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ABSTRACT

This paper reports on the construction and validation of fault-
proneness prediction models in the context of an object-oriented,
evolving, legacy system. The goal is to help QA engineers focus
their limited verification resources on parts of the system likely to
contain faults. A number of measures including code quality,
class structure, changes in class structure, and the history of class-
level changes and faults are included as candidate predictors of
class fault-proneness. A cross-validated classification analysis
shows that the obtained model has less than 20% of false positives
and false negatives, respectively. However, as shown in this
paper, statistics regarding the classification accuracy tend to
inflate the potential usefulness of the fault-proneness prediction
models. We thus propose a simple and pragmatic methodology for
assessing the cost-effectiveness of the predictions to focus
verification effort. On the basis of the cost-effectiveness analysis
we show that change and fault data from previous releases is
paramount to developing a practically useful prediction model.
When our model is applied to predict faults in a new release, the
estimated potential savings in verification effort is about 29%. In
contrast, the estimated savings in verification effort drops to 0%
when history data is not included.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics — process metrics,
product metrics. D.2.9 [Software Engineering]: Management —
software quality assurance (SQA).

General Terms
Measurement, Design, Verification.

1. INTRODUCTION

The study presented in this paper was motivated by a practical
problem encountered in a large telecom company. A large Java
legacy system was being maintained and there was a constant
shortage of resources and time for verification (testing,
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inspection). The quality assurance engineers wanted to investigate
means to focus verification on parts of the system where faults
were more likely to be detected. Though many studies on
predicting fault-prone classes on the basis of the structural
properties of object-oriented systems have been reported (Section
5), one specificity of the study presented here is the fact that we
need to predict fault-proneness of a changing legacy system. We
therefore not only need to account for the structural properties of
classes across the system, but also for changes and fault
corrections on specific releases and their impact on the code,
among a number of factors potentially impacting fault-proneness.
Another interesting issue to be investigated is related to the fact
that past change and fault data are typically available in legacy
systems and such data could be useful to help predicting fault-
proneness, e.g., by identifying what subset of classes have shown
to be inherently fault prone in the past.

The legacy system studied is a middleware system serving the
mobile division in a large telecom company. It provides more
than 40 client systems with a consistent view across multiple
back-end systems, and has evolved through 17 major releases
during the past seven years. At any time, somewhere between 30
and 60 software engineers have been involved in the project. The
core system consists of about 1700 Java classes in about 110K
SLOC'. The project had used the XRadar system [16] for some
time to monitor the quality of the software as it evolved [11], but
as the system expanded in size and complexity, QA engineers felt
they needed more sophisticated techniques to focus verification
activities on fault-prone parts of the system.

This paper will attempt to build a fault-proneness prediction
model for this system and assess not only its accuracy but also its
potential cost-effectiveness to focus verification on future
releases. We will do so using measures of the history of changes
and faults, code quality, class structure, and changes in class
structure. We will discuss the factors that appear to be important
indicators of fault-proneness and explain why that is the case. A
simple and pragmatic methodology for assessing the cost-
effectiveness of such fault-proneness models will also be
described and used on our case study.

Note that this paper is the first one that reports on the construction
and validation of fault proneness prediction models in the context
of an object-oriented, evolving, legacy system and that explores in

' In addition, the system consists of 1000K SLOC of generated
code, but this code is not considered in our study.



this context the issue of cost-effectiveness of using such models.
We believe this is a crucial issue that is far too rarely addressed.
As shown in this paper, results regarding the fault-proneness
classification of components are often misleading and tend to
inflate the potential usefulness of such predictions. The
relationship between our study and related works will be further
discussed in Section 5.

The remainder of this paper is organized as follows. Section 2
explains how we developed the fault-prediction model for the
abovementioned system. Section 3 evaluates the resulting
prediction model. Section 4 describes the main threats to validity.
Section 5 relates our approach and results to existing research.
Section 6 concludes and outlines directions for future research.

2. METHODOLOGY
2.1 Goal

Our goal is to build a prediction model for the quality assurance
staff to determine where to focus verification effort in one
important legacy, Java system. We therefore want to identify fault
prone classes which can then be targeted by specific verification
activities. Though many studies have been reported on detecting
fault-prone classes in object-oriented systems, the specificity of
this work is the legacy nature of the system under study. This has
a number of implications that will be further described below.

2.2 Fault-proneness factors

The fundamental hypothesis underlying our work is that the fault-
proneness of classes in a legacy, object-oriented system can be
affected by the following factors:

e the structural characteristics of classes (i.e., their coupling)

e the amount of change (requirements or fault corrections)
undertaken by the class to obtain the current release

e the coding quality of classes: coding style and practices,
presence of redundant code

e  other, unknown factors that are captured by the fault history
of classes in previous releases

e the skills and experience of the individual performing the
changes

Furthermore, it is also likely that these factors interact in the way
they affect fault-proneness. For example, changes may be more
fault-prone on larger, more complex classes. However, there is
little theory we can rely on to help us uncover such interactions
and we will see below how this is addressed in our analysis. We
have no data on the skills and experience of developers in this
study and therefore the last factor listed above will not be
considered at this point in our analysis.

