
The Impact of UML Documentation on Software
Maintenance: An Experimental Evaluation

Erik Arisholm, Member, IEEE, Lionel C. Briand, Senior Member, IEEE,

Siw Elisabeth Hove, and Yvan Labiche, Member, IEEE

Abstract—The Unified Modeling Language (UML) is becoming the de facto standard for software analysis and design modeling.

However, there is still significant resistance to model-driven development in many software organizations because it is perceived to be

expensive and not necessarily cost-effective. Hence, it is important to investigate the benefits obtained from modeling. As a first step in

this direction, this paper reports on controlled experiments, spanning two locations, that investigate the impact of UML documentation

on software maintenance. Results show that, for complex tasks and past a certain learning curve, the availability of UML

documentation may result in significant improvements in the functional correctness of changes as well as the quality of their design.

However, there does not seem to be any saving of time. For simpler tasks, the time needed to update the UML documentation may be

substantial compared with the potential benefits, thus motivating the need for UML tools with better support for software maintenance.

Index Terms—Maintenance, UML, experiment.

Ç

1 INTRODUCTION

SOFTWARE maintenance is often performed by individuals
who were not involved in the original design of the

system being changed. This is why documenting software
specifications and designs often has been advocated as a
necessity to help software engineers remain in intellectual
control while changing complex systems [8], [12]. Indeed, it
is expected that many aspects of a software system need to
be understood in order to properly change it, including its
functionality, architecture, and a myriad of design details.

However, documentation entails a significant cost and
must be maintained along with the software system it
describes. The issue that then arises is what content and
level of detail are required for efficient software main-
tenance [10]. The proponents of agile methods usually
advocate keeping documentation to a minimum and
focusing on test cases as a source of system requirements
[7]. By contrast, proponents of model-driven development
view software development as a series of modeling steps,
where each step refines the models of the previous step [17].
The transition from analysis, to high-level design, low-level
design, and then code is supported by tools facilitating and
automating parts of the work. Modeling is seen as a way to
better handle the growing complexity of software develop-
ment by helping engineers to work at higher levels of
abstraction. Model-driven development is supported by the

Unified Modeling Language (UML) [8], an evolving
standard that is now widespread across the software
industry. However, despite its growing popularity, there
is little reported evaluation of the use of UML-based
development methods [1] and many perceive the docu-
mentation of analysis and design models in UML to be a
wasteful activity [7]. Hence, such practices are viewed as
difficult to apply in development projects where resources
and time are tight.

It is then important, if not crucial, to investigate whether
the use of UML documentation can make a practically
significant difference that would justify the costs. This is
particularly true in the context of software maintenance,
which consumes most of software development resources
[26] and entails the comprehension of large, complex
systems under constant change.

This paper attempts to evaluate the impact of using UML
documentation on the correctness and effort of performing
changes. This is done on the basis of two controlled
experiments that took place in two distinct geographical
locations. Both involved students with substantial training
in object-oriented programming and UML modeling but
coming from two different education systems. An addi-
tional objective is to identify reasons for variations in results
and, therefore, identify plausible and necessary conditions
for UML to be effective. Our decision to address the above
issues by using controlled experiments stems from the
many confounding and uncontrollable factors that could
blur the results in an industrial context. In a real project
setting, it is usually impossible to control for factors such as
ability and learning/fatigue effects and to select specific
tasks to assign to individuals. As a result, the threats to
internal validity are such that it is difficult to establish a
causal relationship between independent (e.g., UML) and
dependent variables (e.g., time, correctness). Basili et al. [6]
state that “Controlled experiments can generate stronger
statistical confidence in the conclusions” and Judd et al. [15]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006 365

. E. Arisholm, L.C. Briand, and S.E. Hove are with the Simula Research
Laboratory, Department of Software Engineering, Martin Linges v 17,
Fornebu, PO Box 134, 1325 Lysaker, Norway.
E-mail: {erika, briand, siweh}@simula.no.

. Y. Labiche is with the Department of Systems and Computer Engineering,
Software Quality Engineering Laboratory, Carleton University, 1125 Colo-
nel By Drive, Ottawa, ON K1S 5B6, Canada.
E-mail: labiche@sce.carleton.ca.

Manuscript received 18 Aug. 2005; revised 11 Apr. 2006; accepted 20 Apr.
2006; published online 23 June 2006.
Recommended for acceptance by H. Muller.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0220-0805.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

write that “... we can confidently infer causality from the
relationship between two variables only if people have been
randomly assigned to the levels of the independent
variables.”

However, controlled experiments are a compromise as
they can only run for a limited time and necessarily involve
smaller tasks and artifacts. Again, this is a well-known
threat: “Unfortunately, since controlled experiments are
expensive and difficult to control if the project is too large,
the projects studied tend to be small.” [5]. It therefore raises
questions about the extent to which their results can be
generalized to realistic tasks, artifacts, and project settings
(external validity). From a pragmatic standpoint, both
controlled experiments and industrial case studies are
needed to obtain a credible body of evidence, but, during
the earlier stages of an investigation, controlled experiments
enable the investigators to better understand the issues at
stake and the factors to be considered. Furthermore,
controlled experiments enable the assessment of whether
the results obtained on smaller artifacts and tasks can at
least be considered encouraging and justify further evalua-
tion in more realistic settings.

The rest of this paper is structured as follows: Related
work is discussed in Section 2. Section 3 reports on the
planning of the two controlled experiments. Results are
presented in Section 4. Section 5 analyzes threats to validity
and Section 6 concludes.

2 RELATED WORK

In what follows, we discuss a number of studies that have
investigated the impact of program documentation and
specific ways of using UML or have compared UML to
other notations in the context of program comprehension
and maintenance.

An experiment was conducted to assess the qualitative
efficacy of UML diagrams in aiding program understanding
[34]. The subjects, whom the authors rated as UML experts,
had to analyze a series of UML diagrams and complete a
detailed questionnaire concerning a hypothetical software
system. Results from the experiment suggest that UML’s
efficacy in supporting program understanding is limited by
1) unclear specifications of syntax and semantics in some of
UML’s more advanced features, 2) spatial layout problems,
e.g., large diagrams are not easy to read, and 3) insufficient
support for representing the domain knowledge required to
understand a program.

A complementary work, which also investigated the
impact of UML documents’ content, investigated whether
making UML models more precise using the Object Con-
straint Language (OCL) [36], which is part of the UML
standard [21], helped with defect detection, comprehension,
and maintenance [11]. The results showed that, once past an
initial learning curve, significant benefits can be obtained by
using OCL in combination with UML analysis diagrams to
form a precise UML analysis model. However, this result was
conditional upon the provision of substantial, thorough
training to the experiment participants.

Other studies have compared UML to other notations in
specific contexts: For example, one experiment compared
the comprehension of subjects when provided with two

different types of modeling notation [30]: UML models or
OPM (Object-Process Methodology) models. The results
suggest that OPM is better than UML for modeling the
dynamics aspect of Web applications for relatively un-
trained users. Another experiment evaluated the compre-
hensibility of the dynamic models in two standard
languages, UML versus OML (OPEN Modeling Language)
[24]. The results suggest that specifications of dynamic
behavior using OML can be understood more easily than
specifications developed using the UML language.

Other works have studied the comprehensibility of
alternative UML diagramming notations, different layout
heuristics, and syntactic variations of UML models. For
example, one experiment evaluated the comprehension of
sequence versus collaboration diagrams [18] and showed no
significant differences in the understandability of the two
alternative notations. Experimental results have also shown
that the use of stereotypes may have a positive effect on
model understandability [19]. Experiments reported in [27],
[28] investigated the impact of semantically identical but
syntactically or stylistically different variations of UML
class and collaboration diagrams. Results showed that
which variation was “best” depended on the task for which
it was used.

A controlled experiment investigated how access to
textual system documentation (the requirements specifica-
tion, design document, test report, and user manual) helped
when performing maintenance tasks [35]. The results
indicated that having documentation available during
system maintenance reduces the time needed to understand
how to perform maintenance tasks by approximately
20 percent. The results also suggested that there is an
interaction between the maintainer’s skill (as indicated by a
pretest score) and the potential benefits of the system
documentation: The most skilled maintainers benefited the
most from the documentation.

