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ABSTRACT 
This paper reports on the construction and validation of fault-
proneness prediction models in the context of an object-oriented, 
evolving, legacy system. The goal is to help QA engineers focus 
their limited verification resources on parts of the system likely to 
contain faults. A number of measures including code quality, 
class structure, changes in class structure, and the history of class-
level changes and faults are included as candidate predictors of 
class fault-proneness. A cross-validated classification analysis 
shows that the obtained model has less than 20% of false positives 
and false negatives, respectively. However, as shown in this 
paper, statistics regarding the classification accuracy tend to 
inflate the potential usefulness of the fault-proneness prediction 
models. We thus propose a simple and pragmatic methodology for 
assessing the cost-effectiveness of the predictions to focus 
verification effort. On the basis of the cost-effectiveness analysis 
we show that change and fault data from previous releases is 
paramount to developing a practically useful prediction model. 
When our model is applied to predict faults in a new release, the 
estimated potential savings in verification effort is about 29%. In 
contrast, the estimated savings in verification effort drops to 0% 
when history data is not included. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – process metrics, 
product metrics. D.2.9 [Software Engineering]: Management – 
software quality assurance (SQA).  

General Terms 
Measurement, Design, Verification. 

1. INTRODUCTION 
The study presented in this paper was motivated by a practical 
problem encountered in a large telecom company. A large Java 
legacy system was being maintained and there was a constant 
shortage of resources and time for verification (testing, 

inspection). The quality assurance engineers wanted to investigate 
means to focus verification on parts of the system where faults 
were more likely to be detected. Though many studies on 
predicting fault-prone classes on the basis of the structural 
properties of object-oriented systems have been reported (Section 
5), one specificity of the study presented here is the fact that we 
need to predict fault-proneness of a changing legacy system. We 
therefore not only need to account for the structural properties of 
classes across the system, but also for changes and fault 
corrections on specific releases and their impact on the code, 
among a number of factors potentially impacting fault-proneness. 
Another interesting issue to be investigated is related to the fact 
that past change and fault data are typically available in legacy 
systems and such data could be useful to help predicting fault-
proneness, e.g., by identifying what subset of classes have shown 
to be inherently fault prone in the past.  

The legacy system studied is a middleware system serving the 
mobile division in a large telecom company. It provides more 
than 40 client systems with a consistent view across multiple 
back-end systems, and has evolved through 17 major releases 
during the past seven years. At any time, somewhere between 30 
and 60 software engineers have been involved in the project. The 
core system consists of about 1700 Java classes in about 110K 
SLOC1. The project had used the XRadar system [16] for some 
time to monitor the quality of the software as it evolved [11], but 
as the system expanded in size and complexity, QA engineers felt 
they needed more sophisticated techniques to focus verification 
activities on fault-prone parts of the system.  

This paper will attempt to build a fault-proneness prediction 
model for this system and assess not only its accuracy but also its 
potential cost-effectiveness to focus verification on future 
releases. We will do so using measures of the history of changes 
and faults, code quality, class structure, and changes in class 
structure. We will discuss the factors that appear to be important 
indicators of fault-proneness and explain why that is the case. A 
simple and pragmatic methodology for assessing the cost-
effectiveness of such fault-proneness models will also be 
described and used on our case study.  

Note that this paper is the first one that reports on the construction 
and validation of fault proneness prediction models in the context 
of an object-oriented, evolving, legacy system and that explores in 
                                                                 
1 In addition, the system consists of 1000K SLOC of generated 

code, but this code is not considered in our study. 
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this context the issue of cost-effectiveness of using such models. 
We believe this is a crucial issue that is far too rarely addressed. 
As shown in this paper, results regarding the fault-proneness 
classification of components are often misleading and tend to 
inflate the potential usefulness of such predictions. The 
relationship between our study and related works will be further 
discussed in Section 5. 

The remainder of this paper is organized as follows. Section 2 
explains how we developed the fault-prediction model for the 
abovementioned system. Section 3 evaluates the resulting 
prediction model. Section 4 describes the main threats to validity. 
Section 5 relates our approach and results to existing research. 
Section 6 concludes and outlines directions for future research. 

2. METHODOLOGY  
2.1 Goal 
Our goal is to build a prediction model for the quality assurance 
staff to determine where to focus verification effort in one 
important legacy, Java system. We therefore want to identify fault 
prone classes which can then be targeted by specific verification 
activities. Though many studies have been reported on detecting 
fault-prone classes in object-oriented systems, the specificity of 
this work is the legacy nature of the system under study. This has 
a number of implications that will be further described below.  

2.2 Fault-proneness factors 
The fundamental hypothesis underlying our work is that the fault-
proneness of classes in a legacy, object-oriented system can be 
affected by the following factors:  

• the structural characteristics of classes (i.e., their coupling) 

• the amount of change (requirements or fault corrections) 
undertaken by the class to obtain the current release 

• the coding quality of classes: coding style and practices, 
presence of redundant code 

• other, unknown factors that are captured by the fault history 
of classes in previous releases 

• the skills and experience of the individual performing the 
changes 

Furthermore, it is also likely that these factors interact in the way 
they affect fault-proneness. For example, changes may be more 
fault-prone on larger, more complex classes. However, there is 
little theory we can rely on to help us uncover such interactions 
and we will see below how this is addressed in our analysis. We 
have no data on the skills and experience of developers in this 
study and therefore the last factor listed above will not be 
considered at this point in our analysis.  

