
Instrumenting Contracts with Aspect-Oriented Programming to Increase

Observability and Support Debugging

 Lionel C. Briand
§¶

 W. J. Dzidek
¶
 Yvan Labiche

§

§ Software Quality Engineering Laboratory, Systems and Computer Eng. Dept., Carleton University,

Ottawa, ON, K1S 5B6, Canada, +1 613 520 2600 ext. {2471,5583}, {briand, labiche}@sce.carleton.ca
¶

Simula Research Laboratory, Martin Linges v 17, Fornebu, P.O. Box 134, 1325 Lysaker,

Norway, +47 67 82 82 01, jamesdz@simula.no

Abstract

In this paper we report on how Aspect-Oriented

Programming (AOP), using AspectJ, can be employed to

automatically and efficiently instrument contracts and

invariants in Java. The paper focuses on the templates to

instrument preconditions, postconditions, and class

invariants, and the necessary instrumentation for
compliance-checking to the Liskov Substitution Principle.

1. Introduction

Analysis and design by contract (DbC) allows the

definition of a formal agreement between a class and its

clients, expressing each party’s rights and obligations.

Operation contracts and class invariants are known to be a

useful technique to specify the pre- and postcondition of

operations and the legal states of class instances in an

object-oriented (OO) context, making the definition of

OO analysis or design elements more precise [8].

Furthermore, it is also useful to check such contracts and

invariants at run time in order to help testing and

debugging during corrective maintenance [11]. Indeed,

experiments report a substantial gain when relying on

instrumented contracts during those two activities [3].

However, the instrumentation of such contracts is a time

consuming activity as this is usually performed manually.

Our work focused on the automation of this

instrumentation process with two main objectives: (1) to

work at the bytecode level so that constraint-related code

(assertions) and the program’s source-code are kept

separate (avoid polluting the source code and facilitate

configuration management and maintenance); and (2) to

propose an instrumentation strategy that is suited in a

context where checking that inheritance hierarchies

conform to the Liskov Substitution Principle (LSP) is

required and exception handling mechanisms are used.

Note that throughout the article, three related, but

distinct, words are used: contract (description of the

services that are provided by an operation using pre- and

postconditions), constraint (a pre-/postcondition, or an

invariant), and assertion (the implementation language,

e.g. Java, translation of a constraint that has to be

instrumented). Furthermore, we assume that the reader is

familiar with the basic concepts of Aspect-Oriented

Programming (AOP) [4] and the following terminology:

aspect, join point, pointcut, and advice. The rest of the

article is structured as follows. Section 2 discusses related

work. The strategy we follow to instrument constraints,

accounting for inheritance, is described in Section 3. The

AspectJ templates used for the instrumentation of

contracts are detailed in Section 4. An example is given in

Section 5. Finally, conclusions are drawn in Section 6.

2. Related Work

There exist two main strategies for automatic

instrumentation of contracts in Java: source-code and

bytecode manipulation. There exist nine DbC tools for

Java (that the authors are aware of); six of these are

compared in [9] (iContract, Jass, jContract, jContractor,

JML, Handshake); [5] discusses two more: JMSAssert

and Kopi; finally, there is the Dresden OCL Toolkit [13].

In order to compare these approaches we identified

seven criteria, namely: (a) whether the approach is based

on bytecode or source code manipulation (possibly with

coding conventions) or on an extension of the Java

Virtual Machine (JVM); (b) whether it supports the LSP

[7]; (c) whether it supports separate compilation (i.e.,

allowing modifications of the application source code

without recompiling assertion code or vice-versa); (d)

whether contract checking in the presence of exceptions is

supported; (e) the ability for assertion code to use private

members; (f) the option to use either compile-time or

load-time instrumentation (with load-time instrumentation

constraint checking code can be installed or removed

without requiring recompilation); and (g) the ability to

add assertions to classes for which the source-code is not

available. Our aim, in this paper, is a solution that

provides the best alternative for all seven criteria:

instrumenting byte code, checking the LSP, separate

compilation, proper handling of exceptions, access to

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

private members, instrumentation flexibility, and no

source code needed. None of the nine surveyed tools were

able to provide all these functionalities.

The idea of using AOP as the instrumentation

technology for constraints checking is not new, yet the

topic has never been given a thorough analysis. The

AspectJ manual [1] gives a small example of code to

check preconditions. In [10] AspectJ is used to check

invariants. In [6] the authors discuss the topic of checking

preconditions and postconditions using AOP, without

offering a complete solution (e.g., the authors do not take

into account inheritance hierarchies).