The impact of the design style of an Object-Oriented (OO)
system on its understandability and changeability was
investigated in [3]. The two design styles of interest were a
delegated control style, often advocated by modern OO
development methodologies, and a centralized control style,
often regarded as reminiscent of a procedural solution. The
results suggested that the delegated control style was very
difficult for novices to understand. Only senior developers
benefited from a delegated control style. One possible
explanation of the results reported in [3] is discussed in
[32]: Delocalized plans need to be documented explicitly in
higher level representations of the code to aid in program
understanding and maintenance. The authors question
whether it is even reasonable to look at the details of
program code in order to understand a (delocalized)
program [32]: “why should programmers look at program text?

That is, we do not need to look at the compiled version of a

program because the details are overwhelming.”
One investigation evaluating whether using UML is cost-

effective in a realistic context, for a large project, has been
conducted recently in the form of a qualitative case study
[1]. The participants in the case study acknowledged that,
despite some difficulties (e.g., need for adequate training),

366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

there are clear benefits to be derived from using UML (e.g.,
traceability from functional requirements to code).

However, to the best of the authors’ knowledge, none of
the existing works investigated, by means of a controlled
experiment, the fundamental question of whether UML
documentation yields practical benefits when changing
systems. Yet, this is crucial if we want to see the widespread
adoption of model-driven development in industry and
convince software managers and engineers that UML
modeling is really worth the effort. Furthermore, most of
the experiments above did not involve actual changes to
UML models and none of them involved changes to code.
Their experimental tasks mostly involved responding to
comprehension questions. The current paper investigates
the impact of UML in the specific context of software
maintenance tasks while performing actual changes to two
systems. The current experiment complements the results of
qualitative case studies, such as those reported in [1].

3 EXPERIMENT PLANNING

3.1 Experiment Definition

The UML documentation used here corresponds to what
one would typically expect at the end of design, in terms of
content and level of detail [12], as further described in
Section 3.5.1. We first want to assess whether the provided
UML documentation helps to reduce the effort required to
change the source code. In other words, we are interested in
whether UML documents can help to reduce the costs
related to code changes and, in order to perform such an
analysis, we must measure the time required to complete
the maintenance tasks of our experiment. It is also
important to assess the functional correctness of the changes
because UML documents may also help achieve better
change reliability. Furthermore, because a change can be
functionally correct but poorly designed, thus affecting the
maintainability of the changed system, we want to assess
the quality of the change’s design and determine whether
UML helps maintainers to achieve better designs by
understanding the existing system design better.

Another important aspect is to decide what the baseline
should be against which to compare the use of UML. There
are, of course, an infinite number of possibilities here, given
the wide variation in software development practices.
However, in our experience, the most common situation
can be defined as follows: 1) Source code is the main artifact
used to understand a system, 2) source code is commented to
define the meaning of the most complex methods and
variables, and 3) there exists a high-level textual description
of the system objectives and functionality. This situation is,
therefore, what we will use as a basis of comparison in order
to determine whether the abstract representations captured
by UML help developers to perform their change tasks.

3.2 Experimental Context

To answer the above research question, two distinct experi-
ments were conducted. They differ in terms of their design,
size, and focus. The first experiment took place in Oslo,
Norway, and the second in Ottawa, Canada. We will refer to
them as the Oslo and Ottawa experiments, respectively. The
Oslo experiment involved fewer participants and, because it

was the first one, it was more exploratory and therefore
relied more heavily on subject interviews and qualitative
analysis [31]. The Ottawa experiment involved a larger
number of participants and was designed to make standard
statistical analyses possible.

While, in Oslo, the participants received financial
compensation for participating in the experiment, the
experiment in Ottawa was part of compulsory course
laboratories and the tasks were performed as practical
laboratory exercises. In the latter case, we had to ensure that
1) every student would undergo the same learning
experience, 2) the laboratory exercises were a valuable
practical experience that supported the objectives of the
course, and 3) the tasks assigned would be feasible within
the scheduled laboratory hours. These considerations were
paramount in selecting the proper course in which to run
the experiment and for the definition of our experiment
design and material. The students did not know what
hypotheses were tested.

3.3 Hypotheses Formulation

Our experiment has one independent variable (the use of
UML documentation) and two treatments (UML, no-UML).
It has four dependent variables on which treatments are
compared: time to perform the change excluding diagram
modifications (T), time to perform the change including
diagram modifications (T 0), the correctness of the change
(C), and the quality of the changed design (Q).

When comparing the time spent on tasks across UML and
no-UML groups, one should, of course, account for the
overhead involved in modifying UML diagrams. Bearing this
in mind, T 0 is a priori a better measure than T when assessing
the economic impact of using UML. However, we believe that
it is still relevant to assess T as such results will provide
evidence regarding whether UML, as a minimum require-
ment, facilitates the understanding and change of code.
Furthermore, the time spent on modifying the models
probably depends strongly on the modeling tool used and
the subject’s training in that particular tool. This is highly
context-dependent and we therefore wanted to distinguish
the time people spent understanding and modifying the code
(with the help of UML diagrams) from the time spent on
modifying the UML diagrams. The two measures of time are
expected to provide interesting, complementary insights.

The hypotheses for testing the effect of UML documenta-
tion on our four dependent variables are given in Table 1:
The alternative hypotheses (Ha) state that using UML
documentation improves three of the dependent variables:
less time to complete the tasks when excluding diagram
modifications, improved functional correctness, and im-
proved design quality. Thus, Table 1 defines three of the
hypotheses as one-tailed because we expected that using
UML documentation would help people understand the
system design better and, hence, provide better solutions
faster. However, it is difficult to have clear expectations
regarding the effect of using UML documentation on time
when including time spent on diagram modifications (T 0)
because the time taken to modify the diagrams might be
greater than the expected time gains. Thus, the hypothesis
on time including diagram modifications (T 0 in Table 1) is
two-tailed.

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 367

3.4 Selection of Subjects

The Oslo experiment involved third-year informatics

students who had previously taken two courses with

significant UML exposure. The Oslo students had taken

different numbers and types of course, but all of them had

taken at least two OO programming courses and at least

two courses where UML was introduced. The Ottawa

experiment involved fourth-year computer/software engi-

neering students who had taken a minimum of two OO

programming courses, one course on UML modeling, and

were taking a second UML modeling course at the time of

the experiment. In both cases, the students were familiar

with the tools they had to use (TAU [33] and Visio [20]).

Based on this information (summarized in Table 2), we

deemed that they had the required training to perform the

tasks proficiently. In many ways, for the particular tasks

involved here, our experience suggests that such students

are better trained than most professionals, who often have

not been formally taught OO design and modeling with

UML, at least not nearly to the same extent. Because

students had passed the required courses, we did not

perform any selection of subjects in the Ottawa experiment.

3.5 Experimental Design

3.5.1 Experimental Tasks

Both experiments involved the same two systems: 1) a
simple ATM system and 2) a software system controlling a
vending machine to serve hot drinks. Both systems were
used in previous experiments [3] (but, of course, with other
subjects) and were modified for the experiments we report
here. Table 3 provides relevant metrics for the two systems.
The systems used were tested before any modifications by
devising test suites using the category-partition method
testing technique [23]. This test technique was reused in the
Ottawa experiment to assess the functional correctness of
the subjects’ solutions (Section 3.6) after changes were
implemented. The subjects were given a high-level textual
description of the system objectives and functionality. The
source code was also commented to explain the meaning of
the most complex methods and variables. For all tasks, the
subjects were given a precise functional specification
illustrated by a test case output that exemplified the details
of the requested functionality. We did not provide the
subjects with a test harness. They were free to test their
changes as they wanted. Note that this was the case in both
the UML and no-UML groups, so no bias was introduced.
The UML documents provided information at a level of

368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

TABLE 1
Tested Hypotheses

TABLE 2
Summary of Competencies

TABLE 3
Details of the Two Systems (for the First Task of Each System)

detail that one would expect at the end of the design phase

[12]: a use case diagram, sequence diagrams for each use

case, and a class diagram. These correspond to the most

commonly used diagrams in practice and we wanted our

results to be as realistic as possible. For the same reason, all

conditions in sequence diagrams were described simply in

English. Example UML diagrams are provided in [2].
We defined four tasks in both experiments, but they

partly differed. The reason is that, after the Oslo experi-

ment, we felt that we needed more difficult tasks to extend

the scope of the study. For the Ottawa experiment, one

further task, more difficult than the others, was therefore

included for each of the ATM (Task 2) and Vending (Task 6)

systems. Tasks 1 and 5 from the Oslo experiment were

reused as the easiest tasks in Ottawa. In the remainder of

the paper, tasks are referred to by the task names given in

Table 4.

