Exploiting Event-Based Communication for Real-Time
Distributed and Parallel Video Content Analysis

Doctoral Dissertation by

Viktor S. Wold Eide

Submitted to the Faculty of Mathematics and Natural
Sciences at the University of Oslo in partial
fulfillment of the requirements for
the degree Dr. Scient. in Computer Science

June 2005






To my family






Abstract

Fueled by the rapid and continuous technical advances, equipment for generating dig-
ital video is already quite inexpensive and prices are falling. Combined with progress
in wireless technologies, devices with both network and video capabilities will be-
come ubiquitous. The physical size of such video and network enabled devices is
also shrinking, increasing potential usage even further. These advances create op-
portunities for exploiting video data from a large number of distributed devices in
different kinds of applications. Example applications include systems for environ-
mental surveillance and road traffic monitoring and regulation. Consequently, we
believe that real-time video data from such distributed devices will play a central
role in many different application areas, and these opportunities have motivated our
research.

Clearly, a lot of applications will benefit from, or even require, an automatic ap-
proach, where computers analyze the video data in real-time. However, utilizing the
potential steady flow of video data from such devices is not straight forward, and the
causes of difficulties are manifold. Efficient streaming of video data from sources to
a potentially large number of heterogeneous receivers is necessary, due to the mas-
sive amount of data. The computational complexity of video analysis algorithms also
represents a challenge. Additionally, real-time requirements add to these challenges,
as the number of calculations available for processing each video frame is limited by
time. These limitations can often be reduced by distributed and parallel processing,
where the analysis is done cooperatively by a number of computers. However, devel-
oping such distributed and parallel real-time applications is a complicated and time
consuming process. These challenges have been addressed in our research within the
domain of real-time distributed and parallel video content analysis.

The contributions of this thesis are mainly within three areas — event-based com-
munication, video streaming, and real-time distributed and parallel video processing.

First, the thesis shows that the requirements for the targeted application domain
fit well to the publish/subscribe interaction paradigm, leading to an event-based inter-
action model. Event-based systems differ with respect to the data model for the noti-
fications and the expressiveness of the subscription language. We argue that content-

\Y



Vi Abstract

based event notification services are preferable, due to their expressiveness and hence
flexibility. In spite of their added complexity, this thesis demonstrates that distributed
content-based event notification services are both beneficial and suitable for real-time
distributed and parallel video content analysis.

Second, we demonstrate the potential of exploiting such a content-based event no-
tification service for multi-receiver video streaming. The novelty of our approach is
that each video receiver is provided with independent and fine granularity selectivity
along different video quality dimensions, such as region of interest, signal to noise ra-
tio, colors, and temporal resolution. At the same time efficient delivery is maintained,
in terms of network utilization and end node processing requirements. In this respect
our approach represents a general and viable solution to the heterogeneity challenge
in multi-receiver video streaming.

Third, with respect to real-time distributed and parallel video processing, this
thesis demonstrates that the need for application level filtering and transformation
of video data is reduced, by exploiting content-based event notification services for
video streaming. Since different computers may subscribe to different parts of the
video signal, a better match is provided between what is required and what is deliv-
ered and decoded. Hence, efficiency is improved compared to other video streaming
technigues. Event-based communication provides a level of indirection and is shown
to be a key factor for achieving flexible parallelization and distribution. Hence, appli-
cation development is simplified and available processing resources can more easily
be focused on processing bottlenecks.

The work presented in this thesis has been done within the design paradigm, that
is, based on requirement analysis, specification, and design, prototypes were imple-
mented and validated by testing. We conducted experiments for each area addressed
— event-based communication, video streaming, and real-time distributed and par-
allel video processing. For validation purposes, the techniques from these individual
areas have also been combined with state of the art techniques for distributed classi-
fication and integrated into a real-time distributed and parallel video content analysis
application. The developed software has been made available as open source and as
such allows others to validate the results and build upon our work.

Consequently, these results contribute to the state of the art within the areas of
event-based communication and multi-receiver video streaming. Additionally, these
results allow us to confidently claim that event-based communication represents a
more promising foundation for the application domain of real-time distributed and
parallel video content analysis, compared to other alternatives.



Acknowledgements

Although the front page seems to indicate that this thesis has been accomplished by
the author individually, a lot of people have contributed to the work presented herein,
in various ways.

First or all, | am deeply indebted to my supervisors, Prof. Frank Eliassen and
Prof. Olav Lysne, for offering me an opportunity within the Distributed Media Jour-
naling project. | would like to thank you for all the guiding, rewarding discussions,
cooperation, encouragements, and lasting support throughout the studies. Even if the
duration has been longer than originally planned, | appreciate the belief you have
expressed in my ability to go the distance and for providing me with the additional
required funding.

Ole-Christoffer Granmo, my fellow research scholar within the project, has also
contributed to this thesis work at many different levels. We had many valuable and
interesting discussions, both professionally and socially and shared office for quite
some time. Fortunately, a division of research topics within the project was found,
which was both complementary and based on interests. The cooperation has been
fruitful and mutually improved our research results. We also had a lot of fun during
late evenings and nights, working towards rapidly approaching deadlines.

Jargen Andreas Michaelsen got involved in the project quite late. However, his
contributions have been significant. Additionally, the final year of the thesis work was
also a lot more enjoyable, due to interesting discussions regarding design, program-
ming, and other more or less related topics, as well as travels and demonstrations.
Thank you for your enthusiasm.

Many of the ideas presented herein evolved during discussions with the people
involved in the project, and | would like to thank for this contribution. In this respect,
| also would like to thank all master students involved in the project for an interesting
and enjoyable time.

| also would like to thank Einar Broch Johnsen for an enjoyable time as room-
mates and for introducing me to the more formal aspects of computer science.

All persons associated to the Networks and Distributed Systems group, both at
Simula and at the University of Oslo, have contributed to very inspiring working

vii



Vil Acknowledgements

conditions. This statement would still be valid when generalized to include the other
departments, and in particular the system administration group at Simula in which
| have been involved. Both the University and Simula have provided good working
conditions. The quality and the quantity of social arrangements at Simula have been
respectable and contributed significantly to the pleasant working environment.

The solid work done by the open source community is also acknowledged — in
fact invaluable from a computer science research perspective. Debian GNU/Linux
has provided a robust platform for research. For writing articles and the tHégis, L
Emacs, and CVS have been used.

| also would like to thank, in alphabetically order, Ole-Christoffer Granmo, Arne
Hgstmark, Lars Olafsen, and Richard Staehli for taking the time for proofreading, in
spite of all other pressing activities. Itis greatly appreciated. However, any remaining
mistake is my responsibility.

The sacrifices that this work has required, have been felt most strongly by my
family and friends. | would like to express my gratitude to my family, in both Norway
and Denmark, for the moral support and encouragements during all these years. You
have been very helpful and enduring.

In particular, | would like to thank Lotte Marie for her unconditional support,
when even | felt that things were out of proportions. Numerous were the times when
Jakob Patrick, and lately also my twin daughters, Rebekka Viktoria and Simone Vik-
toria, had to accept that | was non-present, neither physically nor mentally. With
respect to both family and friends, | intend to pay back some of this in the time to
come. Lotte Marie and my children have also been a great source for inspiration
during periods of frustration.

Viktor S. Wold Eide
June 17, 2005



Preface

The research presented in this thesis has been funded by the Norwegian Research
Council through the Distributed IT Systems program, more specifically through the
Distributed Media Journaling (DMJ) project, under grant no. 126103/431. Additional
funding has been provided by the Department of Informatics, University of Oslo,
Norway and Simula Research Laboratory, Norway.

The DMJ project was initiated as a research effort towards providing general
solutions for the application domain of real-time distributed analysis of live media
streams.

The project was first located at Department of Informatics, but after two years
the senior researchers became affiliated to Simula Research Laboratory. Therefore,
the project was relocated to this newly established research institution, which became
fully operational at the end of 2001. Simula Research Laboratory performs basic
research and is financed by the Norwegian government.

The senior researchers involved in the project are Prof. Frank Eliassen and Prof.
Olav Lysne. Eliassen has also been the project leader. The project also financed two
Dr. Scient. students, Ole-Christoffer Granmo and Viktor S. Wold Eide. Granmo
defended his thesis for the degree of Dr. Scient. October 27, 2004 at the Faculty
of Mathematics and Natural Sciences, University of Oslo, Norway. Over the project
period, a number of master students have also been supervised in the context of the
project. Some have finished, while others are at the time of writing, still active.

The overall architecture presented in this thesis was developed cooperatively by
the researchers involved in the project. Within the project, Granmo has focused on
issues related to classification. In particular the goal has been to provide support
for controlling accuracy and timeliness in video content analysis applications. The
achievements are presented collectively in his dissertation [45]. On the other hand,
the research undertaken by Eide has focused on the parts related to communication,
streaming, filtering/transformation, and feature extraction, or in other words, the more
low-level processing performed in video content analysis applications.

In addition to the research results accomplished individually and by subsets of
the researchers in the project, several efforts have been made during the project pe-

iX



X Preface

riod in order to align and integrate results. These efforts include the development of
prototypes and experiments for validating the overall architecture.



Contents

[Abstractl v
[Acknowledgements Vil
[Preface ix
Contents Xi
L Overview| 1
(1__Introduction| 3
(1.1 Thesis Context: The DMJProject . . . ... ... ......... 4
III1 Framework . . . . ... .. . . ... 4

(1.1.2  ApplicatonDomain . . . .. ... ... ... ........ 5

113 Real-Time. ... ... ... ... ... .. .. .. ..., 5

(1.1.4 Analysis . . . ... .. ... 6

1.1. Distribution . . . . . . . . ... 7

1.1.6 MediaStreams . .. .. ... .. .. ... ... ... 7

1.2 ThesisMotivation . . . . . . . . . . .. . 8
1.3 ResearchTopicsandGaals . . . .. ... ... .. ......... 9.
1.4 ResearchMethbd . . ... ... ... . ... ... .. ....... 10
1.5 Unaddressed|sslies . . .. .. .. .. ... ... .. ....... 11
1.6 Resultsand Implications . . . . ... ... ... .......... 12
1.6.1 Event-Based Communication . . .............. 12

[1.6.2 Fine Granularity Multi-Receiver Video Streanjing . . . . . . 13

[1.6.3  Real-Time Distributed and Parallel Video Processing . . . 13.

.7 ThesisOrganization . . . . . . . . . . ... ... . ... .. .... 14

Xi



Xii CONTENTS

[ Many-to-Many Communication| 17
2.1 Background . . . . . .. ... 17
[2.2  Network Layer Multicast . . . . ... ... .. ... ........ 18
[2.3  Application Layer Multicast . . . .. ... ... .......... 19
[2.4  Reliable Group Communication . . .. .. ... .......... 21
RE MBUS . . . . ot 23
2.6 _Event-Based Communication . . . . . ... ............ 24
2.7/ DiIscussion . . . . . . . . ... 25

[ Multi-Recelver Video Streaming 29
[3.1 Background . . . . .. ... . ... 29

[3.1.1 Heterogeneity Challenges . . . . . ... ... ...... 30
[3.1.2  Efficient Delivery Challenges . . . . .. ... ... .... 30
[3.2 Layered Video Coding and Multicast . . . . . . ... ... ..... 31
[3.3 Prority-Progress Multicast . . . . . . ... ... ... ....... 32
[3.4 Media Streaming over the CORBA Event Seryvice . . . . ... .. 33
[3.0 Media Gateway Systems . . . . ... ..o 34
Di . 35

|4 Video Processinp 37

[4.1 Background . . . . . .. ... ... 37

. PenCV . . . . e e 38
4.3 Java Media Framewadrk . . . .. . ... ... . ... ........ 38
[4.4 The Dali Multimedia Software Library . . . . . ... ... ... .. 39
/ DIPE . . . . . e e e e e e e e e e e e 40
46 MediaMesh . .. ... ... .. ... 41
[4.7 Parallel Software-only Video Effect Proces$ing . . . .. ... .. 42
M8 DISCUSSION . . . . . . . . o e e 43

[ Papers and Contributions 45
[°.1 Overview of ResearchPPapers . . . . .. ... ... .. ...... 45

[Paper I: Supporting Distributed Processing of Time-based Media Streands .
[Paper II: Real-time Processing of Media Streams: A Case for Event-based

[ Interaction . . . . . . . ... 46
[Paper llI: Scalable Independent Multi-level Distribution in Multimedia Con- |
| tentAnalysis . . . . ... a7
[Paper IV: Extending Content-based Publish/Subscribe Systems with Mul+
[ ticast SUPPOIt . . . . . . . . 48

[Paper V: Supporting Timeliness and Accuracy In Distributed Real-time |
[ Content-based Video Analysis . . . . ... .. .. .. ....... 49




CONTENTS Xiii

[Paper VI. Exploiting Content-Based Networking for Video Streaming . 50
[Paper VII: Exploiting Content-Based Networking tor Fine Granularity Multi- |

| Recelver Video Streaming . . . . . . . . ..o 50
[Paper VIII: Real-time Video Content Analysis: QoS-Aware Application |

[ Composition and Parallel Processing . . . . . .. ... .. .... 51
0.2 DIScussIOn . . . . . . . . .. e 52
[.2.1  Many-to-Many Communicatipbn . . . . ... .. ... ... 52

[.2.2 Multi-Receiver Video Streamipg . . . . . . ... ... ... 83

[0.2.3 VMideoProcessing . .. ... ... ... ... ..., 54

6 _Conclusion and Furtner Work| 57
[6.1 ResearchTopicsandGaals . . .. ................. 57
6.2 Major Contributions . . . . . . . .. .. ... ... ... .. ... 57
6.2.1 Event-Based Communication . .. ............. 58

[6.2.2  Fine Granularity Multi-Receiver Video Streanjing . . . . . . 59

[6.2.3 Real-Time Distributed and Parallel Video Processing . . . 60.

6.3 CriticalRemarks . . . ... .. ... .. ... ... ..., 60
0.4 FurtherWork . . ... .. ... . .. ... 62
6.4.1 Event-Based Communication . . ... ... ... ..... 62

[6.4.2 Multimedia Streaming . . . . . . ... ... ... ... .. 63

[6.4.3  Real-Time Distributed Multimedia Content Analysis . . . .64
Bibliograp 65
[T Research Papers 75

[Paper I: Supporting Distributed Processing of Time-based Media Streams 77

[Paper Il. Real-time Processing of Media Streams: A Case for Event-based |
[ Interaction] 87

[Paper lll: Scalable Independent Multi-level Distribution in Multimedia Con- |
[ tent Analysig 97

[Paper V. Extending Content-based Publish/Subscribe Systems with Multl- |
[ cast Support 111

[Paper V. Supporting Timeliness and Accuracy In Distributed Real-time Content-
[ based Video Analysis 133




Xiv CONTENTS

[Paper VI. Exploiting Content-Based Networking for Video Streaming 147

[Paper VII: Exploiting Content-Based Networking for Fine Granularity Multi- |
[ Recelver Video Streaming 151

[Paper VIII: Real-time Video Content Analysis. QoS-Aware Application Com- |
[ position and Parallel Processing 165




Part |

Overview






Chapter 1

Introduction

After roughly three decades of exponential increase in the number of transistors which
can cost effectively be integrated on a chip, mainstream computers eventually became
capable of handling audio and video with quality comparable to earlier analog tech-
nologies. In the mid 1990s, 100MHz processors and gigabyte disks enabled high
fidelity audio on regular computers. Some years later, around year 2000, the advent
of 1GHz processors and tens of gigabytes disks enabled mainstream computers to
handle video. The enablers were the advances in hardware capabilities combined
with the development of compression technologies for efficient representation. At
these points in time, reasonable compromises between cost, processing performance,
and storage space were achieved.

The threshold for taking advantage of video information in applications is steadily
decreasing. Fueled by the continuous technical advances in semiconductor technol-
ogy, equipment for generating digital video is already quite inexpensive and prices are
falling. Now, video cameras are commonplace in hand-held computers and mobile
phones.

The technical advances have also fueled the rapid development of wireless com-
munication technologies. These technologies are being integrated into all kinds of
devices. The price also decreases continuously for computers having steadily increas-
ing computational, storage, and communication capabilities. Consequently, devices
which are capable of capturing, processing, storing, and streaming audio, video, or
some other kind of sensor information are becoming ubiquitous and numerous. The
physical size of such video and network enabled devices is shrinking, increasing po-
tential usage even further.

Altogether, these advances create opportunities for exploiting the information
flows from a large number of distributed devices in different kinds of applications.
Such applications can be used for monitoring (e.g., environmental surveillance, traf-
fic monitoring, or video surveillance systems) or in feedback control systems (e.g.,

3



4 CHAPTER 1. INTRODUCTION

for traffic regulation and intrusion detection). These opportunities have motivated our
research within the domain of real-time distributed video content analysis.

However, it is not straight forward to tap into and utilize continuous flows of real-
time video data from a large number of such devices. The causes of difficulties are
manifold and include the inherent massive amount of video data and the computa-
tional complexity. The information embedded within audio and video data is also
rather difficult to exploit directly in applications. The usefulness of a manual ap-
proach, where human beings annotate media streams with meta information, is rather
limited. For a lot of applications such a manual approach is impractical or even in-
feasible. Consequently, a challenge is to automatically analyze media data, in order
to extract relevant information.

In automatic content analysis applications, some characteristics of the media are
usually first calculated. These features are then used for classification. In other words,
classification is interpretation of extracted features in some application specific con-
text. An example, which also illustrates the potential complexity of automatic content
analysis, is automatic speech recognition. Such automatic audio-to-text conversion
has been a topic of research for decades, but still represents a challenge. Automatic
video analysis does not seem any less complicated.

Real-time requirements add to these challenges, since the number of calculations
available for processing, for example each video frame, is limited by time. This limi-
tation can often be reduced by distributed and parallel processing, where the analysis
is done cooperatively by a number of computers. However, developing such dis-
tributed and parallel real-time applications is complicated, time consuming, and sub-
sequently poses new challenges. The DMJ project was initiated as a research effort
towards providing general solutions for this application domain.

1.1 Thesis Context: The DMJ Project

The work presented in this thesis was done in the context of the Distributed Media
Journaling (DMJ) project. The organization of the DMJ project began in the autumn
of 1998, while active research started in early 1999.

The overall goal of the DMJ project is to develoframeworkfor theapplication
domainof real-time distributed analysisf media streamsEach term is described in
more detail in the following.

1.1.1 Framework

The purpose of the DMJ framework is to simplify application development by pro-
viding solutions to the general issues for the targeted application domain. In other



1.1. THESIS CONTEXT: THE DMJ PROJECT 5

words, the framework represents a reusable basis which can be specialized for devel-
oping specific real-time distributed content analysis applications.

1.1.2 Application Domain

Examples of applications whose development can benefit from the DMJ framework
include automatic traffic surveillance systems, as described in [12]. Traffic surveil-
lance systems may be used for traffic monitoring, electronic toll road systems, and
road planning purposes. The input to such applications may be provided by mobile
devices, for example attached to the vehicles, or by stationary sensors, for example
located underneath or above the roads.

