of Uncerta'lm\,f{'lesJJ

Option 1 51.1: Specify Lifetime/Cause/Pattern/Effect as
a String value for the lifeTimefcause/pattern/

effect attribute of the Uncertainty

51.2.1: Create a package for LifeTime/ h

Cause/Patternf/Effect if it doesn't exist
and optionally appy

«Lifetime»/«Causex/«Patterns/«Effect»

L

51.2.2: Create Lifetime/Cause/Pattern/
Effect as any allowed UML model element
and optionally apply «Lifetimes»/«Causes/

«Pattern»/«Effect»

a Option 2

vy

51.2.3: Link either the Package or
Elements with the "referredLifeTime"/
"referredCause"/"referredPattern”/"re
ferredEffect” attribute of Uncertainty

«Call Behaviors
C1: If Effect has «Effect»
applied, optionally Specify
one or more Measurement

Fig. C-32. Model Lifetime/Cause/Patten/Effect of Uncertainty

B. Model IndeterminacySource

As shown in Fig. C-33, a modeler can simply specify an indeterminacy source as a String
value (D12) of attribute “indeterminacySource” of Uncertainty (Option 1). Alternatively,
one can create a package (D13) to organize indeterminacy sources (A2.2.1), create instances
of any UML Classifier

«IndeterminacySource» on them (A2.2.2), specify the nature and description of each

to represent an indeterminacy source and apply

indeterminacy source (A2.2.3), specify measurements for each indeterminacy source (C1),
and associate the created classifiers to the “referredindeterminacySource” attribute of

Uncertainty.

S2: Optionally model Indetennina.cySourcesJ

A2.2.1: Create a package to organize

Option 1
‘ 9'| A2.1: Specify IndeterminacySource as a String
indeterminacy sources }

Option 2

A2.2.2: Create IndeterminacySource A2.3.4: Link either the Classifier with the
as a UML Classifier and optionally "referredindeterminacySource” attribute of

apply «IndeterminacySources» Uncertainty

Fig. C-33. Model IndeterminacySource

J
1

A2.2.3: Specify nature and the «Call Behavior»
description of C1: Specify indeterminacyDegree as
IndeterminacySource Measurement

C. Model Risk
A modeler can optionally associate an uncertainty to Risk (D12, D13). As shown in Fig.

C-34, one can simply specify Risk as a String value of the “riskLevel” attribute of
Uncertainty (Option 1) or one of the predefined risk levels in enumeration RiskLevel (Option
2). Alternatively, one can create a package for Risk if such a package does not exist, followed
by creating classes and/or data types to represent Risks and optionally applying «Risk»
(A4.3.2). Afterward, a modeler can also optionally specify measurement for Risk (C1), and
link the created classes and datatypes to Uncertainty via the “riskiInDTViaClass” and/or
“riskInDT” attributes (A4.3.3).

S3: Optionally model Risk associated to Unoer‘tain‘tyJ

Option 1
Ad4.1: Specify Risk as a String

A4.2: Specify Risk as one of the
predefined RiskLevel

A4.3.3: Link the Class/DataType

Ad4.3.1: Create a package for Hiskj with the
"riskInDTViaClass"/"riskinDT"

attribute of Uncertainty

A4.3.2: Create Risk as UML T
Class/DataType and C1: If «Risk» is applied, optionally
optionally apply «Risk» specify Measurement

Fig. C-34. Model Risk

QOption 2

Option 3

8 UncerTum Validation Process

In this section, we explain our validation process, which ensures that test ready models
are syntactically correct and communication across state machines of various physical units
constituting a CPS takes place correctly. Such validation is aimed at finding modeling errors
that may have been introduced by a test modeler accidently. Once test ready models have
been validated without any problems, test cases can be then generated from them. Since the
execution of test ready models requires data to execute triggers, we generate data manually
as follows: 1) if a trigger (Call Event/Signal Event) is guarded with a guard condition, we
generate random values for all the variables involved in the guard condition that satisfy the
guard condition and use these values to fire the trigger, and generate random values for all

the other parameters of the call event/signal event, 2) if a trigger (Call Event/Signal Event)

is not guarded, we generate random values for all the parameters of the Call Event/Signal
Event to fire the trigger, 3) if a trigger corresponds to a Change Event, we randomly generate
values that satisfy the change condition, 4) if a trigger corresponds to a Time Event, we
ensure that the specified period of time in the event is elapsed.

To validate test ready models, we apply UAL [24] to execute them with IBM RSA
Simulation Toolkit [53] (DD9 in Table C-4). We decided to use UAL and IBM RSA
Simulation Toolkit since our test generators are built in Certifylt [13], which is a plugin for
IBM RSA as we discussed in Section 1. Further, we provide a set of guidelines as an activity
diagram to add UAL code on the test ready models in Section 8.1 and propose a set of
recommended actions in Section 8.2, based on various types of problems identified while

executing test ready models to help test modelers fix them.

8.1 UAL Executable Modeling Guidelines

In this section, we describe the guidelines (in Fig. C-35) to convert test ready models that
were created based on the guidelines in the last section into executable models to facilitate

validation.
UAL Executable Modeling Guideli J
astructured=
CSD2: Create Composite Structure Diagram to model the internal structure and
interactions
1 astructured=]
CD1: Specify UAL code on the Class Diagrams .
p v g C52.1: Create Composite C52.2: Create Ports to represent
Structure Diagram under the Interaction with the other
. . Class/Component arts or outside world
CD1.1: Optionally Specify / P P
Default Values of the Attributes \1,
—
\l, C52.3: Check "Behavior"
attribute of the Ports
CD1.2: Optionally Implement
the Operation as UAL Code CS2.5: Create Connectors between
the Ports to represent the CS2.4: Select Provided
. S connectivtiy among the Classifiers interface for the Ports
-, e
A

«structured=
SM3: Specify UAL code on the State Machines

I
i
: |
i SM3.1: Optionally Implement Entry/Do/ SM3.2: Optionally Implement the
i Exit of the State by UAL code Effect activity of the Transition
|

AS

Fig. C-35. Guidelines to Create Executable Test Ready Models

As shown in Fig. C-35, 1) In the CD1 activity, a test modeler can optionally specify UAL

code on the model elements of classes (e.g., specifying default values for attributes and

implementing bodies of operations). For example, the UAL code of the timeout attribute of
SecuritySystem (Fig. C-3) is false, i.e., its default value. 2) As shown in the CSD2 activity
in Fig. C-35, a test modeler should create a composite structure diagram (DD10, DD11 in
Table C-4) to model the internal structure of the Classifier (e.g., a physical unit) and
interactions with other associated Classifiers (other physical units) or the operating
environment of the CPS. For example, the portSecurity port of SecuritySystem (Fig. C-4)
specifies an interaction point, through which SecuritySystem can communicate with its
surrounding environment or with Alarm or Sensor. The provided interface of the
portSecurity is 1SecuritySystem, which enables the reception of the IntrusionOccured signal
and other Signal Receptions in Fig. C-3. Two connectors between portSecurity and
portSensor (Fig. C-4) are created to enable two-way communications between
SecuritySystem and Sensor. 3) As shown in SM3 in Fig. C-17, a test modeler can specify
UAL code on the effect and entry/do/exit activity of a state in a state machine to implement
a specific activity, especially the ones that involve sending signals across state machines.
For example, the effect of the A transition in Fig. C-6 is implemented with UAL as
portSensor. send(new IntrusionOccurred(this.ID)). Since portSensor and
portSecurity are connected (Fig. C-4) and provided interface ISecuritySystem of portSecurity
has the capability to receive the IntrusionOccurred signal (in Fig. C-3), the B.1/B.2 transition
(in Fig. C-7) can be triggered when SecuritySystem receives the IntrusionOccurred signal

through portSecurity.

8.2 Recommendations to Fix Problems in Test Ready Models

This section represents our recommendations (Table C-5) to fix test ready models, once
these are executed and problems are observed. For example, one observed problem is that
the IntrusionOccurred signal event cannot be triggered (Fig. C-7) even when it was sent out
(O4, Table C-5). One possible reason is that the IntrusionOccurred Signal Reception in the
ISecuritySystem interface of SecuritySystem is missing (SA7).

Table C-5. Recommended Actions to Fix Test Ready Models based on Observed Problems

No. |Observed Problem Related Problems and Recommended Action

01 [State change does not happen State Machines
SAL: Check the Exit activity of this State;

SA2: Check Guards of all the outgoing Transitions of this
State;

SA3: Check if one or more outgoing Transitions are missing;
Related Problems

04, 05, 06

02 |State invariant cannot be satisfied State Machines
SA4: Check the State Invariant of this State
SAS: Check the incoming Transition(s) of this State;
SA6: Check if one or more States are missing;
Related Problems
o7
03 [State cannot be reached Related Problems
07, 09
04 [Signal Event cannot be triggered Class Diagrams
SAT: Check the Reception of the Interface/Class/Component
Composite Structure Diagrams
SAB8: Check if the Port related to this signal event is linked
with the correct Provided Interface;
SA9: Check the Connectors between Ports;
State Machines
SA10: Check if the Signal corresponding to this SignalEvent is
modeled;
O5 |Call Event cannot be triggered State Machines
SA11: Check the invocation of the Operation corresponding
to the CallEvent;
06 |Change Event cannot be triggered State Machines
SA12: Check the specified condition of this ChangeEvent;
SA13: Check activities in parallel regions that manipulate the
same attributes;
O7 [Transition happens without any trigger|State Machines
SA14: Check the Trigger of this Transition, especially for
ChangeEvent and TimeEvent;
SA15: Check the Guard of this Transition;
08 [State invariant of this state is State Machines
overlapping with another state SA16: Check if the Guard conditions of all or subset of the
invariant(s) leading to firing an outgoing Transitions of this state have overlapping.
unexpected transition. SAL7: Check if Uncertainty(ies) of this Transition are
missing;
09 |Unexpected loop in the State Machine |Related Problems
o7

Evaluation

In this section, we present the process of the development and validation of UncerTum

presented in Section 9.3.

with two industrial case studies (i.e., GS and AW), which were available to us as part of the
project, one real world case study (VCS), and one case study from the literature in Section

9.1, the results are described in Section 9.2, and overall discussion and limitations are

9.1 Development and Validation of UncerTum and Test Ready Models

As previously discussed, the project has two official CPS case study providers. First, the
first one is from the healthcare domain, which is about GeoSports (GS) provided by Future
Position X (FPX) [9] Sweden. This case study includes attaching devices to Bandy*® players
that record various measurements (e.g., heartbeat, speed, location) periodically. These
measurements are communicated during a Bandy game via a receiver station to the sprint
system, where coaches can monitor them at runtime. In addition, these measurements can
also be used offline for analyses, for example, aimed at improving the performance of an
individual player or a team. To test this CPS in a lab setting without real players, Nordic
Med Test (NMT) [15] provides a test infrastructure to execute test cases. The second case
study is about Automated Warehouse (AW) provided by ULMA Handling Systems [10],
Spain. ULMA develops automated handling systems for worldwide warehouses of different
natures such as Food and Beverages, Industrial, Textile, and Storage. Each handling facility
(e.g., cranes, conveyors, sorting systems, picking systems, rolling tables, lifts, and
intermediate storage) forms a physical unit and together they are deployed to one handling
system application (e.g., Storage). A handling system cloud supervision system (HSCS)
generally interacts with diverse types of physical units, network equipment, and cloud
services. Application-specific processes in HSCS are executed spanning clouds and CPS
requiring different configurations. This case study implements several key industrial
scenarios, i.e. introducing a large number of pallets to the warehouse, transferring the items
by Stacker Crane. To test these scenarios, ULMA [10], and IK4-1kerlan [16] developed and
provided relevant simulators and emulators. Further details on the case studies can be
consulted in [54].

In addition, we used a real-world case study of embedded Videoconferencing System
(VCS) developed by Cisco Systems, Norway. Simula has been collaborating with Cisco
since 2008. As part of our long-term collaboration under the umbrella of Certus Center [55],
we have access to real VCS systems. We created test ready models for one of the real CPSs
ourselves without involving Cisco, based on the previous work [18] of the second author of

this paper. The fourth case study is a modified version of the SafeHome case study provided

18 Bandy is a variation of ice hockey commonly played in Northern Europe.

in [19]. This case study implements various security and safety features in smart homes
including intrusion detection, fire detection, and flooding.

The development and validation procedure of UncerTum and test ready models is
summarized in Fig. C-36, which involves four stakeholders: 1) Simula Researchers
(including the first three authors of this paper) play the key role of developing UncerTum
and creating test ready models; 2) Use Case Providers (i.e., FPX and ULMA) provided
uncertainty test requirements and real operational data from previous Bandy games in the
case of GS, and manually checked the conformance of the developed test ready models to
their corresponding uncertainty test requirements; 3) Test Bed Providers (NMT and
ULMAV/IK4-Ikerlan) provide physical and software infrastructures (including test APIs) to
automate the execution of test cases and manually checked that the test ready models
conform to the provided implementation of the test APIs; 4) Tool Vendor is responsible to
integrate UncerTum and the proposed test case strategies to facilitate test case generation
and execution. Please note that the UncerTum methodology reported in this paper is fully
developed by Simula Research Laboratory, which is generic and therefore can be applied to
test CPS at the three levels. Notice that it is also possible to develop different modeling
methodologies than the one proposed in this paper, e.g., one such instance is reported in [56]
for the application level by one of the our project partners. Such modeling methodologies
can be potentially compared when needed in the future.

The development of UncerTum took place incrementally (Activities Al and A2 in Fig.
C-36). First, UncerTum (A1) was developed by researchers based on U-Model and MARTE,
in parallel to creating the initial test ready models (B1) for VCS, SafeHome, GS, and AW
with this initial version of UncerTum. For GS and AW, uncertainty test requirements were
provided by FPX and ULMA,; for VCS, we had some requirements available to us from our
previous work [18]; SafeHome is from the literature. Based on our experience of creating
these test ready models, we further refined UncerTum (A2) and as a result UncerTum V.1
was developed. This was in turn used to further refine the initial test ready models (B2). At
this point, both versions of the test ready models and UncerTum were refined once again by
researchers. As a result, Test Ready Model V.1 and UncerTum V.2 were produced (Fig. C-
36).

UncerTum V2 and Test Ready Models V1 were then used in the modeling technique
workshop (two days) conducted with the industrial use case providers (FPX and ULMA),
test bed providers (ULMA/IK4-Ikerlan and NMT), tool vendor (Easy Global Market
(EGM)) [14], and two other research partners who focused on their own modeling
methodologies and models. During the workshop, UncerTum and test ready models were
presented to the participants of the workshop and their feedback was collected. In addition,
the test API documentation was also presented. Based on the feedback and test APIs, a plan
was devised to further refine the test ready models after the workshop. The key output of the
workshop from our side was UncerTum (V.3), which is presented in this paper. Based on the
feedback and test APl documentation, we refined the test ready models (i.e., Test Ready
Models V2 in Fig. C-36) after the workshop. In parallel, the test bed providers started to
develop the test infrastructures to enable the execution of test cases, which is not in the scope

of this paper.

: 1 (Lege
Use Case Providers, nd
d — Action Flew () Action

— DaaFW S D

H Simula Researchers

: Test Ready Models

1 afeHome and
G | e

1

Al Develop Initial w B1: Develop Initial Test Ready
UncerTum
Initial Test
Ready Model

Models using Initial UncerTurm
AZ: Refine UncerTum

UncerTum

B2: Develop Test Ready
Models using UncerTum V1

@ A3/B3: Refine Test Ready Models and Verify Test Ready
Correctness and Completeness of UncerTum V1 Models V] F-——————————--1;
T | Test Bed Providers
H H
]
Modeling Technique
Workshob

Berlin (2 dayil:
I

Tool Vendor

I
]
1
I
I
I

; I
‘Case Study Workshops
:Spain (3 days) for AW
‘Sweden (2 um') for GS
I

El:Present Tools

Integrate
UncerTum

Test R Models V4

Fig. C-36. Development and Validation of UncerTum and Test Ready Models

To further refine the test ready models, another two workshops were conducted: one for
AW and one for GS arranged by the respective industrial partners. The first workshop took
place at IK4-lkerlan [16], where Simula researchers and ULMA participated and the
workshop lasted for three days. During the workshop, detailed uncertainty test requirements,
test ready models, and detailed implementation of test execution were discussed. The second
workshop lasted for two days and took place at the NMT’s site in Sweden. FPX, EGM, and
other research partners participated. Similar discussion as with ULMA took place with
FPX/NMT. In addition, EGM presented their tool (Certifylt) and their plans to integrate
UncerTum and further implementation of test execution APIs. The outputs of these
workshops were Test Ready Models V3 as shown in Fig. C-36. Finally, we validated Test
Ready Models V3 using IBM RSA Simulation Toolkit (see Section 9.2.3 for results).

9.2 Evaluation Results

Descriptive statistics of the test ready models developed for the four case studies are
provided in Table C-6. For each case study, 1) the number of modeled UML diagrams is
presented in the first row, 2) the second, third, and fourth rows represent the number of
application, infrastructure, and integration level elements respectively, 3) the last row shows
the number of uncertainties and indeterminacy sources modeled for each case study. Notice
that these statistics provide an indication of the complexity and scale of the developed test

ready models.

Table C-6. Descriptive Statistics of the Case Studies

Case Study CPS Profile Class Diagram/Composite |State Machine| Total
Structure Diagram
SafeHome # of diagrams 2 3 5
Application Elements 15 10 66
Infrastructure Elements 16 19
Integration Elements 3 3
Uncertainties/IndeterminacySource 7 10 17
VCS # of diagrams 6 12 18
Application Elements 92 59 442
Infrastructure Elements 103 67
Integration Elements 51 70
Uncertainties/IndeterminacySource 24 83 107
GS # of diagrams 3 4 7
Application Elements 31 99 226
Infrastructure Elements 36 34
Integration Elements 6 20

Uncertainties/IndeterminacySource 10 29 39
AW # of diagrams 4 11 15
Application Elements 39 52 91
Infrastructure Elements 52 75 127
Integration Elements 11 33 44
Uncertainties/IndeterminacySource 20 52 72

9.2.1 Mapping UUP/Model Libraries to U-Model and MARTE

This section provides the descriptive statistics for the mapping of the UUP model
elements and the model libraries to concepts defined in U-Model and elements in MARTE.

Table C-6 is divided into four main sections. First, we provide the statistics of elements
in UUP/Model Libraries that can be directly mapped to U-Model. For example,
«BeliefStatement» in UUP can be directly mapped to the BeliefStatement concept defined
in U-Model. Second, we provide the statistics of elements in UUP/Model Libraries (e.g.,
BeliefInterval) that can be indirectly mapped to U-Model concepts (e.g., Ambiguity). Third,
we provide statistics of elements that are introduced to UUP/Model Libraries (e.g.,
«BeliefElement») by extending U-Model concepts (e.g., BeliefStatement). Fourth, since the
model libraries are developed via extending MARTE, we also provide statistics for mapping
elements in UUP/Model Libraries to elements in MARTE. For example, 10 data types in the
Measure library can be mapped to MARTE.

As we can see from the last row of Table C-6, 33% of the elements in UUP/Model
Libraries can be directly mapped to U-Model, whereas 13% of elements can be indirectly
mapped to U-Model, 54% of elements were newly introduced by extending U-Model
concepts, most of which are for measures. In addition, 10% of UUP/Model Libraries
elements were either directly adopted from MARTE or are extensions of MARTE elements.
The last column of Table C-6 shows the coverage of the U-Model concepts, from which, one
can observe that 83% of the U-Model concepts were implemented in UUP, whereas 9% of
the U-Model concepts were implemented in the model libraries. The remaining 8% of the
concepts that were not mapped to any element of UUP and the model libraries are the ones
related to Knowledge. Such concepts are important at the conceptual level and are defined
based on well-defined taxonomies of Knowledge [57], but are not required to be
implemented in UUP and the model libraries. From these results, we can see that U-Model
is comprehensive enough to develop UncerTum and it has potential to be used as the basis

for other researchers and practitioners to develop similar kinds of uncertainty related

modeling solutions in the future. We, therefore, consider data reported here as a useful
experience that can be shared with the community. On the other side, from the reported data,
one can get confidence about UncerTum, as it was indeed developed by following a rigor

process and a comprehensive conceptual model.

"SJ9UI0 AQ PaJan0d si Jey Jaquinu sy sueswl 0
(68 S 1I9pOIN--N 40 S1dadu09 Jo Jaquinu |10} 8y1) % = d ‘abe1an09 Jo abejusaiad ayi si d#
dnn 01 paddew
aJe 1ey1 |apojN--N Ul (UoNeID0SSY /uoielawnu3/sse|d) s1daouod Jo Jaquinu ayl Si U

Z# pue A# ‘X# JO WNS ay) SI 1#

sa1IeIqIT [BPOIN/ANN Ul (S)IUTelIsuod 4o Jsquinu 8yl si z4#
saLIe1qI [3POIA/dNN Ul SUOIBID0SSY/SAINGLINY JO Jaquinu 8y} st A#

saLeIqI]

[8POIN/dNN Ul 8dA] ereq/uonesswnus /2dA108181S/SSe|D 1O Jaguinu 8yl SI X#

168

%0T %S %T %6T %SE %€ET %S %9 %<C %EE %9 %7 %ET abejusnlad
%<6 Z8 |4 9ET € Ly 98 [4 [4) 9T 14 18 ST 143 [4> [ejol
%6 8 |4 60T € 143 [4A € 0 0 € 14 0 14 0T |e1o L
%<C 4 9 14 0 0 14 0 0 0 0 4 0 0 4 Wil
%0 x0 0T ¢6 € 143 SS € 0 0 € 0 0 0 0 ainses|N
%L 9 8 1% 0 0 1% 0 0 0 0 1T 0 1% L ulsyed Areigqin
%0 x0 0 6 0 0 6 0 0 0 0 T 0 0 T ASIY ISPOIN
%€E8 |22 0 LC 0 €T 14 6¢ [4) 9T T 19 ST 0€ [44 |e1o L
%.LT qT 0 [44 0 0T [4) €T [4) T 0 LT S S L 2INses|\
%9¢ [43 0 14 0 € T 07 0 6 T 9¢ L 4} A Aurensoun
%0¢ L2 0 T 0 0 T 9 0 9 0 144 € €T 8 J91l3d dnn
(d'v) (1'z'A'x) ('z'A'x) (a'z'A'x)
abeaano) JIUVIN pappv AIMaN paddepy Apoadipul padde Apoaaia S1UBWa|T [9POIN
19POIN-N wn_ asun

JLYVIN pue [3pOIN-N 01 S8LieIgIT [8poIA/dNN Burddel “2-0 8jqeL

9.2.2 Application of UUP/Model Libraries

In this section, we present the results of our evaluation with the aim of assessing the
applicability of UncerTum in terms of effort required to create test ready models. We
conducted the evaluation from two aspects: 1) the percentage of the applied UUP/Model
Libraries elements in all the test ready models (UML class diagrams and state machines)
developed for all the four case studies, and 2) the effort in terms of time required to apply
UUP/Model Libraries. The first aspect focuses on assessing the effort in terms of the number
of model elements and gives us a surrogate measure of measuring effort, whereas the second
aspect focuses on measuring the effort in terms of time taken by the test modelers to create
the test ready models. In our case studies, the first author (second year Ph.D. candidate)
created the first version of the test ready models, which were iteratively discussed with the
second (a senior scientist) and third (a chief scientist) authors of this paper. In addition, as
we discussed in Section 9.1, the test ready models were discussed with other partners
involved in the project. As it does not exist an approach comparable with UncerTum in the
literature (see more discussions in Section 10), we, therefore, do not have a comparison
baseline. Conducting controlled experiments with test modelers could be a better option,
which is fortunately under the plan and is a future work item, though it is notably that
conducting such controlled experiments are often time and monetary wise expensive.

As shown in Table C-8, for the SafeHome case study, in total we modeled 21 classes in
the class diagrams, 7 out of which have UUP stereotypes applied (e.g., the
«IndeterminancySource» sensor is applied to Sensor, see Fig. C-3). For the modeled state
machines, three out of 17 states and seven out of 29 transitions require the application of
UUP/Model Libraries. In total, as shown in the last column of the table, around 20% of the
modeling elements of the SafeHome case study required the application of UUP/Model
Libraries. Similarly, 12% (16%, 17%) of the modeling elements for the VCS (GS, AW) case
study required the application of UUP/Model Libraries. For all the four case studies, on
average 16.25% of the model elements require applying UUP/Model Libraries.

Table C-8. Percentage of UUP/Model Libraries Concepts to UML Concepts

Case Study Class Diagram State Machine % UUP/Model
Class (u/t) Relationship (t) State (u/t) Transition (u/t) |Libraries Elements

SafeHome 7121 18 3/17 7/29 20

VCS 24/197 303 39/216 61/278 12

GeoSports 10/62 56 13/82 26/106 16

20/92 | 166 | 17/88 | 42/122 | 17
Average Percentage of Effort in Terms of Additional Model Elements: 16.25%
#u: the number of elements with applied UUP/Model Libraries; #t: the total number of elements modeled using UML

Table C-9 summarizes effort (measured in time (hours)) spent by the first author (the

AW |

modeler) on constructing the test ready models for the four case studies. The effort is divided
into two parts: time for applying standard UML notations and additional effort required for
applying UUP/Model Libraries. For example, as shown in Table C-9, for SafeHome, it took
the modeler 4.5 hours for modeling the UML class diagrams, whereas additional 0.5 hour
was spent on applying UUP/Model Libraries. For the UML state machines, it took 22.5
hours, whereas additional 7.5 hours were spent on applying UUP/Model Libraries. For
SafeHome, as shown in the last column (%Time) of Table C-9, it took additional 22% of
time to apply UUP/Model Libraries. Similarly, for VCS it took additional 23% of time, 15%
of additional time for GS and 14% of additional time for AW. On average, for all the four
case studies, modeling with UUP/Model Libraries required additional 18.5% of the total
modeling effort.

Table C-9. Effort (Time in Hours) of Applying UUP/Model Libraries

Case Study Class Diagram State Machine % Time
UML Modeling |UUP/Model libraries UML Modeling |UUP/Model libraries
Modeling Modeling
SafeHome 4.5 0.5 22.5 7.5 22%
VCS 22.5 6 45 15 23%
GeoSports 375 3.5 525 125 15%
AW 39.5 5.5 75 125 14%
Average Percentage of Effort in Time: 18.5%
9.2.3 Validation of Test Ready Models via Model Execution

In this section, we present the results of the validation of the test ready models developed
with UncerTum for the four case studies. The overall aim is to check the correctness of the
test ready models against collected (uncertainty) requirements. The test ready models were
enriched with UAL (a implementation of the Action Language For Foundational UML [24],
Alf [58]))—a formal language supported in IBM RSA [12] for executing UML models
implemented in Java. UML models with UAL can be executed with IBM RSA Simulation
Toolkit [53] as we discussed in Section 8.

Table C-10 shows the results of the validation. We classified identified problems during
the validation process into two main categories: Incorrect and incomplete model elements

(states and transitions) for each case study. For State, we report problems identified in state

invariants and «BeliefElement». For Transition, we report problems identified in Guard,
Trigger, Effect, and «BeliefElement». For State, in total, 79 problems (17+62) were identified
across the four case studies, where 17 problems were related to Incorrectness and 62 were
related to Incompleteness. For «BeliefElement- related to State, we identified 32 missing
stereotypes. For Transition, we discovered 122 problems, 22 (100) of which were related to
Incorrectness (Incompleteness). For «BeliefElement- related to Transition, we identified 32
missing stereotypes.

Table C-10. Results of the Validation of the Test Ready Models

Case Study State Transition Total
Statelnvariant |[«BeliefElement» |Guard|Trigger |Effect |«BeliefElement»
Incorrect |SafeHome 1 0 0 0 1 0 38
\VCS 6 0 0 5 0 0
GeoSports 3 0 2 1 0 0
AW 7 0 1 8 3 0
Incomplete |SafeHome 5 2 0 7 2 3 226
\VCS 30 13 15 23 21 18
GeoSports 11 9 2 4 2 4
AW 16 8 12 6 6 7
Total 79 (17, 62) 32 122(22, 100) 32 264

#Incorrect: the number of elements corrected after simulation; #Incomplete: the number of concepts newly added
after simulation;
of triggers: #CallEvent + #SignalEvent + #TimeEvent

The typical problems identified include: 1) a transition between two states was fired
without any event (O7 in Table C-5); 2) after firing a transition the state change did not occur
or the state changed to an unexpected one (O1, O2 in Table C-5); 3) failed to send signals
across concurrent state machines (O4 in Table C-5); 4) there were no non-deterministic
transitions from a state (O8 in Table C-5); 5) unexpected exit, block, or deadlock were
observed in a state machine (O1, O9 in Table C-5); 6) unreachable states were discovered
(O3 in Table C-5); and 7) a guard condition was always true (02, O7 in Table C-5). Notice
that these problems are not a comprehensive set of problems, but demonstrate the most
commonly observed ones. After simulating the test ready models, we ensure that our models

are correct and complete and hence can be used for facilitating MBT.

9.24 Application of UTP V.2
Applying UTP V.2 is the last step of UncerTum modeling as shown in Fig. C-24. In the

running example, «Testltem» from the Test Context package of UTP V.2 was applied on

SecuritySystem (Fig. C-3) and «CheckPropertyAction» from the Arbitration Specification
package of UTP V.2 was applied to the state invariant of IntrusionDetected (Fig. C-7).

Table C-11 reports the results of the application of UTP V.2 to the models of the case
studies. Notice that we only report the descriptive statistics of the high-level packages (e.g.,
Arbitration Specification) of UTP V.2 instead of the number of applications of each
stereotype. Notice that each high-level package contains a set of related stereotypes. For
SafeHome, in total UTP V.2 stereotypes were applied 54 times, whereas 551 for VCS, 209
for GS and 247 for AW.

Table C-11. Applications of UTP V.2 Stereotypes

Category SafeHome VCS GeoSports AW
Arbitration Specification 20 246 92 101
Test Data 29 278 106 122
Test Configuration 2 15 7 12
Test Context 3 12 4 12
Total 54 551 209 247

Based on our experience of applying UTP V.2, we discovered that it is a generic UML
profile for MBT and does meet all our needs. However, we discovered that combining
UUP/Model Libraries and UTP V.2 together is sufficient to model test ready models with

uncertainty in our case.

9.3 Overall Discussion and Limitations

Based on the results presented in Section 9.2, we conclude our findings as follows: 1)
With UncerTum, we were able to model all the identified uncertainties in the four case
studies. Such modeling suggests that UncerTum is sufficiently complete to create test ready
models of CPS with explicit consideration of various types of uncertainties to support testing
of CPS in the presence of such uncertainties; 2) In terms of estimating the effort required to
apply the UUP stereotypes and model libraries, we conclude that we need to apply them to
on average 16.25% of model elements (Table C-8). When estimating effort in terms of time,
we observed that we needed on average additional 18.5% of time to apply UUP (Table C-
9); 3) With our model execution based model validation, we managed to identify and fix in
total 264 problems across the four case studies (Table C-10) which are necessary before test

case generation as otherwise generated test cases would have been incorrect.

In terms of evaluation, we would like to highlight the fact this section reported a
preliminary evaluation of UncerTum from various perspectives. A more thorough evaluation
would require conducting surveys and questionnaires from the participants from our
industrial partners to solicit their views about the modeling methodology in terms of, for
example, understandability and usability. We plan to conduct such evaluation at the end of
our project when the complete results have been transferred to the industry partners with the
participants who are not the co-authors of this paper in order to obtain unbiased feedback
about UncerTum.

We would also like to mention that UncerTum cannot be used to model detailed
continuous behaviors of a CPS, to support, for example, analyses during the system design
and analysis phase or to generate code. UncerTum only supports test modeling for enabling
the generation of executable test cases. Such types of models are less detailed as compared
to models used for code generation or models for design time analyses. This is due to the
fact that testing is always concerned with sending a stimulus to the system and observing
whether the system transits to a correct state because of the stimulus according to the

expected behavior specified in a test ready model, developed for the system.

10 Related Work

There are some works in the literature that attempt to deal with modeling uncertainty with
UML. For example, the authors of [59] proposed to perform fuzzy modeling with UML 1.5
without violating its semantics, based on theoretical analyses of UML 1.5. However, the
proposed extensions to UML 1.5 were not implemented and validated. Moreover, there is no
evidence to show the proposed extensions can be applicable for UML 2.x.

To model uncertainty (inherent in real world applications) with UML class diagrams, an
extension was proposed in [60-62], which is referred to as fuzzy UML data modeling. The
extension relies on two theories: fuzzy set and possibility distribution, and was later on
further extended in [63] to transform fuzzy UML data models into representations in the
fuzzy description logic (FDLR) to check the correctness of fuzzy properties. Furthermore,
another automated transformation was proposed in [64] to transform fuzzy UML data
models into web ontologies to support automated reasoning on fuzzy properties in the

context of web services.

In [65], the UML profile (named as fuzzy UML) was proposed to model uncertainty on
use case diagrams, sequence diagrams, and state machines. Another work in [66] formalizes
UML state diagrams with fuzzy information and transforms them into fuzzy petri nets for
supporting automated verification and performance analysis. In [67], the authors developed
two stereotypes: moveTo and moveTo? for UML collaboration diagrams. The first stereotype
is applied when a modeler has full confidence, whereas the second stereotype is used when
the modeler lacks confidence.

In comparison to these works, UncerTum focuses on modeling uncertainty in a
comprehensive and precise manner by considering various types of measures such as
probability, vagueness, and fuzziness. The methodologies proposed in [60-62] for specifying
fuzzy UML data can easily be integrated with our model libraries when needed. Notice that
UncerTum is proposed to explicitly capture the uncertainty of CPSs for the purpose of
supporting MBT of CPSs under uncertainty and there is no evidence showing that these
works can be used for this purpose.

The work reported in [68] is the closest to our work, where uncertainty in time is modeled
in UML sequence diagrams applied with the UML-SPT profile [69]. These sequence
diagrams are then used for test case generation by taking into consideration the uncertainties
in time. This work, however, only supports modeling uncertainty in time on messages of
sequence diagrams. In contrast, UncerTum covers other types of uncertainties, in addition to
time, such as content and environment. Moreover, the work does not account for sources of
time uncertainties that are essential to be explicitly captured in order to introduce
uncertainties for test execution.

In [70], the authors presented a solution to transform UML use case diagrams and state
diagrams into usage graphs appended with probability information about expected use of the
software. Such probability information can be obtained in several ways by relying on domain
expertise or usage profiles of software, for example. Usage graphs with probability can be
eventually used for testing. This work only deals with modeling uncertainty using
probabilities and does not support other types of uncertainty measures such as ambiguity as
supported in UncerTum. In addition, the work only supports modeling application level
uncertainties and cannot be used to model uncertainties in the other two CPS levels as

UncerTum.

In [71], a language-independent solution was proposed for Partial Modeling with four
types of partialities: May partiality, Abs partiality, Var partiality and OW partiality, to
denote the degree of incompleteness specified by model designers. The work also provides
a solution for merging and reasoning possible partial models with tool support [72, 73]. The
approach was demonstrated on UML class and sequence diagrams [71]. This work is related
to our work in terms of expressing the uncertainty of modelers. In UUP, the Belief related
stereotypes and classes capture subjective views of modelers and provide modeling notations
for specifying the degree of their confidence (uncertainty) on the models they built. A set of
possible models may have different belief degrees provided by different belief agents at the
same time. In the context their work, the focus is on uncertainty in partial models for
supporting model refinement and evolution. In contrast, UUP focuses on modeling
uncertainty (lack of confidence) in test ready models to support MBT of CPSs under

uncertainty.