3.5.2 Time Allocation

The Oslo students had eight hours, all in one day, to complete

all four tasks. In addition to the four tasks for which the

participants were evaluated, there was a fifth task (Task 6 in

Table 4) which was not expected to be completed but was

intended to be a “time sink” in which participants could use

the remaining time, if any, after the completion of the first

four tasks (Tasks 1, 3, 4, and 5 in Table 4). The time-sink task

was thus included to reduce time ceiling effects. Experience

from a previous experiment [3] suggest that subjects who

work fast may spend more time on the last task than they

would on previous tasks (e.g., to try out alternative solutions).

Similarly, subjects who work slowly may have insufficient

time to perform the last task correctly and may therefore

prioritize speed over quality. Consequently, the time-sink

task was included as the last change task in this experiment

but was not considered in the analysis.
Ottawa (Carleton) students had five course laboratories

of three hours each, spaced a week apart. The first session

was used for exercises and additional training and each of

the four tasks was then performed in subsequent laboratory

sessions. There was no need for a time-sink task because

students only performed one task per laboratory session

and were free to leave the laboratory once their work was

completed.

3.5.3 Other Factors to Be Controlled

As with any software engineering experiment, we expected
a wide variation in terms of students’ ability. In both
experiments, we used blocking to ensure comparable skills
across student groups using, and not using, UML. In both
experiments, the cutoff points for the blocks were set on the
basis of the actual data (collected before the experiments) to
ensure that there would be an equal number of subjects in
each block. In Oslo, blocking was based on the number of
“passed credits” in computer science specific courses
because this was found to be a good predictor of their
performance based on data from a previous experiment
with the same systems and tasks [3]. Two blocks were then
considered, according to whether or not students had
passed a minimum of 30 course credits (the median value,
roughly corresponding to six courses): 11 students in the
low-credit (below 30 course credits) and high-credit blocks,
respectively. The 11 students within each block were then
assigned randomly to one of the two treatments. Two
students (one from each block, both assigned to the UML
treatment) did not appear for the final experiment. Despite
the loss of two subjects, the mean number of credits in the
resulting groups was very similar (27.0 for the UML group
and 26.5 for the no-UML group). In Ottawa, we were able to
use a more direct measure of students’ ability by using the
grade of their previous OO analysis and design course,
which focused on UML modeling. Two blocks were then
considered, according to whether or not students had
obtained a minimum grade of B- (the median value) in that
previous course: 38 students in the low-ability block (grade
below B-) and 38 students in the high ability block (grade
above or equal to B-).

In Oslo, given the fact that all required technical skills
had already been acquired in previous courses, students
received specific training for the experimental tasks at hand
so that they could become familiar with the experiment
support system (Section 3.6), the experimental process, and
the development tools. In Ottawa, no experiment support
system was used and a very simple tool (Visio), which
required no further training, was used for UML modeling.
The first laboratory session was used to refresh the
students’ knowledge about UML modeling.

In Oslo, all subjects performed all tasks on both systems
in the same order, as shown in Table 5. In Oslo, 11 of the

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 369

TABLE 4
Systems’ and Tasks’ Descriptions

students were assigned to the no-UML treatment for all
tasks and they all performed the same tasks in the same
order. This was possible because, given that the students
were paid for their involvement, there was no ethical
necessity to ensure that all of them would go through the
same learning experience.

In Ottawa, half the participants started with the Vending
Machine, while the other half worked first on the ATM. The
motivation was to ensure that neither of the two systems
would benefit more from learning effects than the other. In
the laboratory context of the Ottawa course, it was, of
course, an absolute pedagogic requirement that all subjects
be exposed to the UML treatment. Thus, in order to
differentiate the treatment (UML) from ordering effects,
the Ottawa experiment was designed so that, for each task,
groups of (nearly) identical size performed the task with
and without UML. The experimental design for the Ottawa
experiment is summarized in Table 6, which shows what
task was performed, on which system, and in which order
by which group. Students were assigned to each of the four
groups randomly, according to the blocking procedure
described above. The number of people performing tasks on
the ATM first is almost equal to the number of people who
worked on the Vending Machine first. Similarly, the
number of participants working first with UML and
without UML is approximately the same. Hence, the effects
of individual capabilities, system differences, and the order
in which UML was used are counterbalanced. The groups
are not exactly the same size due to subject loss (i.e., people
missing laboratory sessions, being sick, etc.) after subjects
had been assigned to the groups. However, a one-way
analysis of variance shows clearly that the grade means do
not differ significantly across groups.

The exchange of information among students was
prevented, both during and between laboratory sessions.
In Oslo, the students were paid and were aware this was an
experiment in which they were supposed to work indivi-
dually. They were also monitored by several researchers
during the experiment. In Ottawa, the students were graded
based on the resulting quality of their tasks and were told to
work individually. Their work was monitored carefully
during all laboratory sessions and, since they were not
aware beforehand of the precise plans for all five sessions,
they had no reason to suspect that they would work on
identical tasks. Furthermore, the material necessary for
performing the tasks was not available between sessions.

3.6 Instrumentation and Measurement

In Oslo, data collection and the logistics of the experiment
were supported through a Web-based experiment support
system (SESE) [4]: Systems and task descriptions were
distributed, time was measured, and task solutions and a
comprehensive set of qualitative data pertaining to each
task were collected through SESE. In addition, through
SESE, the students completed a questionnaire after each
task and had to provide feedback every 15 minutes on what
they were doing, thus providing continuous qualitative
insight during the experiment. Note that the feedback
collection method seems to be quite unobtrusive and does
not appear to have introduced a bias between the groups in
the Oslo experiment, as further explained in [16]. At the end
of the experiment, semistructured interviews of the parti-
cipants took place and were analyzed using the QSR N6
qualitative analysis tool [29], as described in Section 3.7.2.

In Ottawa, since SESE could not be used in ordinary
laboratory settings, students had to download documents
from a Web site and were asked to send their solutions by
e-mail as soon as they were completed. In addition, after
each task, students were asked to complete a survey
questionnaire to collect data about their perceived difficulty
of the task, their experience and familiarity with the tools,
and whether they thought UML was useful (see [2] for
detailed questionnaires).

In Oslo, test cases were devised to test the main scenario
of the changed function. All task solutions were also
inspected manually to assess the degree of correctness
further. On the basis of the functional testing and the
manual inspection, the solution to each change was graded
on a six-point scale to indicate the amount of work required
to fix any deviations from the prescribed functionality, as

370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

TABLE 5
Oslo Experiment Design

TABLE 6
Ottawa Experiment Design

shown in Table 7. However, based on the feedback we
received from the rater using this scale, doubts were raised
about the reliability of scores below 5. The top end of the
scale (5 and 6) is more reliable (less subjective) because it is
based mainly on the results of the functionality testing:
Solutions with no or only cosmetic differences from the
expected output were considered correct. As a result, our
analysis relied on a binary classification of correctness
where only solutions with scores 5 or 6 were considered
correct, given that cosmetic variations in the expected
output were not considered to be relevant.

In Ottawa, because there were more subjects than in the
Oslo experiment, we had to automate the testing procedure
as much as possible. For that purpose, we specified a
precise functional test plan for each change, based on a
black-box test technique called Category-partition [23]. For
each change, we tried to devise the best test suites possible.
However, since the changes were not that extensive, the test
suites were rather small (ranging from five to 12 test cases).
Only failed test cases were inspected manually in order to
determine whether the failure was due to minor cosmetic
differences in the output or a functionally incorrect change.
An additional motivation of this test suite-based strategy
was to have a finer granularity and more objective
correctness measurement than the binary correctness
evaluation used in the Oslo experiment. This was especially
important given that the emphasis of the Ottawa experi-
ment was more on quantitative analysis.

We also wanted to assess the design quality of the
proposed solution, independently of the functional correct-
ness of the change. For each change, we performed a precise
analysis of all solutions that could be considered proper,
based on standard design strategies for the assignment of
class responsibilities [12].1 We then counted the number of
operations, attributes that should be added, modified, or
deleted based on each identified solution. The design
quality of a task solution was then assessed on that basis
by counting the number of elements that were correctly and
erroneously added, changed, and deleted.2 For the sake of
simplification, we combined additions, deletions, and

changes into a single count, yielding two counts Q and Q0

for correct and erroneous changes, respectively. If we take
Task 6 as an example, it involved the addition of two
methods, plus the change of one method and one con-
structor. For the sake of the example, we label them m1, m2,
m3, and c, respectively. A solution that would correctly add
m1 and m2, correctly change m3 and c and have no other
additions or changes would result in four correctly added/
changed class elements (Q = 4) out of a maximum of four
and zero incorrectly added/changed class elements
(Q’ = 0). A solution that would correctly add m1 and
change m3, but would omit m2 and the change in c, would
result in two correctly added/changed class elements
(Q = 2). Furthermore, if we assume that the evaluated
solution implements the functionality through a substan-
dard design that modifies one method different from c and
adds one method different from m2 (e.g., in a different
class), this would result into two erroneously added/
changed class elements (Q’ = 2). It is even conceivable that
solutions modify, add, or delete the right elements but alter
other elements as well. In that case, we would obtain a
perfect Q score, but a suboptimal Q0 score (Q’ > 0). Both Q

and Q0 counts are deemed relevant because they offer
complementary measurements of design quality, which
cannot be combined meaningfully into one measure. Q
quantifies the extent to which a design solution complies
with expected changes in the design and Q0 quantifies the
extent to which unnecessary, suboptimal changes are
performed.

