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Abstract

In this paper we report on how Aspect-Oriented 

Programming (AOP), using AspectJ, can be employed to 

automatically and efficiently instrument contracts and 

invariants in Java. The paper focuses on the templates to 

instrument preconditions, postconditions, and class 

invariants, and the necessary instrumentation for 
compliance-checking to the Liskov Substitution Principle. 

1. Introduction 

Analysis and design by contract (DbC) allows the 

definition of a formal agreement between a class and its 

clients, expressing each party’s rights and obligations. 

Operation contracts and class invariants are known to be a 

useful technique to specify the pre- and postcondition of 

operations and the legal states of class instances in an 

object-oriented (OO) context, making the definition of 

OO analysis or design elements more precise [8]. 

Furthermore, it is also useful to check such contracts and 

invariants at run time in order to help testing and 

debugging during corrective maintenance [11]. Indeed, 

experiments report a substantial gain when relying on 

instrumented contracts during those two activities [3]. 

However, the instrumentation of such contracts is a time 

consuming activity as this is usually performed manually. 

Our work focused on the automation of this 

instrumentation process with two main objectives: (1) to 

work at the bytecode level so that constraint-related code 

(assertions) and the program’s source-code are kept 

separate (avoid polluting the source code and facilitate 

configuration management and maintenance); and (2) to 

propose an instrumentation strategy that is suited in a 

context where checking that inheritance hierarchies 

conform to the Liskov Substitution Principle (LSP) is 

required and exception handling mechanisms are used. 

Note that throughout the article, three related, but 

distinct, words are used: contract (description of the 

services that are provided by an operation using pre- and 

postconditions), constraint (a pre-/postcondition, or an 

invariant), and assertion (the implementation language, 

e.g. Java, translation of a constraint that has to be 

instrumented). Furthermore, we assume that the reader is 

familiar with the basic concepts of Aspect-Oriented 

Programming (AOP) [4] and the following terminology: 

aspect, join point, pointcut, and advice. The rest of the 

article is structured as follows. Section 2 discusses related 

work. The strategy we follow to instrument constraints, 

accounting for inheritance, is described in Section 3. The 

AspectJ templates used for the instrumentation of 

contracts are detailed in Section 4. An example is given in 

Section 5.  Finally, conclusions are drawn in Section 6. 

2. Related Work 

There exist two main strategies for automatic 

instrumentation of contracts in Java: source-code and 

bytecode manipulation. There exist nine DbC tools for 

Java (that the authors are aware of); six of these are 

compared in [9] (iContract, Jass, jContract, jContractor, 

JML, Handshake); [5] discusses two more: JMSAssert 

and Kopi; finally, there is the Dresden OCL Toolkit [13].  

In order to compare these approaches we identified 

seven criteria, namely: (a) whether the approach is based 

on bytecode or source code manipulation (possibly with 

coding conventions) or on an extension of the Java 

Virtual Machine (JVM); (b) whether it supports the LSP 

[7]; (c) whether it supports separate compilation (i.e., 

allowing modifications of the application source code 

without recompiling assertion code or vice-versa); (d) 

whether contract checking in the presence of exceptions is 

supported; (e) the ability for assertion code to use private 

members; (f) the option to use either compile-time or 

load-time instrumentation (with load-time instrumentation 

constraint checking code can be installed or removed 

without requiring recompilation); and (g) the ability to 

add assertions to classes for which the source-code is not 

available. Our aim, in this paper, is a solution that 

provides the best alternative for all seven criteria: 

instrumenting byte code, checking the LSP, separate 

compilation, proper handling of exceptions, access to 
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private members, instrumentation flexibility, and no 

source code needed. None of the nine surveyed tools were 

able to provide all these functionalities. 

The idea of using AOP as the instrumentation 

technology for constraints checking is not new, yet the 

topic has never been given a thorough analysis. The 

AspectJ manual [1] gives a small example of code to 

check preconditions. In [10] AspectJ is used to check 

invariants. In [6] the authors discuss the topic of checking 

preconditions and postconditions using AOP, without 

offering a complete solution (e.g., the authors do not take 

into account inheritance hierarchies). 