2.3 Dependent and independent variables 
The dependent variable in our analysis is the occurrences of fault 
corrections in classes of a release. Typically a fault correction 
involves several classes and in our case, since our level of 
analysis is at the class level, we count the number of times a 
distinct fault correction was required in that class for developing a 
given release. This aims at capturing the fault-proneness of a 
class.   

The independent variables are summarized in Table 1 and attempt 
to measure the factors in Section 2.2. They include various 
measures of class size, inheritance, coupling, and cohesion. These 
were captured on each release using two code analyzers: XRadar 
[16] and JHawk [10]. In addition, measures capturing the level of 
redundancy in the code, conformance to desirable coding 
practices and coding style have been captured using the XRadar 
system. Note that some of the variable names in Table 1 are not 
following standard terminology (e.g., LOC, which refers to 
number of local methods). However, this is how the variables are 
defined in the tools, and we decided to keep the names to 
facilitate replications in future studies that might use the same 
tools.  
In addition, for each class, we capture the number of requirement 
changes and fault corrections performed on release n-1 that were 
required to obtain the current release n. The amount of change 
across classes in release n-1 is expected to affect the likelihood of 
fault corrections in release n.  
Ideally, we would also want to measure the size of changes and 
fault corrections, for example in terms of lines of code changed, 
deleted, and added. However, because this data could not easily 
be obtained, we use surrogate measures that compute the variation 
in coupling, cohesion, and size measures between release n and n-
1. These measures aim at capturing the size of change undergone 
by each class to build release n. 
We also thought that history data, telling us about requirement 
changes and fault corrections in previous releases might be useful 
as they would tell us about the inherent fault-proneness and 
change-proneness of classes in past releases. This type of data is 
usually available for legacy systems as there is usually a long 
history of changes and fault corrections for most classes in a 
release. In this paper, due to the current limitations of our data, we 
cannot look further back than release n-2. 
Last, we also collect information on the number of releases in 
which the class had been present, assuming that older classes 
were more stable and less likely to contain faults than newer 
classes.  

2.4 Assumptions and caveats 
Our analysis strategies and the independent variables we have 
defined above assume that most of the faults corrected in a release 
n are related to changes and code characteristics of release n-1 
and to a lesser extent n-2. This is, however, not true in general 
and it would have been desirable to obtain precise information 
regarding the cause-effect relationships between changes and fault 
corrections. However, this assumption was deemed reasonable 
based on our discussion with developers and more precise 
information was impossible to obtain at the time of writing. This 
assumption may, however, affect the ability of our model to 
accurately predict fault-prone classes. 

2.5 Design of the study 
Recall that we model the probability of a fault correction in a 
class as a function of the independent variables mentioned above. 
Class fault-proneness in release n is therefore modeled as the 
probability that a given class will undergo a fault correction in 
release n+1.  



We use logistic regression [6] to derive an optimal prediction 
model from the available data. More precisely, we have four 
releases (denoted R1 to R4) on which we collected fault and 
change data. We build a prediction model with R3 fault 
corrections as the dependent variable and R2 measurements 
(including number of requirement changes and fault corrections, 
code measures and structural change measures since R1) plus the 
change and fault history of R1 as the independent variables. Then 
the model is applied to predict R4 fault corrections, using R3 
measurements (including number of requirement changes and 
fault corrections, code measures and structural change measures 
since R2) plus the change and fault history of R2 as the predictor 
variables. The rationale is that we want not only to see how well 
such a model can fit our data (on R3) but we also want to 
determine how well it can predict the future (R4) and help focus 
verification on future releases.  

2.6 Data analysis 
Many of our independent variables have distributions skewed to 
the right, with a number of extreme values. Because regression is 
in general sensitive to outliers (e.g., very large values), we 
perform a logarithm transformation of independent variables2 in 
order to obtain less skewed distributions [6]. This has also the 
advantage to account for interactions between variables without 
having to explicitly specify them3, an important issue in our 
context where we know interactions to be plausible but difficult to 
predict beforehand.   

                                                                 
2 x’ = ln (x+1). We refer to these variables as log-transformed 

independent variables. 
3 a ln x1 + b ln x2 + c ln x1x2 = (a+c) ln x1 + (b+c) ln x2 