3.7 Analysis Procedure

3.7.1 Quantitative Analysis

Recall that the experiment has one independent variable
(the use of UML documentation) and two treatments (UML,
no-UML). The Oslo experiment has three dependent
variables: the time to perform the change task excluding
(T) and including (T 0) diagram modifications and a binary
correctness score (C). The Ottawa experiment considered
four dependent variables:

1. T ,
2. T 0,
3. a ratio scale functional correctness measure counting

the number of passed test cases (denoted C0 to
differentiate it from C), and

4. design quality measured in two distinct and com-
plementary ways: the number of correctly changed

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 371

TABLE 7
Coding Scheme of the Correctness Measure

1. In practice, there are usually a few such solutions that can minimize
coupling and maximize cohesion. In our case, there were two of them for
Task 6 and only one for the other tasks.

2. Note that, in general, when applying a strategy, it is necessary to
identify the correct solution that is closest to each evaluated subject
solution. However, to obtain comparable mesaurements, differences in
model elements involved have to be considered. This was not an issue in
our case since there was only one proper solution for all tasks except Task 6.
Moreover, the two proper solutions for Task 6 involve exactly the same
numbers of classes, operations, and attributes (details are provided in [2]).

elements (Q) and the number of incorrectly changed
elements (Q0).

The level of significance for the hypotheses tests was set to
� ¼ 0:05. However, the reader should bear in mind that we
perform multiple tests and, in order to allow for a stricter
and more conservative interpretation of the results, we
provide p-values.

For the Oslo experiment, only univariate analyses of the
dependent variables are performed to test the hypotheses,
both for each task individually and across all tasks. For the
time dependent variables (T and T 0), two-sample t-tests are
performed [13]. In addition, to reduce potential threats to
validity resulting from violations of the t-test assumptions,
nonparametric Wilcoxon rank sum tests are also performed
[13]. However, overall, the two alternative tests yielded
very consistent results and, thus, only the t-test results are
reported unless inconsistencies are present. A likelihood
ratio Chi-Square test [13] is used to test the difference in the
proportion of subjects with correct solutions for each
individual task. Furthermore, a one-sided, two-sample
t-test is performed to test the difference in correctness
between UML and no-UML subjects across all four tasks by
first calculating each subject’s percentage of correct solu-
tions based on the binary correctness score for each task (C).

For the Ottawa experiment, both univariate and multi-
variate analyses are performed. The time-dependent vari-
ables (T and T 0), correctness (C0), and design quality (Q and
Q0) are analyzed for each individual task by comparing the
results of the two groups of subjects that used UML
documentation for a given task with the two groups of
subjects that did not use UML documentation for that same
task. As in the Oslo experiment, both two sample t-tests and
the nonparametric equivalent Wilcoxon rank sum tests are
used to perform the univariate tests of the hypotheses. In
the multivariate analyses, we performed a three-way
analysis of variance (ANOVA) [13] to test the simultaneous
effect of UML, Task Order (to assess crossover effects), Block
(to assess ability effects), and the interactions between these
factors. However, because this analysis does not yield
significant new findings and the results are more difficult to
interpret than univariate analysis results, we do not report
them here and refer the reader to [2] for further details.

3.7.2 Qualitative Analysis

In the Oslo experiment, qualitative data were collected from
three sources: change-task questionnaire comments, think-
aloud comments, and interviews. The subjects completed a
questionnaire after each task. The questionnaire contained,
among other things, a free-text field in which the subjects
could report anything they thought might be relevant in
explaining the results (e.g., time spent) on each task.
Seventy-six out of a total of 120 questionnaire comment
fields were completed and the information stored in a
database. In addition, the SESE tool polled the subjects for
feedback during the experiment (see Section 3.6). Two
hundred twenty-five such comments were collected and
stored in a database during the experiment.

Within one week of the main phase of the experiment,
semistructured interviews were conducted with 19 of the
20 subjects (one subject did not attend the interview). An

interview guide with relatively open questions was pre-
pared. The interviews were recorded on tape. Each inter-
view lasted from 12 to 35 minutes, depending on the group
to which the subjects were assigned and on how talkative
the subjects were. During the interviews, a shortcoming in
the interview guide was discovered. When the guide was
designed, the assumption was that those assigned to the
UML group would use the diagrams in order to understand
the program and several questions were related to this.
However, many subjects did not use the documentation in
the expected way and, when this became evident, the
interview guide was extended after the interviews started.
The updated interview guide [2] ensured that the inter-
viewers would not forget to ask questions about why the
subjects did not use the UML diagrams in the way expected.
The recorded interviews were transcribed carefully to
increase the accuracy and comprehensiveness of the
analysis.

The qualitative data from three sources (task question-
naires, feedback data, and transcribed interviews) were
analyzed using QSR N6 [29], a tool for qualitative data
analysis. The texts were examined, sorted, and categorized
into different concepts and a tree structure with concepts
and subconcepts was built on the basis of the data. The
analysis attempted to assess the following:

1. how UML was used,
2. the subjects’ perceptions of the costs and benefits of

using it,
3. how the subjects worked, and
4. what types of problems the subjects experienced on

the different tasks.

The purpose of the analysis was to better understand how
access to UML documentation made a difference. To avoid
introducing a bias in the interpretation of the qualitative
data, the initial qualitative analysis was performed by one
of the researchers who, at the time, had no knowledge of the
quantitative results. After the quantitative data was
analyzed, a second round of qualitative analysis was
performed in an attempt to explain the quantitative results
better, as further explained in Section 4.3.

The Ottawa experiment did not involve any sophisti-
cated qualitative analysis of the sort that the Oslo experi-
ment did. However, as discussed in Section 3.6, participants
filled out questionnaires after each laboratory session
regarding the task and, when relevant, the use of UML
[2]. Standard techniques for phrasing subjective questions
and designing survey questionnaires were followed [22] to
avoid bias and to increase the reliability of the responses.
The questions were rated on a 1-to-5 response scale. A one-
way analysis of variance was used to analyze the responses.

4 EXPERIMENTAL RESULTS

Recall that four hypotheses are tested with regard to the
effect of UML on

1. the time to perform the change task excluding
diagram modification (using the variable T),

2. the time to perform the change task including
diagram modification (using the variable T 0),

372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

3. functional correctness (using the variable C in the
Oslo experiment and C0 in the Ottawa experiment),
and

4. design quality (using the two complementary
quality measures Q and Q0).

This section first presents the overall descriptive statistics

for the data that was collected in both experiments and

then addresses each tested hypothesis in turn by

presenting the results obtained in both Oslo and Ottawa

and comparing them.

4.1 Descriptive Statistics

The descriptive statistics for the Oslo experiment are given
in Table 8. The results indicate that the subjects receiving
UML documentation spent, on average, 25 percent less time
(T) to solve the tasks than did the subjects without UML
documentation (e.g., a median of 15 compared to a median
of 20 for Task 3). One exception is Task 5, for which subjects
without UML documentation performed the task slightly
faster than subjects who received UML documentation.
Furthermore, the variance is much lower for the subjects
who received UML documentation, with much lower
maximum values for all tasks (e.g., 95 instead of 150 for
Task 5). Overall, a larger portion of subjects produced
correct solutions in the UML group. This is particularly true

for Task 5: 46 percent and 89 percent of the answers were
correct without UML and with UML, respectively. Overall,
when accounting for model modification (T 0), subjects
working without UML models spend less time on the tasks.
Again, this is especially true for the last, most complicated
one (Task 5).

