AuthorsA. Srivastava, S. Chanda, D. Jha, U. Pal and S. Ali
TitleGMSRF-Net: An Improved generalizability with Global Multi-Scale Residual Fusion Network for Polyp Segmentation
AfilliationMachine Learning
Project(s)Department of Holistic Systems
StatusPublished
Publication TypeProceedings, refereed
Year of Publication2022
Conference Name26th International Conference on Pattern Recognition
Publisher IEEE
Abstract

Colonoscopy is a gold standard procedure but is highly operator-dependent. Efforts have been made to automate the detection and segmentation of polyps, a precancerous precursor, to effectively minimize missed rate. Widely used computer-aided polyp segmentation systems actuated by encoder-decoder have achieved high performance in terms of accuracy. However, polyp segmentation datasets collected from varied centers can follow different imaging protocols leading to difference in data distribution. As a result, most methods suffer from performance drop when trained and tested on different distributions and therefore, require re-training for each specific dataset. We address this generalizability issue by proposing a global multi-scale residual fusion network (GMSRF-Net). Our proposed network maintains high-resolution representations by performing multi-scale fusion operations across all resolution scales through dense connections while preserving low-level information. To further leverage scale information, we design cross multi-scale attention (CMSA) module that uses multi-scale features to identify, keep, and propagate informative features. Additionally, we introduce multi-scale feature selection (MSFS) modules to perform channel-wise attention that gates irrelevant features gathered through global multi-scale fusion within the GMSRF-Net. The repeated fusion operations gated by CMSA and MSFS demonstrate improved generalizability of our network. Experiments conducted on two different polyp segmentation datasets show that our proposed GMSRF-Net outperforms the previous top-performing state-of-the-art method by 8.34% and 10.31% on unseen CVC-ClinicDB and on unseen Kvasir-SEG, in terms of dice coefficient. Additionally, when tested on unseen CVC-ColonDB, we surpass the state-of-the-art method by 9.38% and 4.04% in terms of dice coefficient, when source dataset is Kvasir-SEG and CVC-ClinicDB, respectively.

DOI10.1109/ICPR56361.2022.9956726
Citation Key39516

Contact person