Table 1. Summary of the independent variables in the study 

Variable Description Source 
Violations Number of violations in the code, e.g., "X defined but not used"  XRadar 
Duplications Number of “copy+paste” duplication segments in the code  XRadar 
StyleErrors Number of coding style errors, e.g., "Line is longer than 80 characters" XRadar 
Functions Number of implemented methods in a class XRadar 
Ncss Number of non-commentary source statements (SLOC) XRadar 
Javadocs Number of formal Javadoc comments XRadar 
Ccn Cyclomatic complexity XRadar 
LCOM Lack of Cohesion JHawk 
EXT Number of external methods called JHawk 
HIER Number of methods called in class hierarchy JHawk 
LOC Number of local methods called JHawk 
INST Number of instance variables JHawk 
MOD Number of modifiers, i.e., the number of methods that can change the objects’ state JHawk 
INTR Number of interfaces implemented JHawk 
PACK Number of packages imported JHawk 
RFC Response for a class JHawk 
MPC Message passing coupling JHawk 
FIN The sum of the number of unique methods that call the methods in the class JHawk 
FOUT Number of distinct non-inheritance related classes on which a class depends (CBO) JHawk 
NSUP Number of superclasses JHawk 
NSUB Number of subclasses JHawk 
dLCOM Abs(LCOM(n)-LCOM(n-1)) JHawk 
dLOC Abs(LOC(n)-LOC(n-1)) JHawk 
dMOD Abs(MOD(n)-MOD(n-1)) JHawk 
dFOUT Abs(FOUT(n)-FOUT(n-1)) JHawk 
dNSUP Abs(NSUP(n)-NSUP(n-1)) JHawk 
dNSUB Abs(NSUB(n)-NSUB(n-1)) JHawk 
FaultCorrections Number of faults corrected in release n-1 to build release n Release Data 
ChangeCount Number of requirement changes in release n-1 to build release n Release Data 
PrevVersionCount Number of releases in which the class has been present before release n Release Data 
n1FaultCorrections Number of faults corrected in release n-2 to build release n-1 Release Data 
n1ChangeCount Number of requirement changes in release n-2 to build release n-1 Release Data 



Following a common analysis procedure [2], we perform a 
Principal Component Analysis (PCA) to identify the dimensions 
actually present in the data (for release R2) and to help us 
interpret subsequent results. We then use logistic regression to 
perform a univariate analysis of each independent variable to 
identify which ones are significant predictors of fault-proneness 
(fault corrections to build release R3) and whether their 
relationship is in the expected direction. This allows us to check 
whether our initial hypotheses are supported. The next step is then 
to build a multivariate prediction model, using stepwise logistic 
regression, in order to predict class fault-proneness using all 
available measures4. Note that in order to obtain a balanced model 
for both faulty and non-faulty classes, we randomly extract a 
subset of non-faulty classes of identical size to the number of 
faulty classes. This is necessary in order to avoid biasing the fitted 
model towards non-faulty classes as those typically represent the 
vast majority of classes in a release5. We thus obtain a total of 82 
observations to build the model. The goodness of fit of the model 
is then assessed by computing the percentage of false positives 
and false negatives when using it to classify classes in the 
modeling dataset as fault-prone or not. To get a more realistic 
result of what classification accuracy to expect on other datasets, 
we perform the same assessment again but using a Leave-one-out 
cross validation procedure [6].  
We then apply the multivariate model to determine how well it 
can predict the fault corrections (to build release R4), now 
including all 1758 observations. This step of our analysis is 
related to assessing the cost-effectiveness of using the prediction 
model that was built. Typically, fault-proneness models are found 
useful to focus verification activities, such as testing and 
inspections, on parts of a large system. The acceptance criteria for 
testing (e.g., control flow coverage) may, for example, be more 
demanding for parts predicted as fault-prone. Regardless of the 
details of its application, the cost-benefit of using such a 
prediction model to focus verification decreases as fault-prone 
parts represent an increasingly larger part of the system and 
contain a lower percentage of the faults. Therefore, we will 
investigate the percentage of classes, functions, and lines of code 
classified as fault-prone and the relationship of such percentages 
to the percentage of faults contained in these artifacts. These 
faults represent the fault subset that can potentially be detected by 
additional verification activities targeting fault-prone components. 

3. RESULTS 
3.1 Principal Component Analysis 
A Principal Component Analysis (PCA) shows that the data 
captures a number of distinct dimensions (principal components 
or PCs) which is far lower than the number of independent 
variables considered, given the criterion of an eigenvalue above 
                                                                 
4 We do not make use of PCA to select a subset of independent 

variables since, as discussed in [2], experience has shown this 
usually leads to suboptimal prediction models, though 
regression coefficients are easier to interpret.  

5 In the univariate case, we also tried an alternative (and 
computationally expensive) approach known as exact logistic 
regression [9], which computes unbiased coefficients even with 
sparse or skewed data sets. With our data, the differences 
between the two approaches are negligible.  

1.0 to determine the number of components. That type of 
redundancy in software engineering data is very common [2] and 
needs to be identified to better interpret the results of our study. 
PCA is performed here on the log-transformed variables which 
are used as independent variables, and then rotated using the 
VariMax rotation to facilitate the interpretation. The raw PCA 
results are provided in Appendix A. The PCs can be described as 
follows:  

• PC1: The first principal component mostly captures class 
size (e.g., in terms of methods, line of code, control flow 
complexity) and import coupling from other classes (e.g. 
PACK, RFC, MPC, EXT, FOUT), which is in most studies 
associated with size [2]. Violations, Duplications, and 
StyleErrors are also part of this PC. So is dLOC, indicating 
that the amount of change in local methods called is related 
to class size. ChangeCount and n1ChangeCount are also part 
of this PC, due probably to the strong impact of class size on 
the likelihood of a class to undergo change. We note that 
FaultCorrections and n1FaultCorrections do not load above 
0.5 on any of the components, but seem to be partly related 
to PC1, indicating that fault proneness is related to class size 
but also other dimensions (PC6). 

