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ABSTRACT 

Statistical power is an inherent part of empirical studies that employ significance testing and is 
essential for the planning of studies, for the interpretation of study results, and for the validity of 
study conclusions. This paper reports a quantitative assessment of the statistical power of 
empirical software engineering research based on the 103 papers on controlled experiments (of a 
total of 5453 papers) published in nine major software engineering journals and three conference 
proceedings in the decade 1993-2002. The results show that the statistical power of software 
engineering experiments falls substantially below accepted norms as well as the levels found in 
the related discipline of information systems research. Given this study’s findings, additional 
attention must be directed to the adequacy of sample sizes and research designs to ensure 
acceptable levels of statistical power. Furthermore, the current reporting of significance tests 
should be enhanced by also reporting effect sizes and confidence intervals. 
 
Keywords: Empirical software engineering, controlled experiment, systematic review, statistical 
power, effect size. 

1 Introduction 
An important use of statistical significance testing in empirical software engineering (ESE) 
research is to test hypotheses in controlled experiments. An important component of such testing 
is the notion of statistical power, which is defined as the probability that a statistical test will 
correctly reject the null hypothesis (Cohen, 1988). A test without sufficient statistical power will 
not be able to provide the researcher with enough information to draw conclusions regarding the 
acceptance or rejection of the null hypothesis. 
 
Knowledge of statistical power can influence both the planning, execution and results of 
empirical research. If the power of statistical tests is weak, the probability of finding significant 
effects is small, and the outcomes of the study will likely be insignificant. Furthermore, if the 
study fails to provide information about the statistical power of its tests, we cannot determine 
whether the insignificant results were due to insufficient power or if the phenomenon actually did 
not exist. This will inevitably lead to misinterpretation of the outcomes of the study.  
 
Thus, failure to provide an adequate level of statistical power has implications for both the 
execution and outcome of research: “If resources are limited and preclude attaining a 
satisfactory level of statistical power, the research is probably not worth the time, effort, and 
cost of inferential statistics.” (Baroudi and Orlikowski, 1989, p. 96). 
 
These considerations have prompted researchers in disciplines such as social and abnormal 
psychology (Cohen, 1962; Sedlmeier and Gigerenzer, 1989; Clark-Carter, 1997), applied 
psychology (Chase and Chase, 1976; Mone et al., 1996), education (Brewer, 1972), 
communication (Chase and Tucker, 1975), behavioral accounting (Borokowski et al., 2001), 
marketing (Sawyer and Ball, 1981), management (Mazen et al., 1987; Mone et al., 1996; 
Ferguson and Ketchen, 1999; Cashen and Geiger, 2004), international business (Brock, 2003), 
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and information systems research (Baroudi and Orlikowski, 1989; Rademacher, 1999) to 
determine the post hoc statistical power of their respective literature.  
 
Within software engineering (SE), Miller et al. (1997) discussed the role of statistical power 
analysis in ESE research, suggesting that there is inadequate reporting and attention afforded to 
statistical power in the ESE literature, which leads to potentially flawed research designs and 
questionable validity of results: 
 

Any researcher not undertaking a power analysis of their experiment has no idea of the role that 
luck or fate is playing with their work and consequently neither does the Software Engineering 
community (p. 286). 

 
Although Miller et al. (1997) made an important contribution in directing attention to the concept 
of statistical power in ESE research and how it can be incorporated within the experimental 
design process, they based their arguments on an informal review of the literature. There is, 
therefore, a need to conduct more formal investigations, similar to that of other disciplines, of the 
state-of-the-practice in ESE research with respect to statistical power. 
 
The purpose of this paper is thus (1) to perform a systematic review and quantitative assessment 
of the statistical power of ESE research in a sample of published controlled experiments, (2) to 
discuss the implications of these findings, and (3) to discuss techniques that ESE researchers can 
use to increase the statistical power of their studies in order to improve the quality and validity 
of ESE research. 
 
In the next section, we present a brief background on statistical power and its determinants. In 
Section 3, we provide an overview of the research method employed to review and determine the 
statistical power in controlled software engineering experiments. Section 4 reports the results of 
the review, while Section 5 provides a discussion of the results, their implications, and some 
recommendations that should improve the quality and validity of future ESE research. Section 6 
provides some concluding comments. 

2 Background: Statistical power 
2.1 Power and errors in statistical inference 
According to Neyman and Pearson’s (1928, 1933) method of statistical inference, testing 
hypotheses requires that we specify an acceptable level of statistical error, or the risk we are 
willing to take regarding the correctness of our decisions. Regardless of which decision rule we 
select, there are generally two ways of being correct and two ways of making an error in the 
choice between the null (H0) and the alternate (HA) hypotheses (see Table 1). 

Table 1: Ways of being correct or making an error when choosing between two competing 
hypotheses. 

  Unknown true state of nature 

  H0: No Difference HA: Difference 

Accept H0 
1–αααα  

Correct 

ββββ 

Type II error Statistical 
conclusion 

Reject H0 
αααα  

Type I error 

1–ββββ 

Correct (power) 
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A Type I error is the error made when H0 (the tested hypothesis) is wrongly rejected. In other 
words, a Type I error is committed whenever the sample results fall into the rejection region, 
even though H0 is true. Conventionally, the probability of committing a Type I error is 
represented by the level of statistical significance, denoted by the lowercase Greek letter alpha 
(αααα ). Conversely, the probability of being correct, given that H0 is true is equal to 1–αααα . 
 
The probability of making an error of Type II, also known as beta (ββββ), is the probability of 
failing to reject the null hypothesis when it is actually false. Thus, when a sample result does not 
fall into the rejection region, even though some HA is true, we are led to make a Type II error. 
Consequently, the probability of correctly rejecting the null hypothesis, i.e., the probability of 
making a correct decision given that HA is true, is 1–ββββ; the power of the statistical test. It is 
literally the probability of finding out that H0 is wrong, given the decision rule and the true HA. 
 
