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Abstract

We investigate lower bounds for the error in Nitsche’s Method to implement slip
boundary conditions for flow problems in domains with curved boundaries. We study
approximations of the normal and tangent vectors when using a polygonal approxi-
mation of the domain. For both approaches, we give lower bounds for the error that
give an upper bound on the best convergence rate that can be achieved for a polygonal
approximation of a curved boundary. Our results support the idea that extra mesh
refinement near a curved boundary can mitigate the polygonal domain approximation
erTor.

The implementation of slip boundary conditions for Stokes’ equations on a curved bound-
ary introduces unique difficulties not seen for scalar problems. In a recent paper [5], we
proved upper bounds for the error when using Nitsche’s Method to impose slip boundary
conditions on curved boundaries. Here we consider corresponding lower bounds in order to
clarify whether the results of [5] are sharp. We are only partially successful in that in one
important case there is a gap between the upper and lower bounds.

In an application, we consider flow past a cylinder as in [5].

1 Navier—Stokes equations

Suppose that (u,p) is a solution of the stationary Navier—Stokes equations in a domain
Q) C R? containing an obstacle with boundary I' C 9€:

—vAu+u-Vu+Vp=0in(, )
V-u=0in €,

where v is the kinematic viscosity, together with boundary conditions

u=gond\I', u-n=0onT, (2)
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together with Navier’s friction boundary condition [7]
Bu-1F=—vn'(Vu+vu)r*, k=12, (3)
where 7' are orthogonal tangent vectors and £ is a constant. The following is proved in [5].

Lemma 1.1 Suppose that u € H2(Q)?, p € HY(Q), and v € HY(Q)?. Then

/Q(—VAU +Vp) - vdx = /Q §D(u) :D(v) —pV-vdx — fgﬂ (vD(u) — pI)v-nds, (4)

where D(v) = Vv + Vv and n is the outward normal to 0S).

1.1 Proof of Lemma 1.1

There are two parts to (4). The one involving p is a consequence of the divergence theorem

/V-de: W - nds,
Q o0

applied to w = pv, since V- (pv) = Vp-v 4+ pV-v. Similarly, let w = D(u)v. We claim
that, if V-u =0,
V- (D(u)v) = (Au) - v + iD(u) : D(v). (5)
To prove this, we expand using indices:
V-(D(u)v) =Y (D()v)ii = > (D(w)i;v;).
tj

— Z (D(U)ijvj,i + D(“)ij,ivﬂ')

j
=Y DW)yvii+ > (Wi + u)v;
:DJ(u) : VVt—FV-é(V-u)—I—Au-V:D(u) :Vvi+Au-v.
But the symmetry of D(u) implies that
D(u): Vvl =D(u)" : Vv =D(u) : Vv
so that D(u) : D(v) = D(u) : Vvt + D(u) : Vv = 2D(u) : Vv'. Thus
V- (D(u)v) = iD(u) : D(v) + Au- v,

proving (5). A second application of the divergence theorem confirms (4).

1.2 Variational form

The corresponding weak formulation of the stationary Navier—Stokes equations is
v

2 (D(w). D(v)) — (. V-v) + f FY (V) wds = F(v) ¥veW.  (7)

where F(v) = —(u-Vu,v) and
W={veH (@ )*: v=00n9dQ\I', v-n=0onT}.
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Figure 1: Solution of the Navier-Stokes equation (15) for v = 1 with § = —2 (potential
flow). Plot of (a) pressure p and (b) velocity u for potential flow (5 = —2), computed on
the indicated coarse mesh. The mesh was generated using gmsh. The computation was done
in a box of dimensions 4 x 4, and the cylinder of radius 1 is centered in the box. Dirichlet
conditions on the boundary of the box were given by the potential flow solution.

2 Potential low around a cylinder

Potential flow around a cylinder of radius 1 and aligned with the z-axis is given [4] by u = V¢

where
T

2+ 2
The solution is depicted in Figure 1. The velocity components are given by

o(z,y,2) = P(r,0,2) = (7“ + %) cosf = + (8)

2 — 2 —2zy
ug(,y,2) =1 — ———, uy(x,y,2) = u, =0 (9)
(22 +9)" (a2 +2)°
Thus [4] u satisfies Au = VAp = 0 and
—vAu+u-Vu+ Vp =0,
where
= —luf? = —5IVoP (10)
p - 2 - 2 )

and we have a solution of (1) for any v.
We can take the normal and tangent vectors on the cylinder to be

n=—(z,y,0), Tl = (y, —x,0), 72 = (0,0,1).