2.3 Dependent and independent variables

The dependent variable in our analysis is the occurrences of fault
corrections in classes of a release. Typically a fault correction
involves several classes and in our case, since our level of
analysis is at the class level, we count the number of times a
distinct fault correction was required in that class for developing a
given release. This aims at capturing the fault-proneness of a
class.

The independent variables are summarized in Table 1 and attempt
to measure the factors in Section 2.2. They include various
measures of class size, inheritance, coupling, and cohesion. These
were captured on each release using two code analyzers: XRadar
[16] and JHawk [10]. In addition, measures capturing the level of
redundancy in the code, conformance to desirable coding
practices and coding style have been captured using the XRadar
system. Note that some of the variable names in Table 1 are not
following standard terminology (e.g., LOC, which refers to
number of local methods). However, this is how the variables are
defined in the tools, and we decided to keep the names to
facilitate replications in future studies that might use the same
tools.

In addition, for each class, we capture the number of requirement
changes and fault corrections performed on release n-1 that were
required to obtain the current release n. The amount of change
across classes in release n-1 is expected to affect the likelihood of
fault corrections in release n.

Ideally, we would also want to measure the size of changes and
fault corrections, for example in terms of lines of code changed,
deleted, and added. However, because this data could not easily
be obtained, we use surrogate measures that compute the variation
in coupling, cohesion, and size measures between release n and n-
1. These measures aim at capturing the size of change undergone
by each class to build release n.

We also thought that history data, telling us about requirement
changes and fault corrections in previous releases might be useful
as they would tell us about the inherent fault-proneness and
change-proneness of classes in past releases. This type of data is
usually available for legacy systems as there is usually a long
history of changes and fault corrections for most classes in a
release. In this paper, due to the current limitations of our data, we
cannot look further back than release n-2.

Last, we also collect information on the number of releases in
which the class had been present, assuming that older classes
were more stable and less likely to contain faults than newer
classes.

2.4 Assumptions and caveats

Our analysis strategies and the independent variables we have
defined above assume that most of the faults corrected in a release
n are related to changes and code characteristics of release n-1
and to a lesser extent n-2. This is, however, not true in general
and it would have been desirable to obtain precise information
regarding the cause-effect relationships between changes and fault
corrections. However, this assumption was deemed reasonable
based on our discussion with developers and more precise
information was impossible to obtain at the time of writing. This
assumption may, however, affect the ability of our model to
accurately predict fault-prone classes.

2.5 Design of the study

Recall that we model the probability of a fault correction in a
class as a function of the independent variables mentioned above.
Class fault-proneness in release n is therefore modeled as the
probability that a given class will undergo a fault correction in
release n+1.



Table 1. Summary of the independent variables in the study

Variable Description Source
Violations Number of violations in the code, e.g., "X defined but not used" XRadar
Duplications Number of “copy-+paste” duplication segments in the code XRadar
StyleErrors Number of coding style errors, e.g., "Line is longer than 80 characters" XRadar
Functions Number of implemented methods in a class XRadar
Ness Number of non-commentary source statements (SLOC) XRadar
Javadocs Number of formal Javadoc comments XRadar

Cen Cyclomatic complexity XRadar
LCOM Lack of Cohesion JHawk

EXT Number of external methods called JHawk
HIER Number of methods called in class hierarchy JHawk

LOC Number of local methods called JHawk
INST Number of instance variables JHawk
MOD Number of modifiers, i.e., the number of methods that can change the objects’ state JHawk
INTR Number of interfaces implemented JHawk
PACK Number of packages imported JHawk

RFC Response for a class JHawk

MPC Message passing coupling JHawk

FIN The sum of the number of unique methods that call the methods in the class JHawk
FOUT Number of distinct non-inheritance related classes on which a class depends (CBO) JHawk
NSUP Number of superclasses JHawk
NSUB Number of subclasses JHawk
dLCOM Abs(LCOM(n)-LCOM(n-1)) JHawk
dLOC Abs(LOC(n)-LOC(n-1)) JHawk
dMOD Abs(MOD(n)-MOD(n-1)) JHawk
dFOUT Abs(FOUT(n)-FOUT(n-1)) JHawk
dNSUP Abs(NSUP(n)-NSUP(n-1)) JHawk
dNSUB Abs(NSUB(n)-NSUB(n-1)) JHawk
FaultCorrections Number of faults corrected in release n-1 to build release n Release Data
ChangeCount Number of requirement changes in release n-1 to build release n Release Data
PrevVersionCount Number of releases in which the class has been present before release n Release Data
nlFaultCorrections Number of faults corrected in release n-2 to build release n-1 Release Data
n1ChangeCount Number of requirement changes in release n-2 to build release n-1 Release Data