As can be seen from Table 1, statistical power is particularly important when there is a true 
difference in the population. In this situation, when the phenomenon actually exists, the statistical 
test must be powerful enough to detect it. If the test reveals a non-significant result in this case, 
the conclusion of “no effect” would be misleading and we would thus be committing a Type II 
error. 
 
Traditionally, αααα  is set to .05 to guard against Type I error, while ββββ is set to .20 to guard against 
Type II error. Accepting these conventions also means that we are guarded four times more 
against Type I errors than we are against Type II errors. However, the distribution of risk 
between Type I and Type II errors need to be appropriate to the situation at hand. An illustrative 
case is made by Mazen et al. (1987) regarding the ill-fated Challenger space shuttle, in which 
NASA officials faced a choice between two types of assumptions, each with a distinctive cost: 
 

The first [assumption] was that the shuttle was unsafe to fly because the performance of the O-
ring used in the rocket-booster was different from that used on previous missions. The second 
was that the shuttle was safe to fly because there would be no difference between the 
performance of the O-rings in this and previous missions. If the mission had been aborted and the 
O-ring had indeed been functional, Type I error would have been committed. Obviously the cost 
of the Type II error, launching with a defective O-ring, was much greater than the cost that would 
have been incurred with Type I error (ibid., p. 370). 

2.2 Determinants of statistical power 
The fundamental approach to statistical power analysis was established by Cohen (1988), who 
described the relationships among the four variables involved in statistical inference: 
significance criterion (αααα ), sample size (N), population effect size (ES), and statistical power (1–
β). For any statistical model, these relationships are such that each is a function of the other 
three. Thus, we can determine the power for any statistical test, given αααα , N, and ES (Table 2). 
 
The appropriate sections of Cohen (1988) or Kraemer and Thiemann (1987) should be consulted 
for details on how to perform statistical power analysis. Specifically, Chapter 12 in Cohen’s 
book provides the computational procedures that are used to determine the power and sample 
size values of the commonly used power tables and power charts. 
 
As mentioned, the significance criterion (αααα ) is the probability of incorrectly rejecting the null 
hypothesis. Power increases with larger αααα . A small αααα  will, thus, result in relatively small power. 
The directionality of the significance criterion also affects the power of a statistical test. A non-
directional two-tailed test will have lower power than a directional one-tailed test at the same αααα , 
provided that the sample result is in the predicted direction. Note that a directional test has no 
power to detect effects in the direction opposite to the one predicted (see Figure 1). 
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Figure 1: Statistical power and the probability of Type I and Type II error in testing a directional 
hypothesis. 
 
The second determinant of power is sample size (N). At any given αααα  level, increased sample 
size reduces the standard deviations of the sampling distributions for H0 and HA. This reduction 
results in less overlap of the distributions, increased precision, and thus increased power (see 
Figure 1). 
 
The final determinant of power is the effect size (ES), which refers to the true size of the 
difference between H0 and HA (the null hypothesis is that the effect size is 0), i.e., the degree to 
which the phenomenon is present in the population. The larger the effect size, the greater the 
probability that the effect will be detected and the null hypothesis rejected.  
 
The nature of the effect size will vary from one statistical procedure to the next (e.g., a 
standardized mean difference or a correlation coefficient), but its function in power analysis is 
the same in all procedures. Thus, each statistical test has its own scale-free and continuous 
effect size index, ranging upward from zero (see Table 3). So, whereas p values reveal whether a 
finding is statistically significant, effect size indices are measures of practical significance or 
meaningfulness. Interpreting effect sizes is thus critical, because it is possible for a finding to be 
statistically significant but not meaningful, and vice versa (Cohen, 1992; Lipsey, 1990).  
 
Effect size is probably the most difficult aspect of power analysis to specify or estimate. It can 
sometimes be determined by a critical assessment of prior empirical research in the area. 
However, due to a lack of empirical studies and cumulative findings in software engineering, the 
best option for a reasonable estimation of effect size is expert judgment (Miller et al., 1997). 
 
Cohen (1988) has facilitated such estimation of effect size. Based on a review of prior 
behavioral research, he developed operational definitions of three levels of effect sizes (small, 
medium, and large) with different quantitative levels for the different types of statistical test. In 
information systems (IS) research and in the behavioral sciences, the operationalized definitions 
of the effect size for each of these categories have become a research standard for the most 
commonly used statistical tests (Baroudi and Orlikowski, 1989; Rademacher, 1999).  
 
Table 2. Determinants of statistical power. 

Significance criterion (α) The chosen risk of committing a Type I error (e.g. α = 0.05). 

Sample size (N) The total number of subjects included in the analysis of data. 

Effect size (ES) The magnitude of the effect under the alternate hypothesis (e.g. d = 0.5). 
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Table 3: Effect-size indexes and their values for small, medium, and large effects for the most 
common statistical tests (Cohen, 1992, p. 157). 

  Effect Size 

Statistical Test Effect-Size Index Small Medium Large 

1. The t-test for the difference between 
two independent means σσσσ

BA mm
d

−
=  .20 .50 .80 

2. The t-test for the significance of  
a product-moment correlation 
coefficient, r 

R .10 .30 .50 

3. The test for the difference between 
two independent rs BA zzq −=  .10 .30 .50 

4. The normal curve test for the 
difference between two independent 
proportions 

BAh φφ −=  .20 .50 .80 

5. The chi-square test for goodness of 
fit (one-way) or association in two-
way contingency tables 

( )∑
=

−
=

k

i i

ii

P
PP

w
1 0

2
01  .10 .30 .50 

6. One-way analysis of variance 
σ

σ mf =  .10 .25 .40 

7. Multiple and multiple partial 
correlation 2

2
2

1 R
Rf
−

=  .02 .15 .35 

 
Cohen established these conventions in 1977 (Cohen, 1977), and they have been fixed ever 
since. His intent was that “medium [effect size] represents an effect likely to be visible to the 
naked eye of a careful observer ... small [effect size] to be noticeably smaller than medium but 
not so small as to be trivial, and ... large [effect size] to be the same distance above medium as 
small was below it.” (Cohen, 1992:156). Table 3 gives the definition of the ES indices and the 
corresponding ES values for the most common statistical tests. These ES values enable the 
comparison of power levels across studies in this survey, as well as across surveys conducted in 
other disciplines. As an example, the ES index for the t-test of the difference between 
independent means, d, is the difference expressed in units of the within-population standard 
deviation. For this test, the small, medium, and large ESs are, respectively, d = .20, .50, and .80. 
Thus, an operationally defined medium difference between means is half a standard deviation.  