11 Conclusion and Future Work

To facilitate Model-Based Testing (MBT) of Cyber-Physical Systems (CPSs) under
uncertainty, we proposed in this paper Uncertainty Modeling Framework (UncerTum).
UncerTum allows creating test ready models with uncertainty at three logical testing levels
of CPSs: Application, Infrastructure, and Integration. The core of UncerTum is the UML
Uncertainty Profile (UUP), which implements an existing uncertainty conceptual model,
called U-Model. In addition, UncerTum defines a comprehensive set of UML model libraries
extending the UML profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE), which can be used together with UUP. UncerTum also relies on UML Testing
Profile (UTP) V.2 to construct test ready models. Finally, UncerTum defines concrete
guidelines for supporting the use of UncerTum for creating and validating test ready models
with uncertainty. We evaluated UncerTum with two industrial, one real world case study,
and one open source case studies. As a future work, we are implementing test generators that
can take test ready models created with UncerTum as input and generate executable test

cases.

Acknowledgment

This research was supported by the EU Horizon 2020 funded project (Testing Cyber-
Physical Systems under Uncertainty, Project Number: 645463). Tao Yue and Shaukat Ali
are also supported by RCN funded Zen-Configurator project, RFF Hovedstaden funded
MBE-CR project, RCN funded MBT4CPS project, and RCN funded Certus SFI.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

[12]

[13]
[14]

E. A. Lee, "Cyber physical systems: Design challenges,” in Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Symposium
on. pp. 363-369.

D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from
theory to practice: CRC Press, 2015.

S. Sunder, "Foundations for Innovation in Cyber-Physical Systems," in Proceedings
of the NIST CPS Workshop, Chicago, IL, USA.

E. Geisberger, and M. Broy, Living in a networked world: Integrated research
agenda Cyber-Physical Systems (agendaCPS): Herbert Utz Verlag, 2015.

G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives:
Routledge, 2012.

D. V. Lindley, Understanding uncertainty (revised edition): John Wiley & Sons,
2014,

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding
Uncertainty in Cyber-Physical Systems: A Conceptual Model," in Proceedings of the
12th European Conference on Modelling Foundations and Applications (ECMFA).
pp. 247-264.

S. Ali, and T. Yue, "U-Test: Evolving, Modelling and Testing Realistic Uncertain
Behaviours of Cyber-Physical Systems," in Proceedings of the IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST).

pp. 1-2.
"Future Position X," accessed 2017; http://www.fpx.se/.

"ULMA Handling System," accessed 2017; http://www.ulmahandling.com/en/.
OMG, "UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded
Systems," 2011.

"IBM Rational Software Architect Modeling Tool,” accessed 2016;

https://www.ibm.com/developerworks/downloads/r/architect/.

"Certifylt," accessed 2017; http://www.smartesting.com/en/certifyit/.

"Easy Global Market," accessed 2017; http://www.eglobalmark.com/.

http://www.fpx.se/
http://www.ulmahandling.com/en/
https://www.ibm.com/developerworks/downloads/r/architect/
http://www.smartesting.com/en/certifyit/
http://www.eglobalmark.com/

[15]
[16]
[17]
[18]

[19]

[20]
[21]

[22]
[23]
[24]

[25]

[26]
[27]

[28]

[29]

[30]

"Nordic Med Test," accessed 2017; http://www.nordicmedtest.se/.
"|K4-IKERLAN," accessed 2017; http://www.ikerlan.es/eu/.

"Cisco," accessed 2017; http://www.cisco.com/.

S. Ali, L. C. Briand, and H. Hemmati, “Modeling robustness behavior using aspect-
oriented modeling to support robustness testing of industrial systems,” Software &
Systems Modeling, vol. 11, no. 4, pp. 633-670, 2012.

R. S. Pressman, Software engineering: a practitioner's approach 7th edition:
Palgrave Macmillan, 2010.

OMG, "UML Testing Profile,"” 2013.

S. Ali, T. Yue, A. Hoffmann, M. F. Wendland, A. Bagnato, E. Brosse, M. Schacher,
and Z. R. Dai, "How Does the UML Testing Profile Support Risk-Based Testing," in
2014 IEEE International Symposium on Software Reliability Engineering
Workshops. pp. 311-316.

"UML Testing Profile™(UTP) 2.0," accessed; http://utp.zen-tools.com/.

OMG, "UML Testing Profile,” 2016.

IBM, "UML Action Language (UAL)," accessed 2017;

https://www.ibm.com/support/knowledgecenter/SS8PJ7 9.6.0/com.ibm.xtools.mod

el.ual.doc/topics/c umlactionlanguage.html.

M. Zhang, S. Ali, T. Yue, and P. H. Nguyen, Uncertainty Modeling Framework for
the Integration Level V.1, Technical Report 2016-01 Simula Research Laboratory,

2016; https://www.simula.no/publications/uncertainty-modeling-framework-

integration-level-v1.
L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338-353, 1965.

A. P. Dempster, “Upper and lower probabilities induced by a multivalued mapping,”
The annals of mathematical statistics, pp. 325-339, 1967.

G. Shafer, A mathematical theory of evidence: Princeton university press Princeton,
1976.

R. V. L. Hartley, “Transmission of information,” Bell System Technical Journal, pp.
535-563, 1928.

M. T. Lamata, and S. Moral, “Measures of entropy in the theory of evidence,”
International Journal Of General System, vol. 14, no. 4, pp. 297-305, 1988.

http://www.nordicmedtest.se/
http://www.ikerlan.es/eu/
http://www.cisco.com/
http://utp.zen-tools.com/
https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html
https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.6.0/com.ibm.xtools.model.ual.doc/topics/c_umlactionlanguage.html
https://www.simula.no/publications/uncertainty-modeling-framework-integration-level-v1
https://www.simula.no/publications/uncertainty-modeling-framework-integration-level-v1

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

R. R. Yager, “Entropy and specificity in a mathematical theory of evidence,”
International Journal of General System, vol. 9, no. 4, pp. 249-260, 1983.

M. Higashi, and G. J. Klir, “Measures of uncertainty and information based on
possibility distributions,” International Journal of General Systems, vol. 9, no. 1, pp.
43-58, 1982.

L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy sets and
systems, vol. 1, no. 1, pp. 3-28, 1978.

P. Smets, and R. Kennes, “The transferable belief model,” Artificial intelligence, vol.
66, no. 2, pp. 191-234, 1994.

K. George J, and Y. Bo, “Fuzzy sets and fuzzy logic, theory and applications,” -,
2008.

B. Kosko, “Fuzzy entropy and conditioning,” Information sciences, vol. 40, no. 2,
pp. 165-174, 1986.

D. Didier, and P. Henri, “Fuzzy sets and systems: Theory and Applcation.,”
Mathematics in Scince and Engineering, vol. 144, 1980.

H.-J. Zimmermann, Fuzzy set theory—and its applications: Springer Science &
Business Media, 2011.

Z. Pawlak, “Rough sets,” International Journal of Computer & Information
Sciences, vol. 11, no. 5, pp. 341-356, 1982.

J. A. Goguen, “L-fuzzy sets,” Journal of mathematical analysis and applications,
vol. 18, no. 1, pp. 145-174, 1967.

K. Atanassov, and C. Georgiev, “Intuitionistic fuzzy prolog,” Fuzzy Sets and
Systems, vol. 53, no. 2, pp. 121-128, 1993.

L. A. Zadeh, “The concept of a linguistic variable and its application to approximate
reasoning—I,” Information sciences, vol. 8, no. 3, pp. 199-249, 1975.

I. Grattan-Guinness, “Fuzzy Membership Mapped onto Intervals and Many-Valued
Quantities,” Mathematical Logic Quarterly, vol. 22, no. 1, pp. 149-160, 1976.

K. U. Jahn, “Intervall-wertige Mengen,” Mathematische Nachrichten, vol. 68, no. 1,
pp. 115-132, 1975.

W. L. Gau, and D. J. Buehrer, “Vague sets,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 23, no. 2, pp. 610-614, 1993.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

A. De Luca, and S. Termini, “A definition of a nonprobabilistic entropy in the setting
of fuzzy sets theory,” Information and control, vol. 20, no. 4, pp. 301-312, 1972.
W. Feller, An introduction to probability theory and its applications: John Wiley &
Sons, 2008.

H. Song, D. B. Rawat, S. Jeschke, and C. Brecher, Cyber-Physical Systems:
Foundations, Principles and Applications: Morgan Kaufmann, 2016.

C. Talcott, "Cyber-Physical Systems and Events," Software-Intensive Systems and
New Computing Paradigms: Challenges and Visions, M. Wirsing, J.-P. Banatre, M.
HOlzl and A. Rauschmayer, eds., pp. 101-115, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008.

S. Ali, L. C. Briand, M. J.-u. Rehman, H. Asghar, M. Z. Z. Igbal, and A. Nadeem,
“A state-based approach to integration testing based on UML models,” Inf. Softw.
Technol., vol. 49, no. 11-12, pp. 1087-1106, 2007.

"Eclipse OCL," accessed 2016; http://www.eclipse.org/modeling/mdt/?project=ocl

- ocl.
"Dresden OCL," accessed April, 2016;

https://marketplace.eclipse.org/content/dresden-ocl.

"IBM RSA Simulation Toolkit,” accessed 2016; http://www-

03.ibm.com/software/products/en/ratisoftarchsimutool.

"Use Cases - Industrial Case Studies," accessed 2017; http://www.u-test.eu/use-

cases/.

"Certus," accessed 2017; http://certus-sfi.no/.

M. Schneider, and M.-F. Wendland, “Gaining Certainty about Uncertainty: Testing
for Uncertainties of Cyber-Physical Systems at the Application Level,” in 4th
International Workshop on Risk Assessment and Risk-driven Quality Assurance
(RISK), In conjunction with 28th International Conference on Testing Software and
Systems (ICTSS), 2016.

A. Kerwin, “None Too Solid Medical Ignorance,” Science Communication, vol. 15,
no. 2, pp. 166-185, 1993.

OMG, "Concrete Syntax For A UML Action Language: Action Language For
Foundational UML (ALF)," 2013.

http://www.eclipse.org/modeling/mdt/?project=ocl%23ocl
http://www.eclipse.org/modeling/mdt/?project=ocl%23ocl
https://marketplace.eclipse.org/content/dresden-ocl
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www.u-test.eu/use-cases/
http://www.u-test.eu/use-cases/
http://certus-sfi.no/

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

M.-A. Sicilia, and N. Mastorakis, “Extending UML 1. 5 for fuzzy conceptual
modeling: An strictlyadditive approach,” WSEAS Transactions on Systems, vol. 3,
no. 5, pp. 2234-2239, 2004.

Z. Ma, “Fuzzy information modeling with the UML,” Idea, 2005.

Z. M. Ma, F. Zhang, and L. Yan, “Fuzzy information modeling in UML class
diagram and relational database models,” Applied Soft Computing, vol. 11, no. 6, pp.
4236-4245, 2011.

L. Yan, and Z. M. Ma, "Extending nested relational model for fuzzy information
modeling,” in 2009 WASE International Conference on Information Engineering.
pp. 587-590.

Z. M. Ma, F. Zhang, L. Yan, and J. Cheng, “Representing and reasoning on fuzzy
UML models: A description logic approach,” Expert Systems with Applications, vol.
38, no. 3, pp. 2536-2549, 2011.

F. Zhang, and Z. M. Ma, “Construction of fuzzy ontologies from fuzzy UML
models,” International Journal of Computational Intelligence Systems, vol. 6, no. 3,
pp. 442-472, 2013.

A. Haroonabadi, M. Teshnehlab, and A. Movaghar, “A novel method for behavior
modeling in uncertain information systems,” World Academy of Science,
Engineering and Technology, vol. 41, pp. 959-966, 2008.

H. Motameni, I. Daneshfar, J. Bakhshi, and H. Nematzadeh, “Transforming fuzzy
state diagram to fuzzy Petri net,” Journal of Advances in Computer Research, vol. 1,
no. 1, pp. 29-44, 2010.

V. Grassi, and R. Mirandola, "UML modelling and performance analysis of mobile
software architectures,” UML 2001—The Unified Modeling Language. Modeling
Languages, Concepts, and Tools, pp. 209-224: Springer, 2001.

V. Garousi, "Traffic-aware stress testing of distributed real-time systems based on
UML models in the presence of time uncertainty," in Software Testing, Verification,
and Validation, 2008 1st International Conference on. pp. 92-101.

OMG, "UML Profile For Schedulability, Performance, And Time," 2005.

[70]

[71]

[72]

[73]

[74]

[75]

M. Riebisch, 1. Philippow, and M. Gotze, "UML-based statistical test case
generation,” Objects, Components, Architectures, Services, and Applications for a
Networked World, pp. 394-411: Springer, 2002.

R. Salay, M. Famelis, and M. Chechik, "Language independent refinement using
partial modeling,” Fundamental Approaches to Software Engineering, pp. 224-239:
Springer, 2012.

M. Famelis, R. Salay, and M. Chechik, "Partial models: Towards modeling and
reasoning with uncertainty,” in Software Engineering (ICSE), 2012 34th
International Conference on. pp. 573-583.

M. Famelis, and S. Santosa, "MAV-Vis: a notation for model uncertainty,” in
Modeling in Software Engineering (MiSE), 2013 5th International Workshop on. pp.
7-12.

P. R. Garvey, and Z. F. Lansdowne, “Risk matrix: an approach for identifying,
assessing, and ranking program risks,” Air Force Journal of Logistics, vol. 22, no. 1,
pp. 18-21, 1998.

G. Klir, Facets of systems science: Springer Science & Business Media, 2013.

Paper D

Uncertainty-Wise Evolution of Test
Ready Models

Man Zhang, Shaukat Ali, Tao Yue and Roland Norgre

Journal of Information and Software Technology (IST).

DOI: 10.1016/j.infsof.2017.03.003.

Abstract

Context: Cyber-Physical Systems (CPSs), when deployed for operation, are inherently
prone to uncertainty. Considering their applications in critical domains (e.g., healthcare), it
is important that such CPSs are tested sufficiently, with the explicit consideration of
uncertainty. Model-based testing (MBT) involves creating test ready models capturing the
expected behavior of a CPS and its operating environment. These test ready models are then
used for generating executable test cases. It is, therefore, necessary to develop methods that
can continuously evolve, based on real operational data collected during the operation of
CPSs, test ready models and uncertainty captured in them, all together termed as Belief Test
Ready Models (BMs)

Objective: Our objective is to propose a model evolution framework that can
interactively improve the quality of BMs, based on operational data. Such BMs are
developed by one or more test modelers (belief agents) with their assumptions about the
expected behavior of a CPS, its expected physical environment, and potential future
deployments. Thus, these models explicitly contain subjective uncertainty of the test
modelers.

Method: We propose a framework (named as UncerTolve) for interactively evolving
BMs (specified with extended UML notations) of CPSs with subjective uncertainty
developed by test modelers. The key inputs of UncerTolve include initial BMs of CPSs with
known subjective uncertainty and real data collected from the operation of CPSs.
UncerTolve has three key features: 1) Validating the syntactic correctness and conformance
of BMs against real operational data via model execution, 2) Evolving objective uncertainty
measurements of BMs via model execution, and 3) Evolving state invariants (modeling test
oracles) and guards of transitions (modeling constraints for test data generation) of BMs with
a machine learning technique.

Results: As a proof-of-concept, we evaluated UncerTolve with one industrial CPS case
study, i.e., GeoSports from the healthcare domain. Using UncerTolve, we managed to evolve
51% of belief elements, 18% of states, and 21% of transitions as compared to the initial BM

developed in an industrial setting.

Conclusion: UncerTolve can successfully evolve model elements of the initial BM, in
addition to objective uncertainty measurements using real operational data. The evolved
model can be used to generate additional test cases covering evolved model elements and
objective uncertainty. These additional test cases can be used to test the current and future
deployments of a CPS to ensure that it will handle uncertainty gracefully during its
operations.

Keywords. Uncertainty; Belief Model; Belief Test Ready Model; Model Evolution; Model-
Based Testing.

1 Introduction

Handling the inherent uncertainty in Cyber-Physical Systems (CPSs) is a well-known
challenge, which requires novel approaches for understanding, discovering and modeling
uncertainty, and verifying and validating CPSs under uncertainty [5-8]. Typically, a CPS is
developed by integrating various physical units (e.g., devices), which are usually black-
boxes (with or without the AP access) with known and uncertain assumptions on its physical
operating environments and deployments. Thus, when testing a CPS, not only assumptions
are made about the internal behavior of the CPS, but also its operating environments and
deployments. More specifically, when performing model-based testing (MBT), the expected
behavior of a CPS is modeled with the explicit consideration of uncertainty, including
uncertain behaviors of its physical environments and uncertain deployments (the focus of
our previous work [9]). Such models are typically created by one or more test modelers
(belief agent(s)) based on his/her/their assumptions about a CPS, its operating environments,
and deployments and thus the captured uncertainty is subjective to the test modeler(s).

Naturally, these test ready models, named as Belief Test Ready Models (BMs) in the rest
of the paper, can be continuously evolved based on real operational data (which introduce
objective uncertainty) of the current deployment of the CPS such that the evolved models
can be used to generate new test cases to test future deployments of the CPS with both

captured subjective uncertainty and evolved objective uncertainty.

1.1 Challenges and Objectives

Testing is mainly concerned with sending stimulus (via e.g., test APIs) with test data to a
CPS and checking the correctness of changes of corresponding states (e.g., test oracles). In
the uncertainty-wise MBT context, BMs are the key artifacts for generating executable test
cases. Therefore, the quality of BMs is critical for ensuring the quality of generated test cases
and consequently the quality of the CPS under various deployments. Hence, the overall

scientific challenge is how to ensure the quality of BMs such that they are ready for being

used to generate test cases. It is challenging because in the context of uncertainty-wise MBT
for CPSs such BMs are complex (e.g., specified in multiple UML state machines) and
subjective uncertainty (reflecting test modelers’ belief and specified as part of BMs) need to
be continuously validated with evidence (e.g., real operational data) continuously collected
from existing deployments of the CPS.

Correspondingly, our overall objective is to address this challenge by proposing a model

evolution framework, called UncerTolve, for evolving BMs, with real operational data
collected from real CPS applications. This is feasible, as in the context of continuously
deploying a CPS for various applications (details in Section 1.2), real operational data can
be collected from already deployed applications of the CPS. Collected real operational data
are valuable resources to enhance the initial BMs from the perspective of the correctness and
completeness, including uncertainty information, test oracles, and test data specifications.
Moreover, such a process can be continuous in the sense that as long as there is new
operational data available, the BMs can be evolved to accommodate information contained
in the data. Evolved BMs will be therefore more complete and correct. Subsequently, testing
the CPS for future deployments, based on the evolved BMs, will be much better supported.
We provide a clear correspondence between the sub-challenges and sub-objectives in Table
D-1.

Table D-1. Sub-challenges and Sub-objectives of UncerTolve

Sub-challenges Sub-objectives

How to ensure the syntactic and | Model Validation: Validate and update (with proposed
semantic correctness of BMs? heuristics) BMs with real operational data, via model execution.
How to ensure the quality of uncertainty | Derivation of Objective Uncertainty Measurements: Derive
information captured in BMs? objective uncertainty measurements from real operational data
and enhance BMs by integrating them with subjective uncertainty
measurements already specified in the BMs.

How to ensure the quality of test oracles | Inference of Test Oracles/Test Data Specifications: Abstract

(represented as state invariants) and test | invariants (both related to test oracles and test data specifications)
data specifications (represented as | from real operational data, by relying on existing dynamic

guard conditions) of BMs? invariant inference techniques.
How to achieve the above sub- | Methodologies/Heuristics/Process: Define methodologies and
challenges in an integrated manner? heuristics on how to update BMs. Suggest a practical process that

integrates model validation, objective uncertainty measurement
derivation, and test oracles and test data specification inferences,
based on real operational data and model execution.

1.2 Context, Scope and Overview

In the context of an EU project [10], we are developing a model-based and search-based
framework for testing CPSs under known and unknown uncertainties to assure that CPSs
deal with uncertainty during their operation and do not harm anyone or anything. Evolving
BMs in a systematic manner for preparing them for enabling the generation of executable
test cases is one of the key components of the model-based and search-based framework.

The overall context is presented in Fig. D-1, where UncerTum [9] is a UML-based,
uncertainty modeling framework for constructing BMs, and UncerTest [11] is a model-based
and search based test case generation and minimization framework. UncerTolve (with its
key features, inputs and outputs indicated as white boxes in Fig. D-1) is the framework we
propose in the paper for evolving BMs developed with UncerTum. Evolved BMs are input
for UncerTest to generate executable test cases.

A CPS may be deployed to more than one applications of the same or different application
domains. For example, as discussed in [12], in the avionics industry, multiple system
instances (i.e., multiple deployments) of the same CPS type can be deployed to achieve a
common goal. In the context of our project, the industrial CPS of GeoSports®® can be
deployed for a variety of sports including Bandy and Ice Hockey. Each application
corresponds to a unique deployment, denoted as D1, D2, ..Dn. UncerTolve evolves BMs
developed for a CPS with real operational data collected from available deployments of the
CPS. Test cases generated using UncerTest from the BM evolved with UncerTolve can be
used to test both existing deployments (D1, D2, ...Dn) and new ones (Fig. D-1). Note that the
process is naturally iterative as the process of introducing new deployments, collecting real

19 http://www.u-test.eu/use-cases/

operational data, based on which the BM is updated, testing new deployments based on the

evolved BMs, are all iterative.

3A]01 180U J0O 8d0aS pue IX8U0D |[LIBAQ 3yl ‘T-a ‘B4

swashAs
|easAyd-1aqhy

uo andaxa

Sased 1sal

$532014 an11RIBY

U IENEL S BLETR

uoneziWIuI
ase) 1sa) asim-Ajuiensaoun

1sal420un

apoly Apeay
53] §9II28:

|apoy Apeay
1591 jaeg:

104 pako|dap - - - 2
104 pakojdap “ wawhodag T _
e u_ _ _ | ad T
> ug “~‘zq 1q "f eleq | dojeay |— “ sinding [l _
—_— saonpoud | syndu) D |
“ saumeay [_
L 1 | spuagay __
suoneayads eyeq 1sa) | 12POW Apeay| e1eq jevonesado ! M ittt
/s3peQ 352y paaninuys-ay [1L E__umf — @ouBIaJa)u| suoneInads rea: |
N ejeq 1531/s9]peIQ 1591
|9pon Apeay 1591 Ja1jag |
O monmpmgisipme ~~ ="~~~
[uswainseapy | I — - -~ =" 1
Auiepasun aadalgg | japow Apeay sjuauainsealy Ajuiensaiun evorerog]
poppe way jaag:| analqQ 40 uoneauag]|
PauIpOw « mn Je—
apoy Apeay 1sa] Jal | uonepljep ejeq |evonesadg
1POIN Apeay 15aL Jalieg | 7 |9poiN Apeay 153 Jaijeg uopnIax3 " |eay:
C___ _parowal __ |] 12pPoIN
o e moliomg ~~~ """~ :
e — 1 [din | |ssueiqn jspon |
1591 jaljag: |
r_a_uos_ Apeay 1s3) Jai2g |12poN Apeay 152 ja11ag |2PON 7 “ + _ sauIPpINg _ _ 4nn _
| Bulapo | sasn
T T T T e e wnjpiasun
anjopiadun

188

UncerTolve consists of three activities (i.e., Modeling, Model Execution, and Invariant
Inference) and four components (denoted with different colors in the UncerTolve box), as
shown in Fig. D-1.

The kickoff activity of UncerTolve is about modeling BM. We develop the initial BM for
a CPS, specified with the Unified Modeling Language (UML) [13]. Such a UML model
includes composite structure diagrams, class diagrams, constraints specified in the Object
Constraint Language (OCL) [14], and state machines capturing testing interfaces and
behaviors of the application, infrastructure, and integration levels of the CPS [9, 15].
UncerTolve relies on UncerTum [9] to explicitly model known and subjective uncertainties
specified by modelers (i.e., belief agents [15]), as part of the initial BM. UncerTum consists
of the UML Uncertainty Profile (UUP) [9] and a set of model libraries and utilizes the UML
Testing Profile (UTP) V.2 [16]. To enable model execution, as part of the UncerTolve
framework, in this paper, we also propose a modeling methodology (which extends
UncerTum) particularly for the purpose of developing executable BMs.

The second activity is to execute BMs with real operational data. This activity involves
two components: validation of BM and derivation of objective uncertainty measurements.
The initial BM created in the first activity is executed to validate their syntactic correctness
and conformance against real operational data. Missing or incorrect model elements might
be identified during the model execution process and therefore the initial BM can be updated
accordingly, based on a set of heuristics newly defined as part of UncerTolve. Through
model execution with real operational data, objective uncertainty measurements can also be
obtained. During this activity, existing model elements in the initial BM can be removed or
modified, and new ones can be added. Obtained objective uncertainty measurements can
also be appended to the BM.

In the third activity is about inferring test oracles (i.e., state invariants) and test data
specifications (guard conditions) with real operational data using dynamic invariant
inference techniques [4, 17, 18]. In this paper, we apply one solution, Daikon [4], which
produces a set of invariants (corresponding to test oracles and test data specifications) with
an implemented machine learning technique. These invariants are then merged with OCL
constraints specified as part of the BM, based on newly defined heuristics, which therefore
leads to another round of the updating of the BM, i.e., restructuring test oracles and test data

specifications. Numerous techniques (e.g., aka automata learning [19], data mining [20, 21])
have been proposed in the literature in the field of automated inferences of various types of
information (e.g., properties, protocols, interfaces, specifications) from programs. Although,
our work relies on an existing work, i.e., Daikon, our work differentiates itself from the
existing works in terms of the core challenge it tackles, i.e., evolving BMs with both
subjective and objective uncertainty to eventually support MBT of CPSs under known and
evolved uncertainties discovered based on real operational data.

Note that the modeling activity of UncerTolve is the foundation of the other two activities.
The other two activities are independent to each other, although we recommend to apply
them sequentially as doing so will improve the overall quality of evolved BMs and this is
also how our industrial case study was conducted. In summary, theoretically, the output of
each activity can be used as the input to UncerTest; however, sequentially applying model
execution and invariant inference are strongly recommended in practice for ensuring the
quality of delivered BMs. This is especially important when BMs are complex, which is

quite common in industrial settings.

1.3 Contributions

UncerTolve evolves BMs specified with UncerTum [9], which are essentially stereotyped
UML class diagrams, composite structure diagrams, and state machines, and therefore
contain richer information than a typical specification representation (e.g., Finite State
Machines (FSMs)) that can be inferred with existing techniques (e.g., [19, 22]).

Distinguishing itself from existing works, UncerTolve takes into account both subjective
uncertainty information specified as belief elements of the BM and objective uncertainty
information derived from real operational data and evolves them as part of the integrated
BM evolving process.

Similar to some existing dynamic inference approaches (e.g., [1-3]), UncerTolve uses a
machine learning technique implemented in Daikon to dynamically infer state invariants
(modeling test oracles) and guard conditions (modeling test data specification) of UML state
machines. However, UncerTolve relies on real operational data collected from real
applications of CPSs, instead of execution traces of programs. Note that UncerTolve aims to
evolve BMs developed for CPSs and therefore existing approaches relying on execution

traces of programs cannot be applied or at least cannot be directly applied without adaptation

for the CPS context.

In conclusion, we summarize the key contributions of UncerTolve as below:

1 UncerTolve has a modeling methodology for creating executable BMs with real
operational data to support validation of the syntactic correctness of a BM modeled using
UncerTum and checking conformance of the BM with the real operational data;

2 UncerTolve defines a systematic and automated process for validating a BM with both
subjective and objective uncertainty and defines a set of heuristic rules (named as tolveR-
E) to guide test modeler(s) to update the BM based on validation results;

3 UncerTolve is equipped with an automated solution for calculating and abstracting
objective uncertainty measurements from the real operational data and the obtained
measurements are appended to the BM;

4 UncerTolve applies a machine learning technique to infer test oracles (state invariants in
UML state machines) and test data specifications (guard conditions in UML state
machines);

5 UncerTolve defines a set of heuristic rules to evolve a BM with inferred state invariants,
guard conditions and objective/subjective uncertainty measurements;

6 UncerTolve, as a proof-of-concept, is evaluated with one industrial CPS, i.e., GeoSports

from the healthcare domain.

1.4 Results and the Structure of the Paper

With UncerTolve, we managed to evolve 51% of belief elements, 18% of states, and 21%
of transitions as compared to the initial BM. Thus, we conclude that UncerTolve is successful
in evolving BMs with subjective and objective uncertainty information.

The rest of the paper is organized as follows: Section 2 discusses the related work. Section
3 represents the background. Section 4 represents terminology and running example. Section
5 represents the overall workflow of UncerTolve. Section 6 represents the methodology of
UncerTolve. Section 7 presents the evaluation and discussion, whereas we conclude the

paper in Section 8.

2 Related Work

In this section, we compare UncerTolve with existing works in Section 2.1, whereas

comparison with our own previous related works in Section 2.2.

2.1 Comparison with Existing Works

Several works (e.g., [4, 23-31]) have been published in the literature that infer, e.g., FSMs,
their extensions, Live Sequence Charts (LSCs), and properties of software applications from
execution traces. Most of these works rely on Daikon [4] to dynamically infer invariants
from execution traces.

The work reported in [23] infers deterministic FSMs of black box components from their
execution information to understand their behavior in the absence of a formal specification.
The inferred FSMs are further generalized into intentional behavior models by synthesizing
graph transformation rules. The process involves identifying invariant properties in a similar
way as Daikon. The approach was evaluated with three different sets of classes
implementing data abstractions such as Queue and MinSet.

An empirical study is reported in [24] to evaluate four strategies of inferring FSMs: 1)
traces-only, 2) invariants-only, 3) invariant-enhanced-traces, i.e., inferring models from
execution traces followed by enhancing them with invariants), and 4) trace-enhanced-
invariants, i.e., inferring models from invariants followed by enhancing them with execution
traces). Nine open-source libraries were used to compare the four strategies based on the
quality of the resultant FSMs. The second and third strategies were evaluated to be the best
ones.

Lo et al. [25] proposed an approach with a tool to enhance the precision of mining FSMs
from code and traces by inferring temporal properties and incrementally merging equivalent
states. Similarly, Walkinshaw and Bogdanov [26] proposed an approach to allow additional
inference of state machines, based on temporal logic formulas and an extra capability to
introduce new formulas during the inference process. The proposed approach was evaluated
with two software applications. Gabel and Du [32] presented a general specification mining
framework (Javert) for learning complex temporal properties (specified as specification

patterns in FSMs) from execution traces.

Krka et al. [18] proposed an automated approach to infer object-level FSMs from
execution traces and program invariants. First, it derives an FSM that captures legal
invocation sequences of an object’s public interfaces based on inferred data-value invariants.
Second, it uses collected dynamic invocation traces to refine the invariant-based FSM to an
object-level FSM.

Tonella et al [27] [28] proposed an approach to infer FSMs for supporting MBT based on
a combination of clustering, invariant inference and genetic algorithm (GA). GA was used
to optimize the quality attributes of inferred FSMs. The approach was evaluated with a small
e-commerce application.

Walkinshaw and Taylor [33] proposed an approach to infer deterministic Extended FSMs
(EFSMs) with WEKA [34] and Daikon and evaluated the approach with five Java and Erlang
programs.

An algorithm is proposed in [26] to extract FSMs with parameters (FSAMs) from
interaction traces: sequences of method invocations. FSAMSs put constraints on the values of
parameters. The algorithm has three sequential steps: merging similar traces, deriving
constraints with Daikon, and merging equivalent states. The Builder design pattern was used
to evaluate the proposed approach.

In [29], an approach was proposed to infer communicating FSMs (CFSMs) from
execution traces of concurrent programs that has three steps: 1) mining temporal properties
(invariants), 2) creating an initial CFSM model, and 3) refining the CFSM model. The
proposed approach was evaluated with three networked systems. The authors of [31]
proposed an approach to infer resource-aware FSMs from execution logs of the software
application by following similar steps. The proposed approach was evaluated with a case
study on the TCP protocol.

Berg et al. [30] proposed a way to adapt regular inferences of FSMs from observations of
component behaviors to construct models of communication protocol entities. The challenge
that the authors tried to tackle is to infer state machines where messages have arbitrary
parameters; however, it only handles Boolean parameters. Later on, Berg et al. [19] also
made an effort to infer state machines with an infinite state space. First, the proposed

approach infers finite-state Mealy machines by observing the behavior of a communication

protocol from a small domain. Second, it transforms them into infinite-state Mealy machines
by folding the inferred finite-state Mealy machines into compact symbolic models.

Lo et al. [20] presented an approach to mine specifications as restricted LSCs from
execution traces that are transformed into UML sequence diagrams with a modal profile
applied. Later on, Lo and Maoz [21] made an effort to integrate the value-based specification
mining approach of Daikon with a sequence-based approach to mine specifications as LSCs.
A scenario-based slicing technique was applied to obtain sliced traces. Value-based
invariants mining is then applied to both on the original traces and the sliced traces to identify
scenario-specific invariants. Four software applications were used to evaluate the proposed
approach.

Beschastnikh et al. [35] proposed an automated approach to infer invariant constrained
models from system execution logs, by intentionally reducing the involvement of
developers. First, the approach mines temporal invariants from logs and generates trace
models, from which it generates initial models (in the form an authors-defined, edge and
node style graphical representation). These initial models are then refined and coarsened to
explore the space of models.

Raz et al. [36] proposed a way to infer invariants based on the observations of the behavior
of dynamic data feeds (i.e., a time-ordered sequence of observations) to detect semantic
anomalies in online data sources. The approach relies on an augmented Daikon and Mean
(i.e., a statistical method for estimating a confidence level for the mean of a distribution).
The approach was evaluated with real-world data. In [37], the authors proposed a heuristics
based algorithm to scale up dynamic inferences of properties/invariants of software
applications from execution traces. The approach was evaluated on JBoss and the Windows
kernel. Hangal and Lam [38] proposed an approach (similar to Daikon) to detect program
invariants from program executions. It also reports detected dynamic invariant violations.

The work reported in this paper builds on an existing work, i.e., Daikon to infer invariants
based on execution information. However, in our case, real operational data was used from
real applications of CPSs. To compare with these related works, we distinguish UncerTolve
from the following four aspects. First, most of the related work directly take programs as
input to infer, e.g., specifications and API. UncerTolve, however, takes test ready UML

models together with explicitly captured subjective uncertainty as input and evolve them

based on model execution using real operational data, based on dynamic inference with
Daikon. Second, UncerTolve aims to handle CPSs, not just programs. This means that we
not only evolve models of applications but also infrastructures and their interactions. Third,
UncerTolve evolves belief models including discovering previously unknown belief
elements (in stereotypes), states, and transitions. Fourth, the ultimate objective of
UncerTolve is to facilitate MBT of CPSs under known and unknown uncertainty, instead of

program comprehension and bug detection like most of the related works do.