The shear stress can likewise be computed [4], and we find that the shear stress is equal to
the tangential velocity on the cylinder. Thus (3) is satisfied for § = —2v.

Thus potential flow for the cylinder provides an exact solution of Navier—Stokes for any
Reynolds number for g = —2v, suitable for studying a numerical implementation.



3 Nitsche’s method

The variational expression comparable to (7) but allowing u-n # 0 and v - n # 0 is [5]

g(D(u),D(V)) —(p,V-v) +7€Zﬁ(u (v %) ds

(1)
- § 0'(vD(w) — pl)n(n-v) ds = F(¥

for all v.e HY(Q)4, where F(v) = —(u - u, v). Nitsche’s method [5] uses the form
v k k
At p.p).(v..0)im) = (D). D) + § 3 sl w4)(v - 74)ds
g

- ]{nt(uD(u) —pln(n-v)ds — 7{ n'(vD(v) — ¢l )n(n - u)ds (12)

r

—(,V-v) = (¢, V-u) +/qu+apdx+7]£h‘l(u-n)(v-n) ds,

where p,o0 € R, v > 0 is a constant that must be chosen sufficiently large and A is a function
that indicates the local mesh size. This bilinear form is defined on the restricted space H3 (Q)

defined by
HL(Q) = {v e H'(Q)' : v=00nd\T, D(v)|. e LQ(F)‘F} , (13)
and the corresponding pressure space
TN (Q) = {q € LXQ) : g € L2(F)}. (14)
The following is proved in [5].

Lemma 3.1 Suppose that the pair (u,p) € (VNHE(Q)?) x Iy solves (7) with the boundary
conditions (2) and (3). Then

A((a,p,0),(v,q,0);n,7) = F(v) (15)
for allv € Hy(Q), q € Iy, 0 € R, and for any h and 7.

The computational approximation of the nonlinear problem (15) involves solving linear
variational problems with right-hand-side F'(v) = —(u-Vu, v) via various techniques. Many
automated systems [6] will apply Newton’s method automatically just based on the request
to solve

Ap((ap,p,p), (v,q,0)) +/Q (up - Vuy) -vder =0 (16)

with the indicated spaces and Dirichlet boundary condition on 9Q\I'.
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3.1 Polygonal approximations

We approximate the domain €2 by simplicial complexes €2, where the edge lengths of 0§,
are of order h in size. This is indicated schematically in a figure in [9]. Then conventional
finite elements are employed, with the various boundary expressions being approximated by
appropriate quantities. In particular, we assume that €2, is triangulated with a nondegenerate
family of meshes 7, of maximum simplex size hg. We define

Wy = {V cC() : v=0on Y\, v|p € Pu(T) VT € 'E} ,
0 ={g € C() : qlr € Pea(T)'VT € Ty}

To define the bilinear form on the polygonal domain, we need to be precise about the normal
and tangential vectors. The simplest approach is to take the normal n, and tangents 74 of
the polygonal approximate domain €2;,. We will see that this is sub-optimal.

For x € 'y, define w(x) € I" by projecting orthogonal to I', to get the closest point on
I', and then define n,(x) = n(w(x)) to give a continuous “normal” on I',. Similarly, define
7. = 7' om on I, We assume that 7 is invertible, which it will be for A sufficiently small.
Define, for any set of vectors n and 7°,

A((w,p, p), (v,q,0) 3 0) = au, vin) + b(u, g; n) + b(v, pi ) + / pa+opds,  (17)

where
a(u,v;n) = g D(u) : D(v)dx +j([ Zﬁ(u (v -1 ds
o e (18)
- f; vn'D(u)n (n-v)ds — j{ vn'D(v)n (n-u)ds+ ’yé h~'(u-n)(v-n)ds,
and
b(v,q;n) = —(q,V-V)th]g g(n-v)ds (19)
where

(p,q)h—/ pgdz.
Qp

Although the form a(u, v;n) depends on the tangent vectors 7¢, it is indexed by just n since
the tangent space spanned by 7 is the space orthogonal to n in all cases, as discussed in [5].
We index these two choices of normals (and corresponding tangent vectors) as follows:

n' = {n” =1 (20)

Then the Taylor-Hood approximation [8] finds ui, € g; + Wk, pi € 11, and p € R satisfying