3 Research method 
We assessed all the 103 papers on controlled experiments (of a total of 5453 papers), identified 
by Sjøberg et al. (2005), published in nine major software engineering journals and three 
conference proceedings during the decade 1993-2002 (Table 4). These journals and conference 
proceedings were chosen because they were considered to be representative of ESE research. 
Furthermore, since controlled experiments are empirical studies that employ inferential statistics, 
they were considered a relevant sample in this study. 
 
Since the term “experiment” is used inconsistently in the software engineering community (often 
being used synonymously with empirical study), we use the term “controlled experiment”. A 
study was defined as a controlled experiment if individuals or teams (the experimental units) 
conducted one or more software engineering tasks for the sake of comparing different 
populations, processes, methods, techniques, languages, or tools (the treatments). We did not 
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distinguish between randomized experiments and quasi-experiments in this study, because both 
designs are relevant to ESE experimentation.  
 
We excluded several types of study that share certain characteristics with experiments. While 
these might be highly relevant for the field, they are not controlled experiments as defined above. 
Thus, we excluded correlation studies, studies that are based solely on calculations on existing 
data, and simulated team evaluations that use data for individuals. Studies that used projects or 
companies as treatment groups, in which data was collected at several levels (treatment defined, 
but no experimental unit defined) were also excluded because we consider these to be multiple 
case studies (Yin, 2003).  
 
In order to identify and extract controlled experiments, one researcher systematically read the 
titles and abstracts of the 5453 scientific articles. Excluded from the search were editorials, 
prefaces, article summaries, interviews, news, reviews, correspondence, discussions, comments, 
reader’s letters and summaries of tutorials, workshops, panels and poster sessions. If it was 
unclear from the title or abstract whether a controlled experiment was described, the complete 
article was read by two researchers.  

 All articles 
1993 - 2002 

n = 5453 

Not controlled 
experiments 

n = 5350 

Controlled 
experiments 

n = 103 

Excluded* 
n = 25 

Analyzed 
n = 78 

 

Figure 2: Results of the literature review. *25 articles were excluded due to duplicate reporting, 
no statistical analysis or unspecified statistical tests. 

Table 4. Distribution of ESE studies employing controlled experiments: Jan. 1993 – Dec. 2002. 

Journal/Conference Proceeding Number Percent 

Journal of Systems and Software (JSS)  24 23.3 

Empirical Software Engineering (EMSE)  22 21.4 

IEEE Transactions on Software Engineering (TSE)  17 16.5 

International Conference on Software Engineering (ICSE)  12 11.7 

IEEE International Symposium on Software Metrics (METRICS)  10 9.7 

Information and Software Technology (IST)  8 7.8 

IEEE Software  4 3.9 

IEEE International Symposium on Empirical Software Engineering (ISESE)  3 2.9 

Software Maintenance and Evolution (SME)  2 1.9 

ACM Transactions on Software Engineering (TOSEM)  1 1.0 

Software: Practice and Experience (SP&E)  – – 

IEEE Computer  – – 



– 7 – 

TOTAL:  103 100% 

Table 5. Distribution of statistical tests employed in 92 controlled SE experiments. 

Statistical test Number Percent 

ANOVA 179 39.0 

t-test 117 25.5 

Wilcoxon 41 8.9 

Mann-Whitney 39 8.5 

Fisher’s exact test 15 3.3 

Chi-square 14 3.1 

Kruskall-Wallis 8 1.7 

Other tests 46 10.0 

TOTAL: 459 100% 

 
 
These criteria were met by 103 articles, which reported 113 experiments, (Table 4). All of them 
involved a number of significance tests. However, not all of these were equally relevant to the 
hypotheses of the studies. In fact, it was not always clear from the reporting of the studies which 
hypotheses were actually tested or which significance tests corresponded to which hypotheses.  
 
The first two authors read all 103 articles included in the main study (Sjøberg et al., 2005) in 
detail and made separate extractions of the power data. Based on these two data sets, all three 
authors reviewed all tests in all experiments to reach a consensus on which experiments and tests 
to include. For 14 experiments, no statistical analysis was performed and for seven experiments, 
we did not manage to track which tests answered which hypothesis or research question. Five 
experiments were reported in more than one article. In these cases, we included the one most 
recently published. This assessment resulted in 78 articles (Figure 2). Of these articles, we 
identified 459 statistical tests corresponding to the main hypotheses or research questions of 92 
experiments.  
 
Similar to the methodology used by Baroudi and Orlikowski (1989) for MIS research, both 
parametric and nonparametric tests of the major hypotheses were included in this study. Table 5 
shows the distribution of the 459 statistical tests in the final sample for which statistical power 
could be determined post hoc. The main parametric tests were Analysis of Variance (ANOVA) 
and t-tests. The main nonparametric tests were Wilcoxon, Mann-Whitney, Fisher’s exact test, 
Chi-square, and Kruskall-Wallis. Other tests include Tukey’s pairwise comparison (18), 
nonparametric rank-sum test (6), Poisson (3), regression (3), Mood’s median test (2), proportion 
(2), and Spearman rank correlation (2). 
 
