Weaknesses in the Temporal Key Hash of WPA

Vebjorn Moen
moen@ii.uib.no

Havard Raddum
haavardr@ii.uib.no

Kjell J. Hole
kjellh@ii.uib.no

Department of Informatics, University of Bergen, Pb 7800, N-5020 Bergen, Norway

This article describes some weaknesses in the key scheduling in Wi-Fi Protected Access
(WPA) put forward to secure the IEEE standard 802.11-1999. Given a few RC4 packet keys
in WPA it is possible to find the Temporal Key (TK) and the Message Integrity Check (MIC)
key. This is not a practical attack on WPA, but it shows that parts of WPA are weak on their
own. Using this attack it is possible to do a TK recovery attack on WPA with complexity
o (2105) compared to a brute force attack with complexity O (2128).

Keywords: 802.11, TKIP, WPA, temporal key hash, Michael, MIC.

I. Introduction

The IEEE standard 802.11-1999 [1] is a set of pro-
tocols defining a communication channel inspired by
Ethernet, but using unlicensed radio spectrum bands
instead of wires. Since radio is used to communicate,
eavesdropping can be done by anyone with a radio re-
ceiver, and anyone with a radio transmitter can write
to the channel. This shows the need for built-in secu-
rity in the WLAN design. The 1999 standard includes
a security protocol called Wired Equivalent Privacy,
or WEP. The goal was to achieve the same level of
security as wired Ethernet.

It has been shown that the WEP design has many
basic flaws and does not fulfill the design goals. It
does not defend properly against packet forgery or re-
play, which allows an attacker to use the 802.11 in-
frastructure to launch attacks on the WEP encryption
key. In addition, WEP uses the RC4 encryption algo-
rithm in a way that makes it possible to mount plain-
text recovery attacks and key recovery attack using
public domain software, e.g. AirSnort [2].

To correct these design flaws, the 802.11 Working
Group (WG) has chartered work to find a new secu-
rity protocol. First the WG has defined WPA, which
is a WEP wrapper design, to fix all the known prob-
lems with WEP. It has been established that WPA can-
not fulfill the original WEP design goals, because the
available CPUs on existing hardware are too limited.
Therefore, the WG is also working on a new protocol
based on the Advanced Encryption Standard (AES)
that can meet the original design goals, but it will re-
quire new hardware.

The rest of this paper is organized as follows: Sec-
tion II describes the algorithms that are relevant to the
security in WPA, Section III describes the attack, Sec-

tion IV discusses the practicality and impact of the
results, and Section V gives a summary of this paper.

II. Algorithms

IILA. WEP

WEP was suggested in the IEEE standard 802.11-
1999 to provide security equivalent with that of a
wired Ethernet. The WEP algorithm should insure
confidentiality and integrity of the frames on the wire-
less network. A Cyclic Redundancy Check (CRC)
is used to compute an Integrity Check Value (ICV)
on the message. The ICV is then concatenated on
the message before encrypting with the stream cipher
RC4. The WEP-frame is illustrated in Figure 1.

4 3 1 4 4
Frame | Initialization | Pad and | Frame Integrity Frame check
header| vector key ID |body - check value | sequence

Clear ‘ ‘ Encrypted 4 L Clear —

Figure 1: WEP frame. Length of fields measured in
bytes.

RC4 is a symmetric cipher, i.e., the same key en-
crypts and decrypts the data. The encryption key is a
per-packet key which is obtained by concatenating an
Initialization Vector (IV) with the user key. Because
of export regulations the standard specifies 64-bit keys
where 24 bits are the IV, but many vendors have also
implemented 128-bit keys where 24 bits are the IV.

I1.A.1. Security issues

The CRC used for the ICV can catch single-bit alter-
ations with high probability, but it is not cryptographi-

76 Mobile Computing and Communications Review, Volume 8, Number 2

cally secure. The CRC is a linear function of the mes-
sage, and Borisov ef al. [3] showed that it is possible
to make controlled modifications to a ciphertext with-
out disrupting the checksum.