A((a},, P, p); (v, ¢,0) ;0') = F(v) (21)



for all (v,q,0) € WF x TIF x R, where g; denotes a suitable interpolant of g.
In [5], the choice (n, 7%) = (n,, 7%) is called the Nitsche method with projected normals

™

(algorithm 1) and the choice (n, 7%) = (n,, 7F) is called the the Nitsche method with discrete
normals (algorithm 2).
We could have indexed the discrete solutions by the choice of normal, e.g.,

W= W Py =, W=l p =t
But we chose a more opaque but simpler notation in [5].
Remark 3.1 Polygonal approximations for scalar Dirichlet problems satisfy at best
[t — wp| (@) < CHP?

for k > 2 on meshes of size h [2]. The approzimation order cannot be higher than 3/2 due to
the polygonal approximation of the boundary. Thus there is no compelling reason to choose
k > 2 unless the mesh is more refined on I' than in the interior.

To prove convergence of the polygonal approximations, we need to assume that the
solution u can be extended smoothly to a neighborhood € of Q. This guarantees that
Qp, C Q2 for h sufficiently small.

4 Error estimates

We first write the variational problem in terms of its projection onto the discretely divergence-
free subspace, decoupling the pressure from the velocity. Then we review error estimates for
the variational crimes arising due to the approximation of the boundary and normal/tan-
gential vectors. Finally, we develop lower bounds for the error in order to identify the most
offending terms.

4.1 Problem structure

First define Iy = {¢ € 1T} : [, gdz = 0}. For n € {ng,n,}, define subspaces Z* of W}
by

Zn:{VGWf ; / qV-vdx—]{ q(n-v)ds:OVqGHO}. (22)
Qp Ty

In [5], we show that solutions (ui,p}) defined in (21) satisfy ui € Z™ and pi € II,. The
equations (21) for u}, then simplify to

a(ul,v:n')=F(v) VveZ™, (23)
Once ui is determined, pi can be determined by, V v € Wk,
b(v,pji0’) = F(v) — a(u;, vin'), (24)

provided that the appropriate inf-sup condition holds [1].
In [5], the following is proved.
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Theorem 4.1 The following are equivalent:
1. (ui,pt, p") is a solution of (21),

2. ul, € Z™ is a solution of (23) with pi, € Iy determined by (24).

4.2 Error estimates for a(-,-;n;)

The first step in [5] is to define appropriate spaces

HL(O) = {v € H'(2)" : v =00n0Y\Is, D(v)|, € L2<rh)d2} , (25)

and
n () = {q € IA() : d|y, € L?(rh)}. (26)
The form a( -, - ;n) is coercive and continuous in H () for both choices of normal and

tangent vectors, for 7 sufficiently large. The proof of this is standard [11]. This is why the
solution u of (21) is uniquely determined for v sufficiently large. On Hj (), define the
norms

vl = (av,vin) " vl = (a(v,viny))
for all v e Hy ().

It is assumed in [5] that the mesh is nondegenerate [1], so that the ratio of mesh sizes in
neighboring elements is uniformly bounded, and that the mesh-size function A that appears
in the penalty terms in the bilinear forms is piecewise constant on elements. For boundary
edges or faces e € I'y,, h, denotes this constant value in the corresponding triangle or simplex,
hr denotes the maximum value of h, for all e C I'y, and hq denote the maximum mesh size
for all elements in the mesh for €.

The analog of Lemma 3.1 does not hold exactly for the polygonal approximation. First,
we need to assume that u and p have been extended outside of Q to be in Hx () x II. In

1/2

(27)

particular, we assume that u and p have been extended to a domain €2 that contains €2}, for
hr sufficiently small. We also assume that the finite element functions are similarly extended
outside of €, as polynomials locally. B

To begin with, we assume that our solution satisfies (1) in a slightly larger domain €2, so
that we can integrate by parts on €, [5] to get

g(D(u),D(V))h +(u-Vu,v), — (p,V-v), = jg n}, (vD(u) — pl)vds (28)

for all v € H'Y(Q)¢. This holds for potential flow due to the formulas in section 2. The
following is proved in [5, Lemma 3.3].
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Lemma 4.1 Let (u,p) be the solution of (1) in HY ()4, satisfying the boundary conditions
(2) and (3). Suppose that v.e WF. Then

a(u,ving) + (u-Vu,v), — (p, V- v) +}l{ pny - vds
Ty

= ¢ (3tu—uom +val(Dlw) ~Dlwom)) - Povds— § vin,—m) Dlwvds (29

I

- é v D(v)ng(n, - (u—uom))ds+ ’y% h'((u—uom)- -n;)(v-n,)ds.