We use logistic regression [6] to derive an optimal prediction
model from the available data. More precisely, we have four
releases (denoted R1 to R4) on which we collected fault and
change data. We build a prediction model with R3 fault
corrections as the dependent variable and R2 measurements
(including number of requirement changes and fault corrections,
code measures and structural change measures since R1) plus the
change and fault history of R1 as the independent variables. Then
the model is applied to predict R4 fault corrections, using R3
measurements (including number of requirement changes and
fault corrections, code measures and structural change measures
since R2) plus the change and fault history of R2 as the predictor
variables. The rationale is that we want not only to see how well
such a model can fit our data (on R3) but we also want to
determine how well it can predict the future (R4) and help focus
verification on future releases.

2.6 Data analysis

Many of our independent variables have distributions skewed to
the right, with a number of extreme values. Because regression is
in general sensitive to outliers (e.g., very large values), we
perform a logarithm transformation of independent variables® in
order to obtain less skewed distributions [6]. This has also the
advantage to account for interactions between variables without
having to explicitly specify them’, an important issue in our
context where we know interactions to be plausible but difficult to
predict beforehand.

2 x> = In (x+1). We refer to these variables as log-transformed

independent variables.
*alnxl +blnx2+clnxIx2 = (atc) In x1 + (b+c) In x2




Following a common analysis procedure [2], we perform a
Principal Component Analysis (PCA) to identify the dimensions
actually present in the data (for release R2) and to help us
interpret subsequent results. We then use logistic regression to
perform a univariate analysis of each independent variable to
identify which ones are significant predictors of fault-proneness
(fault corrections to build release R3) and whether their
relationship is in the expected direction. This allows us to check
whether our initial hypotheses are supported. The next step is then
to build a multivariate prediction model, using stepwise logistic
regression, in order to predict class fault-proneness using all
available measures®. Note that in order to obtain a balanced model
for both faulty and non-faulty classes, we randomly extract a
subset of non-faulty classes of identical size to the number of
faulty classes. This is necessary in order to avoid biasing the fitted
model towards non-faulty classes as those typically represent the
vast majority of classes in a release’. We thus obtain a total of 82
observations to build the model. The goodness of fit of the model
is then assessed by computing the percentage of false positives
and false negatives when using it to classify classes in the
modeling dataset as fault-prone or not. To get a more realistic
result of what classification accuracy to expect on other datasets,
we perform the same assessment again but using a Leave-one-out
cross validation procedure [6].

We then apply the multivariate model to determine how well it
can predict the fault corrections (to build release R4), now
including all 1758 observations. This step of our analysis is
related to assessing the cost-effectiveness of using the prediction
model that was built. Typically, fault-proneness models are found
useful to focus verification activities, such as testing and
inspections, on parts of a large system. The acceptance criteria for
testing (e.g., control flow coverage) may, for example, be more
demanding for parts predicted as fault-prone. Regardless of the
details of its application, the cost-benefit of using such a
prediction model to focus verification decreases as fault-prone
parts represent an increasingly larger part of the system and
contain a lower percentage of the faults. Therefore, we will
investigate the percentage of classes, functions, and lines of code
classified as fault-prone and the relationship of such percentages
to the percentage of faults contained in these artifacts. These
faults represent the fault subset that can potentially be detected by
additional verification activities targeting fault-prone components.

3. RESULTS

3.1 Principal Component Analysis

A Principal Component Analysis (PCA) shows that the data
captures a number of distinct dimensions (principal components
or PCs) which is far lower than the number of independent
variables considered, given the criterion of an eigenvalue above

* We do not make use of PCA to select a subset of independent
variables since, as discussed in [2], experience has shown this
usually leads to suboptimal prediction models, though
regression coefficients are easier to interpret.

5 In the univariate case, we also tried an alternative (and
computationally expensive) approach known as exact logistic
regression [9], which computes unbiased coefficients even with
sparse or skewed data sets. With our data, the differences
between the two approaches are negligible.

1.0 to determine the number of components. That type of
redundancy in software engineering data is very common [2] and
needs to be identified to better interpret the results of our study.
PCA is performed here on the log-transformed variables which
are used as independent variables, and then rotated using the
VariMax rotation to facilitate the interpretation. The raw PCA
results are provided in Appendix A. The PCs can be described as
follows:

e PCl: The first principal component mostly captures class
size (e.g., in terms of methods, line of code, control flow
complexity) and import coupling from other classes (e.g.
PACK, RFC, MPC, EXT, FOUT), which is in most studies
associated with size [2]. Violations, Duplications, and
StyleErrors are also part of this PC. So is dLOC, indicating
that the amount of change in local methods called is related
to class size. ChangeCount and n1ChangeCount are also part
of this PC, due probably to the strong impact of class size on
the likelihood of a class to undergo change. We note that
FaultCorrections and nlFaultCorrections do not load above
0.5 on any of the components, but seem to be partly related
to PC1, indicating that fault proneness is related to class size
but also other dimensions (PC6).