Note that this related work section only focused on 

instrumentation. There also exist approaches for the 

automatic translation of contracts expressed in high level 

languages (such as OCL) to implementation languages 

(such as Java). The interested reader is referred to [2]. 

3. Constraint Checking 

Instrumenting a constraint requires that we identify 

where the corresponding assertion needs to be checked, 

the insertion point. The insertion points are summarized 

in Table 1 (which is adapted from [5]). For example, the 

insertion point for an assertion checking a precondition is 

right before the execution of the corresponding method. 

Table 1 also shows what is checked when an exception is 

thrown during the execution of a constrained method. 

Table 1. Constraint Checking 
public 

(UML) 

not public 

(UML) 
constructor 

pre entry X X X 

regular exit X X X 
post 

exception    

entry X  N/A 

regular exit X  X inv 

exception X   

Furthermore, LSP [7] provides a theoretical framework 

for the definition of constraints in inheritance hierarchies, 

distinguishing subtyping from subclassing. Meyer 

probably captured LSP best with his contract-oriented 

paraphrase that “a subtype must require no more and 

promise no less than its supertype.” In instrumentation 

terms, this means that ancestor classes’ invariants must be 

checked for descendent classes (to check at run time 

whether the implementation, and not only the model,

complies with the LSP). For similar reasons, when a 

method overrides another, both postconditions must be 

checked at the end of the execution of the overriding 

method. However, since the precondition of the 

overriding method does not imply that of the overridden 

method (that is exactly the contrary), only the overriding 

method’s precondition is checked at the beginning of its 

execution. 

Some authors promote the use of the LSP as it results 

in a safe use of inheritance [12]. It is, however, a reality 

that the LSP does not always hold in inheritance 

hierarchies. Ideally it should be allowed to specify 

inheritance hierarchies where the LSP does or does not 

hold so that constraint inheritance is only enforced where 

it makes sense to do so. 

4. Aspects Checking Constraints 

In this section, we present our aspect templates. The 

AspectJ code specifying the assertions and insertion 

points for several constraints can reside in one (aspect) 

file, although each class in the instrumented system can 

have its own file. The latter solution is more efficient 

from a compilation perspective as only one small aspect 

file has to be recompiled when a constraint changes. 

The aspects used for constraint checking are 

privileged aspects (as shown below), meaning that the 

code in the aspect has access to any class’ 

private/protected attributes and methods. This is 

necessary as constraint checking may require such access.  
privileged aspect aClassConstraints { 
    … // Advice code } 

The templates for checking preconditions, invariants 

and postconditions are described in Sections 4.1 to 4.3, 

respectively. For each template, bold face text shows what 

is variable (e.g., parameter names) and square brackets 

denote optional parts. A complete aspect example is 

presented in Section 5.

4.1 Checking Preconditions 

The advice code template for checking preconditions 

for a non-static method is shown in Figure 1. 

before(aClass self [, method parameters]):
execution(method_return_type

aClass.aMethod([method parameter types]))
&& target(self) [&& args(parameter names)]
&& within(aClass) {… //Check the precondition.}

Figure 1. Precondition template 
A before advice executes before the specified 

pointcut executes (i.e., the constrained method). The 

before keyword exposes variable names (with types) 

that can be used in the advice code: self of type aClass,

and any method parameter (name and type) that the 

advice should use. (These will be used in the pointcut.) In 

the pointcut: execution(…) specifies, using a method 

signature, that any execution of method aMethod on any 

instance of class aClass is intercepted; target(self)

maps self (defined in before(…)) to the object 

executing the intercepted method (on which the constraint 

is being evaluated). In the advice code, variable self
will then be a reference to the object executing the 

intercepted method execution; args(…) maps names 

appearing in parenthesis (and defined in 
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before(…[params])) to the parameters of aMethod
so that its arguments can be referred to in the advice code;  

within(aClass) specifies that the version of the 

executing method must be declared in class aClass. This 

is to prevent the interception of aMethod’s execution on 

subclasses of aClass that override aMethod (and thus 

likely have a precondition different from the one of 

aMethod in class aClass).