• PC2: The number of releases in which the class has been 
present (PrevVersionCount), plus a number of structural 
change measures (dLCOM, dFOUT, dMOD) we collect to 
assess the impact of change from one release to the next on 
class structure. This is to be expected as, in our data, older 
classes tend to be much more stable and show less structural 
change.  

• PC3: Cohesion (LCOM) and number of instance variables 
(INST), as classes with large numbers of instance variables 
tend to have lower LCOM values.  

• PC4: The sum of the number of unique methods that call the 
methods in the class (FIN) 

• PC5: The number of ancestors classes (NSUP) and its change 
(dNSUP). This indicates a shallow inheritance hierarchy in 
the system, and that the classes are seldom moved within an 
inheritance hierarchy (both are close to zero). 

• PC6: The number of modifier methods (MOD) (and to some 
extent,   FaultCorrections) 

• PC7: The number of descendent classes (NSUB) and its 
change (dNSUB). As for PC5, this indicates a shallow 
inheritance hierarchy, and that the classes are seldom moved 
within an inheritance hierarchy (both are close to zero). 

• PC8: Number of methods called in class hierarchy (HIER) 

3.2 Univariate Analysis 
From Table 2 we can see that code quality measures (violations, 
duplication, and style errors) are all significantly related to the 
probability of fault correction (p-value < 0.05) and the 
relationship is in the expected direction: poor code quality leads 
to increased probability of correction (odds-ratio6 > 1).  

                                                                 
6 It is the number by which we would multiply the odds for a class 

to contain a fault for each one-unit increase in the independent 



Size measures (Functions, Ncss, Javadocs, Ccn) also show a very 
strong impact on the probability of fault correction, as this has 
been the case in many previous studies [2].  
The number of external methods (EXT) and local methods (LOC) 
called also show a significant relationship where the higher the 
number of calls, the higher the probability of fault correction. 
This is also the case of PACK, the number of packages imported, 
and other types of import coupling measures: RFC, MPC, FOUT. 
Note, however, that all these measures belong to the same PC as 
size measures, which is to be expected as larger classes tend to 
perform more calls, import more packages, and so forth. 
No inheritance or cohesion measure appears to be significantly 
related to fault-proneness. Recall that there is limited use of 
inheritance in this system, as also reported by other studies [4, 5, 
8]. As for cohesion, as discussed in [2], our result is consistent 
with previous studies that have shown that measures of cohesion 
were rarely selected as significant predictors of fault-proneness.  
Some of the delta measures, aiming at measuring the change 
incurred by classes between two releases, are significantly related 
to fault-proneness: dLOC, dFOUT. However, the fact that dLOC 
is related to size (PC1) might explain part of this result.  
Change counts and fault corrections show that the higher the 
number of change and error corrections on a class in the previous 
release (R2), the higher the likelihood of fault correction in the 
current release (R3). This is intuitive as we expect that the amount 
of change performed to build R2, whether requirements changes 
or corrections, would impact fault-proneness. However, historic 
data on change and fault counts to build release R1 

                                                                                                           
variable. For example, an odds-ratio of 1.8 means an increase of 
80% in the odds of a class to contain a fault.  

(n1ChangeCount and n1FaultCorrections) do not seem to have a 
significant relationship with fault-proneness.  

3.3 Multivariate Analysis 
As expected, the stepwise logistic regression procedure selected a 
number of size measures (PC1) in the multivariate prediction 
model (Ncss, Javadocs, Ccn). The number of instance variables 
(INST) is also selected. Also, not surprisingly, variables capturing 
the amount of change (ChangeCount) and fault correction 
(FaultCorrections) are selected. A number of variables which 
appeared significant in the univariate analysis are not selected and 
this is not surprising as many of them belong to the same principal 
components. However, more surprisingly, a number of variables 
who did not appear significant in the univariate analysis are also 
included. Recall that our model automatically accounts for 
interactions due to the log-transformations of independent 

Table 2. Summary of univariate results 

Variable Odds-ratio p-value 
Violations 1.8 0.0037 
Duplications 2.8 0.0101 
StyleErrors 1.4 0.0387 
Functions 3.2 0.0001 
Ncss 3.1 <.0001 
Javadocs 4.4 <.0001 
Ccn 2.9 <.0001 
EXT 2.3 <.0001 
LOC 2.6 0.0003 
INST 1.7 0.0409 
PACK 2.2 0.0004 
RFC 3.1 <.0001 
MPC 2.1 <.0001 
FOUT 2.5 <.0001 
dLOC 2.2 0.0116 
dFOUT 1.9 0.0048 
FaultCorrections 5.3 0.0055 
ChangeCount 2.3 0.0072 
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Figure 1. Goodness of fit in terms of false positives and 
false negatives on release R3 