e  PC2: The number of releases in which the class has been
present (PrevVersionCount), plus a number of structural
change measures (dLCOM, dFOUT, dMOD) we collect to
assess the impact of change from one release to the next on
class structure. This is to be expected as, in our data, older
classes tend to be much more stable and show less structural
change.

e  PC3: Cohesion (LCOM) and number of instance variables
(INST), as classes with large numbers of instance variables
tend to have lower LCOM values.

e  PC4: The sum of the number of unique methods that call the
methods in the class (FIN)

e  PCS5: The number of ancestors classes (NSUP) and its change
(dANSUP). This indicates a shallow inheritance hierarchy in
the system, and that the classes are seldom moved within an
inheritance hierarchy (both are close to zero).

e  PC6: The number of modifier methods (MOD) (and to some
extent, FaultCorrections)

e PC7: The number of descendent classes (NSUB) and its
change (dNSUB). As for PCS, this indicates a shallow
inheritance hierarchy, and that the classes are seldom moved
within an inheritance hierarchy (both are close to zero).

e  PC8: Number of methods called in class hierarchy (HIER)

3.2 Univariate Analysis

From Table 2 we can see that code quality measures (violations,
duplication, and style errors) are all significantly related to the
probability of fault correction (p-value < 0.05) and the
relationship is in the expected direction: poor code quality leads
to increased probability of correction (odds-ratio® > 1).

8 It is the number by which we would multiply the odds for a class
to contain a fault for each one-unit increase in the independent



Table 2. Summary of univariate results

Variable Odds-ratio p-value
Violations 1.8 0.0037
Duplications 2.8 0.0101
StyleErrors 1.4 0.0387
Functions 32 0.0001
Ness 3.1 <.0001
Javadocs 44 <.0001
Cen 2.9 <.0001
EXT 2.3 <.0001
LOC 2.6 0.0003
INST 1.7 0.0409
PACK 2.2 0.0004
RFC 3.1 <.0001
MPC 2.1 <.0001
FOUT 2.5 <.0001
dLOC 2.2 0.0116
dFOUT 1.9 0.0048
FaultCorrections 5.3 0.0055
ChangeCount 23 0.0072

Size measures (Functions, Ncss, Javadocs, Cen) also show a very
strong impact on the probability of fault correction, as this has
been the case in many previous studies [2].

The number of external methods (EXT) and local methods (LOC)
called also show a significant relationship where the higher the
number of calls, the higher the probability of fault correction.
This is also the case of PACK, the number of packages imported,
and other types of import coupling measures: RFC, MPC, FOUT.
Note, however, that all these measures belong to the same PC as
size measures, which is to be expected as larger classes tend to
perform more calls, import more packages, and so forth.

No inheritance or cohesion measure appears to be significantly
related to fault-proneness. Recall that there is limited use of
inheritance in this system, as also reported by other studies [4, 5,
8]. As for cohesion, as discussed in [2], our result is consistent
with previous studies that have shown that measures of cohesion
were rarely selected as significant predictors of fault-proneness.

Some of the delta measures, aiming at measuring the change
incurred by classes between two releases, are significantly related
to fault-proneness: dLOC, dFOUT. However, the fact that dLOC
is related to size (PC1) might explain part of this result.

Change counts and fault corrections show that the higher the
number of change and error corrections on a class in the previous
release (R2), the higher the likelihood of fault correction in the
current release (R3). This is intuitive as we expect that the amount
of change performed to build R2, whether requirements changes
or corrections, would impact fault-proneness. However, historic
data on change and fault counts to build release RI1

variable. For example, an odds-ratio of 1.8 means an increase of
80% in the odds of a class to contain a fault.

Table 3. Variables selected in the multivariate model

Variable p-
value

Ncss 0.0069
Javadocs 0.0088
Cen 0.0137
LCOM 0.0817
HIER 0.0297
INST 0.0221
NSUP 0.0654
NSUB 0.0425
FaultCorrections 0.0098
ChangeCount 0.0225
nlFaultCorrections 0.0099
nl1ChangeCount 0.0297

(n1ChangeCount and nl1FaultCorrections) do not seem to have a
significant relationship with fault-proneness.

3.3 Multivariate Analysis

As expected, the stepwise logistic regression procedure selected a
number of size measures (PC1) in the multivariate prediction
model (Ncss, Javadocs, Ccn). The number of instance variables
(INST) is also selected. Also, not surprisingly, variables capturing
the amount of change (ChangeCount) and fault correction
(FaultCorrections) are selected. A number of variables which
appeared significant in the univariate analysis are not selected and
this is not surprising as many of them belong to the same principal
components. However, more surprisingly, a number of variables
who did not appear significant in the univariate analysis are also
included. Recall that our model automatically accounts for
interactions due to the log-transformations of independent
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Figure 1. Goodness of fit in terms of false positives and
false negatives on release R3
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Figure 2. Leave-one-out cross validation false positives and
false negatives on release R3

variables and this probably explains such a result. A number of
code measures are thus selected regarding inheritance (NSUP,
NSUB, HIER) and cohesion (LCOM). Furthermore, variables
capturing change and error history before the development of the
analyzed release (nl1ChangeCount, nlFaultCorrections) are also
selected.