The AspectJ code template for checking the 

precondition of a constructor is very similar. The only 

difference is the execution(…) part that reads: 
execution(aClass.new([parameter types]))

4.2 Checking Invariants 

The AspectJ code template for checking invariants is 

shown in Figure 2 as several code fragments. 

The code fragment (1), located in the aspect itself, 

adds the method invariant() to class aClass (AspectJ 

allows us to add methods to an existing class). It checks 

aClass’s invariant (including the parent’s invariant if 

any – call super.invariant()) and is invoked in the 

advice bodies of fragments (2-4).  

Placing the invariant() method inside the context 

class is an elegant solution to the check of invariants in an 

inheritance hierarchy, that relies on polymorphism and 

dynamic binding. Recall that when a child class invariant 

is checked, its parent class invariant must be checked as 

well. This is achieved by calling super.invariant()

in method invariant(). The call to 

super.invariant() is optional since (a) the superclass 

may not have an invariant, and (b) constraint inheritance 

may not be desired (Section 3). 

Next, fragment (2) ensures that the invariant is 

checked before the execution of any public method on 

any instance of the context class: aClass.*(..)

specifies any method (*) with any parameter list (..) in 

class aClass. Likewise, fragment (3) ensures that the 

invariant is checked after those methods executions. 

Finally, fragment (4) ensures that the invariant is checked 

after the execution of all constructors. (Note that if a class 

implements Cloneable, an aspect intercepting calls to 

clone() is necessary since this method creates an 

instance of the class without invoking a constructor.)  

!within(aClassConstraints) is used to ensure 

that the execution of invariant() is not intercepted by 

the aspect that triggered it (recall from the beginning of 

Section 4 that aClassConstraints contains all aspects 

related to a class). We thus avoid infinite recursion that 

would result in the aspect trying to check the invariant 

before and after the execution of invariant().

Keyword returning in fragment (4) specifies that the 

after advice only executes when the intercepted method 

execution completes successfully, i.e., no exception is 

thrown. This way, the invariant is only checked on 

successful termination of the intercepted constructor 

execution, as discussed in Section 3. The after advice 

used in fragment (3) is not affected by an abnormal 

termination of the intercepted execution. This results in 

checking the invariant even after an exception is raised 

during the execution of a public method (Section 3). 

1

void aClass.invariant() { 
[super.invariant();]
…// Check the invariant. } 

2

before(aClass self) : execution(public * 
aClass.*(..)) && target(self) && 
within(aClass) && within(aClassConstraints)
{ self.invariant(); } 

3

after(aClass self) : execution(public * 
aClass.*(..)) && target(self) && 
within(aClass) && within(aClassConstraints)
{ self.invariant(); } 

4

after(aClass self) returning :
execution(aClass.new(..)) && target(self) 
&& within(aClass) && 
within(aClassConstraints)
{ self.invariant(); } 

Figure 2. Invariant template 
Finally, optional enforcement of the LSP is controlled 

by the optional call to the super class invariant()
method: no call leads to the LSP not being enforced. 

4.3 Checking Postconditions 

Figure 3 shows the postconditions checking template. 

The around advice is used to: intercept a method, 

perform some activity, and continue with the execution. 

This advice lets us gain access to old data (to support 

OCL’s @pre) and the method’s result (to support OCL’s 

result) in the postcondition assertion. 