Similarly, environmental surveillance systems may take advantage of data pro-
vided from satellites orbiting the earth or by sensors deployed in the enviroriment [28].
The gathered information may be used to predict extreme environmental (weather)
conditions or to detect pollution.

Content analysis may also be used for control purposes. For example, in smart
rooms [63], embedded sensors may detect speech, gestures, and body temperature
in order to regulate room temperature and the light conditions. Another example of
feedback control systems is systems, which based on video analysis, determine the
traffic conditions and thereby control the entries onto highways in order to improve
overall traffic throughput [24]. Such feedback control systems are real-time systems
[51].

1.1.3 Real-Time

In contrast to domains where the application progress determines the rate of data con-
sumption, i.e., off-line and batch type of processing, real-time systems must process
data within certain time constraints. These constraints may specify the maximum
tolerated delay between the input and the corresponding output. As an example, an
upper bound may be specified on the elapsed time from a real-world event takes place
and until the application is able to generate a notification about the event. This illus-
trates that the term “real-time” does not necessarily mean “real fast”. Rather, the term
expresses that the validity of some computational result is bounded by time. In other
words, the usefulness of a result is strongly dependent on when it becomes available.
Due to such real-time requirements, only a limited amount of data can be buffered be-
fore timing constraints are violated. Hence, a real-time content analysis application
must be able to process the data at least as fast as the data are made available.
Some real-time systems may have very strict requirements with respect to both
timeliness and accuracy in order to operate safely. Systems where failure to meet



6 CHAPTER 1. INTRODUCTION

deadlines is considered a fatal fault are commonly referred to as hard real-time sys-
tems. An example is driver assists in cars for avoiding collisions. Such a safety system
may determine if the braking sub-system should be activated, based on information
provided by a video content analysis system constantly monitoring the scene in front
of the car. Clearly, such a system must react within a fairly short time in order to be
useful and be very accurate to avoid increasing the probability for accidents.

In contrast, so-called soft real-time systems tolerate some dead-line violations.
The number of acceptable violations are often specified in probabilistic terms. As an
example, multimedia entertainment systems have soft real-time requirements. Most
people consider a few glitches acceptable when watching a movie on television or
streamed over a computer network.

1.1.4 Analysis

Content analysis applications are often structured as follows. First, sensors capture
information from the real world (e.g., audio or video data). The information provided
by the sensors is then filtered and transformed, for example by removing certain fre-
guencies from the audio signal or the colors in a video signal. Feature extraction
algorithms, operating on filtered and transformed data streams, then calculate char-
acteristics regarding color, texture, shape, or motion in case of video data. Finally,
the extracted features are fed to classification algorithms which interpret the features
in some application specific context. In a traffic surveillance application, the clas-
sification task may be to determine the registration plate numbers for cars passing
a video camera. The interpretation may be both spatially (e.g., relating information
within a video frame) and temporally (e.g., relating information from several con-
secutive video frames in order to reduce the effect of light and weather conditions).
Different types of sensor information may also be combined in order to improve the
accuracy. For example, multimedia analysis may take advantage of both audio and
visual information, as described in [81].

The different tasks of a content analysis application, i.e., capturing, filtering/trans-
formation, feature extraction, and classification, may each be quite complex and com-
putationally demanding, even when applied to only a single media sample. The expo-
nential growth in hardware capacity has been an enabler of new techniques, although
better algorithms have also played an important role. In combination, faster hardware
and better algorithms have enabled more analysis functions to be performed in real-
time. However, there seems to be no limits to the potential complexity and hence
computational demands of analysis algorithms in general.

The rate at which media samples need to be processed is clearly application de-
pendent, as defined by the real-time requirements. Despite the tremendous improve-
ments in hardware capabilities, real-time analysis of a single stream is potentially



1.1. THESIS CONTEXT: THE DMJ PROJECT 7

computational challenging, since the number of calculations available for processing
each media sample is limited by time. Even a single high quality video stream may
contain massive amounts of data. Additionally, the number of streams that needs to be
analyzed in real-time may be large. Consequently, a distributed approach is desirable.

1.1.5 Distribution

Some applications, such as traffic surveillance, are inherently distributed. By sup-
porting transportation of sensor data and distributed processing, the different parts of
a content analysis application may be executed at different locations, wherever most
appropriate according to criteria such as efficiency, cost, and reliability. This allows
for example the filtering and the feature extraction part of the analysis to be executed
by a computer directly connected to a sensor device, reducing network bandwidth
consumption. For sensor network applications, which are inherently distributed, this
Is important in order to reduce power consumption.

By supporting distributed processing, the information produced by a single sensor
may also be shared by a number of different applications. As an example, the infor-
mation provided by a single video camera may be used for both traffic regulation as
well as for early detection of traffic accidents.

Distributed processing also allows applications to take advantage of additional
processing resources. Improved performance can be achieved by parallel processing
of sensor data on a number of computers. In general, parallel processing may reduce
the time required to process a certain amount of data, allow more data to be processed
in the same amount of time, or allow more compute intensive analysis algorithms
to be used. Consequently, support for distributed and parallel processing allows dif-
ferent tradeoffs to be made with respect to real-time requirements, the computing
environment, and the analysis algorithms.

However, developing applications for distributed and parallel processing is diffi-
cult and time consuming. Hence, framework support for distribution and paralleliza-
tion is important. In order to allow application developers to focus on the application
logic itself, the general issues related to distribution and parallelization should be
handled by the framework.

1.1.6 Media Streams

The different application examples given so far emphasize that the DMJ framework
has not been targeted at processing any particular type of information. In this respect
the framework is agnostic. Media types that the framework is designed to support
include audio and video, but could also include haptic data, smell, and taste. More



8 CHAPTER 1. INTRODUCTION

generally, the information could be provided by any kind of sensor device, imple-
mented in hardware, software, or in combination.

However, the DMJ project has focused on analysis of video data for prototype
implementations and the conducted experiments. The rationale has been that video
represents a challenging media type, both with respect to data rates and the relatively
short amount of time available between consecutive frames. As an example, television
and movie quality video requires roughly 25 frames per second. In this case a new
video frame is being generated every 40 milliseconds and hence the time available for
processing each frame is correspondingly short. Based on this reasoning, it is likely
that a framework which supports video processing applications, will also be able to
support other less demanding media types.

1.2 Thesis Motivation

The motivation for the work presented in this thesis is to provide system support
for the application domain of real-time distributed analysis of media streams. More
specifically, the research addresses issues related to communication, streaming, filter-
ing/transformation, and feature extraction, as described in the following.

The processing resources available from a single CPU computer are rather lim-
ited. Therefore, video content analysis applications which are unable to efficiently
utilize parallel computers and/or distributed computing environments are restricted to
simple video content analysis tasks, covering only a small number of video streams.
Many applications within the targeted domain also have an inherent distributed na-
ture. Additionally, harder real-time requirements may also be met by distributed and
parallel processing of video streams. Altogether, these factors have motivated us to
investigate distributed and parallel processing support.

The efficiency achieved by distributed and parallel processing is limited by the
efficiency of the communication mechanism. Additionally, communication support
is needed at different levels within the video content analysis hierarchy, supporting
exchange of classification results at the highest levels and transport of media data
at the lowest levels. This has motivated careful consideration of the communication
mechanism efficiency.

Distributed and parallel processing may also be simplified by a communication
model which allows each level of the content analysis hierarchy to be parallelized
independently. In other words, changes at one level should not affect any other level,
neither at compile time, start-up time, nor run-time. This has motivated our investi-
gations of a communication mechanism which supports such separation of concerns.

Although real-time video streaming has been studied extensively for decades,
transporting different parts of the video data from a source to different receivers still



1.3. RESEARCH TOPICS AND GOALS 9

represents a challenge. First and foremost, different applications may require video
data from the same source. As an example, the video stream produced by a traffic
surveillance camera may be used by both an application which controls the entries
onto a highway and another application for detecting traffic accidents early, as men-
tioned previously. A video source which handles each and every receiver individually
will not scale, due to for example processing, network, and power limitations. There-
fore, to reduce resource consumption and hence improve scalability, packet repli-
cation should not happen at the sender side, but closer to the receivers. Secondly,
a single application may utilize a number of different feature extraction algorithms
which may operate on different parts of the video signal. Hence, different receivers
may be interested in different parts of the video signal, spatially and/or temporally.
Existing solutions to these scalability and heterogeneity challenges are too inflexible
and not well suited to support parallel proces@inﬂgotivated by these observations,

the research topics and goals addressed by this thesis work were defined as described
in the following.

1.3 Research Topics and Goals

The main question addressed by this thesis work is whether event-based communi-
cation may provide a suitable interaction mechanism for the application domain of
real-time distributed and parallel video content analysis.

Event-based interaction is well recognized within the research community as a
promising technology for developing loosely coupled distributed applications. Event-
based communication is characterized by indirect communication, due to the lack of
explicit addressing. In contrast to communication systems where forwarding is based
on explicit (group) addresses, information is forwarded based on “what” is produced,
rather than by “whom” and “where” the information was generated. These character-
istics make event-based interaction well suited for one-to-one, one-to-many (sharing
or partitioning of data), many-to-one (aggregation), and many-to-many communi-
cation. Clients connect to the event notification service and publish information in
so-called event notifications or express their interest by subscribing.

Within the event-based communication paradigm there are many different vari-
ants, as described in [41]. First and foremost event-based systems differ with respect
to the data model for the event notifications and the expressiveness of the subscription
language. The architecture of different systems also vary a lot, ranging from cen-
tralized systems to systems which are architectured as distributed overlay networks.
Consequently, different kinds of event-based interaction have to be considered.

1A thorough discussion of related work is given in Chapi¢r| 2, 3[and 4.



10 CHAPTER 1. INTRODUCTION

This work investigates how event-based communication can be exploited for real-
time distributed and parallel video content analysis. In particular, the following goals
have been identified:

¢ Investigate if event-based interaction is a good fit for the application domain of
real-time distributed and parallel video content analysis

¢ Investigate if event-based communication is suitable for streaming real-time
video data in particular and transporting high data rates in general

¢ Investigate if event-based communication can support flexible distribution and
parallelization as well as efficient execution of such applications

1.4 Research Method

Computing as a discipline emerged in the early 1940s by the integration of algorithm
theory, mathematical logic, and the invention of the stored-program electronic com-
puter, as described ih [31]. Hence, computing is rooted in mathematics, science, and
engineering.

A framework for the discipline of computing is presented|in/[31]. The frame-
work defines the three major paradigms for the disciplinthaery, abstraction and
design Other commonly used terms for the abstraction paradignmamelingand
experimentation For each of these paradigms, there is an iterative process which
consists of four stages.

The theory paradigm is rooted in mathematics, and the process consists of stages
where: (1) the objects of study are characterized and defined, (2) relationships be-
tween these objects are hypothesized as theorems, (3) the truth of each relationship is
determined by means of proofs, and (4) the results are interpreted.

The abstraction paradigm is rooted in the experimental scientific method, and the
process consists of stages where: (1) a hypothesis is formed, (2) a model is con-
structed and predictions made, (3) experiments are designed and measurements per-
formed, and (4) the results are analyzed.

The design paradigm is rooted in engineering. The process consists of stages
where: (1) requirement analysis is performed, (2) a specification is generated based on
these requirements, (3) the system is designed and implemented, and (4) the system
is tested.

Unawareness of the differences between these three paradigms have caused con-
troversies, including debates regarding which paradigm is most fundamental and peo-
ple from one paradigm criticizing the work of someone in another paradigm, as de-
scribed in[[30]. Rather, these three paradigms are entangled and of equal importance.



1.5. UNADDRESSED ISSUES 11

The discipline of computing is a unique blend of theory, abstraction, and design,
where the boundaries between theory and abstraction as well as between abstraction
and design are fuzzy.

Based on the identified research topics and goals, the design paradigm has been
used for the work presented in this thesis. Iteratively, requirement analysis have
been performed, specifications developed, and prototypes designed and implemented.
These prototypes have been used for experiments and measurements in order to val-
idate and demonstrate the feasibility of our approach. The results have also been
compared to state of the art solutions, and following prototypes have integrated the
acquired and accumulated knowledge. Clearly, prototyping has played an important
role for the research reported in this thesis. Such prototyping and software develop-
ment is not only a product-producing activity, but also a knowledge-acquiring activity
which helps reduce ignorance, as argued in [11].

The overall goal of the DMJ project has been to develop a framework for the
application domain of real-time distributed analysis of media streams. In order to
spot flaws and weaknesses and to report on how the solutions satisfy the identified
requirements, applications have been build on top of our framework. A challenge
in this respect has been to carefully select applications which are representative and
which also span the potential application space of the targeted application domain.

Knowledge of previous results and state of the art has been gathered by investi-
gating sources such as ACM Digital Library [1], CiteSeer.ISIT [2], the Digital Bib-
liography & Library Project (DBLP)[[7], IEEE Xplore [5], and SpringerLink] [6].
Additionally, search engines such as Google [4] have been used for discovering and
crosschecking relevant information.

During the project period, research papers have been peer reviewed by experts in
the field. Presentations of the research results at international conferences have also
provided feedback and opportunities for exchanging ideas with other researchers. As
part of our research method, software has been made available as open source in order
to allow other researchers to repeat experiments and validate our results.

1.5 Unaddressed Issues

In this thesis work we have not developed new kinds of filters, transformers, or feature
extractors for video analysis. Rather, the kinds used in prototypes and experiments
are representative ones, and it should be rather straight forward to integrate other or
new kinds into our framework.

This thesis does not address hard real-time issues. In order to provide hard real-
time guarantees, resource reservation and admission control is typically required. Al-
though hard real-time systems have been studied for a long time, their solutions have



12 CHAPTER 1. INTRODUCTION

not generally been integrated into general-purpose operating systems and networks,
which is the environment that we have been working within. Therefore, we restrict
the class of processing platforms considered, to general-purpose ones without special
real-time processing features. Hence, the load of competing applications in the pro-
cessing environment was controlled during experiments. However, we believe that
the results presented in this thesis can be adapted to take advantage of processing
platforms with better real-time capabilities.

Additionally, the implications of the research with respect to privacy and security
issues, for example when used in surveillance applications, have been considered
outside the scope of our work.

1.6 Results and Implications

The main contributions presented in this thesis have been published in a number of
research papers [32-39]. The contributions are within three areas — event-based
communication, video streaming, and real-time distributed video processing. The
context of the research, real-time distributed and parallel video content analysis, con-
nects these areas. This does not mean that the usefulness of the results are limited to
this particular domain. On the contrary, we claim that some of the presented results
may be useful in general, and not limited by the scope of the DMJ project.

The software for the content-based publish/subscribe system and video streaming
has been made available as open source from [3], and as such allows others to build
on our results. The following three subsections summarize the thesis contributions
and are structured according to the thesis topics and goals.

1.6.1 Event-Based Communication

This thesis demonstrates that event-based communication is well suited for the do-
main of real-time distributed video content analysis, as argued in [34, 35]. Event-
based systems differ with respect to the data model for the notifications and the ex-
pressiveness of the subscription language. Content-based event notification services
offer most expressiveness and hence flexibility. In spite of their added complexity,
this thesis shows that distributed content-based event notification services are both
suitable and beneficial for real-time distributed video analysis.

For handling the massive amounts of data and the real-time requirements, we
extended an existing distributed content-based publish/subscribe system with IP mul-
ticast support [36]. To the best of our knowledge, IP multicast support was not im-
plemented in any other such system at that time. The system was also used experi-
mentally for a real-time video content analysis application, as describedlin [39]. All



1.6. RESULTS AND IMPLICATIONS 13

communication, even the video streaming, was handled by this distributed content-
based publish/subscribe system.

This thesis has demonstrated that content-based publish/subscribe systems are
well suited for the domain of real-time distributed and parallel video content anal-
ysis. Such systems offer significant advantages compared to other alternatives, in-
cluding systems which use group-based communication directly. Efficient and high
performance event notification services also allow content-based publish/subscribe to
be used in other application areas, such as sensor networks and high performance
computing.

1.6.2 Fine Granularity Multi-Receiver Video Streaming

This thesis also demonstrates that video streaming over content-based networking
may provide fine granularity multi-receiver streaming. In our work content-based
networking is provided by a distributed content-based event notification service. A
prototype has been developed, and the video coding scheme as well as performance
numbers are presented In [37] 38].

The contribution of this part of the thesis work is the bridging of techniques from
the fields of video compression and streaming with content-based networking. The
results include a novel video coding scheme that has been specifically developed to
exploit the powerful routing capabilities of content-based networks.

In our approach, each video receiver is provided with independent and fine gran-
ularity selectivity along different video quality dimensions, such as region of interest,
signal to noise ratio, colors, and temporal resolution. Efficient delivery, in terms of
network utilization and end node processing requirements is maintained, as demon-
strated experimentally in [38, 39].

Such fine grained selectivity is required in order to improve efficiency within the
domain of real-time parallel video content analysis, where different computers pro-
cess one or more video streams in parallel — functionally, spatially, and temporally.

In this thesis we argue that a video streaming scheme for handling heterogeneity
in a scalable manner is also useful in general. Our approach allows video data to be
streamed to a number of receivers, despite differences in network availability, end
node capabilities, and receiver preferences. Consequently, our approach represents a
significant step forward, compared to other approaches which use unicast or multicast
directly.

1.6.3 Real-Time Distributed and Parallel Video Processing

Our video streaming scheme reduces the need for application level filtering and trans-
formation of video data, since the filtering of event notifications is handled by the



14 CHAPTER 1. INTRODUCTION

distributed publish/subscribe system which also pushes filtering towards the source.
Because the match between what is needed by different computers and what is deliv-
ered and decoded by each computer is better than with other alternatives, efficiency
can be improved both network and processing wise. As shown in [39], the amount of

redundant calculations can be significantly reduced.

Event-based interaction provides a level of indirection, a key factor for flexible
distribution and parallelization of each logical level. In effect, the available process-
ing resources can be focused on the processing bottlenecks at hand. This allows ap-
plication development to be more decoupled from quality of service (QoS) mapping
and deployment [32, 33, 39]. Consequently, these different concerns can be handled
more separately.

In combination, distributed high-performance content-based publish/subscribe sys-
tems, video coding schemes which exploit the rich and powerful routing capabilities
of such systems, and distributed and parallel video processing provide a promising
foundation for developing efficient and scalable real-time video content-analysis ap-
plications. This was demonstrated by integrating the above presented results with the
classification work done by Granmo [45], as described_in [39]. Consequently, since
the overhead can be kept low, harder performance requirements can be satisfied by
adding computational resources, such as computers and network capacity.

1.7 Thesis Organization

The thesis is structured in two parts. Rart | gives an overview of the thesis work, while
Par{T] contains the research papers.

The rest of Parf] | is structured as follows. First, Chapi€r]|2, 3,[and 4 describe
related work within the three main areas addressed in this thesis, i.e., event-based
communication, multi-receiver video streaming, and video procégsiighe end of
each of these three chapters we discuss some open issues which have been addressed
by the work presented herein. Chagtgr 5 gives an overview of the research papers.
The contribution of each paper is described and a comparison to related work is given
at the end of the chapter. Finally, in the concluding Chapter 6 we summarize the
thesis, provide some critical remarks, and present some ideas and opportunities for
further work.