The standard ignores the issue of key management.
Most vendors do not implement any key distribution
mechanism, this means that keys must be statically en-
tered into either the driver software or firmware. All
the mobile stations accessing the same access point
use the same pre-shared key and can therefore decrypt
each others packets. Since the key needs to be manu-
ally distributed and typed into a device, it is not likely
that the key will be changed very often. The IV is only
24 bits long, which implies that the same key and IV
will be reused, this is known as the two-time pad [3].

Fluhrer et al. [4] also found a correlation between
the combination of the IV and user key with the first
RC4 key stream byte, which leads to a practical key
recovery attack.

I1.B. Wi-Fi Protected Access

Because WEP has been shown to be totally insecure,
the 802.11 WG has suggested a new security protocol.
The protocol is called Wi-Fi Protected Access (WPA).
The goal for this protocol is to fix all known security
flaws in WEP and it was designed to be deployed as a
software patch on existing hardware.

WPA includes a key hash function [5] to defend
against the Fluhrer et al. [4] attack, a Message In-
tegrity Code (MIC) [6] and a key management scheme
based on 802.1X [7] to avoid key reuse and to ease
the key distribution. Figure 2 shows the encapsulation
process.

The 16-byte Temporal Key (TK) is obtained from
the key management scheme during the authentica-
tion, and goes into the key hash function together with
the 6-byte Transmitter Address (TA) and a 48-bit 1V,
often called the TKIP sequence counter. The key hash
function outputs a 16-byte RC4 key where the three
first bytes are derived from the IV. This key is used
only for one WEP frame, since the IV is implemented
as a counter which increases after each package, and
the key is therefore often called a per-packet key. The
IV counter also works as a defense against replay at-
tacks, the receiver will not accept packets with smaller
or equal IV to previously received packets.

Integrity of the message is insured by the MIC. This
function takes as input a MIC key, TA, receiver ad-
dress, and the message, and outputs the message con-
catenated with a MIC-tag. If necessary this output is
fragmented before it enters WEP.

Temporal Key _ _|
RC4KEY
Transmitter Address _—| Key Mixing
48-bit IV —=1
counter
Ciphertext
Plaintext WEP
MIC Key —=
Transmitter Address —>| i m
Receiver Address —=|

Figure 2: WPA encapsulation process.

This means that WPA is a wrapper for WEP in-
suring that a < TK,IV > pair is only used once by
a sender, and improving the integrity of WEP frames
by applying a non-linear message integrity function.
More details about the MIC can be found in [6].

II.B.1. Key mixing

The key mixing function is described by Housley et
al. [5], this function is also called a temporal key hash.
As shown on Figure 2, this function takes as input the
TK, the TA and the 48-bit IV, and outputs a 128-bit
WEP key where 24 bits are derived from the IV. The
least significant 16 bits of the 48-bit IV are denoted
IV16, and 32 most significant bits are denoted IV32.
The key mixing is a two-phase process which may be
summarized as follows:

Pl1K
RCAKEY =

Phasel(TK,TA, IV 32)
Phase2(P1K,TK, IV 16)

PHASE1_STEP1:
P1K[0] = Lo16(IV32)
P1K[1] = Hi16(IV32)
P1K[2] = Mk16(TA[1],TAL0])
P1K[3] = Mk16(TA[3],TA[2])

P1K[4] = Mk16(TA[5],TA[4])

PHASE1_STEP2:

FOR i = 0 to 7

BEGIN
jo=2x(1 & 1)
P1K[0] = P1K[0] + S[P1K[4] @ Mk16(TK[1+j1,TK[0+j1)]
P1K[1] = P1K[1] + S[P1K[0] @ Mki16(TK[5+j1,TK[4+j1)]
P1K[2] = P1K[2] + S[P1K[1] @ Mk16(TK[9+j1,TK[8+j1)]
P1K[3] = P1K[3] + S[P1K[2] @ Mk16(TK[13+j1,TK[12+j1)]
P1K[4] = P1K[4] + S[P1K[3] @ Mk16(TK[1+j1,TK[0+j1)] + i

END

Algorithm 1: Phasel of temporal key hash.