There are many ways to look at the goodness of fit of a logistic
regression model [6]. One practical way is to use the probability
predictions of the model to classify classes as faulty or not and
check the false positives and false negatives. This is illustrated in
Figure 1 for different probability thresholds. We can see that
when using a balanced probability threshold value for
classification (around 0.5), we have less than 9% and 5% of false
positives and false negatives, respectively. In other words, when
predicting classes as fault-prone there is a 9% chance of being
wrong and waste verification resources. Similarly, there is a 5%
chance of missing a faulty class and not detect the faults it
contains.

In order to obtain a more realistic assessment of the fault-
proneness prediction accuracy, we use a Leave-one-out cross
validation procedure, leaving one observation out and building a
model on the remaining observations, doing so iteratively for all
observations. From Figure 2, we can see that when using a
balanced threshold value (around 0.5), we have less than 20% of
false positives and false negatives, respectively. This is a sharp
increase compared to Figure 1 but the results are still reasonably
accurate.

3.4 Cost-Benefit Analysis

The cross validation results presented above provide insights on
the accuracy of our fault-proneness models if all releases were
alike in terms of change process, changes, personnel, and so on.
However, we know this is never the case. In this case study, we
were informed that process changes were taking place across

releases. So, from a practical perspective we wanted to answer the
following questions:

e  how useful is such a prediction model when predicting future
releases?

e what is the cost-benefit of using such a model to focus
verification?

We built a prediction model using R3 fault corrections as
dependent variable and R2 data for the independent variables.
Then we applied the model to predict R4, the latest release for
which we have fault correction data. Since we are looking at ways
to get insights into the cost-effectiveness of using such model we
have to define surrogates measures for verification cost.
Depending on the specific verification undertaken on classes
predicted as fault prone, one may want to use a different size
measure that would be proportional to the cost of verification. In
Figure 3, we plot the number of classes predicted as fault prone as
well as the cumulative number of lines of code (Ncss), methods
(Functions), and control flow complexity (Ccn) they contain. We
compute this for different threshold probability cutoff values, as
for the computation of false positives and false negatives. From
Figure 3 we can see that at a cutoff value of 0.5, more than 70%
of the faults are found in less than 30% of the classes. Those
classes, however, represent roughly 50% of the lines of code,
control flow complexity, and methods. So depending on whether
you intend to apply, for example, test criteria such as Block
coverage, Edge coverage, or simply inspect class interfaces [15],
one may want to use a different size measure that is a proper
surrogate of the effort of a specific verification activity. In our
case the measurement happens to be very consistent for all our
size measures, except the number of classes which shows lower
percentages. This is not surprising as larger classes tend to be
more fault-prone than smaller classes.

Going back to our example, assuming the number of lines of code
is an appropriate size measure that is proportional to the
verification effort of the predicted fault-prone classes, a random
selection of classes on which to apply a specific verification
strategy (e.g., test or inspection) would require the verification of
70% of the code to detect a maximum of 70% of the faults. Using
our model we bring this percentage down to 50% of the code, thus
potentially reducing the verification effort by 29%. An alternative
to using a model would be to ask the maintainers of the system to
subjectively select classes to verify. However, in the context
where this study took place, no maintainer seems to have the
adequate overview of the system and release changes to order or
classify parts of the system according to their fault-proneness. We
believe that this is a common problem when the system being
maintained is large and involve a large number of developers.

In order to assess the results presented above, we should compare
them against a baseline capturing the best we could achieve. In
release R4, fault-prone classes represent 13% of the lines of code.
We therefore see that, despite the estimated potential savings in
verification effort, there exists substantial room for improvement
in our prediction model.

As discussed above, a specificity of legacy systems is that we
have access to change and fault history data from previous
releases. When predicting the fault-proneness of a given release
we can attempt to make use of change and fault data from past
releases to improve our models. As discussed in 3.3, recall that
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two covariates capturing fault corrections and changes in release
R1 were selected in the prediction model along with other
independent variables based on R2 data. Now an interesting,
practical question is to determine how important such history data
is for building prediction models for legacy systems in terms of
cost-effectiveness. Though our history data here is limited to one
past release (R1), what is the consequence of not using such
information? Answering such a question could help us provide
practical advice to practitioners regarding whether to collect and
use such history data to build similar prediction models. Figure 4
shows the same cost-effectiveness curves as in Figure 3 but on a
basis of building a model without history data. From this figure,
the results clearly show that the size curves (except for the class
percentage curve, for reasons already discussed above) across
different thresholds are not very much above (and often below)
the model fault percentage curve. Based on the assumptions listed
earlier, this implies that such a model is not likely to be of
practical usefulness as its cost-effectiveness to drive verification
is questionable. Though additional studies with longer fault and
change history are needed, it seems of practical importance to
exploit such history data to build high cost-effectiveness
prediction models.

