Instrumenting Contracts with Aspect-Oriented Programming to Increase
Observability and Support Debugging

Lionel C. Briand ¥

W. J. Dzidek T

Yvan Labiche

§ Software Quality Engineering Laboratory, Systems and Computer Eng. Dept., Carleton University,
Ottawa, ON, K18 5B6, Canada, +1 613 520 2600 ext. {2471,5583}, {briand, labiche}@sce.carleton.ca
V Simula Research Laboratory, Martin Linges v 17, Fornebu, P.O. Box 134, 1325 Lysaker,
Norway, +47 67 82 82 01, jamesdz@simula.no

Abstract

In this paper we report on how Aspect-Oriented
Programming (AOP), using AspectJ, can be employed to
automatically and efficiently instrument contracts and
invariants in Java. The paper focuses on the templates to
instrument preconditions, postconditions, and class
invariants, and the necessary instrumentation for
compliance-checking to the Liskov Substitution Principle.

1. Introduction

Analysis and design by contract (DbC) allows the
definition of a formal agreement between a class and its
clients, expressing each party’s rights and obligations.
Operation contracts and class invariants are known to be a
useful technique to specify the pre- and postcondition of
operations and the legal states of class instances in an
object-oriented (OO) context, making the definition of
OO analysis or design elements more precise [8].
Furthermore, it is also useful to check such contracts and
invariants at run time in order to help testing and
debugging during corrective maintenance [11]. Indeed,
experiments report a substantial gain when relying on
instrumented contracts during those two activities [3].
However, the instrumentation of such contracts is a time
consuming activity as this is usually performed manually.
Our work focused on the automation of this
instrumentation process with two main objectives: (1) to
work at the bytecode level so that constraint-related code
(assertions) and the program’s source-code are kept
separate (avoid polluting the source code and facilitate
configuration management and maintenance); and (2) to
propose an instrumentation strategy that is suited in a
context where checking that inheritance hierarchies
conform to the Liskov Substitution Principle (LSP) is
required and exception handling mechanisms are used.

Note that throughout the article, three related, but
distinct, words are used: contract (description of the
services that are provided by an operation using pre- and
postconditions), constraint (a pre-/postcondition, or an

invariant), and assertion (the implementation language,
e.g. Java, translation of a constraint that has to be
instrumented). Furthermore, we assume that the reader is
familiar with the basic concepts of Aspect-Oriented
Programming (AOP) [4] and the following terminology:
aspect, join point, pointcut, and advice. The rest of the
article is structured as follows. Section 2 discusses related
work. The strategy we follow to instrument constraints,
accounting for inheritance, is described in Section 3. The
Aspect] templates used for the instrumentation of
contracts are detailed in Section 4. An example is given in
Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

There exist two main strategies for automatic
instrumentation of contracts in Java: source-code and
bytecode manipulation. There exist nine DbC tools for
Java (that the authors are aware of); six of these are
compared in [9] (iContract, Jass, jContract, jContractor,
JML, Handshake); [5] discusses two more: JMSAssert
and Kopi; finally, there is the Dresden OCL Toolkit [13].

In order to compare these approaches we identified
seven criteria, namely: (a) whether the approach is based
on bytecode or source code manipulation (possibly with
coding conventions) or on an extension of the Java
Virtual Machine (JVM); (b) whether it supports the LSP
[7]; (c) whether it supports separate compilation (i.e.,
allowing modifications of the application source code
without recompiling assertion code or vice-versa); (d)
whether contract checking in the presence of exceptions is
supported; (e) the ability for assertion code to use private
members; (f) the option to use either compile-time or
load-time instrumentation (with load-time instrumentation
constraint checking code can be installed or removed
without requiring recompilation); and (g) the ability to
add assertions to classes for which the source-code is not
available. Our aim, in this paper, is a solution that
provides the best alternative for all seven criteria:
instrumenting byte code, checking the LSP, separate
compilation, proper handling of exceptions, access to

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

private members, instrumentation flexibility, and no
source code needed. None of the nine surveyed tools were
able to provide all these functionalities.

The idea of using AOP as the instrumentation
technology for constraints checking is not new, yet the
topic has never been given a thorough analysis. The
Aspect] manual [1] gives a small example of code to
check preconditions. In [10] Aspect] is used to check
invariants. In [6] the authors discuss the topic of checking
preconditions and postconditions using AOP, without
offering a complete solution (e.g., the authors do not take
into account inheritance hierarchies).