Mobile Computing and Communications Review, Volume 8, Number 2 77

PIK[4] PIK[3] PIK[2] PIK[1] PIK[0]

Yany inm]
|

TK[1+2*(i&1)]
[ITK[0+2%(i&1)]

TK[5+2%(i&1)]
[ITK[4+2%(&1)]

<lgl@—| TKO+2%(&1)]
¢ ITK[8+2%(i&1)]

i i @ rast TK[13+2*(1&1)]

W\ [ITK[12+2%(1&1)]

TK[1+2*(i&1)]
ITK[0+2%(i&1)]

Figure 3: One of 8 rounds of the first phase of tempo-
ral key hash. This round is repeated for ¢ = 0..7.

Phase 1 is shown in Algorithm 1 and in Figure 3.
This part is usually only done once every 26 packets
and cached. It takes TK, TA and IV32 as input and
outputs P1K used as input in Phase 2.

Phase 2 takes the output from Phasel, TK, and
IV16 as input, and outputs the 128-bit WEP key.
Phase 2 is described in Algorithm 2 and in Figure 4.
Note that the TK is viewed as an array [0..15] of 8-bit
bytes.

The S-box is a bijective nonlinear function defined
by a table lookup in [5], it takes a 16-bit input and
outputs a 16-bit value. The Mk16 function takes two
8-bit inputs and produces a 16-bit word, such that
Mk16(X,Y) = 256 * X 4+ Y which is equivalent to
Mk16(X,Y) = X||Y. Hil6 takes a 32-bit input and
returns the most significant 16 bits, Lo16 takes a 32-
bit input and returns the least significant 16 bits. Hi8
and Lo8 are similar but with input size 16 bits and out-
put size 8 bits. Furthermore, & denotes bit-wise log-
ical AND, and | represents bit-wise logical OR. Also,
note that + in the Algorithms and H in Figures 3 and 4
are addition modulo 2'®; @ represents bit-wise exclu-
sive OR. Both RotR1 and >> 1 denote right circular
shift by 1. P1K and PPK are treated as arrays of 16
bit words and RC4KEY is treated as an array of 8-bit
bytes.

III. Attacking Temporal Key Hash

This section describes an attack on the temporal key
hash described above. It is assumed that the attacker
has knowledge of a few (less than 10) RC4-keys com-
puted under the same IV32. Whether this is a realistic
assumption or not will be discussed in Section IV.
Under this assumption we show that the attacker
can easily compute the TK, and thus decrypt any
packet the same way the legitimate receiver does. The

PHASE2_STEP1:
PPK[0] = P1K[0]
PPK[1] = P1K[1]
PPK[2] = P1K[2]
PPK[3] = P1K[3]
PPK[4] = P1K[4]

PPK[5] = PiK[4] + IVi6

PHASE2_STEP2:
PPK[0] = PPK[0] + S[PPK[5] @ Mk16(TK[11,TK[01)]
PPK[1] = PPK[1] + S[PPK[0] @ Mki6(TK[31,TK[21)]
PPK[2] = PPK[2] + S[PPK[1] @ Mki16(TK[51,TK[41)]
PPK[3] = PPK[3] + S[PPK[2] & Mk16(TK[71,TK[61)]
PPK[4] = PPK[4] + S[PPK[3] @ Mki6(TK[91,TKL 81)]

PPK[5] = PPK[5] + S[PPK[4] ¢ Mki6(TK[11],TK[101)]

PPK[0] = PPK[0] + RotR1(PPK[5] @ Mk16(TK[13]1,TK[121))
PPK[1] = PPK[1] + RotR1(PPK[0] @ Mk16(TK[15],TK[14]))
PPK[2] = PPK[2] + RotR1(PPK[1])
PPK[3] = PPK[3] + RotR1(PPK[2])
PPK[4] = PPK[4] + RotR1(PPK[3])