The descriptive statistics of the Ottawa experiment are
given in Table 9. The results for the common tasks (1 and 5)
are consistent with those obtained in Oslo with respect to
time: Modifying models when using UML takes longer (T 0).
When considering only the time taken to modify code (T),
the subjects who used UML seem to take more time for all
tasks but Task 6. However, functional correctness (C0) does
not seem to improve when using UML, in contrast to what
was observed in Oslo. Task 2 also shows a significant
increase in time for subjects who used UML, especially
when modifying models. Correctness does not seem to
increase though. For Task 6, the time taken does not
increase significantly, even when modifying models,
whereas functional correctness (C0) clearly increases (the
median increases from 0/12 to 5/12). With respect to design
quality (correct changes), the use of UML documentation
seems to have had a positive impact in Task 1 (max), Task 2
(min), and Task 6 (min and med), but only a thorough
statistical analysis will tell with certainty. Similarly, for
incorrect changes, the statistics for Tasks 1 and 6 suggest a

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 373

TABLE 8
Oslo—Descriptive Statistics per Task

TABLE 9
Ottawa—Descriptive Statistics per Task

difference between the UML and no-UML groups. Note
that our discussion at this point is informal and that the
effect size of UML will be discussed more precisely when
presenting univariate analysis results.

4.2 Univariate Analysis

The sample mean, data distribution, and 95 percent
confidence interval of the mean for each dependent variable
are presented in diamond plots, as a way to visualize the
effect size of the two treatments. The line across each
diamond represents the group mean and the vertical span
of each diamond the 95 percent confidence interval for each
group. Overlap marks are drawn below and above the
means and an overlap depicts a difference that is not
significant at an � ¼ 0:05 level. The line crossing the
diagram is the entire sample mean.

4.2.1 Time to Perform the Change Tasks (T, T’)

Univariate results for time with respect to the Oslo
experiment are illustrated in Fig. 1a. The figure shows
means diamonds of the total time spent on all four tasks
when including diagram modification (T 0). We can see that
the UML subjects spent, on average, more time than their
no-UML counterparts, but the difference is not statistically
significant. If we do not consider the time spent on
modifying the diagram (Fig. 1b), the difference is larger
and in the opposite direction, but still not significant. The
lack of significance may be partly due to the relatively small
number of participants. In any case, it suggests that, when
including the modification of models (diagrams), using
UML documentation does not seem to have provided an
advantage in Oslo. A more detailed analysis for each task
(which is not reported here) also yielded no significant
difference.

In the Ottawa experiment, we encountered a specific
problem: For the most complex task (Task 6), a number of
solutions submitted by students did not even compile.
Upon inspection, their code changes appeared to be of very
poor quality and could not be easily fixed to yield a running
program, let alone a functionally correct one. In any
experiments with human subjects, and for a variety of
reasons (e.g., fatigue, lack of motivation), some of them
inevitably perform very poorly on any given task, especially
in a context where there is no guarantee that all subjects will

follow instructions. Because we considered time and quality
through separate analyses, there being no meaningful way
to combine them into one dependent variable, the issue
arose as to how we could ensure we were making
meaningful time comparisons. It seemed to us that the
solutions should reach a certain quality threshold if time
comparisons were to be meaningful. This issue was
particularly important in our case, where four out of five
solutions that did not compile were in the no-UML group,
which had the potential to bias the results. For this reason,
we decided to omit from our analysis of time any solutions
that did not compile. As detailed later in this section, we
checked to see whether the removal of such solutions from
the analysis had introduced a new threat to the internal
validity by confirming that the grade distributions were still
comparable across UML and no-UML subjects.

Fig. 2 shows the time (T) distributions for each of the
four tasks, which distributions clearly suggest that the
subjects found successive tasks increasingly more difficult,
especially Task 6.3 In this experiment, we consider each task
individually since, as we will see, different results are
observed, due in part to the variation in complexity. When
considering the time taken to modify models (T) (though
subjects using UML documentation took, on average, more
time for the first three tasks and less time for the fourth task
than their no-UML counterpart), none of the differences are
significant at � ¼ 0:05. However, as suggested in the Oslo
experiment, the results are very different when considering
the time taken to modify models (T 0). For the first three
tasks, the subjects using UML documentation show sig-
nificantly higher time values with p-values equal to or
below 0.003 (two-tailed t-test and nonparametric Wilcoxon
(rank sums) test4).

Let us more carefully consider the results of Task 6
(Vending Machine), the most complex of the tasks, since
that was the only task where using UML documentation
seems to save coding time. During our monitoring of the
laboratory sessions, we noticed that some people were not
using the UML models with which they were provided to

374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

Fig. 1. Oslo—Time to complete all four tasks (including or excluding diagram modification). (a) Including diagram modification. (b) Excluding diagram

modification.

3. Recall that, due to our design, this is not an ordering effect.
4. Henceforth, when a t-test result is mentioned, the reader can assume

that the equivalent, nonparametric Wilcoxon (rank sums) test yields an
equivalent result unless otherwise mentioned.

help them design their changes. Furthermore, some of them
never returned the modified UML models. We consider
these cases to be suspicious because, once the model has
been used to determine the changes to be performed, it is
then easy to modify the diagrams. Hence, we conclude that
not returning the modified UML diagrams is an indication
that these diagrams were probably not used to a great
extent or possibly not at all. Further interviews with the
concerned students confirmed that they mostly reverted to
their old habits of relying on code. Again, as is often the
case with such experiments, we could not guarantee that
the prescribed process was followed precisely. As a result,
the UML group improved somewhat (i.e., a reduction of
10 minutes on average), but the difference was not
statistically significant (p-value = 0.19). Therefore, in order
to obtain more realistic results, we decided to remove the
11 students who did not return their modified UML
diagrams from the analysis and again test the significance
of the difference between the UML and no-UML groups.

In order to determine whether we have introduced a new
threat to internal validity by removing those students (since
removing subjects may not be an entirely random process),
we checked whether, after removing the solutions of these
11 students in addition to the programs that did not
compile, the grade distributions were still comparable
across UML and no-UML subjects. Fig. 3b confirms that
this is the case because the average is nearly the same across

the two groups and the variance comparable. Note that this
is the grade distribution for the course where the laboratory
sessions took place and is therefore a very accurate
assessment of the subjects’ ability with respect to the tasks
they had to perform. In other words, the 16 students
(12 UML, four no-UML) who were left out of the analysis
were of average ability, comparable to the ability of the
entire set of subjects in the UML and no-UML groups. This
is an important result because the whole purpose of using
blocking in our experimental design was to ensure groups
of comparable ability.

Based on the reduced data set, we can see from Fig. 3a
that the average time spent by UML subjects on Task 6 is
significantly lower than non-UML subjects; an average
difference of over 20 minutes (on an average time of
145 minutes). A t-test clearly shows that the difference is
statistically significant (p-value = 0.0018). In other words,
when participants actually used the UML models to
analyze the effect of changes, it took less time for them to
change the code.

But, if we add the time required to change the UML
model to the time required to perform the code change,
then, even for Task 6, there is no time difference between
the UML and no-UML subjects (Fig. 4). The time spent on
modifying the models cancels the time saved on code
changes.

4.2.2 Functional Correctness (C, C’)

We first present the univariate results for correctness, C, in
the Oslo experiment. Fig. 5 shows that no practically
significant difference is visible for the first three tasks.
However, for Task 5, the percentage of no-UML subjects
who implemented the task correctly was nearly half that of
UML subjects. A Likelihood Ratio Chi-Square test confirms
that the difference in proportion is significant at � ¼ 0:05
(p-value = 0.034). This result is likely due to the fact that
Task 5 was much more difficult than the other three.
Furthermore, answering the same question with a different
analysis, Fig. 6 shows the percentage of correct solutions
across all four tasks and we can clearly see that UML
subjects performed better. However, a two-sample t-test
yields a p-value slightly above 0.05.

In Ottawa, for reasons that were discussed in Section 3.6,
we measured correctness as the number of successful test

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 375

Fig. 2. Ottawa—Time (T) to complete each of the four tasks.

Fig. 3. Task 6—excluding cases where no modified diagrams were returned. (a) Time (T) to complete the task (excluding time to modigy UML

diagrams). (b) Grade distribution.

cases for each change. For the time analysis, we must decide
how to handle solutions that did not compile and were
therefore not testable. We think such solutions should be
assigned the lowest score, that is, zero, since no test case
could be run successfully and, as previously discussed, the
code changes were of very poor quality. Results show, once
again, that there is no significant difference between UML
and no-UML subjects for all tasks but Task 6. The UML
group once again shows some improvement (i.e., an
additional 1.5 successful test cases, on average), but the
difference is not statistically significant (p-value = 0.2).