Table 3. Variables selected in the multivariate model 

Variable p-
value 

Ncss 0.0069 
Javadocs 0.0088 
Ccn 0.0137 
LCOM 0.0817 
HIER 0.0297 
INST 0.0221 
NSUP 0.0654 
NSUB 0.0425 
FaultCorrections 0.0098 
ChangeCount 0.0225 
n1FaultCorrections 0.0099 
n1ChangeCount 0.0297 



variables and this probably explains such a result. A number of 
code measures are thus selected regarding inheritance (NSUP, 
NSUB, HIER) and cohesion (LCOM). Furthermore, variables 
capturing change and error history before the development of the 
analyzed release (n1ChangeCount, n1FaultCorrections) are also 
selected.  
There are many ways to look at the goodness of fit of a logistic 
regression model [6]. One practical way is to use the probability 
predictions of the model to classify classes as faulty or not and 
check the false positives and false negatives. This is illustrated in 
Figure 1 for different probability thresholds. We can see that 
when using a balanced probability threshold value for 
classification (around 0.5), we have less than 9% and 5% of false 
positives and false negatives, respectively.  In other words, when 
predicting classes as fault-prone there is a 9% chance of being 
wrong and waste verification resources. Similarly, there is a 5% 
chance of missing a faulty class and not detect the faults it 
contains. 
In order to obtain a more realistic assessment of the fault-
proneness prediction accuracy, we use a Leave-one-out cross 
validation procedure, leaving one observation out and building a 
model on the remaining observations, doing so iteratively for all 
observations. From Figure 2, we can see that when using a 
balanced threshold value (around 0.5), we have less than 20% of 
false positives and false negatives, respectively. This is a sharp 
increase compared to Figure 1 but the results are still reasonably 
accurate. 

3.4 Cost-Benefit Analysis  
The cross validation results presented above provide insights on 
the accuracy of our fault-proneness models if all releases were 
alike in terms of change process, changes, personnel, and so on. 
However, we know this is never the case. In this case study, we 
were informed that process changes were taking place across 

releases. So, from a practical perspective we wanted to answer the 
following questions:  

• how useful is such a prediction model when predicting future 
releases? 

• what is the cost-benefit of using such a model to focus 
verification? 

We built a prediction model using R3 fault corrections as 
dependent variable and R2 data for the independent variables. 
Then we applied the model to predict R4, the latest release for 
which we have fault correction data. Since we are looking at ways 
to get insights into the cost-effectiveness of using such model we 
have to define surrogates measures for verification cost. 
Depending on the specific verification undertaken on classes 
predicted as fault prone, one may want to use a different size 
measure that would be proportional to the cost of verification. In 
Figure 3, we plot the number of classes predicted as fault prone as 
well as the cumulative number of lines of code (Ncss), methods 
(Functions), and control flow complexity (Ccn) they contain. We 
compute this for different threshold probability cutoff values, as 
for the computation of false positives and false negatives. From 
Figure 3 we can see that at a cutoff value of 0.5, more than 70% 
of the faults are found in less than 30% of the classes. Those 
classes, however, represent roughly 50% of the lines of code, 
control flow complexity, and methods. So depending on whether 
you intend to apply, for example, test criteria such as Block 
coverage, Edge coverage, or simply inspect class interfaces [15], 
one may want to use a different size measure that is a proper 
surrogate of the effort of a specific verification activity. In our 
case the measurement happens to be very consistent for all our 
size measures, except the number of classes which shows lower 
percentages. This is not surprising as larger classes tend to be 
more fault-prone than smaller classes.  
Going back to our example, assuming the number of lines of code 
is an appropriate size measure that is proportional to the 
verification effort of the predicted fault-prone classes, a random 
selection of classes on which to apply a specific verification 
strategy (e.g., test or inspection) would require the verification of 
70% of the code to detect a maximum of 70% of the faults. Using 
our model we bring this percentage down to 50% of the code, thus 
potentially reducing the verification effort by 29%. An alternative 
to using a model would be to ask the maintainers of the system to 
subjectively select classes to verify. However, in the context 
where this study took place, no maintainer seems to have the 
adequate overview of the system and release changes to order or 
classify parts of the system according to their fault-proneness. We 
believe that this is a common problem when the system being 
maintained is large and involve a large number of developers. 
In order to assess the results presented above, we should compare 
them against a baseline capturing the best we could achieve. In 
release R4, fault-prone classes represent 13% of the lines of code. 
We therefore see that, despite the estimated potential savings in 
verification effort, there exists substantial room for improvement 
in our prediction model.  
As discussed above, a specificity of legacy systems is that we 
have access to change and fault history data from previous 
releases. When predicting the fault-proneness of a given release 
we can attempt to make use of change and fault data from past 
releases to improve our models. As discussed in 3.3, recall that 
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Figure 2. Leave-one-out cross validation false positives and 
false negatives on release R3 