For the sake of comparing the cost-effectiveness of models, it
would be convenient to have an assessment that is independent
from a specific probability threshold. This can be achieved by
computing the surface area between the Fault correction curve
and any appropriate size curve (e.g., Ncss) across probability
thresholds. For example, in Figure 3, the area labeled “Cost
Effectiveness Area” would quantify the cost effectiveness of our
model in a way that can be easily compared to other models. The
larger this area, the more cost-effective the fault-proneness model
across thresholds. From Figure 4, we can see that the fault
correction and Ccn curves cross each other at threshold 0.5. In
general, when a size curve lies above the fault correction curve,
the surface area should count negatively towards cost-
effectiveness (area “2” in Figure 4) whereas when it lies below
the fault correction curves (area “1” in Figure 4), then there is a
positive contribution.
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model, without historical data

4. THREATS TO VALIDITY

The design of case studies is complex and many issues may affect
the wvalidity of results [17]. Construct validity concerns
establishing correct operational measures for the concepts being
studied. Many of our independent variables are structural
measures collected using the XRadar and JHawk tools. The
descriptions of the measures as provided in the tools are very
informal and not sufficiently precise to determine exactly how the
tools collect the measures, which would be important to provide
an accurate assessment of their construct validity, as advocated in
[3], for example. In any case, the repeatability of the
measurements, also referred to as reliability in [17], is probably
more important than construct validity in our case, as the goal is
to build a prediction model rather than discovering cause-effect
relationships.

The change and fault data in this study are related to the number
of changes and number of faults corrected at the class-level in a
given release. The reliability of the measures depends on how
consistently the developers reported changes and fault corrections
in their configuration management system. Due to the extensive
use of the XRadar system in the releases being studied and due to
the efforts of a dedicated release manager [11], we have good
reasons to believe that the reported data are fairly accurate.
However, some classes changed names or package location from
release to release, and in such cases history data was lost. We
expect to fix this problem in the future and thus improve our
predictions.

There is no concept of fault severity in our models, and such a
distinction would be important to improve the value of the
prediction model [1]. It also concerns both internal validity and
external validity, as the distribution of fault severity may change
over time in the given project, and may be entirely different in
other projects, respectively. Future prediction models should thus
account for the severity of faults.

5. RELATED WORK

There is a lot of research on fault-proneness models in OO
systems. A survey is provided in [2]. In summary, structural



properties of software, such as cyclomatic complexity or
coupling, do seem to have an impact on fault proneness. Due to
space constraints, the remainder of this section focuses on
providing an in-depth discussion of research that has attempted to
build fault-proneness prediction models in the context of evolving
software systems for which change and/or fault history data were
available.

Instead of using product measures such as lines of code or
cyclomatic complexity, one study took a slightly different
approach, and attempted to build change risk prediction models
on the basis of simple change data [12]. The results suggest that
the risk of performing a given change, in the sense that the change
will cause a future software failure, can be successfully modeled
on the basis of simple change measures such as the size, duration,
diffusion and type of change. The final risk prediction model also
included developer experience (measured as the number of deltas
previously performed by a given developer on the system before
the given change) as a covariate.

A study on fault proneness prediction in a large, evolving system
was reported in [13]. The dependent variable was the module-
level cumulative number of faults (from the initial build to the last
build). The independent variables were based on 12 different size
and control-flow measures, but the measures were not used
directly. Instead, principal component regression [6] was
performed. More specifically, the 12 initial measures were
transformed into three new variables on the basis of three
identified principal components. The advantage of such an
approach is that the derived measures are uncorrelated, which in
turn makes it simpler to interpret the individual contribution of
each measure. But as previously discussed, the drawback is that it
often leads to suboptimal prediction models [2].

Finally, for each of the three variables, the sum (across all builds)
of the absolute values of the differences between all pairs of
successive builds was computed. These sums of differences,
denoted as code churn in [13], formed the independent variables.
The first independent variable (mainly representing size changes
in the modules across the builds) was found to be a significant
predictor of the cumulative number of faults in a module. The
resulting multiple principal regression model had an adjusted R-
Sq [6] equal to 0.61, suggesting that the model potentially could
have practical value as a management tool to help identify fault-
prone modules. There are several similarities and differences
between the study reported in [13] and our paper. The code churn
measures in [13] are similar to the structural change measures
used as candidate independent variables in this paper (e.g,
dLCOM), although we used the changes in the individual
measures since the previous release instead of the cumulative
changes in the principal component-based measures as
independent variables. Thus the results are difficult to compare
directly. However, two of the structural change measures (dLOC
and dFOUT) were significant in the univariate case (Table 2),
suggesting that changes in structural properties do affect fault
proneness, thus confirming results in [13]. However, they were
not significant in the multiple regression model (Table 3), that is,
when also accounting for other measures such as the structural
properties (in release n) and change and fault history, in which
case the measures of structural change no longer seem to be
significant predictors of fault-proneness in our case. No attempts
was made to perform a cross-validation or evaluate the cost-

benefits of the model on new releases in [13], so no further direct
comparisons of the two studies are possible.