T'n

4.3 Estimating terms in Lemma 4.1

We use standard inverse estimates [1, section 4.5], namely
IVllwe ) < Che™ Vil 1=0,1,2, (30)

where WY = L* and d is the dimension of Q. Thus it is proved in [5, (3.18)] that

3/2
< Ch [[ullyy @Il @) (31)

’ j{ h (n, — n,)'D(u)v ds

where hr = maxccr, h.. This uses the estimate
ST (et < onl?. (32)
IS N

To estimate the remaining terms in (29), observe that we can write (in two dimensions) each

edge e as
e={(x,0) : 0<z<h}

by choosing suitable coordinates. In these coordinates,
uom(z,0) =u(z,di(z)), 0<z<h, (33)

where § is of order h?, since it represents the error in a linear approximation of I'. A similar
representation holds in three dimensions. Note that 1/C < h/h., < C since the mesh is
nondegenerate. Thus Taylor’s theorem implies

[u—wo o) < CREullyy @), [PW) = D(u) o 7|l re) < COhZ|lully2 (g

for all e € T';. Thus it is proved in [5, (3.21-23)] that

] f[% n' D(v)n,(n, - (u—uomw)) ds‘ < Ch?;/?HuHWgO@y|v|yH1(Qh), (34)
h

‘ j{ h™'((u—uom)- -n.)(v-n,)ds

1/2
< Ch?””“”W&(ﬁ)(j{ h™Hv - ng? dS) ., (39)
h
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and

j{ (Bu—uom)+vni (D) —D(u)ow) - Prvds

5/2
< Chullys @ IVl (36)

Combining (31), (34), (35), and (36), Lemma 4.1 implies the following:

Lemma 4.2 Let (u,p) be the solution of (1) and assume that the mesh is nondegenerate.
Suppose that v, € WE. Then

@(117 Vh; nﬂ') + (11 : VU,Vh)h - (p, V'Vh)h + ?{

PV -1y ds‘
'y

1 (37)
3/24+¢
<O P el v llx
=0

where C' depends only on the shape regularity of the mesh, v, B, and ~, and hr is the
mazimum mesh size near T'.

Suppose that
a(uh, Vi HW) + (uh . Vllh, Vh)h =0 (38)

for all v, € Z"~. Then the following is proved in [5, 3.30]:

3/2 2
Ulha —up 2 < 3w = v 12 + 2(Ch?[ullys @)

+ C(Hp - (JHLQ(Q;L) +1lp—q Lv-(rh)) Vi — uhHHl(Qh) (39)
+ (up, - Vu —u-Vu, vy, — uy)p,

where r =1 for d = 2 and r = 4/3 for d = 3.

4.3.1 Estimating the nonlinear term

The following proof was not included in [5] due to limitations of space and the fact that the
arguments are standard. We have for any w € W}

|(up - Vuy, —u-Vu,w),| < [((up —u) - Vug, w)p| + [(u- V(u, —u),w)y|

(40)
< lwn =l (Iunllmn + lalla @) [Wlme,)
since Cauchy—Schwarz and Sobolev’s inequality [1, 3] imply
[(w- Vv, w)i| < Cllviim@plllul wlllz2@,) < Cllviim@ullal @) 1wz,
< Clvlla @ lallzr @l wilm @)-
Combining (39) and (40), we get
3/2 2
Bl — w2 < 3w = v 7+ 2(Chi ullys @)
+C(lp = allzzen + Ip = alleren) (41)

+ lun — all o) (an 2 00) + ||u||H1(Qh,))> Vi — wnll a1 (@)
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Let us denote two quantities as follows:
Ep = inf (Ip = dllzzn + llp = allzrwn), B = Il + lallm@,)-