Par{Tl of the thesis contains the research papers. Since each paper is self-contained,
some information is necessarily repeated in different papers. In front of each paper

2The presentation in ChaptE} 2 is not limited to event-based communication only. Due to the
relevance to the included research papers, the prototypes, and as potential technologies for underlying
efficient event dissemination, many-to-many communication is described in general.



1.7. THESIS ORGANIZATION 15

a separate cover page gives some information about where the paper has been pub-
lished, the evaluation process and the outcome, as well as a description of the con-
tributions made by the different authors. The papers appear in chronological order
with respect to date of publication, but depending on the familiarity with the different
topics the reader may choose a different reading order. The reader is encouraged to
read the whole of P4t I, which puts the papers into perspective.






Chapter 2

Many-to-Many Communication

In this chapter we provide background information related to many-to-many com-
munication, important for the domain of real-time distributed video content analysis.
The emphasis is on technologies suited for efficient real-time many-to-many commu-
nication. First, some background information is presented, before we proceed by de-
scribing network level multicast, application level multicast, and reliable group com-
munication systems. Then we present Mbus and event-based communication which
compared to group-based communication systems provide more flexible addressing.

2.1 Background

An important question regarding the design of communication systems is at which
layer and in which entities to implement what functionality (e.g., flow control, con-
gestion control, error control, quality of service, and multicast). In other words the
fundamental question is where to put the complexity. A classic example in this re-
spect is whether the network should be virtual circuit switched or packet switched.
Closely related is the question whether the network layer should provide a connection-
oriented or connectionless service to the transport layer.

In the Internet approach the functionality for flow control, congestion control, and
error handling was pushed to the edges of the network — to the hosts. In this respect
the Internet architecture had a clear separation between hosts, i.e., the computers, and
the network realized by the routers. The argument was that applications will have to
perform some of these functions themselves anyway. For some applications, such as
real-time audio conferencing, network level error handling may even be disruptive,
because a lost packet is regarded as better than a very late packet.

The end-to-end argument in system design, as describédlin [72], expresses this
more clearly and advocates that functionality should only be pushed downwards in

17



18 CHAPTER 2. MANY-TO-MANY COMMUNICATION

order to significantly improve performance, otherwise it should be handled by higher
levels. An advantage of this design principle is that the implementation of the network
nodes and thereby the network itself is simplified and hence easier to realize and
evolve.

The packet switched approach, as represented by the Internet, has been a tremen-
dous success. The Internet has been able to support a large range of different appli-
cations — of which many were not even foreseen during the early stages of develop-
ment. Although the only guarantee provided by the best-effort Internet model is that
each router forwards a packet towards the destination with a probability larger than
zero, the service quality experienced is usually quite good, due to traffic provisioning
and congestion control. Multi-point communication requirements can also be rea-
sonably supported for applications which have non real-time and modest bandwidth
requirements. A straight forward although inefficient solution, is to utilize underlying
point-to-point communication to mimic multicast behavior (e.g., as done for email
delivery).

The best-effort approach taken in the Internet has been less successful for han-
dling applications with real-time requirements. Only recently has the Internet been
used to some extent for telephony. This is an application with fairly strict require-
ments regarding delay, but very modest requirements for bandwidth. On the order of
10kbps is required for transporting voice data of reasonable quality. Requirements
from other interactive applications, such as web browsing, have driven bandwidth
availability far beyond these modest requirements. The probability of successfully
making phone calls over the Internet seems rather good and Internet telephony has
become increasingly common.

Other application domains, such as interactive multi-user audio-video conferenc-
ing and real-time distributed video content analysis, combine real-time requirements
with requirements for multi-point communication and large amounts of bandwidth.
The insufficient support for applications having such requirements has been recog-
nized for decades, and in the following some representative approaches are presented.

2.2 Network Layer Multicast

In order to handle multicast efficiently, extensions to the Internet network layer were
proposed in the late 1980s, as described_ in [29]. The motivation for pushing multi-
cast functionality into the network nodes was to reduce link stress and delay to a bare
minimum. The link stress denotes the number of duplicate packets traversing a single
link. In other words the rationale for extending the Internet network layer with multi-
cast functionality was to improve performance significantly, which is in line with the
design principle expressed in the end-to-end argument [72].



2.3. APPLICATION LAYER MULTICAST 19

IP multicast is designed in such a way that each multicast packet should traverse
each network link at most once, and the path taken by the packet should be close
to optimal. Hence, both link stress and delay should be close to minimum. For the
links close to the source this is important, especially when considering potential large
multicast groups. Since the source host only has to send one instance of a packet, and
not one packet to each receiver, delay and processing resource consumption are also
reduced. Without multicast support, a host may have to send several copies of the
same packet, and hence the last copy leaving the host is delayed. In IP multicast the
packet replication and forwarding task is removed from the source host and is instead
handled by the routers. The routers replicate packets close to the destination nodes
and in parallel.

In addition to replication and forwarding of packets, IP multicast performs group
membership management and multicast routing, i.e., maintaining data delivery paths.
In the IP multicast model, a portion of the IP address space is used as multicast ad-
dresses, and each address identifies an IP multicast group. Hosts may join and leave
groups using an implementation of the Internet Group Management Protocol (RFC
3376).

Fueled by the interest in the research communities for a multicast capable net-
work infrastructure, the Multicast Backbone (MBone) emerged in the early 1990s.
Mbone was initially constructed as an overlay network layered atop of the Internet,
where routing and forwarding was handled by workstations running multicast routing
software, as described inl [8].

Since then, different IP multicast routing protocols have been developed for both
intradomain and interdomain multicast routing [8]. In essence, the routers exchange
information in order to build and maintain the multicast distribution trees for different
groups, and routers maintain per group state in order to determine if a packet must be
replicated and on which interfaces to forward these duplicated packets.

By pushing functionality down and implementing multicast at the IP layer, com-
plexity and cost has been added at the Internet network level. In spite of roughly
fifteen years of massive and joint efforts by academia, standardization organizations,
research institutions, and commercial vendors, IP multicast has still not matured and
become a ubiquitous service on which application developers can rely. IP multicast
still faces many challenges in regard to scalability, security, deployment, and man-
agement issues.

2.3 Application Layer Multicast

In response to the lack of ubiquitous multicast support in the Internet, researchers
have begun to question whether IP multicast will become a true Internet service and



20 CHAPTER 2. MANY-TO-MANY COMMUNICATION

whether multicast support at the network level is practically possible. Anyhow, there
was a need for intermediate solutions. A survey of different proposals for an alterna-
tive group communication service is provided inl[40]. In the following we describe
some approaches.

In the early 2000s research proposals for implementing multicast functionality in
the end systems emerged, as described in [25]. In these overlay multicast networks
all multicast functionality, including group membership control, routing, and packet
forwarding, is implemented exclusively in the hosts. Consequently, routers only need
to support IP unicast traffic. The approaches differ, where some require infrastructure
support, while others leverage on recent developments in peer-to-peer technologies
and are completely decentralized dynamically constructed and maintained overlay
networks. One advantage of application layer overlays is the opportunity for sup-
porting application specific customization of the overlay network. Shortly, we will
describe some approaches for application layer multicast, but first some background
information on peer-to-peer technologies is provided.

Peer-to-peer technologies have since the late 1990s received widespread attention
and are now extensively being used to build distributed overlay networ@ [PAése
overlay networks try to take advantage of and harvest the additional resources repre-
sented by each computer joining the overlay. Each peer provides access to some of its
underlying computer resources, and hence plays both the resource provider and the
resource consumer roles. In effect, peer-to-peer systems seek to spread out resource
consumption throughout the entire overlay network and compared to client-server
systems the communication pattern appears more symmetric.

Structured peer-to-peer systems, such as CAN [68] and Pasiry [70], implement
distributed hash tables (DHTSs) which provide distributed content location and rout-
ing. Each node which joins the overlay network becomes responsible for a part of
the key space and holds the values associated to these keys, i.e., (key,value) pairs.
Whenever a message is sent, a key must be provided which determines the destina-
tion node for the message. The key space and the routing algorithms are constructed
in such a way that each message is routed towards the node which is responsible for
the particular key, and where the number of routing hops is logarithmic in the num-
ber of nodes in the overlay. The algorithms only assume local knowledge in each
node, which results in good scaling properties. Thereby, a lookup message is routed
within the overlay to the node which is responsible for the key, in a few hops. The
resulting dynamically constructed self-organized multi-hop overlay networks operate

10One may argue that the routing protocols used to construct and update routing tables in the In-
ternet are examples of peer-to-peer communication. The Internet was also overlayed on top of, e.g.,
telephone lines. Similarly, the network-news transport protocol (NNTP) also resembles peer-to-peer
communication. Each host on the Internet was also accessible from any other host and could play both
a server and a client role simultaneously.



2.4. RELIABLE GROUP COMMUNICATION 21

at the application layer and do topology construction, routing and data forwarding.
The routing algorithms for different peer-to-peer systems differ. CAN takes advan-
tage of a Cartesian hyperspace for routing, while Pastry conceptually organizes the
keys and nodes in a circular space. Such systems assume point-to-point connections
between hosts, although packets in reality typically makes a number of hops on both
the network and the link layer. For efficiency, both Pastry and CAN are able to take
network locality into consideration.

Peer-to-peer systems have been used for building application layer overlay mul-
ticast networks, and examples include CAN-multicast [69], which is built on top of
CAN, and Scribe[[20], which is built on top of Pastry. In CAN-multicast a sep-
arate overlay is built for each multicast group, and multicast messages are broad-
casted/flooded within that overlay. An advantage is that only nodes which are mem-
bers of a multicast group contribute. Additionally, due to the flooding approach there
is no single multicast distribution tree for the entire group. The disadvantage is the
cost of building and maintaining a separate overlay per group.

Scribe uses a rendezvous approach, where the hash of the group name gives a key
which identifies the rendezvous node. Nodes interested in receiving multicast traffic
send join messages towards the rendezvous node. The join messages follow the Pas-
try routes to the rendezvous node and intermediate nodes update table entries which
reflect downstream interested clients. Clients send multicast traffic to the rendezvous
node, which forwards the message on the multicast tree formed by the reverse path of
the join requests. This receiver-driven approach does not require a separate overlay
per group, but nodes may have to contribute resources to multicast groups which they
have no interest in. Additionally, all multicast traffic for the group flows through the
rendezvous node.

Similar to IP multicast, reducing the link stress and delay are some of the most im-
portant challenges. The baseline for comparing the link stress for different application
layer multicast approaches is IP multicast. The worst case on the other hand is repre-
sented by naively using unicast to mimic multicast. Similarly, the delay from source
to receiver in the overlay is typically compared to the delay that would have been ex-
perienced with unicast in the underlying physical network. Performance numbers for
CAN-multicast and Scribe are presented.in [20, 69], and a performance comparison
between these two systems is provided in [21].

2.4 Reliable Group Communication

Lack of group communication support in the IP communication suite inspired a num-
ber of research efforts in the 1980s. In addition to research on IP multicast these
efforts lead to technologies for reliable group and multicast communication.



22 CHAPTER 2. MANY-TO-MANY COMMUNICATION

The distributed computing model described(inl[13] is based on process groups
with stronger semantics regarding error handling. This model is commonly referred
to as reliable process group computing or virtual synchronous group computing. In
this model processes may join and leave groups, and the system informs each pro-
cesses about other processes joining and leaving the group. The system automatically
manages group membership, synchronized with multicast sending and delivery. Dif-
ferent ordering guarantees are provided for delivering multicast messages to group
members, such as totally ordered and causally ordered multicast. State can also be
transferred within the group, where the state transfer appears atomic with respect to
the change in membership. This is useful for initializing processes which join the
group and for handling situations where processes leave the group or crash. The
model has been implemented in different systems, including Isis, Horus, and Ensem-
ble, and used in a wide range of application domains [13].

The Scalable Reliable Multicast (SRM) protocol[42] is designed to provide appli-
cations with flexibility and functionality such that application specific requirements
may be taken into account. According to this philosophy additional layers built atop
of SRM may provide stronger ordering guarantees, if and when needed. Conse-
guently, applications which only require reliable multicast delivery will not have to
pay the price associated with totally or causally order delivery. A major concern
of SRM is to achieve scalability by reducing the number of requests for repair, the
number of repair messages, and the delay introduced during loss recovery.

Taking a step back, the price paid for providing end-to-end reliability for one-
to-one communication is delay, due to potential retransmissions. Reliable many-to-
many communication is much more complex. The combination of many-to-many
communication, reliability, consistency, scalability, and real-time is very challenging.
Handling this problem is increasingly difficult as the system scales in the number of
participants and/or the number of messages exchanged per second. As explained in
[14] the performance of protocols for reliable group communication degrades dramat-
ically when exposed to ordinary transient problems, such as processor and network
scheduling delays and packet losses. The authors argue that even a single perturbed
process impacts and slows down the whole group. They also argue that this is the
case for multicast protocols having weaker reliability goals, such as SRM. Hence, it
seems very difficult to avoid throughput instability in reliable group communication
systems.

An approach for reducing these scalability problems, advocated by the authors
of [14], are protocols which employ epidemic-style/gossip-based algorithms. The
authors claim that such probabilistic protocols seem to be better at rinding out in-
stability caused by infrastructure and host problems and thereby provide gracefully
degradation, instead of collapse.



2.5. MBUS 23

2.5 Mbus

As described in[[62], Mbus (RFC 3259) is a software bus designed to support coor-
dination and control between different application entities. The Mbus protocol spec-
ification defines message addressing, transport, security issues, and message syntax
for a lightweight message oriented infrastructure for ad-hoc composition of hetero-
geneous components. As stated in [62], Mbus is not intended for use as a wide area
conference control protocol, for security, scalability, message reliability, and delay
reasons. Mbus is designed for intra host and inter host usage and exploits IP multi-
cast for efficient message dissemination.

Mbus supports binding of different causalities by using a “broadcasting” and fil-
tering technique. All components participating in a specific Mbus session subscribe
to an IP multicast address, and in effect Mbus messages are “broadcasted” to the set
of computers hosting components participating in this Mbus session. Mbus is imple-
mented as a library which is linked into the applications. Hence, the Mbus layer in
each component sees all Mbus traffic and must filter and discard unwanted messages.

Important for message selection and filtering is the addressing used in Mbus. The
address of a component is specified when initializing the Mbus layer, and selection
and filtering is performed based on this address. The Mbus header includes source
and destination addresses. Each address is a sequence of attribute-value pairs, of
which exactly one pair is guaranteed to be unique, i.e., the combination of process
identifier, process demultiplexer, and IP address. Each Mbus component receives
messages addressed to any subset of its own address. A Mbus component is able
to address a singl&(id:7-1@129.240.64.28); a subset,(media_type:video compo-
nenttype:E)”, or all,“()” , Mbus components by specifying an appropriate sequence
of attribute-value pairs.

The Mbus acts as a layer of indirection between components, giving both ac-
cess and location transparency. Component awareness is supported by a soft-state
approach, where the Mbus layer listens and periodically sends self announcements
messages on behalf of its component.

Regarding scalability, message propagation delay, and reliability of message de-
livery, Mbus inherits many of its characteristics from IP multicast, which is realized
as a distributed and scalable service. The Mbus component awareness functional-
ity limits scalability, but the rate of self announcements is adapted to the number of
entities participating in a session.

At the transport level, Mbus messages are encapsulated in UDP packets and trans-
ported unreliably by IP multicast. In the special case where the message is targeted
at exactly one receiver, reliable unicast delivery is supported by the Mbus layer, us-
ing acknowledgement, timeout, and retransmissions mechanisms. The Mbus/UDP/IP
multicast protocol stack does not give any ordering guarantees.



24 CHAPTER 2. MANY-TO-MANY COMMUNICATION

2.6 Event-Based Communication

Despite tremendous success and widespread usage of the client/server interaction
model, a large class of distributed applications are better structured as a number of
asynchronously processing and communicating entities. Such applications fit well to
the publish/subscribe interaction model. Event-based interaction provides a number
of distinguishing characteristics, such as asynchronous communication, lack of ex-
plicit addressing, and loose coupling. The communication is indirect and decoupled
with respect to time, space, and synchronization. Altogether, these characteristics
make event-based communication suitable for applications having a variety of one-
to-one, one-to-many (sharing or partitioning of data), many-to-one (aggregation), and
many-to-many communication patterns. A survey of the publish/subscribe communi-
cation paradigm and the relations to other interaction paradigms is given in [41].

Event-based systems rely on some kind of event notification service. The archi-
tecture of such services vary a lot, ranging from centralized systems to systems which
are architectured as distributed overlay networks. A distributed event notification
service is realized by a number of cooperating servers, also debhaikersin the
literature. For distributed services, servers may be interconnected in different topolo-
gies, for example trees, directed acyclic graphs, general graphs, or hybrid variants, as
described in([18].

Clients connect to these servers and are ebhgrcts of interestinterested par-
ties or both. An object of interest publishes event notifications, or just notifications
for short, while interested parties subscribe in order to express interest in particular
notifications. The responsibility of the event notification service is routing and for-
warding of notifications from objects of interest to interested parties. In essence, the
servers jointly form an overlay network of notification routers.

Event-based systems differ with respect to the data model for the event notifica-
tions and the expressiveness of the subscription language. The difference between
such systems can be characterized by what part of the data model is made visible
to the event notification service in subscriptions. A subscription language with fine
grained expressiveness allows the service to filter notifications early, but adds im-
plementation complexity and run-time overhead for evaluating notifications against
subscriptions. Consequently, expressiveness and scalability are conflicting and have
to be balanced.

In channel-basedystems, e.g. as specified by the CORBA Event Service [57], an
interested party may subscribe to a channel and in effect receive all notifications sent
across that particular channel. These systems are often also referreédpgdsased
or group-basedsystems. Scribe [20], which has been proposed as an application
level multicast infrastructure, has also been referred to as a topic-based event notifi-
cation infrastructure [71]. In such systems only a channel, topic, or group identifier is



2.7. DISCUSSION 25

exposed to the event notification service in subscriptions. Consequently, the expres-
siveness is severely limited and more extensive client-side filtering is required.

Subject-basedystems, such as TIBCO Rendezvous [80], provide somewhat finer
granularity with respect to selection of notifications. Each notification contains a
well-known subjectattribute, and interested parties may register interest by specify-
ing an expression which will be evaluated against the value of this subject attribute.
Subject-based systems may also support hierarchical subject names and/or wild-card
expressions on subject identifiers to further improve the expressiveness of subscrip-
tions. The object of interest determines the most appropriate subject for each notifi-
cation published.

Content-basedystems, such as Elvin [[73], Gryphon [61], Hermes [65], and Siena
[18], provide even finer granularity. In such systems notifications typically consist of
a number of attribute/value pairs. A subscription may include an arbitrary number of
attribute names and filtering criteria on their values. Hence, content-based systems
increase subscription selectivity by allowing subscriptions along multiple dimensions.