Note that this related work section only focused on
instrumentation. There also exist approaches for the
automatic translation of contracts expressed in high level
languages (such as OCL) to implementation languages
(such as Java). The interested reader is referred to [2].

3. Constraint Checking

Instrumenting a constraint requires that we identify
where the corresponding assertion needs to be checked,
the insertion point. The insertion points are summarized
in Table 1 (which is adapted from [5]). For example, the
insertion point for an assertion checking a precondition is
right before the execution of the corresponding method.
Table 1 also shows what is checked when an exception is
thrown during the execution of a constrained method.

Table 1. Constraint Checking

public not public
(UML) (UML) constructor
pre entry X X X
regular exit X X X
post -
exception
entry X N/A
inv regular exit X X
exception X

Furthermore, LSP [7] provides a theoretical framework
for the definition of constraints in inheritance hierarchies,
distinguishing subtyping from subclassing. Meyer
probably captured LSP best with his contract-oriented
paraphrase that “a subtype must require no more and
promise no less than its supertype.” In instrumentation
terms, this means that ancestor classes’ invariants must be
checked for descendent classes (to check at run time
whether the implementation, and not only the model,
complies with the LSP). For similar reasons, when a
method overrides another, both postconditions must be
checked at the end of the execution of the overriding
method. However, since the precondition of the
overriding method does not imply that of the overridden
method (that is exactly the contrary), only the overriding
method’s precondition is checked at the beginning of its
execution.

Some authors promote the use of the LSP as it results
in a safe use of inheritance [12]. It is, however, a reality

that the LSP does not always hold in inheritance
hierarchies. Ideally it should be allowed to specify
inheritance hierarchies where the LSP does or does not
hold so that constraint inheritance is only enforced where
it makes sense to do so.

4. Aspects Checking Constraints

In this section, we present our aspect templates. The
Aspect] code specifying the assertions and insertion
points for several constraints can reside in one (aspect)
file, although each class in the instrumented system can
have its own file. The latter solution is more efficient
from a compilation perspective as only one small aspect
file has to be recompiled when a constraint changes.

The aspects used for constraint checking are
privileged aspects (as shown below), meaning that the
code in the aspect has access to any class’
private/protected attributes and methods. This is
necessary as constraint checking may require such access.

privileged aspect aClassConstraints
.. // Advice code }

The templates for checking preconditions, invariants
and postconditions are described in Sections 4.1 to 4.3,
respectively. For each template, bold face text shows what
is variable (e.g., parameter names) and square brackets
denote optional parts. A complete aspect example is
presented in Section 5.

4.1 Checking Preconditions

The advice code template for checking preconditions
for a non-static method is shown in Figure 1.

before (aClass self [, method parameters]) :
execution (method return type
aClass.aMethod ([method parameter typesl]))
&& target (self) [&& args (parameter names)]
&& within(aClass) {.. //Check the precondition.}

Figure 1. Precondition template

A Dbefore advice executes before the specified
pointcut executes (i.e., the constrained method). The
before keyword exposes variable names (with types)
that can be used in the advice code: self of type aClass,
and any method parameter (name and type) that the
advice should use. (These will be used in the pointcut.) In
the pointcut: execution(..) specifies, using a method
signature, that any execution of method aMethod on any
instance of class aClass is intercepted; target (self)
maps self (defined in before(..)) to the object
executing the intercepted method (on which the constraint
is being evaluated). In the advice code, variable self
will then be a reference to the object executing the
intercepted method execution; args(..) maps names
appearing in parenthesis (and defined in

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

before (..[params])) to the parameters of aMethod
so that its arguments can be referred to in the advice code;
within (aClass) specifies that the version of the
executing method must be declared in class aclass. This
is to prevent the interception of aMethod’s execution on
subclasses of aClass that override aMethod (and thus
likely have a precondition different from the one of
aMethod in class aClass).

The Aspect] code template for checking the
precondition of a constructor is very similar. The only

difference is the execution (..) part that reads:
execution (aClass.new ([parameter types]))

4.2 Checking Invariants

The Aspect] code template for checking invariants is
shown in Figure 2 as several code fragments.

The code fragment (1), located in the aspect itself,
adds the method invariant () to class aClass (Aspect]
allows us to add methods to an existing class). It checks
aClass’s invariant (including the parent’s invariant if
any — call super.invariant ()) and is invoked in the
advice bodies of fragments (2-4).