two covariates capturing fault corrections and changes in release 
R1 were selected in the prediction model along with other 
independent variables based on R2 data. Now an interesting, 
practical question is to determine how important such history data 
is for building prediction models for legacy systems in terms of 
cost-effectiveness. Though our history data here is limited to one 
past release (R1), what is the consequence of not using such 
information? Answering such a question could help us provide 
practical advice to practitioners regarding whether to collect and 
use such history data to build similar prediction models. Figure 4 
shows the same cost-effectiveness curves as in Figure 3 but on a 
basis of building a model without history data. From this figure, 
the results clearly show that the size curves (except for the class 
percentage curve, for reasons already discussed above) across 
different thresholds are not very much above (and often below) 
the model fault percentage curve. Based on the assumptions listed 
earlier, this implies that such a model is not likely to be of 
practical usefulness as its cost-effectiveness to drive verification 
is questionable. Though additional studies with longer fault and 
change history are needed, it seems of practical importance to 
exploit such history data to build high cost-effectiveness 
prediction models. 
For the sake of comparing the cost-effectiveness of models, it 
would be convenient to have an assessment that is independent 
from a specific probability threshold. This can be achieved by 
computing the surface area between the Fault correction curve 
and any appropriate size curve (e.g., Ncss) across probability 
thresholds. For example, in Figure 3, the area labeled “Cost 
Effectiveness Area” would quantify the cost effectiveness of our 
model in a way that can be easily compared to other models. The 
larger this area, the more cost-effective the fault-proneness model 
across thresholds. From Figure 4, we can see that the fault 
correction and Ccn curves cross each other at threshold 0.5. In 
general, when a size curve lies above the fault correction curve, 
the surface area should count negatively towards cost-
effectiveness (area “2” in Figure 4) whereas when it lies below 
the fault correction curves (area “1” in Figure 4), then there is a 
positive contribution.  

4. THREATS TO VALIDITY 
The design of case studies is complex and many issues may affect 
the validity of results [17]. Construct validity concerns 
establishing correct operational measures for the concepts being 
studied. Many of our independent variables are structural 
measures collected using the XRadar and JHawk tools. The 
descriptions of the measures as provided in the tools are very 
informal and not sufficiently precise to determine exactly how the 
tools collect the measures, which would be important to provide 
an accurate assessment of their construct validity, as advocated in 
[3], for example. In any case, the repeatability of the 
measurements, also referred to as reliability in [17], is probably 
more important than construct validity in our case, as the goal is 
to build a prediction model rather than discovering cause-effect 
relationships.  
The change and fault data in this study are related to the number 
of changes and number of faults corrected at the class-level in a 
given release. The reliability of the measures depends on how 
consistently the developers reported changes and fault corrections 
in their configuration management system. Due to the extensive 
use of the XRadar system in the releases being studied and due to 
the efforts of a dedicated release manager [11], we have good 
reasons to believe that the reported data are fairly accurate. 
However, some classes changed names or package location from 
release to release, and in such cases history data was lost. We 
expect to fix this problem in the future and thus improve our 
predictions.   
There is no concept of fault severity in our models, and such a 
distinction would be important to improve the value of the 
prediction model [1]. It also concerns both internal validity and 
external validity, as the distribution of fault severity may change 
over time in the given project, and may be entirely different in 
other projects, respectively. Future prediction models should thus 
account for the severity of faults. 

5. RELATED WORK 
There is a lot of research on fault-proneness models in OO 
systems. A survey is provided in [2]. In summary, structural 
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properties of software, such as cyclomatic complexity or 
coupling, do seem to have an impact on fault proneness. Due to 
space constraints, the remainder of this section focuses on 
providing an in-depth discussion of research that has attempted to 
build fault-proneness prediction models in the context of evolving 
software systems for which change and/or fault history data were 
available.  
Instead of using product measures such as lines of code or 
cyclomatic complexity, one study took a slightly different 
approach, and attempted to build change risk prediction models 
on the basis of simple change data [12]. The results suggest that 
the risk of performing a given change, in the sense that the change 
will cause a future software failure, can be successfully modeled 
on the basis of simple change measures such as the size, duration, 
diffusion and type of change. The final risk prediction model also 
included developer experience (measured as the number of deltas 
previously performed by a given developer on the system before 
the given change) as a covariate.  
A study on fault proneness prediction in a large, evolving system 
was reported in [13]. The dependent variable was the module-
level cumulative number of faults (from the initial build to the last 
build). The independent variables were based on 12 different size 
and control-flow measures, but the measures were not used 
directly. Instead, principal component regression [6] was 
performed. More specifically, the 12 initial measures were 
transformed into three new variables on the basis of three 
identified principal components. The advantage of such an 
approach is that the derived measures are uncorrelated, which in 
turn makes it simpler to interpret the individual contribution of 
each measure. But as previously discussed, the drawback is that it 
often leads to suboptimal prediction models [2].  
Finally, for each of the three variables, the sum (across all builds) 
of the absolute values of the differences between all pairs of 
successive builds was computed. These sums of differences, 
denoted as code churn in [13], formed the independent variables. 
The first independent variable (mainly representing size changes 
in the modules across the builds) was found to be a significant 
predictor of the cumulative number of faults in a module. The 
resulting multiple principal regression model had an adjusted R-
Sq [6] equal to 0.61, suggesting that the model potentially could 
have practical value as a management tool to help identify fault-
prone modules. There are several similarities and differences 
between the study reported in [13] and our paper. The code churn 
measures in [13] are similar to the structural change measures 
used as candidate independent variables in this paper (e.g, 
dLCOM), although we used the changes in the individual 
measures since the previous release instead of the cumulative 
changes in the principal component-based measures as 
independent variables.  Thus the results are difficult to compare 
directly. However, two of the structural change measures (dLOC 
and dFOUT) were significant in the univariate case (Table 2), 
suggesting that changes in structural properties do affect fault 
proneness, thus confirming results in [13]. However, they were 
not significant in the multiple regression model (Table 3), that is, 
when also accounting for other measures such as the structural 
properties (in release n) and change and fault history, in which 
case the measures of structural change no longer seem to be 
significant predictors of fault-proneness in our case. No attempts 
was made to perform a cross-validation or evaluate the cost-