Distributed content-based publish/subscribe systems are often architectured to op-
erate over wide area networks (WAN), for example private networks or the Internet.
The construction and maintenance of networks for distributed content-based pub-
lish/subscribe systems are challenging. [In/ [19] a routing scheme for content-based
networking is proposed which uses a combination of a traditional broadcast proto-
col and a content-based routing protocol. Not surprisingly, peer-to-peer technologies
have recently also been exploited for constructing content-based publish/subscribe
overlay networks, as described in [64] 78]. The approach described in [78] uses sub-
scriptions to prune the flow of notifications, while also advertisement filters are used
in [64] to reduce the flow of subscriptions. Simulation results presentédin [64] show
improved routing efficiency and reduced amount of state in each node, compared
to standard content-based publish/subscribe systems. lin [78] analytical results are
presented which show the advantage of utilizing peer-to-peer systems for building
content-based publish/subscribe systems. These early research efforts seem promis-
ing regarding automatic construction, self configuration, and adaptation of content-
based publish/subscribe overlay networks.

2.7 Discussion

With respect to expressiveness, multicast and group-based systems provide only the
ability to join and leave groups. Regardless of being implemented at the network or
the application layer, such systems perform routing and data dissemination based on
these group memberships. Similarly, channel-based event notification services only
allow joining or leaving different channels. Hence, these systems provide a rather



26 CHAPTER 2. MANY-TO-MANY COMMUNICATION

course grained way of expressing interest, and may therefore increase the need for
end system filtering. In order to improve the selectivity and the match between what
is of interest and what is delivered, a number of groups can be used. A scheme is
then required which specifies which groups should receive which information. Deter-
mining such a scheme statically is difficult, but more problematic is the explosion in
the number of groups necessary for providing fine grained selectivity. Additionally, if
such a mapping is exposed to and used directly in applications, the mapping becomes
static. In comparison the addressing provided by Mbus is more flexible, although
delivery is determined by the address assigned to a component. Content-based event
notification services provide even more expressiveness and thereby improved selec-
tivity. Considering expressiveness and selectivity, a content-based publish/subscribe
system can trivially implement the other systems described in this chapter, while the
opposite is not the case.

For real-time distributed video content analysis the performance of the commu-
nication system is also a major concern. Therefore, efficient use of underlying com-
munication primitives is required. IP multicast maps well onto layer two multicast, is
intended as a global and distributed service, and provides good performance. On the
other hand, it is not ubiquitous and only best-effort delivery is provided. As a result
IP multicast is currently not very attractive for wide area usage, such as interdomain
or Internet usage. On the other hand, using IP multicast in the LAN/intradomain
case is reasonable, as the opportunities for controlling both network equipment and
traffic are much better. For application layer multicast the situation is almost the
opposite. Group-based communication on top of unicast may be reasonable in the
WAN/Internet case, but for the LAN/intradomain case, where multicast is often sup-
ported in switches and routers, the performance potential is wasted when multicast is
realized by underlying point-to-point communication. Reliable group communication
may be highly beneficial for the signaling and control plane of distributed real-time
video content analysis applications. However, these systems seem less appropriate
for the data flow plane, as a single perturbed process may slow down the application
to a point where real-time requirements are violated. Mbus is suitable for transport-
ing data within a LAN or a host, but the end node filtering approach makes Mbus
inadequate for handling huge amounts of data (e.g., for streaming several videos con-
currently). For distributed event notification services, much effort has been devoted
to the design and architecture of services for WAN/Internet usage. With respect to
performance, a main concern is how to efficiently distribute event notifications be-
tween the servers which cooperatively realize the distributed service. The challenge
of utilizing multicast communication for efficient event notification dissemination in
content-based publish/subscribe systems is well known [18, 41]. This issue has been
studied in[[46] 61], but is not implemented in any system that we are aware of.



2.7. DISCUSSION 27

The expressiveness of content-based event notification services and the perfor-
mance potential represented by native multicast support have motivated our work on
bringing these technologies together. Combined, the expressiveness and the perfor-
mance of such a service may provide a foundation for fine-grained multi-receiver
video streaming in particular and transporting high data rates in general, as shown in
the following chapters.






Chapter 3

Multi-Recelver Video Streaming

The advances within the fields of network level communication technologies, trans-
port protocols, and higher level communication systems have allowed and influenced
the development of new approaches for transporting and delivering real-time video
data over computer networks. In this chapter, we present some background informa-
tion regarding video coding and real-time multi-receiver video streaming. First, we
briefly provide some background information on video coding, as an introduction to
the challenges of multi-receiver video streaming. Then, some different approaches
for handling these challenges are presented.

3.1 Background

What fundamentally distinguishes video compression from compression of still im-
ages, is the ability to exploit the temporal redundancy between consecutive frames.
This research area dates back to the 1960s, as described in [75]. The increase in
available processing capacity has allowed more complex, but also more powerful,
techniques to be used in order to realize more efficient video compression schemes.
The research and development conducted by research groups, standardization organi-
zations, and commercial companies have given rise to a multitude of different video
compression techniques and formats.

The latest standard developed jointly by ITU and ISO is the H.264/AVC standard.
An overview of video coding concepts, some historical information, as well a de-
scription of the techniques used in H.264/AVC, is giverl.in [75]. Compared to earlier
standards, the H.264/AVC standard achieves significantly improved compression ef-
ficiency. Numbers reported state approximately 50% savings in bit rates for the same
perceptual quality. This efficiency gain is mostly due to improvements in the motion
compensation prediction, but comes as a high computational cost.

29



30 CHAPTER 3. MULTI-RECEIVER VIDEO STREAMING

Efficient delivery of video data over the Internet has been studied extensively for
decades. As aresult relatively good solutions for point-to-point video streaming exist.

Video multicast within large LANs is challenging, as described by the authors of
[74]. The main challenges are related to heterogeneity and efficient delivery issues.
Real-time multi-receiver video streaming over the Internet is even more complicated,
as pointed out in different survey articles [43] 52]. Despite extensive research, real-
time multi-receiver video streaming still represents a challenge which awaits satis-
factory solutions. One of the main sources for the difficulties is heterogeneity, as
discussed in the following.

3.1.1 Heterogeneity Challenges

Video servers and clients are connected to the network by diverse technologies, which
again may have rather different characteristics. Similarly, the end node capabilities
may differ radically with respect to processing capabilities, display resolution, and
power availability. The resource availability may also change over time. As an exam-
ple, the available bandwidth may vary due to transient network failures, congestion,
and changes in signal to noise ratio for mobile and wireless equipment.

Additionally, different receivers may have different preferences with respect to the
importance of the different video quality dimensions. This adds to the heterogeneity
challenge. In situations when resources become scarce, different receivers have dif-
ferent preferences with respect to adaptation. As an example, some clients may prefer
a decrease in temporal resolution instead of a decrease in spatial resolution, and vice
versa.

The above reasoning illustrates that handling heterogeneity is somewhat related to
handling adaptation, although at a different time scale. Both heterogeneity and adap-
tation necessitates systems capable of operating in a range of different circumstances.
Consequently, the challenge is to provide each video receiver with the best possible
video quality when considering resource limitations and preferences, and at the same
time to maintain efficiency and scalability in the network and the end systems.

3.1.2 Efficient Delivery Challenges

Unicast deliverywhere clients connect directly to a server, may provide each client
with a customized stream. Such a stream may be specifically generated in order to
fit the capabilities of the receiving node as well as receiver preferences. In order to
cope with variations in available bandwidth, the stream may also be adapted during
runtime. Such point-to-point streaming simplifies adaptation, as other streams may
not even be taken into consideration.



3.2. LAYERED VIDEO CODING AND MULTICAST 31

For streaming, standards for encapsulating and transporting the compressed video
data over networks, are needed. As an example, in addition to the video coding layer
specified in the H.264/AVC standard, a network abstraction layer is also specified for
packaging the encoded video for network transport. For streaming over the Internet,
the Real-Time Protocol (RTP) (RFC 3550) is often used. RTP requires an additional
specification for each different video payload format. A RTP payload format for
H.264 video has just recently become an Internet standard (RFC 3984). Such tech-
nologies provide relatively good solutions for point-to-point video streaming. How-
ever, delivering the same stream to a number of receivers directly over unicast is
neither an efficient nor a scalable solution. The processing capacity of the server
or the network links close to the server are easily overloaded when the number of
video clients increases. Consequently, scalability is severely limited when a number
of unicast streams are used to achieve multicast behavior.

Multicast delivery provided at the network layer or by overlay networks, may
improve network efficiency. However, a single multicast stream is not well suited
for handling the heterogeneity challenge. A single multicast stream provides very
few options. Some of the incoming packets may be discarded in order to reduce
processing requirements, but network bandwidth requirements are not affected.

In simulcast deliverythe same video content may be streamed over a number of
separate multicast channels, and each stream provides a different tradeoff between
quality characteristics and resource requirements. Consequently, each video receiver
is provided with a choice between a few streams and may subscribe to the multicast
address which carries the video stream which best matches resource requirements and
preferences. Video receivers may then adapt by joining another and more appropri-
ate stream. The disadvantage of the simulcast approach is the inefficiency caused by
redundant video information being sent on different multicast channels. The ineffi-
ciency is amplified when a large number of different streams are provided in order to
closely match the preferences of each receiver.

Clearly, the challenge is to provide each video client with good quality, while
maintaining efficiency in terms of network and processing resource consumption.

3.2 Layered Video Coding and Multicast

An approach for handling both the multi-receiver and the heterogeneity challenge is to
combine layered video coding techniques with transport over several multicast chan-
nels. A pioneering work in this respect is video coding for receiver-driven layered
multicast, proposed in [56]. In the presented approach the video signal is encoded
into a number of layers. The layers are coded cumulatively in order to reduce the
amount of redundant information across layers. Hence, the base layer provides the



32 CHAPTER 3. MULTI-RECEIVER VIDEO STREAMING

lowest quality, while each additional layer improves the video quality. The scheme
described in[[56] supports spatial and temporal scalability.

For transport the compressed video data are encapsulated into packets and des-
tined to the IP multicast address for the particular layer. Each of these layers is then
transported over the network on a separate IP multicast channel. The forwarding and
late replication of packets is handled in the network by IP multicast. Video receivers
may then subscribe to one or more of these multicast channels. Clients with low band-
width connections may subscribe only to the IP multicast channel carrying the base
layer information. Other clients, having better network connections, may subscribe
to a number of additional multicast addresses, as available bandwidth permits. Upon
detecting an overload situation, a receiver may leave the IP multicast group carrying
the topmost refinement layer and thereby reduce resource requirements.

An advantage of this scheme is that the sender does not have to be involved in the
adaptation process. Receivers perform join-experiments to determine the maximum
available bandwidth and leave groups upon detecting congestion. Consequently, the
level of indirection provided by IP multicast and this receiver driven approach provide
scalability. However, in order to reduce oscillation effects and receivers joining and
leaving IP multicast groups to probe the available bandwidth, an algorithm has been
implemented where receivers learn about other receivers failed join-experiments.

A similar approach which support color and resolution scalability is presented in
[79]. In this approach the luminance and the chrominance part of the video signal are
handled separately. Three resolution layers are generated for both the luminance and
the chrominance part, resulting in a single base layer and five enhancement layers.
The described scheme does not support inter frame coding, and temporal scalability
is supported only by changing the frame rate in the system.

With respect to user preferences, a layering policy determines the dimension to
be refined for each additional layer in [56]. This layering policy is fixed at the sender
side and determines how the quality of the video is refined when a video receiver
subscribes to an additional IP multicast address. As an example, the first additional
layer may improve the spatial quality, while the second one improves the frame rate.
In other words, the receivers must live with the policy specified by the sender.|In [79]
receivers may independently select resolution and whether color information should
be included.

3.3 Priority-Progress Multicast

In [50] a framework for real-time quality-adaptive media streaming is presented. The
motivation for the work is to handle the variability in available bandwidth in best-
effort networks, such as the Internet. Additionally, efficient coding of video data



3.4. MEDIA STREAMING OVER THE CORBA EVENT SERVICE 33

introduces variability in bit rate requirements, due to the video content itself. The goal
is to handle such fluctuations and allow video data to be encoded once and streamed
anywhere, by adapting to bandwidth availability.

In the described scheme, called priority-progress streaming, video data are trans-
formed into a scalable representation which supports spatial and temporal scalability.
Spatial scalability is realized by transcoding DCT (Discrete Cosine Transform) co-
efficients hierarchically to a set of levels, while temporal scalability is realized by
frame dropping. This allows video data to be broken up into small chunks of appli-
cation level data units. These chunks can then be assigned different priorities based
on some policy. The described approach relies on utility functions for expressing the
importance of the quality along and between different video quality dimensions. The
timeline is divided into distinct time intervals, so-called adaptation windows. Dur-
ing streaming, adaptation is handled by priority dropping. The idea is that the most
important data are sent first. Whatever remains in the previous adaptation window is
then dropped when the system transits from one adaptation window to the next.

For one-to-many streaming an overlay multicast structure is used. Each edge
in the overlay distribution tree is realized by means of the priority-progress unicast
streaming approach. The described implementation utilizes TCP for transport for both
unicast and multicast delivery. As a result, the congestion control is TCP friendly. In
contrast to the unicast case where dropping only happens at the sender side, dropping
may happen at any node within the multicast distribution tree. Hence, different parts
of the distribution tree may have different data rates, and different clients may re-
ceive the video data in different quality. From our understanding only a single policy
may be specified for a single session, since the priorities are assigned by the priority
mapper, which is co-located with the sender at the root of the tree.

3.4 Media Streaming over the CORBA Event Service

The CORBA Event Service was originally not meant for handling real-time multime-
dia data. This has led some researchers to propose extensions to the CORBA Event
Service, as described in[22,/123) 66].

In [22, [23] the authors suggest using an event service for transporting poten-
tially large event notifications, carrying multimedia content. The enhancements to
the CORBA Event Service add support for specification of QoS, security mecha-
nisms, and event-based multimedia streaming. The authors introduce the concept of
stream events.e., events that encapsulate media content. In other words, each such
stream event encapsulates a fragment of a continuous multimedia stream. In addition
to the standard CORBA Event Service channel type, the authors propose multicast
and stream type channels. Multicast channels use a reliable multicast protocol for



34 CHAPTER 3. MULTI-RECEIVER VIDEO STREAMING

optimizing the event delivery mechanism. A stream type event channel distributes
multimedia data flows and also utilizes multicast for data delivery.

To better cope with the real-time characteristics of multimedia, event channel cre-
ators and users may specify event channel QoS properties. These properties determine
for example reliability of event delivery (best-effort or tntimes) and the scheduling
priority of event channel threads. The reliable multicast protocol describedlin [23]
exploits IP multicast for efficient event dissemination. For loss recovery a negative
acknowledgement scheme (e.g., running on top of TCP) is used for requesting re-
transmissions. The event-channel responds to a retransmit request by resending the
missing event and all later events, also by multicast. The authors argue that their
scheme is reasonable due to its simplicity, that most resend requests involve a large
percentage of the receivers, and that usually a number of consecutive events are lost.

Different test applications have been developed on top of the enhanced CORBA
Event Service implementation. The applications described in [22, 23] include video
streaming and a multichannel Internet radio service. On the receiver side a player
implemented on top of the Java Media Framework was used for presenting the media
data received over the event channel.

3.5 Media Gateway Systems

As another solution to the heterogeneity problems associated with multi-receiver me-
dia streaming, media gateway systems have been proposed [60, 67]. These systems
are overlay networks — the media gateways are the internal network nodes, while
senders and receivers are at the edges. Gateways receive media streams from up-
stream nodes, before forwarding the processed and potentially transformed streams
to downstream gateways and receivers. In other words the gateways rely on some
kind of active network nodes, where the processing is domain specific.

Examples of processing include transformations which reduce the bandwidth of
a stream by changing the quality in dimensions such as frame rate (temporal scal-
ing), frame size (resolution scaling), and quality (signal to noise ratio scaling). Other
transformations may involve changing the media format, for example from MPEG-4
to H.263. Additionally, more complex operations may generate new streams, based
on a number of other streams. Examples include the ability to create picture-in-picture
effects and scaling down a number of video streams before composing these scaled
down streams into an “overview” video stream. Consequently, such transformations
allow media gateway systems to bridge the heterogeneity gap created by differences
in resource availability, hardware capabilities, and software incompatibilities.

Constructing such overlay networks is challenging and involves determining the
kind of media processing performed at each overlay node. The construction may be



3.6. DISCUSSION 35

driven by goals such as minimizing the average or maximum delay experienced by
receivers or minimizing the overall processing or bandwidth consumption. The prob-
lem is further complicated when considering combinations, such as reducing both
bandwidth consumption and maximum delay. Additionally, the dynamic nature of
media gateway systems have to be taken into account, because receivers may join and
leave at any time.

The media processing computations described in [60] are represented by small
scripts. The paper addresses the problem of how to decompose such computations
into a number of subcomputations and the mapping of these subcomputations onto
gateways. The goal of the described system is to reduce the bandwidth consumption.
The media gateway system takes care of construction and maintenance of the overlay
network in order to achieve this goal.

3.6 Discussion

Clearly, the advances in communication technologies have influenced the develop-
ment of techniques for multi-receiver video streaming. The different approaches de-
scribed in this chapter take advantage of IP multicast communication, overlay distri-

bution networks, and channel-based event notification services.

The combination of layered video coding and multicast provides an interesting
solution for scalable multi-receiver video streaming. The presented approaches ad-
dress both the layered encoding problem and the layered transmission problem, in
combination. However, some receivers may prefer temporal resolution over spatial
quality, and vice versa. A problem with having the layering policy fixed at the sender
side is such conflicting user preferences. In effect, video receivers become unable
to customize the video stream independently. In the presented approaches only two
guality dimensions are considered. Specifying such a layering policy becomes even
more problematic as the number of scalable video quality dimensions increases. It
also seems difficult to extend the proposed schemes for supporting more dimensions,
without utilizing a very large number of multicast addresses.

Priority-progress multicast represents a promising approach for adaptive multi-
receiver video streaming in best-effort computer network environments. The priori-
ties are assigned to the different application level data units by the priority mapper
at the sender side. Consequently, the system seems unable to handle video receivers
with conflicting preferences regarding the relative importance of the different video
guality dimensions.

A video streaming solution for channel-based event notification services only pro-
vides clients with the ability to join or leave a channel, and thereby the stream. Each
event notification is forwarded within the channel and not routed independently. The



36 CHAPTER 3. MULTI-RECEIVER VIDEO STREAMING

lack of expressiveness in channel-based event notification services makes these sys-
tems inadequate for providing fine granularity multi-receiver video streaming.

A media gateway may perform any kind of video filtering and transformation
operation, and stream customization is thereby supported. As an example, a gateway
may partition a video stream spatially as a preparation step for parallel processing.
The cost associated with this flexibility is increased network and processing resource
consumption and additional delay. Although several receivers may share a single
gateway, they may share interest in only some part of the video signal. Hence, it
seems difficult to handle such cases efficiently, processing and delivery wise.