The power of the nonparametric tests was determined by using analogous parametric tests where 
appropriate (Cohen, 1962, 2001; Hays, 1994; Kraemer and Thiemann, 1987). For example, the t-
test for means approximates to the Mann-Whitney U test and the Wilcoxon rank test, the 
parametric F test to the Kruskal-Wallis H test, and Pearson’s r to the Spearman Rank 
Correlation. Chi-square approximations were not needed since Cohen provided separate tables 
to determine its power. 
 
Following the post hoc method, the power of each test was determined by using the stated 
sample size, setting the α level to the conventional level of .05, and choosing the nondirectional 
critical region for all power computations. Furthermore, power was calculated in relation to 
Cohen’s (1988) definitions of small, medium, and large effect sizes. This is similar to that of 
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past surveys of statistical power in other disciplines, such as IS research (e.g., Baroudi and 
Orlikowski, 1989; Rademacher, 1999). All power calculations were made using SamplePower 
2.0 from SPSS1. 

4 Results 
The 78 articles selected for this study with available data for calculating power yielded 459 
statistical tests of the major hypotheses being investigated in the 92 reported controlled 
experiments. Table 6 shows the distribution of sample size for the experiments by type of 
statistical test. On average, the statistical tests covered 55 observations. However, the high 
standard deviation for several of the tests reveals a large amount of variation in sample sizes. 
For example, among the ANOVA subsample the average sample size was 79, yet 165 of the 179 
tests examined had an average sample size of 50, while the remaining 14 tests had an average of 
450. Similarly, for the Chi-square subsample the average sample size was 126. However, two of 
the tests had a sample size of 531 observations, while the average sample size of the remaining 
12 tests was 58 observations. Also, in the group of other tests, with an average sample size of 39 
observations, the three regression tests had a sample size of 242 observations, while the average 
sample size for the remaining 43 tests was 25 observations. 
 
Several of the experiments surveyed in this study used within-subject designs so that each 
subject contributed several observations to the sample size of a statistical test. The most 
extreme cases were as follows: one study that used 800 observations from 100 subjects for an 
ANOVA test; another study that used 564 observations from 94 subjects for an ANOVA test; 
and yet another study that used 531 observations from 266 subjects in a Chi-square test. The 
latter study was also the one with the highest number of subjects in our sample. 
 
So, while the average sample size of all 459 statistical tests in this study was 55 observations, 
with a standard deviation of 87, the median sample size was as low as 34 observations. 
Correspondingly, the average number of subjects in the surveyed experiments was 48, with a 
standard deviation of 51 and a median of 30. As a comparison, the average sample size of all 
tests in Rademacher’s (1999) power study in IS research was 179 subjects (with a standard 
deviation of 196). 

Table 6. Distribution of sample sizes (observations) occurring in 92 controlled SE experiments. 

Statistical test Mean Std. Min Median Max 

ANOVA 79 118 6 65 800 

t-test 34 29 5 30 136 

Wilcoxon 40 23 10 34 78 

Mann-Whitney 34 13 6 32 66 

Fisher’s exact test 40 27 16 20 74 

Chi-square 119 180 10 30 531 

Kruskall-Wallis 26 19 15 15 69 

Other 38 57 10 16 242 

TOTAL: 55 87 5 34 800 

                                                 
1 See www.spss.com/samplepower/ 
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Table 7. Frequency and cumulative percentage distribution of power in 92 controlled SE 
experiments. 

 _Small effect size_ _Medium effect size_ _Large effect size_ 

Power level Frequenc
y 

Cum. % Frequenc
y 

Cum. % Frequenc
y 

Cum. % 

.91 - .99 – – 18 100% 69 100% 

.81 - .90 1 100% 11 96% 75 85% 

.71 - .80 – 100% 14 94% 49 69% 

.61 - .70 2 100% 13 91% 70 58% 

.51 - .60 9 99% 44 88% 58 43% 

.41 - .50 2 97% 50 78% 21 30% 

.31 - .40 – 97% 76 67% 43 25% 

.21 - .30 13 97% 107 51% 43 16% 

.11 - .20 120 94% 94 27% 31 7% 

.00 - .10 312 68% 32 7% – – 

TOTAL: 459 – 459 – 459 – 

Average power: 0.11 0.36 0.63 

 
 
Table 7 presents the power distribution of the 459 statistical tests in the 92 experiments using 
Cohen’s conventional values for small, medium, and large effect sizes (see Table 3): 
 
Small effect size: The average statistical power of the tests when we assumed small effect sizes 
was as low as .11. This means that if the phenomena being investigated exhibit a small effect 
size, then, on average, the SE studies examined have only a one in ten chance of detecting them. 
Table 7 shows that only one test is above the .80 conventional power level and that 97% have a 
less than 50 percent chance of detecting significant findings. 
 
Medium effect size: When we assume medium effect sizes, the average statistical power of the 
tests increases to .36. Although this is an improvement over the .11 power level achieved by 
tests of small effect sizes, the studies only have, on average, just about a one-third chance of 
detecting phenomena exhibiting a medium effect size. Table 7 indicates that only 6% of the tests 
examined achieve the conventional .80 power level or better, and that 78% of the tests have a 
less than 50 percent chance of detecting significant results. 
 
Large effect size: Assuming large effect sizes, the average statistical power of the tests increases 
further, to .63. This means that, on average, the studies still have slightly less than a two-thirds 
chance of detecting their phenomena. As can be seen from Table 7, 31% of the tests attain or 
exceed the .80 power level, and 70% obtain a greater than 50 percent chance of correctly 
rejecting their null hypotheses. Thus, even when we assume that the effect being studied is so 
large as to make statistical testing unnecessary, as much as 69% of the tests fall below the .80 
level. 
 