benefits of the model on new releases in [13], so no further direct 
comparisons of the two studies are possible. 
A study of fault-proneness in a very large and long-lived software 
system was reported in [7]. The dependent variable was the 
number of fault incidences within a two-year period. The 
independent variables consisted of various product and process 
measures collected from repositories just before that two-year 
period. The product measures included module-level size and 
complexity measures, e.g., lines of code and cyclomatic 
complexity. The process measures included the number of past 
faults in a module, the number of changes or deltas to a module 
over its entire history, and the age of the code. Thus, the variables 
used in [7] are similar in type to the ones used in our study. 
However, the goals were different as the main focus in [7] was to 
identify the reasons for faults whereas the main goal in this paper 
is to build an optimal prediction model. This has an impact on the 
type of statistical analyses performed. For example, [7] did not 
attempt to evaluate the accuracy or cost-effectiveness of the 
obtained models by applying them to predict future faults, though 
this was vital in our case. Despite the differences, a very 
important result in [7] was that process measures based on the 
change and fault history were much better explanatory variables 
of the faults than were the product measures. This is supported by 
a study reported in [18], which among others concludes that 
modules with large numbers of faults in the past are likely to also 
contain faults in the future.  As can be seen when comparing 
Figure 3 and Figure 4, our results support the conclusions in [7, 
18] in the context of predicting future faults. The inclusion of 
change and fault history data is essential in order to build 
practically useful fault-proneness prediction models for evolving 
legacy-systems. In [7], the best model was a so-called weighted 
time damp model, which allowed different weight to the change 
history data, depending on how old the changes were. The impact 
of changes on fault-proneness was downweighed by a factor of 
about 50 percent per year.  In our case, the history data available 
to build our prediction model was only based on the two prior 
releases, so it was feasible to simply assign time-related weights 
by having different coefficients for n1ChangeCount, 
n1FaultCorrections, ChangeCount and FaultCorrections, 
respectively.  
In [14], a case study on modeling fault-proneness over a sequence 
of four releases was presented. The system was composed of 800 
KLOC of C code. The data was based on change reports as no 
design or code was available to the researchers. The independent 
variables thus only included measures such as the number of 
times a component was changed together with other components, 
number of files fixed in a given component and the number of 
lines of code added and deleted in a component, for a given 
release. A component was defined as a collection of files in the 
same directory, and it was assumed that the directory structure 
reflected the functional architecture. The relative size of the 
directories was not known. The components in the system were 
classified as fault-prone if the number of faults exceeded a given 
threshold value. One objective of the paper was to compare 
different statistical techniques (classification trees and 
discriminant analysis with or without the use of PCA to determine 
the set of candidate variables) for building fault-proneness models 
over a sequence of releases. Amongst others, they built fault-
proneness classification trees (for each release) and evaluated the 
stability of the classification trees over successive releases. The 



results suggest that PCA combined with classification trees is a 
viable approach for modeling fault proneness as a software 
system evolves. However, due to the limitations in the data, it 
would not be possible to assess the cost-effectiveness of the 
obtained models on future releases.  
On the basis of results summarized in [2], it appears that structural 
properties of software are useful predictors of fault proneness. 
However, even simple measures of the size, diffusion, and type of 
changes may be useful predictors of fault-proneness, as illustrated 
in [12]. This study also suggests that the experience of the 
developer performing changes should ideally be considered. 
Measures of the cumulated difference in structural properties over 
time can also be significant predictors of fault proneness [13]. 
However, on the basis of results in [7] and in this paper, it appears 
that whenever historic data of changes and faults are available, 
they should also be included as candidate predictors of fault 
proneness, because they will probably result in practically useful 
improvements in prediction accuracy. If history data from many 
releases are available, a weighted time damp model [7] seems to 
be a viable approach for prediction purposes.  
To summarize, our study differs from existing work in several 
ways. It takes place in the context of an object-oriented legacy 
system and goes beyond predicting the fault-proneness of classes 
to look into the cost-effectiveness of predictions when using them 
to drive verification effort.  