Taking the infimum over ¢ € Il in (41), using the triangle inequality, and applying the
arithmetic-geometric mean inequality a few times yields
Sl —wa 2 < 2w = vall2 + 2(Chi* Jullyz @)’
+ C(E, + Blluy — ull gy [Ive — wnll gy
< Flllw = v lI2 + 2(Chilullyg @)+
C(E, + Bllw, = ullmy) (Ve — ullmo,) + [[a = wnllm )
< Sl = vall + 2(Ch ullyz )
+ CBlu — w3 o,y + CEpllun — ullm o) (42)
+ C (B, + Blluy — ullmia,) Ve — ullme,)
< Hlu=vall2 + 2(Ch 2 lullys @) + 2CBlu = wil}q,)
+2(CE,)? + %Huh - uH%{l(Qh) + (% + CB)|lvi — u”iﬂ(gh)
= (3+0B)llu=vall2+2(Chi*[ullyz @)’
+ (5 +20B)|lu — w31, + 2(CE,)*.
Due to the coercivity of a(-,-;n,), standard techniques [3] show that both u and uy are

small when the boundary data g is small with respect to v, and so B is small. This leads to
the following.

Theorem 4.2 Let vy, and py be defined by (21). Suppose that vg is sufficiently small and
that the mesh is nondegenerate. Let (u,p) be the unique solution of (1), and let (u},p;,) be
the unique solution of (21) with F(v) = —(u} - Vu},v),. Suppose that w, € Z solves (38).
Then

3/2
lu— |- < ChY (lallyz @ + lIpllw @) )
_ _ 43
+ C(Vlhﬂefz [u— vl a1, + qleﬂl{o (Ilp = allz2n) + llp — QHLr(aﬂh)))a

where r =1 for d =2 and r =4/3 for d =3 and C' depends only on the shape regularity of
the mesh, B, v, and v, and hy is the maximum mesh size near I.

Using the inf-sup condition [1] for the pair W} and II%, the following is proved in [5].

Theorem 4.3 Let u;, and py be defined by (21). Suppose that v=g is sufficiently small and
that the mesh is nondegenerate. Let (u,p) be the solution of (1). Then
3/2
la=uanllx+ [lp = prllr2@,) < Chr/ (”u”wgo(ﬁ) + HPHWOIO(?)))
+ Ch’é(”““H’ﬁ“(%) + 1Pl ey + HpHer(th)),

(44)
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7looor 001 01 L0 100 100
ho
0.501 | 0.9513 0.9521 0.9554 0.9657 0.8388 1.4673
0.328 | 0.3013 0.3014 0.3023 0.3086 0.3278 0.5802
0.165 | 0.0885 0.1687 0.0872 0.0899 0.1050 0.2042
0.086 | 0.0215 0.0215 0.0216 0.0227 0.0306  0.0666
nco 20 20 20 19 L7 16

Table 1: Approach 1: Nitsche method with projected normal. Error and averaged numer-
ically computed convergence order (nco) measured in the ||u|||; + |[p|/z2-norm for uniform
meshes of mesh size hg, using k = 2, n, for the normal and 7, for tangent, for different
values of 7.

where r =1 for d =2 and r = 4/3 for d = 3 and C' depends only on the shape regularity of
the mesh, 8, v, and v, hr is the mazimum mesh size near I', and hq is the mazimum mesh
over all of ).

Figure 1 shows the results of a computation using the first algorithm on a coarse mesh.
Table 1 gives numerical confirmation of the error estimates.

Table 1 indicates a feature of Nitsche’s method with regard to the choice of penalty
parameter v [8, section 22.4]. For certain values of v and h, the errors can suddenly increase
significantly. The offending error value is highlighted in bold in Table 1, the error for hg =
0.165 and v = 0.01. For other values of v for the same value of hg, the errors are significantly
smaller, and for the same value of v and different values of hg, the errors are as expected.
Otherwise, the parameter v has little effect on the errors for v < 1. However, for v > 10,
there is a slight degradation.

Table 2 confirms the implication of Theorem 4.3 that the error will not decrease substan-
tially as k is increased, unless the mesh is substantially refined near I'.

4.4 Estimates for a(-,-;ny)

Analogous to Lemma 4.1, it is proved in [5] that

a(u,ving) + (u-Vu,v), — (p, V- V), +7{ pnvds
'

— é y(n’;LD(u) —n.(D(u) o 7r)>vds
S BTy i) — (womw) (v r) ds (45)

)

+ jg n’ ((vD(u)) o w)n.(n, - v)ds — ]{1 n}, (vD(u))n,(ny, - v) ds

-4 ] (7)o s 9 o)) ds

In
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k
ha 2 3 4
0.591 0.8388 0.8625 0.8205
0.328 0.3278 0.3222 0.2951
0.165 0.1051 0.1109 0.1075
nco 1.6 1.6 1.6

Table 2: (Approach 1) Error measured in the || ull|y + ||p||z2-norm for v = 10 on uniform
meshes of mesh size hq, for different values of k£ using n, for the normal and 7, for tangent.