Note that this related work section only focused on

instrumentation. There also exist approaches for the

automatic translation of contracts expressed in high level

languages (such as OCL) to implementation languages

(such as Java). The interested reader is referred to [2].

3. Constraint Checking

Instrumenting a constraint requires that we identify

where the corresponding assertion needs to be checked,

the insertion point. The insertion points are summarized

in Table 1 (which is adapted from [5]). For example, the

insertion point for an assertion checking a precondition is

right before the execution of the corresponding method.

Table 1 also shows what is checked when an exception is

thrown during the execution of a constrained method.

Table 1. Constraint Checking
public

(UML)

not public

(UML)
constructor

pre entry X X X

regular exit X X X
post

exception

entry X N/A

regular exit X X inv

exception X

Furthermore, LSP [7] provides a theoretical framework

for the definition of constraints in inheritance hierarchies,

distinguishing subtyping from subclassing. Meyer

probably captured LSP best with his contract-oriented

paraphrase that “a subtype must require no more and

promise no less than its supertype.” In instrumentation

terms, this means that ancestor classes’ invariants must be

checked for descendent classes (to check at run time

whether the implementation, and not only the model,

complies with the LSP). For similar reasons, when a

method overrides another, both postconditions must be

checked at the end of the execution of the overriding

method. However, since the precondition of the

overriding method does not imply that of the overridden

method (that is exactly the contrary), only the overriding

method’s precondition is checked at the beginning of its

execution.

Some authors promote the use of the LSP as it results

in a safe use of inheritance [12]. It is, however, a reality

that the LSP does not always hold in inheritance

hierarchies. Ideally it should be allowed to specify

inheritance hierarchies where the LSP does or does not

hold so that constraint inheritance is only enforced where

it makes sense to do so.

4. Aspects Checking Constraints

In this section, we present our aspect templates. The

AspectJ code specifying the assertions and insertion

points for several constraints can reside in one (aspect)

file, although each class in the instrumented system can

have its own file. The latter solution is more efficient

from a compilation perspective as only one small aspect

file has to be recompiled when a constraint changes.

The aspects used for constraint checking are

privileged aspects (as shown below), meaning that the

code in the aspect has access to any class’

private/protected attributes and methods. This is

necessary as constraint checking may require such access.
privileged aspect aClassConstraints {
 … // Advice code }

The templates for checking preconditions, invariants

and postconditions are described in Sections 4.1 to 4.3,

respectively. For each template, bold face text shows what

is variable (e.g., parameter names) and square brackets

denote optional parts. A complete aspect example is

presented in Section 5.

4.1 Checking Preconditions

The advice code template for checking preconditions

for a non-static method is shown in Figure 1.

before(aClass self [, method parameters]):
execution(method_return_type

aClass.aMethod([method parameter types]))
&& target(self) [&& args(parameter names)]
&& within(aClass) {… //Check the precondition.}

Figure 1. Precondition template
A before advice executes before the specified

pointcut executes (i.e., the constrained method). The

before keyword exposes variable names (with types)

that can be used in the advice code: self of type aClass,

and any method parameter (name and type) that the

advice should use. (These will be used in the pointcut.) In

the pointcut: execution(…) specifies, using a method

signature, that any execution of method aMethod on any

instance of class aClass is intercepted; target(self)

maps self (defined in before(…)) to the object

executing the intercepted method (on which the constraint

is being evaluated). In the advice code, variable self
will then be a reference to the object executing the

intercepted method execution; args(…) maps names

appearing in parenthesis (and defined in

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

before(…[params])) to the parameters of aMethod
so that its arguments can be referred to in the advice code;

within(aClass) specifies that the version of the

executing method must be declared in class aClass. This

is to prevent the interception of aMethod’s execution on

subclasses of aClass that override aMethod (and thus

likely have a precondition different from the one of

aMethod in class aClass).

The AspectJ code template for checking the

precondition of a constructor is very similar. The only

difference is the execution(…) part that reads:
execution(aClass.new([parameter types]))

4.2 Checking Invariants

The AspectJ code template for checking invariants is

shown in Figure 2 as several code fragments.

The code fragment (1), located in the aspect itself,

adds the method invariant() to class aClass (AspectJ

allows us to add methods to an existing class). It checks

aClass’s invariant (including the parent’s invariant if

any – call super.invariant()) and is invoked in the

advice bodies of fragments (2-4).