For the same reasons as in the time analysis, we perform
a second analysis in which changes where no modified
model was provided are omitted. As illustrated in Fig. 7, the
resulting data clearly shows a practically significant
difference in the correctness distributions: an average
difference of 2.25 between the two treatments. A one-tailed
t-test shows this difference is significant at � ¼ 0:05
(p-value = 0.041).

4.2.3 Design Quality (Q, Q’)

Another dependent variable we consider in the Ottawa
experiment is the quality of the design of the solutions. As
described in Section 3.6, design quality was first measured
as a percentage of correctly changed, deleted, and added
features (Q). When comparing the design quality of UML
and no-UML solutions, once again, a significant difference

is observed only for Task 6. As an example, for Task 6, there
are two alternative, acceptable solutions [2]. For each
provided solution, the authors went through the code and
compared it with either of the two alternative solutions,
whichever was the closer. Fig. 8a shows that UML solutions
were designed better in terms of correctly changed elements
(the average difference is 0.50 on a five-point scale). This
difference is statistically significant (p-value = 0.032) when
running a one-tailed t-test. Furthermore, when considering
the number of incorrectly changed elements (Q’), which
was the other relevant measure of design quality, Fig. 8b
shows a statistically significant difference in this case as
well (average difference = 1.34, p-value = 0.0043). Even if
we look at it in a binary way by analyzing proportions, we
see that, when not using UML documentation, roughly
41 percent of the solutions contain at least one incorrect
change, whereas no incorrect changes were found in any of
the solutions that used UML documentation. A likelihood
ratio chi-square test for proportions shows this is statisti-
cally significant (p-value < 0.001).

4.2.4 Summary

UML documentation does not seem to provide an advan-
tage when considering the additional time needed to
modify models. Even disregarding the modification of
models, subjects who used UML documentation did not
appear to be faster for the first three tasks of the Ottawa
experiment. Tool support for model-code consistency could,
however, be improved by providing functionalities to keep
models and code in synchronization. Certain tools, such as
Together from Borland [9], have already started to do so
and we expect this technology to improve in the future.

In terms of correctness, despite the fact that the two
experiments use different correctness measurement (see
Section 3.6), both experiments show that, for the most
complex task, the subjects who used UML documentation
performed significantly better than those who did not.
There are two main plausible ways to interpret these
results. 1) Due to learning effects, subjects really benefited
from using UML documentation after they had performed
the first three tasks (but bear in mind that this is only true
for half the subjects in the Ottawa experiment). 2) Another
possibility is that they only benefited for the most complex
task, i.e., Task 5 and Task 6 for the Oslo and Ottawa
experiments, respectively. However, recall that the most

376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

Fig. 4. Total time to complete Task 6—including time to modify the UML

diagrams.

Fig. 5. Oslo—Percent of subjects with correct solutions.

complex Oslo task was the second-most complex Ottawa
task. However, if this second hypothesis is correct, the issue
arises as to why we did not obtain consistent results in the
Ottawa experiment for Task 5. It is therefore plausible that
what we observed is the compounded result of high task
complexity and learning effects.

A similar comment can be made regarding our measures
of the design quality of subjects’ solutions. The subjects who
used UML developed superior designs for the most
complex task (Task 6) of the Ottawa experiment. This is
probably due to the fact that using UML models helped the
subjects to understand the existing design better and, hence,
helped them to make appropriate design decisions for the
most complex task. For the simpler task, using UML
documentation is probably not necessary.

4.3 Qualitative Analysis

For the Oslo experiment, based on interviews, the ques-
tionnaire comments, and the “think aloud” feedback
comments (Section 3.7.2), the qualitative analysis yielded
the results summarized in Table 10 (one subject in the UML
group did not participate in the interview). The results
suggest that the extent to which UML documentation was
used, and its impact, varied among the UML subjects. The
experiment required that all subjects update the diagrams
before they moved on to the next task. However, the extent

to which they used the UML models to identify change
locations prior to performing code modifications varied
greatly among subjects. Seven of the nine subjects assigned
to the UML group updated the UML documentation after
they had completed the coding. Only two subjects used the
UML documents actively during development, e.g., to
identify change locations. Some complained that the
diagrams were very large and difficult to update, particu-
larly the sequence diagrams. Several expressed dissatisfac-
tion with TAU, despite having received extensive training
in that tool. This led us to use a simpler tool (Visio) in the
Ottawa experiment. The general consensus among the
subjects was that the diagrams were more useful for more
complex tasks and were often superfluous on easier tasks.
This observation in the Oslo experiment led us to be
suspicious of solutions without modified diagrams in the
Ottawa experiment and led to our decision to leave such
observations out of the analysis. Since the education system
in both locations is similar in terms of courses and the order
according to which they are delivered (i.e., emphasis on
coding, modeling mostly coming in later years), we can
therefore expect the issues regarding the usage of UML
diagrams in Oslo to be relevant for the Ottawa experiment
as well.

The subjects who claimed not to have used UML models
when they could have (but instead just updated them after
coding) provided the following justifications:

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 377

Fig. 6. Oslo—Percentage of correct solutions.

Fig. 7. Correctness for Task 6.

Fig. 8. Design quality for Task 6.

. They were more used to looking at the code than
diagrams. This is not surprising, given typical
computer science curricula where people start
learning how to code long before they see their first
model.

. They thought that analyzing the documentation
required too much time. This is a typical problem in
many development organizations, where developers
and managers perceive (consciously or not) any
noncoding task as wasteful.

. The tasks were relatively small; therefore, it was
sufficient to rely on the code.

Nevertheless, half of the UML subjects considered viewing
UML documentation to be useful for obtaining an overview
of the code, although the perceived benefits varied widely.
On the other hand, a common statement by the no-UML
subjects was that it was difficult to get an overview of the
programs, not only for the most difficult task, but in
general. This was especially evident in the questionnaire
comments, but also, to a certain extent, in the interviews
and the think aloud comments. Some no-UML subjects even
drew their own diagrams when they were solving the more
difficult tasks, in particular Vending Task 5. Several thought
that UML diagrams would have helped them to locate code
changes and some claimed that it would have helped them

to decide how to solve the tasks. Furthermore, some
mentioned that UML documentation would have helped
them to devise better solutions. UML documentation was
considered to be most useful for performing complex tasks.

Another striking result that we believe is related to the
above is that seven out of 10 no-UML subjects said that they
were out of practice with programming/Java, whereas only
two out of nine UML subjects did. However, due to the
randomized blocking scheme, the subjects in the two
groups had passed about the same amount of programming
courses. Furthermore, the pretest questionnaire completed
by the subjects showed that the no-UML subjects had, on
average, slightly MORE Java experience than had the UML
subjects (in total estimated lines of Java code written). We
thus interpret the statement regarding “being out of
practice with Java programming” as an indication of
frustration over finding it difficult to get an overview of
the program and not being able to perform the tasks
correctly. Recall that this problem was more prevalent
among no-UML subjects.

In the questionnaire and think aloud comments, no-UML
subjects wrote more often than UML subjects that they did
not complete the tasks successfully.

The qualitative results from the Oslo experiment suggest
that there are three possible explanations for why there

378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

TABLE 10
Summary of Qualitative Results (the Numbers in Parentheses Indicate the Proportion of Subjects for which the Statement Applies)

appears to be a significant effect of UML for the last and
most complex task (Task 5) and not for the others: The effect
of UML seems to depend mainly on task complexity, but
there are also UML learning effects and a motivational
effect at play.

Task 1—No Learning effects. Most subjects updated the
UML diagrams for the ATM machine after coding and did
not actively use the diagrams during coding. No further
tasks were performed on the ATM.

Tasks 3 and 4—Low Task Complexity. The no-UML subjects
stated that UML diagrams would not have helped them for
low complexity tasks. The UML subjects stated that the UML
diagrams did not help them to complete these tasks.

Task 5—High Task Complexity and Positive Learning Effects.
Compared with the other tasks, Task 5 was quite complex
as it required a detailed understanding of the control flow
in the delegated control-style of the vending machine in
order to perform the change correctly [3]. The no-UML
subjects reported that it was very difficult to get the
required overview of the code. None of the UML subjects
reported similar problems. The subjects had already
performed two tasks on the vending machine and updated
the UML diagrams twice. By updating the UML documen-
tation, the subjects had a better opportunity to learn details
about the design from updating the UML diagrams for the
vending machine than the no-UML group. Five subjects
reported that, once they began Task 5, they realized that the
UML diagrams would be useful for understanding how to
perform the task.