A study of fault-proneness in a very large and long-lived software
system was reported in [7]. The dependent variable was the
number of fault incidences within a two-year period. The
independent variables consisted of various product and process
measures collected from repositories just before that two-year
period. The product measures included module-level size and
complexity measures, e.g., lines of code and cyclomatic
complexity. The process measures included the number of past
faults in a module, the number of changes or deltas to a module
over its entire history, and the age of the code. Thus, the variables
used in [7] are similar in type to the ones used in our study.
However, the goals were different as the main focus in [7] was to
identify the reasons for faults whereas the main goal in this paper
is to build an optimal prediction model. This has an impact on the
type of statistical analyses performed. For example, [7] did not
attempt to evaluate the accuracy or cost-effectiveness of the
obtained models by applying them to predict future faults, though
this was vital in our case. Despite the differences, a very
important result in [7] was that process measures based on the
change and fault history were much better explanatory variables
of the faults than were the product measures. This is supported by
a study reported in [18], which among others concludes that
modules with large numbers of faults in the past are likely to also
contain faults in the future. As can be seen when comparing
Figure 3 and Figure 4, our results support the conclusions in [7,
18] in the context of predicting future faults. The inclusion of
change and fault history data is essential in order to build
practically useful fault-proneness prediction models for evolving
legacy-systems. In [7], the best model was a so-called weighted
time damp model, which allowed different weight to the change
history data, depending on how old the changes were. The impact
of changes on fault-proneness was downweighed by a factor of
about 50 percent per year. In our case, the history data available
to build our prediction model was only based on the two prior
releases, so it was feasible to simply assign time-related weights

by having different coefficients for nlChangeCount,
nlFaultCorrections, =~ ChangeCount and  FaultCorrections,
respectively.

In [14], a case study on modeling fault-proneness over a sequence
of four releases was presented. The system was composed of 800
KLOC of C code. The data was based on change reports as no
design or code was available to the researchers. The independent
variables thus only included measures such as the number of
times a component was changed together with other components,
number of files fixed in a given component and the number of
lines of code added and deleted in a component, for a given
release. A component was defined as a collection of files in the
same directory, and it was assumed that the directory structure
reflected the functional architecture. The relative size of the
directories was not known. The components in the system were
classified as fault-prone if the number of faults exceeded a given
threshold value. One objective of the paper was to compare
different statistical techniques (classification trees and
discriminant analysis with or without the use of PCA to determine
the set of candidate variables) for building fault-proneness models
over a sequence of releases. Amongst others, they built fault-
proneness classification trees (for each release) and evaluated the
stability of the classification trees over successive releases. The



results suggest that PCA combined with classification trees is a
viable approach for modeling fault proneness as a software
system evolves. However, due to the limitations in the data, it
would not be possible to assess the cost-effectiveness of the
obtained models on future releases.

On the basis of results summarized in [2], it appears that structural
properties of software are useful predictors of fault proneness.
However, even simple measures of the size, diffusion, and type of
changes may be useful predictors of fault-proneness, as illustrated
in [12]. This study also suggests that the experience of the
developer performing changes should ideally be considered.
Measures of the cumulated difference in structural properties over
time can also be significant predictors of fault proneness [13].
However, on the basis of results in [7] and in this paper, it appears
that whenever historic data of changes and faults are available,
they should also be included as candidate predictors of fault
proneness, because they will probably result in practically useful
improvements in prediction accuracy. If history data from many
releases are available, a weighted time damp model [7] seems to
be a viable approach for prediction purposes.

To summarize, our study differs from existing work in several
ways. It takes place in the context of an object-oriented legacy
system and goes beyond predicting the fault-proneness of classes
to look into the cost-effectiveness of predictions when using them
to drive verification effort.

6. CONCLUSIONS

The main goal of this paper is to report on a study performed in a
large telecom company and which focuses on predicting fault-
prone parts of an object-oriented, legacy system after a new
release is completed. The goal is to help QA engineers focus their
limited verification resources on parts of the system likely to
contain faults. Though many studies exist on the topic of
predicting fault proneness, this is the first study doing so in the
context of an object-oriented, evolving legacy software system.
Such systems are bound to become increasingly more important
in the future.