Placing the invariant() method inside the context

class is an elegant solution to the check of invariants in an

inheritance hierarchy, that relies on polymorphism and

dynamic binding. Recall that when a child class invariant

is checked, its parent class invariant must be checked as

well. This is achieved by calling super.invariant()

in method invariant(). The call to

super.invariant() is optional since (a) the superclass

may not have an invariant, and (b) constraint inheritance

may not be desired (Section 3).

Next, fragment (2) ensures that the invariant is

checked before the execution of any public method on

any instance of the context class: aClass.*(..)

specifies any method (*) with any parameter list (..) in

class aClass. Likewise, fragment (3) ensures that the

invariant is checked after those methods executions.

Finally, fragment (4) ensures that the invariant is checked

after the execution of all constructors. (Note that if a class

implements Cloneable, an aspect intercepting calls to

clone() is necessary since this method creates an

instance of the class without invoking a constructor.)

!within(aClassConstraints) is used to ensure

that the execution of invariant() is not intercepted by

the aspect that triggered it (recall from the beginning of

Section 4 that aClassConstraints contains all aspects

related to a class). We thus avoid infinite recursion that

would result in the aspect trying to check the invariant

before and after the execution of invariant().

Keyword returning in fragment (4) specifies that the

after advice only executes when the intercepted method

execution completes successfully, i.e., no exception is

thrown. This way, the invariant is only checked on

successful termination of the intercepted constructor

execution, as discussed in Section 3. The after advice

used in fragment (3) is not affected by an abnormal

termination of the intercepted execution. This results in

checking the invariant even after an exception is raised

during the execution of a public method (Section 3).

1

void aClass.invariant() {
[super.invariant();]
…// Check the invariant. }

2

before(aClass self) : execution(public *
aClass.*(..)) && target(self) &&
within(aClass) && within(aClassConstraints)
{ self.invariant(); }

3

after(aClass self) : execution(public *
aClass.*(..)) && target(self) &&
within(aClass) && within(aClassConstraints)
{ self.invariant(); }

4

after(aClass self) returning :
execution(aClass.new(..)) && target(self)
&& within(aClass) &&
within(aClassConstraints)
{ self.invariant(); }

Figure 2. Invariant template
Finally, optional enforcement of the LSP is controlled

by the optional call to the super class invariant()
method: no call leads to the LSP not being enforced.

4.3 Checking Postconditions

Figure 3 shows the postconditions checking template.

The around advice is used to: intercept a method,

perform some activity, and continue with the execution.

This advice lets us gain access to old data (to support

OCL’s @pre) and the method’s result (to support OCL’s

result) in the postcondition assertion.

Note that in the case the intercepted method throws an

exception the postcondition is not verified, and adding the

statement within(aClass) to the pointcut amounts to

not enforcing constraint inheritance.
method_return_type around(aClass self [, method
parameters]) : execution(method_return_type
aClass.aMethod([method parameter types]))
&& target(self) && args(parameter names) {
… // Create any necessary @pre variables
// Necessary if the OCL keyword 'result'
// is used in the postcondition.
[method_return_type result;]
// Let the execution of the method proceed.
[result =] proceed(self [, method params]);
… // Check the postcondition. }

Figure 3. Postcondition template
The following is the template checking a postcondition

on a constructor. The keyword returning ensures our

compliance with the discussion in Section 3:
after(aClass self [, constructor parameters])
returning : execution(public
aClass.new([constructor parameter types]))

[&& args(parameter names)] && target(self)
{ … // Check the postcondition. }

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

5. Example

Our example (Figure 4) consists of Person (no parent

class) with attributes age, salary, and maxSalary, all

of type Integer. Additionally, class Person has an

operation called implementRaise(raise:Integer)
that raises the person’s salary. The following is the class

invariant for Person and the precondition and

postcondition for the raise():int operation:

• context Person inv: self.age >= 18
• context Person::raise(raise:Integer)
pre:self.salary + raise <= self.maxSalary
post:self.salary= self.salary@pre + raise
Also, a modest case study was used to perform a first

feasibility analysis and to evaluate the instrumentation

overhead, it yielded promising results. The interested

reader is referred to [2].

6. Conclusions

In this paper we present Aspect-Oriented Programming

(AOP) AspectJ templates for automatic and efficient

instrumentation of contracts and invariants in Java. Our

main motivation, based on past studies [3], is that

checking constraint assertions at run-time is extremely

valuable during testing to detect failures and during

maintenance to help locating faults (debugging).

Our instrumentation strategy consists in manipulating

the bytecode (and does not require coding conventions)

instead of the source code (no source code pollution). As

a consequence, the user can work on the source code

without having to regenerate the constraint assertions

before each compile, resulting in large time savings.