2.2 Comparison with Our Previous Works

To understand uncertainty in general, in our previous work [15], we developed a generic
conceptual model called U-Model. Our aim was to precisely define uncertainty and its
associated concepts for CPSs. The U-Model was implemented in two ways: 1) As an
extension of an existing restricted use case specification language (named as RUCM) [35],
to specific uncertainty in use case specifications called as U-RUCM [39], 2) Implementation
of U-Model as a UML profile—the UML Uncertainty Profile (UUP) to enable MBT of CPSs
under uncertainty. UUP together with other related profiles and model libraries were
implemented as a modeling framework—UncerTum [9]. With UncerTum, test modelers can
create BMs with explicit consideration of subjective uncertainty. As shown in Fig. D-1, BMs
created with UncerTum [9] are the key inputs of UncerTolve—the key contribution of this
paper. UncerTum only focuses on creating BMs for test case generation and cannot be used
to further enhance BMs into executable ones such that these models can be validated with
real operational data. In the context of UncerTolve, we propose an extension to UncerTum
for converting BMs developed with UncerTum into executable ones.

In [11], we reported UncerTest [11], an uncertainty-wise testing framework. UncerTest
implements various uncertainty-wise test case generation and minimization strategies that
can be used to generate test cases from BMs developed with UncerTum [9]. UncerTest [11]
can be used to generate test cases from BMs evolved with UncerTolve to test CPSs. However,
we may need to define additional test strategies in UncerTest [11] to focus specifically on
the evolved parts of the evolved models. We plan to implement these test strategies in our

future work.

3 Background

In this section, we present the background that is necessary to understand the rest of the
paper. In Section 3.1, we define a CPS at a generic level, along with three logical levels, at
which uncertainty may occur. In Section 3.2, we introduce UTP, which is one of the key
profiles applied to BMs to enable MBT. Section 3.3 presents U-Model, a conceptual model
defining uncertainty and its associated concepts. Section 3.4 introduces UncerTum, an
uncertainty-wise modeling framework to create BMs of CPSs with subjective uncertainty,
I.e., the key input of UncerTolve. Section 3.5 presents UncerTest, an uncertainty-wise test
case generation, and minimization framework to generate test cases from BMs created with

UncerTum and evolved with UncerTolve.

3.1 Cyber-Physical Systems and Uncertainty Levels

A CPS is defined as [15]: ““A set of heterogeneous physical units (e.g., sensors, control
modules) communicating via heterogeneous networks (using networking equipment) and
potentially interacting with applications deployed on cloud infrastructures and/or humans
to achieve a common goal™ and is conceptually shown in Fig. D-2. Uncertainty in a CPS can
occur at the following three logical levels [15]. First, uncertainty at the Application level is
due to events/data originating from an application (one or more software components) of a
physical unit of the CPS. An example of application-level uncertainty is the indeterminate
behavior of a human interacting with a CPS, e.g., not wearing a device sensing heart rate
properly which leads to uncertain heart rate readings. Second, uncertainty at the
Infrastructure level is due to data transmission via information network enabled through
networking infrastructure and/or cloud infrastructure. An example of infrastructure level
uncertainty includes the uncertain behavior of a CPS due to packet loss in an information
network. The third level is the Integration level, due to either interactions of applications
across the physical units at the application level, or interactions of physical units across the
application and infrastructure levels (e.g. the abnormal heart rate captured by heart rate
sensor due to the loss of the connection between heart rate sensor and a computer system
analyzing the heart rate assuming the heart rate sensor and a computer system are connected

via wireless network). More details and examples are provided in [15].

Physical Unit

Physical Unit

Integration

L — =

Level |

Direct
Connectior

—_—_———k e ———— — —

® Uncertainty U1: Application Level Uncertainty U2: Infrastructure Level Uncertainty U3: Integration Level Uncertainty

Fig. D-2. The Overall Context and Scope of UncerTolve

3.2 UML Testing Profile

UML Testing Profile (UTP) [39] is a standard at Object Management Group (OMG) for
enabling MBT. With UTP, the expected behavior of a system under test can be modeled,
from where test cases can be derived. UTP can be also used to directly model test cases.
Transformations from models specified with UTP to executable test cases can be performed
using specialized test generators. Since UTP is defined as a UML profile, it is often applied
on UML sequence, activity diagrams and state machines for describing behaviors of a system
under test or test cases. The key purpose is to introduce testing related concepts (e.g., Test
Case, Test Data, and Test Design Model and model libraries such as various types of test
case Verdict (pass, fail)) to UML models for the purpose of enabling automated generation
of test cases. UTP V.2 is the latest revision of the UTP profile, which is conceptually
composed of five packages of concepts: Test Analysis and Design, Test Architecture, Test
Behavior, Test Data and Test Evaluations. Various numbers of stereotypes have been
defined for some concepts of these packages. Similar to other modeling notations, it is never
been an objective to exhaustively apply all the stereotypes when using UTP V.2 to annotate
UML models with testing concepts. Which stereotypes to apply and how to apply them are
however problem/purpose specific and should be defined by users of the profile. More
information about UTP V.2 and the team can be found in [27; 38].

To enable MBT of CPSs under uncertainty, we rely on UTP V.2 to model the testing

aspect of BMs. In our context, only a subset of UTP V.2 was used.

3.3 U-Model

To understand uncertainty in the general context of software engineering, we developed
a conceptual model called U-Model [15] to define uncertainty and its associated concepts.
The U-Model was developed based on an extensive review of existing literature on
uncertainty from several disciplines including philosophy, healthcare and physics and two
industrial case studies.

The U-Model takes a subjective approach to represent uncertainty, which is modeled as
a state (i.e., worldview) of some agents (called BeliefAgents), who, for whatever reason, do
not have complete and fully accurate knowledge about some subjects of interest. A Belief is
an abstract concept that can be expressed in the concrete form via one or more explicit
BeliefStatements (a concrete and explicit specification of some Belief held by a BeliefAgent
about possible phenomena or notions belonging to a given subject area). Uncertainty (i.e.,
lack of confidence) represents “a state of affairs whereby a BeliefAgent does not have full
confidence in a belief that it holds” [15]. This may be due to several factors: lack of
information, inherent variability in the subject matter, ignorance, or even due physical
phenomena such as the Heisenberg uncertainty principle [21]. While uncertainty itself is an
abstract concept, it can be quantified by a corresponding Measurement, which expresses in
some concrete form the subjective degree of uncertainty that the agent ascribes to a
BeliefStatement. As the latter is a subjective notion, a Measurement should not be confused
with the degree of validity of a BeliefStatement. Instead, it merely indicates the level of
confidence that the agent has in a statement. Further details on U-Model may be consulted
in [15].

3.4 UncerTum
UncerTum [9] (Fig. D-1) is uncertainty-wise modeling framework to support the
development of BMs of CPSs, which consists of specialized UML-based modeling notations
(named as UUP) for specifying uncertainties to enable MBT of CPSs under uncertainty.
UUP is at the core of UncerTum and implements U-Model [15] (Section 3.3). UUP
consists of three parts (i.e., Belief, Uncertainty, and Measurement profiles) and an internal
library containing enumerations required in the profiles. To ease the development of BMs

with uncertainty, UncerTum additionally defines four sets of UML model libraries: Pattern,

Time, Measure, and Risk libraries, by extending an existing UML profile for Modeling and
Analysis of Real-Time and Embedded Systems (MARTE) [40]. UncerTum also includes a
small UML profile called the CPS testing levels profile to allow stereotyping (labeling) test
ready model elements with three CPS test levels (e.g., integration level). The purpose is to
differentiate model elements from different levels and facilitate defining level specific test
strategies. Moreover, UncerTum relies on UTP V.2 (Section 3.2) to model BM™s for the
purpose of enabling MBT. Finally, UncerTum defines a set of concrete guidelines (i.e.
Measurement Modeling) on how to use its modeling notations to construct BMs with

uncertainty explicitly specified.

3.5 UncerTest

UncerTest [11] (shown in Fig. D-1) consists of two main part: test case generation and
uncertainty-wise test case minimization. Test case generation takes the BM using UncerTum
as input to automatically and systematically generate abstract test cases, according to two
proposed test case generation strategies: All Simple Paths (No Loops) and All Paths with a
Fixed Maximum Length. These two strategies were inspired from the ones reported in [41],
but were extended for BMs specified in UncerTum and considered various uncertainty aspects
such as the number of uncertainties in a test path and overall uncertainty of a test path,
defined based on Uncertainty Theory [42]. Uncertainty-wise test case minimization was
proposed because the number of abstract test cases generated by Test Case Generation is
typically very large for any non-trivial CPS and it is impossible to execute all of them. The
uncertainty-wise test case minimization problem is a multi-objective search problem with
four objectives: 1) The average number of uncertainties covered by the subset of the test
cases after minimization; 2) The average percentage of uncertainty space (defined in
Uncertainty Theory [42]) covered by the subset of the test cases after minimization; 3) The
average uncertainty measure (defined in Uncertainty Theory [42]) of the subset of test cases
after minimization; and 4) The average number of unique uncertainties covered by the subset

of test cases after minimization.

4 Terminologies And Running Example

In this section, we will briefly present a running example together with relevant
terminologies. The running example will be used in the rest of the paper to explain the key
steps of UncerTolve. The UncerTolve itself will be presented in Sections 5-6.

4.1 Belief Test Ready Model

A Dbelief test ready model (BM) consists of three types of models: a Composite Structure
(CS) diagram, a set of class diagrams (CDs), and a set of Belief State Machines (BSMs).
The belief aspect of BMs is from the perspective of modelers (i.e., belief agents), who create
the BMs and therefore the BMs reflect their (subjective) beliefs on the information specified

in the models.

Configuration J

| CPS

wApplicationElement» aport : Alnterface «ApplicationElement» bport : Blnterface

«PhysicalUnits
a:rA[l.*]

«Physicallnits
b:B[1.*%] |
[2 |

«IntegrationElements

| «InfrastructureElement» aiport : IAInterface

o]
M dcport : DCInterface
i =~

dc : Driver Component [*]
-

Fig. D-3. Composite Structure Diagram of BM (Running Example)

«IntegrationElement» | , 0o cietion «ApplicationElement» «signal» «signal»
BACommunication BInterface A2B_Info SignalD
ba : Boolean «signal» Input (pwd_) x_ : String x_ : String
n : Integer «signal» AdminCancel () y_ : String y_: String
o «signal» A2B_Info (x_, vy)
+ bacommunication
+ endA
- - - - «signal»
«PhysicalUnit» + endB «PhysicalUnit» B2A Cancel
A B —
active : Boolean +a b active : Boolean «signal»
«ApplicationElement» Alnterface max_times : Intneger“= 3 B2A_Activate
«InfrastructureElement» IAInterface RWd + String = “pyad
times : Integer = 0 ianal»
(‘P X : String Ad «sllgga I
y : String minCance
ApplicationElement» updateXY (x_ : Strin : Strin
«InfrastructureElement» « ppAInterface cl?gck (med . Stringgi Y- 9) «signal»
IAInterface - o ' Input
- - «signal» B2A_Cancel () rese —
«signal» SignalD() «signal» B2A_Activate () || «ApplicationElement» Blnterface pwd_ : String

Fig. D-4. Class Diagram of BM (Running Example)

The CS diagram of a BM model represents a high-level test/model evolution
configuration (referred as Configuration in Fig. D-3) of a CPS under Test. It captures various
physical units that constitute the CPS, such as components A and B with «PhysicalUnit»
applied. The stereotype is defined in the CPS profile of UncerTum [9]. Application and
infrastructure level testing ports and interfaces of each physical unit are also explicitly
modeled in the CS diagram. For example, as shown in Fig. D-3, A has one application-level
port (aport :: Alnterface) and one infrastructure level port (aiport :: I1Alnterface), which are
stereotyped with «ApplicationElement» and «InfrastructureElement», respectively. Each
port has a corresponding interface specified in the class diagram (Fig. D-4) such as
Alnterface. The integration level interface is stereotyped with «IntegrationElement»
(represented as class BACommunication in Fig. D-4) and it is associated with A and B.

The structure of physical units is modeled as a set of UML class diagrams. Classes in the
UML class diagrams capture various types of information required for testing, including
APIs (e.g., the reset() operation of B in Fig. D-4), state variables (e.g., the active:Boolean
attribute of A in Fig. D-4), test configuration parameters (e.g., the cardinality of instances of
A in Fig. D-3), signals (e.g., AdminCancel in Fig. D-4), and signal receptions (e.g.,
AdminCancel() in Blnterface in Fig. D-4). The class diagrams have the CPS profile (Section
3.1) applied to distinguish model elements of the three different levels. For example,

Alnterface is stereotyped as «ApplicationElement» to signify that it is an application level

interface.
BeliefEl t» Sta hi A
ine J SignalD(x_:String, y_:String)/
SM Al.l aport.send(new AZB_Infa{msg.x...
BA_Activate()
Start
Al
5 «CheckPropertyActions
- BA Cancel() :
o BA_Cancel Toctive)
“{‘ngg:;r;ﬁ;emmnon* SM ALl = 93% confidence

Fig. D-5. Belief State Machine of A (V1.1) (Running Example)

«BeliefElement» StateMachine_B J

Start [times < 3] Checkp Blr‘t\,fAct'

' Input(pwd_:Strin «LheckPropel Gt
<<tc_heckpmpert~,rmt|on» Input(pwd_:String) _ {times <3 and active)
{ imes < 3 and (not «BeliefElement»
active)} [times < 3] when[activel/

bport.send(new

5 . SM B1.2
B2A_Activate());
L () r B1
“AdminCancel()/bport.send(new
«BeliefElements» B2A_Cancel());

whenltimes = 3] reset() A2B_Info(x_:String, y_:String)/
SM El.1 B2 updateXY({msg.x_, msg.y_);
B2 «CheckPropertyActions»
| {times = 3 and (not SM BLI = Unlikely
active)} SM B1.2= Likely

Fig. D-6. Belief State Machine of B (V1.1) (Running Example)

Each physical unit’s test behavior is modeled as one or more BSMs using UncerTum
(Section 3.4), e.g., as shown in Fig. D-5 and Fig. D-6 for A and B respectively. For example,
as shown in the BSM for physical unit A (Fig. D-5), «BeliefElement» from UUP is applied
to the state machine for A, where the confidence of the belief agent about this state machine
is specified as 95%. Two key types of OCL constraints are defined in BSMs. Each basic
state in a BSM is precisely defined with a state invariant (e.g., not active associated with the
Start state of A, Fig. D-5) specified as an OCL constraint based on state variables defined in
the CDs (e.g., attribute active of class A in Fig. D-4). These state invariants serve as test
oracles and can be checked at runtime using existing OCL evaluators such as Eclipse OCL
[43]. Second, each guard condition (e.g., guard [times<3] on the transition from Start to B1
in B, Fig. D-5) is specified as an OCL constraint on the input parameters of the associated
trigger, which defines the valid range of inputs. These constraints in our case are used to
automatically generate test data to trigger transitions. An OCL solver (e.g., ESOCL [44]) can
take these constraints as input and automatically generate test data [45]. BSMs are further
enriched with UAL such that they can be directly executed with the IBM Rational Simulation
Toolkit [46]. For example, the self-transition of State Al (Fig. D-5) has an effect whose body

is written in UAL as below:

aport.send(new A2B_Info(msg.x , msg.y));
This effect simply sends signal A2B_Info from A to B via aport. Notice that A2B_Info is

a signal reception in Blnterface. Notice that signals in UML are typically used for modeling
communications across state machines. In our running example, for instance, the state

machine of physical unit A (Fig. D-5) communicates with the state machine of physical unit

B (Fig. D-6) via the UAL code of the effect of self-transition of state Al (Fig. D-5) as also
shown in the last paragraph. Similarly, the state machine of physical unit B (Fig. D-6)
communicates with the state machine of physical unit B (Fig. D-5) via the UAL code written
in the effect of the transition from B1 to Start in Fig. D-6.

4.2 Executable Belief Test Ready Model

An executable BM is a Java code, which is semantically equivalent to a BM discussed in
Section 4.1. Executable BM Java code can be executed either directly with the IBM Rational
Simulation Toolkit or as a standalone application by simply introducing a main() method. In
Section 6.1, how to develop executable BM will be discussed in details.

4.3 Driver Model

In order to apply UncerTolve, we need to develop a component called Driver Component
(e.g., dc: Driver Component in the composite structure diagram in Fig. D-3). A Driver
Component is connected to physical units of a CPS via UML ports and connectors (Fig. D-
3). A Driver Component has its own class diagram (e.g., Fig. D-7) and state machine (Driver
State Machine (DSM), e.g., Fig. D-8). The class diagram contains attributes and operations
that are specifically needed to model DSM such as attribute isCorrectinput of Driver
Component in Fig. D-7. ADSM is a UML state machine that is specifically defined to trigger
the execution of BSMs based on real operational data. Data types of the real operational data
(e.g., x and y) are specified in the class diagrams of BM. Data on signals (e.g., SignalD of
Fig. D-4) are sent via ports (e.g., dcport in Fig. D-3) from DSM to BSMs. Such data includes
the input of a system actor, environment changes, etc. A DSM can also be enriched with
UAL to make it executable. The class diagram and DSMs are all together called Driver
Model (DM).

«COMmponents @ winterfaces
Driver Component DCInterface

isCorrectInput : Boolean

filePath : String Fkesignal»
checkCorrectInput { pwd_ : String) : Boolean SignalD & wsignals
getX (time : String) : String - Input
getY { time : String) : String X_:String | I——
getX [constraint : String) : String [*] y_:String | LEWE = StNG
gety (constraint : String) : String [*] -
parseRealData (time : String, item : String) : String 2 «signal»
DCInterface AdminCancel

Fig. D-7. Class Diagram of DM (Running Example)

The DSM of our running example is shown in Fig. D-8. The DSM has two regions, i.e.,
the top region is used to communicate with A, whereas the bottom region is for
communicating with B. In the top region, there is only one state called Sending Data having
a self-transition “after 0.01s”. This means that every 0.01 seconds, data is sent from Driver
Component to A. The following UAL code is embedded inside the entry activity of the

Sending Data state:

dcPort.send(new SignalD(getX(time), getY(time)));
The above code obtains values of x and y at a given point in time (from real operational

data) and sends them to A via SignalD through dcPort. In the bottom region, in the Sending

Input Data state, the following UAL code is added:

String pwd_ = parseRealData('input_pwd™);
dcPort.send(new Input(pwd_));
isCorrectlnput = checkCorrectlnput(pwd_);

The above code obtains the password from real operational data (the first line), sends it
to B via the Input signal through dcPort (the second line), and checks whether or not the
password is correct with the checkCorrectinput (pwd_) operation in the class diagram of

Driver Component.

Driver StateMachine)

CPSA

enter
dsmPart.send(new SignalD(getX(time), get¥(time)))

Sending Data (SignalD)
7| send SignalD to CPS based on "real data"

CPSB

after "0.01s"

do activity
String pwd_ = parseRealData("input_pwd®}:

dsmPort.send(new Input{pwd_}}: after "155"
isCorrectInput = check{pwd_): \J; 1
O (Sending Input Data w when [isCorrectInput (Sending AdminCancel Command
L <) Generate Input to CPS based on “real data" /] h || send AdminaCancel Signal to CPS

after "1s" when [not isCorrectInput] . |
exr

dsmPost. send(new AdminCancel()):
Waiting for Reset

Fig. D-8. State Machine of DM (Running Example)

5 Architecture and Current Implementation of UncerTolve

In the rest of the section, we first present the overall architecture of UncerTolve (Section

5.1), followed by the current implementation of UncerTolve (Section 5.2).

5.1 Architecture

The architecture of UncerTolve is represented in Fig. D-9. The key input of the
architecture is real operational data collected from existing deployments. Real operational
data can be collected continuously; therefore a process of using UncerTolve for evolving
BMs can be iterative. As long as new operational data available, UncerTolve can be used to
evolve the current BM and therefore the evolved BM can be used to generate new test cases
for testing new/future deployments. Real operational data are invoked by Driver Model and
Executable Belief Test Ready Model (executable UML) for enabling model execution. Model
execution results (i.e., discovered previously unknown objective uncertainty measurements
and errors in the initial BM) are used to evolve the BM with a set of heuristics (i.e., tolveR-
E). Real operational data are also used to support the dynamic invariant inference, which
produces Invariants, representing either test oracles (i.e., state invariants) or test data
specifications (i.e., guard conditions). Results of the inference are used to further evolve the
belief BM, based on another set of heuristics: tolveR-D.

Fig. D-9 shows the necessary components of the UncerTolve architecture. An initial
Belief Test Ready Model, semantically equivalent Executable Belief Test Ready Model,
Driver Model, and Real Operational Data are key artifacts that need to be constructed in
order to use UncerTolve. Definitions and examples of these artifacts are presented in Section
4 for references. For each of the activities (i.e., modeling, model execution and invariant
inference), a set of guidelines (i.e., S1, S2, and S3) is also defined to guide users through a
non-trivial model evolution process. As part of the guidelines, tolveR-E and tolveR-D are the
two sets of heuristics defined for refining the initial BM based on model execution and
invariant inference results.

There are three evolution ports defined on Belief Test Ready Model: 1) following tolveR-
E, based on Execution Log (output of model execution), to evolve UML class diagrams,
composite structure diagrams and BSMs, 2) following tolveR-D, based on invariants derived
via Dynamic Invariant Inference, to evolve test oracle and test data specifications specified
as state invariants and guard conditions of BSMs, and 3) appending objective uncertainty
measurements derived from model execution to the BM. Though, the UncerTolve
architecture provides these three evolution ports, it is not necessary to use them all at once.
Depending on needs and contexts, which one(s) to use and how to use them can be
customized.

Note that this architecture is generic since it can be integrated with different technologies
(e.g., different invariant inference engines) to achieve the same or similar objectives. Section

5.2 discusses the current implementation of this architecture.

ssuppino es () saunepino zs ()

saullaping 1S () mod uonnjoa3

eleq |euonesado
SUOIEDIUNWLIOY) e

spuada

|eay 01 ssanay €

O

9A]01480UMN JO 8IND8NYIIY |[249AQ 8y L “6-A "Bi

(so1151N3H)@-Y2]A01 T‘%

T UOIIN|OAT JUSWAINSEI|A
Auepadunanmefgo (| @ —————————— &
| ERITEIETTT]
_ jueLIeAu| J1WeUAQ N
r [_I"I L
3|qeIndex =
g07 uoiIndax3 | I r— Sﬁmoeﬁ‘awmmxm"_ [_ \
auwpe i o - | [IeLRaAlgmnag | i \
wesdeig aunpnais aysodwod - | ! S/ ——————
. 4 Z 209 S _ eleq |euonesado
(sansunay) _m‘_:._.hmuca |2poIA JaA1Q ;l 1
3-4Aj0} |9POIN ApPE3Y 31531 431|129 |
I

uoINIaX3 |3poN

207

5.2 Current Implementation of UncerTolve

In this section, we discuss our current implementation of UncerTolve, focusing on the
selection of technologies and the integration of them. The overall workflow of the current
implementation of UncerTolve is presented in Fig. D-10. The selection of technologies and
corresponding justifications are summarized in Table D-2. The recommended methodology
for using the current implementation of UncerTolve is however discussed in Section 6.

Table D-2. Steps, techniques/tools/languages, and corresponding justifications of the current implementation

of UncerTolve

Step | Techniques/tools/languag Justification of using selected techniques/tools/languages
es

S1, | IBM Rational Software | The overall approach of the U-Test project is implemented in the

S2 | Architect (RSA) Certifylt? tool, which is a plug-in to IBM RSA. UAL is implemented
IBM Simulation Toolkit based on the OMG AIf standard and is used by the IBM RSA
UML Action Language | Simulation Toolkit. Thus, IBM RSA, Simulation Toolkit, and UAL
(UAL) were selected in the current implementation of UncerTolve.

Eclipse OCL Eclipse OCL is one of the commonly used OCL evaluation tools,

Java Implementation of | which is built on EMF and fits well with the tooling of our overall

heuristics tolveR-E: | technical solution.

Execution Logger and Log | Given that execution log cannot be used automatically to modify

Analyzer BMs, heuristics tolveR-E are implemented to propose a set of actions
to the user to modify BMs with uncertainty.

S2 | Java Implementation of | Our approach is based on subjective uncertainty. To further validate
Obijective Uncertainty | it, we calculate the frequency (objective uncertainty measurements)
Measurement Analyzer based on the real operational data.

S3 | Daikon Invariant Detector | Several dynamic inference tools exist in the literature [1-3]; however,
Invariant Converter (Java | we decided to use Daikon because it implements a set of optimizations
Implementation planned) that facilitates its applications to complex problems [4].

S3 | Java Implementation of | Daikon outputs invariants. Links must be established between the
heuristics tolveR-D: | inferred invariants and models elements of BMs. Thus, we developed
Invariant Analyzer heuristics tolveR-D to link Daikon invariants with state invariants and

guard conditions (specified as OCL constraints and representing test
oracles and test data specifications) of the BMs.

S1- | Java implementation of the None

S3 | integrated solution (Fig. D-

10)

The first activity is to develop and execute BMs (S1/S2 in Fig. D-10). This activity takes
place in IBM’s Rational Software Architect (RSA) and its Simulation Toolkit plugin [46].
As shown in Fig. D-10, UncerTum (Section 3.4) is currently implemented in IBM RSA. A
user of UncerTolve develops BMs (S1 in Fig. D-10) using the guidelines developed for
UncerTum (see [9]). To validate BMs, such models must be executed with real operational
data. To achieve so, we extended UncerTum to provide a set of new guidelines to convert

BMs into executable ones. The methodology for creating executable models is described in

Section 6.1. Corresponding to BMs, equivalent Java code is automatically generated by the
Simulation Toolkit [46], which can either be executed with the Simulation Toolkit or as a
standalone Java application. The user executes the developed BMs with the real operational
data (S1 in Fig. D-10) using the Simulation toolkit [46].

9AJ01 190U JO uoneusWa[dW| 1UBLIND 8L 40 MO MIOAA [[B48AQ 3yl "0T-d B14

«uign)d» | sjapow andaxa

| 03 spuewwod :zs

|

s|apow paseq-TAIN
salIpow :,TS

J
100 asdip3 / Mandinof~——
STUIeIISUO) (. | J1azhjeuy 507 | uonay paisadsng
170 pa1sa38ng | |sjulensuod 170 SjueLIeAU| «iem | «el» I «ax1»
«xy» «IX3» «AUI-UOYIEPY A I S L ndu
I-uoyjiep (zs/1s) Ann 100 _ N
syndino synduy sindino mton_E_._y I 193307 uonndax3 I | So| uonnoaxg
P [ERpR S — - «ef» _ﬂjn_u_._n_ «IXI»
[syndino i % | AH._MSn_:_
| Ta7A[euy JUeHEAU| | |euonesadQ |eay 03 $52208) | spodus _ JazAjeuy uswainseay ¢!
_ «ely sindut _ [9POIAl JBALIQ 9|RINIBXI _ Mutepaounanpdafqo | Asuanbaig
| : | «enel» | «Jef» sindyno | €1USWRINSEIN:dNN»
I JazAjeuy uoIINIax | \d
_ _mtmém._umw“m:?c_ - _...Eac_ S Apeoy f%lﬁlm_l o I_ |¢| I,HI > |m_|) RS
| : 1 1s3] jal|og 2|geindaxy SINdI0 === === -~
| | weneln . \
| | 2po) 3|qeindaxy s31N09%3 TS 4 1|00L uonenwis :gs/Ts
| |
| |
| |

uo pajjeisul si

ﬁ

onesadQ |eay o3 ssadde) J

199}1Y2.4Y 2JEMOS [BUOIIRY :ZS/TS

sindino dojanap :1s
[3POIN 12ALIQ «wiojiejd» /sdol

juade yum ajeidosse -+ «1¥0 AN “ !
2]EID0S5E +— 5|00} Uwao_w__am_u — | uo U&>D_Q0D st |

[9POIN APERY 159] 4all2d | winjJasun | e

3y = | sioo)pauisel mEm «Z'A d1N 120 “1vN ‘dNn “UAN» | ©HOMIWEL» I | jeuonelado |esy
apo aseq- | | ’
100y f Juase M [2POIA Paseq-1IAIN | (2S/TS) SI9POIA JO | «ASIN
" | uoIINJax3j pue juawdojanaq | "
_ puasal J B T USSR 4 ’)

sjuBLIEAU| 9ZA|BUE O} SPUBLULLIOD (€S

210

The second activity of is Execution Analyzer (S2), which is used to analyze the results of
the execution of BMs based on real operational data. Execution Analyzer is composed of
Execution Logger, Log Analyzer, and Objective Measure Analyzer. Once the BMs are
executed, Execution Logger logs the execution as execution log. The execution log includes
information such as at one point of time, which trigger was fired with which data. Such log
is used by Log Analyzer as an input to suggest various actions for the user to update BMs
based on the set of heuristics of tolveR-E (Section 6.2.1). Based on suggested actions, the
user may update BMs (S1’ in Fig. D-10). This log is also used by Objective Uncertainty
Measurement Analyzer to calculate conditional probabilities, e.g., the frequency of
occurrence of a particular transition (details in Section 6.2.2).

The third activity is about the analysis of invariants using a machine learning technique
implemented in the Daikon Invariant Detector [4]. The user may command (S3 in Fig. D-
10) to infer invariants based on real operational data using the API we developed to invoke
Daikon and access the real operational data. As a result, Daikon outputs a set of invariants,
which are converted to OCL constraints by the Invariant Converter that we implemented in
Java. The converted OCL constraints are inputted to Invariant Analyzer to further evolve
invariants in BMs based on the set of heuristics of tolveR-D (Section 6.3), and the output is
suggested OCL constraints as a feedback to the user. The user may accept, reject, or modify

the suggested OCL constraints.

6 Recommended Methodology

The recommended methodology for applying the current implementation of UncerTolve
is presented in Fig. D-11, from which one can see that it is iterative and has three sequential
steps. In the rest of the section, each of these steps is discussed in details. Section 6.1 presents
our proposed modeling methodology to create executable BMs including activities for
creating BMs and UML models for Driver Component; Section 6.2 presents a set of activities
for validation BMs and DMs and evolve objective uncertainty measurements (S2); Section
6.3 presents the process of evolving BMs in terms of invariants using dynamic invariant

inference (S3).

Evolve Belief State MachineJ

Y

: «structureds I «datastores
— 51: Create Belief Test Ready Model (BM) and Driver Model (DM) 7= Real Operational Data

|_|_|

OO o~

1 «UML, UUP, UAL, OCL, UTP V.22 wlavaws alUML, UAL=» wlavan
BM (V1) Executable BM (V1) DM (V1) Executable DM (V1)

\d/\n/

;.J wstructureds |
;; 52: Validate Belief Test Ready Model (BM), Driver Model (DM), and Evolve Objective Uncertainty Measurements |

|
| | v |

«UML, UAL» wavaxn «UML, UUP, UAL, OCL, UTP V.2=» wJavax»
DM (V2) Executable DM (V2) BM (V2) Executable BM (V2)

«UML, UUP, UAL, OCL, UTP V.2» _ _/

BM (V3)]‘ «structureds
T i §3: Evolve Belief Test Ready Model (BM) |

A table BM (V3) = with Dynamic Invariant Analysis :
Yes No +H De—————
Verify? (.) ~ -

Fig. D-11. Recommended Methodology of using the Current Implementation of UncerTolve

6.1 Creating BM and Driver Model (51)

As we previously discussed, with UncerTum [9], BMs can be created. Using UncerTest,
executable test cases can be generated from the BMs specified in UncerTum. However, an
extension of UncerTum is required to make BMs executable such that they can be validated
against real operational data. This section only focuses on the aspects that are required to
make BMs executable and other details on UncerTum are provided in [9]. As shown in Fig.
D-12, S1 is broken down into three activities: SIM1, S1A1, and S1IM2.

As the first step of the UncerTolve methodology, a modeler (belief agent) needs to apply
UncerTum (which integrates the modeling notations of UML, UUP for specifying
uncertainty, UAL for model execution, OCL for specifying constraints, and UTP V.2 for
capturing testing aspects, e.g., «BeliefElement» in Fig. D-5 and Fig. D-6) to create BM (V1),
i.e., the initial version of BM for a CPS under test (S1M1). UUP and UTP V.2 profiles are
implemented in IBM RSA. As discussed in Section 4.1, the BM created by the modeler based
on her/his subjective opinions and the BM is composed of a set of class diagrams, a
composite structure diagram and a set of BSMs.

S1: Create Belief Test Ready Model (BM) and Driver Mode| IDM]J

[«datastore» «UML, UAL» wlavan
«UML, UUP, DAL, OCL, UTP V.2» «lavar Real Operational Data DM (V1) Executable DMIV1)

BM V1) Executable BM (V1)
; 1 ocL Cons‘trainh L]
«Call Behavior= - 2 : i
S1M1: Create Belief Test S1A1: Link Eclipse OCL to §1M2: Create Driver Component
Ready Model (BM) Evaluate OCL Constraints and State Machines

S1M1, SIM2 - manual action; S1A1l -- automated action
Fig. D-12. The Structured Activity of Create Belief Model and Driver Model

To make the BM executable, UAL code should be added to relevant model elements of
BSMs of the BM such as entry, exit, and do activities of a state and effect on a transition.
The second output of S1IM1 is Executable BM (V1), which is Java code automatically
generated from the initial version of BM (V1) by IBM RSA, and can be automatically
executed by the IBM Simulation Toolkit [46] or as a standalone program. For example, Fig.
D-5 and Fig. D-6 present the diagrams of the BM (V1) of the running example. The key
elements of the model have been discussed in Section 4.

Note that a modeler can specify a subjective uncertainty measurement as part of the
applied «BeliefElement» on a model element on the BM model. For example, as shown in
Fig. D-6, the subjective uncertainty measurement (denoted as SM B1.2) for «BeliefElement»
applied on the transition from Start to B1 is ‘Likely’. The transition from Start to B2 however
‘Unlikely” occurs (see SM B1.1). Note that SM means Subjective Measurement and encoding
of BX.Y means that the X round of the derivation of subjective uncertainty measurement for
the Y element with «BeliefElement» applied.

Since the executable UML implemented in IBM RSA doesn’t support converting OCL
constraints into Java code and consequently cannot evaluate constraints at the runtime, we
implemented OCLUTtility in Java. This utility links IBM Simulation Toolkit with the Eclipse
OCL library to evaluate OCL constraints at runtime (S1A2). Using this activity together with
S1M1, executable BM (V1) is developed. Notice that OCLUTtility is generic and needed to
be developed once.

Activity SIM2 is to connect the Driver Component to the BM using the same composite
structure diagram developed for the BM (e.g., Fig. D-3), create class diagrams to keep

information required to create a DSM, and create DSMs to drive the execution of BSMs for

the purpose of validating and evolving them (Section 4.3). Recall that all these models
together are called DM. The outputs of this activity are then DM (V1) and its equivalent Java
code Executable DM (V1).

For our running example, we show the composite structure diagram of the BM in Fig. D-
3 (which is shared with the DM), the class diagram in Fig. D-7, particularly developed for
the Driver Component, and the DSM in Fig. D-8. Please refer to Section 4.3 for a detailed

discussion of the DM model.

6.2 Validate BM and Driver Model, and Evolve Objective Uncertainty
Measurements (S2)

The second step (Fig. D-13) is to validate the BM and DM against real operational data
and evolve objective uncertainty measurements on the BSMs based on the real operational
data. Note that subjective uncertainty measurements are the ones defined by the belief agent

when the initial version of the BM was created.