Table 8 presents the power of the studies by type of statistical test employed. None of the tests 
reaches the conventional .80 power level; not even when we assume large effect sizes. ANOVA 
and t-tests account for almost two-thirds of all statistical analyses in controlled SE experiments, 
yet their mean power level for detecting large effect sizes is only .67 and .61 respectively, while 
the corresponding power levels assuming medium effect sizes are as low as .40 and .33.  
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In summary, this quantitative assessment revealed that controlled SE experiments, on average, 
only have a two-thirds chance of detecting phenomena with large effect sizes. The corresponding 
chance of detecting phenomena with medium effect sizes is around one in three, while there is 
only a one in ten chance of detecting small effect sizes. 
 
Finally, a qualitative assessment of the treatment of power within the sampled studies revealed 
an interesting pattern. Of the 78 papers in our sample, 12 discussed the statistical power 
associated with the testing of null hypotheses. Of these studies, nine elaborated on the specific 
procedures for determining the statistical power of tests. Three of the nine performed a priori 
power analysis, while six performed the analysis a posteriori. Only one of the papers that 
performed an a priori power analysis used it to guide the choice of sample size. In this case, the 
authors explicitly stated that they were only interested in large effect sizes and that they regarded 
a power level of 0.5 as sufficient. Still, they included so few subjects in the experiment that the 
average power to detect a large effect size of their statistical tests was as low as 0.28. Of the six 
papers that performed a posteriori power analysis, two gave recommendations for the necessary 
sample sizes in future replication studies. Thus, overall, 84.6% of the sampled experimental 
studies did not reference the statistical power of their significance tests. 

Table 8. Power analysis by type of statistical test in 92 controlled SE experiments. 

 _Small effect size_ _Medium effect size_ _Large effect size_ 

Statistical test Means Std. Dev. Means Std. Dev. Means Std. Dev. 

ANOVA .12 .11 .40 .24 .67 .28 

t-test .10 .03 .33 .17 .61 .23 

Wilcoxon .12 .05 .46 .24 .74 .24 

Mann-Whitney .09 .02 .29 .10 .59 .19 

Fisher’s exact test  .06 .05 .25 .22 .49 .34 

Chi-square .18 .20 .43 .33 .64 .28 

Kruskall-Wallis .09 .02 .31 .15 .59 .28 

Other .10 .11 .26 .25 .44 .24 

5 Discussion 
In this section, we discuss the implications of the findings in this study for the interpretation of 
experimental SE research. We suggest several ways to increase statistical power, and we 
provide recommendations for future research. First, however, we compare the main findings in 
the current study with the related discipline of IS research. 

5.1 Comparison with IS research 
We compared the results of the current study with two corresponding reviews of the statistical 
power levels in IS research performed by Baroudi and Orlikowski (1989) and Rademacher 
(1999). In the former study, 63 statistically-based studies were identified from the issues of 
Communications of the ACM, Decision Sciences, Management Science, and MIS Quarterly over 
the five-year period from January 1980 to July 1985. The final sample included 149 statistical 
tests from 57 studies. In the latter study, 65 statistically-based studies that employed 167 
statistical tests were selected from MIS Quarterly over the seven-year period from January 1990 
to September 1997. In comparison, the current study included 92 controlled experiments that 
comprised 459 statistical tests published in nine major software engineering journals and three 
conference proceedings during the decade 1993-2002 (see Tables 4 and 5). 
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Statistical power in the two IS research studies and the current SE research study for small, 
medium, and large effect sizes are compared in Table 9. The results of the two IS studies 
indicate that the power levels for all effect sizes have improved substantially in the decade 
between the two studies. Furthermore, the results show that IS research now meets the desired 
power level of .80 specified by Cohen (1988) for medium effect sizes, which is assumed as the 
target level by most IS researchers (Rademacher, 1999). 
 
The results of the current study show that the power of experimental SE research falls markedly 
below the levels attained by IS research. One reason for this difference might be that the IS field 
has benefited from the early power review of Baroudi and Orlikowski (1989), and thus explicit 
attention has been paid to statistical power, which has paid off with contemporary research 
displaying improved power levels, as demonstrated by Rademacher (1999). What is particularly 
worrying for SE research is that the power level displayed by the current study not only falls 
markedly below the level of 1999 study by Rademacher, but that it also falls markedly below 
the level of the 1989 study by Baroudi and Orlikowski. 
 
While medium effect sizes are considered the target level in IS research (Rademacher, 1999), 
and the average power to detect these effect sizes are .81 in IS research, Table 7 indicates that 
only 6% of the tests examined in the current research achieve this level, and that as much as 
78% of the tests in the current research have a less than 50 percent chance of detecting 
significant results for medium effects. Unless it can be demonstrated that medium (and large) 
effect sizes are irrelevant to SE research, this should be a cause for concern for SE researchers 
and practitioners. Consequently, we should explore in more depth what constitutes meaningful 
effect sizes within SE research, in order to establish specific SE conventions. 
 
A comparison of power data for the two most popular types of statistical test in experimental SE 
research, with the corresponding tests in IS research, is provided in Table 10. As can be seen 
from Table 5, these tests (ANOVA and t-test) constitute about two-thirds of the statistical tests 
in our sample. The results show that, on average, IS research employ sample sizes that are twice 
as large as those found in SE research for these tests. In fact, the situation is a little worse than 
that, since observations are used as the sample size in the current study, while the IS studies 
refer to subjects. Moreover, the power levels of the current study to detect medium effect sizes 
are only about half of the corresponding power levels of IS research. 

Table 9: Comparison of current survey with statistical power values in prior IS research. 

  Means for different effect-size assumptions 

Related IS study No. of Articles Small Medium Large 

Baroudi and Orlikowski (1989) 57 .19 .60 .83 

Rademacher (1999) 65 .34 .81 .96 

Current study 78 .11 .36 .63 
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Table 10: Comparison of the two most popular types of tests in the current survey with 
corresponding power data for IS research. 