PPK[5] = PPK[5] + RotR1(PPK[4])

PHASE2_STEP3:
RC4KEY[0] = Hi8(IV16)
RC4KEY[1] = (Hi8(IV16) | 0x20) & Ox7F
RC4KEY[2] = Lo8(IV16)

RC4KEY[3] = Lo8((PPK[5] & Mk16(TK[1],TK[0]1)) >> 1)

FOR i =0 to 5

BEGIN
RCAKEY[4+(2%i)] = Lo8(PPK[il)
RC4KEY[5+(2*i)] = Hi8(PPK[il)

END

Algorithm 2: Phase2 of the temporal key hash.

attack has a complexity of about 232 simple opera-
tions, and takes a few minutes to execute on a normal
modern PC. The attack is basically done by comput-
ing backwards through Phase 2, guessing on parts of
the TK. We can check if a guess is right or wrong since
we know that the P1K-values do not change before the
IV32 changes.

The attack makes use of the fact that eight bits of
the TK can be computed directly from an RC4-key.
The PPK-values output from Phase 2 are known from
the RC4-key, in particular PPK[5] is known. By look-
ing at Step 3 of Phase 2 in Algorithm 2 we see how
RC4KEY|[3] is computed. It is then easy to reveal the
least significant bit of TK[1], and the seven most sig-
nificant bits of TK[O].

The rest of this section describes the attack in detail,

78 Mobile Computing and Communications Review, Volume 8, Number 2

PIK[4] PIK[4] PIK[3] PIK[2] PIK[1] PIK[0]

HH=1v
ML Q] M
\r 1S] |
TK[1]||TK[0] E
Fi={s =D TK[3][TKI2]
™
B § N TKIS]|[TK4]
TK[11][|TK[10] E S ==
TKI[7]||TK[6]
N
B s N TKIY)|TKIS]
P~{>>1 ==
TK[13][[TK[12] E >T~D
E TK15][|TK[14]
=
B
B
\ PPK[5] \ \ PPK[4] \ \ PPK[3] \ \ PPK[2] \ \ PPK[1] \ \ PPK[0] \

Figure 4: Phase 2 of the temporal key hash. The 96-
bit PPK is used together with 16 bits of the IV and 8
bits of the TK to create the 128-bit WEP key.

P1K[4]

FHe—1IV16

TK[11]|[TK[10]

s O

[T]

>>1

‘PPK[S] \ \ PPK[4]‘ \ PPK[3]‘

Figure 5: Part of Phase 2 needed to compute TK[10]
and TK[11].

showing how we can break the rest of the TK into
six parts, and guess on one part at the time. In the
diagrams below, thick lines indicate that we know the
values carried on them, and dotted lines indicate that
there are two choices for the values on the lines.

IIILA. Finding TK[10] and TKI[11]

Figure 5 is cut out from Figure 4 of Phase 2 of the key
hash. The attack is based on the divide-and-conquer
technique as illustrated in the figure. The idea is to

P1K[4]

TK[9]|[TK(8]

e s =D

H >>1

% >>1

PPK[4]

PPK[3] PPK][2]

Figure 6: Part of Phase 2 needed to determine TK[S8]
and TK][9].

find some bytes of the TK at a time, and Figure 5
shows the parts of PPK and TK which are needed
to calculate backwards to P1K[4]. Since PPK[3],
PPK[4] and PPK]5] are known we can start backtrack-
ing Phase 2. The arrows indicate input and output val-
ues.

The first thing we need to do is to right shift PPK[3]
and PPK[4] by one. The inverse of addition modulo
232 is subtraction modulo 232. Using this we can com-
pute backwards up to the point where the values de-
pend on TK[10] and TK[11]. Now we guess on the
value of TK[11]||TK[10], which allows us to back-
track through the XOR and S-box and two additions
modulo 232, Remember that the IV is a known value,
sent in the clear in the WPA packet. For each guess of
TK[11]||TK[10] we get a suggestion for P1K[4]. We
repeat the above procedure for each RC4-key that we
are using in the attack, and if different RC4-keys give
different P1K[4]-values, the guess was wrong. Using
two or three RC4-keys should be enough to eliminate
all but the correct values of TK[10] and TK[11].