From the above discussion, it is evident that qualitative
analysis confirms that using UML documentation is useful,
overall, with the qualification that it appears to have a
significant effect for the more complex tasks and only for
certain people, who perhaps are more comfortable with
abstraction and modeling. This is consistent with the
quantitative results, which show a significant improvement
in correctness only for the last, most complex task. It is also
clear that, due in part to the education system, coding is still
perceived by some participants as the most crucial task,
modeling being considered at best a secondary, somewhat
wasteful activity.

The Ottawa experiment did not involve any of the
sophisticated qualitative analysis that the Oslo experiment
involved. However, as discussed in Section 3.6, participants
completed questionnaires after each laboratory session
regarding the task and, when relevant, the use of UML
[2]. Regarding the tasks, the results can be summarized as
follows:

. The laboratory instructions were perceived as clear.
This is an important point for the validity of our
results.

. Task 6 was perceived as being more difficult than
the other tasks, as expected. Task 1 was perceived as
being the easiest.

With respect to UML usage, participants thought that:

. UML diagrams were fairly easy to understand. This
is important because it suggests that the partici-
pants’ training and modeling skills were sufficient.

. Most people spent less than 25 percent of the time in
laboratory sessions understanding UML diagrams,
over all tasks. For the reasons given above in

discussion of the Oslo experiment, this result may
suggest that UML diagrams were not used to a
sufficient extent by a large proportion of partici-
pants. This would tend to minimize the effects of
UML that we observed in our quantitative analysis.

. Results about whether UML diagrams made the
system easier to understand, cleared up ambiguities,
or helped in completing the tasks are unclear. It is
probably difficult for students to answer this
question because it requires reflection upon their
own work.

4.4 Inconsistency

One inconsistency between the two experiments is related
to Task 5. In the Oslo experiment, but not in the Ottawa
experiment, improvements in correctness were significant
for Task 5 (the last task in Oslo). In Ottawa, improvements
in correctness were significant only for Task 6 (the last task
in Ottawa). If the complexity of a task were to determine
whether it is significant or not, we would expect consistent
results on the same tasks across experiments. One potential
explanation could be varying capabilities between Oslo and
Ottawa students. However, as we have seen, they had
similar education/training and there was no convincing
evidence of other differences that would affect their
capability. Another possibility is that learning effects played
a major role and that, as a result, the effects of using UML
only became visible on the last task. The issue is, therefore,
whether there is convincing evidence of learning effects so
that it can be determined whether this is a plausible
explanation. In the Oslo experiment, learning effects, if any,
are confounded with the tasks and cannot be determined
from the quantitative results. However, as already dis-
cussed, the qualitative results do, indeed, indicate learning
effects that explain, in part, why Task 5 was significant in
the Oslo experiment: When the Oslo subjects reached Task 5
(at which point they had already performed three change
tasks using UML), they saw the potential benefits of using
UML more clearly and, hence, used it more actively at that
point. For Task 6 in the Ottawa experiment, the multivariate
analysis reported in [2] showed that Order was a significant
ANOVA factor for both the time (T) and design quality (Q0)
dependent variables, thus showing some evidence of
learning effects. However, such a trend was not clearly
visible on simpler tasks in the Ottawa experiment. Though
this remains to be investigated, it seems plausible that the
trends we observed resulted from the compounded effects
of learning effects and task complexity.

5 VALIDITY

The construct validity of our dependent variables has
already been discussed in Section 3.6. We do not think there
is any serious threat in terms of internal validity because the
experiment was designed, through blocking and counter-
balancing (in the Ottawa experiment), to remove any bias
from any known extraneous factor. However, we faced a
common problem that arises with experiments involving
human subjects; even when they are properly trained, they
may not follow the prescribed process and instructions,
either due to fatigue or motivational problems. As a result
of this, and for reasons discussed in Section 4.2, we had to
omit a number of observations that were considered not

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 379

valid as far as the hypotheses under investigation were
concerned. Though we showed that the capability of the
UML and no-UML groups remained unaffected, future
experiments should investigate efficient ways of capturing
precise data about the level of subject compliance with
instructions and of developing strategies to increase
compliance.

The main weakness of such controlled experiments lies
in their external validity. As is usually the case for
controlled experiments in academic, artificial settings, the
participants are students and the systems being changed are
very small. However, those students are well-trained for the
tasks: They are good programmers and have a thorough
knowledge of UML modeling. Though the change tasks are
probably much easier than average change tasks on actual
systems, we would expect the effect of using UML to be
strengthened on larger tasks and systems since both our
qualitative and quantitative results suggest that UML is
more useful for complex tasks. This further strengthens our
conjecture that our results are probably conservative, in the
sense that we have underestimated the benefits of using
UML documentation.

6 CONCLUSIONS

This paper presents the results of two consecutive experi-
ments which have taken place in two different locations.
The goal was to shed some light on the cost effectiveness of
model-driven development with UML. Because this is a
very large area of investigation, we focused on whether
models help software engineers to make quicker and better
changes to existing systems. It is very common, in practice,
to have software engineers making changes to systems they
have not developed and maintenance consumes a large
portion of the resources in typical software organizations.
This is why we thought that this was an important first
question to investigate, though we realize that model-
driven development can be useful in many other ways (e.g.,
code generation).

The results of our two experiments are mostly consistent.
When considering only the time required to make code
changes, using UML documentation does help to save effort
overall. On the other hand, when including the time
necessary to modify the diagrams, no savings in effort are
visible. However, in terms of the functional correctness of
the changes, both experiments seem to indicate using UML
has a significant, positive impact on the most complex tasks.
In the Ottawa experiment, which also investigated the
design of the changes, using UML helped to achieve
changes with superior design quality, which would then
be expected to facilitate future, subsequent changes.
However, the above statements apply only with qualifica-
tions. Benefits are not likely to be derived if the tasks to be
performed lie below a certain level of complexity or if
software engineers have not reached a certain level of skill
regarding the use of UML models for analyzing the effects
of changes, in addition to having received substantial
training in UML modeling. Furthermore, current tools still
need substantial improvements in the way they support
changes to models and the checking of consistency.

With respect to experimental methodology, we have
found it very useful to start with a smaller experiment and
focus on qualitative analysis at first. This has allowed us to

better understand what issues might arise in subsequent,
larger experiments. Based on the first experiment, we
decided, for example, to use more complex change tasks
in the second experiment. It was also clear that, to change
diagrams, a complex UML tool was not required and
sometimes hindered the subjects’ performance of their
tasks. As a result, we used Visio for the second experiment,
which is a much simpler tool for making diagrams.
Furthermore, qualitative analysis is very time-consuming
[14]5 and could only be used on a small-scale experiment. It
was, however, useful to identify plausible explanations for
what we observed in the second experiment. For example,
we realized that the extent to which UML diagrams were
used to analyze changes varied a great deal among
participants.

There is much to be done in terms of future work.

Though we do not intend to provide a detailed research

plan here, it is obvious that there are many ways in which

UML can be employed in the context of model-driven

development. There are, furthermore, many profiles spe-

cializing in the UML notation [25] and their impact on

software engineering activities is worth investigating. The

experiments we have presented here can provide practical

guidelines on how to evaluate alternatives experimentally.

ACKNOWLEDGMENTS

The authors thank Magne Jørgensen, Vigdis By Kampenes,

and Dag Sjøberg and the anonymous reviewers for

providing valuable comments on this paper. Thanks to

Chris Wright for proofreading. The authors are also grateful

to the students who took part in these experiments and

hope they enjoyed the pedagogical experience.

REFERENCES

[1] B. Anda, K. Hansen, I. Gullesen, and H.K. Thorsen, “Experiences
from Using a UML-Based Development Method in a Large
Organization,” Empirical Software Eng. J., to appear.

[2] E. Arisholm, L.C. Briand, S.E. Hove, and Y. Labiche, “The Impact
of UML Documentation on Software Maintenance: An Experi-
mental Evaluation,” Technical Report 2005-14, Simula Research
Laboratory, 2005.

[3] E. Arisholm and D. Sjøberg, “Evaluating the Effect of a Delegated
versus Centralized Control Style on the Maintainability of Object-
Oriented Software,” IEEE Trans. Software Eng., vol. 30, no. 8,
pp. 521-534, Aug. 2004.

[4] E. Arisholm, D. Sjøberg, G.J. Carelius, and Y. Lindsjørn, “A Web-
Based Support Environment for Software Engineering Experi-
ments,” Nordic J. Computing, vol. 9, no. 4, pp. 231-247, 2002.

