AuthorsP. Teymoori, M. Welzl and D. Hayes
TitleLGCC: A Novel High-Throughput and Low Delay Paradigm Shift in Multi-Hop Congestion Control
AfilliationCommunication Systems
Project(s)The Center for Resilient Networks and Applications
StatusPublished
Publication TypeJournal Article
Year of Publication2023
JournalIEEE/ACM Transactions on Networking
Pagination1-16
Date Published08/2023
Publisher IEEE
ISSN1558-2566
Keywords5G/6G, food chain, logistic growth, Multi-hop congestion control
Abstract

Technological advancements have provided wireless links with very high data rate capacity for 5G/6G mobile networks and WiFi 6, which will be widely deployed by 2025. However, the capacity can have substantial fluctuations, violating the assumption at the transport layer that the capacity is (almost) steady. In this paper, we present a general and efficient, yet deployable solution to this problem through a novel design empowered with a rich theory, allowing a significantly improved experience in using new technologies, especially mobile cellular services. We employ the well-known theory of food-chain models in biology, where a bottleneck link can be modeled as prey, while flows are predators. We extend this model to a chain of predators and preys to form a multi-hop congestion controller, called LGCC. Through simulation evaluation with real-life 5G traces we show the effectiveness of LGCC, compared with the state-of-the-art ABC (Accel-Brake Control). Our results show an order of magnitude bottleneck queuing delay decrease, with only a small decrease in throughput because LGCC tries to never exceed link capacities. LGCC’s design can additionally open a new paradigm in stable multi-hop congestion control and flow aggregation.

URLhttps://ieeexplore.ieee.org/document/10216921
DOI10.1109/TNET.2023.3301291
Citation Key43417

Contact person