Each of these terms is then estimated in [5].
For the first term in (45),

M (n;gp(u) —n’(D(u) o ﬂ))Vds‘ < Clulys g 3 W2 vl ),
h

ecl'y,

using the inverse estimate (30). Therefore (32) implies

3/2
< ChYullyy @ IV I ).

’ j{ (n?ﬂ)(u) —n.(D(u)o ﬂ))vds

For the next term in (45),
i i i i 3/2
[ er i) = (womw) (v w) ds| < CHulhy vl o
h

using (30) and (32).
Similarly, adding and subtracting n},D(u)n,(n, - v) gives

| 0D o mn (e ) = 0D v) ds| < Ol ¥ o
h

using (30) and (32) as in (48). Collecting what we have proved so far, we have

‘a(u,v;nh) +(u-Vu,v), — (p, V- v) +j[ pnivds
I

©f DO mm wds = ) m)ds

h

3/2
< Chr/ ||11||W010(§)||V||H1(Qh)'

The remaining two terms in (45) now appear as the middle line in (50).
Since n, - (uo7) =0 on I'y, on each e,

In,-u|=n,-u—n, - (uowm)|=|(n, —n,) ul+|n; - (u—uom)|

1
< C’Zh§+1||u||wgo(§) < Che‘|u||wgo(§)'
=0

(46)

(50)

(51)
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Thus
[ 0D w) ds| < ORIl o (52)
h

using (30) and (32). Finally, (51) implies that
7 ) ) ds] < OBl 1 (53)
h

Thus we see that the two terms on the last line of (45) are bigger by a factor of k' than

the other terms in (45). Therefore, the analog of Theorem 4.2 has an error of only h11“/ 2,

Theorem 4.4 Suppose that g is sufficiently small and that the mesh is nondegenerate. Let
(u,p) be the unique solution of (1), and let (ui,p?) be the unique solution of (21) with
F(v) = —(u} - Vui,v),. Suppose that wy, € Z solves (38). Then

1
2 0+1/2 . .
Il — g [ < C% hy ||11HW§O+Z(§) + C(\{g; [u— v, + qlennfo lp — QHL?(Qh))’ (54)

where C' depends only on the shape reqularity of the mesh, B, v, and vy, and hr is the
mazimum mesh size near I'.

Using the inf-sup condition for the pair W} and I1}, we conclude the following [1].

Theorem 4.5 Suppose that g is sufficiently small and that the mesh is nondegenerate. Let
(u,p) be the solution of (1). Then

1
0+1/2
Il = I+l = phllzn < €Y bl @ +Ch (1l v @, + Pl @, s (55)

=0

where C' depends only on the shape reqularity of the mesh, 3, v, and 7, hr is the maximum
mesh size near I', and hg is the mazximum mesh over all of €.

Thus the error for method 2 appears to be worse than for method 1 by a factor of hp',
as is found computationally for the potential-flow problem, documented in Table 3.

5 Lower bounds for the error

As is well known [10], when there is a variational crime, it is possible to give lower bounds
for the resulting error. This is based on the Cauchy—Schwarz inequality

a(u -y, vin) < flu—w [l vl; i€ {r A}, (56)
for any v. Dividing by the norm of v, we find

i
=y > 0 W vin)

Li=1,2, (57)
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o 710001 001 0.1 1.0 100 100.0
0.591 1.6561 1.6531 1.6232 1.3809 2.8539 14.9036
0.328 1.1042  1.1541 1.1362 1.1449 2.2288 12.6495
0.165 0.7333  0.7322 0.7218 0.8644 1.3568 8.7213
0.086 0.4463 0.4458 0.4538 0.4118 0.8030 5.3767
nco 0.7 0.7 0.7 0.6 0.6 0.5

Table 3: Approach 2: Nitsche method with discrete normal. FError and convergence rates
measured in the || u ||| + ||p||z2-norm for uniform meshes of mesh size hq, using k = 2, n,
for the normal, 7 for tangent, and different values of ~.

k
ha 1 2 3
0.591 2.8539 2.9385 4.7645
0.328 2.2288 2.5597 3.5556
0.165 1.3568 1.7826  2.3600
0.086 0.8030 1.3647 1.8863
nco 0.6 0.6 0.5