Placing the invariant () method inside the context
class is an elegant solution to the check of invariants in an
inheritance hierarchy, that relies on polymorphism and
dynamic binding. Recall that when a child class invariant
is checked, its parent class invariant must be checked as
well. This is achieved by calling super.invariant ()
in method invariant (). The call to
super.invariant () is optional since (a) the superclass
may not have an invariant, and (b) constraint inheritance
may not be desired (Section 3).

Next, fragment (2) ensures that the invariant is
checked before the execution of any public method on
any instance of the context class: aClass.*(..)
specifies any method (*) with any parameter list (. .) in
class aClass. Likewise, fragment (3) ensures that the
invariant is checked after those methods executions.
Finally, fragment (4) ensures that the invariant is checked
after the execution of all constructors. (Note that if a class
implements Cloneable, an aspect intercepting calls to
clone() is necessary since this method creates an
instance of the class without invoking a constructor.)

lwithin (aClassConstraints) is used to ensure
that the execution of invariant () is not intercepted by
the aspect that triggered it (recall from the beginning of
Section 4 that aClassConstraints contains all aspects
related to a class). We thus avoid infinite recursion that
would result in the aspect trying to check the invariant
before and after the execution of invariant ().

Keyword returning in fragment (4) specifies that the
after advice only executes when the intercepted method
execution completes successfully, i.e., no exception is

thrown. This way, the invariant is only checked on
successful termination of the intercepted constructor
execution, as discussed in Section 3. The after advice
used in fragment (3) is not affected by an abnormal
termination of the intercepted execution. This results in
checking the invariant even after an exception is raised
during the execution of a public method (Section 3).

void aClass.invariant ()
1 [super.invariant () ;]
..// Check the invariant. }
before (aClass self) : execution(public *

aClass.*(..)) && target (self) &&

2 within(aClass) && within(aClassConstraints)
{ self.invariant(); }
after (aClass self) : execution(public *

3 aClass.*(..)) && target (self) &&
within(aClass) && within(aClassConstraints)
{ self.invariant(); }
after (aClass self) returning :
execution(aClass.new(..)) && target (self)

4 | && within(aClass) &&
within (aClassConstraints)
{ self.invariant(); }

Figure 2. Invariant template
Finally, optional enforcement of the LSP is controlled
by the optional call to the super class invariant ()
method: no call leads to the LSP not being enforced.

4.3 Checking Postconditions

Figure 3 shows the postconditions checking template.
The around advice is used to: intercept a method,
perform some activity, and continue with the execution.
This advice lets us gain access to old data (to support
OCL’s @epre) and the method’s result (to support OCL’s
result) in the postcondition assertion.

Note that in the case the intercepted method throws an
exception the postcondition is not verified, and adding the
statement within (aClass) to the pointcut amounts to
not enforcing constraint inheritance.

method return type around(aClass self [, method
parameters]) : execution(method return type
aClass.aMethod ([method parameter typesl]))
&& target (self) && args (parameter names) {
.. // Create any necessary @pre variables
// Necessary if the OCL keyword 'result'
// is used in the postcondition.
[method return type result;]
// Let the execution of the method proceed.
[result =] proceed(self [, method params]) ;
.. // Check the postcondition. }

Figure 3. Postcondition template

The following is the template checking a postcondition
on a constructor. The keyword returning ensures our
compliance with the discussion in Section 3:
after (aClass self [, constructor parameters])
returning : execution (public
aClass.new([constructor parameter types]))

[&& args (parameter names)] && target (self)

{ .. // Check the postcondition. }

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

5. Example

Our example (Figure 4) consists of Person (no parent
class) with attributes age, salary, and maxSalary, all
of type Integer. Additionally, class Person has an
operation called implementRaise (raise:Integer)
that raises the person’s salary. The following is the class
invariant for Person and the precondition and
postcondition for the raise () : int operation:

e context Person inv: self.age >= 18

e context Person::raise(raise:Integer)
pre:self.salary + raise <= self.maxSalary
post:self.salary= self.salary@pre + raise

Also, a modest case study was used to perform a first
feasibility analysis and to evaluate the instrumentation
overhead, it yielded promising results. The interested
reader is referred to [2].

6. Conclusions

In this paper we present Aspect-Oriented Programming
(AOP) Aspect] templates for automatic and efficient
instrumentation of contracts and invariants in Java. Our
main motivation, based on past studies [3], is that
checking constraint assertions at run-time is extremely
valuable during testing to detect failures and during
maintenance to help locating faults (debugging).