III.LB. Finding TKI[8] and TK|[9]

Figure 6 shows the part of Phase 2 necessary to com-
pute TK[8] and TK[9]. Note that when we found
TK[10] and TK[11] during the previous step, we also
found the correct value of P1K[4]. Therefore, TK[8]
and TK[9] can be computed directly, without any
guessing.

Mobile Computing and Communications Review, Volume 8, Number 2 79

PIK[3]

H >>1
H >>1
PPK][3] \ PPK][2] \ \ PPK[l]‘

Figure 7: Part of Phase 2 needed to calculate TK[6]
and TK[7].

III.C. Finding TK[6] and TK[7]

As Figure 7 shows, TK[6] and TK[7] can be found ex-
actly the same way as TK[10] and TK[11] were found.

III.D. Finding TK[0], TK[1], TK[12], and
TKI[13]

Consider the part of Phase 2 shown in Figure 8. Here
we take advantage of the fact that only eight bits of
TK[0] and TK][1] are unknown. In order to compute
the value of P1K[0], we can again make use of the now
known value of P1K[4], but this time it is necessary
to guess on TK[12], TK[13], and the eight unknown
bits of TK[0] and TK[1] to reconstruct a candidate for
P1K][O0], a total of 24 bits. Again, if we don’t get the
same value of P1K][0] for all RC4-keys, we can dis-
card the current guess as wrong.

At this stage, a subtle point comes into play. As-
sume we take the correct values of TK[0], TK][1],
TK[12], and TK[13], but flip the least significant bit
of TK[12]. This is a wrong guess, and should be dis-
carded given sufficiently many RC4-keys. We will
compare the values obtained in Figure 8 using this
guess, to the values obtained with the correct guess.
The guess for TK[0] and TK][1] is the correct one,
so the values on the horizontal wire on the top will
be equal in both cases. Going through the rotation
in the bottom half, the values will differ only in the
most significant bit. This is the same as saying that

P1K][4] P1K]0]
{
IV16
I m|
S |
TK[1][[TK[0]
|
|

SSEl

TK[13]||ITK[12]

;
PPK]5] PPKJ[4]

PPK]0]

Figure 8: Part of Phase 2 needed to compute TK[O0],
TKI[1], TK[12], and TK[13].

they differ by 2! (mod 2%6). Since the remain-
ing operations for computing P1K[0] are subtraction
mod 26, the computed values for P1K[0] with this
wrong key guess will differ in the most significant bit
from the correct value of P1K[0]. In particular, the
P1K[O]-values computed with the wrong guess will
all be equal! This means that the least significant bit
of TK[12] can not be determined at this point using
our method, however, it is easily determined later. It
also means that P1K[0] is not determined completely,
we only know the low 15 bits.

IILE. Finding TKI[2], TK[3], TK[14], and
TKI[15]

Figure 9 shows the most expensive part of the attack.
Here we will guess on TK[2], TK[3], TK[14], and
TK[15] at the same time. For each guess we will com-
pute the values of P1K[1] and check if they are equal.
The matter is slightly complicated by the fact that we
do not know P1K[0] completely. P1K[0] can take one
of two values, so we have to do the check on P1K[1]
for both values. For the correct guess of TK[14] and
TK[15], there will be two values of TK[3]||TK[2] sug-
gested, one for each P1K[0].

The problem with the least significant bit occurs
here too, we can not find the least significant bit of
TK[14]. This means we do not need to guess on it
either, so there will be a total of 31 bits guessed. For
each guess we will have to do the check on P1K[1]

80 Mobile Computing and Communications Review, Volume 8, Number 2

PIK[4] PIK[1] PlI?[O]

% V16

< -

i b hge-

TKI1]||ITKI[O] TK[3][|TK[2]

e

TK[15]||TK[14]

\ PPK[1] \ \ PPK[0] \

Figure 9: Part of Phase 2 needed to calculate TK[2],
TK[3], TK[14], and TK[15].