Consequently, none of these systems seem to allow different receivers to indepen-
dently customize the video stream along several different video quality dimensions.
A solution which bridges video coding and fine granularity multi-receiver streaming
is therefore desired. Such a solution should provide efficient one-to-many transport
and delivery. These observations have motivated our research on video streaming
over content-based event notification services.



Chapter 4

Video Processing

Over the years, many systems have been developed in order to ease the development
of video processing applications. Due to the large number of such systems, the pre-
sentation in this chapter is not intended to be exhaustive. Rather, some representative
approaches are presented.

4.1 Background

Developing multimedia applications from scratch is very time consuming. Efficient
representation is necessary for multimedia data in general and video data in particular
in order to reduce storage space and network bandwidth requirements. Developing
software for manipulating these often complex formats is challenging. Consequently,
a number of systems, including libraries and frameworks, have been developed over
the time in order to simplify multimedia application development. These systems
have been developed by both research institutions, commercial vendors, and industry
consortia. The systems differ in scope, where some target multimedia application
development in general and include support for video coding and streaming, while
others have concentrated solely on the video processing part.

Several commercial frameworks exist, including the Open Source Computer Vi-
sion Library (OpenCV)[[4]7] developed by Intel, OpenML [49] from the Khronos
Group industry consortium, the Java Media Framework (JMFE) [76] from Sun Mi-
crosystems, and DirectShow [16] from Microsoft. OpenML is rather new, and the
first OpenML software development kit became available in April 2004. The func-
tionality provided by DirectShow and JMF are similar. The following description of
commercial frameworks is therefore limited to the OpenCV library and the Java Me-
dia Framework. We first describe these two commercially initiated projects, before
some systems developed by different research communities are presented.

37



38 CHAPTER 4. VIDEO PROCESSING

4.2 OpenCV

As described in[117, 47], the Open Source Computer Vision library (OpenCV) effort
was initiated by Intel. The OpenCYV library was released as an Alpha version in year
2000, Beta in 2003, and an official 1.0 release is expected in 2005. The library is
mainly intended for developing real-time computer vision applications for human-
computer interaction, robotics, and surveillance. OpenCYV includes a collection of
functions for a number of different areas, including motion analysis and object track-
ing, image analysis, structural analysis, image recognition, and 3D reconstruction.
Typically, different functions from each of these different areas are combined in order
to develop computer vision applications.

Closely related to the OpenCV library is another library from Intel, the so-called
Integrated Performance Primitives (IPP) library. The IPP library exploits specific
hardware instructions in Intel processors for improved performance. Compared to
OpenCV the functionality provided by the IPP library is more low-level. The library
provides functions for signal, image, and video processing. If present, the OpenCV
library is able to take advantage of the IPP library for improved performance, which
is important for the targeted application domain.

4.3 Java Media Framework

As described in [76], the motivation for developing the Java Media Framework (JMF)
was to simplify incorporation of time-based media, such as audio and video, into Java
applications and Java applets. The first version of JIMF was developed cooperatively
by Sun Microsystems, Intel Corporation, and Silicon Graphics and was targeted pri-
marily at playback and presentations. In late 1999, the JMF 2.0 APl was released in a
joint effort by Sun Microsystems and IBM Corporation, adding support for streaming,
capturing, and storing of media data.

In this latest version, JMF performs low-level media tasks, such as capture, trans-
port, streaming, (de)multiplexing, (de)coding, and rendering. The reference imple-
mentation of JMF from Sun and IBM provides support for some standard file formats,
video and audio compression schemes, as well as RTP-based unicast and multicast
streaming protocols.

The extensibility of the framework is provided by a plug-in architecture. The
supported plug-in types are demultiplexers, codecs, effects, multiplexers, and render-
ers. Thereby, JMF provides access to the raw media data and allows integration of
customized media processing algorithms. This allows third parties and application
programmers to extend the framework by adding different kinds of media formats,
compression schemes, effects processing, and renderers.



4.4. THE DALI MULTIMEDIA SOFTWARE LIBRARY 39

In IMF, applications are modeled as a flow graphs — nodes represent media han-
dling modules, while the edges represent media flows. Media data are first read from
some input source, such as a file, a network connection, or a capture device. Then
the media data are processed in order to perform (de)compression, apply effects, or
change the media format. The processing is done by one or more nodes in the flow
graph, each represented by, for example, an effect or a codec module. Finally, the
processed media data are output to a renderer, a file, or streamed over the network.

Typically, an application programmer specifies the media source and sink by
means of URLs, and JMF internally tries to build a flow graph by connecting dif-
ferent components. In other words, the framework takes care of constructing a graph
which has the necessary components. As an example, an URL may specify that video
data will be read from a multicast address, and the system will configure a graph
with the components necessary for receiving the stream from the network, perform
decompression, and then display the video on the screen.

Additional control is provided by programmatically interacting with a so-called
processor. Some of the components in the graph may be specified, and the rest of
the graph construction is then left to the framework. For example, the API provides
methods for inserting customized plug-ins, such as codecs and effects, into the audio
or video track or for using a customized renderer. The graph building process only
takes into account a single host, and there seems to be no descriptions available about
how the automatic graph building process works.

4.4 The Dali Multimedia Software Library

Dali [59] is a reusable multimedia software library intended for developing processing
intensive multimedia software. Developing high performance multimedia software
from scratch is both complex and time consuming, and the development of Dali was
motivated by these recognized difficulties. The authors of Dali recognize that applica-
tions programmed directly in C may provide high performance, but argue that devel-
opment is time consuming and the resulting programs complex. Consequently, reuse
and maintenance is difficult. On the other hand, they argue that high level libraries
are inefficient and provide too little control to the programmers. The abstraction level
provided by Dali is described as an intermediate solution, between C programming
and using conventional libraries for developing multimedia applications.

The Dali library is designed in such a way that developers maintain control of
resource usage. According to this design principle, functions for I/O and memory
management are explicitly exposed to the developer instead of making these opera-
tions implicit and a side effect of other operations. In the same spirit, Dali program-
mers are exposed to the structural elements of different media types, such as image



40 CHAPTER 4. VIDEO PROCESSING

headers and the structural elements of MPEG video sequences. Such headers include
sequence headers, group-of-pictures headers, and picture headers. This allows Dali
programs to access the different components of JPEG images directly, operate in the
compressed domain by processing DCT domain picture data, or access the motion
vectors in MPEG video sequences.

In [59] some example programs written in Dali are presented. These rather com-
pact programs illustrate how Dali can be used to implement picture-in-picture effects,
MPEG decoding, and de-multiplexing of a MPEG system stream which may con-
tain several audio and video tracks. The authors claim that the performance of Dali
applications are competitive with hand tuned C code, and the claims are validated
by providing performance measurement comparisons with other software for image
compression, image conversion, and MPEG video decoding.

4.5 Infopipe

The Infopipe research project, described.in [15], aims at simplifying application de-
velopment within the domain of media streaming. Middleware platforms for building
distributed applications are often based on Remote Procedure Calls (RPC) or Re-
mote Method Invocation (RMI) and are targeted at hiding communication aspects and
hence making them transparent. In contrast, the Infopipe approach is to make certain
aspects of the communication explicit. The motivation is to support application level
monitoring and adaptation in response to varying resource availability. The authors
make an analogy between Infopipes for information distribution and plumbing for
water distribution.

The Infopipe approach is to define suitable abstractions and hence provide de-
velopers with the necessary and sufficient concepts for constructing media streaming
applications. The defined building blocks are so-called Infopipe components. An
application may instantiate such components and interact by means of operations for
monitoring and control. The application may query an Infopipe component about sta-
tus information, such as the number of video frames that has passed through within a
specific time interval.

Different kinds of Infopipe components for communication, control, filtering, and
transformation are described in [15]. Supported components include sources, sinks,
buffers, filters, pumps, remote pipes, and split and merge tees. Different Infopipe
components may be connected in order to establish information flow from sources
to sinks, so-called Infopipelines. A connect operation is supported which connects a
so-called output port in one Infopipe component to an input port in another Infopipe
component. A pump is an active element which drives the data delivery, for exam-
ple, by pulling information from an upstream component and pushing information



4.6. MEDIAMESH 41

to a downstream component. Remote pipes must be explicitly installed whenever an
Infopipeline crosses computer host boundaries. Infopipe components are created at
each end of the remote connection and handle communication and synchronization.

The Infopipe approach supports reasoning about Infopipe compaositions, both with
respect to functionality and QoS characteristics. An example of functional reason-
ing is to validate if data can actually flow from a source to a sink. An example of
reasoning about QoS characteristics is to determine the end-to-end latency for an In-
fopipeline. The authors of [15] recognize that other QoS properties, such as CPU
consumption, do not have strict additive behavior (e.g., due to caching).

The ideas from the researchers in the Infopipe project have influenced the devel-
opment of GStreamer [77], an open source framework for developing streaming me-
dia applications. Hence, the GStreamer framework resembles the Infopipe approach,
where different components may be plugged together into pipelines.

4.6 MediaMesh

As described in[[9,_10], MediaMesh is an architecture for integrating isochronous
processing algorithms into media servers. The purpose of the architecture is to allow
different operations on live media streams. Such operations include security (water-
marking and encryption), time shifting (fast-forward, pause, and seek), adaptation,
and (de)multiplexing of streams. The architecture is also targeted at QoS support.
Similar to other media server architectures, the main components agpéoation
server for interacting with users, eontrol servey for admission control, and @data
exporterwhich is responsible for moving the media data through the flow graph, from
sources to target devices.

Media streams are modelled as directed graphs where the edges represent com-
munication and the nodes represent processing modules. The edges, called pipes,
are connected to the processing modules, called filters, via hamed connection points,
called ports. The direction of each edge indicates the direction of the media stream
flow, from sources to sinks. Control information on the other hand, is allowed to flow
in both directions, that is upstream for requests and downstream for replies. The Me-
diaMesh architecture adds infrastructure in the data exporter for composing graphs
and agraph managem the control server for constructing the graphs.

Major features of the MediaMesh architecture include efficient buffer manage-
ment, distributed stream control, and QoS management. During setup, a pipeline
characterization process propagates characteristics from a sink towards the sources.
This process allows validation with respect to compatibility between filters. Addi-
tionally this setup process allows the filter modules to indicate the required amount
of space for headers and trailers, in order to avoid data copying. The ownership of



42 CHAPTER 4. VIDEO PROCESSING

different control commands is also assigned during the setup phase in order to provide
distributed stream control. An example of such a control command is to switch to a
different version of a video file in order to change video resolution. Such a control
command will flow from the issuing filter to the filter which is responsible for the
switch. The graph manager is also informed about the commands which are valid for
the pipeline.

The resource management support in MediaMesh is deterministic and considers
CPU and memory usage. Each filter module has some associated properties, including
CPU and memory requirements. Based on these properties the system may calculate
the overall resource requirements for different media flow graphs. This information
is then used for admission control, in order to avoid over-utilizing the available re-
sources and hence degrade the performance of already admitted streams. When [10]
was written, cross data exporter graphs were not supported. From our understanding
this limits the processing of a graph to a single host.

4.7 Parallel Software-only Video Effect Processing

A research effort for exploiting parallel processing of video effects (PSVP) is de-
scribed in[63-55]. A software-only solution is proposed in order to reduce cost and
improve flexibility for the targeted environment, i.e., Internet video. The flexibility

is important in order to cope with the dynamic changes in available resources. These
changes cause variability in frame rate, delay, and packet loss. Effects, such as fade,
blend, and affine transformations are supported as well as the ability to compose video
streams. Handling potential complex effects for a number of streams in real-time has
driven support for both functional, temporal, and spatial parallelization.

The effect processing is specified in a high level language which is interpreted
by a compiler. The compiler generates a directed graph, where the nodes represent
video effect operations. The graph is then mapped onto the available processors,
each performing a part of the overall effect processing. The authors recognize that
partitioning the video data is not straight forward, due to both spatial and temporal
dependencies.

Temporal parallelization is realized with a centralized approach where a proces-
sor distributes different frames from one or more video streams to different processors
[53]. Compared to a decentralized approach, both intra and inter stream synchroniza-
tion is simplified, although at the cost of increased latency.

For spatial parallelization each processor receives the stream over IP multicast,
decodes the full video images, and applies the effects processing on a region. A
disadvantage is that each processor receives and decodes video data which are outside
the region of interest.



4.8. DISCUSSION 43

After applying the effects, the different frames and frame regions are combined by
a processor into an effect enhanced video stream. In [53] an interleaver is described
for the temporal parallelization case, which dynamically adapts buffering time in or-
der to reduce frame dropping. Due to lack of support in standards such as M-JPEG,
H.261, H.263, and MPEG for specifying the geometric relationships between the
different frame regions, the authors developed a new intermediate semicompressed
video format for the spatial parallelization casel[54]. The format supports rectilinear
subregions, is DCT-based, and allows DCT values to be used directly in the com-
bination phase when generating output stream formats. Small and high frequency
coefficients may be dropped when resources are scarce. Additionally, both luminance
and chrominance information is encapsulated within the same packets.

A control and coordination scheme for PSVP is described ih [55]. The scheme is
based on the Scalable Reliable Multicast (SRM) protocol and the Scalable Naming
and Announcement Protocol (SNAP). These protocols are based on IP-multicast and
provide tunable reliability semantics and recoverable state. The authors argue that
IP-multicast provides the required efficiency and also the required transparency with
respect to the location and the number of processors which implement an effect.

In [54], performance numbers are presented for a general affine transform effect,
executed by one to seven processors. With respect to latency, 250 ms is reported
for the one processor configuration. For the seven processor case, temporal paral-
lelization increases the latency to 340 ms, while a reduction to 70 ms is achieved
by using spatial parallelization. In the seven processor case, spatial parallelization
achieves 50% efficiency, while temporal parallelization reaches 75% efficiency. The
authors explain that spatial parallelization efficiency is bounded by the overhead due
to receiving and decoding the full video stream before applying the effects.

4.8 Discussion

The targeted application domain for the systems presented in this chapter differ. Some
are rather wide in scope, such as Java Media Framework, Dali, and Infopipe. The oth-
ers are meant for more specific usage — OpenCV for computer vision, MediaMesh
for media servers, and PSVP for parallel video effect processing.

With respect to application configuration, the graph building processes in both
JMF and MediaMesh do not take more than one computer into account. The configu-
ration of distributed applications is left to the developers. The graph building process
in JMF is also automatic and implicit, and we were unable to find any details about
the implemented algorithm. In both OpenCV and Dali flow graphs are explicitly pro-
grammed by developers, but to the best of our knowledge no support for distributed
processing is provided. Infopipe supports explicit connections and allows reasoning



44 CHAPTER 4. VIDEO PROCESSING

about distributed compositions. Support for distributed processing was a main goal
for PSVP. In JMF, Dali, and MediaMesh components are connected directly, without a
level of indirection. This makes configuration, reconfiguration, and independent par-
allelization of the different levels in the video analysis hierarchy difficult. In Infopipe

a configuration language has been proposed for explicitly constructing Infopipelines,
but a level of indirection is not provided directly. PSVP takes advantage of IP multi-
cast based communication in order to have such a level of indirection and to provide
transparency with respect to the number of participants and their location.

Distributed and parallel processing of video streams is not supported in OpenCYV,
JMF, Dali, or MediaMesh. Some of these systems support multithreading in order to
exploit the parallelism inherent in multimedia processing. For Dali, parallel process-
ing by multithreading is referred to as further work. For PSVP on the other hand, the
main goal has been distributed and parallel processing. However, the authors of PSVP
acknowledge the difficulty of distributing different parts of a video stream to differ-
ent processors, due to spatial and temporal dependencies within and between video
frames. The authors also recognize that sending a full video stream to all processors
gives a significant decoding overhead, as confirmed by their reported experiments.

Developing real-time distributed video content analysis applications is challeng-
ing. Most of the systems presented in this chapter seem to provide little support for
flexible distribution and parallelization of such applications. The approach repre-
sented by PSVP is promising, but the expressiveness provided by group-based sys-
tems is rather limited. Consequently, it seems difficult to efficiently deliver different
parts of the video data to different filters and feature extractors in order to improve ef-
ficiency by parallel processing. Altogether, these issues have motivated our research
on exploiting distributed content-based event notification services for distributed and
parallel video processing.



Chapter 5

Papers and Contributions

An overview of the research contributions of each individual paper included in this
thesis is presented in this chapter. Additionally, we provide a discussion of the com-
bined thesis contributions and compare our approaches to the related work presented

in Chaptef P, B, and 4.

5.1 Overview of Research Papers

In the following we describe the main contributions of each paper and how the paper
fits with respect to the overall thesis goals. Since each paper is self-contained, some
information is necessarily repeated in different papers. For information about where
the paper has been published, the evaluation process and outcome, and the contribu-
tions made by the different authors, the reader is referred to the cover pages of each
research paper, presented in Part Il. In short, Eide has been the driving force behind
the work presented in Paper I, Il, 1V, VI, and VII, while Paper lll, V, and VIII have
been written cooperatively within the project. For the project papers, the following
description will focus on the contributions made by Eide.

The slides and posters used for presenting the papers at conferences and work-
shops are also available from the project web pages [3].

Paper I: Supporting Distributed Processing of Time-based Media
Streams

Some general aspects of distributed processing of time-based media streams are ad-
dressed in this paper. The paper motivates the need for supporting real-time process-

ing of time-based media streams and suggests a general way of structuring applica-
tions within this domain. An architecture is presented, and the paper investigates de-

45



46 CHAPTER 5. PAPERS AND CONTRIBUTIONS

sirable system support for building such applications. In particular the paper focuses
on issues related to the interaction model as well as time and synchronization.

The proposed framework assumes a notion of global time and supports specifi-
cations of temporal relationships by associating a time interval to each event. The
framework does not itself address the issue of time synchronization, but suggests that
approximation to global time may be realized by synchronizing computers by, for
example, the Network Time Protocol (NTP) (RFC 1305).

Identified desired framework characteristics include reuse-ability, scalability, per-
formance, resource management, and fault tolerance. The paper argues that mod-
ularization, distribution, adaptation, reconfiguration, migration, and replication are
important mechanisms in order to provide such characteristics. Based on the frame-
work architecture, the desired characteristics, and the communication requirements,
the paper suggests an event-based interaction model. The paper argues in favor of
event-based communication, due to the level of indirection provided and thereby the
loose coupling achieved between components.

The paper also describes a prototype which takes advantage of Mbus, a commu-
nication system which resembles event-based communication. The Mbus addressing
scheme allows a message to be addressed to number of receivers, by means of at-
tribute names and values, as described in Seftidn 2.5.

The main contribution of this paper from a thesis perspective is the foundation
that it provides for the rest of the thesis work. The computational architecture is in-
troduced, requirements derived, and the design issues are discussed and evaluated.
The paper describes a first prototype implementation, which allowed testing and pro-
vided useful feedback on the architecture.

Paper Il: Real-time Processing of Media Streams: A Case for Event-
based Interaction

In this paper, the communication requirements for the targeted application domain
are analyzed in more depth, compared to Paper I.