S2: Validate Belief Test Ready Model (BM), Driver Model (DM), and Evolve Objective Uncertainty MeasurememsJ

«datastore»
Real Operational Data

«datastore»
Suggested Actions

S2M1: Correct/Complete BSMs S2A3: Link Eclipse OCL to
based on the Analysis Log Evaluate OCL Constraints

«datastores
Execution Log
«UML, UUP, UAL, OCL, UTP V.2»
BM V1) I~

S2A4: dentify Objective
Uncertainty Measurements

wJavan

[
«UML, UAL»
Executable BM (V1)

DM V1)

*G2M1 - manual action; S2A1~S2A4 —automated action

Fig. D-13. The Structured Activity of Validating BM, DM and Evolving Objective Uncertainty
Measurements

The first step (S1A1) automatically executes the BM with real operational data using the
DM. Results of the execution are stored in the Execution Log. Note that the UAL code for
generating the execution log is added in the DSM and BSMs for this purpose. The second
step (S2A2) automatically analyzes the generated execution log to identify errors and obtain
objective uncertainty measurements such as the frequency of the occurrences of a transition
ina BSM. If an error is obtained, manual correction and completion of BSMs (S2M1), based
on the analysis results obtained in S2A2 are then required. Sequentially, UncerTolve
automatically establishes the link with Eclipse OCL (S2A3). The process of identifying

errors continues until no error is identified, in which case UncerTolve automatically adds

discovered objective uncertainty measurements to the BM (S2A4). Notice that the whole
process of keeping updating the BM (V1) is continued until the validation is finished. At this
moment, the BM (V2), along with the Executable BM (V2), DM (V2) and Executable DM
(V2) are generated for S3 to take them as input to evolve BM (Fig. D-11). In the rest of the

section, we discuss the key steps of S2.

6.2.1 Analysis of Errors and Fixing Models (S2A2, S2A3, and S2M1)

In S2A2, UncerTolve systematically and automatically checks the execution log for
various types of errors. We classify errors into two high-level categories: Syntactic and
Semantic errors. Syntactic errors are related to missing, incorrect, and redundant model
elements in the BM and DM. For example, a redundant state means that its state invariant is
subsumed by the state invariant of another state. A semantic error occurs when the models
are syntactically correct, but the semantics of the models introduced using the UAL code
have logical errors.

We proposed a set of heuristics for the validation purpose (i.e., tolveR-E, 0) in
UncerTolve. We provide below a subset of tolveR-E as examples:

O 1. If the state invariant of a state in a BSM evaluates to be false, then it leads to three
possible fixing scenarios: adding a new state, changing an existing one, and/or deleting
an existing one.

O 2. If aguard condition evaluates to be false, then it leads to two options: adding a new
transition with an unknown trigger to an unknown state and changing an existing
transition.

0 3. Ifasignal is sent from the DSM to a BSM (which is supposed to transit to a known
state) but the signal is not received by the BSM, then this indicates that one or more
model elements (e.g., connector) are missing from the BM model.

O 4. Ifasignal is sent from the DSM to a BSM (which it is supposed to transit to a known
state) but the BSM transits to an unexpected state, it means that one or more model
elements (e.g., the expected state) are incorrect.

O 5. |If asignal is sent from the DSM to a BSM and more than one states of the BSM

become active in one region at the same time, this may suggest redundant states.

Regarding the running example, one can observe the following changes to the
StateMachine_B BSM of the BM (V1) (Fig. D-6): 1) adding new state B3 (along with the
definition of its state invariant as an OCL constraint), 2) adding two new transitions (between
states Start and B3) and 3) applying «BeliefElement» on the two new transitions. The
changes are reflected in the new version of the BSM (blue in Fig. D-14). This series of
changes were triggered because, in S2A2, UncerTolve identified that the real operational
data reflects the situation that from state Start, under the condition of times=4, the systems

ends up at the B3 state.

«BeliefElement» stateMa;chine_BJ

Start
«CheckPropertyAction» Bl
{times < 3 and (not active}} [times < 3] «CheckPropertyAction»

InDUt[DWd :5tring) «BeliefElement» {times <3 and active}
[times = 3] when[active]/ |
reset() bport.send(new oM B1.2 H
B2A_Activate());)
B3 Bl
CM B1.3 l
_/ " «BeliefElement» ——

when[times = 4] AdminCancel()/bport.send{new

«BeliefElement» B2A_Cancel(});
whenftimes = 31 reset() AZB_Info(x_:String, y_:String)/
OM B1.1 B2 updateXy(msg.x_, msg.y_);
«CheckPropertyActions
¢CheckPropertyAct|on» | {times = 3 and (not OM BLI=7.4%
{times = 4 and (not active)} active)} OM BL2=92.1%

OM B1.3=0.5%

Fig. D-14. Belief State Machine of B (V2.1)

As discussed in Section 4, OCL constraints are used to specify state invariants (serving
as test oracles) and guard conditions, which are for generating test data for the input
parameters of associated triggers. Based on the real operational data, these OCL constraints
are validated by executing the executable BM and as the result, new constraints may be
added or existing ones are changed by a user based on the suggested actions provided by
UncerTolve. For example, as shown in Fig. D-14, a new OCL constraint is added to state B3

as its state invariant.

6.2.2 ldentifying Objective Uncertainty Measurements (S2A4)

UncerTolve analyzes the execution log and calculates the frequency of traversing a state
or transition, based on which it defines an objective uncertainty measurement for the state or
transition. Especially for transitions, UncerTolve calculates conditional probabilities of the

transitions leaving from the same state. For example, as shown in Fig. D-14, the

StateMachine_B BSM of the BM (V2) contains three objective uncertainty measurements
(i.e., OM B1.1, OM B1.2 and OM B1.3). Note that OM means Objective Measurement and
encoding of BX.Y means that the X round of the derivation of the objective uncertainty
measurement for the Y element with «BeliefElement» applied. OM B1.2=92.1% implies that
based on the real operational data, the probability of transiting from Start to B1 via the
transition is 92.1%. Note that the subjective uncertainty measurement for this transition was
initially defined as ‘Unlikely’ by the modeler (Fig. D-6). In this case, the objective
uncertainty measurement conforms to the subjective uncertainty measurement. In the case
that a nonconformity is observed, UncerTolve alerts the modeler, but the evolving process
of the models continues, as in steps S3 and S4, the objective uncertainty measurements might
be updated, which provides more evidence to the modeler. The modeler can then decide
whether or not to adjust her/his belief on the subjective uncertainty measurement in the next
or future rounds of S2. Notice that more real operational data used in the evolving process
leads to the higher precision of derived objective uncertainty measurements.

Intermediate versions of the subjective and objective uncertainty measurements can be
saved such that different types of analyses can be performed and eventually advanced test

generation strategies can be derived, which is one of the items of our future work.

6.3 Evolve Belief State Machines with Dynamic Invariant Analysis (S3)

In the first step (S3A1), UncerTolve executes the Executable BM (V2), together with the
real operational data in the Daikon tool, which produces a set of invariants (Fig. D-15). In
S3A2, UncerTolve automatically converts Daikon invariants into OCL constraints. The
obtained OCL constraints are then taken as the input of S3M1/A3 to evolve the BM (V2) to
BM (V3). UncerTolve implements a set of heuristics for this step (see details in Appendix
D), some of which are listed below as examples:

Problem 1. If an invariant inferred by Daikon supersedes an existing constraint, then
there are three options for the modeler to manually evolve the models: 1) keep the
original constraint, 2) split the original constraint such that one or more states
(transitions) are newly introduced, or 3) keep the original state (transition) but

update the constraint.

Problem 2. If an invariant inferred by Daikon subsumes a set of existing constraints
(named as EConstraints), there are three options for the modeler to manually
evolve the models: 1) keep things unchanged (if the invariant inferred by Daikon
is irrelevant), 2) merge the invariant inferred by Daikon with a set of existing states
and transitions, corresponding to EConstraints, 3) create a composite state to group
a set of existing states and transitions that are associated to EConstraints.

S3: Evolve Belief Test Ready Model (BM) with Dynamic Invariant Analyst

«Javan «datastorex» «datastore»
Executable BM (V2) 9 Invariants OCL Constraints
E [] []
«wdatastores S53A1: Execute Invariant S53A2: Convert Invariants 53M1/A3: Evolve the BM
Real Operational Data Inference Engine(Daikon) to OCL Constraints (VZ) to BM(V3)

«UML, UUP, UAL, OCL, UTP V.2»
BM (V3)

«Javan
Executable BM (V3)

*S3A1 - manual action; S3A2 -- automated action; S3M1/ A3 - semi-automated action

Fig. D-15. The Structured Activity of Evolve BM with Dynamic Invariant Analysis

In the running example, the input of S3 is Fig. D-14, and the output of S3 is Fig. D-16. In
Fig. D-16, newly added and changed model elements are highlighted as green. Note that in
the figure that state B4 is newly introduced to the StateMachine_B BSM of the BM (V3). As
a result, two transitions are added between B4 and Start. Introducing the transition from Start
to B4 leads to the updates of a list of objective uncertainty measurements: OM B1.1-OM
B1.3. This is because the sum of the objective uncertainty measurements for all the four
transitions leaving state Start (to states B1, B2, B3, and B4) is 100%; therefore, introducing
a new transition triggers the change of OM B1.2 (=92.1% in Fig. D-14) to OM B2.2 (=91.0%
in Fig. D-16). The objective uncertainty measurement for the newly added transition from
Start to B4 is calculated as: OM B2.4 = OM B1.2 - OM B2.2 = 92.1% - 91.0% =1.1%. The
rationale behind the calculation is that in S3, UncerTolve, based on the real operational data,
evolves the state invariant of B1 by adding clause ‘a.active’ to it, which leads to the discovery
of the new state B4 (whose state invariant contains the clause ‘not a.active’, the negation of
the newly added clause of B1’s state invariant). Therefore, OM B2.2 and OM B2.4 are the
results of the splitting of OM B1.2. As also shown in Fig. D-16, the state invariants of states
B2 and B3 are also updated in S3 by introducing the same clause ‘not a.active’ to each of
the invariant. The objective uncertainty measurements of OM B1.1 and OM B1.3 remain

unchanged.

«BeliefElement» Sta'beMa;chine_BJ

B4 B4
) =1 «CheckPropertyAction»
[time:-él??l]lﬁlgrﬂgcngi: {times <3 and active and (not a.active)}

oM B2. 4| PdminCancel()/bport.send(new B2A Cancel()};

CheckP StaIT'tyAc‘tI ftimes < 3] «Checkpmgjéﬂym:‘tlon»
Lefietine L v Input({pwd_:Stri :
{times < 3 and (not Input(pwd_iString) «geliefElement» {times <3 and active and

active) and (not a.active)} |”) E;f;'ﬁﬁ s:ni](r‘;'Ve:‘:n[aﬂtiVE]f a.active}

- , OM B2.2 -
= T W B2A_Activate()); 51
OM B1.3 I l
_/“<BeliefElement»

: - AdminCancel()/bport.send(new
when[times = 4
: @BeliefEFement» B2A_Cancel());
when[times = 3] reset() A2B_Info(x_:String, y_:String)/
B3 oM BL.1 - Bupdatex‘r(mag.x_, msg.y_);
«CheckPropertyAction» B2
{times = 4 and (not }‘"' Eﬁ;ﬁfgpﬂ?ﬁﬂf"' OM BL1="74%
active) and (not a.active)} active) and (not a.active)} OM B2.2 = 91.0%
OM B1.3=0.5%
OM B24=1.1%

Fig. D-16. Belief State Machine of B (V3.1)

7 Evaluation

In this section, we present the evaluation of UncerTolve as a proof-of-concept using the
industrial case study available to us as part of the project. The case study is called GeoSports
(GS) from the healthcare domain provided by Future Position X, Sweden?°. The GeoSports
case study is about monitoring Bandy players for their performance and health conditions
during the game for early intervention and prevention. Coaches use data produced by the
GeoSports system to improve the performance of individual players and the team together.
We had access to real operational data of five real games that were used to evaluate
UncerTolve. The first versions of the BMs with uncertainty were developed with UncerTum,
together with the industrial partner during the four workshops hosted at its site. Below, we
present the results of evaluation according to each key activity (i.e., S1, S2 and S3, Section
7.1 to Section 7.3). Section 7.4 presents the results of the overall validation of the final
evolved models. Section 7.5 presents discussion and experiences. In 7.5, we report the effort
required to build the test ready model of the GS case study, and the possibility of adopting
UncerTolve in a commercial tool setting. The threats to validity are discussed in Section 7.7.

2 www.fpx.se

7.1 Results of Creating BM and DM (S1)

Table D-3 presents the descriptive statistics of the initial versions (V1) of BMs and driver
models for the case study. The #C column shows the total number of classifiers (including
classes, components, signals, interfaces and data types) defined in a BM/DM. The #R
column presents the total number of relationships among the classifiers such as associations
and compositions. The #RP column presents the total number of signal receptions specified
in all the class diagrams of a BM/DM. Similarly, for the composite structure diagram (CSD)
developed for a BM, we present the total number of ports (#P) and connectors (#CN). For
the state machines, we present the total number of states (#S) and transitions (#T). The #BE
column presents the total number of model elements in a BM, where the «BeliefElement»
stereotype was applied. For each driver model, we present the total number of classes and
components (#C), states (#S) and transitions (#T).

Based on the descriptive statistics shown in Table D-3, GS has the belief model with 62
classifiers, 56 relationships and 37 signal receptions in the class diagrams, 10 ports and 11
connectors in the composite structure diagram, and 82 states and 106 transitions in all the

state machines of its BM.

Table D-3. Descriptive statistics of the initial BMs (V1)* of the GS case study

Composite
Class Diagram Structure Diagram| State Machine #BE
#C #R #RP #P #CN #S #T
Belief Model (BM) 62 56 37 10 11 82 106 49
Driver Model (DM) 1 0 0 2 NA 5 11 NA

C: Classifiers, R: Relationships, RP: Signal Receptions, P: Ports, CN: Connectors, BE: Belief Elements

7.2 Results of Validation and Evolution via Model Execution (S2)

Table D-4 summarizes the results of S2 for the GS case study. We provide the total
number of missing model elements (#MS), incorrect model elements (#IN), and redundant
model elements (#RD). In addition, we report the total number of errors discovered in the
semantics of the models (#SM). We report these descriptive statistics for the model elements
of the BSMs of a BM: states (S), transitions (T), and elements with «BeliefElement» (BE)
applied. Similarly, we report the statistics for the DSM of a BM, communications between
the BSMs and the DSM and vice versa (BSM2DSM and DSM2BSM). In addition, we
present the percentage of the elements evolved as compared to V1 in the % row with the

following formula: (#MS - #RD)/(#V1 + #MS - #RD), where #V1 is the total number of the
model elements of a BM V1 (the initial version of the BM, comparison baseline).

Table D-4. Results of BM V2 and DM V2*

Belief Model Driver Model
BSM BSM2DSM DSM | DSM2BSM
#BE | #S |#T |#RP |#P |#CN |#S [#T | #RP | #P
#Missing 9 |11 |12 1 0| 1 |00 0 0
#Incorrect 0 3 13| 2 |1 2 0|1 0 0
Redundant 0 1 (2] 1|0 0 0|0 0 0
#Semantic Problems 0 2 1] 010 0 111 0 0
% 37% [11% [9% | 0% |0% | 8% |0% [0%| 0% 0%

Connéctors, BE" Beliel Elements. BEMEZDSM: BSM to DSM communication. DSVSESM: DSM (6 BEM
Eloments, SN Semantic ralems. 9: Percantag of evolved siements as compared to V1. - 0%

As it can be seen from Table D-4, UncerTolve evolved 37% of the belief elements, 11%
and 9% of states and transitions in the BM V2 as compared to the BM V1. Notice that the
loop inside the S2 activity (S2A1->S2A2->S2M1->S2A3->S2A1, Fig. D-14) was executed
seven times until no further errors were discovered. In addition, 8% of connectors for
enabling the communications from the BSMs to the DSM (BSM2DSM) were evolved as
shown in Table D-4.

Table D-4 also presents the errors discovered in the BMs and DMs of GS. For example,
as shown in Table D-4 (#SM row, DSM column in GS block), UncerTolve found two
semantic errors in its DSM, one error state, and one error transition. These two semantic
errors are located in the UAL code in the entry/do/exit activity of the error state and the
effect of the error transition. Notice that since the semantic errors were located in the UAL
code of the DSM, it does not result in the evolution of any BM model element. This is why
the % row in the DSM column for GS shows 0% for both #S and #T.

7.3 Results of Dynamic Inference (S3)

Table D-5 shows the results of activity S3 for the case study. The #EP column presents
the total number of model elements in the BSMs of a BM. These model elements were the
points of evolution (e.g., State S4 in Fig. D-16). The #RF column presents the total number
of refined model elements (e.g., state invariants in OCL and belief elements). The #ES

column presents the total number of states that were newly added to or deleted from BSM

V3 as the result of evolution. The #ET column represents the total number of transitions that
were added to and deleted from BSM V3 as the result of evolution. Finally, the #EB column
represents the total number of belief elements that were added to or deleted from BSM V3.
The % row for #EP provides the percentage of model evolution points as compared to the
total number of model elements in BSM, i.e., #EP/(#S+#T). Similarly, the percentage of #RF
is calculated as #RF/(#S+#T). For ES, the percentage is calculated as #ES/#S, for ET as
#ET/HT, and for EB as #EB/(#S+#T). In these formulas, #S and #T represent the total

number of states and transitions in BSM V3.

Table D-5. Results of the evolution of BSM V3*

. # Modified/ # Evolved
Model Element Type # Evo_lutlon Refined # Evolved # Evo_l_/ed Belief
points States Transitions
Elements Elements
5 56 8 18 32
% 2% 27% 8% 13% 29%

*#Evolved States: the total number of evolved states excluding the modified ones, #Evolved Transition: total
number of evolved transitions excluding the modified ones, #EB: total humber of evolved belief elements
excluding the modified ones

As shown in Table D-5, UncerTolve identified 5 model elements (2%) that can be
evolved, whereas 27% of the existing model elements were refined. In the case of states,
transitions, and belief elements, 8% of states, 13% of transitions, and 29% of belief elements
were added/deleted to BSM V3 as compared to V2.

7.4 Overall Validation

Once the evolved version V3 of the BSMs was obtained after the S3 activity, we verified
it with the real operational data by performing the S2 activity once again. Results are shown
in Table D-6. As one can see from the table, we found 11 validation problems in belief
elements, whereas we discovered 3 validation problems with states and 2 with transitions.
In total, we verified 99 belief elements. For states, we verified in total 100 states. Similarly,
for transitions, we verified in total 134 transitions, but we couldn’t verify 5 transitions once

again due to unavailability of real operational data.

Table D-6. Results of the validation of BSM V3*

Model Element Type #Belief Elements #States #Transitions
#Missing 0 0 0
#Incorrect 0 0 0

#Redundant 11 0 0
#Semantic Problems 0 3 2
#Model Elements 99 100 134

Table D-7. Overall results of the evolution across the versions (%)

Model Element Type | % Belief Elements | %States | %Transitions | %oEvolution Points
V1
V2 37% 11% 9% 19%
V3 29% 8% 13% 11%
V3 -11% 0% 0% 1%
M= (#V3 - #VDH#VI 51% 18% 21%

*V3’: Verified version of V3 with S2, M is (#V3’-#V1)/#V3’, - means not applicable.

Table D-7 shows the results of the percentage increase in the number of evolved model
elements of BM across the three versions (V1 to V3). In addition, we also show the
percentages for the verified version of V3, i.e., V3’. The last column shows the mean
percentage of increase in the number of model elements in V3’ as compared to V1 and is
calculated as M=(#V3’-#V1)/#V3’, where #V3’ is the number of model elements in V3’ and
#V1 is the number of model elements in V1. For EP, we also show the mean percentage of
increase in the evolution points in BM from V1 to V2, from V2 to V3 and from V3 to V3’.

As shown in Table D-7, in the stage of V3, 51% of belief elements, 18% of states, and
21% of transitions were evolved as compared to the first version (V1). For EP, 19% of new

evolution points were discovered in V2, 11% in V3, and 1% in V3’.

7.5 Effortto Build Belief Test Ready Models and Adoption of UncerTolve
The BMs of GS were initially built by Simula researchers (the first three authors of the

paper). These models were further confirmed with the industrial partner (last author of the
paper). First, the first author (second year Ph.D. candidate) created the first version of the
models, which were iteratively discussed with the second (a senior scientist) and third (a
chief scientist) authors. Second, two workshops (2 days each) were held to present and
discuss the models with the industrial partner to check their conformance with real scenarios.
Third, the Simula researchers modified the models and as a result, the final version of models
was produced that was used as input of UncerTolve (Fig. D-11). Table D-8 shows the rough
estimate of efforts for developing the models and presenting them to the industrial partner.
We classify effort in terms of how much time it took to build the models using standard

UML notations and additional effort to apply various profiles and model libraries defined in

UncerTum. As shown in Table D-8, for standard Class/Composite structure diagrams, it took
37.5 hours (about a week), whereas it took additional 3.5 hours to apply UncerTum profiles
and model libraries. For standard UML state machines, it took 52.5 hours and an additional
12.5 hours for UncerTum modeling. The last column shows additional effort required with
UncerTum as compared to standard UML, i.e., roughly 15%. The last row of Table D-8
shows the effort we spent to present the models to our industrial partner.

Table D-8. Efforts in terms of time (hours) to develop and present BMs

Class/Composite Structure State Machine % of Time
Diagrams
Standard UML UncerTum Standard UML UncerTum
Modeling Modeling Modeling Modeling
Effort to develop 37.5 3.5 52.5 12.5 15%
Effort to present 7.5 15 -

In the project [10], we have a dedicated tool vendor (Easy Global Market?!) responsible
for implementing research results including UncerTolve into Smartesting’s commercial
model-based testing tool called Certifylt?? and transfer of the results to the industrial
partners. Such adoption of the UncerTum, UncerTest, and UncerTolve is on-going and will

be completed by the end of the project.

7.6 Discussion and Experiences

In this section, we present discussion and our experiences of applying UncerTolve to the
industrial case study, based on the results presented in Sections 7.1-7.4.

Based on our experience of designing drivers for model execution and evolution, we
discovered that the design of a driver is highly dependent on the characteristics of a CPS.
For example, in our case, we have no direct access to its testing API or internal states. In
addition, GS doesn’t provide feedback to its users, i.e., Bandy players. It only records the
readings from the Bandy players and transmits these via radio connections to the central
system, where these data are processed. Because of these two characteristics of the CPS, the
driver for GS was simpler since there was less information available for GS. In addition, the

feedback from the CPS to the driver was not required to be modeled in GS. This might not

21 www.eglobalmark.com
22 www.smartesting.com/en/certifyit/

be the case for other CPS case studies where we may have direct access to testing APIs and
there is feedback from CPS, which will consequently lead to complex driver design.

In our case study, time events were used in models to capture timing aspects.
Consequently, this had an impact on designing BMs, DMs and model evolution. However,
GS only sampled data after a fixed interval of time and thus the design of BMs was simpler,
which may not be the case for other case studies that have much more complex timing
constraints.

In terms of the generalization of UncerTolve, theoretically speaking, as long as BMs of a
CPS is specified in UncerTum [9] (a generic modeling methodology to create BMs of CPSs
with subjective uncertainty) and real operational data are available, it is applicable to any
case study. Our proposed modeling methodology (reported in Section 6.1) to create
executable BMs is also generic and can, therefore, be tailored. In addition, our heuristics
rules to update models based on the results of validation of executable models (Section 6.2),
the process of calculating and abstracting objective uncertainty and reflecting them in BMs
(Section 6.2.2), and rules to evolve BMs (Section 6.3) are not specific to any case study and
are thus generic. At its current state, we assessed UncerTolve with one CPS case study from
the EU project as a proof-of-concept. In order to provide further evidence related to the
generalization of UncerTolve, we indeed need to conduct additional case studies, which will

be the focus of our near future work.

7.7 Threats to Validity

Internal validity threats in our context are due to the use of existing tools, including
Daikon and IBM Rational Simulation Toolkit. Notice that Daikon has been extensively used
in the literature for dynamic inference of invariants as we discussed in Section 2 and thus
the chances of results being impacted by its use are minimum. IBM Rational Simulation
Toolkit is a commercial product that we used for model execution and has a well-tested
implementation. Therefore, it is highly unlikely that the results were impacted by its use as
well. As part of an academic initiative by IBM, we were able to use fully functional version
free of any cost.

Currently, we evaluated UncerTolve with only one industrial case study; however, to
generalize the results, UncerTolve must be evaluated with other case studies. We plan to

conduct additional industrial CPS case studies in addition to using the same case study with
additional real operational data.

8 Conclusion

Given that Cyber-Physical Systems (CPSs) are tested with the assumptions on its internal
behavior, its operating environment, and potential deployments, it is necessary that belief
test ready models (BMs) developed to test the CPSs are continuously evolved using their
real operational data including observed uncertainties. Such evolved models can be used to
generate additional test cases to be executed on the current and future deployments of the
same CPS. To this end, we proposed a test ready model evolution framework called
UncerTolve. The framework was specially designed and developed to evolve BMs of CPSs
with explicitly captured subjective uncertainty. Our aim is to not only improve the quality
of BMs and evolve captured uncertainty, but also potentially discover unspecified
uncertainty.

UncerTolve used several methods to evolve the models and uncertainty measurements
including validation and evolution using model execution with real operational data
collected from the application of a CPS and evolving constraints with a machine learning
technique implemented in Daikon—dynamic invariant detection tool based on real
operational data. UncerTolve was evaluated as a proof-of-concept with one industrial CPS
case study from the healthcare domain, where we managed to evolve 51% of belief elements,
18% of states, and 21% of transitions. In the future, we are planning to use the evolved
models to generate additional test cases by defining new test strategies focusing on the
evolved parts of BM. Such test strategies will be implemented in our uncertainty-based test
case generation and minimization framework called UncerTest. In addition, we are planning

to conduct further case studies to evaluate UncerTolve.

Acknowledgment

This research was supported by the EU Horizon 2020 funded project (Testing Cyber-
Physical Systems under Uncertainty). Tao Yue and Shaukat Ali are also supported by RCN
funded Zen-Configurator project, RFF Hovedstaden funded MBE-CR project, RCN funded

MBT4CPS project, RCN funded Certus SFI and the EU COST action MPM4CPS.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Boshernitsan, R. Doong, and A. Savoia, “From daikon to agitator: lessons and
challenges in building a commercial tool for developer testing,” in Proceedings of
the 2006 international symposium on Software testing and analysis, Portland, Maine,
USA, 2006, pp. 169-180.

S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty, “IODINE: a tool to
automatically infer dynamic invariants for hardware designs,” in Proceedings of the
42nd annual Design Automation Conference, Anaheim, California, USA, 2005, pp.
775-778.

C. Ackermann, R. Cleaveland, S. Huang, A. Ray, C. Shelton, and E. Latronico,
"Automatic Requirement Extraction from Test Cases,”" Runtime Verification: First
International Conference, RV 2010, St. Julians, Malta, November 1-4, 2010.
Proceedings, H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. Pace,
G. Rosu, O. Sokolsky and N. Tillmann, eds., pp. 1-15, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discovering
likely program invariants to support program evolution,” IEEE Transactions on
Software Engineering, vol. 27, no. 2, pp. 99-123, 2001.

D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from
theory to practice: CRC Press, 2015.

S. Sunder, "Foundations for Innovation in Cyber-Physical Systems,” in Proceedings
of the NIST CPS Workshop, Chicago, IL, USA.

E. Geisberger, and M. Broy, Living in a networked world: Integrated research
agenda Cyber-Physical Systems (agendaCPS): Herbert Utz Verlag, 2015.

S. Hangal, and M. S. Lam, "Tracking down software bugs using automatic anomaly
detection,” in Proceedings of the 24th International Conference on Software
Engineering. ICSE 2002. pp. 291-301.

M. Zhang, S. Ali, T. Yue, and R. Norgre, An Integrated Modeling Framework to
Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty,

[10]

[11]

[12]

[13]
[14]
[15]

[16]
[17]

[18]

Technical report 2016-02, Simula Research Laboratory, 2016;

https:/ /www.simula.no/publications/integrated-modeling-framework-

facilitate-model-based-testing-cyber-physical-systems.

S. Ali, and T. Yue, "U-Test: Evolving, Modelling and Testing Realistic Uncertain
Behaviours of Cyber-Physical Systems," in Proceedings of the IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST).
pp. 1-2.

M. Zhang, S. Ali, T. Yue, and M. Hedman, Uncertainty-based Test Case Generation
and Minimization for Cyber-Physical Systems: A Multi-Objective Search-based
Approach, Technical report 2016-13, Simula Research Laborabory, 2016;

https:/ /www.simula.no/publications/ uncertainty-based-test-case-

generation-and-minimization-cyber-physical-systems-multi.

M. Daun, J. Brings, T. Bandyszak, P. Bohn, and T. Weyer, “Collaborating multiple
system instances of smart cyber-physical systems: a problem situation, solution idea,
and remaining research challenges,” in Proceedings of the First International
Workshop on Software Engineering for Smart Cyber-Physical Systems, Florence,
Italy, 2015, pp. 48-51.

OMG, "Unified Modeling Language (UML)," June 2015.

O. M. Group, "Object Constraint Language (OCL)," February 2014.

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, "Understanding
Uncertainty in Cyber-Physical Systems: A Conceptual Model," in Proceedings of the
12th European Conference on Modelling Foundations and Applications (ECMFA).
pp. 247-264.

OMG, "UML Testing Profile,” April, 2013.

C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: dynamic symbolic execution
for invariant inference,” in Proceedings of the 30th international conference on
Software engineering, Leipzig, Germany, 2008, pp. 281-290.

I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic, "Using dynamic
execution traces and program invariants to enhance behavioral model inference,” in
2010 ACM/IEEE 32nd International Conference on Software Engineering. pp. 179-
182.

https://www.simula.no/publications/integrated-modeling-framework-facilitate-model-based-testing-cyber-physical-systems
https://www.simula.no/publications/integrated-modeling-framework-facilitate-model-based-testing-cyber-physical-systems
https://www.simula.no/publications/uncertainty-based-test-case-generation-and-minimization-cyber-physical-systems-multi
https://www.simula.no/publications/uncertainty-based-test-case-generation-and-minimization-cyber-physical-systems-multi

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

T. Berg, B. Jonsson, and H. Raffelt, "Regular Inference for State Machines Using
Domains with Equality Tests,” Fundamental Approaches to Software Engineering:
11th International Conference, FASE 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, J. L. Fiadeiro and P. Inverardi, eds., pp. 317-
331, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

L. David, M. Shahar, and K. Siau-Cheng, “Mining modal scenario-based
specifications from execution traces of reactive systems,” in Proceedings of the
twenty-second IEEE/ACM international conference on Automated software
engineering, Atlanta, Georgia, USA, 2007.

D. Lo, and S. Maoz, “Scenario-based and value-based specification mining: better
together,” Automated Software Engineering, vol. 19, no. 4, pp. 423-458, 2012.

I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy,
“Using Declarative Specification to Improve the Understanding, Extensibility, and
Comparison of Model-Inference Algorithms,” IEEE Transactions on Software
Engineering, vol. 41, no. 4, pp. 408-428, 2015.

G. Carlo, M. Andrea, and M. Mattia, “Synthesizing intensional behavior models by
graph transformation,” in Proceedings of the 31st International Conference on
Software Engineering, 20009.

I. Krka, Y. Brun, and N. Medvidovic, "Automatic mining of specifications from
invocation traces and method invariants,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. pp.
178-189.

D. Lo, L. Mariani, and M. Pezze, "Automatic steering of behavioral model
inference,” in Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. pp. 345-354.

L. Davide, M. Leonardo, and P. Mauro, “Inferring state-based behavior models,” in
Proceedings of the 2006 international workshop on Dynamic systems analysis,
Shanghai, China, 2006.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

D. Lorenzoli, L. Mariani, and M. Pezze, "Automatic generation of software
behavioral models," in Proceedings of the 30th international conference on Software
engineering. pp. 501-510.

P. Tonella, C. D. Nguyen, A. Marchetto, K. Lakhotia, and M. Harman, "Automated
generation of state abstraction functions using data invariant inference,” in
Automation of Software Test (AST), 2013 8th International Workshop on. pp. 75-
81.

I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, "Inferring models of
concurrent systems from logs of their behavior with CSight," in Proceedings of the
36th International Conference on Software Engineering. pp. 468-479.

T. Berg, B. Jonsson, and H. Raffelt, "Regular Inference for State Machines with
Parameters,” Fundamental Approaches to Software Engineering: 9th International
Conference, FASE 2006, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006.
Proceedings, L. Baresi and R. Heckel, eds., pp. 107-121, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006.

O. Tony, H. Michael, F. Sebastian, H. Armand, P. Marc, B. Ivan, and B. Yuriy,
“Behavioral resource-aware model inference,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering, Vasteras,
Sweden, 2014.

G. Mark, and S. Zhendong, “Javert: fully automatic mining of general temporal
properties from dynamic traces,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, Atlanta, Georgia,
2008.

N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite state machine
models from software executions,” Empirical Software Engineering, pp. 1-43, 2015.
I. H. Witten, and E. Frank, Data Mining: Practical machine learning tools and
techniques: Morgan Kaufmann, 2005.

I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst, "Leveraging

existing instrumentation to automatically infer invariant-constrained models,” in

[36]

[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. pp. 267-277.

O. Raz, P. Koopman, and M. Shaw, "Semantic anomaly detection in online data
sources,” in proceedings of the 24th International Conference on Software
Engineering. pp. 302-312.

J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, "Perracotta: mining temporal
API rules from imperfect traces,"” in Proceedings of the 28th international conference
on Software engineering. pp. 282-291.

S. Hangal, and M. S. Lam, "Tracking down software bugs using automatic anomaly
detection,” in Proceedings of the 24th international conference on Software
engineering. pp. 291-301.

"U-RUCM: Specifying Uncertainty in Use Case Models," accessed 2017;
http:/ /zen-tools.com/rucm /U _RUCM.html.

OMG, "UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded
Systems," June, 2011.

"JGrapht," accessed 2016; http://jgrapht.org/.

B. Liu, Uncertainty theory: Springer, 2015.

"Eclipse OCL," accessed 2016;
http:/ /www.eclipse.org/modeling/ mdt/ ?project=ocl - ocl.

S. Ali, M. Z. Igbal, A. Arcuri, and L. C. Briand, “Generating Test Data from OCL
Constraints with Search Techniques,” IEEE Transactions on Software Engineering,
vol. 39, no. 10, pp. 1376-1402, 2013.

S. Ali, M. Z. Igbal, A. Arcuri, and L. Briand, "A Search-Based OCL Constraint
Solver for Model-Based Test Data Generation,” in 2011 11th International

Conference on Quality Software. pp. 41-50.
"IBM RSA Simulation Toolkit,” accessed 2016; http://www-

03.ibm.com/software/products/en/ratisoftarchsimutool.

http://zen-tools.com/rucm/U_RUCM.html
http://jgrapht.org/
http://www.eclipse.org/modeling/mdt/?project=ocl%23ocl
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool
http://www-03.ibm.com/software/products/en/ratisoftarchsimutool

Paper E

Uncertainty-wise Test Case Generation
and Minimization for Cyber-Physical
Systems: A Multi-Objective Search-
based Approach

Man Zhang, Shaukat Ali, Tao Yue

Journal paper that has been submitted to ACM Transactions on Software

Engineering and Methodology (TOSEM)

Abstract

Cyber-Physical Systems (CPSs) typically operate in highly indeterminate environmental
conditions, which require the development of testing methods that must explicitly consider
uncertainty in test design, test generation, and test optimization. Towards this direction, we
propose uncertainty-wise test case generation and test case minimization strategies that rely
on test ready models explicitly specifying subjective uncertainty. We propose two test case
generation strategies and four test case minimization strategies based on Uncertainty Theory
and multi-objective search. These strategies include a novel methodology for designing and
introducing indeterminacy sources in the environment during test execution and a novel set
of uncertainty-wise test verdicts. We performed an extensive empirical study to select the
best algorithm out of eight commonly used multi-objective search algorithms, for each of
the four minimization strategies, with five use cases of two industrial CPS case studies. The
minimized set of test cases obtained with the best algorithm for each minimization strategy
were executed on the two real CPSs. The results showed that our best test strategy managed
to observe 51% more uncertainties due to unknown indeterminate behaviors of the physical
environment of the CPSs as compared to the rest of the test strategies. Also, the same test
strategy managed to observe 118% more unknown uncertainties as compared to the unique

number of known uncertainties.