Table 4: (Nitsche method with discrete normal) Error measured in the || u |||, + ||p|| z2-norm
for uniform meshes of mesh size hg with v = 10 and different values of k.

for any v. Now let us specialize to the second algorithm with discrete normals and tangents.
From (50), we have for v € Z

a(u—ui,viny,) + j{ nj, <Zv - I/D(V)Ilh) (u-mny) ds‘
r, b (58)
3/2
< CRY ullyz @+ Cbl (Il + 1Pl @)
Now we choose [9] a special v € Z so that
la =il 0, < Chgllullareo,), 1= vz, < ChE ullyr g, . (59)

valid for k£ = 2. Note that v is not constrained by any boundary conditions on I';,. Since
the approximation operator defined in [9] is local, it is easy to see that the constant C' is
independent of h even though the domain changes with h.

Let u; be the interpolant of u in W¥. Then

|D(w) = D)l Lrry) < [[P(a) = D(ug)| i, + P(ur) = D)y,

—d/2
< ChE| D) ||y g,y + Chr (s = V][ (60)
< Oh{gHD(u)“Wl’“H(rh) + Ch;_dﬂhéHuHHHl(my

We now re-examine (52) for this v. Since n, - u = O (hr) on I';, (60) implies
’f n, (vD(v))n,(ny - u) ds‘ < ‘7{ n}, (vD(u))n,(ny - u) ds‘
Fh Fh

1—-d/2 3/2
+ C(REID) oy, + b2l s ) ] ey < OB,

(61)
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provided hf, < C’h(F1+d)/ > and u is sufficiently smooth. Therefore, (58) implies

‘a(u—ui,v;nh)jtfyj{

Iy

h™t(u-ny)(v-ny) ds‘ < Ch:;/Q. (62)
With our choice of v, (59) gives

‘ j{ R~ (u-ny,)(v-ny)ds — Chy > Chr, (63)
IV

> \f hfu - ng 2 ds
Ty

provided I" has a region with non-zero curvature and u is sufficiently smooth. Recall that
k > 2. From (57) and (63), we conclude that

=i llln = Cyhellvlim@,) = Cvhr(lulm @, — Chollulm,)). (64)

using (59). This confirms that algorithm 2 is less accurate in terms of mesh size than
algorithm 1, but it does not show that the estimates in Theorem 4.4 and Theorem 4.3 are
optimal. On the other hand, it does prove that algorithm 2 degenerates as 7 — 0.

5.1 Lower bounds for the first algorithm

Lower bounds for u — u} are trickier since most of the terms in (29) are of the same order,
so it is difficult to know if cancellations occur. However, for smoother v € Z satisfying (59),
some of the terms in (29) are of smaller order. In particular, the term in (34) can easily be

seen to improve to order h?/ ? for v satisfying (59), as in (36). Surprisingly, the final term
in (29) is of even higher order, unlike the situation for algorithm 2 where this term is the
largest. Replacing (35), we have

f n (o m) nn) v enn) d < Chrlv - nlnulle @
Iy < (65)

= Chrl(u=v) nelloeylhally, @ < Chr?ullyr g,y llally, @),

using (59). Recall that this is the term multiplied by =, so the effect of increasing v in
algorithm 1 is much less than for algorithm 2. Thus we have shown that for v satisfying
(59), the terms (34), (35), and (36) are all higher order.

However, for (31), a new argument is required. We begin with a general estimate.

Lemma 5.1 Suppose that the mesh is non-degenerate [1]. Then

’ j{ (n;, — n,)'wds
Ty

for fized ¢ € R.

3 -~ ==
<C Z {he”W”Wolo(Q) d=2 (66)

thWHWolO@) + hZ’HWHLw(Q) d=3,

ecl'y
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Proof. In two dimensions, n, — n, can be written using the notation surrounding (33)
for an edge e = {(x,0 : 0 <z < h} as

(0, — ) (@) = (1 4+ 8 (2)?) 72 (= 8'(2),1 = V1 +8(2)?) = £ (2)7 + O (h?) .
Note that 1/C < h/h. < C since the mesh is nondegenerate. Therefore
‘ j{(nh —n,)'w ds‘ < ‘ 7{6’T§lw ds‘ + OR? || W|| Lo () - (67)
Integration by parts gives
| formiwas| = | fa(riw)’ ds] < CH s (65)

proving (66) in two dimensions (d = 2). In three dimensions, n, — n, can be written on a
face e = {(x,0) : x € e} as