We make use of a variety of measures as independent variables
ranging from structural measures, structural impact measures,
code quality measures, change and fault measures, and history
data from previous releases. Using logistic regression on log-
transformed variables we build a multivariate prediction model to
predict the probability of fault correction across classes, assess its
goodness of fit, and its prediction capability on the release
subsequent to the release on which the prediction model was built.
Using a novel, simple, and pragmatic approach, we then assess
the potential cost-effectiveness of using such a model to focus
verification effort. This is rarely done in studies predicting fault-
proneness but we believe this is essential to get a realistic estimate
of how useful such models can be in practice.

A Leave-one-out cross validation yields less than 20% of false
negatives and false positives when selecting a balanced fault
correction probability threshold. The cost-effectiveness analysis
suggests that, if such a prediction model would be used to focus
verification, given a certain number of assumptions, it could result
into a cost reduction of about 29%.

However, these results show there is substantial room for
improvement in terms of false negatives and false positives.
Given the limitations of our data this is not surprising.

Nevertheless, our study shows that building such fault-proneness
models is promising as it could potentially save verification effort
in the context of a constantly changing legacy system. It also
suggests that using history change and fault data about previous
releases is paramount to developing a useful prediction model on
a given release.

Future work will include collecting additional data on other
releases and collect more precise change and fault data regarding
the size and the cause of changes. Thus, we hope to develop more
accurate prediction models leading to increased cost-
effectiveness.
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Rotated Factor Pattern
Variable PC1 PC2 PC3 PC4 PC5 PCeo PC7 PC8
LogViolations 0.79 -0.16 0.22 0.10 0.12 0.01 -0.02 -0.11
LogDuplications 0.68 -0.25 0.19 0.03 0.25 -0.07 0.12 0.08
LogStyleErrors 0.67 -0.30 0.15 -0.02 -0.08 -0.04 -0.30 -0.02
LogFunctions 0.85 -0.05 0.20 0.00 -0.07 -0.23 0.19 -0.14
LogNcss 0.93 -0.01 0.25 -0.04 -0.04 0.06 0.06 0.03
LogJavadocs 0.84 -0.01 0.14 -0.07 -0.07 -0.18 0.18 -0.09
LogCcn 0.94 0.01 0.14 -0.04 -0.06 -0.06 0.09 -0.04
LogLCOM 0.09 0.03 0.89 0.03 -0.06 0.13 -0.07 0.04
LogEXT 0.93 0.12 -0.04 -0.09 -0.06 0.22 -0.04 0.04
LogHIER -0.10 0.06 0.01 -0.10 0.11 -0.03 0.06 0.80
LogLOC 0.79 -0.01 0.26 0.32 0.16 0.02 0.10 -0.01
LogINST 0.45 -0.02 0.80 0.12 0.03 0.03 0.12 -0.05
LogMOD 0.19 0.04 0.24 -0.10 0.12 0.79 0.00 0.06
LogINTR 0.23 0.06 0.35 -0.37 -0.08 -0.14 0.34 -0.40
LogPACK 0.83 0.04 -0.14 -0.35 -0.01 -0.20 -0.11 0.03
LogRFC 0.97 0.07 0.03 -0.04 -0.08 0.02 0.02 -0.01
LogMPC 0.94 0.11 -0.04 -0.10 -0.06 0.20 -0.05 0.03
LogFIN -0.08 -0.02 0.15 0.76 -0.25 -0.13 -0.10 -0.16
LogFOUT 0.88 0.12 -0.05 -0.20 -0.01 0.22 -0.14 0.09
LogNSUP -0.12 -0.06 -0.10 0.01 0.83 0.14 0.07 0.18
LogNSUB -0.10 -0.18 0.01 -0.17 -0.05 0.17 0.66 0.40
LogdFOUT 0.50 0.64 -0.03 -0.27 -0.01 0.08 -0.01 0.03
LogdLCOM 0.04 0.86 0.15 0.02 0.01 0.06 0.05 0.09
LogdNSUP 0.11 0.03 0.06 -0.43 0.72 -0.05 -0.06 -0.04
LogdLOC 0.70 0.30 0.13 0.15 0.27 -0.09 0.17 -0.11
LogdMOD -0.04 0.94 -0.03 0.00 -0.01 0.04 0.05 -0.04
LogdNSUB 0.15 0.25 0.01 0.02 0.07 -0.02 0.77 -0.13
LogFaultCorrections 0.45 -0.11 0.15 -0.15 0.04 -0.50 -0.21 0.30
LogChangeCount 0.71 0.08 0.09 -0.40 0.07 -0.19 -0.04 -0.15
LogPrevVersionCount 0.08 -0.94 0.06 -0.02 0.02 0.05 -0.04 0.05
Logn1FaultCorrections 0.45 -0.15 0.03 0.05 0.03 -0.40 -0.10 0.44
Logn1ChangeCount 0.61 -0.51 0.03 0.03 0.08 -0.24 0.05 0.17
Variance Explained 11.88 3.63 2.06 1.55 1.55 1.53 1.50 1.46
Cumulative 0.39 0.50 0.57 0.63 0.68 0.72 0.75 0.79





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