CCS Concepts. Software and its engineering — Software creation and management —
Software verification and validation — Software defect analysis — Software testing and

debugging.

Keywords. Uncertainty, Cyber-Physical Systems, Test Case Generation, Test Case
Minimization, Multi-Objective Search, Uncertainty Theory.

1 Introduction

Cyber-Physical Systems (CPSs) are destined to face uncertainty in their operation due to
close interactions with the physical environment [1]. Thus, classical testing methods (e.g.,
regression testing [2], conformance testing [3, 4]) must be extended to consider uncertainty

explicitly. There exist a few methods in the literature that explicitly take uncertainty into

account while designing methods for testing CPSs [5, 6]. We present, in this paper, one such
work but mainly focus on uncertainty-wise test case generation and minimization.

Our test case generation and minimization approaches are model-based, in the sense that
these rely on test ready models explicitly specifying subjective uncertainty, which is defined
as “lack of knowledge” [7, 8] about the expected behavior of a CPS in the presence of
uncertainty in its operating environment. Such test ready models are developed with the
Uncertainty Modeling Framework (UncerTum) [9, 10], which defines a set of UML Profiles
(e.g., the UML Uncertainty Profile (UUP)) and model libraries. With UncerTum, one can
create test ready models, called Belief Test Ready Models (BMs). These models are
composed of two types of UML diagrams: 1) Belief Class Diagrams (BCDs) capturing
testing interfaces (e.g., observable states and operations to send stimulus) and 2) Belief State
Machines (BSMs) modeling the expected behavior of a CPS with explicitly captured
subjective uncertainty. Note that both BCDs and BSMs are standard UML class diagrams
and state machines with stereotypes from the UUP applied.

We developed two test case generation strategies, named as All Simple Belief Paths (No
Loops) and All Specified Length Belief Paths on BSMs. These two strategies are inspired
from the ones reported in [11], but are extended for BSMs and considered various
uncertainty aspects such as the number of uncertainties in a test path and overall uncertainty
of a test path based on Uncertainty Theory [12]. Moreover, we take into account the
advanced features of standard UML state machines such as composite states, submachine
states, and orthogonal regions. Using the tool developed for our approach, test cases
satisfying a selected test case generation strategy can be automatically and systematically
generated.

Depending on the complexity of a CPS and a chosen test case generation strategy, the
number of generated test cases might be huge. Automatically executing all generated test
cases, especially for complex CPSs, is impractical since test execution may require setting
up special hardware, simulators, and emulators. Therefore, we need an approach that can
minimize the number of test cases to be executed and maximize the coverage of transitions,
meanwhile maximizing the following four uncertainty related objectives: 1) the number of
uncertainties covered, 2) the number of unique uncertainties covered, 3) the overall

uncertainty (computed based on the Uncertainty Theory [12]) of all the selected test cases,

and 4) the coverage of uncertainty space (from the Uncertainty Theory [12]). To achieve
this, we decided to benefit from the commonly-applied, eight multi-objective search
algorithms from the Evolutionary Algorithm, Hybrid Algorithm, and Swarm Algorithm
classifications of such algorithms [13]. Also, we used Random Search (RS) to assess the
complexity of the problem at hand, i.e., if our problem can be solved with RS, it means that
our problem is simple and doesn’t need a complicated search algorithm to solve it. Based on
the above four uncertainty related objectives, we defined four uncertainty-wise multi-
objective test case minimization strategies, which share the objectives of minimizing the
number of test cases and maximizing the transition coverage.

To assess the cost-effectiveness of the proposed test case generation and test case
minimization strategies, we performed an empirical evaluation using two industrial case
studies: GeoSports (GS) [14] (with one use case) and Automotive Warehouse (AW) [15]
(with four use cases). Regarding the comparison across the test strategies to discover
uncertainties in the behaviors of CPSs, our best strategy managed to discover 51% more
uncertainties as compared to the rest of the test strategies due to unknown indeterminacy
sources in the physical environments of the two industrial case studies. Also, the same test
strategy observed 118% more unknown uncertainties due to unknown indeterminate
behaviors of the physical environments as compared to the already known uncertainties.

The rest of the paper is organized as follows. In Section 2, we briefly summarize
UncerTum [10] and the Uncertainty Theory. The overview of the proposed approach is
presented 3. In Section 4, we describe details of the test case generation and minimization.
The evaluation is discussed in Section 5, followed by the tool implementation (Section 6),

related work (Section 7) and conclusion (Section 8).

2 Background

Section 2.1 presents the Uncertainty Modeling Framework (UncerTum) [9, 10] for
developing test ready models to support Model-based Testing (MBT). Section 2.2 introduces
Uncertainty Theory [12], for calculating uncertainty related objectives, and Section 2.3

presents the running example.

2.1 Uncertainty Modeling Framework (UncerTum)

UncerTum [9, 10] was proposed to develop test ready models for enabling MBT of CPSs
in the presence of environmental uncertainty. UncerTum is equipped with specialized
modeling notations (named as the UML Uncertainty Profile (UUP)) for specifying
uncertainties. UUP is the core of UncerTum and UUP implements an uncertainty conceptual
model, named as U-Model [16]. U-Model was developed to understand uncertainties in
CPSs by defining, characterizing and classifying uncertainties and associated concepts (e.g.,
Belief, BeliefStatement, IndeterminacySource, Measure, and Measurement), and their
relationships at a conceptual level.

UncerTum additionally defines four sets of UML model libraries: Pattern, Time,
Measure, and Risk libraries, by extending the existing UML profile: Modeling and Analysis
of Real-Time and Embedded Systems (MARTE) [17]. The purpose of defining these
libraries is to ease the development of test ready models with uncertainty.

In summary, key notations used in UncerTum are standard UML state machines and class
diagrams with UUP stereotypes and the model libraries applied. Such diagrams are referred

as BMs. Details of UncerTum with examples can be found in our previous work [9, 10].

2.2 Uncertainty Theory

2.2.1 Probability Theory vs. Uncertainty Theory

Probability Theory is commonly used to measure uncertainty based on a long-run
experiment [18]. However, in the context of testing, it is quite common that observed data
is not ready (i.e., being “close enough to the long-run frequency” [18]) at the initial stage of
a test design for enabling MBT, due to, for example, economic reasons and/or technical
difficulties [18]. Therefore, Probability Theory is not ideal for measuring uncertainty in such
a context to guide the testing phases, e.g., test design, test execution, and test results.
Although we acknowledge that there exist testing techniques (e.g.,[19, 20]) that are built on
Probability Theory that are described in the related work section of this paper.

Uncertainty Theory is an attempt for weakening the prerequisite of applying Probability
Theory [18]—not having sufficient observed data for developing an uncertainty-wise MBT
technique. Uncertainty Theory is defined by Liu [12] as “a branch of mathematics for

modeling human uncertainty” to deal with uncertainty in the situation of lacking observed

data [18]. Notably, Uncertainty Theory has been applied to solve various problems,
including optimal control [21], optimal scheduling (the train timetable problem [22]), risk
assessment [23] and the maximum flow problem of the network [24]. In Uncertainty Theory,
uncertainty is considered as the degree of the belief of a belief agent about a particular
“thing,” estimated by one or more domain experts (i.e., the belief agent) [12, 18]. This
definition well fits the situation in the test design phase. Notably, our definition of
uncertainty in U-Model [16] conforms to this definition, on which UncerTum was proposed.
Therefore, our testing technique UncerTest being presented in this paper is established on

Uncertainty Theory.

2.2.2 Summary of Uncertainty Theory

Uncertainty Theory defines a term called Uncertainty Measure (UM), which captures a
specific uncertainty value (a number) related to an event. This number assigns the belief
degree [16] of a belief agent [16] to the event, to indicate her/his confidence about the
occurrence of the event [12]. UM is represented as the M symbol. As Liu suggested in [12],
M respects the following three axioms:

Axiom 1. (Normality) M (TI") = 1, (T is the universal set).

Axiom 2. (Duality) M{A} + M{A°} = 1, where A shows a particular event, whereas A°
shows all the elements in the universal set excluding A.

Axiom 3. (Subadditivity) M{U;2, A;} < X2, M{A;} (every countable sequence of
events A4, Ay, ...).

Below, we define Uncertainty Space and the related theorem, which are relevant to our
work. Readers may consult [12] for more details about the theory.

Uncertainty Space: A triplet (T, £, M), where T is the universal set, £ is a o-algebra [37]
over I', and M is UM.

Theorem: Let (I, Ly, M}) be uncertainty spaces and Ay, € £, fork = 1,2,... n. Then
Ay, A,,... A, are always independent of each other if they are from different uncertainty

spaces.

2.3 Example of the Application of UncerTum and Uncertainty Theory

This section presents a running example of the application of UncerTum and Uncertainty
Theory. The example will also be used in the rest of the paper to explain various concepts.

«BeliefElement»StateMachine

Region1
N — = Simple Path — = Simple deep Path

«BeliefElement» 52 - .
-uncertainty: U1=(S1,T2,52) — > deep Path (notsimple)

timefield: Future

kind: Occurrence
referredCause: T2
measurement: 0.8
«BeliefElement» 53

- uncertainty: U2 = (51, T2,53)
timefield: Future

kind: Occurrence
referredCause: T2
measurement: 0.2

USP(S1, T2) = {U1, U2}

Region2

«Cause»

- «BeliefElement»
| e
S8

Fig. E-1. Belief State Machines (BSMs) of the Running Example

Fig. E-1 shows a standard UML state machine of a CPS with UUP stereotypes applied.
The state machine is stereotyped as «BeliefElement» to indicate that it is a belief state
machine, i.e., test modeler lacks complete knowledge about at least one model element in
the state machine. The S2 state also has the «BeliefElement» stereotype applied to present
the situation that the test modeler («BeliefAgent») lacks the confidence that whether the CPS
being model will transit to the S2 state by theT2 transition from the S1 state. From State S1,
the transition T2 also has the chance to trigger the occurrence of State S3. Thus, two
uncertainties are captured in this case, Ul (S1, T2, S2) and U2 (S1, T2, S3). To model
uncertainty specified by UncerTum, the kind of uncertainty, related cause, evidence, and
measurements are recommended to be specified in the testing phase [9, 10]. In terms of the
state machine (event-driven) [26], the kind of uncertainty is recognized as an occurrence,
which is caused by transition T2. The measurement of Uncertainty can be measured by the
different way. In this paper, we apply Uncertainty Theory to measure uncertainty, which
allows the modeler to specify the measurement of uncertainty from the subjective
perspective of test modeler(s) according to their experience and knowledge that can be
supported by evidence or not as discussed in Section 2.2. For example, Uncertainty Measure

of U1 is 0.8 as a measurement of uncertainty (in Fig. E-1), which implies that the test modeler

(«BeliefAgent») believes that the occurrence of the State S2 is possible to be triggered by
transition T2 from State S1 with the 80% confidence. Since U1 and U2 are oriented from the
same state S1 and triggered by the same transition T2, we recognize that U1 and U2 belong
to the same uncertainty space.

In the context of the testing phase, we developed strategies to generate abstract test cases
from test ready models developed with UncerTum. Accordingly, a set of uncertainty related
properties, such as Uncertainty Measure, are calculated for each abstract test case (Section
4.1.1), and those properties can be regarded as objectives of the test case minimization using

multi-objective search algorithms (Section 4.2).

3 Overview

An overview of UncerTest is presented in Fig. E-2. The only input for the test case
generation is BMs developed using UncerTum (Section 2.1). Two test generation strategies
are proposed in UncerTest: 1) All Simple Belief Paths (ASiBP): A set of all simple paths (no
loops) in a BSM, each of which contains unique states and transitions; and 2) All Specified
Length Belief Paths (ASIBP): A set of all paths in a BSM, the maximum length of each of
which can be set to any positive number. Each path is an abstract test case.

For each abstract test case, UncerTest automatically calculates UM (Def17), based on the
Uncertainty Theory (Section 2.2). Followed by that, it applies the Uncertainty-wise Test
Minimization approach as the number of automatically generated abstract test cases is often
large for any non-trivial CPS and it is practically impossible to execute all of them. Test case
minimization strategies of UncerTest can be formulated as multi-objective search problems,
and thus we opted for multi-objective search algorithms (e.g., NSGA-II) to address them. To
reduce a number of test cases and maintain the coverage of a test ready model, all the search
problems are developed, aiming to minimize the number of test cases and maximize the
transition coverage. Regarding uncertainty, we futher proposed four uncertainty related
objectives: 1) maximizing the average number of uncertainties covered by the selected test
cases, which aims to test more defined uncertainties; 2) maximizing the average percentage
of uncertainty space covered by the selected test cases, which aims to test more uncertainties
from the different uncertainty space; 3) maximizing the average UM of the selected test

cases, which aims to test the paths with high confidence; and 4) maximizing the average

number of unique uncertainties covered by selected test cases, which aims to test more
different defined uncertainties. A minimized set of abstract test cases is then converted into
executable test cases (Section 4.3) with the consideration of the source of uncertainties

(indeterminacy source), which are executed to test a CPS.

Uncertainty Measurement Calculation
(UM in Unecertainty Theory)

uses

-

Test Case Generation

Uncertainty-wise Test Case Minimization

«UncerTum»
i Abstract Test Case Generation «EMF» .
Belief Test Ready Models ‘ ASiBP: All Simple Belief Paths atouz| Abstract Test Cases | Multi-Objective Search Algorithm
(BCDs, BSMs, ODs) - [) um)
inputs | | ASIBP: All Specified Length Belief Paths Pro.1: #TC.L #Uncertainty T %Transition T

Pro.2: #TCJ]. %Uncertainty Spacef%Transition T

E; ble Test Case
L (Mapping with Test APIs)

Pro.3: #TCJ %Uncertainty’T%Transition T
I Pro.4: #TC.l Uncertainty MeasureT* %Transition "
ioutputs

«lavan

Executable Test Cases Test Case Execution
(Test Configuration & Seeded " - -
Indeterminacy Source) inputs Uncertainty-wise Test Verdict

Fig. E-2. Overview of UncerTest

4 Test Case Generation and Minimization

First, we present the test case generation approach of UncerTest (Section 4.1), followed
by its test minimization strategies (Section 4.2). Section 4.3 discusses the process of
executable test case generation; and Section 4.4 discusses our test execution and reporting

mechanisms.

4.1 Abstract Test Case Generation

UncerTest automatically generates abstract test cases from BMs, based on the test case
generation strategies that are applied on BSMs. In the rest of the section, we first provide
necessary definitions (Section 4.1.1), followed by the test case generation strategies (Section
4.1.2).

4.1.1 Definitions

To measure uncertainties specified by UncerTum and apply them and their measurements
(Section 2.3), we formalize related concepts (e.g., Path, UM) in Table E-1, and exemplify
them with the running example presented in Fig. E-1. In Table E-1, we formalized the state

machine (BSM), region, states, and transitions (Defl and Def2). To adopt Uncertainty

Theory in UncerTest to specify and calculate measurements of uncertainties, we further
define U (Def3), UM (Def4) and USP (Def5) in terms of the elements in BSM.

Table E-1. Definitions

Def# |[Name Definitions

Defl R Suppose a region of a BSM can be represented as a tuple R={is, ST, TR, FS}, where is is
the initial state of R; ST = {st; | 0 < i < nst} is the set of states (i.e., simple, choice,
submachine, and composite states), each of which may have a UUP stereotype (Section
2.1) applied; TR = {tr; | 0 < i < ntr} is the set of transitions, which may have UUP
stereotypes (Section 2.1) applied; and FS = {f’s;|0 < i <nfs} is the set of final points (i.e.,
final state, exit point, and terminate) in R.

Example: The Region 1 in the top of Fig. E-1isanR.

Def2 BSM A BSM can be viewed as a set of orthogonal regions [27]: BSM ={R; | 0<i<hr, VR; L VR;,
iff nr>1, i#j}. If a state is composite or a submachine, it is equivalent to a state machine.
Example: The state machine in Fig. E-1 is a BSM.

Def3 U Uncertainty (U) of (st,, tr, st,) is a situation whereby the belief agent does not have full
confidence that st, transits to st, through the tr, transition in the BSM.

Example: In Fig. E-1, U1 = (S1, T1, S2) indicates that the belief agent does not have full
confidence that S1 will transit to S2 by T2.

Def4 [UM(U) In Uncertainty Theory, U can be measured by Uncertainty Measure (UM(U)), which is a
belief degree ranging from 0 to 1 and is represented as UM(sty,tr,st,) =
M{(sty, try, st;)}.

Example: In Fig. E-1, UM = M{(S1, T2, S2)}=0.8 indicates that the belief agent
believes that S1 will transit to S2 by T2 with a probability of 0.8.

Def5 |USP Uncertainty Space (USP) of (st,, try,) is a triplet: USP (sty, tr,) = (I, £, M), where T'is
the universal set that contains all the options (i.e. (sty, try,st,1), (Sty, try, St;;)) of
transiting from st, via tr,, about which a belief agent hold beliefs; £ is a o-algebra over
I'; and M is the uncertainty measure of the elements in L.

Example: USP(S1, T2) is (T, £, M), where T = {(S1, T2, S2), (S1, T2, S3)}; L =
(6,{(51,72,52)},{(51,T2,53)},T}; M{@} =0, M{(51,T2,52)} =0.8,
M{(51,T2,53)} = 0.2 and M{T} =1.

Def6é |P A Belief Path (P) in a region of belief state machine (BSM) is a sequence of states and
transitions represented as P = (eg, a1 €y s Enp) where e, is is (the initial state of the
region); ey, is an element from FS, (e;, ;1) = {(sty, try)| i < np, i is even, st, is the
source state of of tr,}; and (e;, e;41) = {(t7, st,)|i < np,iis odd, st, is target state of
tr }.

Example: As shown in Fig. E-1, P, ;= (S0, T1, S1, T2, S3, T3, F1) is a path in Region 1.
In Region 2 (Fig. E-1), P, = (S5, T6, S6, T7, S7, T8, S8, T9, S7, T8, S8, T10, F4), which
can be seen as a sequence of (S5, T6, S6), (S6, T7, S7), (S7, T8, S8), (S8, T9, S7), (57, T8,
S8) and (S8, T10, F4).

Def7 |Us(P) Us in a belief path P presents a multiset?® [28] of uncertainties that appear along the P.
Example: U(P,) ={(S7, T8, S8), (S8, T9, S7), (57, T8, S8)}.

Def8 [USP(P)/ | USP inaP (e, ...,e;, ..., ey,) is a set of uncertainty spaces covered by it, which can be
NUSP(P) | represented as: USP(P)={USP;(e;, e;+1) | j < nusp, i < np, i is even}.The number of
Uncertainty Spaces (Def5) NUSP in a P (eo, wes €, vy €p) is the number of uncertainty
spaces that appear along the P.

Example: USP(P,) = {USP(S7, T8), USP(S8, T9)}; NUSP(P,) = 2.

2 A multiset is a generalization of the concept of a set that allows multiple instances of the multiset's
elements.

Def9

NU(P)/
NUU(P)

The number of Uncertainties (Def3) NU of a P = (eo, wer €4y wery €y) is the number of
uncertainties that appear along the P. Further, NUU represents the number of unique
uncertainties in the P.

Example: NU(P,) =3, NUU (P,) = 2.

Def10

UM(P)

Uncertainty Measure of a belief path (UM(P)) (eo, wer €f)) €p) is a belief degree, with
which a belief agent believes that e, arrives ey, by following the sequence of (e; _ en,_+).
It can be represented as UM(P) = M{N"2"2{(e,, 3141, €2142) 3}

Example: Along the path, two uncertainty spaces are encountered: USP(S7, T8) and
USP(S8, T9). UM(P,) is therefore calculated as M {{S5, T6,56} n ...n {S8,T10, F4}}.
Since each (st;, tr;.q, St;4,) is from different USPs, UM(P,) = M{S5,T6,S6} A ... A
M{58,T10,F4} =0.4.

Defll

PP

A Parallel Belief Path (PP) is a sequence of Ps represented as PP = {BP;|0 < i <
npp, VP, LVP;,i # j}.

Example: As shown Fig. E-1, P, , is a belief path in Region 1, and P, is a belief path in
Region 2. PP; = {P; ;, P,}

Def12

A Simple Belief Path (P) is a sequence of unique states and transitions represented as P =
(eo, wer €jy ey €y), where Ve; # Ve; (i # j).

Example: P,= (S5, T6, S6, T7, S7, T8, S8, T9, S7, T8, S8, T10, F4) is a path in Region 2,
and P, is not deep since S7 and S8 appear more than one times (Fig. E-1).

Def13

A Deep Belief Path (P') is a P that does not contain any composite or submachine states,
which can be represented as P’=(e0, s €y s Enp) where Ve; is not a composite or
submachine state.

Example: In Fig. E-1. Belief State Machines (BSMs) of the Running Example
, P, ,=(S0,T1, S1,T2,S2, T4, S4, T5, F1) is a belief path in Region 2, and P, , is not
simple since it contains the composite state S4. Further, we flatten the composite state
S4, which leads to two simple belief paths (i.e., (S4.0, T4.1, S4.1,T4.2,F2) and
(54.0,T4.1,54.1,T4.3,54.2,T4.5,F3)). We, thus, extend P, , with these two simple belief
paths into two deep simple paths (P, , ;and P; , , in Fig. E-1).

Def14

A test case t in a state machine is a deep belief path (P'), which can be parallel (PP") or
simple (P’).
Example: PBP; = {P, ;, P,} is a test case.

Def15

Us(t)/
NU/
NUU(t)

Us in a test case presents a multiset®® of uncertainties covered by it, calculated as:
npp . — ’

us(oy = [UR U, € = PP

UPP), t="P
uncertainties/unique uncertainties covered by it, calculated as: NU(t) =
SIONUR) t=PP' o (SECNUUGPR) €= PP
NU(P) t="P NUU(P) t="P
Example: Us(PP1) = {(S1, T1, S2), (S7, T8, S8), (S8, T9, S7), (S7, T8, S8)}, NU(PP;) = 4
and NUU(PP;) =3

. NU/NUU in a test case represents the total number of

Def16

USP(?)

USP in a test case presents a set of uncertainty spaces covered by it, calculated as:
npp) — ’
usp(e) = | Uiz USP(P), £ =PP"
USP(P), t=P
Example: USP(PP,) = {USP(S1, T1), USP(S7, T8), USP(S8, T9)}

Def17

UM(D)

UM of a test case t is a number, indicating the belief degree, with which a belief agent
believes that the test case will be executed successfully. UM is calculated as UM(t) =
{/\?”p UM(P,) t=PP

UM(P) t=P"
Example: TR(PBP1) = {T1, T2, T3, T6, T7, T8, T9, T10}

Def18

TR(t)

TR in a test case is the set of transitions covered by it, which can be represented as TR(t)
={tri| 0 <i <ntr}.
Example: UM(PBP1) = UM(P; ;) A UM(P,) =0.2 A 0.4 =0.2

Def19(T Atest set T is a set of test cases derived from a BSM using a test case generation strategy:
T ={t;]0 <i < nt}.

We also designed a class diagram shown in Fig. E-3 to conceptually describe how the
defined concepts are related to each other. From a BM, a test set can be generated, based on
the test case generation strategies. A test set is composed of a set of test cases, which can be
a path or a parallel path. A path is characterized by two properties: isSimple and isDeep. A
parallel path is a special type of paths, which should be composed of at least two paths. A
deep (simple) parallel path has all its contained paths being all deep (simple) paths. Each test
case is a deep path. A test case can be an abstract or executable test case. For each belief

path, one can obtain information such as values for NU, UM, and TR, as shown in Fig. E-3.

. AN
«interface» | TestCase |<— TestSet
ObtainUncertiantyinfo path | * referredTo : BeliefStateMachine
getU () : Uncertainty [*] kg--e-e — a
getNU () : Integer 2.* !55|mpl? : Boolean | AbstractTestCase | | ExecutableTestCase |
getUNU () : Integer isDeep : Boolean
getUM () : UncertaintyMeasure + paths x _
getUs () : UncertaintySpace [*] ParallelPath |.. {{self.isl;)eep i[nplifes self.paths—>forAII(lngep)} and
getNUS () : Integer (self.isSimple implies self.paths->forAll(isSimple))}

Fig. E-3. Key concepts of UncerTest and Their Relationships

4.1.2 Strategies

In the literature, some state machine-based test case generation strategies have been
proposed, including All Transitions, All States, and All Predicates [29-32]. For UncerTest,
we propose two test case generation strategies, inspired by Prime Path Coverage [11] and
Specified Path Coverage presented in [11].

All Simple Belief Path Coverage (ASiBP). Test set T satisfies ASiBP on BSM if and only
if any belief simple deep path P’ from initial state to one of final states in BSM is in T.

As said in [11], "One useful aspect of the simple path is that any path can be created by
composing simple paths". We propose ASiBP to cover all minimal paths based on which any
path-based coverage criterion can be defined by extending a path generated with ASIiBP (i.e.,
side trips and detours [11]). The test set generated using this strategy is the cross product of
all the possible simple deep belief paths across all the regions. For example, in Region 1,
there are two simple paths: P, ;= (S0, T1, S1, T2, S3, T3, F1) and P, ,= (SO, T1, S1, T2, S2,
T4,S4,T5, F1). P, ; is deep, but P, , is not. Further, we flatten the composite state S4, which
leads to two simple paths (i.e., (54.0, T4.1, S4.1, T4.2, F2) and (S4.0, T4.1, S4.1, T4.3, S4.2,

T4.5, F3)). We, thus, extend P; , with these two simple paths into two deep simple paths
(P{,,and Py , ,, Fig. E-1). The total number of deep paths in Region 1 is therefore three. In
Region 2, there are three simple paths that are also deep. In total, the number of test cases
generated with this strategy is 3 x 3 = 9. Table E-2 presents all generated test cases by
applying ASIiBP. Note that with ASIBP it is impossible to cover all uncertainties if any
uncertainty is in any existing loop (Fig. E-1). For example, as shown in Fig. E-1, the
uncertainty of (S8, T9, S7) is embedded in the side trip of (S7, T8, S8, T9, S7).

All Specified Length Belief Path Coverage (ASIBP). Test set T satisfies ASIBP on belief
state machine (BSM) if and only if any belief simple deep path P’ of length less than
specified length from initial state to one of final states in BSM is in T.

We propose ASIBP because it can be configured 1) for specific needs (e.g., saving cost
by generating less number of test cases), 2) to subsume All Transitions, All States, and All
Predicates when needed, 3) to generate a larger size of test set from a BM (which are more
diverse in terms of attached uncertainty information) to form a better pool for test
minimization, and 4) to subsume the All Uncertainty coverage, which we define as covering
all states and transitions with uncertainty. The test set generated with this strategy consists
of all possible deep belief paths with loops allowed, and all the lengths of these paths should
not be longer than the maximum allowed length, which is configurable (as discussed above)
and should be pre-defined before applying the test generation strategy. For example, one
way of defining the maximum allowed length for generating paths for a region is to calculate
the total number of states and transitions contained in the region. For example, in Region 2,
the maximum allowed length is 15.

After applying the test case generation strategies, each abstract test case t; in T (Def19)
has the following associated attributes: 1) the multiset of uncertainties in t; (Us(t;), NU(t;,),
Def15);); 2) the set of uncertainty spaces in t; (USP(t;), Defl16); 3) the uncertainty measure
(UM) of t; (UM(t;), Defl7); and 4) the set of unique transitions (Def18) in t;, TR;, =
{try’"|0 <j <ntry, }.

Table E-2. Example of Abstract Test Case Generation*

BSM #| Abstract Test Case Us | UM | NUSP
U and UM: 1| R1:(SO, T1, S1, T2, S3, T3, F1) U2 0.2 2
R2:(S5, T6, S6, T7, S7, T8.1, S8, T9, S9, T11, F5) ue

U1=(S1, T2, S2), | 2| R1:(S0, T1, S1, T2, S3, T3, F1) uz2 |02 |2
UM(U1) =0.8; R2:(S5, T6, S6, T7, S7, T8, S8, T10, F4) us
U2=(S1, T2, S3), | 3| R1:(S0, T1,S1, T2, S3, T3, F1) Uz |01 |2
UM(U2) =0.2; R2:(S5, T6, S6, T7, S7, T8, S9, T11, F5) U4
U3=(S7, T8, S8), | 4| R1:(S0, T1,S1,T2,S2,T4,S4.0,T4.1,54.1,T4.3,54.2, T45,F3, | UL | 0.2 3
UM(U3) =0.9; T5, F1) U3
U4=(S7, T8, S9), R2:(S5, T6, S6, T7, S7, T8, S8, T9, S9, T11, F5) U6
UM(U4) =0.1; 5| R1:(S0, T1,S1,T2,S2,T4,S4.0,T4.1,54.1,T4.3,54.2, T45,F3, | U1 | 0.2 2
U5=(S8, T9, S7), T5, F1) U3
UM(U5) = 0.4; R2:(S5, T6, S6, T7, S7, T8, S8, T10, F4)
U6=(S8, T9, S9), | 6| R1:(S0, T1,S1,T2,S2,T4,54.0, T4.1, 4.1, T43,54.2, TA5,F3, | UL | 0.1 |2
UM(US) = 0.6 T5, F1) U4
USP: R2:(S5, T6, S6, T7, S7, T8, S9, T11, F5)
USP(S1, T2) = 7| R1:(SO, T1, S1,T2,S2, T4,54.0, T4.1,S4.1, T4.2, F2) Ul | 0.2 3
U1 ! U2}_' R2:(S5, T6, S6, T7, S7, T8, S8, T9, S9, T11, F5) us
USP(S7, T8) U6
={uU3 U4} 8| R1:(S0, T1, S1,T2,S2, T4,54.0,T4.1,S4.1, T4.2, F2) Ul | 0.8 2
USP(éS Tg)’ R2:(S5, T6, S6, T7, S7, T8, S8, T10, F4) us
={U5 Lj6} 9| R1:(S0, T1, S1,T2,S2, T4,54.0, T4.1,S4.1, T4.2, F2) Ul | 0.1 2

' R2:(S5, T6, S6, T7, S7, T8, S9, T11, F5) U4

Summary: uncertainty coverage = 5/6 = 83.3%, uncertainty space coverage = 100%,
transition coverage = 17/18 = 94.4%

* R1 and R2 present two parallel test paths, generated from Region 1 and Region 2, respectively.

4.2 Uncertainty-Wise Test Case Minimization

4.2.1 Problem Representation

Depending on which test case generation strategy to apply, how it is configured (for
ASIBP) and how complex a CPS under test is, the number of generated abstract test cases
can potentially be very large and it would be practically impossible to execute executable
test cases generated from all of the abstract test cases within a limited time budget. It is,
therefore, important to minimize the number of abstract test cases to be executed based on
various attributes associated with each test case.

T={ti|0<i<nt}isatestsetderived from BSM using the UncerTest generation strategies,
each test case t has four uncertainty related attributed (Section 4.2.2). S = {S1, ..., Sms}
presents a set of potential solutions, i.e., a subset of T, where ms is the total number of
potential solutions and ms is calculated as 2™-1 except that the solution selects none. As the
number of generated test cases increases, the search space will increase exponentially. For
any test case minimization problem, the solution s contains a set of selected test cases,
formalized as Tsu ={tj| 0 <j <mt, tj € T} = T, where mt is the number of selected test cases.
Each solution s is characterized by a set of values of cost and effectiveness measures. In

UncerTest, we defined six objectives and four uncertainty-wise multi-objective

minimization problems with consideration of three aspects: cost, effectiveness, and

uncertainty.

4.2.2 Definitions and Functions of the Six Minimization Objectives
Six minimization objectives are defined in this section.
(1) Cost Measure
O1. Percentage of Test Case Minimization (PTM)
PTM measures the percentage of the selected test cases in a solution Ty,;, which is

calculated as:

mt

PTM = — x100%
nt

where nt is the number of test cases in T; and mt is the number of test cases in T,.

(2) Uncertainty-related Measure

0O2. Average Normalized Number of Uncertainties Covered (ANU)

ANU measures the average normalized number of uncertainties covered by the selected

test cases of a solution. For each test case t;" , the number of uncertainties covered

NUGD _ The ANU for

isNU(t;"), which can then be normalized [1] as: nor(NU(t;")) = NG

the selected test cases is calculated as:

iz nor (NU(¢;"))
mt
O3. Percentage of Uncertainty Space Covered (PUS)

ANU =

PUS measures the percentage of the total set of uncertainty spaces of a BSM covered by
the selected test cases of a solution. Suppose, the set of uncertainty space of the BSM is
USPsy = {US;| 0 < i < nusp} and the set of uncertainty spaces of the selected test cases is
the intersection of the uncertainty spaces across each test case t;' , USPg,;, =

N USP, ={US{| 0 < i < musp} € USPgy. PUS is then defined as:

musp

PUS =

X 100%[]

nusp

O4. Average Overall Uncertainty Measure (AUM)
AUM is the overall uncertainty measure of the selected test cases of a solution. Note that
for test case t;', UM(t;") is calculated using Uncertainty Theory (Section 4.1.1). The overall

average uncertainty is thus calculated as:

_ I umh)
mt

AUM

O5. Percentage of Unique Uncertainties Covered (PUU)

PUU measures the percentage of the total number of unique uncertainties covered by the
selected test cases of a solution. Suppose that the set of unique uncertainties in a BSM is
UUsy = {U;| 0 < i < nuu} and the set of unique uncertainties of the selected test cases is
the interaction of the unique uncertainties across each test case t;' , UUgy =

N UV, ={U]] 0 <i < muu} S UUsy, then PUU is calculated as:
muu
PUU = —— x 100%
nuu

(3) Effectiveness Measure

O6. Percentage of Transition Coverage (PTR)

PTR measures the percentage of the total number of transitions in a BSM covered by the
selected test cases of a solution. According to Def1, ntr is the total number of transitions in
a BSM. Suppose that mtr is the number of transitions in the selected test cases (the size of
the interactions among the transition sets of each selected test case t;', TRy =

NI TR, ={tr/| 0 < i < mtr}). PTRis calculated as:

mtr
PTR = — x 100%
ntr

4.2.3 Uncertainty-wise Test Case Minimization Problems

To reduce the number of test cases to execute and maximize the coverage of transitions
in test ready models, PTM and PTR are the necessary objectives for test case minimization.
Further, we defined the following four test case minimization problems that minimize PTM,
maximize PTR, and at the same time achieve four distinct uncertainty-related concerns.

Problem 1. Search for a solution T, to achieve: 1) low PTM; 2) high ANU; and 3) high
PTR. We defined Problem 1 to select the minimum number of test cases to cover the
maximum number of known uncertainties possible. We aim to observe the reaction of the
CPS in the presence of maximum uncertainties with the minimum possible test cases.

Problem 2. Search for a solution T, to achieve: 1) low PTM; 2) high PUS; and 3) high
PTR. We defined Problem 2 to select the minimum number of test cases to cover at least one
uncertainty from each uncertainty spaces. We aim to observe the reaction of the CPS in the

presence of uncertainties from all known uncertainty spaces with the minimum possible test
cases.