Statistical test 
Baroudi and 

Orlikowski (1989) Rademacher (1999) Current study 

ANOVA (medium effect size):    

 Sample size1 64 136 79 

 Power (mean value) .56 .82 .40 

 Power (std. deviation) .30 .19 .24 

t-test (medium effect size):    

 Sample size1 45 70 34 

 Power (mean value) .53 .74 .33 

 Power (std. deviation) .27 .18 .17 

1Note that sample size in the two IS studies refers to subjects, while in the current study it refers to 
observations. 

5.2 Implications for interpreting experimental SE research 
An important finding of this study is that explicit consideration of power issues, e.g., in terms of 
discussion, use, and reporting of statistical power analysis, in experimental SE research is very 
limited. As mentioned above, 15.4% of the papers discussed statistical power in relation to their 
testing of the null hypothesis, but in only one paper did the authors perform an a priori power 
analysis. In addition, and perhaps as a consequence, the post hoc power analyses showed that, 
overall, the studies examined had low statistical power. Even for large effect sizes, as much as 
69% of the tests fell below the .80 level. This implies that considerations of statistical power are 
underemphasized in experimental SE research.  
 
Two major issues that are particularly important for experimental SE research arise from this 
underemphasis of statistical power: (1) the interpretation of results from individual studies and 
(2) the interpretation of results from the combination or replication of empirical studies (Lindsay 
and Ehrenberg, 1993; Maxwell, 2004; Miller et al., 1997; Miller, 2000; Pickard et al., 1998). As 
mentioned above, a test without sufficient statistical power will not provide the researcher with 
enough information to draw conclusions regarding the acceptance or rejection of the null 
hypothesis. If no effects are detected in this situation, researchers should not conclude that the 
phenomenon does not exist. Rather, they should report that no significant findings were 
demonstrated in their study, and that this may be due to the low statistical power associated with 
their tests. 
 
Another issue regarding the interpretation of results from individual studies with low power is 
the use of multiple tests. In this case, which included 91.3% of the experiments, the probability 
of obtaining at least one statistically significant effect might be large, even if the probability that 
any specific effect is statistically significant is small (see Miller, 2004). As an example, recall 
from Table 7 that the probability that a medium effect size is statistically significant is only .36. 
At the same time, the 84 experiments in this study with more than one test had an average of 5.4 
tests per experiment. Thus, with this number of tests, we would expect about two statistically 
significant results for medium effect sizes in each of the experiments in this study. So, although 
power is sufficient for attaining statistical significance somewhere, it is not sufficient for any 
specific test. Again, this inadequate power for testing specific effects makes it difficult to 
interpret properly the results of any single study. It would be helpful, therefore, if researchers 
reporting results from statistical hypothesis testing were to distinguish between the tests of 
primary and secondary hypotheses. 
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Low statistical power also has a substantial impact on the ability to replicate experimental 
studies based on null hypothesis testing. Ottenbacher (1996) nicely demonstrates an apparent 
paradox that results from the replication of such low powered studies, showing that: 
 

… the more often we are well guided by theory and prior observation, but conduct a low power 
study, the more we decrease the probability of replication! Thus a literature with low statistical 
power is not only committing a passive error, but can actually contribute to diverting attention 
and resources in unproductive directions (ibid., 273). 

 
Consequently, the tendency to underpower SE studies makes replication and meta-analysis 
troublesome, and will tend to produce an inconsistent body of literature, thus hindering the 
advancement of knowledge. 
 
The results of our review also raise another important issue: the interpretation of studies with 
very high levels of power. Some of the studies in this review employed large sample sizes, 
ranging from 400 to 800 observations. This poses a problem for interpretation, because virtually 
any study can be made to show significant results if the sample size is large enough, regardless 
of how small the true effect size may be (Hays, 1994). Hence, it is of particular importance that 
researchers who report statistically significant results from studies with very large sample sizes, 
or with very large power levels, also report the corresponding effect sizes. This will put the 
reader in a better position to interpret the results and judge whether the statistically significant 
findings have practical importance. 

5.3 Ways to increase statistical power 
Increase the size of the sample: The most obvious way to increase the statistical power of a 
study is to increase the size of the sample. However, there is invariably some cost in terms of 
time, effort, and money per subject that must be considered. With this in mind, most researchers 
try to use the smallest number of subjects necessary to have a reasonable chance of obtaining 
significant results with a meaningful effect size (Cohen, 2001). However, while using only a few 
subjects may result in meaningful effects not being detected, trivial effects may show up as 
significant results when the sample size is very large. Consequently, if the researcher wants 
significance to reflect a sizable effect and also wants to avoid being led into a blind alley by a 
significant result, attention should be paid to both aspects of sample size. As a general rule, the 
sample size should be large enough to give confidence that meaningful effects will be detected. 
At the same time, the reporting of effect sizes will ensure that trivial associations will be 
detected even though they might be statistically significant. 
 
Relax the significance criterion: Power can also be increased by relaxing the significance 
criterion. This approach is not common, however, because of widespread concern about keeping 
Type I errors to a fixed, low level of, e.g., .01 or .05. Still, as the example of the Challenger 
space shuttle showed, the significance criterion and the power level should be determined by the 
relative seriousness of Type I and Type II errors. Thus, researchers should be aware of the costs 
of both types of errors when setting the alpha and power levels, and must make sure that they 
explain the consequences of the raised probability of Type I errors if they relax the significance 
criterion. When possible, researchers should analyze the relative consequences of Type I and 
Type II errors for the specific treatment situation under investigation. 
 
Choose powerful statistical tests: In general, parametric tests are more powerful than their 
analogous nonparametric tests (Kraemer and Thiemann, 1987). Thus, the power of a study can 
most often be increased by choosing an appropriate parametric test. It is important to note, 
however, that these tests make a number of assumptions about the properties (parameters) of the 
populations, such as the mean and standard deviation, from which samples are drawn. On the 
other hand, given the empirical evidence for the robustness and enhanced power provided by 
parametric tests, “researchers are encouraged to use the parametric test most appropriate for 
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their study and resort to non-parametric procedures only in the rare case of extreme assumption 
violations” (Baroudi and Orlikowski, 1989, p. 98). 
 