The paper argues that the communication patterns and requirements fit well with
the publish/subscribe interaction paradigm and hence event-based communication.
The application requirements are then translated into requirements for the event noti-
fication service. The data model for notifications as well as event notification selec-
tion, filtering, delivery, and ordering issues are discussed in detail, and we argue that
a suitable event notification service may satisfy the corresponding requirements.

The paper also advocates the potential unleashed by an event notification service
capable of streaming video data. Such a service will allow a video coding scheme
to be developed, where different video receivers may express interest in only certain



5.1. OVERVIEW OF RESEARCH PAPERS a7

parts of the video signal, both temporally and spatially. This will allow both network
and processing resource consumption to be reduced, and subsequently efficiency to
be improved.

By analyzing the communication requirements in more detail, requirements for
a suitable event notification service are identified. Thereby the paper lays the foun-
dation for exploring event-based communication further for the targeted application
domain, and in particular for video streaming.

Paper lll: Scalable Independent Multi-level Distribution in Multi-
media Content Analysis

In this project paper, a framework is proposed where each level of a content analysis
task can be parallelized and distributed independently. As an example, one particular
feature extraction task can be split into a number of sub tasks, each executing on dif-
ferent computers. Due to event-based and indirect communication, the analysis tasks
at higher or lower levels do not need to be modified when a particular level is par-
allelized, neither programming nor configuration wise. The components involved in
the classification part of the application subscribe to the information of interest, and
whether this information has been produced by a single or a number of feature ex-
traction components does not matter. The event notification service is responsible for
delivering the relevant information to the respective interested parties. If for example
the feature extraction part of the application experiences a bottleneck situation, it may
be parallelized and executed by a number of computers. The processing resources can
be focused at the bottleneck at hand, simplifying both development and deployment.

In order to validate the framework, a prototype application was implemented for
real-time detection and tracking of a moving object within a video stream. The paper
presents experimental results for different configurations of this real-time motion vec-
tor based object tracking application, executed by one to ten processors. Even for this
relatively tightly coupled application, where different components interact with the
video frame rate frequency, reasonable scalability is achieved. The paper argues that
a massively distributed application, utilizing a large number of cameras, may require
such tight coupling only between some components. However, the measurements re-
veal the need for a more fine grained video streaming solution, compared to standard
IP multicast based streaming. The scalability of the feature extraction part suffered,
as each feature extraction component had to both receive and decode the full video
stream, before processing only a region within each frame.

The results demonstrate that our framework allows construction of scalable appli-
cations by means of distribution and parallelization of the different logical application
levels, i.e., streaming, filtering/transformation, feature extraction, and classification.



48 CHAPTER 5. PAPERS AND CONTRIBUTIONS

Paper IV: Extending Content-based Publish/Subscribe Systems with
Multicast Support

An approach for extending distributed content-based publish/subscribe systems with
multicast support is proposed in this paper. This is a well known challenge in the
research community and is motivated by the potential efficiency and performance
gains, as described in [18,141].

Our earlier prototypes used Mbus for communication, in addition to IP multicast
based video streaming. However, the end node filtering approach of Mbus is not ap-
propriate as the volume of data transported through the service increases, among oth-
ers as a result of transporting several video streams through the service concurrently.
Distributed content-based event notification services on the other hand, filter notifi-
cations close to the source, provide clients with more expressiveness for subscribing,
and give more flexibility with respect to the choice of transport mechanisms.

The paper presents an architecture for a distributed content-based event notifi-
cation service, capable of exploiting native (network level and link level) multicast
support. The service is intended for intradomain and LAN usage. As stated in the
paper, we view our approach as complementary to approaches for WAN usage, as
we envision that intradomain services connect to a WAN event notification service
through gateways. Such a division between intradomain and interdomain protocols
have also been successful elsewhere, for example for IP routing.

Central to the suggested approach is a so-called mapping specification, which
maps all event notifications potentially generated to a number of different commu-
nication channels, for example IP multicast addresses. The paper does not address
algorithms for automatically calculating mapping specifications, but suggests an ap-
proach for manually determining such specifications. In other words, the mapping
problem is separated out and the other required mechanisms are implemented. Such
mapping specifications can be generated off-line, online, manually, or automatically
and may be changed during runtime. Thereby, a new mapping specification can be
installed, which is more appropriate in relation to the currently generated notifications
and subscriptions, allowing the service to adapt to the current application generated
load.

When a client publishes notifications through a server, the server maps each no-
tification to an IP multicast address. The notification is thereby efficiently forwarded
to all other servers responsible for clients which have matching subscriptions. This
inter server communication is transparent to clients.

The presented experimental results indicate the potential for the service to provide
both scalability and high performance. The measured performance shows that a client
may publish several thousand event notifications, carrying several MBytes of data, per
second. Due to the use of native multicast, the service is unaffected by the number of



5.1. OVERVIEW OF RESEARCH PAPERS 49

clients having interest in the same notifications. Additionally, the distributed architec-
ture of the service provides scalability, since computers using the service contribute
by hosting part of the distributed service.

From a thesis point of view, this paper demonstrates that a distributed content-
based publish/subscribe system may provide high performance. In particular the re-
sults show that even the video streaming part of an application can be handled by a
content-based event notification service.

Paper V: Supporting Timeliness and Accuracy in Distributed Real-
time Content-based Video Analysis

This paper was written collaboratively in the project and builds on earlier results. The
paper shows how requirements for timeliness, i.e., latency and temporal resolution,
as well as accuracy can be handled by a scalable and resource aware architecture for
the domain of real-time distributed video content analysis.

In the suggested approach applications are represented as graphs, where the nodes
represent processing tasks and the edges represent the directed flow of data. A QoS
model for real-time content-based video analysis is also presented. Given such an ap-
plication graph, a specification of timeliness and accuracy requirements, and a model
of the physical processing environment, the paper describes QoS aware mapping of
the application onto the distributed processing environment.

In the proposed architecture a distributed content-based event notification ser-
vice is responsible for all inter component communication. The paper advocates that
event-based interaction simplifies (re)configuration and additionally supports inde-
pendent parallelization at different logical levels.

With respect to scalability the content-based event notification service plays a cen-
tral role, and the paper describes how scalability can be achieved for video streaming,
filtering/transformation, feature extraction, and classification. The paper argues that
by streaming video over a content-based event notification service, receivers are pro-
vided with the ability to customize the video stream.

When the experiments reported in this paper were conducted, the implementation
of this video coding scheme was not ready. The empirical results which demon-
strate the scalability of the object tracking application are from Paper lIll, while the
performance measurements of the event notification service are from Paper IV. The
presented numbers demonstrate the ability of our service to handle the data rates re-
quired for video streaming, and the distributed architecture of the service also allows
concurrent streaming of several video streams.



50 CHAPTER 5. PAPERS AND CONTRIBUTIONS

Paper VI. Exploiting Content-Based Networking for Video Stream-
ing

This technical demonstration paper gives an overview of how content-based network-
ing may be exploited for heterogeneous multi-receiver video streaming.

The novelty of the presented approach is that each video receiver is provided
with independent and fine grained selectivity along several different video quality
dimensions, while efficiency is maintained on the sender side, in the network, and on
the receiver side. Consequently, each video receiver may independently customize the
video stream according to user preferences and available resources, such as network
bandwidth, CPU performance, power availability, and display capabilities. The video
coding scheme supports customization of the video signal with respect to region of
interest, signal to noise ratio, colors, and temporal resolution.

From a thesis perspective this paper lays the foundation for more efficient dis-
tributed and parallel video content analysis. The potential efficiency improvement is
due to the ability for each video receiver to express interest in only a subset of the full
video signal, spatially and/or temporally.

Paper VII: Exploiting Content-Based Networking for Fine Granu-
larity Multi-Receiver Video Streaming

Compared to Paper VI, this paper describes in more detail how the field of content-
based networking can be bridged with well known techniques from the fields of video
compression and streaming in order to support fine granularity multi-receiver video
streaming. The novelty is that each video receiver is provided with fine grained se-
lectivity and therefore may customize the video stream in order to trade user pref-
erences against available resources, such as network bandwidth, computational re-
sources, power availability, and display resolution. The supported dimensions in our
video coding scheme are region of interest, signal to noise ratio, colors, and temporal
resolution.

The paper provides details on how fine grained selectivity can be realized in the
different video quality dimensions. Performance measurements for a prototype im-
plementation are also presented, which show that both bandwidth and processing
requirements drop accordingly when video quality is reduced in the different dimen-
sions. From a real-time video content-analysis point of view these results are en-
couraging, because they indicate that different components executing on different
computers in a content analysis application may subscribe to and hence receive only
a certain part of the video signal. In other words, each component is provided with
full flexibility along the different video quality dimensions. The customization al-



5.1. OVERVIEW OF RESEARCH PAPERS 51

lows efficiency to be improved, since only the required part of the video signal is
received and decoded. Consequently, the consumption of network and computational
resources is reduced, creating a potential for improving scalability.

These results are also promising outside the domain of distributed and parallel
real-time video content analysis. The paper contributes to state of the art by demon-
strating how video streaming over content-based networking is able to support scal-
able and more fine-grained multi-receiver video streaming, compared to other tech-
niques which often use unicast or multicast directly.

Paper VIII: Real-time Video Content Analysis: QoS-Aware Appli-
cation Composition and Parallel Processing

This project paper extends the work presented in Paper V. For communication, a
distributed content-based publish/subscribe is now used throughout the whole archi-
tecture. For performance reasons, the paper advocates a publish/subscribe system ca-
pable of exploiting native multicast support, as described in Paper IV. The suggested
approach for streaming of video is the fine granularity multi-receiver video streaming
system presented in Paper VI and VII. A new prototype application was developed
for validation purposes. Measurement results are presented for the updated version of
the object tracking application, where all communication is handled via our IP multi-
cast enabled distributed content-based publish/subscribe service, including the video
streaming. Compared to earlier published results, the measurements indicate signif-
icantly improved scalability for spatial parallelization of video processing. In case
of video content analysis, this represents the filtering, transformation, and feature
extraction parts of the applications.

It should be noted that the feature extraction task used for the experiments (i.e.,
motion vector calculation) is somewhat challenging, due to spatial and temporal de-
pendencies. In order to calculate a motion vector for a singlel66pixel block,
pixel data from neighboring blocks are required. Therefore, each motion vector cal-
culation component must subscribe to a region somewhat larger than the regions for
which it calculates motion vectors. Consequently, when motion vector calculation is
performed in parallel by a number of components, some video blocks are received
and decoded by several components. This introduces some overhead which is related
to this specific feature extraction task, but not inherent in the framework itself.

In spite of the spatial dependencies, the presented results indicate that the over-
head is quite low. Supported by the measurements presented in Paper VII, the over-
head should be close to zero for other kinds of feature extraction algorithms, where
different components subscribe to strictly isolated frame regions. Additionally, the
motion vector components only subscribe to the gray level part of the video signal,



52 CHAPTER 5. PAPERS AND CONTRIBUTIONS

thereby eliminating the need for receiving and decoding the color part of the video
signal. These results represent a substantial improvement compared to our and other
earlier published results, as reported.inl |33, 54].

From a thesis point of view, this most recent paper demonstrates that event-based
communication provides some distinguishing advantages for the application domain
of real-time distributed and parallel video content analysis. The results obtained by
integrating (1) a distributed IP multicast capable content-based event notification ser-
vice and (2) a fine granularity multi-receiver video streaming scheme which exploits
such a service into (3) a real-time distributed and parallel video content analysis ap-
plication, allow us to confidentially claim validity of our approach.

5.2 Discussion

In this section we provide a discussion of the contributions of this thesis work in rela-
tion to the related work presented in Chapigr|2, 3[and 4 and the open issues discussed
at the end of each of these chapters. The discussion is structured into the same three
subsections, i.e., many-to-many communication, multi-receiver video streaming, and
video processing.

5.2.1 Many-to-Many Communication

The motivations for us to exploit content-based publish/subscribe systems for real-
time video content analysis were the fine granularity selectivity and the improved
flexibility by having an additional level of indirection. The additional level of indi-
rection allows event-based systems to take advantage of different underlying trans-
port technologies. How the service is realized can be addressed without changing
anything in the applications, and concerns regarding configuration, reconfiguration,
and deployment can be handled more separately. The mapping onto underlying com-
munication can also be changed during runtime in order to better fit the current flow
of notifications.

We have also argued that it is reasonable to handle the local area/intradomain case
differently from the wide area case, represented by for example interdomain or Inter-
net usage. We envision that intradomain and interdomain protocols will be connected
hierarchically. Hierarchical protocols are often considered beneficial elsewhere too.
For example in IP routing, hierarchical protocols allow policies to be specified dif-
ferently for the intradomain and the interdomain cases. Based on this reasoning, we
view our work on an efficient local area/intradomain content-based publish/subscribe
service as complementary to services for the wide area/interdomain case.



5.2. DISCUSSION 53

To the best of our knowledge, existing content-based publish/subscribe systems
did not exploit native multicast support. Therefore, we extended an existing dis-
tributed content-based publish/subscribe system with IP multicast support in order
to provide efficient dissemination of notifications. This thesis has not addressed the
issue of developing algorithms for automatically calculating mapping specifications,
I.e., determining a mapping from the content-based event notification space to multi-
cast addresses. So far we have implemented the mechanisms which have allowed us
to experiment with manually generated mapping specifications and thereby demon-
strate the potential of our approach.

Altogether, the added complexity, compared to using group-based communica-
tion directly, seems manageable. The experimental results presented in Paper VIII
demonstrate the benefits and potential of our approach. The experiences gained so far
have led us to claim that high-performance content-based publish/subscribe systems
are better suited for real-time video content analysis than using group-based commu-
nication directly.

5.2.2 Multi-Receiver Video Streaming

Our early prototypes were based on video streaming over IP multicast. Experiences
with these prototypes and the lack of solutions for fine granularity multi-receiver
video streaming motivated our research on exploiting content-based networking for
video streaming.

With the exception of the systems specifically made for IP multicast based video
streaming, all systems described in Chapter 3 rely on some kind of overlay network
infrastructure. Our approach is no different in this respect, as content-based event
notification services are also realized as overlay networks.

With respect to adaptation, the number of supported video quality dimensions
in our approach and the granularity of each dimension give rise to a large adapta-
tion tradeoff space. Although we have some ongoing activity within this area in the
project, the work described in this thesis has not addressed the issue of adaptive video
streaming.

In our video streaming approach additional processors for partitioning the video
data are not needed, since this is handled by the video coding scheme and the content-
based publish/subscribe system. The video signal is partitioned with fine granularity
at the sender side, and the need for additional application level filtering and transfor-
mation in the end systems is thereby largely reduced.

Consequently, in our approach each video receiver may independently and arbi-
trarily customize the stream along the different video quality dimensions. In effect
CPU and bandwidth resource consumption are reduced accordingly.



54 CHAPTER 5. PAPERS AND CONTRIBUTIONS

5.2.3 Video Processing

The video processing part of our early prototypes were based on the Java Media
Framework. However, some of the other systems described in Clhapter 4 could have
been used instead. For our later prototypes the benefits of using these already ex-
isting systems seem less obvious. As an example OpenCV includes different video
processing functions which could have been used as building blocks, but as stated
in Sectior 1.p, this thesis has not addressed the development of new kinds of filters
or feature extractors. Similarly we could also have used for example Dali for video
processing, but that would have required integration work with respect to our video
coding scheme.

Our framework allows video content analysis applications to be decomposed func-
tionally into streaming, filtering, feature extraction, and classification tasks, which
can be then be executed in a distributed fashion. Similarly to PSVP, which relies
on IP multicast, our approach is also based on a communication system which pro-
vides a level of indirection, and thereby provides transparency with respect to the
number of participants and their location. The glue is the distributed content-based
event notification service. Each component may subscribe to the event notifications
of interest, and by whom and where it has been generated does not matter. This sim-
plifies both configuration and reconfiguration and allows different components to be
deployed within the address space of a single process, within different processes on a
single computer, or hosted by different computers. Thereby, the configuration, recon-
figuration, and deployment concerns can be handled more sedﬂré’ﬂe@ability to
map event-based communication onto different underlying communication technolo-
gies and the opportunity for mapping different parts of the event notification space
to different communication channels also allow communication service performance
issues to be handled separately.

In addition to support for distributed processing and functional parallelism, our
framework supports spatial parallelization of filtering, transformation, feature extrac-
tion, and classification tasks. The level of indirection provided by content-based event
notification services also simplifies parallelization, since each level of the content
analysis hierarchy may then be independently parallelized. The most complete de-
scription and evaluation is provided in Paper VIII. By spatial parallelization latency
can be reduced, which is important for interactive and feedback control applications.

With respect to video processing efficiency, performance numbers are reported
in Paper VIII for an application which utilizes functional and spatial parallelization.
The reported overhead for performing feature extraction in parallel on a number of
computers is small and most likely due to the dependencies inherent in motion vector

1The development of algorithms for determining application configurations has in the project been
addressed by Granmlo [45].



5.2. DISCUSSION 55

estimation. The overhead seems to be caused by the fact that different motion esti-
mation components receive and decode some of the same video data. In other words,
the overhead is related to a particular algorithm and not the framework itself. Fur-
thermore, the measurements presented in Paper VIl indicate that the overhead wiill
be more or less zero for other kinds of feature extraction algorithms, which process
strictly disjunct parts of the video data.

By combining our IP multicast capable distributed content-based publish/subscribe
system, a fine granularity multi-receiver video streaming scheme, techniques for func-
tional and spatial parallel processing of video data, and state of the art techniques for
distributed classification, we have successfully validated our approach. Consequently,
this work has demonstrated the strength of exploiting event-based communication for
real-time distributed and parallel video content analysis.






Chapter 6

Conclusion and Further Work

This chapter first revisits the research topics and goals of this thesis. Then a descrip-
tion of the major contributions is given, before some critical remarks are presented
and discussed. Lastly, some opportunities and ideas for further research are provided.

6.1 Research Topics and Goals

The motivation for the work presented in this thesis has been to provide support for the
application domain of real-time distributed and parallel video content analysis. The
challenges represented by analyzing massive amounts of video data in real-time have
spurred the research on suitable techniques for communication, streaming, filtering,
and feature extraction. The research has evolved around exploiting event-based com-
munication as the main communication mechanism for this challenging application
domain. In particular, the following goals have been identified:

¢ Investigate if event-based interaction is a good fit for the application domain of
real-time distributed and parallel video content analysis

e Investigate if event-based communication is suitable for streaming real-time
video data in particular and transporting high data rates in general

e Investigate if event-based communication can support flexible distribution and
parallelization as well as efficient execution of such applications

6.2 Major Contributions

The contributions presented in this thesis have been published in a number of research
papers([32=39]. The contributions are within three areas — event-based communi-

57



58 CHAPTER 6. CONCLUSION AND FURTHER WORK

cation, video streaming, and real-time distributed and parallel video processing. The
context of the research, real-time distributed video content analysis, connects these
areas tightly. However, this does not mean that the usefulness of the results are lim-
ited to this particular domain. On the contrary, we claim that some of these results are
useful in general, and not limited by the scope of the DMJ project.