Problem 3. Search for a solution T,,;, to achieve: 1) low PTM; 2) high AUM; and 3) high
PTR. We defined Problem 3 to select the minimum number of test cases to maximize the
coverage of the parts of the system with high degree of confidence.

Problem 4. Search for a solution Ts,,;, to achieve: 1) low PTM; 2) high PUU; and 3) high
PTR. We defined Problem 4 to select the minimum number of test cases to maximize the
coverage of different uncertainties. We aim to test the behavior of a CPS under diverse

uncertainties with the minimum number of test cases.

4.3 Executable Test Case Generation
In our context, generating executable test cases from abstract test cases (Section 4.1) is
mainly concerned with how to enable indeterminacy sources (i.e., sources of uncertainties)

that are specified as part of the test ready models and how to generate test data.

4.3.1 Enabling Indeterminacy

Since we focus on testing a CPS in the presence of environmental uncertainties, we need
to introduce uncertainties in the physical environment that lead to uncertain behaviors of the
CPS. To achieve this, we need to model such environmental uncertainties (named as
“Indeterminacy Sources” for being more precise) in the environment that lead to observe

uncertainties in the CPS.

* +relatedindSpecs &
«enumeration» ametaclass» ametaclass» ametaclass» ametaclass» ametaclass» | "
EnablePattern Behavior Operation Classifier Property i IS Uncertainty
Random ¥ v + enabled | kind : UncertaintyKind
Always [— . from : String
Measured wstereotypen + Spec field : TimeField
N «wstereotypes I lifeTime : String
ever DEENAEER 1| Indeter y ce g)
IndeterminacySourcelnput . Iocality : String
natture ; | ninacyiature wstereotypen indeterminacySource : String
- description : String IndeterminacySpecification cause : String
wg;:‘:r:?,::iw - IndeterminacyDegree : indeterminacyDegree : Measurement effect : String
*enumerations) - isExpected : Boolean pattern : String
Random SelectSpecification + jtriggeredBy + triggeredBy T risk : RiskLevel
. . h e
TS:{_P:::?OUjS All . triggeredBy IndeterminacySourcelnput A riskLevel : String
Specified Random wmetaclasss «PrefileConstraint» enablePattem : l_EnabI:r-:atta:n .
P Specified Element {self.triggeredBy.getAppliedStereotype('U . pe ition : Select3p
UP::indeterminacySourcelnput)<>null} findPosition : FindPosition

Fig. E-4. Profile Diagram of IndeterminacySource (Partial)

Fig. E-4 shows part of the UUP profile (Section 2.1) for modeling indeterminacy sources.
We provide a set of options to model indeterminacy sources, e.g., as a UML Operation and

a constraint specified in Object Constraint Language (OCL) [33]. An indeterminacy source

always has 1.* indeterminacy specifications, i.e., «IndeterminacySpecification»
(conditions) that must be true for an indeterminacy source to occur.
«IndeterminacySourcelnput» specifies the action that triggers the occurrence of
«IndeterminacySource».

It is possible to model these indeterminacy-related concepts in different ways. Therefore,
to ease the modeling process, we summarize our recommendations for applying this part of
the profile in Table E-3, based on our experience. For example, in the first situation (as
described as Smil in Table E-3), we recommend modeling an indeterminacy source as a
UML Property, when states of a CPS or its environment can be directly accessed and are
indeterminate. For example, as shown in Fig. E-5, the batteryStatus attribute in the Alarm
class is an indeterminacy source. Its indeterminacy specification is modeled as an OCL
constraint: ““self.batteryStatus = BatteryLevel::Low™, whereas it can be triggered by
setLowBattery() (the indeterminacy source input). Fig. E-5 also shows that «BeliefElement»
is applied to the Alarm Not Ringing state and it is linked to the indeterminacy source of
batteryStatus (via the Referred Indeterminacy Source attribute of «BeliefElement») to
signify that it is one of the sources that lead to the uncertainty associated with the Alarm Not
Ringing state.

Note that for the first and third situations (S1 and S3 in Table E-3), we recommend
specifying an indeterminacy source input either as an Operation without parameters (Op1)
or as an Operation with parameter(s) constrained with a OCL constraint (Op2). Also, for
Smil and Smi3, an indeterminacy source can be specified as a property (R1) or constraint
(R2). If it is R2, its corresponding indeterminacy specification(s) can then be simply
specified as FALSE by default and must be switched to TRUE to enable the related

indeterminacy source.

Table E-3. Recommendations For applying the Indeterminacy Source part of the UUP profile

|Stereotype Applied [Base Element
S1: States of the environment of the CPS are indeterminate, such as the batteryStatus example shown in Fig.
E-5 and described in Section 4.3.1.

R1 [|«IndeterminacySource» Property
«IndeterminacySpecification» Constraint
Opl «IndeterminacySourcelnput» Operation
Op2 «IndeterminacySourcelnput» Operation, Constraint
R2 [|«IndeterminacySource» Constraint
«IndeterminacySpecification» FALSE (default)

Opl «IndeterminacySourcelnput» Operation
Op2 «IndeterminacySourcelnput» Operation, Constraint

S2: Input data is indeterminate.

R1 [|«IndeterminacySource» Operation
«IndeterminacySpecification» Constraint
«IndeterminacySourcelnput» Constraint

S3: Occurrences of an event from the environment (e.g., “pressing the button’) are indeterminate.

R1 [«IndeterminacySource» Property
«IndeterminacySpecification» Constraint
Opl «IndeterminacySourcelnput» Operation
Op2 «IndeterminacySourcelnput» Operation, Constraint

R2 [|«IndeterminacySource» Constraint
«IndeterminacySpecification» FALSE (default)
Opl «IndeterminacySourcelnput» Operation
Op2 «IndeterminacySourcelnput» Operation, Constraint

In addition, we propose three mechanisms (i.e., EnablePattern, SelectSpecification and
FindPosition), discussed below, to enable an indeterminacy source associated with a specific
uncertainty, their corresponding indeterminacy specifications and inputs during test
execution.

EnablePattern provides four ways of enabling an indeterminacy source: 1) Random — the
indeterminacy source is introduced randomly (from the uniform random distribution) during
execution; 2) Always - the indeterminacy source is always enabled during execution; 3)
Measured - the indeterminacy source is enabled during execution by a specified
measurement, e.g., with a normal distribution; and 4) Never - the indeterminacy source is
never enabled during the execution. Choosing which option is dependent on how much
knowledge information (e.g., experience, historical data) one has about the system.

SelectSpecification provides three ways of selecting which indeterminacy specification(s)
of an indeterminacy source to be enabled during test execution: 1) All — all associated
indeterminacy specifications are enabled; 2) Random — enable a random number of randomly
selected specification(s) from all the specifications associated with the indeterminacy source
during test execution; and 3) Specified — the indeterminacy specification(s) specified with
the “enabled” attribute is enabled during the test execution. Similarly, which option to take
is highly dependent on users’ experience, knowledge and available historical data.

FindPosition is about finding a position of a path generated by the UncerTest abstract test
case generation strategy, in which an indeterminacy source should be enabled. We define

four options for FindPosition: 1) Random - the position is generated randomly; 2)

Any_Previous — the position can be any previous position before the occurrence of the
associated uncertainty; 3) Just_Previous — the position is exactly the position right before
the occurrence of the associated uncertainty; and 4) Specified — the exact position is modeled
in the test ready model. Option 1 is recommended when we have no particular preferences
or guidance. Option 2 is recommended when one wants to test, if possible, whether the
uncertainty is actually due to the indeterminacy source enabled. Option 3 should be used
when one wants to know whether the occurrence of the uncertainty is due to its previous
step. Option 4 should be used when one has a specific position in mind, based on for example
previous experience or historical data.

Note that the three mechanisms can be configured by users to form a concrete strategy
(as part of an overall test strategy) for enabling an indeterminacy source associated with an
uncertainty and all or part of its associated indeterminacy specifications, at a particular
position of a path, which is eventually transformed into executable test cases and executed.
In Fig. E-5, we show an example of such configurations for enabling the indeterminacy
source of batteryStatus, that is, the SelectSpecification::Specified indeterminacy
specification (i.e., Low Battery) should be enabled by following the EnablePattern::Random
pattern at the FindPosition::Any_Previous position during the execution.

(Class Diagram)

SecuritySystem «enumeration:» Low Battery [N
isintruded : Bool BatteryLevel «IndeterminacySpecification» —|—{Property Value
monitor () High {self.batteryStatus = Triggered By 'S <<indeterminacySourceinput>> <Operation> setLowBattery ()|
aclivateAlarm () Medium BatteryLevel::Low}
releaseAlarm () Low] Property Value
alarm Nature % InsufficientResolution
i Specs I <<indeterminacySpecification>> <Constraint> Low Battery,
Alarm | <<indeterminacySpecification>> <Constraint> Normal Battery |
isRinging : Boolean f//
windeterminacySource» batteryStatus : BalteryLevel | ¥ & <<beliefElement>> <5tate> Alarm Not Ringing
«IndeterminacySourcelnput» setLowBattery () + Uncertainty
__________________________ 4 Measurement 0.05
T «Cause» Property Value
(State Machine) - Timefield i Future
Kind 12 Occurrence
@ activateAlarm () Reterred Cause % cccauses> <Transitions T1
Referred Indeterminacy Source IR <<i i > <Property> batteryStatus : BatteryLeve!
) " Related Ind Specs 1% <<indeterminacySpecification>> <Constraint> Low Battery
«BehlefEIemem» «BenelElerqen_ln Risk % Low
IntrusionDetected Alarm Not Ringing Enabled (& c<indeterminacySpecification>> «Constraint> Low Battery
Enable Pattern 2 Always
Find Position % Just_Previous
Select Specification 1 ¥ Specified

Fig. E-5. An IndeterminacySource Modeling Example for the SafeHome (Partial)

4.3.2 Test Setup and Test Data Generation
When generating executable test cases, test configuration and concrete test data are

needed. When applying UncerTum, test configuration is recommended to be specified as a

UML object diagram organized in a package. All the objects and their relationships in this
test configuration package will be instantiated before executing test cases.

First, test data generation is needed for triggering call events on transitions. In this case,
a guard condition (an OCL constraint) on a transition specifies the valid set of values, with
which the call event can be invoked. We used an existing test data generation tool called
ESOCL [34], which takes an OCL constraint as an input and generates a set of values that
satisfy the constraint. These values are then used as test data in executable test cases.

Second, test data might be needed to trigger occurrences of indeterminacy sources. For
any indeterminacy source input that is specified as a stereotyped Constraint or as a
stereotyped Operation with its parameters constrained with a constraint, we rely on the
EsOCL tool [34] to solve the constraint to generate test data. For any indeterminacy source
input specified as an operation with no any parameter, no data needs to be generated to

trigger the operation and hence the indeterminacy input.

4.4 Test Execution and Reporting

In addition to test verdicts for test cases, to evaluate occurrences of uncertainties during
test execution, we define uncertainty-wise test verdicts as shown in Fig. E-6 (the conceptual
model) and Table E-4 (definitions).

«dataType»
UncerVerdict
uncertainty : Uncertainty
kind : UncerVerdictKind

UncerTestCaseVerdict
kind : UncerTestCaseVerdictKind *

+ unSeq {ordered}

«enumeration»

UncerTestCaseVerdictKind «enumeration»
KnOccurred UncerVerdictKind
UkOccurred KnOccurred-With-InS
NotOccurred KnOccurred-Without-InS
Pa_ss KnNotOccurred-With-InS
Fail KnNotOccurred-Without-InS
Error . KnOccurred-UkInS
Inconclusive KnNotOccurred-UkInS
None UkOccurred

Fig. E-6. Uncertainty-wise Test Verdicts — Conceptual Model

As shown in Fig. E-6 an UncerTestCaseVerdict is modeled as a sequence of
UncerVerdicts for specifying a set of possible evaluations of a test case, including the

uncertainty aspect (e.g., known uncertainty occurred (i.e., KnOccurred)) and classical test

case verdicts (e.g., Pass). An UncerVerdict specifies a set of possible evaluations of a test
oracle in terms of a specific uncertainty. The seven kinds of uncertainty verdicts are listed
as the seven literals of enumeration UncerVerdictKind. Their definitions are provided in
Table E-4.

Table E-4. Uncertainty-wise Test Verdicts — Definitions of the Literals of the Enumerations (Fig. E-6)

Literal |Definition

UncerVerdictKind: It presents the kinds of verdicts for an uncertainty.

KnOccurred-With-InS Known uncertainty occurred under the occurrence of a specified indeterminacy
source.

KnOccurred-Without-InS |Known uncertainty occurred under the non-occurrence of any specified
indeterminacy source.

KnNotOccurred-With-InS|Known uncertainty did not occur under the occurrence of any specified
indeterminacy source, but at least one of alternative uncertainty occurred.
KnNotOccurred-Without- |Known uncertainty did not occur under the non-occurrence of any specified

InS indeterminacy source, but at least another uncertainty within the same
uncertainty space occurred.

KnOccurred-UKInS Known uncertainty occurred, but its related indeterminacy source is unknown.

KnNotOccurred-UkInS |Known uncertainty did not occur, and its related indeterminacy source is
unknown.

UkOccurred Known uncertainty did not occur, and none of the other uncertainties in the same

uncertainty space occurred.
UncerTestCaseVerdictKind: It presents the kinds of the verdicts for a test case.

KnOccurred At least one known uncertainty (with any of the three KnOccurred types of
UncerVerdictKind) occurred but no UkOccurred.

UkOccurred At least one UkOccurred.

NotOccurred All uncertainties are evaluated to be any of the three KnNotOccurred kinds of
UncerVerdictKind.

Pass The execution result of the test case, for which no uncertainty is specified,
adheres to the expectations.

Fail The execution result of the test case, for which no uncertainty is specified,
differs from the expectations.

Error An error is detected.

Inconclusive The test case execution result cannot be classified as Pass, Fail, Error,
KnOccurred, UkOccurred or NotOccurred.

None A test case has not been executed yet.

5 Evaluation

Section 5.1 introduces case studies. Section 5.2 presents research questions. Section 5.3
presents the design of our evaluation. Results are presented in Section 5.4, the overall
discussion is presented in Section 5.5, and threats to validity are presented in Section 5.6.

5.1 Case Study

To assess the cost-effectiveness of UncerTest, we selected two industrial CPS case
studies.

The first case study is GeoSports, and the system monitors the performance (e.g., speed
and position) and health conditions of players both individually and as a team during a game
with the ultimate objective of improving their performance. The GeoSports application that
we tested is deployed for Bandy (a type of ice hockey commonly played in northern Europe)
and uses the Quuppa system [35]. The testing infrastructure for Bandy is shown in Fig. E-7.
Instead of using real players to execute test cases, our industrial partner, Nordic Med Test
[36] has deployed a set of test rigs for replacing players. Each test rig has one Quuppa device
attached to it. The device communicates its position with one or more locators (antennas)
via Bluetooth connections and the locators receive those positions and send them to the
Quuppa Server (QPE). The access to the devices, locators, and the QPE server are available
as REST APIs. Also, a set of test APIs was implemented by the partner as REST APIs for
controlling the test rigs. Notice that we only tested the positioning system in this paper, i.e.,
collecting the positions from Quuppa tags and transmitting them to the QPE server via
locators.

The second case study is Automated Warehouse (AW) provided by ULMA Handling
Systems [15], Spain. ULMA develops automated handling systems for worldwide
warehouses of different natures such as Food and Beverages, Industrial, Textile, and Storage.
Each handling facility (e.g., cranes, conveyors, sorting systems, picking systems, rolling
tables, lifts, and intermediate storage) forms a physical unit, and together they are deployed
to one handling system application (e.g., Storage). A handling system cloud supervision
system (HSCS) interacts with diverse types of physical units, network equipment, and cloud
services. Application-specific processes in HSCS are executed spanning clouds and CPS
requiring different configurations. This case study implements several key industrial
scenarios, i.e., introducing a large number of pallets to the warehouse, transferring the items
by Stacker Crane. Instead of using real devices to test these scenarios, ULMA [15] and IK4-
Ikerlan [37] developed and provided relevant simulators and emulators (Fig. E-7). For
example, two handling systems are deployed at two different sites (Site 1 and Site 2). For

each site, the local superior monitors software and all types of devices and services and

upload the data to the cloud superior through the network. Each physical device is developed
as a simulator where the software, i.e., WMS and MFC, are deployed on. Also, a set of
emulators are developed for manipulating the real physical environment, e.g., putting a pallet
on the conveyor. To access the devices, software, and environment, the test APIs were
implemented by the partner for controlling the physical device, sending requests to the
software, and manipulating the physical environment. Further details on the case studies can
be consulted in [38].

(The Deployment of the GS Case Study)

Quuppa P05|t|on|ng System

Test API e e -
s ~\ r
Quuppa Rest API QPE Server -
GET /getInfoOfTag L= T - @ @
GET /getIinfoOfLocator - - kg
\ B
-) Rest APl v -~
) g [N = | | = |
Test Infrastructure
GET /getPosition
GET /getDistance
PUT /moveRig ST
PUT /setRigPoistion < = < ";I Test Rig | I Test Rig | o
L) Rest API Rest API == < |

Test Infrastructure (Physical Devices)

(The Deployment of the AW Case Study)

oS IE T Handling System (Cloud Solution)

) Handli itel
Test API .4_ — e andling System Site
ca
'S N N Wareh M t Soft
Handling System supemsar e

GET /getReadingOfBR \
GET /getStatusOfOrder re -P‘ <4 - !
PUT /executeOrder . -

5| Material Flow Controller (MFC) I‘
- S

Handllng System Site2 =7 \
5 A o ~ . T~
Test Infrastructure - \ ~ L / \

GET /getPalletLocation * - g / T~ .

PUT /setPalletLocation ! L : - \i

PUT /stopDevice \’ Test Infrastructure 4K

Site2 I Stacker Crane " Conveyor ” Barcode Reader (BR) | e
L. "y

> o Test Infrastructure (Emulators) Sitel
>

— - Test APls access to CP5 —— Test APIs access to Test Infrastructure

Fig. E-7. The Test Execution Solution of the GS and AW Case Studies

The descriptive statistics of the test ready models of GS and AW are given in Table E-5.
We selected one use case for GS and four use cases for AW. For each use case, we selected
the number of elements stereotyped as «BeliefElement» (#Belief), uncertainties (#U), known
indeterminacy sources (#IndS), known indeterminacy source specifications (#IndSpec),
states (#State), and transitions (#Transition). For AW, the percentage of uncertainties

specified in the test ready model is more than 50%, which reflects that more than 50%

behavior specified in the test ready model is uncertain. This value is higher than the one for
GS since the behavior and environment of AW is relatively complex, e.g., large number of
devices.

Table E-5. Descriptive statistics of the case studies

Case UC #Belief #U #IndS | #IndSp #State W#Transition | #U/#State | #U/#Transition
AW |AW1 |7 11 2 4 12 15 91.7% 73.3%

AW?2 |5 9 2 4 12 18 75.0% 50.0%

AW3 |6 10 | - 10 14 100.0% 71.4%

AW4 |7 8 |l 2 16 16 50.0% 50.0%
GS |GS1 |6 6 |1 2 17 21 35.3% 28.6%

- means unknown indeterminacy source

5.2 Research Questions

We aim to assess which combination of the two test case generation strategies and the
four test case minimization strategies is cost-effective. In total, we have five combined test
strategies. The results for the two test case generation strategies are reported in Table E-6.
First, test cases are generated from a BSM using ASiBP. With this strategy, the numbers of
generated test cases for the two case studies are small, which thus doesn’t require test case
minimization. The rest of the four strategies are based on test cases generated from a BSM
using ASIBP, followed by test case minimization (Section 4.2.3) based on the uncertainty
related strategies (Section 4.1.2): average normalized number of uncertainties covered
(Problem 1), percentage of uncertainty space covered (Problem 2), average overall
uncertainty measure (Problem 3), and percentage of unique uncertainties covered (Problem
4). For simplicity, we refer to these strategies as GMS1 (ASiBP), Str2 (ASIBP +Problem 1),
Str3 (ASIBP + Problem 2), Str4 (ASIBP + Problem 3) and Str5 (ASIBP + Problem 4) in the
rest of the paper. We selected eight commonly used multi-objective search algorithms from
the Evolutionary Algorithm, Hybrid Algorithm, and Swarm Algorithm classifications of
algorithms. Moreover, we used random search (RS) for the sanity check to determine if
complex multi-objective search algorithms are needed, or simply RS suffices.

Table E-6. Results For the Test Case Generation Strategies

Case uc Strategy #TC (nt) %Transition %UU
ASP 20 91.3% 100%
AWL AP 420 100% 100%
AW AW2 ASP 8 88.8% 100%
AMP 776 100% 100%

AW3 ASP 5 85.7% 80%

AMP 857 100% 100%

ASP 5 93.7% 100%

AWA AMP 296 100% 100%

ASP 5 71.4% 83.3%

GS GS1 AMP 1799 100% 100%

Based on our overall objective, we would like to answer the following research questions.

RQ1: How does the selected multi-objective search algorithms (e.g., NSGA-I1) compare
to RS in terms of solving uncertainty-wise minimization problems (S2—S5)?

RQ2: Which algorithm is the best among selected ones to solve uncertainty-wise
minimization problems (S2—S5) respectively?

RQ3: Which uncertainty-wise strategy (S1-S5) is effective to discover uncertainties in
the real CPS?

5.3 Design of the Evaluation

The design of our evaluation is shown in Table E-7. The table presents, for each research
question, which task we perform, which strategies are compared, which metrics (Metrics
column) are used, which statistical methods (Comparison Method column) are applied,
which algorithms are applied, and which case studies are used. Notice that, to decrease the
possibility of obtaining results by chance we ran all the algorithms 100 times for each case
study and each strategy [39]. We used the implementation of the eight selected multi-
objective search algorithms provided by jMetal [40] and used the following default
parameter settings: the Population Size of 100, the binary tournament for selecting parents,
and the simulated binary criterion for recombination. A crossover rate of 90% was used, and
mutation rate was polynomial with the rate of 1.0/n, where n is the number of the bit
representation of a solution.

Table E-7. Design of the Evaluation

Experiment . Comparison . Case
RQ Task Strategy |Metric Method Algorithm Study
Compare each Varaha and NSGA-II [41]
1 |algorithm with P|:I|'\I</I('(A;OI\IIB Da{g aand \eyolutionary [NSGA-II [42]
RS ANU (5t loensY | Algorithm ~ [MOCell [43, 44]
c n (Str2), |statistics SPEA? [45] AW
ompare ach |qy o syr5 | PUS (Str3), AL,), ,
pair of the AUM (Strd), |kruskal Hvbri CellDE [46] GS
. ybrid
2 multi- PUU (StrS5), PTR\wallis Test, |Algorithm ADYSS [47]
objective (All) Mann- ' GDE3 [48]
algorithms Swarm SMPSO [49]

Whitney U |Algorithm |
Test (p-value) |Random Search (only for RQ1)

Compare each UUDP, NUO,
3 |pair of the Str1-Str5| Uk, UKDDP,
strategies EOT

Simple

. The best algorithm
Comparison

For RQ1 and RQ2, we compared each pair of the algorithms using HyperVolume (HV)
[50] and the individual objectives that are relevant for each strategy. For example, O2 is only
valid for Str2. HV was selected based on the guidelines for choosing a quality indicator for
search-based software engineering problems that require multi-objective optimization [51].
Based on the guidelines for reporting results for search-based software engineering problems
[52], we chose Vargha and Delaney statistics (4;,) and the Mann Whitney U Test (p-value)
to compare the eight selected multi-objective search algorithms with RS for Str2—Strb5.

Results of test case generation for each case study with each test strategy are represented
in Table E-6. For Strl, the numbers of test cases generated with ASiBP for all the case studies
were small and didn’t require minimization. For Str2 — Str5, we ran each problem 100 times,
and thus we combined all the solutions from all the runs for comparison to answer RQ1 and
RQ2. To compare the performance of the algorithms, we designed a mechanism to rank all
the algorithms based on the A, values and p-values for each metric as shown in the rank
algorithm (Fig. E-8). Furthermore, we calculate the confidence for nine algorithms as shown
in Table E-8.

Rank Algorithm

input algos[], len({algos)>=2

output algos[], rank[]//rank[i] is the rank value of algos[il]
1 n <len(algos)

2 for i <« 1 ton

3 for j « i+l to n //sort algos|]

4 if better'({algos[i], algos[jl)

5 switch(algos,i,])

3] rank[1]=1;

7 for i « 2 to n //set rank values for algos|[]
8 if better® {algos[i-1]1, algos[i])

9 rank[i]=rank[i-1]+1;

10 else

11 rank[i]=rank[i-1];

L Function better(algol, algo2) compares algol with algo2. It returns the best algorithm based on the
following two conditions: 1) for HV, p-value<0.05 and A12>0.5; 2) p-value<0.05 and A12<0.5

Fig. E-8. Algorithm for Ranking
For RQ3, we picked the best algorithms (BA) for Str2—Str5 based on the results of RQ1
and RQ2, which were used to minimize test cases. The generated test cases for S1 and

minimized test cases for Str2 — Str5 were executed on the current deployments of the GS

and AW case studies as shown in Fig. E-7. The execution results for Strl — Str5 were

evaluated based on various cost, effectiveness, and efficiency measures as shown in Table

E-8.

Table E-8. Definitions of Metrics for Each Research Question

RQ

Metric

| Definitions

RQ1L
RQ2

A = {NSAG — 1I, NSGA — 111, MOCell, SPEA2, CellDE, AbYSS,GDE3,SMPSO, RS},

Str = {Str2,Str3,Str4, Str5}, Str2={PTM, ANU, PTR, HV}, Str3={PTM, PUS, PTR, HV},
Str4={PTM, AUM, PTR, HV}, Str5={PTM, PUU, PTR, HV}. Note that 1) 4 represents the kth
Algorithm, e.g. A; = NSGA-II; 2) Str; ; represents the jth objective of the ith strategy, e.g., Str; =
Str2, Stry; = PTM.

Rank of Algorithm for
the objectives of the
strategies

Rankari'j is the rank value of the 4, algorithm, for the jth objective of

Str; strategy, which is calculated as rank[k] in Fig. E-8. .

Confidence of Algorithm
for the objectives of the
strategies

Confidence of each objective of each strategy is to calculate the
percentage of being better than the other algorithms, which is

calculated as Confidencej’ij = (Rankj:j /Zn-1 Rankjg) X 100%.

Confidence of Algorithm
for the strategies

Confidence of each strategy is to calculate the average confidence of
each objective, which is calculated as Conf idencej,‘;

Croq Confidencejl"{"/ll) %X 100%.

RQ3

Effectiveness

uubp

Unique uncertainty detection percentage is calculated as UUDP =
NUUO/NUU, where NUUO is the number of unique uncertainties
occurred during the test set execution.

NUO [The number of uncertainties occurred during the test set execution,
NUO;,q [which includes the occurrence of the uncertainties with the occurrence
NUOykina |of their specified indeterminacy sources (NUO,,,4) or unknown
indeterminacy sources (NUOyyma)-
Error [The number of errors found during the test execution.
Uk The number of unknown uncertainties occurred during the test set
execution.
UkDP [Unknown uncertainty detection percentage is calculated as UkDP =
Uk/NUU.
Cost ET The execution time of the test set.
Efficiency NT The number of executed test cases.
EoT The efficiency in terms of time includes 1) EoTyy, is the efficiency of
EoTyyo [uncertainty detection calculated as EoTyyo = NUO/ET; 2) EoTy, is the
EoTyx |efficiency of unknown uncertainty detection calculated as EoTy; =

UK/ET.

5.4 Results and Analyses

In this section, we present results and analyses for the three research questions.

54.1

Results for RQ1
Recall that RQ1 focuses on comparing the eight selected multi-objective search

algorithms with RS based on the individual objectives, HV for (Str2—Str5) minimization

problems. Due to the large number of comparisons, the detailed results in terms of rank
values, p-values and A;, values are provided in the technical report corresponding to this
paper [53] and submitted supplementary material. The summarized results in terms of
confidence and risk (based on the rank of each algorithm) are presented in Table E-9 for
each case study. For Str2—Str5, for each use case, we can see that RS has the lowest
confidence to be the best algorithm (the Conf. column). These results suggest that our
problems couldn’t have been solved effectively with RS and thus the use of complex multi-

objective search algorithms is justified.

5.4.2 Results for RQ2

For RQ2, the detailed results of the comparison of each pair of algorithms (C5, i.e., 36
pair-wise comparisons) for each case study for Str2—Str5, in terms of rank values, p-values
and A;, values are provided in the technical report corresponding to this paper [53] and
submitted supplementary material. The summarized results in terms of confidence of each
algorithm, for each use case are presented in Table E-9. As shown in Table E-9, in terms of
confidence for Str2—Str5, SPEAZ2 is consistently the best, or the second best (only for three
instances). Based on the results, we recommend using SPEA2 with Str2—Str5 to find the

most optimal minimized test cases.

Table E-9. Confidence For Each Algorithm For Each Strategy and Each Case Study

Str. |[AW1 | AW2 | AW3 | AW4 | GS1 | Algorithm | AW1 | AW2 | AW3 | AW4 | GS1 | Str.

Str2 | 13% | 12% | 13% | 9% |12% | NSGA-II 13% 15% 14% 11% 14% | Str4
14% | 14% | 12% | 12% |15% | NSGA-III 13% 13% 13% 13% 13%
8% | 8% | 8% | 9% | 9% MoCell 9% 7% 7% 8% 8%

15% | 17% | 16% | 15% |15% | SPEA2 16% 17% 17% 16% | 16%
9% | 13% | 12% | 10% | 14% [ADbYSS 10% 10% 12% 10% 13%
8% | 5% | 7% | 8% | 7% CellDE 6% 5% 5% 7% 5%

14% | 10% | 10% | 15% | 10% GDES3 13% 10% 10% 15% 10%

14% | 15% | 17% | 14% | 12% | SMPSO 15% 16% 18% 14% 15%

5% | 5% | 5% | 7% | 6% RS 6% 5% 5% 7% 5%

Str3| 13% | 13% | 13% | 12% | 11% | NSGA-II 13% 13% 13% 11% 12% | Str5
13% | 13% | 13% | 12% | 13% | NSGA-III | 13% 13% 13% 11% 12%
8% | 9% | 9% | 9% | 9% MoCell 8% 9% 9% 9% 9%

14% | 15% | 15% | 13% |15% | SPEA2 13% 15% 15% | 13% | 15%
10% | 12% | 12% | 11% | 14% | AbYSS 10% 12% 12% 12% 13%
8% | 7% | 7% | 10% | 7% CellDE 8% 7% 7% 10% 7%
12% | 10% | 10% | 13% | 10% GDES3 12% 10% 10% 13% 10%
14% | 13% | 13% | 12% | 14% | SMPSO 13% 13% 13% 12% 14%
8% | 7% | 7% | 9% | 7% RS 8% 7% 7% 9% 7%

5.4.3 Results for RQ3

To answer RQ3, we chose SPEA2 to minimize test cases for Str2 — Str5 for the two case
studies and executed the minimized test cases. The test execution results (together with the
execution results for Strl) are provided in Table E-10. We compare Strl — Str5 based on the
cost, effectiveness, and efficiency measures (Table E-8). In terms of execution time (i.e., a
cost measure, presented in column ET (s), Table E-10), we can observe that Str2 took the
highest time to execute for all the use cases except for AW1, where Str4 took the highest

time to execute test cases.

Table E-10. Results For RQ3

UC |Str.|NT| PTR |ET (s)|[UUDP|NUO(NUO,,4| NUO x1na |UK| Err. | UKDP | EoTyyo | EoTy
/min /min
AW1|Str1| 20 |91.3%| 216 | 45% | 25 16 9 10/ O 91% 0.116 2.78
Str2(22 |100%| 291 | 45% | 36 23 13 13| 1 118% 0.124 2.68
Str3| 17 [100%| 244 | 45% | 30 18 12 11| 0 100% 0.123 2.70
Str4{20 | 96% | 519 | 36% | 29 15 14 16| 1 145% 0.056 1.85
Str5| 14 [{100%| 170 | 45% | 22 13 9 11 0 100% 0.130 3.88
AW?2|Strl| 8 |88.8%| 387 | 67% | 11 8 3 0| O 0% 0.028 0
Str2|106/100% | 2134 | 78% | 314 | 205 109 0| 4 0% 0.147 0
Str3| 20 [100%| 866 | 78% | 52 35 17 0 2 0% 0.060 0
Strd4| 54 (100%| 1114 | 78% | 148 97 51 0 3 0% 0.133 0
Str5/ 30 [{100%| 501 | 78% | 91 58 33 0 2 0% 0.182 0
AW3|Strl| 5 |85.7%| 3156 | 60% | 8 - - 0| O 0% 0.003 0
Str2(138/100% |99414| 100% | 955 - - 0 1 0% 0.010 0
Str3| 45 (100%(29147| 100% | 271 - - 0| O 0% 0.009 0
Str4| 92 |100% |54990| 100% | 568 - - 0 1 0% 0.010 0
Str5(47 |100% |30663| 100% | 305 - - 0| O 0% 0.010 0
AWA4|Strl| 4 |93.7%| 8 75% | 9 5 4 0| O 0% 1.089 0
Str2| 24 |100%| 155 | 75% | 296 | 163 133 0| O 0% 1.909 0
Str3| 2 [81% | 11 | 63% | 23 11 12 0| O 0% 2.116 0
Strd| 7 | 94% | 38 | 75% | 79 38 41 0| O 0% 2.105 0
Str5| 4 | 94% | 20 | 75% | 38 20 18 0| O 0% 1.913 0
GS1|Strl| 5 (71.4%| 88 | 33% | 2 1 1 0| O 0% 0.023 0
Str2(393| 95% [29300| 83% |1767| 569 1198 0| O 0% 0.060 0
Str3|177/100%|12107| 83% | 717 | 211 506 0| O 0% 0.059 0
Str4(203/100% (12717| 67% | 835 | 259 576 0| O 0% 0.066 0
Str5|174{100%|11428| 83% | 715 | 243 472 0| O 0% 0.063 0

In Table E-10, the nt column shows the number of test cases for each test strategy (Strl
— Str5). Recall from Table E-8 that the UUDP column shows the percentage of times that
the introduced indeterminacy sources led to observing corresponding uncertainties during
test execution, whereas the NUO column represents the number of uncertainties that were

observed as the result of test execution. As shown in Table E-10, consistently for all the five

use cases, test cases generated and minimized with Str2 always led to observe more
uncertainties when comparing with the others (the NUO column). The NUOws (Table E-10)
column shows the number of uncertainties out of NUO that occurred because of known
indeterminacy sources, whereas the NUOuaa column (definition in Table E-10) shows the
number of uncertainties observed due to unknown indeterminacy sources. Once again Str2
Is the best across the case studies in terms of NUOwq. In terms of NUOuana (except for AW1
where Str4 is the best), Str2 is the best across the case studies. Even for AW1, Str4 observed
only one more uncertainty than Str2.

The Uk (defined in Table E-8) column represents the number of unknown uncertainties
observed due to unknown indeterminacy sources. For AW1, with Str4, 16 uncertainties in
this category were observed, whereas the second highest was 13 with Str2. The Error
column represents the number of error detected with each test strategy. For AW1 and AW?2,
both Str2 and Str4 observed one error each, whereas, for AW3, Str2 observed four errors,
I.e., higher than the other strategies.

Therefore, we recommend Str2 as it performed better than the others in terms of the
studied effectiveness measures except for Uk and NUOuwaa for AW1, where Str4 was the
second best.