The power of a test can also be increased by retaining as much information as possible about the 
dependent variable. In general, tests comparing data categorized into groups are less powerful 
than tests using data measured along a continuum. As Baroudi and Orlikowski (1989) 
recommend, “statistics that permit continuous data to be analyzed in continuous form, such as 
regression, should be used over those that require data to be divided in groups, such as the 
analysis of variance” (p. 99). 
 
Furthermore, as we have already noted, the direction of the significance criterion also affects the 
power of a statistical test. A directional, one-tailed test will yield higher power than a non-
directional two-tailed test at the same alpha level, provided that the sample results are in the 
predicted direction. Note, however, that a directional test has no power to detect effects in the 
direction opposite to that predicted. Thus, the primary guide for the researcher deciding whether 
a hypothesis should be tested with a directional or non-directional test must be the comparative 
term of the original research question. 
 
Reduce measurement error and subject heterogeneity: The larger the variance on the scores 
within the treatment and control groups, the smaller the effect size and the power will be. One 
source of such variance is measurement error, i.e. variability in scores that is unrelated to the 
characteristic being measured. Another source is the heterogeneity of subjects on the measure 
(Lipsey, 1990). Thus, anything that makes the population standard deviation small will increase 
power, other things being equal.  
 
In general, subject heterogeneity can be reduced by selecting or developing measures that do not 
discriminate strongly among subjects. If the measure, nevertheless, does respond substantially to 
subject differences, these could be reduced statistically during data analysis. To reduce such 
variance, and thus increase statistical power, the researcher can utilize a repeated measures or 
paired subjects design, or a factorial design that employs blocking, stratification, or matching 
criteria (Shadish et al., 2002). Researchers can also reduce subject heterogeneity by employing a 
research design that covaries a pretest measure with the dependent variable (Cook and 
Campbell, 1979). 
 
Measurement error can be reduced by exercising careful control over experimental subjects and 
conditions. In addition, the researcher can use some form of aggregation, or averaging, of 
multiple measures that contain errors individually, to reduce the influence of error on the 
composite scores (Nunnally and Bernstein, 1994; Spector, 1992). So, whenever applicable, the 
researcher should use reliable, multi-item measures to increase power (Dybå, 2000). 
 
Balance groups: The statistical power of a study is based less on the total number of subjects 
involved than on the number in each group or cell within the design. In addition, because the 
power of a test with unequal group sizes is estimated using the harmonic mean (Cohen, 1988), 
the “effective” group size is skewed toward the size of the group with the fewest subjects. Thus, 
with a fixed number of subjects, maximal statistical power is attained when they are divided 
equally into treatment and control groups (Lipsey, 1990). Researchers should, therefore, try to 
obtain equal, or in the case of factorial designs, proportional, group sizes rather than getting a 
large sample size that results in there being unequal or disproportional groups (Baroudi and 
Orlikowski, 1989). 
 
Investigate only relevant variables: One of the best strategies for increasing statistical power is 
to use theory and prior research to identify those variables that are most likely to have an effect 
(Lipsey, 1990). Careful selection of which independent variables to include and which variables 
to exclude is, thus, crucial to raising the power of a study and the legitimacy of its potential 
findings. Kraemer and Thiemann (1987) suggested that only factors that are absolutely necessary 



– 15 – 

to the research question, or that have a documented and strong relationship to the response, 
should be included in a study. Accordingly, they recommended “Choose a few predictor 
variables and choose them carefully.” (p. 65), or as McClelland (2000) put it: “Doubling one’s 
thinking is likely to be much more productive than doubling one’s sample size.” (p. 964). 
 
In summary, when criterion significance and power levels are set, and a threshold for the 
minimum effect size to be detected has been decided, the two primary factors for consideration 
in a power analysis are the operative effect size and the sample size. Since much of what 
determines effect size has to do with the selection of measures, statistical analysis, treatment 
implementation, and other issues that are intrinsic parts of the research design, effect size 
enhancements are, generally, more cost-effective to engineer than are sample size increases 
(Lipsey, 1990). However, determining how best to enhance the effect size requires some analysis 
and diagnosis of these factors for the particular research situation at hand. A tactic that is almost 
always effective, though, is procedural and statistical variance control. Procedural variance 
control means tight standardization of treatment and control conditions, sampling, and 
measurement, while statistical variance control uses such techniques as covariates or blocking 
factors to separate variance judged irrelevant to the assessment of treatment effects from the 
error term for significance testing (see above). As shown by Lipsey (1990), such techniques can 
sometimes increase the operative effect size two or threefold or even more.  
 
Thus, when designing SE experiments, the goal should be to obtain the largest possible effect 
size with the smallest investment in the number of subjects studied. This presupposes that the 
researcher understands the factors that influence statistical power and skilfully applies that 
knowledge in the planning and implementation of each study undertaken. For a more in-depth 
treatment of these issues, see Lipsey’s (1990) excellent work on design sensitivity to the 
statistical power of experimental research. 

5.4 Limitations 
The main limitations of this study are publication selection bias and inaccuracy in data 
extraction. As the basis for our investigation was the recent survey of controlled SE experiments 
performed by Sjøberg et al. (2005), the current study has the same publication selection basis as 
the main study. However, we consider the 12 surveyed journals and conferences to be leaders in 
software engineering in general and empirical software engineering in particular. Besides, 
Sjøberg et al.’s selection of journals is a superset of those selected by others (e.g., Glass et al., 
2002; Zelkowitz and Wallace, 1997). Nevertheless, if the main study also had included the grey 
literature (theses, technical reports, working papers, etc.) on controlled SE experiments, the 
current study could, in principle, provide more data and possibly allow more general conclusions 
to be drawn (Kitchenham, 2004). Regarding the selection of articles, the main study utilized a 
multistage process involving several researchers who documented the reasons for 
inclusion/exclusion as suggested in (Kitchenham, 2004) (see Sjøberg et al., 2005). 
 