Additionally, the software for the content-based publish/subscribe system and
video streaming has been made available as open source from the DMJ project web
pagesl[3]. The intention is to allow others to validate our results, for example by
repeating some of the experiments. By allowing others to modify the software, the
opportunities for building on our work in future research are also significantly im-
proved.

In the following subsections, the thesis contributions within the areas of event-
based communication, video streaming, and real-time distributed and parallel video
processing are summarized.

6.2.1 Event-Based Communication

This thesis demonstrates that event-based interaction is well suited for the domain of
real-time distributed video content analysis. [In/[34] 35], arguments which support
this claim are given. Event-based systems differ with respect to the data model for
the notifications and the expressiveness of the subscription language. Content-based
systems offer most expressiveness and hence flexibility.

A distributed content-based overlay network have similarities with IP multicast.
Pruning of messages is done upstream, while replication is done downstream. Com-
pared to group-based systems, which basically allow clients to join and then receive
messages destined to the group, content-based systems provide much more fine-
grained selectivity. The price for the additional flexibility is complexity. Despite the
added complexity, this thesis shows that distributed content-based event notification
services are both suitable and beneficial for real-time distributed video analysis.

For handling the massive amounts of data and the real-time requirements, we
have extended an existing distributed content-based publish/subscribe system with IP
multicast support, as described in [36]. To the best of our knowledge, IP multicast
support was not implemented in any other content-based publish/subscribe systems
at that time. By mapping content-based publish/subscribe onto IP multicast, efficient
dissemination of notifications is achieved. Performance numbers presented in [36]
show that each client may publish several thousand notifications per second, carrying
several MBytes of data per second. This is more than sufficient for streaming high
quality video. This system was also used experimentally for a real-time video con-
tent analysis application, as described(in/[39]. All communication, even the video
streaming, was handled by the content-based publish/subscribe system.



6.2. MAJOR CONTRIBUTIONS 59

Hence, the experiences gained so far have led us to claim that high-performance
content-based publish/subscribe systems are well suited for the domain of real-time
distributed and parallel video content analysis. This thesis has also demonstrated
that content-based publish/subscribe systems offer significant advantages compared
to other alternatives, including systems which use group-based communication di-
rectly.

Additionally, event-based interaction is recognized as being well suited for loosely
coupled distributed applications in general. Efficient and high performance event
notification services will allow content-based publish/subscribe to be used in other
application areas as well, for example within the fields of sensor networks and high
performance computing.

6.2.2 Fine Granularity Multi-Receiver Video Streaming

This thesis also demonstrates how content-based event notification services can be
exploited for fine granularity multi-receiver video streaming. A prototype has been
developed, and the video coding scheme as well as performance numbers are pre-
sented in[[317,_38]. The thesis contribution in this area is the bridging of techniques
from the fields of video compression and streaming with content-based networking.
Our video coding scheme has been specifically developed to exploit the powerful
routing capabilities of content-based networks.

In our approach, video receivers are provided with fine granularity selectivity
along different video quality dimensions and they may independently customize the
video signal with respect to region of interest, signal to noise ratio, colors, and tem-
poral resolution. Efficient delivery, in terms of network utilization and end node
processing requirements is maintained, as demonstrated experimentally. in [38, 39].

Such fine grained selectivity is required in order to maintain efficiency within the
domain of real-time distributed and parallel video content analysis, due to the fact
that different computers may process different parts of a video stream, functionally,
spatially, and temporally.

Additionally, a video streaming solution for handling heterogeneity in a scalable
manner is also useful outside the video content analysis domain. Our scheme repre-
sents an efficient way of streaming video data to a number of receivers, in spite of
differences in network availability, end node capabilities, and receiver preferences.

Consequently, this work contributes to state of the art by demonstrating how video
streaming over content-based networking is able to support heterogeneous multi-
receiver video streaming. In our view, this represents a promising approach in the
domain of multi-receiver video streaming for efficiently handling the huge and in-
creasing diversity in device capabilities and resource availability, amplified by the
rapid progress in wireless, mobile, small scale, and ubiquitous computing.



60 CHAPTER 6. CONCLUSION AND FURTHER WORK

6.2.3 Real-Time Distributed and Parallel Video Processing

Video streaming over content-based networking reduces the need for application level
filtering and transformation of video data. Additionally, for distributed and parallel
processing, the efficiency is improved compared to other existing alternatives. The
reason is that the match between what is needed by different computers and what
is delivered and decoded by each computer can be improved. In other words, the
amount of redundant calculations is reduced. This was demonstrated experimentally,
as reported in [39].

The event-based interaction also provides a level of indirection — a key factor for
flexible and independent distribution and parallelization of each logical level. In ef-
fect, the available processing resources can be focused on the processing bottlenecks
at hand. Additionally, the level of indirection also allows different transport mecha-
nisms to be used for event notification dissemination. IP multicast has been used in
the experiments reported so far, but other technologies could have been used. Exam-
ples include other group-based systems and/or unicast technologies. Consequently,
application development is more decoupled from quality of service mapping and de-
ployment, as described in [32,/33, 39].

In combination, distributed high-performance content-based publish/subscribe sys-
tems, video coding schemes which exploits the powerful routing capabilities of such
systems, and distributed and parallel video processing provide a promising founda-
tion for developing efficient real-time video content-analysis applications. This was
demonstrated by integrating the results presented in this thesis with the classification
work done by Granma [45], as described|in|[39]. The measurements reported in [39]
reveals the scalability of a specific application, by demonstrating that the overhead of
distributed and parallel processing can be kept low. However, it seems reasonable that
the results also indicate the scalability of our approach in general. Consequently, as
the overhead can be kept low, our approach allows improved quality of service (Q0S)
requirements and thereby harder performance requirements to be satisfied by adding
computational resources, such as computers and network capacity.

6.3 Critical Remarks

Having summarized the main results both with respect to their usefulness in the con-

text of the targeted application domain and in general, this section presents some
critical remarks. As stated in Sectipn[1.4, the research method that has been used in
this thesis work is the design paradigm. An inherent characteristic of the research

method associated with the design paradigm is that results can only be validated, and
not proven in the mathematical sense.



6.3. CRITICAL REMARKS 61

We have followed the design paradigm and performed requirement analysis, gen-
erated specifications based on these requirements, designed the systems, and imple-
mented these designs. The developed prototypes have been tested and formed the
bases for experiments. Experiments have been conducted for the individual areas
addressed in this thesis, i.e., event-based communication and fine granularity multi-
receiver video streaming. The techniques from these individual areas have also been
combined with state of the art techniques for distributed classification, and integrated
into a real-time distributed and parallel video content analysis application for exper-
imental purposes. The results obtained by integration and the reported experimental
measurements represent significant improvements when compared to relevant work.
However, we recognize that for example simulations could have been used for more
large scale experiments.

One may argue that other or more challenging applications should have been de-
veloped, which more completely span the targeted application domain. Clearly, this
may have supported our claims more firmly. Closely related is the issue of validating
scalability, which leads to questions about the scale of the experiments. One may
argue that the conducted experiments are too limited in different dimensions, for ex-
ample with respect to the maximum number of computers used and the number of
video streams analyzed concurrently. Similarly, the IP multicast enabled distributed
content-based publish/subscribe system could have been evaluated more closely, by
larger scale experiments or by using simulations. In this respect it should be noted
that our work has been targeted at intradomain and LAN usage, i.e., our work is com-
plementary to event notification services for WANs where scalability challenges are
much harder. For research within the design paradigm, which rely on prototyping, the
issue of scalability can most likely always be questioned. Additionally, our claims are
not solely based on experiments, but also on arguments which have been presented
to the research community in the form of peer reviewed papers and presentations at
conferences and workshops. By making the software available as open source, we
have also made validation by other researchers practically possible.

With respect to the prototypes and experiments, it should be noted that the focus
has not been to achieve the best possible absolute performance for a particular appli-
cation implementation. Rather, in order to determine what is reasonable to expect for
applications within the targeted domain we have concentrated on observing the rel-
ative numbers, such as the trends for efficiency and latency, as computers are added
for distributed and parallel processing.

The focus of our work on real-time distributed video content analysis applications
has been on the data flow part and not on the signaling and control parts. The pub-
lish/subscribe interaction paradigm may not be suitable for the control and manage-
ment parts, which may require explicit addressing of endpoints in addition to authen-



62 CHAPTER 6. CONCLUSION AND FURTHER WORK

ticated, encrypted, and reliable communication. For such purposes, direct one-to-one
communication running on top of for example TCP may prove more well suited.

Altogether, we think that our claims have been sufficiently justified. Thereby,
they provide adequate ground for claiming validity of our approach, although we also
recognize that there are a number of interesting issues raised by this thesis work. In
the following section we present and discuss some of these issues, as opportunities
for further research.

6.4 Further Work

There are many possible directions for further exploring some of the individual re-
sults presented in this thesis. The combination of these results also presents further
research opportunities within the application domain of real-time distributed multi-
media content analysis. In the following, some ideas for further work within these
different areas are discussed.

6.4.1 Event-Based Communication

With respect to event-based communication it would be interesting to leverage on ad-
vances within the field of distributed content-based publish/subscribe systems. Dur-
ing the last couple of years, researchers have started to investigate peer-to-peer sys-
tems for dynamically constructing and maintaining such content-based overlay net-
works [64,78]. An interesting approach is to exploit network level multicast in such
systems, for efficient communication between peers located within the same area or
domain. In our view, it seems reasonable to handle the LAN/intradomain case differ-
ently from the wide area case (e.g., the interdomain/Internet case). In order to take
advantage of native multicast support, some kind of mapping approach is required,
which maps from the space of potential generated event notifications to multicast ad-
dresses. This would require algorithms for automatically calculating such mapping
specifications, as described in [46] 61]. Input to such algorithms, will take into con-
sideration information about the current flow of notifications, i.e., the current “traffic”
pattern. Such functionality seems reasonable to include as a part of the automatic con-
struction and maintenance tasks for such overlay networks. We plan to look more into
this problem in our future work. Research in this direction would also fit quite well to
the vision of autonomous computing, a field which has recently gained much atten-
tion and where important system characteristics include self-monitoring, self-healing,
self-adaptive, and self-reconfiguring behavior.

Quality of service issues for event-based communication are also interesting in
cases where different parts of applications have different requirements with respect



6.4. FURTHER WORK 63

to for example throughput, reliability, and delay. Clients may indicate such quality of
service parameters in subscriptions and advertisements and the service may use this
information to select between different underlying transport protocols. A differenti-
ation between the local area case and the wide area case may also prove useful for
quality of service issues. As an example, the combination of reliability and multicast
may be achieved by simpler and more efficient protocols, which may even take into
account characteristics of the underlying layer two network.

6.4.2 Multimedia Streaming

Today, peer-to-peer based streaming systems attract a lot of research activity. For
multi-receiver streaming, end-system multicast represents a promising direction. How-
ever, this thesis demonstrates the additional flexibility achieved by exploiting content-
based networking for video streaming, compared to direct use of multicast and group-
based solutions. Hence, dynamically constructed and maintained content-based over-
lay networks, based on peer-to-peer technologies, seem attractive for fine grained
multi-receiver real-time video streaming.

Another interesting area to investigate is a video coding scheme for content-based
networking which is more closely integrated with state of the art video coding tech-
niques, represented by for example H.264/AVC [75]. In H.264/AVC macroblocks
are organized into self-contained slices and the so-called flexible macroblock order-
ing (FMO) technique allows much freedom when organizing macroblocks into such
slices [75]. It would also be interesting to look at the potential represented by state
of the art scalable video coding techniques [58], such as motion-compensated spa-
tiotemporal wavelet coding in combination with content-based networking.

In order to improve robustness and resilience to transient network failures and
congestion, error correcting coding schemes seem like a viable path. This may pro-
vide video receivers with the ability to customize, by means of subscriptions, the
tradeoff between the amount of redundant information received and the robustness.
Interesting in this respect are variants of Multiple Description Coding [82] which are
based on forward error correction techniques.

For parallel processing, our video coding scheme has so far been used for func-
tional and spatial parallelization. Support for temporal parallelization can be realized
by adding a single attribute/value pair in notifications carrying video data. This at-
tribute will indicate a sequence number for a group of pictures and allow different
components to subscribe to these different groups of pictures. Each video receiver
may then arbitrarily combine this new dimension with the other dimensions, allowing
for example a combination of spatial and temporal parallelization. The added attribute
will represent an independent video quality dimension, which further illustrates the
flexibility of utilizing content-based networking for video streaming.



64 CHAPTER 6. CONCLUSION AND FURTHER WORK

Based on experiences gained in the area of real-time video streaming, it seems rea-
sonable to investigate the opportunities for using content-based networking to stream
other media types as well, such as audio data. In spite of bandwidth requirements
for audio being an order of magnitude less demanding than for video, there are ap-
parently exploitable similarities. Such a scheme may allow each audio receiver to
independently customize the audio stream along quality dimensions such as sample
size, sampling frequency, number of audio channels, and maybe also resilience.

6.4.3 Real-Time Distributed Multimedia Content Analysis

In order to further validate the proposed architecture, we would like to scale up pro-
totype applications and experiments along several different dimensions, as discussed
in the following.

In future experiments it would be interesting to analyze several video streams con-
currently. This would allow information from different video streams to be related in
both space and time during classification (e.g., for tracking objects both spatially and
temporally). So far, our research efforts have been concentrated on video analysis.
Further work should consider using different media types concurrently. Features ex-
tracted from different media types may then also be related, improving robustness
even further[[81]. Some applications may improve accuracy by analyzing media data
of higher quality. For video, this may translate into higher spatial and/or temporal res-
olution, allowing more fine grained details to be detected. Additionally, by increasing
the frame rate, the responsiveness of feedback control systems may be improved.
For some applications, improved temporal resolution is important, even at the cost
of increased latency. Hence it would be useful to include temporal parallelization in
further experiments, maybe also in combination with spatial parallelization. In case
of video analysis, each feature extractor component may then subscribe to and hence
process only some of the frames or only a region within some of the frames.

Increases along these different dimensions would have to be met by additional
computational resources. In this respect, example applications which geographically
span long distances may provide useful feedback on the architecture. It would also be
interesting to host applications, or parts thereof, on clusters and in grid like environ-
ments. Grid systems have not yet been designed to handle real-time applications, as
described in[[44]. Hence, real-time distributed and parallel multimedia content analy-
sis represents a challenging application domain which may influence research in grid
technologies.



Bibliography

[1] ACM Digital Library. http://www.acm.org/dl/.

[2] CiteSeer.IST. http://citeseer.ist.psu.edul/.

[3] The Distributed Media Journaling project. http://www.ifi.uio.no/"dmj/.

[4] Google. http://www.google.com/.

[5] IEEE Xplore. http://ieeexplore.ieee.org/.

[6] SpringerLink. http://www.springerlink.com/.

[7] The Digital Bibliography & Library Project. http://dblp.uni-trier.de/.

[8] Kevin C. Almeroth. The Evolution of Multicast: From the MBone to Inter-
Domain Multicast to Internet2 DeploymentEEE Network, Special Issue on
Multicasting 14(1):10-20, January/February 2000.

[9] Lisa Amini, Jorge Lepre, and Martin G. Kienzle. Distributed stream control
for self-managing media processing graphs. In John Buford and Scott Stevens,
editors,Proceedings of the seventh ACM International Conference on Multime-
dia, October 30 - November 05, 1999, Orlando, Florida, U8#ume 2, pages
99-102. ACM, 1999.

[10] Lisa Amini, Jorge Lepre, and Martin G. Kienzle. Mediamesh: An architecture
for integrating isochronous processing algorithms into media servers. In Klara
Nahrstedt and Wu-chi Feng, editofdultimedia Computing and Networking
(MMCN’00), volume 3969, pages 14-25. SPIE, 2000.

[11] Phillip G. Armour. The Five Orders of Ignorand@ommunications of the ACM
43(10):17-20, October 2000.

65



66 BIBLIOGRAPHY

[12] David Beymer, Philip McLauchlan, Benn Coifman, and Jitendra Malik. A Real-
time Computer Vision System for Measuring Traffic Parameter<Cdmputer
Vision and Pattern Recognition (CVPR’97), San Juan, Puerto,Riages 495—
501. IEEE, June 1997.

[13] Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz,
Robbert van Renesse, Ohad Rodeh, and Werner Vogels. The Horus and Ensem-
ble Projects: Accomplishments and Limitations. DARPA Information Sur-
vivability Conference and Exposition (DISCEX 200&EE Computer Society
Press, pages 149-160, January 2000.

[14] Kenneth P. Birman, Robbert van Renesse, and Werner Vogels. Spinglass: Se-
cure and Scalable Communications Tools for Mission-Critical Computing. In
DARPA Information Survivability Conference and Exposition Il (DISCEX,'01)
volume 2, pages 85-99. IEEE, 2001.

[15] Andrew P. Black, Jie Huang, Rainer Koster, Jonathan Walpole, and Calton
Pu. Infopipes: An abstraction for multimedia streamimdultimedia Systems
8(5):406-419, 2002.

[16] Michael Blome and Mike Wasson. DirectShow: Core Media Technology in
Windows XP Empowers You to Create Custom Audio/Video Processing Com-
ponents.Microsoft, MSDN Magazinel7(7), July 2002.

[17] Gary Bradski, Adrian Kaehler, and Vadim Pisarevsky. Learning-Based Com-
puter Vision with Intel's Open Source Computer Vision Librahytel Technol-
ogy Journa) 9(2):118-130, 2005.

[18] Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design and
Evaluation of a Wide-Area Event Notification ServicACM Transactions on
Computer System$9(3):332—-383, August 2001.

[19] Antonio Carzaniga, Matthew J. Rutherford, and Alexander L. Wolf. A Routing
Scheme for Content-Based Networking. PRroceedings of IEEE INFOCOM,
Twenty-third Annual Joint Conference of the IEEE Computer and Communica-
tions Societiesvolume 2, pages 918-928, Hong Kong, China, March 2004.

[20] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
Scribe: A large-scale and decentralized application-level multicast infrastruc-
ture. IEEE Journal on Selected Areas in Communications (JSA@B):1489—
1499, October 2002.



BIBLIOGRAPHY 67

[21] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron,
Marvin Theimer, Helen Wang, and Alec Wolman. An Evaluation of Scalable
Application-level Multicast Built Using Peer-to-peer Overlays.Pimceedings
of IEEE INFOCOM, Twenty-Second Annual Joint Conference of the IEEE Com-
puter and Communications Societigslume 2, pages 1510-1520, 2003.

[22] Desmond Chambers, Gerard Lyons, and Jim Duggan. Stream Enhancements for
the CORBA Event Service. IRroceedings of the ACM Multimedia (SIGMM)
Conference, Ottawgages 61—-69, October 2001.

[23] Desmond Chambers, Gerard Lyons, and Jim Duggan. A Multimedia Enhanced
Distributed Object Event ServicéEEE MultiMedia 9(3):56-71, 2002.

[24] Chao Chen, Zhanfeng Jia, and Pravin Varaiya. Causes and Cures of Highway
CongestionControl Systems Magazine, IEEEL(6):26—32, December 2001.