We also compare the strategies based on the efficiency measures. The results are given
in the last two columns of Table E-10. Note that the efficiency measures simply tell that how
many uncertainties (measured with Uk and NUO) were observed per minute. For AW1,
AW?2, and AW3, for the EoTnuo/min measure, Str5 is the best. For AW4, Str3 is the best
with an efficiency value of 2.116 for EoTnuo/min, whereas, for GS, Str4 is the best with an
efficiency value of 0.066 for EoTnuo/min. However, the differences of these two with the
efficiency values of Str5 are not much. For example, for GS, Str5 has as efficiency value of
0.063, i.e., the difference of 0.003 with Str4. This means that Str5 is likely to observe 0.003
fewer uncertainties than Str4 per minutes. Such difference is negligible in practice. In terms
of EoTuk/min for AW1, once again Str5 is the best strategy. Based on the above results, we
suggest using Str2 when the test execution time is not a concern; otherwise, we recommend

using Str5 since it is highly likely to be efficient.

5.5 Discussion

Based on the results and analysis of RQ1, we can conclude that our uncertainty-wise test
minimization approaches are complex and thus RS was not sufficient to solve our problems.
RS has the lowest confidence to be the best algorithm (i.e., 5.28% on average) as compared
to the rest of the algorithms when studying the results of all the use cases together. When
comparing the selected multi-objective search algorithms for the four uncertainty-wise test
minimization problems (RQ2), we found that SPEA2 has the highest confidence to be the
best algorithm (i.e., 12.12% on average) as compared to the rest of the algorithms including
RS.

When comparing the five test strategies, we found Str2 (i.e., ASIBP with minimization
focused on covering the number of uncertainties) with SPEA2 turned out to be the best. Str2
with SPEA2 observed on average 51%2* more uncertainties than the rest of the strategies
due to unknown indeterminacy sources when combining the results from all the use cases.
Moreover, it managed to observe 13 unknown uncertainties due to unknown indeterminacy
sources across all the use cases. In comparison, Str4 with SPEA2 managed to observe 16
unknown uncertainties due to unknown indeterminacy sources, i.e., three more than the Str2
and SPEA2 combination.

In terms of practical implications, we have four key findings. First, the results of observed
known uncertainties due to known indeterminacy sources (the NUOws column) simply
confirm our belief about known uncertainties of a CPS. If the belief is not confirmed, it
means that the belief of the test modeler is far from truth. Then we recommend a test modeler
to update her/his belief on the test ready model based on the results of test execution. Second,
the results of observed known uncertainties due to unknown indeterminacy sources (the
NUOuana column) tell us that the known uncertainties can happen due to the indeterminacy
sources that we were not aware of. As a result, such unknown indeterminacy sources need
to be investigated and discovered with the help of our industrial partners. Once discovered,

the test ready models must be updated to reflect these indeterminacy sources. Third, the

UC;Stry UCiStr]- UC;Stry UCiStr]-

. hoy. (NUO, ! -nvo, - /o, +NU), o))
24 The value is calculated as ==1==L3%5 ukind ;‘)’:Z‘d /(VUOuying ukind - \where UC={AW1,

AW2, AW4, GS1}, Str = {Strl, Str2, Str3, Str4, Str5}. NOU, 5™ is the number of uncertainties observed with
Strl for the AW1 use case.

discovery of unknown uncertainties due to unknown indeterminacy sources (the Uk column)
need to be investigated once again together with our industrial partners and reflected in the
test ready models as known uncertainties due to known indeterminacy sources (if
investigated and found) for future testing. Fourth, the Error column tells the errors found
during the test execution and must be fixed in the implementation of the CPSs. Note that we
observed 15 times of occurrences of errors for the AW case study. Due to confidentiality
issues, further details on the errors and uncertainties cannot be provided. Nonetheless, the
results tell us that our proposed test strategies can help us confirming our belief about known
uncertainties, discovering unknown uncertainties and unknown indeterminacy sources, and

find errors.

5.6 Threats to Validity

External validity. A typical external validity threat with any empirical study is related to
the generalization of results. Our experiment results are valid for two case studies (five use
cases) from two CPS domains (Automation, Healthcare) and thus additional experiments
with different case studies are required to further generalize the results..

Internal validity. . There are four main internal validity threats in our experiment. First,
in terms of test case generation with ASIBP, we used the same criteria to generate test cases
for all the use cases. This includes generating test cases that must achieve the 100% transition
coverage and 100% unique uncertainty coverage. Second, as suggested in [52], all the SBSE
problems face a common internal validity threat that is related to parameter settings used for
the search algorithms. We used the default parameter settings for all the algorithms based on
the existing guidelines [52, 54]. Third, we used the same criteria to introduce indeterminacy
sources during the test execution for each use case. This means that we used the same values
for EnablePattern, FindPosition, and SelectSpecification (Fig. E-5) when executing test
cases generated from each test strategy across the use cases. Fourth, the fact that executing
each test case more than once can lead to different execution results. Therefore, we executed
a test case exactly once if it was included in the test case sets generated by multiple test
strategies.

Conclusion validity. There are two main conclusion validity threats in our experiment.

First, as discussed in [55], due to randomness in search algorithms, results may have been

produced by chance. We handled this threat as suggested in [55], that is to repeat the
experiments 100 times. Based on the standard guidelines [52] to report search-based
software engineering experiments, we chose the Kruskal-Wallis test to calculate p-value for
multiple comparisons with 5% significance level, the Mann-Whitney U test to calculate p-
value for pair comparison with 5% significance level, to determine practical and statistical
significances of results. Second, our experiment results are based on one-time test execution
due to limited resources available to execute test cases on the physical test infrastructures.
Additional experiments are required in the future to execute test cases more than once to
study whether executing one test case multiple times lead to observing different
uncertainties.

Construct validity. As suggested in [39, 56], the same stopping criterion must be used for
all the evaluated algorithms to avoid any potential bias in results. Following the guidelines,
we used the same number of fitness evaluations (25000) and thus dealt with this type of

validity threat.

6 Automation

The (open source) tool support?® for UncerTest is shown in Fig. E-9, a user creates a BM,
i.e., belief model (including BCDs and BSMs) in the IBM Rational Software Architect
(RSA) using UncerTum implemented in the IBM RSA [9]. In addition to BCDs and BSMs,
the BM also includes one or more object diagrams (corresponding to BCDs) that represent
the test configuration of the CPS being tested.

The first toolset of UncerTest is referred to as Abstract Test Case Generator. AG1 takes
BSMs as input and convert them into graphs (SMGraph) in JGraph [57] based on a test case
generation strategy (Section 4.1.2), which can be selected by a tester. AG2 takes the graph
representation of BSMs as input and converts them into deep paths using the JGrapht tool
[57]. Notice that multiple regions are not handled by JGrapht, and thus we extended it for
this purpose. AG3 takes the generated deep paths as input and calculates UM for each path
using the Uncertainty Measurement Calculator and produces abstract test cases and

associated UM with each test case.

% The tool for UncerTest is open source, which is available at https://bitbucket.org/ManZH/uncertest-v1.

https://bitbucket.org/ManZH/uncertest-v1

The second toolset is Uncertainty-Wise Test Case Minimization. Its Solution Solver uses
JMetal’s implementation of the multi-objective search algorithms and RS to minimize the
number of abstract test cases based on the four test case minimization strategies (Section
4.2). A tester can select any algorithm and any of the four strategies to perform test case
minimization. The output is a minimized set of test cases and values for the relevant
objectives (Section 4.2). Solution Processor converts the output to an EMF model [58],
which is the key input for the third toolset.

The third toolset is Executable Test Case Generator. EG1 takes BCDs as input and
converts them to Java Entities, which are further extended by a tester as Entities Adapter to
provide actual implementation of operations, e.g., how to invoke REST APIs in GS. For
each case study, a user has to manually implement Entities Adapters to bridge the gap
between model elements and implementation of Test API. EG2 takes the object diagram as
input and outputs Test Setup, which is required for execution of test cases. Finally, EG3 takes
the EMF model file as the input and invokes ESOCL [34] to obtain concrete test data. ESOCL
is a search-based OCL solver that takes input an OCL constraint and provides a set of data
that satisfies the constraint. Using the output from ESOCL, EG3 produces executable test
cases, where each executable test case imports Eclipse OCL [59] to check OCL constraints

(state invariants) at runtime, which serve as test oracles.

CIERTUE]

pazielas
aly

a3 jo adiy

g -~

wow i3s3 @

spuada)

159.1199UN JO UONN[OS UOIRWOINY |[eJsAQ "6-3 'Bi4

[

sindui sy

SWB|G0.d UONEZILIUIY

vs

SWA|G0.d YIEDS wH

3

reaiy!

SNl SANOAUIL
4O sanjea

{[euondao)
wiyofie 12ajas 7

JaysaL

aqnsy
aly |apow JW3 SUONNOS e _ sinduy E—
) S wpn JaNDS uoy 1l 1Bpow 4N3
uoneziwiul ase) 1sa) asim-Aulenadun 'z _ uonezjeyss
ELLE)
IIIIIIIIIIIIII I
(zuondo) syndu) 4 _ (Tuondo) sandu) r
- 1 1) -
mﬂ..wn:wﬁum_wm Iojesauag 153) 1eNsgy _ r Joqe|najed
t 5] 1531 3|qeINdaxny (£93 Kuepaoy soens J—
u 4
FEILET © uoijesauad
101213Ua5 Mm%%_..wmﬁ
swawadu) syjed daag FSE) 153 Pensqy

Jaydepy sannu3
CBAE[H

S35ED 153) A|GRINIaNg S

mucm.xw;_\

dmas 3581 sindano

531U eer

10}EI3U3Y
syied daag :zoy

135 153 3|qeInNdaxy
HEAB[D

SaRiu3 ssep) (193

BT TIETETY

sindu)

syndino

Muiepasun:gny

PUE JOSSII0L] UOHEULIOJ]

|apow
=129
sdojanap

WS el

ydesows

Jojeiauan wydeigrs

dmas 3531 1793

weadelq sse|d janag

«LUN 1IN

10}BJ3UID ISE) 353 I|qEINIAXT "€

wesdeig 13lg0
L TRERIT, Y

FLATENTIT)
ydeioiNg S 19v

HWIN LI

10}BJ3UID ISE) 3531 PeNSqY T

aulpepy 21815 Jaijeg

uo paiojdap

sndigo
wn L5adun)

Related Work

7

box testing framework to select test cases

Walkinshaw and Fraser [5] proposed a black-

a software system. The

for execution to decrease uncertainty about the correctness of

proposed framework relies on Genetic Programming (GP) [60] to infer models of a system

It generates random inputs and assesses them on the inferred models to select

under test.

and eventually only execute the selected ones on the real

ones that create most uncertainty

267

system under test. Uncertainty was measured in their context as the level of confidence in
the corresponding output of input (i.e., test data). UncerTest shares a similar objective, that
is, selecting test cases for execution by taking into account uncertainty. Differences between
the two approaches can be summarized from the three aspects: 1) UncerTest focuses on
testing CPS under uncertainty, but their proposed framework is for software; 2) UncerTest
requires initial BMs with subjective uncertainty specified as the input, whereas in their
approach models are inferred by GP, which requires the execution of the software under test;
and 3) UncerTest elaborates uncertainty from the four aspects (i.e., number of uncertainties,
number of unique uncertainties, uncertainty space, and uncertainty measure from the
Uncertainty Theory), whereas their approach is based on an existing uncertainty sampling
technique.

Another related work [6] focuses exclusively on time-related uncertainty. It relies on
UML sequence diagrams together with the UML Profile for Schedulability, Performance,
and Time (SPT) [61]. This work, however, only supports modeling uncertainty in time on
messages of sequence diagrams. As discussed in Section 2.1, UncerTest is built on
UncerTum [9], which is a comprehensive modeling framework for specifying various types
of uncertainty (e.g., time, content and environment). The work presented in [6] focuses on
stress testing of systems in the existence of time-related uncertainty on messages, which may
complement the UncerTest framework, which can be investigated in the future.

David et al. [62] presented some test generation principles and algorithms (e.qg., the online
testing tool UPPAAL-TRON [63]) and discussed the feasibility of applying them for testing
timed systems under uncertainty, at a high level of abstraction. In their context, uncertainty
is mainly caused by the inherent concurrent and indeterminate nature of timed systems.
UncerTest, however, addresses uncertainty with a much broader scope and has an end-to-
end MBT solution.

In [64], the authors presented a solution to transform UML use case diagrams and state
diagrams into usage graphs appended with probability information about the expected use
of the software. Such probability information can be obtained in several ways by relying on,
e.g., domain expertise or usage profiles of software. Usage graphs with probability can be
eventually used for testing. This work only deals with modeling uncertainty using
probabilities and does not support other types of uncertainty measures such as ambiguity as

supported in UncerTum. In terms of testing, the authors proposed to use an existing work
[65] to generate test cases. In the context of UncerTest, we focus on test generation based on
the uncertainty theory [12].

To model uncertainty (inherent in real-world applications) with UML class diagrams, an
extension was proposed in [66-68], which is referred to as fuzzy UML data modeling. The
extension relies on two theories: fuzzy set and possibility distribution, and was later on
further extended in [69] to transform fuzzy UML data models into representations in the
fuzzy description logic (FDLR) to check the correctness of fuzzy properties. Furthermore,
another automated transformation was proposed in [70] to transform fuzzy UML data
models into web ontologies to support automated reasoning on fuzzy properties in the
context of web services. These works focus on the analyses at the design time, whereas our
work focuses on testing. Regarding modeling, our UncerTum focuses on uncertainty in a
comprehensive and precise manner by considering various types of measures such as
probability, vagueness, and fuzziness. The methodologies proposed in [66-68] for specifying
fuzzy UML data can easily integrate with our model libraries when needed and potentially
used to support MBT of CPSs under uncertainty. However, this requires further
investigation.

In [71], a language-independent solution was proposed partiality, Abs partiality, Var
partiality and OW partiality, to denote the degree of incompleteness specified by model
designers. The work also provides a solution for merging and reasoning possible partial
models with tool support [72, 73]. The approach was demonstrated on UML class and
sequence diagrams [71]. This work is related to our work regarding expressing the
uncertainty of modelers. However, in the context their work, the focus is on uncertainty in
partial models for supporting model refinement and evolution. In contrast, we focus on
modeling uncertainty (lack of confidence) in test ready models that are in turn used for test

case generation and minimization relying on the uncertainty theory.

8 Conclusion

Nowadays, Cyber-Physical Systems (CPSs) are everywhere in our daily life. It is
forecasted that applications of CPSs will span over many different domains shortly,

including autonomous vehicles, robotics, healthcare, industrial automation, among others.

One critical dimension of the complexity of developing and testing such systems is due to
the inherent uncertainty of their operational environment and uncertain behaviors of
themselves. To tackle this challenge, in this paper, we proposed a model-based and search-
based test case generation and minimization framework (named as UncerTest) for testing
CPSs under uncertainty. UncerTest takes advantages of the uncertainty theory and search-
based optimization techniques, based on which, it also proposes an innovative set of
uncertainty-related test case minimization strategies. We evaluated UncerTest with two
industrial CPSs case studies and eight commonly used multi-objective search algorithms.
The best test strategy managed to discover on average 51% more uncertainties due to
unknown indeterminacy sources as compared to the rest of the test strategies across the case
studies. The same test strategy managed to discover 118% more unknown uncertainties as

compared to the already known ones.

Acknowledgment

This research was supported by the EU Horizon 2020 funded project U-Test (Testing
Cyber-Physical Systems under Uncertainty, Project Number: 645463). Tao Yue and Shaukat
Ali are also supported by RCN funded Zen-Configurator project, RFF Hovedstaden funded
MBE-CR project, RCN funded MBT4CPS project, and RCN funded Certus SFI. The
corresponding author of the paper is Tao Yue. We sincerely thank our industrial partners
(ULMA Handlilng Systems and Nordic Medtest), especially Oscar Okariz and Malin

Hedman, for their support on providing the case studies and conducting the experiment.

References

[1] D. B. Rawat, J. J. Rodrigues, and I. Stojmenovic, Cyber-physical systems: from
theory to practice, CRC Press, 2015.

[2] P. Derler, E. A. Lee, and A. S. Vincentelli, Modeling Cyber-Physical Systems,
Proceedings of the IEEE, wvol. 100, no. 1 (2012) 13-28,
10.1109/JPR0OC.2011.2160929.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]
[15]

M. Woehrle, K. Lampka, and L. Thiele, Conformance testing for cyber-physical
systems, ACM Transactions on Embedded Computing Systems (TECS) vol. 11, no.
4 (2013) 1-23,10.1145/2362336.2362351.

H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski, and K. Ueda,
Conformance testing as falsification for cyber-physical systems, arXiv preprint
arXiv:1401.5200 (2014).

N. Walkinshaw, and G. Fraser, Uncertainty-Driven Black-Box Test Data Generation,
in: the 10th IEEE International Conference on Software Testing, Verification and
Validation (ICST 2017), Tokyo, Japan. pp. 253-263, 2016.

V. Garousi, Traffic-aware stress testing of distributed real-time systems based on
UML models in the presence of time uncertainty, in: Software Testing, Verification,
and Validation, 2008 1st International Conference on. pp. 92-101, 2008.

G. Bammer, and M. Smithson, Uncertainty and risk: multidisciplinary perspectives,
Routledge, 2012.

D. V. Lindley, Understanding uncertainty (revised edition), John Wiley & Sons,
2014,

M. Zhang, S. Ali, T. Yue, and R. Norgre, An Integrated Modeling Framework to
Facilitate Model-Based Testing of Cyber-Physical Systems under Uncertainty,
Technical report 2016-02, Simula Research Laboratory, 2016;
https://www.simula.no/publications/integrated-modeling-framework-facilitate-
model-based-testing-cyber-physical-systems.

M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, Uncertainty-Wise Cyber-
Physical System test modeling, Software & Systems Modeling (2017), 2017/07/25,
10.1007/s10270-017-0609-6.

P. Ammann, and J. Offutt, Introduction to software testing, Cambridge University
Press, 2016.

B. Liu, Uncertainty theory, Springer, 2015.

J. Brownlee, Clever algorithms: nature-inspired programming recipes, First Edition
ed., LuLu, 2012.

"Future Position X," accessed 2017; http://www.fpx.se/.

"ULMA Handling System," accessed 2017; http://www.ulmahandling.com/en/.

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, Understanding
Uncertainty in Cyber-Physical Systems: A Conceptual Model, in: Proceedings of the
12th European Conference on Modelling Foundations and Applications (ECMFA).
pp. 247-264, 2016.

OMG, UML Profile For MARTE: Modeling And Analysis Of Real-Time Embeded
Systems™, 2011, http://www.omg.org/spec/MARTE/.

B. Liu, Why is there a need for uncertainty theory, Journal of Uncertain Systems,
vol. 6, no. 1 (2012) 3-10.

P. C. Jorgensen, Software testing: a craftsman’s approach, CRC press, 2016.

Z. Xuemei, T. Xiaolin, and P. Hoang, Considering fault removal efficiency in
software reliability assessment, IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 33, no. 1 (2003) 114-120,
10.1109/TSMCA.2003.812597.

Y. Zhu, Uncertain optimal control with application to a portfolio selection model,
Cybernetics and Systems, vol. 41, no. 7 (2010) 535-547, 2010/09/24,
10.1080/01969722.2010.511552.

L. Yang, K. Li, and Z. Gao, Train Timetable Problem on a Single-Line Railway With
Fuzzy Passenger Demand, IEEE Transactions on Fuzzy Systems, vol. 17, no. 3
(2009) 617-629, 10.1109/TFUZZ.2008.924198.

J. Peng, Risk metrics of loss function for uncertain system, Fuzzy Optimization and
Decision Making, vol. 12, no. 1 (2013) 53-64, 2013//, 10.1007/s10700-012-9146-5.
S. Han, Z. Peng, and S. Wang, The maximum flow problem of uncertain network,
Information Sciences, vol. 265 (2014) 167-175, 5/1/,
http://dx.doi.org/10.1016/j.ins.2013.11.029.

W. Rudin, Real and complex analysis, Tata McGraw-Hill Education, 1987.

OMG, Unified Modeling Language (UML), June 2015,
http://www.omg.org/spec/UML/.

OMG, Unified Modeling Language™ (UML), 2015,
http://www.omg.org/spec/UML/.

D. E. Knuth, "The art of computer programming, 3rd edn. seminumerical algorithms,
vol. 2," Addison-Wesley, Reading, 1997.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

J. Offutt, and A. Abdurazik, Generating tests from UML specifications, in:
International Conference on the Unified Modeling Language. pp. 416-429, 1999.

J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, Generating test data from state-
based specifications, Software testing, verification and reliability, vol. 13, no. 1
(2003) 25-53.

P. Samuel, R. Mall, and A. K. Bothra, Automatic test case generation using unified
modeling language (UML) state diagrams, IET software, vol. 2, no. 2 (2008) 79-93.
L. C. Briand, Y. Labiche, and Y. Wang, Using simulation to empirically investigate
test coverage criteria based on statechart, in: Proceedings of 26th International
Conference on Software Engineering (ICSE 2004), Edinburgh, UK. pp. 86-95, 2004.
OMG, "Object Constraint Language™ (OCL™)," 2014,
http://www.omg.org/spec/OCL/.

S. Ali, M. Z. Igbal, A. Arcuri, and L. C. Briand, Generating test data from OCL
constraints with search techniques, IEEE Transactions on Software Engineering, vol.
39, no. 10 (2013) 1376-1402.

"Quuppa - Do more with Location," accessed 2017; http://quuppa.com/.

"Nordic Med Test," accessed 2017; http://www.nordicmedtest.se/.
"IK4-IKERLAN," accessed 2017; http://www.ikerlan.es/eu/.

"Use Cases - Industrial Case Studies," accessed 2017; http://www.u-test.eu/use-
cases/.

S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, A systematic review
of the application and empirical investigation of search-based test case generation,
IEEE Transactions on Software Engineering, vol. 36, no. 6 (2010) 742-762.
"|Metal," accessed 2016; http://jmetal.sourceforge.net/.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, vol. 6,
no. 2 (2002) 182-197.

K. Deb, and H. Jain, An Evolutionary Many-Objective Optimization Algorithm
Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving
Problems With Box Constraints, IEEE Transactions on Evolutionary Computation,
vol. 18, no. 4 (2014) 577-601, 10.1109/TEVC.2013.2281535.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Mocell: A cellular
genetic algorithm for multiobjective optimization, International Journal of Intelligent
Systems, vol. 24, no. 7 (2009) 726-746.

A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, Design issues in a
multiobjective cellular genetic algorithm, in: S. Obayashi, K. Deb, C. Poloni, T.
Hiroyasu and T. Murata, eds. International Conference on Evolutionary Multi-
Criterion Optimization. pp. 126-140, 2007.

E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto
evolutionary algorithm, in: Evolutionary Methods for Design, Optimization and
Control with Applications to Industrial Problems (EUROGEN 2001), Athens.
Greece, International Center for Numerical Methods in Engineering, 2001.

J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, Solving Three-Objective
Optimization Problems Using a New Hybrid Cellular Genetic Algorithm, in: R.
Gunter, J. Thomas, L. Simon, P. Carlo and B. Nicola, eds. the 10th international
conference on Parallel Problem Solving from Nature: PPSN X. pp. 661-670, 2008.
A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, AbYSS:
Adapting scatter search to multiobjective optimization, IEEE Transactions on
Evolutionary Computation, vol. 12, no. 4 (2008) 439-457.

S. Kukkonen, and J. Lampinen, GDE3: The third evolution step of generalized
differential evolution, in. pp. 443-450,

A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba,
SMPSO: A new pso-based metaheuristic for multi-objective optimization, in: 2009
IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making
(MCDM), Nashville, TN, USA. pp. 66-73, 2009.

E. Zitzler, and L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach, IEEE transactions on Evolutionary
Computation, vol. 3, no. 4 (1999) 257-271.

S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, A practical guide to select quality
indicators for assessing pareto-based search algorithms in search-based software
engineering, in: Proceedings of the 38th International Conference on Software
Engineering (ICSE 2016), New York, NY, USA. pp. 631-642, 2016.

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

A. Arcuri, and L. Briand, A practical guide for using statistical tests to assess
randomized algorithms in software engineering, in: Proceedings of the 33rd
International Conference on Software Engineering (ICSE 2011), Waikiki, Honolulu,
HI, USA. pp. 1-10, 2011.

M. Zhang, S. Ali, T. Yue, and M. Hedman, Uncertainty-wise Test Case Generation
and Minimization for Cyber-Physical Systems: A Multi-Objective Search-based
Approach, Technical report 2016-13, Simula Research Laboratory, 2016;
https://www.simula.no/publications/uncertainty-based-test-case-generation-and-
minimization-cyber-physical-systems-multi.

D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures,
CRC Press, 2003.

S. Wang, S. Ali, and A. Gotlieb, Minimizing test suites in software product lines
using weight-based genetic algorithms, in: Proceedings of the 15th annual
conference on Genetic and evolutionary computation. pp. 1493-1500, 2013.

M. de Oliveira Barros, and A. C. Dias-Neto, Threats to Validity in Search-based
Software Engineering Empirical Studies, Technical Report 0006/2011, Universidade
Federal Do Estado Do Rio de Janeiro, 2011;
http://seer.unirio.br/index.php/monografiasppgi/article/viewFile/1479/1307.
"JGrapht," accessed 2016; http://jgrapht.org/.

"Eclipse Modeling Framework (EMF)," accessed 2016;
https://eclipse.org/modeling/emf/.

"Eclipse OCL," accessed 2016;
http://www.eclipse.org/modeling/mdt/?project=ocl#ocl.

R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to genetic
programming, Lulu. com, 2008.

OMG, UML Profile For Schedulability, Performance, and Time™, 2005,
http://www.omg.org/spec/SPTP/.

A. David, K. G. Larsen, S. Li, M. Mikucionis, and B. Nielsen, Testing real-time
systems under uncertainty, in: International Symposium on Formal Methods for
Components and Obijects. pp. 352-371, 2010.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou,
Testing real-time systems using UPPAAL, Formal methods and testing, pp. 77-117:
Springer, 2008.

M. Riebisch, 1. Philippow, and M. Gotze, UML-based statistical test case generation,
Objects, Components, Architectures, Services, and Applications for a Networked
World, pp. 394-411: Springer, 2002.

J. M. Selvidge, Statistical Usage Testing: Expanding the Ability of Testing, in
Software Testing, Analysis & Review, 1999.

Z. Ma, Fuzzy information modeling with the UML, Idea (2005).

Z.M. Ma, F. Zhang, and L. Yan, Fuzzy information modeling in UML class diagram
and relational database models, Applied Soft Computing, vol. 11, no. 6 (2011) 4236-
4245,

L. Yan, and Z. M. Ma, Extending nested relational model for fuzzy information
modeling, in: 2009 WASE International Conference on Information Engineering. pp.
587-590, 20009.

Z. M. Ma, F. Zhang, L. Yan, and J. Cheng, Representing and reasoning on fuzzy
UML models: A description logic approach, Expert Systems with Applications, vol.
38, no. 3 (2011) 2536-2549.

F. Zhang, and Z. M. Ma, Construction of fuzzy ontologies from fuzzy UML models,
International Journal of Computational Intelligence Systems, vol. 6, no. 3 (2013)
442-472.

R. Salay, M. Famelis, and M. Chechik, Language independent refinement using
partial modeling, Fundamental Approaches to Software Engineering, pp. 224-239:
Springer, 2012.

M. Famelis, R. Salay, and M. Chechik, Partial models: Towards modeling and
reasoning with uncertainty, in: Proceedings of the 34th International Conference on
Software Engineering (ICSE 2012), Zurich, Switzerland. pp. 573-583, 2012.

M. Famelis, and S. Santosa, MAV-Vis: a notation for model uncertainty, in:
Proceedings of the 5th International Workshop on Modeling in Software Engineering
(MISE 2013), San Francisco, CA, USA. pp. 7-12, 2013.

Appendixes

Appendix A. Definitions of U-Model Concepts

To understand uncertainty, in our previous work [15], we defined the conceptual model,
U-Model, to specify, classify and identify uncertainty and its associated concepts. U-RUCM
presented in this paper is an implementation of U-Model to enable the specification of
uncertainty in use case models. U-Model was published in [15] and we have added
definitions of its concepts in this appendix to make the paper self-contained, which are

organized into three parts: belief model, uncertainty model and measure model.

A.1 Belief Model
The Belief Model in Fig. Appx-1 takes the subjective way to represent uncertainty —

Uncertainty is a subjective phenomenon that is indelibly bound to the worldview held by a
belief agent, — that, for whatever reason, is incapable of possessing complete and fully
accurate knowledge about some subject of interest [15]. In addition, the definitions of the

concepts in Belief Model are represented in Table. Appx-1.

«enumeration» EvidenceKnowledge | | (self.type=KnowledgeType::KnownKnown or «q‘ataTy;?e» «dataTy_fpe»
IndeterminacyNature type : KnowledgeType self.type=KnowledgeType::UnknownKnown} Timepoint Duraticn
InsufficientResolution \
MissingInfo * . BeliefStatement IndeterminacyKnowledge
Non-determinism N = = 3
Composite Evidence | | Belief |<l— from : Timepoint type : KnowledgeType
Unclassified T =" duration : Duratien [—— !

=] i .. 0.1
+ evidence . prerequmtes"J * T ’ (sclr.r'_.rpc=KnowIedgcType::B
- beliefdegree " + substatements KnownUnknown or
wenumerations] BeliefAgent = self.type=KnowledgeType::

KnowledgeType il Sl - UnknownUnknown}
T Measurement Uncertainty + Jsource
KnownUnknown K * + measured from : Timepoint |— 1= IndeterminacySource
Unknownknown " . ;
Un nln n Measure + indeterminacydegree nature : IndeterminacyMature

Fig. Appx-1. Core Belief Model of U-Model

Table. Appx-1. Definitions of the Concepts in the Belief Model

Concept Definition
Belief A belief is an implicit subjective explanation or description of some
(abstract) phenomena or notions? that is held by a BeliefAgent.

Semantics: This is an abstract concept whose only concrete manifestation is in
the form of a belief statement.
Features:

2 The term “phenomena” here is intended to cover aspects of objective reality, whereas “notion” covers
abstract concepts, such those encountered in mathematics or philosophy.

Concept Definition

e beliefdegree [*] - The Measurement of Belief derived from Measurement
of Uncertainties in this Belief.

e beliefAgents [1..*] - The set of BeliefAgent held this Belief.

BeliefAgent BeliefAgent represents an individual, a community of individuals sharing the
same set of beliefs, or a technology, such as a software system, with built-in
beliefs.

Semantics: A belief agent is a physical entity?’ that holds (i.e., owns) one or
more beliefs about phenomena or notions associated with one or more
subject areas derived from Indeterminacy. This could be a human individual
or group, an institution, a living organism, or even a machine such as a
computer. Crucially, a belief agent is capable of actions based on its beliefs.

Features:

e beliefs [*] - The set of Belief that represent the full set of beliefs held
explicitly by the BeliefAgent.

BeliefStatement A BeliefStatement is an explicit specification of some Belief about a possible
phenomenon or notions belonging to a given subject area.

Generalizations: Belief, IndeterminacySource

Semantics: The concrete form of this statement can vary, and may represent
informal pronouncements made by individuals or groups, documented
textual specifications expressed in either natural or formal languages, formal
or informal diagrams, etc. Since it represents a belief, which is a subjective
concept, a BeliefStatement may not necessarily correspond to objective reality.
This means that it could be completely false, or only partially true, or
completely true. However, due to the complex nature of objective reality, it
may not always be possible to determine whether or not a BeliefStatement is
valid. Furthermore, the validity of a statement may only be meaningfully
defined within a given context or purpose. Thus, the statement that “the
Earth can be represented as a perfect sphere” may be perfectly valid for some
purposes but invalid or only partly valid for others. For our needs, we are
less interested in the validity of a BeliefStatement than we are in the level of
Uncertainty that a belief agent associates with it.

Features:

e substatements [*] - The set of finer-grained BeliefStatements that are
components of a composite BeliefStatement.

e prerequisites [*] - The set of BeliefStaternent on which this BeliefStatement
depends.

e indeterminacySource [*] - The set of IndeterminacySource that this
BeliefStatement involves.

e evidence [*] - The set of Evidence providing this BeliefStatement.

e uncertainties [*] - The set of expressions of uncertainty that qualify
and/or quantify the degree to which the BeliefAgent lacks confidence in this
BeliefStatement; this attribute provides the core link between the Belief
portion and the Uncertainty portion of the core uncertainty model.

e from [0..1] - The Timepoint when BeliefStatement is initialized.

e duration [0..1] - The Duration when BeliefStatement is active.

Evidence Evidence is either the observation of or record of a real-world event
occurrence or, alternatively, the conclusion of some formalized chain of
logical inference, which provides information that may contribute to
determining the validity (i.e., truthfulness) of a BeliefStatement.

Semantics: Evidence is fundamentally an objective phenomenon,
representing something that actually happened. This means that we do exclude

2 We exclude here from this definition “virtual” belief agents, such as those that might occur in virtual reality
systems and computer games.

Concept Definition

here the possibility of counterfeit or invented evidence. Nevertheless,
although Evidence represents objective reality, it need not be conclusive in
the sense that it removes all doubt (uncertainty) about a BeliefStatement. On
the other hand, any valid BeliefStatement must have at least some Evidence to
support it.

EvidenceKnowledge EvidenceKnowledge expresses an objective relationship between a
BeliefStatement and relevant Evidence.

Semantics: EvidenceKnowledge identifies whether the corresponding
BeliefAgent is aware of the appropriate Evidence. Thus, an agent may be either
aware that it knows something (KnownKnown), or it may be completely
unaware of Evidence (UnknownKnown).

IndeterminacyNature IndeterminacyNature represents the kind of indeterminacy?.
Enumeration literals:
¢ InsufficientResolution - The information available about the

phenomenon in question is not sufficiently precise.

e MissinglInfo - The full set of data is unavailable at the time the statement
is made.

¢ Non-determinism - The phenomenon in question is either practically or
inherently non-deterministic.

e Composite - This represents some combination of multiple other kinds
of indeterminacy.

e Unclassified - Indeterminate indeterminacy.

IndeterminacySource IndeterminacySource represents a situation whereby the information required
to ascertain the validity of a BeliefStatement is indeterminate in some way,
resulting in uncertainty being associated with that statement.

Semantics: One possible source of indeterminacy could be another
BeliefStatement. A given indeterminacy source could in some cases be
decomposed into more basic sources.

Features:

e indeterminacydegree [*] - This set of Measurement represents the
quantification (or qualification) of this IndeterminacySource.

e nature [1] - The IndeterminacyNature represents the kind of
indeterminacy reason.

IndeterminacyKnowledge | IndeterminacyKnowledge expresses an objective relationship between an
IndeterminacySource and the awareness that the BeliefAgent has of that source.
Semantics: IndeterminacyKnowledge identifies whether the corresponding
BeliefAgent is aware of the appropriate IndeterminacySource. So, even though
it is agent specific, it is still an objective concept since it does not represent
something that is declared by the agent. For instance, an agent may be aware
that it does not know something about a possible source (KnownUnknown),
or the agent may be completely unaware of a possible source of
indeterminacy (UnknownUnknown).

KnowledgeType KnowledgeType represents the type of the knowledge.

Enumeration literals:

¢ KnownKnown - Indicates that an associated BeliefAgent is consciously
aware of some relevant aspect.

¢ KnownUnknown (Conscious Ignorance) - Indicates that an associated
BeliefAgent understands that it is ignorant of some aspect.