P1K[2]

Pls e

TK(S]|[TK[4]s

>>1<--@<—
1

TK[15]IITK[I 14]

i >>1

PPK[2] PPK]0]

Figure 10: Part of Phase 2 needed to compute TK[4]
and TK][5].

twice, once for each of the two possible values of
P1K][0], so the overall complexity is 232 checks. This
step dominates the overall complexity of the attack.
After this we are left with four sets of possible values
of TK[2], TK[3], TK[12], and TK[14].

IILF. Finding TK[4] and TKI5]

Finally, Figure 10 shows how TK[4] and TK][5] are
found by checking on the P1K[2]-values. Each guess
also includes guessing on the least significant bit of
TK[14]. For each of the two possibilities of TK[14]
there will be one TK[5]- and TK][4]-value suggested
as correct.

III.G. Finding the least significant bits
of TK[12] and TK[14]

After completing all six steps described above, we
are left with four possible values for the whole TK.
Each possible TK has its corresponding P1K-value.
The correct TK can now be found by running Phase 1
for each of the TK candidates, and see which one that
gives its corresponding P1K as output. The probabil-
ity that a wrong TK results in its corresponding P1K
is 4 x 2780 = 2778 gince P1K is 80 bits.

III.LH. Attacking with only two RC4-keys

When the attacker only has two RC4-keys, she only
has a 16-bit condition for eliminating wrong guesses
at each step. In the step with TK[0], TK[1], TK[12]
and TK[13], we are guessing on 23 bits, so we ex-
pect to have about 27 candidates suggested for these
four bytes. In the step with TK[2], TK[3], TK[14] and
TK][15] we are guessing on 31 bits, so we expect to be
left with 2% candidates for this part of the TK. In the
other steps we are guessing on 16 bits, so we expect
to be only left with the correct TK-parts. With the
four possible variations of the least significant bit of
TK[12] and TK[14], this gives us 4-27.215 = 224 can-
didates for the whole TK. Each candidate has its cor-
responding set of P1K-values. Now we can run Phase
1 for each candidate and see which one has match-
ing suggestions for the P1K value from both Phasel
and Phase2. The probability of a wrong TK to result
in corresponding P1K values is 224 . 2780 = 2756,
so with high probability only the correct TK will pass
this test. Total work with only two texts is approxi-
mately O (238), since we need to guess on 31 bits for
each of the 27 suggestions for TK[0], TK[1], TK[12],
and TK[13].

III.I. Temporal Key recovery attack on
WPA

The results in this paper imply that it is possible to
mount a Temporal Key recovery attack on WPA with
time complexity O (2105), compared to simply brute
force search on the TK which has time complexity
@ (2128). The idea of this attack is simply to brute
force two distinct RC4 keys with 104 unknown bits in
each and then apply the attack described in this paper
to recover the 128-bit Temporal Key and the 64-bit
message authentication key with additional O (238
effort. This attack has time complexity O (2105)
which still is not practical, but it is a significant re-
duction.

Mobile Computing and Communications Review, Volume 8, Number 2 81

IV. Discussion of the Attack

The attack described in the previous section has been
implemented on a computer to verify its correctness.
The processor used is an Intel Pentium 4 2.53 GHz,
and it takes about 6-7 minutes to recover the TK given
four or more RC4-keys. Given only 2 texts the work
is a factor 27 bigger, which gives a running time of
approximately 15 hours.

This makes it a highly practical attack, but if the
results of this paper shall have any impact, the impor-
tant question is: “How likely is it that an attacker gets
two RC4-keys generated under the same 1V32?” The
answer to the question depends on the implementa-
tion. The main contribution of this paper is therefore
to highlight the weak spots of WPA.