Furthermore, the strategy addresses: contract checking in

the presence of exceptions, the ability for assertion code

to use private members, the option to use either compile-

time or load-time instrumentation (on the fly), the ability

to add assertions to classes for which the source-code is

not available, and the option to enforce the checking of

the Liskov Substitution Principle in inheritance

hierarchies.

References

[1] AspectJ-Team, The AspectJ Programming Guide,

www.eclipse.org/aspectj/, (Last accessed March 2005)

[2] L. C. Briand, W. Dzidek and Y. Labiche, “Using Aspect-

Oriented Programming to Instrument OCL Contracts in

Java,” Carleton University, Technical Report SCE-04-03,

www.sce.carleton.ca/squall, 2004.

[3] L. C. Briand, Y. Labiche and H. Sun, “Investigating the

Use of Analysis Contracts to Improve the Testability of

Object-Oriented Code,” Software - Practice and

Experience, vol. 33 (7), pp. 637-672, 2003.

[4] T. Elrad, R. E. Filman and A. Bader, “Aspect-Oriented

Programming: Introduction,” Communications of the ACM,

vol. 44 (10), pp. 29-32, 2001.

[5] M. Lackner, A. Krall and F. Puntigam, “Supporting Design

by Contract in Java,” Journal Of Object Technology, vol. 1

(3), 2002.

[6] M. Lippert and C. V. Lopes, “A Study on Exception

Detection and Handling Using Aspect-Oriented

Programming,” Proc. International Conference on

Software Engineering, pp. 418-427, 2000.

[7] B. H. Liskov and J. M. Wing, “A Behavioral Notion of

Subtyping,” ACM Transactions on Programming

Languages and Systems, vol. 16 (6), pp. 1811-1841, 1994.

[8] B. Meyer, Object-Oriented Software Construction, Prentice

Hall, 2nd Edition, 1997.

[9] R. Plösch, “Evaluation of Assertion Support for the Java

Programming Language,” Journal of Object Technology,

vol. 1 (3), 2002.

[10] R. Van Der Straeten and M. Casanova, “Stirred but not

Shaken: Applying Constraints in Object-Oriented

Systems,” Proc. NetObjectDays, pp. 138-150, 2001.

[11] J. M. Voas and L. Kassab, “Using Assertions to Make

Untestable Software More Testable,” Software Quality

Professional, vol. 1 (4), pp. 31-40, 1999.

[12] J. Warmer and A. Kleppe, The Object Constraint

Language, Addison-Wesley, 1999.

[13] R. Wiebicke, Utility Support for Checking OCL Business

Rules in Java Programs, Diploma Thesis, Dresden

University of Technology, 2000

privileged aspect PersonConstraints {
static void constraintFailed(String constraint) {

… // Logic to notify of broken constraint. }
// (Fragment A) (instance of Figure 2, fragment 1)
void Person.invariant() { if
(!(self.age.intValue()>=18)){
constraintFailed("self.age >= 18"); } }

// (Fragment B) (instance of Figure 2, fragment 2)
before(Person self): execution(public * Person.*(..)) &&

target(self) && within(Person) &&
!within(PersonConstraints) { self.invariant(); }

// (Fragment C) (instance of Figure 2, fragment 3)
after(Person self): execution(public * Person.*(..)) &&
target(self) && within(Person) &&
!within(PersonConstraints) { self.invariant(); }

// (Fragment D) (instance of Figure 2, fragment 4)
after(Person self) returning: execution(Person.new(..))

&& target(self) && within(Person) &&
!within(PersonConstraints) { self.invariant(); }

// (Fragment E) (instance of Figure 1)
before(Person self, int raise) : execution(void

Person.raise(int)) && target(self)
&& args(raise) && within(Person) {
if (!(self.salary.intValue() + raise <=
self.maxSalary.intValue())) {

constraintFailed("self.salary + raise" +
 " <= self.maxSalary"); } }

// (Fragment F) (instance of Figure 3)
void around(Person self, int raise): execution(public
void Person.raise(int)) && target(self) && args(raise){

int oldSalary = self.salary.intValue(); // Old
salary
proceed(self, raise); // Continue executing.
// Check the postcondition.

if (!(self.salary.intValue() == (oldSalary + raise)))
{constraintFailed("self.salary = self.salary@pre +
raise"); } }

}

Figure 4. Complete AspectJ code on an example.

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05)

1063-6773/05 $20.00 © 2005 IEEE