¢ UnknownKnown (Tacit Knowledge) - Indicates that an associated
BeliefAgent is not explicitly aware of some relevant aspect that it,
nevertheless, may be able to exploit in some way

2 Indeterminacy represents a situation whereby the full knowledge necessary to determine the required
factual state of some phenomena or notions is unavailable.

Concept Definition

¢ UnknownUnknown (Meta Ignorance) - Indicates that an associated
BeliefAgent is unaware of some relevant aspect.

Measure Measure represents the way of measuring
Belief/ Uncertainty / IndeterminacySource.

Semantics: Measure is objective concept, and specifies the existing way /theory
to measure uncertainty.

Measurement Measurement represents the optional quantification (or qualification) that
specifies the degree of Belief/ Uncertainty / IndeterminacySource.

Semantics: It may be possible to specify a Measurement that quantifies in
some way (e.g., as a probability or a percentage) the degree of Uncertainty by
the agent making the belief statement. Note, however, that this is a subjective
measure defined by the BeliefAgent.

Features:

e measure [1] - This Measure represents the related way of measuring
Belief/ Uncertainty / IndeterminacySource.

Uncertainty Uncertainty (lack of confidence) represents a state of affairs whereby a
BeliefAgent does not have full confidence in a Belief that it holds.

Semantics: “Full confidence” here means that the agent does not have any
doubts about the validity of a statement. It is important to distinguish here
between certainty and validity. That is, an agent could have full confidence
in a BeliefStatement that is actually false; i.e., a statement that does not match
(objective) truth. In general, the source of uncertainty associated with a
BeliefStatement is that, for some reason, the agent does not have full
knowledge of all relevant facts pertaining to the phenomena or notions that
are the subject of the statement.

Features:

e from [0..1]- The Timepoint when Uncertainty is initialized.

e measured [*]- This Measurement is used for representing confidence
degree of Uncertainty by the agent making the BeliefStatement.

e source [1..*]- This set of IndeterminacySource derived from the involves
association and generalization of BeliefStatement.

A.2 Uncertainty Model
The Uncertainty Model in Fig. Appx-2 inspired by the literature of uncertainty expands

on Uncertainty from several different viewpoints and introduces related abstractions [15],
i.e. risk, pattern, and the definitions of the concepts in Uncertainty Model are represented in
Table. Appx-2.

«enumeration»
Level/Rating

«ISO 31000» | Locality || Effect |’9| Measurement |

Low
Medium
High
Extreme

Risk 'E
P —0..1]0.1
/level : Level/Rating 0.1

Uncertainty

+ dependency [*~ Lfrom : Timepoint

o patarn |

r T T T has)
Occurrence | | Content " Time || GeographicallLocation |

Fig. Appx-2. Core Uncertainty Model of U-Model

Table. Appx-2. Definitions of the Concepts in the Core Uncertainty Model

Concept

Definition

Effect

Effect represents the result of Uncertainty in the BeliefStatement.
Semantics: An uncertainty may result into: 1) another known
Uncertainty, 2) something known and is not Uncertainty, 3) anything
unknown.

Features:

e Jocality [0..1] - This value is used to represent that the Locality of
the Effect.

e measurement [¥] - This set of Measurement represents the
quantification (or qualification) of this Effect.

Lifetime

Lifetime represents the duration of time for which an Uncertainty
remains active.

Semantics: The length of time for which Uncertainty exists. For
example, an Uncertainty may appear temporarily for a short period of
time and disappears itself. On the other hand, an Uncertainty could be
persistent, i.e., it stays active until appropriate actions are taken to
resolve the Uncertainty.

Locality

A particular place or a position where Uncertainty occurs in the
BeliefStatement.

Semantics: A location could be a geographical location or a position
where Uncertainty occurs. The concept of location is different than the
Uncertainty type GeographicalLocation, where Uncertainty is due to the
geographical location, however in this concept Uncertainty occurred at
a location may not be due to the geographical location.

Pattern

Pattern represents an intelligible way in which an Uncertainty appears.
Semantics: An Uncertainty may occur without any Pattern, i.e.
Random, or may have a pattern in which it may occur, for example,
occurring at equal intervals of time, i.e., Periodic.

Random

An Uncertainty that occurs without definite method, purpose or
conscious decision.
Semantics: An Uncertainty occurring without any specific pattern.

Risk

Risk measures the risk associated with Uncertainty.
Semantics: An uncertainty may have an associated risk and high-risk
uncertainties deserve special attention.

Level/Rating

Level /Rating is derived from Measurement owned by Uncertainty
(Probability of the Occurrence of an Uncertainty) and Measurement
owned by Effect (e.g., high impact), for example, using the risk matrix
[40] or any other matrices

Concept Definition

Occurrence Occurrence represents a situation whereby a BeliefAgent lacks
confidence in occurrence existing in a BeliefStatement.
Generalizations: Uncertainty

Content Content represents a situation whereby a BeliefAgent lacks confidence
in content existing in a BeliefStatement.

Generalizations: Uncertainty

Time Time represents a situation whereby a BeliefAgent lacks confidence in
time existing in a BeliefStatement.

Generalizations: Uncertainty

GeographicalLocation | GeographicalLocation represents a situation whereby a BeliefAgent
lacks confidence in geographical location existing in a BeliefStatement.
Generalizations: Uncertainty

Environment Environment represents a situation whereby a BeliefAgent lacks
confidence in environment existing in a BeliefStatement.
Generalizations: Uncertainty

Uncertainty Semantics: The uncertainty model expands on Uncertainty from
several different viewpoints and introduces related abstractions.
Notice that Uncertainty has a self-association. This self-association
facilitates: 1) relating different Application level uncertainties to each
other, 2) relating different Infrastructure level uncertainties to each
other, 3) relating Application level and Infrastructure level uncertainties
to each other, 4) relating Integration level uncertainties to each other,
and 5) relating Application, Integration, and Infrastructure level
uncertainties. This self-association can be specialized into different
types of relationships such as ordering and dependencies. Here, we
intentionally did not specialize it to keep the model general, so that it
can be specialized for various purposes and contexts.

Features:

e lifetime [1]- This value is used for representing the duration of
this Uncertainty.

e pattern [0..1]- This value is used for describing whether this
Uncertainty happens in a pattern or what kind of the pattern this
Uncertainty occurs in.

e risk [0..1]- This value is used for whether this Uncertainty has a
risk, and what kind of risk this Uncertainty causes.

e locality [0..1] - This value is used for representing what location
this Uncertainty occurs.

e effect [*]- This value is used for describing what effect the
uncertainty may produce.

e dependency [*]- The set of Uncertainty represents the
dependency relationship with other Uncertainty.

The Pattern Model in Fig. Appx-3 shows the conceptual model for the occurrence pattern
of Uncertainty [15], and the definitions of the concepts in Pattern Model are represented in
Table. Appx-3.

| Uncertainty |%| Pattern |<l—| Temporal |
0.1

0..1
| Random | | Systematic | | Aperiodic |
| Persistent " Periodic || Sporadic | | Transient |

Fig. Appx-3. The Pattern Model
Table. Appx-3. Definitions of the Concepts in the Pattern Model

Concept Definition

Temporal Uncertainty occurring in a temporal pattern.

Generalizations: Measure

Semantics: Temporal describes the notion of time with the occurrence of
uncertainty.

Systematic Uncertainty occurring in a systematic pattern.

Generalizations: Temporal

Semantics: Uncertainty occurring in some methodical pattern, i.e., a pattern
that can be described in a mathematical way.

Persistent A permanent Uncertainty, i.e., lasting forever.

Generalizations: Systematic

Semantics The definition of “forever” varies. For example, an uncertainty may
exist permanently until appropriate actions are taken to deal with the
uncertainty. On the other hand, an uncertainty may not be able to resolve and
stays forever.

Periodic An Uncertainty that occurs in repeated periods or at regular intervals.
Generalizations: Systematic

Semantics: Uncertainty repeating itself after an equal interval of time.
Aperiodic An Uncertainty that occurs at irregular intervals of time.

Generalizations: Temporal

Semantics: It is important to note that Aperiodic is inherited from Temporal; this
means it has a notion of time in which the Uncertainty appears in an Aperiodic
pattern.

Sporadic Uncertainty occurring in a sporadic pattern.

Generalizations: Aperiodic

Semantics: Uncertainty occurring occasionally.

Transient Uncertainty occurring temporarily.

Generalizations: Aperiodic

Semantics: Uncertainty that does not last long.

A.3 Measure Model
The Measure Model in Fig. Appx-4 describes the commonly known measures related to

Uncertainty [15], and the definitions of the concepts in Measure Model are represented in
Table. Appx-4.

Table.

| Measurement |%| Measure |

| Vagu;ness | Probabiligy | Ambiguity |

| Fuzziness || NonSpecificity |

Fig. Appx-4. Core Measure Model of U-Model
Appx-4. Definitions of the Concepts in the Core Measure Model

Concept

Definition

Vagueness

Uncertainty measured with the vagueness methods.
Generalizations: Measure

Fuzziness

Uncertainty measured by fuzzy methods. More details can be referred to
the fuzzy logic literature [41].
Generalizations: Vagueness

NonSpecificity

Uncertainty measured using non-specificity methods.

Generalizations: Vagueness

Semantics: In certain cases, it may not be possible to measure an
uncertainty using quantitative measurements and instead qualitative
measurements can be used. Such qualitative measurements are classified
under Non-Specificity methods.

Probability

Uncertainty measured with the probability.
Generalizations: Measure
Semantics: A quantitative way of measuring uncertainty.

Ambiguity

Uncertainty in the BeliefStatement is measured using ambiguity way.
Generalizations: Measure

Semantics: An uncertainty may be described ambiguously. For example,
in the following statement”: The food is hot”, the ambiguity is in the
measurement, i.e., the food is either hot in terms of temperature or in terms
of spices.

Appendix B. An Example of Questionnaire of the AW Case Study

As discussed in Section 6.2 of Paper B, we conducted a questionnaire-based survey. The

summary of the questions is provided in Table. Appx-5 where we also indicate the example

questions that are relevant to each type of the question. In Section B.1, we provide a sanitized

uncertainty requirement of the AW case study, for which a list of questions was derived (Q1-

Q10). In Section B.2, after refining the RUCM specification (Fig. Appx-5), two questions
(Q11-Q12) were derived.

Table. Appx-5. Design of the Questionnaire and Example Questions

Explanation Index of
Question

1 Inquiry the boundary of the system to define actors in the use case | Q1, Q2, Q3
model.

2 Check the completeness of the flow of events of each use case | Q4
specification.

3 Inquiry the existence of sources related to an actor. Q5, Q6, Q7

4 Inquiry the existence of potential uncertainties related to system | Q7
properties or behaviors.

5 Inquiry existence of the potential uncertainties regarding time, | Q8, Q9, Q10
nature and human being.

6 Inquiry if a potential uncertainty is valid by checking if it is | Q11-Q12.1)
derived based on system properties or behaviors.

7 Inquiry the completeness of the types of uncertainties defined in | Q11-Q12.2)
U-Model.

8 Inquiry the type of a specified uncertainty. Q11-Q12.2)

9 Inquiry the measure and measurement of a specified uncertainty. | Q11-Q12.3).a)

10 Inquiry the risk of a specified uncertainty. Q11-Q12.3).b)

11 Inquiry the evidence to support the specified measurement and | Q11-Q12.3).a-b).i
risk of a specified uncertainty.

B.1 Examples of Uncertainty Requirements Specified in RUCM and
Corresponding Questions
In Table. Appx-6, we provide an example of uncertainty requirements developed by our

industrial partner. Note that the RUCM editor was not used because the partner wanted to
add additional fields (e.g., Means for validation/verification, Models/Metrics, Change
History), which were not part of the RUCM template. Therefore, Word was used as the tool
to specify all the use case specifications.

Table. Appx-6. An Example of uncertainty requirements specified in RUCM

Scale Up for a Larger Number of Orders to Handle
UC2_INTE_1.1
Scale Up for a Larger Number of Orders to Handle
Means for | A communication infrastructure among WMS, Production System Simulator
validation and PLC Simulator is built:
/verification e The input buffer status is full or not modifying ad-hoc its status.
e The Production System Simulator introduces a pallet.

Models/Metric
S PLC l
e CRANE - - CRANE - H CRANE H H CRANE H H CRANE ﬁ -

o Production
‘ -------FLC---------‘@‘----E- System
ya

Use Case ID
Use Case Name

This conveyor comes from
the production lines
(external)

Precondition The warehouse processes a limited (bounds set by design) number of pallets.

Primary Actor | -

Secondary -
Actors
Dependencies | -
Generalization | -
Basic Flow Steps
1 The Production System introduces a pallet into the warehouse by the
production system.
2 WMS VALIDATES THAT the input buffer has free space to store pallets.
3 WMS sends the order to enter the new pallet into the input buffer.
Post-condition:
The pallet is located at the input buffer.
Specific RFS BF 2
Uncertainty 1 WMS VALIDATES THAT the input buffer has not got any free space to
Alternative store pallets.
Flow 2 The Pallet waits indefinitely for free space in the buffer.
(buffer hasn’t | 3 ABORT

got free space) | Post-condition:
Material flow stops are propagated upstream towards the production system.

Additional -

Information

Responsibility | Person A

Change 2015-05-20 Person B - First Version
History 2015-06-01 Person A - Reviewed

2015-07-28 Person A - Refined Version

Q1. What do you believe about Production System mentioned in Table. Appx-6?
Actor (Third party) [_] or Part of Handling system [_|
Q2. What do you believe about Pallet mentioned in Table. Appx-6?
Actor (Third party) [_] or Part of Handling system [_]
Q3. What do you believe about WMS mentioned in Table. Appx-6?
Actor (Third party) [_] or Part of Handling system [_|
Q4. Do you believe the reason/source of Specific Uncertainty Alternative Flow is unknown?
Yes, I have no idea at all |:|
Yes, I have some uncertain idea, but not complete.[] Please specify what you know.

No, I know it. [| Please specify what you know.

Q5. Do you believe the size of pallet can introduce uncertainty?

Yes [| No []

If no, does any other property of pallet can cause uncertainty? Please specify if possible.

Q6. Do you believe that Production System introduces the pallet always one by one?

Yes[| No[]
Q7. Please refer to step 3 in Error! Reference source not found., “WMS sends the order to enter the
new pallet into the input buffer”.

1) Isit possible that “WMS does not send the order to enter the new pallet into the input

buffer at all”?
If yes, the reason is related to
WMS [] Pallet [_] Input buffer [] none of them, please specify
2) Isit possible that “WMS sends the order to enter the new pallet into the input
improperly”?
If yes, the reason is related to
WMS [_] Pallet [_] Input buffer [] none of them, please specify
3) Is there any other possibility?
If yes, please specify
Q8. Do you believe any Time constraints may cause uncertainty in this case?
If yes, please specify
If yes, do you believe it is necessary to consider in this use case? Yes [_| No []
Q9. Do you believe any Nature phenomena may cause uncertainty in this case?
If yes, please specify
If yes, do you believe it is necessary to consider in this use case? Yes [_| No []
Q10. Do you believe any human behavior may cause uncertainty in this use case?
If yes, please specify
If yes, do you believe it is necessary to consider in this use case? Yes [| No [_]

B.2 Example of Refined Uncertainty Requirements in RUCM and
Corresponding Questions

Belief Specification

Belief Spec. Name | Scale up for a large number of Orders to Handle
Brief Description = None

Precondition None

Primary Actor Production System

Secondary Actors Pallet, Input buffer

Basic Flow Steps

(Untitled) v 1 The Production System asks to introduce a pallet into warehouse to WMS.
WMS VALIDATES THAT the input buffer has free space 1o store the pallets.
WMS sends the response to Production System.
The Production System introduce a pallect into warehouse.
WMS sends the order to enter the new pallet into the input buffer.
Postcondition | The pallet is located at the input buffer.

W obs W N

Fig. Appx-5. Uncertainty Requirement specified in RUCM (a revised version of Table. Appx-6)

Please refer to Fig. Appx-5,
Q11. Do you believe that uncertainties exist in Step 1?
1) Yes []No[]
If yes, how many uncertainties do exist?
Please specify these uncertainties, ,
2) For each uncertainty, please specify its type?

Occurrence |:| Content |:| Time |:| Environment |:| Geographical Location |:| Others |:|

3) Do you believe this uncertainty can be measured?
Yes [| No [_]If no, please specify the reason.
If yes, please answer the following question.
a. What do you believe the likelihood of this uncertainty is?
Please specify the probability
following options:

if possible, otherwise please select one of the

| Rare | Unlikely | Possible | Likely | Almost Certain |

Q12.

L [| O | [0 [[

i. Do you have any evidence to support?

Yes [_]| No [] if yes, please specify .
b. What level of risk is associated with this type of uncertainty?

Please specify the exact percentage (0-100, 100 is the highest level of risk)
if possible; otherwise please select one of the options:
Very Low Low Medium High Extreme

L] L] L] L] L]

i. Do you have any evidence to support?
Yes [] No [] if yes, please specify .

Specific RFS S (broken input buffer)
lenltwenaln Alt. 1 The Pallet waits indefinitedly for free space in the buffer.

2 ABORT.
Postcondition | Material flow stops are propagated upstream towards the production system.

Fig. Appx-6. Uncertainty RFS 2

“Unknown_Alt4" ¥

Please refer to Fig. Appx-6, did you specify this uncertainty as above?
1) Yes[|No[]
If no, do you believe it is real? Yes [_] No [_]. If no, please specify the reason
If it is real, is it necessary to consider? Yes [] No[]. If no, please specify the
reason
If it is real and it is necessary to consider, please answer the following
2) For each uncertainty, please specify its type?
Occurrence |:| Content |:| Time |:| Environment |:| Geographical Location |:| Others |:|
3) Do you believe this uncertainty can be measured?
Yes [] No [_]If no, please specify the reason
If yes, please answer the following question.
a. What do you believe the likelihood of this uncertainty is?
Please specify the probability if possible, otherwise please select one of the
following options:
Rare Unlikely Possible Likely Almost Certain

L] L] L] L] L]

i. Do you have any evidence to support?

Yes [] No [] if yes, please specify .
b. What level of risk is associated with this type of uncertainty?

Please specify the exact percentage (0-100, 100 is the highest level of risk)
if possible; otherwise please select one of the options:
Very Low Low Medium High Extreme
L L] Ll L] L]

ii. Do you have any evidence to support?

Yes [_]| No [] if yes, please specify .

Appendix C. An
Editor

Use Case Name
Brief Description
Primary Actor
Secondary Actors
Dependency
Generalization
Belief Agent(s)

Timepoint and Duration

Belief Degree

Indeterminacy Source(s)

Evidence
Belief Precondition

Belief
Basic Flow

"Mormal” ¥

Belief Specific
Alternative Flow
(URFS)

"BAILL" ¥

Belief Specific
Alternative Flow
(RFS)

"BAlL2" ¥

Belief Specific
Alternative Flow
(URFS)

"BAILZ" W

Belief Specific
Alternative Flow
(URFS)

"BAlt4"w

Belief Specific
Alternative Flow
(URFS)

"BAIS" W

Fig. Appx-7.

Example of BUCS Specified with the U-RUCM

Belief Use Case Specification

Scale Up for a Larger Number of Orders to Handle
None

Production System

Input buffer,Pallet, Operator

INCLUDE USE CASE WMS Verifies the Input Pallet
None

CompanyA

March-2016, After
UModel.Measure.Vagueness::Likely

REF Broken Input Buffer, REF Connection Loss, REF Improper Implementation for Adaption
of Third part Application

REF Execution Log

None
Steps
1 Production System executes the input order.
2 DO
3 Production System inguires of introduction of a pallet into warehouse.
4 WMS VALIDATES THAT the input buffer has free space to store pallets.
5 'WMS sends the introduction response to Production System.
6 Production System introduces a pallet.
7 INCLUDE USE CASE WMS Verifies the Input Pallet
B WMS sends the order to MFC for entering the new pallet into the input buffer.
9 INCLUDE USE CASE MFC Handles Input Order

10 UNTIL No more introduction inquire.
11 WMS displays the order is finished.
Postcondition The order is finished.

URFS Normal 1

Al Production System executes the input order improperly.
1
2 ABORT.
Postcondition None

WMS watis for the input pallet.

RFS Normal 3
1
2 WMS VALIDATES THAT the input buffer has free space to store pallets.
3 RESUME STEP Normal 5

Postcondition The input buffer has free space.

WMS waits for the free space.

URFS BAIt2 1

Al WMS displays the time out of waiting for the free space.
1
2 ABORT.

Postcondition The order is not finished.

Operator checks the input buffer.

URFS Normal &

Al Production System displays the time out of introducing the pallet.
1
2 ABORT.

Postcondition The order is not finished.

Operator checks the problem manually.

URFS Normal 8

Al WMS sends the pallet to the rejection station.
1 RESUME STEP Mormal 2

Postcondition | The pallet is rejected.

Belief Use Case Specification Scale up for a large number of orders

Fig. Appx-7 presents a sanitized belief use case specification of the AW case study
specified with the U-RUCM Editor.

Appendix D. tolveR-E

Table. Appx-7 presents definitions of heuristics of tolveR-E. Note that ocl.evaluate is a
function that is used to evaluate the constraint specified in OCL. The result of the evaluation
is either true or false. The catch TriggerException represents the exception in case none of

T 1
the specified triggers occur. For example, S1 - S1, the event of the trigger of Tran1 is
kind of TimeEvent and the effect of Tran1 is ““throw new TriggerException(S1.name)”.

Table. Appx-7. Definitions of heuristics of tolveR-E

Definition in OCL Suggested Action

R1 context State One of R1.1, R1.2, or R1.3 will be
not ocl.evaluate(self.stateInvariant) selected.

R1.1 | State.alllnstance->excludes(self)-> Modify this State or Add an
select(s:State | ocl.evaluate(s.stateInvariant))- unknown State with applied
>size()=0 «BeliefElement»

R1.2 | State.alllnstance-> excludes(self)-> | Add a new Transition with the
select(s:State | ocl.evaluate(s.stateInvariant))- same Trigger with applied
>size()=1 «BeliefElement»

R1.3 | State.alllnstance-> excludes(self)-> | Check the redundant problem, and
select(s:State | ocl.evaluate(s.stateInvariant))- add the transitions with the same
>size()>1 Trigger with applied

«BeliefElement» to these states if
they are correct

R2 context State One of R2.1, R2.2, or R2.3 will be
catch TriggerException and | selected.
ocl.evaluate(self stateInvariant)

R2.1 | context State Check invocation of operation
self.outgoings->exists(t: Transition | t.triggers->
exists(t:Trigger | t.event.ockIsKindOf(CallEvent)))

R2.2 | context State Check composite structure diagram
self.outgoings->exists(t:Transition | t.triggers-> | and state machine of driver
exists(t:Trigger | t.event.ockIsKindOf(SignalEvent)

)

R2.3 | context State Check the TimeExpression
self.outgoings->exists(t:Transition | t.triggers->
exists(t:Trigger | t.event.ockIsKindOf (TimeEvent)))

R2.4 | context State Check the ChangeExpression
self.outgoings->exists(t:Transition | t.triggers->
exists(t: Trigger | t.event.ockIsKindOf(ChangeEven
)

R3 context State One of R3.1, R3.2, or R3.3 will be
catch TriggerException and not | selected.

ocl.evaluate(self .stateInvariant)

R3.1 | RefertoR1.1

Add an unknown transition to an
unknown state with applied
«BeliefElement»

R3.2 | Refer to R1.2

Add an unknown transition to a
known state with applied
«BeliefElement»

R3.3 | Refer to R1.3

Check the redundant problem, and
add the unknown transitions to
these states if they are correct.

R4 context Transition

ocl.evaluate(c))

not self.guards->forAll(c:Constraint |

One of R4.1 or R4.2 will be selected.

R4.1 | context Transition
self triggers->

exists(t:Trigger | t.event.ockIsKindOf(CallEvent))

Modify the guard of call event /
Add new transition with applied
«BeliefElement»

R4.2 | context Transition
self.triggers->

exists(t:Trigger | t.event.ockIsKindOf(SignalEvent)

Modify the guard of signal event/
Add new transition with applied
«BeliefElement»/ Check the signal
from DM

Appendix E. tolveR-D

Table. Appx-8 presents definitions of heuristics of tolveR-D.

The value ranges to make constraint true is represented as below,
C(xg, - Xp) = Co(xp) N ...N C, (%)
The possible situations whereby the invariant needs to be modified are described as

follows (C°T8 represents the original constraint, and C92 represents the invariant from

daikon). Note that any of them should apply «BeliefElement» by default.

Table. Appx-8. Definitions of heuristics of tolveR-D

| Description

D1 | c°'8 o €%, we suggest

Trani
The variables in both constraints are the same. For example, S1 = S2, the state
invariant of S2 is {x > 1}, then the invariant from Daikon is {x > 2}, so 1) Split S2 into two

Tran1 Tran1
states with the same trigger, S1 = 521 {x>2}and S1 = 522 {x>1andx < 2}; 2)
Modify the state invariant of S2 to {x > 2}; 3) No change

Tranl

change

Tran
The number of variables is more than the original constraints. For example, S1 — S2,
the state invariant of S2 is {x > 1}, then the invariant from Daikon is {x > 1 and y = 0}, so

Tran1
2 | 1) Split S2 to two states with the same trigger, S1 = 521 {x>1landy = 0} and S1
— S2.2 {x > 1andy # 0}, 2) Modify the state invariant of S2 to {x > 1 and y = 0}; 3) No

D2 | C°'® c C% we suggest

Trani
The variables are the same. For example, S1 = S2, the state invariant of S2 is {x > 1},
then the invariant from Daikon is {x > 0}, so 1) Merge relevant states which may reach

Tran2 . Tranl Tran2 .
(e.g.S2 — S3{x > 0 and x < 1}) to a composite state S1 — {S2 — S3}, 2) Modify
the state invariant of S2 to {x > 0}; 3) No change

T

The number of variables is less than in the original constraints. For example, S1 - S2,

the state invariant of S2 is {x > 1 and y = 0}, then the invariant from Daikon is {x > 1}, so
Tran2 Tran3

2 1) Merge relevant states which may reach (52 % 53 {x>1andz>2},S2 % 53 {x>

Tran2

Tran1 Tran3
landt = 0}) to a composite state S1 = {S2 — S3,S2 = S3}, 2) Modify the state
invariant of S2 to {x > 1}; 3) No change

D3

Co8 n C% # Pand C°8 ¢ C%iand C°'® » C%1, we suggest

Tranl
The variables are the same. For example, S1 —— S2, the state invariant of S2 is {x > 1},
then the invariant from Daikon is {x < 2}, so 1) Make intersections of C°"® and C%i then

Tran1l Tran1l
S1 — S2{x> land x < 2}, 2) Use constraint from Daikon S1 — S2{x < 2}, 3) No
change

Trani
The variables are different. For example, S1 = S2, the state invariant of S2 is {x >
1 and y = 0}, then the invariant from Daikonis {y = 0 and z > 2}, so 1) Make intersections

. Tranl

of C°% and C%i then S1 - S2{x > 1andy = 0 and z > 2}, 2) Use the constraint from
Tranil

Daikon S1 —— $2{y = 0 and z > 2}; 3) No change

D4

C°® n % =@, we suggest

Tranl
The variables are the same. For example, S1 — S2, the state invariant of S2 is {x > 1},
then the invariant from Daikon is {x < 0}, so 1) the first solution is to make unions of

! co® and C92 then S1 m S2 ={x < landx = 0}, 2) use constraint from Daikon S1
= S2{x < 0}; 3) unchanged
The variables are different. For example, S1 - S2, the state invariant of S2 is {x > 1},
) j[rl:frﬂ the invariant from Daikon is {y = 0}, so 1) Make unions of T(Ir‘;;gl and CY2i, then S1
— S2={x <landy # 0}, 2) Use constraint from Daikon S1 — S2{y = 0}; 3) No
change

	Abstract
	Acknowledgments
	List of papers
	Contents
	Part I
	1 Introduction
	2 Background
	2.1 Cyber-Physical System and its uncertainty
	2.2 Restricted Use Case Modeling (RUCM)
	2.3 Model-based Testing (MBT)
	2.4 Search-based Software Testing
	2.5 Uncertainty Theory
	2.5.1 Probability Theory vs. Uncertainty Theory. 
	2.5.2 Uncertainty Measure and Uncertainty Space

	3 Research Methodology
	3.1 Research activities
	3.2 Implementations

	4 Uncertainty-wise CPSs Testing Methodologies
	4.1 U-Model
	4.2 U-RUCM
	4.3 UncerTum
	4.4 UncerTolve
	4.5 UncerTest

	5 Evaluation
	5.1 Case Study
	5.1.1 GeoSports
	5.1.2 Automated Warehouse

	5.2 U-Model (Paper A)
	5.3 U-RUCM (Paper B)
	5.4 UncerTum (Paper C)
	5.5 UncerTolve (Paper D)
	5.6 UncerTest (Paper E)

	6 Discussion
	7 Conclusion and Future Work
	Reference
	Part II
	Paper A
	Abstract
	1 Introduction
	2 Background and Running Example
	3 Uncertainty Conceptual Model
	3.1 Belief Model
	3.1.1 Belief, BeliefAgent and BeliefStatement
	3.1.2 Evidence, EvidenceKnowledge, IndeterminacySource and IndeterminacyKnowledge.
	3.1.3 Measurement and Measure.

	3.2 Uncertainty Model
	3.2.1 Uncertainty, Lifetime and Pattern.
	3.2.2 Locality and Risk.

	3.3 Measure Model

	4 Evaluation
	4.1 Development and Validation of Uncertainty Requirements and U-Model
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion
	References
	Paper B
	Abstract
	1 Introduction
	2 Background and Running Example
	2.1 U-Model
	2.2 Running Example
	2.3 Restricted Use Case Modeling (RUCM)

	3 U-RUCM Templates and Keywords
	4 U-RUCM Formalization
	4.1 Relationships of BeliefUCMeta with UCMeta and U-Model
	4.2 Belief Use Case Model, Element, and Classifier
	4.3 Belief Use Case Specification
	4.4 Belief Flow of Events
	4.5 Belief Sentence
	4.6 Uncertainty
	4.6.1 Uncertainty in Belief Sentences (NLUncertainty)

	4.7 Branch Uncertainty
	4.8 Measurement

	5 Tool Support and Methodology
	5.1 Tool Support
	5.2 Methodology

	6 Evaluation
	6.1 Case Studies
	6.2 Context, Design, and Execution of Evaluation
	6.3 Results
	6.4 Experience, Lessons Learned, and Future Challenges

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgment
	References
	Paper C
	Abstract
	1 Introduction
	2 Background
	2.1 Cyber-Physical Systems and Testing Levels
	2.2 U-Model
	2.3 UML Testing Profile (UTP)

	3 Running Example
	4 Overview of UncerTum
	5 UUP and CPS Testing Levels Profile
	5.1 UUP Belief
	5.2 UUP Uncertainty and Measurement
	5.3 CPS Testing Levels Profile

	6 Model Libraries
	6.1 Measure Libraries
	6.2 Pattern Library

	7 UncerTum Modeling Methodology
	7.1 Overview
	7.2 Application Level Modeling
	7.3 Infrastructure Level Modeling
	7.4 Integration Level Modeling
	7.5 Apply UUP (AP2/IF2/IT2)
	7.5.1 Measurement Modeling
	A. Specify Evidence
	B. Specify Measure
	C. Specify Measurement

	7.5.2 Uncertainty Modeling
	A. Model Lifetime/Cause/Pattern/Effect of Uncertainty
	B. Model IndeterminacySource
	C. Model Risk

	8 UncerTum Validation Process
	8.1 UAL Executable Modeling Guidelines
	8.2 Recommendations to Fix Problems in Test Ready Models

	9 Evaluation
	9.1 Development and Validation of UncerTum and Test Ready Models
	9.2 Evaluation Results
	9.2.1 Mapping UUP/Model Libraries to U-Model and MARTE
	9.2.2 Application of UUP/Model Libraries
	9.2.3 Validation of Test Ready Models via Model Execution
	9.2.4 Application of UTP V.2

	9.3 Overall Discussion and Limitations

	10 Related Work
	11 Conclusion and Future Work
	Acknowledgment
	References
	Paper D
	Abstract
	1 Introduction
	1.1 Challenges and Objectives
	1.2 Context, Scope and Overview
	1.3 Contributions
	1.4 Results and the Structure of the Paper

	2 Related Work
	2.1 Comparison with Existing Works
	2.2 Comparison with Our Previous Works

	3 Background
	3.1 Cyber-Physical Systems and Uncertainty Levels
	3.2 UML Testing Profile
	3.3 U-Model
	3.4 UncerTum
	3.5 UncerTest

	4 Terminologies And Running Example
	4.1 Belief Test Ready Model
	4.2 Executable Belief Test Ready Model
	4.3 Driver Model

	5 Architecture and Current Implementation of UncerTolve
	5.1 Architecture
	5.2 Current Implementation of UncerTolve

	6 Recommended Methodology
	6.1 Creating BM and Driver Model (S1)
	6.2 Validate BM and Driver Model, and Evolve Objective Uncertainty Measurements (S2)
	6.2.1 Analysis of Errors and Fixing Models (S2A2, S2A3, and S2M1)
	6.2.2 Identifying Objective Uncertainty Measurements (S2A4)

	6.3 Evolve Belief State Machines with Dynamic Invariant Analysis (S3)

	7 Evaluation
	7.1 Results of Creating BM and DM (S1)
	7.2 Results of Validation and Evolution via Model Execution (S2)
	7.3 Results of Dynamic Inference (S3)
	7.4 Overall Validation
	7.5 Effort to Build Belief Test Ready Models and Adoption of UncerTolve
	7.6 Discussion and Experiences
	7.7 Threats to Validity

	8 Conclusion
	Acknowledgment
	References
	Paper E
	Abstract
	1 Introduction
	2 Background
	2.1 Uncertainty Modeling Framework (UncerTum)
	2.2 Uncertainty Theory
	2.2.1 Probability Theory vs. Uncertainty Theory
	2.2.2 Summary of Uncertainty Theory

	2.3 Example of the Application of UncerTum and Uncertainty Theory

	3 Overview
	4 Test Case Generation and Minimization
	4.1 Abstract Test Case Generation
	4.1.1 Definitions
	4.1.2 Strategies

	4.2 Uncertainty-Wise Test Case Minimization
	4.2.1 Problem Representation
	4.2.2 Definitions and Functions of the Six Minimization Objectives
	4.2.3 Uncertainty-wise Test Case Minimization Problems

	4.3 Executable Test Case Generation
	4.3.1 Enabling Indeterminacy
	4.3.2 Test Setup and Test Data Generation

	4.4 Test Execution and Reporting

	5 Evaluation
	5.1 Case Study
	5.2 Research Questions
	5.3 Design of the Evaluation
	5.4 Results and Analyses
	5.4.1 Results for RQ1
	5.4.2 Results for RQ2
	5.4.3 Results for RQ3

	5.5 Discussion
	5.6 Threats to Validity

	6 Automation
	7 Related Work
	8 Conclusion
	Acknowledgment
	References
	Appendixes
	Appendix A. Definitions of U-Model Concepts
	A.1 Belief Model
	A.2 Uncertainty Model
	A.3 Measure Model

	Appendix B. An Example of Questionnaire of the AW Case Study
	B.1 Examples of Uncertainty Requirements Specified in RUCM and Corresponding Questions
	B.2 Example of Refined Uncertainty Requirements in RUCM and Corresponding Questions

	Appendix C. An Example of BUCS Specified with the U-RUCM Editor
	Appendix D. tolveR-E
	Appendix E. tolveR-D