As described in Section 3, the first two authors read all 103 articles included in the main study 
in detail and made separate extractions of the power data. Based on these two data sets, all three 
authors reviewed all tests in all experiments to reach a consensus on which experiments and tests 
to include. However, because it was not always clear from the reporting of the studies which 
hypotheses were actually tested, which significance tests corresponded to which hypotheses, or 
how many observations that were included for each test, the extraction process may have 
resulted in some inaccuracy in the data. 

5.5 Recommendations for future research 
Based on the problems that we have identified that are associated with statistical power in 
experimental SE research, we offer some recommendations to SE researchers who perform null 
hypothesis testing.  
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First, before embarking on studies involving statistical inference, we recommend that SE 
researchers plan for acceptable power on the basis of attention to the effect size, either by 
assessing previous empirical research in the area and using the effect sizes found in these studies 
as a guide, or by looking at their own studies and pilot studies for guidance. However, due to the 
limited number of empirical studies in SE this approach may be difficult to apply (Miller et al., 
1997). Alternatively, researchers can use a judgmental approach to decide what effect size they 
are interested in detecting. However, until there is a better basis for establishing conventions 
specific to SE, we recommend the same general target level of medium effect sizes as used in IS 
research, determined according to Cohen’s (1988) definitions. 
 
Second, we recommend that SE researchers analyze the implications of the relative seriousness 
of Type I and Type II errors for the specific treatment situation under investigation. Unless there 
are specific circumstances, we do not recommend that researchers relax the commonly accepted 
norm of setting alpha to .05. Similarly, we recommend that SE researchers plan for a power level 
of at least .80 and perform power analyses accordingly. Thus, rather than relaxing alpha, we 
generally recommend increasing power to better balance the probabilities of committing Type I 
and Type II errors. 
 
Third, in agreement with Kitchenham et al. (2002) and Wilkinson et al. (1999), we recommend 
that significance tests of experimental studies be accompanied by effect size measures and 
confidence intervals to better inform readers. In addition, studies should report the data for 
calculating such items as sample sizes, alpha level, means, standard deviations, statistical tests, 
the tails of the tests, and the value of the statistics. 
 
Finally, we recommend that journal editors and reviewers pay closer attention to the issue of 
statistical power. This way, readers will be in a better position to make informed decisions about 
the validity of the results and meta-analysts will be in a better position to perform secondary 
analyses. 

6 Conclusion 
The purpose of this research was to perform a quantitative assessment of the statistical power of 
current experimental SE research. Since this is the first study of its kind in SE research, it was 
not possible to compare the statistical power data of the current study with prior experimental 
SE research. Therefore, we found it useful to draw on the related discipline of IS research, 
because this provided convenient baseline data for measuring and validating the results of the 
statistical power analysis of this research. 
 
The results showed that there is inadequate attention to power issues in general, and that the 
level of statistical power in SE research falls substantially below accepted norms as well as 
below the levels found in the related discipline of IS research. For example, only six percent of 
the studies in this analysis had power of .80 or more to detect a medium effect size, which figure 
is assumed as the target level by most IS researchers. 
 
In conclusion, attention must be directed to the adequacy of sample sizes and research designs in 
experimental SE research to ensure acceptable levels of power (i.e., 1–ββββ ≥ .80), assuming that 
Type I errors are to be controlled at αααα  = .05. At a minimum, the current reporting of significance 
tests should be enhanced by reporting the effect sizes and confidence intervals to permit 
secondary analysis and to allow the reader a richer understanding of, and an increased trust in, a 
study’s results and implications. 
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Appendix A: A numeric guide to sample size for the t-test 
We assume that a researcher plans to test a non-directional hypothesis that two means do not 
differ by conducting a controlled experiment with one experimental and one control group. Such 
a study can be analyzed suitably with an unpaired t-test with two-tailed rejection regions. 
 
The effect size index (d) under these circumstances can be calculated by 
 

σ
CE MM

d
−

=  

 
where ME is the mean score of the experimental group; 
 MC is the mean score of the control group; and 
 σ is the standard deviation based on either group or both. 
 
A small effect size would be d = .2, a medium effect size would be d = .5, while a large effect 
size would be d = .8. 
 
The sample size2 (N) required for each group as a function of effect size, alpha, and power is 
shown in Table A.13. As an example, if the researcher wants to be able to detect a medium 
difference (d = .5) between the two independent means at α = .05, a sample size of N = 64 is 
required in each group. Similarly, at the same alpha level, if the researcher has 60 subjects 
available for the experiment, a power level of .85 will be attained for detecting a large effect 
size. Alternatively, by relaxing the alpha level to .10, 30 subjects in each group would yield a 
power of .60 to detect a medium effect size. 

Table A.1: A numeric guide to sample size for small, medium, and large effects sizes for 
different values of α and power for a two-tailed t-test. 

 α = .01 α = .05 α = .10 

Power d = .2 d = .5 d = .8 d = .2 d = .5 d = .8 d = .2 d = .5 d = .8 

.95 893 145 58 651 105 42 542 88 35 

.90 746 121 49 527 86 34 429 70 28 

.85 655 107 43 450 73 30 361 59 24 

.80 586 96 39 394 64 26 310 51 21 

.75 530 87 35 348 57 23 270 44 18 

.70 483 79 32 310 51 21 236 39 16 

.65 441 72 30 276 45 19 207 34 14 

.60 402 66 27 246 41 17 181 30 12 

.55 367 61 25 219 36 15 158 26 11 

.50 334 55 23 194 32 14 136 23 10 

                                                 
2 In fact, the samples size in the table represents the harmonic mean of the sample sizes in the treatment and 
control groups. 
3 Calculation of the sample sizes in Table A.1 was made with SamplePower 2.0 from SPSS. 
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