[5] V. Basili, “The Role of Experimentation in Software Engineering:
Past, Current, and Future,” Proc. IEEE Int’l Conf. Software Eng.,
pp. 442-449, 1996.

[6] V. Basili, F. Shull, and F. Lanubile, “Building Knowledge through
Families of Experiments,” IEEE Trans. Software Eng., vol. 25, no. 4,
pp. 456-473, July/Aug. 1999.

[7] K. Beck, Extreme Programming Explained. Addison Wesley, 2001.
[8] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling

Language User Guide. Addison Wesley, 1999.
[9] Borland: Together, 2003, www.borland.com/together.
[10] L.C. Briand, “Software Documentation: How Much Is Enough?”

Proc. IEEE European Conf. Software Maintenance and Reng., Invited
Keynote Address, pp. 13-15, 2003.

380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 6, JUNE 2006

5. The qualitative analysis of the Oslo experiment (conducting the
interviews, transcribing the recorded interviews, and performing the
analysis) took several months to complete.

[11] L.C. Briand, Y. Labiche, M. Di Penta, and H.-D. Yan-Bondoc, “An
Experimental Investigation of Formality in UML-Based Develop-
ment,” IEEE Trans. Software Eng., vol. 31, no. 10, pp. 833-849, Oct.
2005.

[12] B. Bruegge and A.H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns, and Java, second ed. Prentice Hall, 2004.

[13] J.L. Devore and N. Farnum, Applied Statistics for Engineers and
Scientists. Duxbury, 1999.

[14] S.E. Hove and B. Anda, “Experiences from Conducting Semi-
Structured Interviews in Empirical Software Engineering Re-
search,” Proc. IEEE Int’l Symp. Software Metrics, pp. 23-32, 2005.

[15] C.M. Judd, E.R. Smith, and L.H. Kidder, Research Methods in Social
Relations, sixth ed. Holt, Rinehart, and Winston, 1991.

[16] A. Karahasanovic, B. Anda, E. Arisholm, S.E. Hove, M. Jørgensen,
D. Sjøberg, and R. Welland, “Collecting Feedback during Software
Engineering Experiments,” Empirical Software Eng. —An Int’l J.,
vol. 10, no. 2, pp. 113-147, 2005.

[17] A. Kleppe, J. Warmer, and W. Bast, MDA Explained—The Model
Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

[18] M. Kutar, C. Britton, and T. Barker, “A Comparison of Empirical
Study and Cognitive Dimensions Analysis in the Evaluation of
UML Diagrams,” Proc. 14th Psychology of Programming Interest
Group, 2002.

[19] L. Kuzniarz, M. Staron, and C. Wohlin, “An Empirical Study on
Using Stereotypes to Improve Understanding of UML Models,”
Proc. 12th IEEE Intl Workshop Program Comprehension, 2004.

[20] Microsoft: Visio, Version 2002, 2003, www.microsoft.com.
[21] OMG, “UML 1.5 Specification,” Object Management Group,

Complete Specification formal/03-03-01, 2003.
[22] A.N. Oppenheim, Questionnaire Design, Interviewing and Attitude

Measurement. Pinter Publishers, 1992.
[23] T.J. Ostrand and M.J. Balcer, “The Category-Partition Method for

Specifying and Generating Functional Test,” Comm. ACM, vol. 31,
no. 6, pp. 676-686, 1988.

[24] M.C. Otero and J.J. Dolado, “An Empirical Comparison of the
Dynamic Modeling in OML and UML,” J. Systems and Software,
vol. 77, no. 2, pp. 91-102, 2005.

[25] T. Pender, UML Bible. Wiley, 2003.
[26] R.S. Pressman, Software Engineering—A Practitioner’s Approach,

seventh ed. McGraw Hill, 2005.
[27] H.C. Purchase, L. Colpoys, M. McGill, and D. Carrington, “UML

Collaboration Diagram Syntax: An Empirical Study of Compre-
hension,” Proc. First Int’l Workshop Visualizing Software for Under-
standing and Analysis, 2002.

[28] H.C. Purchase, L. Colpoys, M. McGill, D. Carrington, and C.
Britton, “UML Class Diagram Syntax: An Empirical Study of
Comprehension,” Proc. Australian Symp. Information Visualisation,
2001.

[29] QSR: N6, 2004, http://www.qsrinternational.com/.
[30] I. Reinhartz-Berger and D. Dori, “OPM vs. UML-Experimenting

with Comprehension and Construction of Web Application
Models,” Empirical Software Engineering—An Int’l J., vol. 10,
no. 1, pp. 57-79, 2005.

[31] C.B. Seaman, “Qualitative Methods in Empirical Studies of
Software Engineering,” IEEE Trans. Software Eng., vol. 25, no. 4,
pp. 557-572, July/Aug. 1999.

[32] E. Soloway, R. Lampert, S. Letowski, D. Littman, and J. Pinto,
“Designing Documentation to Compensate for Delocalized
Plans,” Comm. ACM, vol. 31, no. 11, pp. 1259-1267, 1988.

[33] Telelogic: TAU, 2003, http://www.telelogic.com/products/tau.
[34] S. Tilley and S. Huang, “A Qualitative Assessment of the Efficacy

of UML Diagrams as a Form of Graphical Documentation in
Aiding Program Understanding,” Proc. 21st Ann. Int’l Conf.
Systems Documentation, pp. 184-191, 2003.

[35] E. Tryggeseth, “Report from an Experiment: Impact of Documen-
tation on Maintenance,” Empirical Software Eng.: An Int’l J., vol. 2,
no. 2, pp. 201-207, 1997.

[36] J. Warmer and A. Kleppe, The Object Constraint Language, second
ed. Addison Wesley, 2003.

Erik Arisholm received the MSc degree in
electrical engineering from the University of
Toronto and the PhD degree in computer
science from the University of Oslo. He has
seven years industry experience in Canada and
Norway as a lead engineer and design manager.
He is now a researcher in the Department of
Software Engineering, Simula Research Labora-
tory and an associate professor in the Depart-
ment of Informatics, the University of Oslo. His

main research interests are object-oriented analysis and design and
design quality measurement. He is a member of the IEEE.

Lionel C. Briand received the PhD degree in
computer science, with high honors, from the
University of Paris XI, France. He is currently a
visiting professor at the Simula Research La-
boratories, Oslo, Norway. He is on a sabbatical
leave from the Department of Systems and
Computer Engineering, Carleton University, Ot-
tawa, Canada, where he is a full professor and
has been granted the Canada Research Chair in
Software Quality Engineering. Before that, he

was the software quality engineering department head at the Fraunhofer
Institute for Experimental Software Engineering, Germany. He also
worked as a research scientist for the Software Engineering Laboratory,
a consortium of the NASA Goddard Space Flight Center, CSC, and the
University of Maryland. He has been on the program, steering, or
organization committees of many international, IEEE, and ACM
conferences. He is the co-editor-in-chief of Empirical Software En-
gineering (Springer) and is a member of the editorial board of Systems
and Software Modeling (Springer). He was on the board of the IEEE
Transactions on Software Engineering from 2000 to 2004. His research
interests include: model-driven development, testing and quality
assurance, and empirical software engineering. He is a senior member
of the IEEE.

Siw Elisabeth Hove has been working at the
Simula Research Laboratory for two and a half
year as a research assistant. Her research
interest is qualitative research methods, in
particular semistructured interviews. At the mo-
ment, she is working as a consultant in the
Norwegian IT industry.

Yvan Labiche received the BSc degree in
computer systems engineering from the gradu-
ate school of engineering, CUST (Centre Uni-
versitaire des Science et Techniques, Clermont-
Ferrand), France. He completed a Master of
fundamental computer science and production
systems in 1995 (Université Blaise Pascal,
Clermont Ferrand, France). While working on
the PhD degree in software engineering, com-
pleted in 2000 at LAAS/CNRS in Toulouse,

France, he worked with Aerospatiale Matra Airbus (now EADS Airbus)
on the definition of testing strategies for safety-critical, on-board
software, developed using object-oriented technologies. In January
2001, he joined the Department of Systems and Computer Engineering
at Carleton University, Ottawa, Canada, as an assistant professor. His
research interests include: object-oriented analysis and design, software
testing in the context of object-oriented development, and technology
evaluation. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ARISHOLM ET AL.: THE IMPACT OF UML DOCUMENTATION ON SOFTWARE MAINTENANCE: AN EXPERIMENTAL EVALUATION 381

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