(0 — 1p)(x) = (1+ [Vad(2) ) 72( = Vad(2), 1 = /1 +8'(2)2)'

' (69)
= —(Vg(s(l’), 0) + @ (h2) .
Therefore
’ f(nh —n)'w ds‘ < ‘ ]{(VQ(S(x), 0)'w ds‘ - CRY[W| o). (70)
Integration by parts gives
) j{(VQcS(I),O)tW ds‘ < CR?||W| oo oe) + C’h4||w||W010(wh). (71)
Summing over e completes the proof of Lemma 5.1.
Applying Lemma 5.1 with £ = 0 to w = D(u)v in (31) gives
% (nj, — n,)'D(u)vds| < Chi, (72)
In

in two dimensions. Thus the best lower bound that we can give in two dimensions for the
error in Nitsche’s method is O (hZ) using v as in (59).

5.2 Another approach
The term in (29) multiplied by ~ is

jg h'((u—uom) -n.)(v-n,)ds. (73)

Let us evaluate
(u—uom) -n,=u-n,
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plot of delta and normal component of u plot of segment integrals versus 0.165*cosine

.
(?.32 083 0.84 085 0.86 087 0.88 089 09 091 0.9 h 3 4
a X axis b theta

Figure 2: (a) Plot of 0 (+’s) and u - n, for a typical edge e, plotted as a function of the
x-coordinate. (b) Plot of segment integrals (74) (indicated by triangles) versus 0.165 cos 6
(solid line); 20 segments corresponding to a fixed angle of 18 degrees.

for potential flow (9) around a cylinder. First, we need to evaluate n, on I',. For x € T'y,
we have 7(x) = x + J(x)n;, € I', where we know from [2] that

0(x) = /1 = x> + (x-1p)2 +x -y,
by using the fact that |x + d(x)n;| = 1. For x € I', n(x) = —x. Thus
n.(x) = —7(x) = —(x = §(x)ns)
for x € I'j. Recall from (9) that

2% — 2
(22 +42)"

—2zy

m, Uy =0.

ug(x,y,2) =1— uy(T,y,2) =

Consider a segment e of I';, between two vertices x° and x! of I',. Then we can write the
segment as
x(t)=tx"+ (1 —-t)x!, 0<t<1.

Define (&,7) = x' —x° Then

(na _5)
VE + 1
In Figure 2(a), we see a plot of u-n, on a typical edge (solid line) versus § (+’s). Note that
u - n, is comparable to 6 = O (h?). Since we are interested in integrals, we computed

n; =

x(e) = j{h_3u ‘n;ds = fh_g((u —uom)- n,)ds. (74)
In Figure 2(b), the integrals (74) are plotted for a regular approximation I', consisting of
20 segments corresponding to a fixed angle of 18 degrees. Each segment integral is plotted
(indicated by triangles) as a function of the angle corresponding to the center 6, of the
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segment e. Remarkably, this curve is closely matched to 0.165cos . (solid line), and this
match is independent of the number of segments, that is

x(e) = 0.165 cos 0.,

with the approximation only improving as the number of segments increases. Thus if we
could pick v € Z such that v - n;|. ~ cosf, then summing (74) would give

é h™ ' ((u—uom) n.)(v-n,)ds = Z h2x(e) cos b, =~ Chr. (75)

Note that w = —(1,0) satisfies w - n = cosf on I'. Thus we can solve a Stokes problem

—Aw+Vg=0inQ, V-w=0in,

76
w=—(1,00onI, w=0o0ndQ\Il (76)

Analogous to (59), we pick v € Z such that
1w = vlla) < Chgllwllue,, 1w = Vi@, < CAE Wl g,y (77)

using [9]. Then v satisfies
vl = W il ~ 3/ er + exvhp

h
llu—u} [, > C——E— ~ Oy R,

\/Ja + cz'yhfl

Therefore

for hr sufficiently small.

6 Conclusions

Nitsche’s Method can be used effectively to implement slip boundary conditions for Navier—
Stokes using the Taylor—-Hood approximation with polygonal approximation of curved bound-
aries. The choice of normal and tangential vectors used in the Navier boundary conditions
must be done judiciously, but then mesh refinement at the boundary can mitigate the polyg-
onal boundary approximation. Potential flow provides an exact solution, in both two and
three dimensions, to test the implementation of Navier’s slip boundary condition.
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