6. CONCLUSIONS 
The main goal of this paper is to report on a study performed in a 
large telecom company and which focuses on predicting fault-
prone parts of an object-oriented, legacy system after a new 
release is completed. The goal is to help QA engineers focus their 
limited verification resources on parts of the system likely to 
contain faults. Though many studies exist on the topic of 
predicting fault proneness, this is the first study doing so in the 
context of an object-oriented, evolving legacy software system. 
Such systems are bound to become increasingly more important 
in the future.  
We make use of a variety of measures as independent variables 
ranging from structural measures, structural impact measures, 
code quality measures, change and fault measures, and history 
data from previous releases. Using logistic regression on log-
transformed variables we build a multivariate prediction model to 
predict the probability of fault correction across classes, assess its 
goodness of fit, and its prediction capability on the release 
subsequent to the release on which the prediction model was built. 
Using a novel, simple, and pragmatic approach, we then assess 
the potential cost-effectiveness of using such a model to focus 
verification effort. This is rarely done in studies predicting fault-
proneness but we believe this is essential to get a realistic estimate 
of how useful such models can be in practice.  
A Leave-one-out cross validation yields less than 20% of false 
negatives and false positives when selecting a balanced fault 
correction probability threshold. The cost-effectiveness analysis 
suggests that, if such a prediction model would be used to focus 
verification, given a certain number of assumptions, it could result 
into a cost reduction of about 29%.  
However, these results show there is substantial room for 
improvement in terms of false negatives and false positives. 
Given the limitations of our data this is not surprising. 

Nevertheless, our study shows that building such fault-proneness 
models is promising as it could potentially save verification effort 
in the context of a constantly changing legacy system. It also 
suggests that using history change and fault data about previous 
releases is paramount to developing a useful prediction model on 
a given release.   
Future work will include collecting additional data on other 
releases and collect more precise change and fault data regarding 
the size and the cause of changes. Thus, we hope to develop more 
accurate prediction models leading to increased cost-
effectiveness. 
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Appendix A – Principal Component Analysis of the independent variables on R2 
 

Table 4. Principal Component Analysis, using the VariMax rotation, eigenvalues >= 1.0 

Rotated Factor Pattern 
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
LogViolations 0.79 -0.16 0.22 0.10 0.12 0.01 -0.02 -0.11 
LogDuplications 0.68 -0.25 0.19 0.03 0.25 -0.07 0.12 0.08 
LogStyleErrors 0.67 -0.30 0.15 -0.02 -0.08 -0.04 -0.30 -0.02 
LogFunctions 0.85 -0.05 0.20 0.00 -0.07 -0.23 0.19 -0.14 
LogNcss 0.93 -0.01 0.25 -0.04 -0.04 0.06 0.06 0.03 
LogJavadocs 0.84 -0.01 0.14 -0.07 -0.07 -0.18 0.18 -0.09 
LogCcn 0.94 0.01 0.14 -0.04 -0.06 -0.06 0.09 -0.04 
LogLCOM 0.09 0.03 0.89 0.03 -0.06 0.13 -0.07 0.04 
LogEXT 0.93 0.12 -0.04 -0.09 -0.06 0.22 -0.04 0.04 
LogHIER -0.10 0.06 0.01 -0.10 0.11 -0.03 0.06 0.80 
LogLOC 0.79 -0.01 0.26 0.32 0.16 0.02 0.10 -0.01 
LogINST 0.45 -0.02 0.80 0.12 0.03 0.03 0.12 -0.05 
LogMOD 0.19 0.04 0.24 -0.10 0.12 0.79 0.00 0.06 
LogINTR 0.23 0.06 0.35 -0.37 -0.08 -0.14 0.34 -0.40 
LogPACK 0.83 0.04 -0.14 -0.35 -0.01 -0.20 -0.11 0.03 
LogRFC 0.97 0.07 0.03 -0.04 -0.08 0.02 0.02 -0.01 
LogMPC 0.94 0.11 -0.04 -0.10 -0.06 0.20 -0.05 0.03 
LogFIN -0.08 -0.02 0.15 0.76 -0.25 -0.13 -0.10 -0.16 
LogFOUT 0.88 0.12 -0.05 -0.20 -0.01 0.22 -0.14 0.09 
LogNSUP -0.12 -0.06 -0.10 0.01 0.83 0.14 0.07 0.18 
LogNSUB -0.10 -0.18 0.01 -0.17 -0.05 0.17 0.66 0.40 
LogdFOUT 0.50 0.64 -0.03 -0.27 -0.01 0.08 -0.01 0.03 
LogdLCOM 0.04 0.86 0.15 0.02 0.01 0.06 0.05 0.09 
LogdNSUP 0.11 0.03 0.06 -0.43 0.72 -0.05 -0.06 -0.04 
LogdLOC 0.70 0.30 0.13 0.15 0.27 -0.09 0.17 -0.11 
LogdMOD -0.04 0.94 -0.03 0.00 -0.01 0.04 0.05 -0.04 
LogdNSUB 0.15 0.25 0.01 0.02 0.07 -0.02 0.77 -0.13 
LogFaultCorrections 0.45 -0.11 0.15 -0.15 0.04 -0.50 -0.21 0.30 
LogChangeCount 0.71 0.08 0.09 -0.40 0.07 -0.19 -0.04 -0.15 
LogPrevVersionCount 0.08 -0.94 0.06 -0.02 0.02 0.05 -0.04 0.05 
Logn1FaultCorrections 0.45 -0.15 0.03 0.05 0.03 -0.40 -0.10 0.44 
Logn1ChangeCount 0.61 -0.51 0.03 0.03 0.08 -0.24 0.05 0.17 
Variance Explained 11.88 3.63 2.06 1.55 1.55 1.53 1.50 1.46 
Cumulative 0.39 0.50 0.57 0.63 0.68 0.72 0.75 0.79 
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