Note that in the case the intercepted method throws an 

exception the postcondition is not verified, and adding the 

statement within(aClass) to the pointcut amounts to 

not enforcing constraint inheritance. 
method_return_type around(aClass self [, method 
parameters]) : execution( method_return_type
aClass.aMethod([method parameter types]))
&& target(self) && args(parameter names) { 
… // Create any necessary @pre variables 
// Necessary if the OCL keyword 'result' 
// is used in the postcondition. 
[method_return_type result;] 
// Let the execution of the method proceed.
[result =] proceed(self [, method params]);
… // Check the postcondition. }

Figure 3. Postcondition template 
The following is the template checking a postcondition 

on a constructor. The keyword returning ensures our 

compliance with the discussion in Section 3: 
after(aClass self [, constructor parameters])
returning : execution(public 
aClass.new([constructor parameter types]))

[&& args(parameter names)] && target(self) 
{ … // Check the postcondition. }
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5. Example 

Our example (Figure 4) consists of Person (no parent 

class) with attributes age, salary, and maxSalary, all 

of type Integer. Additionally, class Person has an 

operation called implementRaise(raise:Integer)
that raises the person’s salary. The following is the class 

invariant for Person and the precondition and 

postcondition for the raise():int operation: 

• context Person inv: self.age >= 18
• context Person::raise(raise:Integer)
pre:self.salary + raise <= self.maxSalary
post:self.salary= self.salary@pre + raise
Also, a modest case study was used to perform a first 

feasibility analysis and to evaluate the instrumentation 

overhead, it yielded promising results. The interested 

reader is referred to [2]. 

6. Conclusions

In this paper we present Aspect-Oriented Programming 

(AOP) AspectJ templates for automatic and efficient 

instrumentation of contracts and invariants in Java. Our 

main motivation, based on past studies [3], is that 

checking constraint assertions at run-time is extremely 

valuable during testing to detect failures and during 

maintenance to help locating faults (debugging). 

Our instrumentation strategy consists in manipulating 

the bytecode (and does not require coding conventions) 

instead of the source code (no source code pollution). As 

a consequence, the user can work on the source code 

without having to regenerate the constraint assertions 

before each compile, resulting in large time savings. 

Furthermore, the strategy addresses: contract checking in 

the presence of exceptions, the ability for assertion code 

to use private members, the option to use either compile-

time or load-time instrumentation (on the fly), the ability 

to add assertions to classes for which the source-code is 

not available, and the option to enforce the checking of 

the Liskov Substitution Principle in inheritance 

hierarchies.  
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privileged aspect PersonConstraints { 
static void constraintFailed(String constraint) { 

… // Logic to notify of broken constraint. } 
// (Fragment A) (instance of Figure 2, fragment 1) 
void Person.invariant() { if 
(!(self.age.intValue()>=18)){
constraintFailed("self.age >= 18"); } } 

// (Fragment B) (instance of Figure 2, fragment 2) 
before(Person self): execution(public * Person.*(..)) && 

target(self) && within(Person) && 
!within(PersonConstraints) { self.invariant(); } 

// (Fragment C) (instance of Figure 2, fragment 3) 
after(Person self): execution(public * Person.*(..)) && 
target(self) && within(Person) && 
!within(PersonConstraints) { self.invariant(); } 

// (Fragment D) (instance of Figure 2, fragment 4) 
after(Person self) returning: execution(Person.new(..)) 

&& target(self) && within(Person) && 
!within(PersonConstraints) { self.invariant(); }

// (Fragment E) (instance of Figure 1) 
before(Person self, int raise) : execution(void 

Person.raise(int)) && target(self) 
&& args(raise) && within(Person) { 
if (!(self.salary.intValue() + raise <= 
self.maxSalary.intValue())) { 

constraintFailed("self.salary + raise" + 
             " <= self.maxSalary"); } } 

// (Fragment F) (instance of Figure 3) 
void around(Person self, int raise): execution(public 
void Person.raise(int)) && target(self) && args(raise){ 

int oldSalary = self.salary.intValue(); // Old 
salary
proceed(self, raise); // Continue executing. 
// Check the postcondition. 

if (!(self.salary.intValue() == (oldSalary + raise))) 
{constraintFailed("self.salary = self.salary@pre + 
raise"); } }

}

Figure 4. Complete AspectJ code on an example. 
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