Our instrumentation strategy consists in manipulating
the bytecode (and does not require coding conventions)
instead of the source code (no source code pollution). As
a consequence, the user can work on the source code
without having to regenerate the constraint assertions
before each compile, resulting in large time savings.
Furthermore, the strategy addresses: contract checking in
the presence of exceptions, the ability for assertion code
to use private members, the option to use either compile-
time or load-time instrumentation (on the fly), the ability
to add assertions to classes for which the source-code is
not available, and the option to enforce the checking of
the Liskov Substitution Principle in inheritance
hierarchies.

References

[1] Aspect]-Team, The Aspect] Programming Guide,
www.eclipse.org/aspectj/, (Last accessed March 2005)

[2] L. C. Briand, W. Dzidek and Y. Labiche, “Using Aspect-
Oriented Programming to Instrument OCL Contracts in
Java,” Carleton University, Technical Report SCE-04-03,
www.sce.carleton.ca/squall, 2004.

[3] L.C. Briand, Y. Labiche and H. Sun, “Investigating the
Use of Analysis Contracts to Improve the Testability of
Object-Oriented Code,” Software - Practice and
Experience, vol. 33 (7), pp. 637-672, 2003.

[4] T.Elrad, R. E. Filman and A. Bader, “Aspect-Oriented
Programming: Introduction,” Communications of the ACM,
vol. 44 (10), pp. 29-32, 2001.

[5] M. Lackner, A. Krall and F. Puntigam, “Supporting Design
by Contract in Java,” Journal Of Object Technology, vol. 1
(3), 2002.

[6] M. Lippert and C. V. Lopes, “A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming,” Proc. International Conference on
Software Engineering, pp. 418-427, 2000.

[7] B.H. Liskov and J. M. Wing, “A Behavioral Notion of
Subtyping,” ACM Transactions on Programming
Languages and Systems, vol. 16 (6), pp. 1811-1841, 1994.

[8] B. Meyer, Object-Oriented Software Construction, Prentice
Hall, 2™ Edition, 1997.

[91 R. Plosch, “Evaluation of Assertion Support for the Java
Programming Language,” Journal of Object Technology,
vol. 1 (3), 2002.

[10] R. Van Der Straeten and M. Casanova, “Stirred but not
Shaken: Applying Constraints in Object-Oriented
Systems,” Proc. NetObjectDays, pp. 138-150, 2001.

[11] J. M. Voas and L. Kassab, “Using Assertions to Make
Untestable Software More Testable,” Software Quality
Professional, vol. 1 (4), pp. 31-40, 1999.

[12] J. Warmer and A. Kleppe, The Object Constraint
Language, Addison-Wesley, 1999.

[13] R. Wiebicke, Utility Support for Checking OCL Business
Rules in Java Programs, Diploma Thesis, Dresden
University of Technology, 2000

privileged aspect PersonConstraints {

static void constraintFailed(String constraint) {
.. // Logic to notify of broken constraint. }

// (Fragment A) (instance of Figure 2, fragment 1)

void Person.invariant () { if
(! (self.age.intValue()>=18))
constraintFailed("self.age >= 18"); } }
// (Fragment B) (instance of Figure 2, fragment 2)
before (Person self): execution(public * Person.*(..)) &&
target (self) && within(Person) &&
lwithin (PersonConstraints) { self.invariant(); }
// (Fragment C) (instance of Figure 2, fragment 3)
after (Person self): execution(public * Person.*(..)) &&
target (self) && within(Person) &&
!within (PersonConstraints) { self.invariant(); }

// (Fragment D) (instance of Figure 2, fragment 4)
after (Person self) returning: execution (Person.new(..))
&& target (self) && within(Person) &&
lwithin (PersonConstraints) { self.invariant(); }

// (Fragment E) (instance of Figure 1)
before (Person self, int raise) : execution (void
Person.raise(int)) && target (self)
&& args (raise) && within (Person) {
if (! (self.salary.intValue() + raise <=
self.maxSalary.intValue())) {
constraintFailed("self.salary + raise" +
" <= self.maxSalary"); } }
// (Fragment F) (instance of Figure 3)
void around(Person self, int raise): execution (public
void Person.raise(int)) && target (self) && args(raise) {
int oldSalary = self.salary.intValue(); // 0ld
salary
proceed (self, raise); // Continue executing.
// Check the postcondition.

if (! (self.salary.intValue() == (oldSalary + raise)))
{constraintFailed("self.salary = self.salaryepre +
raise"); } }

}

Figure 4. Complete AspectJ code on an example.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)
1063-6773/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER
SOCIETY