IV.A. Loss of RC4-key = total loss of se-
curity

The most important thing to keep in mind for an im-
plementor is that RC4-keys used to encrypt packets,
and the TK are equally important to keep secret. As
this paper shows, the loss of a few RC4-keys allows
the attacker to recover the long term secret TK, and
not only the contents of the compromised packets.

In [6], describing the details of the MIC part of
WPA, it is stressed that the integrity of a packet re-
lies on the fact that each packet is encrypted. The au-
thor points out that the loss of one RC4-key allows the
attacker to recover the MIC-key, and thus produce a
valid MIC-tag to a packet of her choice. However, the
attacker needs to block the receiver from receiving this
and any subsequent packets until the modified packet
has been inserted on the channel. Also, the attacker
can only modify the particular compromised packet,
since the other packets are protected by encryption us-
ing other keys. This seems to limit the threat to that of
an active adversary with capabilities of blocking the
receiver, being able to modify compromised packets.

This paper shows that the compromise of two or
more RC4-keys is much more serious. The attacker
may recover all secret keys the user has, and can there-
fore perform any action the user can do. In particular,
WPA provides no forward secrecy since the attacker
can construct earlier RC4-keys, as well as future ones,
once some keys have leaked.

IV.B. Cut-and-paste
primitives

cryptographic

It is quite common to take (parts of) existing cryp-
tographic primitives and construct new cryptographic
algorithms from them. For example, WPA uses RC4

for encryption, and parts of the AES round function
in the temporal key hash. Ferguson [6] warns that the
MIC function used in WPA is only secure in this par-
ticular setting. We would like to issue the same warn-
ing when it comes to temporal key hash: it is no good
as a hash function, but only as a key generator.

IV.C. Possible attack scenario

It is possible to imagine a situation where a leader of a
group is communicating on behalf of the whole group.
Some parts of the information the leader receives he
wants to keep to himself, while other parts should be
broadcast to all the group members. For instance, a
review form for conference submissions often con-
tains the fields “comments to program chair only” and
“comments to program committee”. Since WPA is a
wireless network, all members of the group can re-
ceive the packets broadcast from the access point, but
only the leader holding the TK can decrypt the pack-
ets. Some of the packets are for the whole group to
read. The leader can choose to broadcast the con-
tents of these packets to the group, but since the group
members can receive the encrypted versions of these
packets themselves, a cheaper way would be to just
broadcast the RC4-keys for the packets in question,
and let each member do the decryption himself.

Someone not aware of the shortcomings of the tem-
poral key hash might opt for this solution, not know-
ing this allows the whole communication to be read
by everyone.

V. Summary

We have shown that the whole security in WPA relies
on the secrecy of all packet keys. Given one packet
key it is possible to find the MIC key and given two
packet keys with the same IV32 an attacker can do
anything the legitimate user can, for the duration of
the TK.

Since these packet keys are supposed to be kept se-
cret, the attack in this paper does not imply that WPA
is broken, but it underlines the importance of keeping
each and every packet key secret.

References

[1] IEEE Std 802.11, Standards for Local and
Metropolitan Area Networks: Wireless Lan
Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, 1999.

[2] Airsnort, airsnort.shmoo.com/

82 Mobile Computing and Communications Review, Volume 8, Number 2

(3]

[4]

[5]

[6]

[7]

Mobile Computing and Communications Review, Volume 8, Number 2

N. Borisov, I. Goldberg, and D. Wagner. Inter-
cepting mobile communications: the insecurity of
802.11. MOBICOM, July 2001.

S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses
in the key scheduling algorithm of rc4. Eighth An-

nual Workshop on Selected Areas in Cryptogra-
phy, August 2001.

R. Housley, D. Whiting, and N. Ferguson. Al-
ternate temporal key hash. IEEE doc. 802.11-
02/282r2, April 2002.

N. Ferguson. Michael: an improved MIC for
802.11 WEP. IEEE doc. 802.11-2/020r0, January
2002.

IEEE Std 802.1X, Standards for Local and
Metropolitan Area Networks: Port-Based Access
Control, 2001.

83