[25] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case
for end system multicasiEEE Journal on Selected Areas in Communications
(JSAC) 20(8):1456-1471, October 2002.

[26] Jon Crowcroft and Markus Hofmann, editoldetworked Group Communica-
tion, Third International COST264 Workshop, NGC 2001, London, UK, Novem-
ber 7-9, 2001, Proceedinggolume 2233 of_ecture Notes in Computer Science
Springer, 2001.

[27] Jon Crowcroft and lan Pratt. Peer to peer: Peering into the future. In Enrico Gre-
gori, Giuseppe Anastasi, and Stefano Basagni, editdES,WORKING Tutori-
als, volume 2497 ot ecture Notes in Computer Scienpages 1-19. Springer,
2002.

[28] David E. Culler, Deborah Estrin, and Mani B. Srivastava. Guest editors’ intro-
duction: Overview of sensor networkdEEE Computer37(8):41-49, 2004.

[29] Stephen E. Deering and David R. Cheriton. Multicast Routing in Datagram
Internetworks and Extended LANSACM Trans. Comput. Sysi8(2):85-110,
1990.

[30] Peter J. Denning. Computer Science: The Discipline. In Anthony Ralston and
David Hemmendinger, editor@000 Edition of Encyclopedia of Computer Sci-
ence 2000.

[31] Peter J. Denning, Douglas Comer, David Gries, Michael C. Mulder, Allen B.
Tucker, A. Joe Turner, and Paul R. Young. Computing as a discipioeamu-
nications of the ACM (CACMB2(1):9-23, 1989.



68

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Viktor S. Wold Eide, Frank Eliassen, Ole-Christoffer Granmo, and Olav Lysne.
Scalable Independent Multi-level Distribution in Multimedia Content Analysis.
In Proceedings of the Joint International Workshop on Interactive Distributed
Multimedia Systems and Protocols for Multimedia Systems (IDMS/PROMS),
Coimbra, Portugal LNCS 2515, pages 37-48. Springer-Verlag, November
2002.

Viktor S. Wold Eide, Frank Eliassen, Ole-Christoffer Granmo, and Olav Lysne.
Supporting Timeliness and Accuracy in Distributed Real-time Content-based
Video Analysis. InProceedings of the 11th ACM International Conference on
Multimedia, ACM MM’03, Berkeley, California, USfAages 21-32, November
2003.

Viktor S. Wold Eide, Frank Eliassen, and Olav Lysne. Supporting Distributed
Processing of Time-based Media Streams. In Gordon Blair, Douglas Schmidt,
and Zahir Tari, editorRroceedings of the 3rd International Symposium on Dis-
tributed Objects and Applications (DOA’01), Rome, l{gdages 281-288. IEEE
Computer Society, September 2001.

Viktor S. Wold Eide, Frank Eliassen, Olav Lysne, and Ole-Christoffer Granmo.
Real-time Processing of Media Streams: A Case for Event-based Interaction.
In Roland Wagner, editoRroceedings of 1st International Workshop on Dis-
tributed Event-Based Systems (DEBS’02), Vienna, Auspéges 555-562.
IEEE Computer Society, July 2002.

Viktor S. Wold Eide, Frank Eliassen, Olav Lysne, and Ole-Christoffer Granmo.
Extending Content-based Publish/Subscribe Systems with Multicast Support.
Technical Report 2003-03, Simula Research Laboratory, July 2003.

Viktor S. Wold Eide, Frank Eliassen, and Jgrgen Andreas Michaelsen. Exploit-
ing Content-Based Networking for Video StreamingPhoceedings of the 12th
ACM International Conference on Multimedia, Technical Demonstration, ACM
MM’'04, New York, New York, USpages 164—-165, October 2004.

Viktor S. Wold Eide, Frank Eliassen, and Jgrgen Andreas Michaelsen. Ex-
ploiting Content-Based Networking for Fine Granularity Multi-Receiver Video
Streaming. In Surendar Chandra and Nalini Venkatasubramanian, eBito+s,
ceedings of the 12th Annual Multimedia Computing and Networking (MMCN
'05), SPIE, San Jose, California, US®olume 5680, pages 155-166, January
2005.



BIBLIOGRAPHY 69

[39] Viktor S. Wold Eide, Ole Christoffer Granmo, Frank Eliassen, and Jagrgen An-
dreas Michaelsen. Real-time Video Content Analysis: QoS-Aware Application
Composition and Parallel Processirfgubmitted to ACM Transactions on Mul-
timedia Computing, Communications, and Applications, (TOMCCARYJil
2005.

[40] Ayman EI-Sayed, Vincent Roca, and Laurent Mathy. A Survey of Proposals
for an Alternative Group CommunicationEEE Network 17(1):46-51, Jan-
uary/February 2003.

[41] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The Many Faces of Publish/SubscribACM Computing Surveys
(CSUR) 35:114-131, June 2003.

[42] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia
Zhang. A Reliable Multicast Framework for Light-Weight Sessions and Appli-
cation Level FraminglEEE/ACM Transactions on Networking.(6):784—803,
1997.

[43] Aditya Ganjam and Hui Zhang. Internet Multicast Video DelivéPyoceedings
of the IEEE 93(1):159-170, January 2005.

[44] Paul Grace, Geoff Coulson, Gordon S. Blair, Laurent Mathy, Wai Kit Yeung,
Wei Cai, David A. Duce, and Christopher S. Cooper. GRIDKIT: Pluggable
Overlay Networks for Grid Computing. In Robert Meersman and Zahir Tari,
editors,CooplS/DOA/ODBASE (2yolume 3291 ot ecture Notes in Computer
Sciencepages 1463-1481. Springer, 2004.

[45] Ole-Christoffer GranmoToward Controlling Accuracy and Timeliness in Video
Content Analysis Dr. Scient. thesis, Faculty of Mathematics and Natural Sci-
ences, University of Oslo, Norway, 2004.

[46] Mario Guimages and Lis Rodrigues. A Genetic Algorithm for Multicast Map-
ping in Publish-Subscribe Systems. 2nd IEEE International Symposium on
Network Computing and Applications (NCA 2003), 16-18 April 2003, Cam-
bridge, MA, USApages 67—-74. IEEE Computer Society, 2003.

[47] Intel Corporation.Open Source Computer Vision Library. Reference Manual.
001 edition, December 2000. http://www.intel.com/research/.

[48] Hans-Arno Jacobsen, editoProceedings of the 2nd International Workshop
on Distributed Event-Based Systems, DEBS 2003, Sunday, June 8th, 2003, San
Diego, California, USA (in conjunction with SIGMOD/POD3)CM, 2003.



70 BIBLIOGRAPHY

[49] Khronos Group. An Overview of OpenML.10 edition, April 2004.
http://www.khronos.org/openml/.

[50] Charles Krasic.A Framework for Quality-Adaptive Media Streaming: Encode
Once — Stream Anywher@hD thesis, OGI School of Science & Engineering
at Oregon Health & Science University, February 2004.

[51] Jane W. S. LiuReal-Time System®rentice-Hall, 2000.

[52] Jiangchuan Liu, Bo Li, and Ya-Qin Zhang. Adaptive Video Multicast over the
Internet.IEEE Multimedia 10(1):22—-33, January/March 2003.

[53] Ketan Mayer-Patel and Lawrence A. Rowe. Exploiting temporal parallelism for
software-only video effects processing. In Wolfgang Effelsberg and Brian C.
Smith, editorsProceedings of the sixth ACM International Conference on Mul-
timedia, September 13-16, 1998, Bristol, United Kingdgages 161-169.
ACM, 1998.

[54] Ketan Mayer-Patel and Lawrence A. Rowe. Exploiting spatial parallelism for
software-only video effects processing. In Dilip D. Kandlur, Kevin Jeffay, and
Timothy Roscoe, editord/ultimedia Computing and Networking (MMCN’99),
San Jose, California, USAolume 3654, pages 252-263. SPIE, 1999.

[55] Ketan Mayer-Patel and Lawrence A. Rowe. A multicast scheme for parallel
software-only video effects processing. In John Buford, Scott Stevens, Dick
Bulterman, Kevin Jeffay, and HongJiang Zhang, editBreceedings of the sev-
enth ACM International Conference on Multimedia, October 30 - November 05,
1999, Orlando, Florida, USAvolume 1, pages 409-418. ACM, 1999.

[56] Steven McCanne, Martin Vetterli, and Van Jacobson. Low-Complexity Video
Coding for Receiver-Driven Layered Multicas$EEE Journal of Selected Areas
in Communications15(6):983—-1001, August 1997.

[57] Object Management Group. CORBA services, Event Service Specification,
v1.1. http://www.omg.org/2001.

[58] Jens-Rainer Ohm. Advances in Scalable Video CodiRgoceedings of the
IEEE, 93(1):42-56, January 2005.

[59] Wei-Tsang Ooi, Brian Smith, Sugata Mukhopadhyay, Haye Hsi Chan, Steve
Weiss, and Matthew Chiua. The Daultimedia Software Library. In Dilip D.
Kandlur, Kevin Jeffay, and Timothy Roscoe, editokultimedia Computing
and Networking (MMCN’99), San Jose, California, USAlume 3654, pages
264-275. SPIE, 1999.



BIBLIOGRAPHY 71

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Wei Tsang Ooi and Robbert van Renesse. Distributing media transformation
over multiple media gateways. In Nicolas D. Georganas and Radu Popescu-
Zeletin, editorsProceedings of the ninth ACM international conference on Mul-
timedia, September 30 - October 05, Ottawa, Cangdges 159-168, 2001.

Lukasz Opyrchal, Mark Astley, Joshua S. Auerbach, Guruduth Banavar,
Robert E. Strom, and Daniel C. Sturman. Exploiting IP Multicast in Content-
Based Publish-Subscribe Systems. In Joseph S. Sventek and Geoff Coulson,
editors,Middleware volume 1795 ot ecture Notes in Computer Scienpages
185-207. Springer, 2000.

Jorg Ott, Colin Perkins, and Dirk Kutscher. The message bus: A platform
for component-based conferencing applicationsCB(G2000, the CSCW2000
workshop on Component-Based Groupwaages 35-42, December 2000.

Burak Ozer and Wayne Wolf. Video Analysis for Smart Roomdntarnet Mul-
timedia Networks and Management Systems, ITCOM, Denver Coloradp USA
volume 4519, pages 84-90. SPIE, July 2001.

Peter R. Pietzuch and Jean Bacon. Peer-to-peer overlay broker networks in an
event-based middleware. In Jacobsen [48].

Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-Based
Middleware Architecture. IrProceedings of 1st International Workshop on
Distributed Event-Based Systems (DEBS’02), Vienna, Aygtaiges 611—-618.
IEEE Computer Society, July 2002.

Tin Qian and Roy H. Campbell. Extending OMG Event Service for Integrat-
ing Distributed Multimedia Components. In Alvin P. Mullery, Michel Besson,
Méario Campolargo, Roberta Gobbi, and Rick Reed, edit8&N, volume 1238

of Lecture Notes in Computer Scienpages 137-144. Springer, 1997.

Hans Ole Rafaelsen and Frank Eliassen. Design and performance of
a media gateway trader. In Robert Meersman and Zahir Tari, editors,
CooplS/DOA/ODBASEvolume 2519 ofLecture Notes in Computer Science
pages 675—692. Springer, 2002.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott
Shenker. A Scalable Content-Addressable NetworlSItBRCOMM pages 161—
172, 2001.



72 BIBLIOGRAPHY

[69] Sylvia Ratnasamy, Mark Handley, Richard M. Karp, and Scott Shenker.
Application-Level Multicast Using Content-Addressable Networks. In
Crowcroft and Hofmann [26], pages 14-29.

[70] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Ob-
ject Location, and Routing for Large-Scale Peer-to-Peer Systems. In Rachid
Guerraouli, editoriMiddleware volume 2218 of_ecture Notes in Computer Sci-
ence pages 329-350. Springer, 2001.

[71] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. Scribe: The design of a large-scale event notification infrastructure. In
Crowcroft and Hofmanr [26], pages 30—43.

[72] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-To-End Arguments
in System DesignACM Transactions on Computer Systems (TQQ@):277—
288, 1984.

[73] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps.
Content Based Routing with Elvin4. IRroceedings of AUUG2K, Canberra,
Australia, June 2000.

[74] Sergio D. Servetto, Rohit Puri, Jean-Paul Wagner, Pierre Scholtes, and Martin
Vetterli. Video Multicast in (Large) Local Area Networks. Rroceedings of
IEEE INFOCOM, Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societje®lume 2, pages 733-742, June 2002.

[75] Gary J. Sullivan and Thomas Wiegand. Video Compression — From Concepts to
the H.264/AVC Standard?roceedings of the IEEP3(1):18-31, January 2005.

[76] Sun MicrosystemsJava Media Framework, APl Guigd@.0 edition, November
1999. http://java.sun.com/.

[77] Wim Taymans, Steve Baker, Andy Wingo, and Ronald S. Bultje.
GStreamer application development manual8.8 edition, December 2004.
http://gstreamer.freedesktop.org/.

[78] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Andreas Zeidler, and Alejan-
dro P. Buchmann. A peer-to-peer approach to content-based publish/subscribe.
In Jacobsenr [48].

[79] Chen-Khong Tham, Yuming Jiang, and Yung-Sze Gan. Layered Coding for a
Scalable Video Delivery System. Packet Video 2003, Nantes, Frandgpril
2003.



BIBLIOGRAPHY 73

[80] TIBCO Software.TIBCO Rendezvous FAQO03. http://www.tibco.com/.

[81] Yao Wang, Zhu Liu, and Jin-Cheng Huang. Multimedia Content Analysis Using

Both Audio and Visual CluedEEE Signal Processing Magazing7(6):12—36,
November 2000.

[82] Yao Wang, Amy R. Reibman, and Shunan Lin. Multiple Description Coding for
Video Delivery. Proceedings of the IEE®3(1):57—70, January 2005.






Part Il

Research Papers

75






Paper |

Supporting Distributed Processing of Time-based Media Streams

Viktor S. Wold Eide, Frank Eliassen, and Olav Lysne

Published: In Proceedings of 3rd International Symposium on Distributed Objects
and Applications (DOA01), IEEE, pages 281-288, Rome, Italy, September 2001.

Evaluation: In total, 65 papers were submitted to DOAOQOL. Three program commit-
tee members, who are experts in one of the DOAO1 topics, reviewed each paper. As
a result, 33 papers were accepted for publication.

Author Contribution: Eide was the driving force behind this article. The architec-
ture was developed collectively in the project. Eide was the main investigator with
respect to the media streaming, the filtering, and the feature extraction parts, as well
as the issues related to interaction and synchronization. Eide also contributed to these
issues with respect to the prototype.

77






Supporting Distributed Processing of Time-based Media Streams

Viktor S. Wold Eide, Frank Eliassen, and Olav Lysne
Department of Informatics, University of Oslo
Gaustadalleen 23, 0314 Oslo, Norway

{viktore, frank, olavly @ifi.uio.no

Abstract for this kind of task can be plugged into the framework as
they become available.

There are many challenges in devising solutions for on-  |n this paper we focus on platform (or middleware) sup-
line content processing of live networked multimedia ses- port for on-line media content analysis of networked media
sions. These include content analysis under uncertainty (ev-streams, executing media content queries as distributeable
idence of content are missed or hallucinated), the computa-configurations of media content analysis algorithms. Most
tional complexity of feature extraction and object recogni- typically the processing can be logically organized as a re-
tion, and the massive amount of data to be analyzed underfinement hierarchy of events where events higher in the hier-
real-time requirements. In this paper we focus on middle- archy are aggregations of events at a lower level. An event
ware supporting on-line media content analysis. Our mid- corresponds to a particular kind of content detected in the
dleware supports processing, logically organized as a hier- media stream(s) (such as detecting movement or recogniz-
archy of refined events extracted in real time from a set of ing a particular shape or gesture in a video stream).
potentially related time-based media streams. The process- Qp.-line analysis requires real-time processing of (live)
ing can physically be distributed and redistributed during petworked sessions. Furthermore, automatic content-based
run time, as a set of interacting components, each perform-myjtimedia indexing and retrieval is most normally based
ing some content analysis algorithm. The middleware is de- o 5 combination of feature extraction and object recogni-
signed with reuse-ability, scalability, performance, resource tjon. The reason for this is that it does not require manual
management, and fault tolerance in mind by providing sup- entry of keyword descriptions. On the other hand the auto-
port for mechanisms such as, adaptation, reconfiguration, matic indexing and annotation approach is computationally

migration, and replication. The goal is to support applica- ¢omplex and only works satisfactory when limited to spe-
tions in trading off the reliability and latency of the content ific domains.

analysis against the available computing resources. The above reasoning suggests that a distributed solu-

tion is required to cope with the computational complex-
ity of feature extraction and object recognition, the massive
1. Introduction amount of data to be analyzed in real time, and the scal-
ability of the system with respect to the complexity of the
The technical ability to generate volumes of digital me- Session to be analyzed (e.g. the number of concurrent media
dia data is becoming increasingly “main stream” in today’s streams) and the events to be detected. Additionally, a dis-
electronic world. To utilize the growing number of media tributed solution may be more appropriate for problem do-
sources, both the ease of use and the computational flexibilnains having an inherent distributed nature, such as traffic
ity of methods for content-based access must be addresse@urveillance where video cameras are distributed geograph-
For example, an end-user may want to access live contentcally.
in terms of high-level domain concepts under a variety of  Furthermore, to allow for real-time content-based ac-
processing environments ranging from complex distributed cess in a greater range of processing environments, the
systems to single laptops. middleware should support processing to be continuously
The focus of our research is the development of a frame-adaptable and scalable to the available processing resources.
work for on-line (real-time) processing of networked multi- Such an approach allows the application to trade off be-
media sessions for the purpose of indexing and annotatingween the reliability (probability of missed or hallucinated
the data being analyzed. An advantage of a carefully de-content detection) and latency of the content analysis (time
signed framework is that new sub-technologies of relevancerequired by the software to detect and report content). This



requires that a framework for on-line content analysis and .

access must be resource aware based on an open distribute @

resource model. 6©’
The contribution of the architectural framework repre-

sented by the middleware lies in the unique combination of 4@ 5@ s@ E o o
media content analysis with QoS and resource awareness to i i F :Filteing
handle real-time requirements. 2 3 9 f fg\fgrllﬁstreaﬂmgSource

This research is done in the context of the Distributed L - EiEc ieEsiEET
Media Journaling (DMJ) project[5] where the overall goal 1 4 : Mediastream

is to establish a framework for simplifying the task of build-
ing distributed applications for real-time content-based ac-
cess to live media. The framework contains a set of general Figure 1. A content analysis hierarchy exam-
purpose media content analysis algorithms which may be ple.
selected for reuse by an application. The framework itself is
extensible and also supports the addition of custom analysis
algorithms. Applications are built by selection of some me-
dia processing algorithms which are then instantiated and
deployed onto a set of different hosts.

The rest of the paper is organized as follows. In Sectio
2 we introduce and characterize our computational architec-

ture for the purpose of deriving some requirements to mid- S .
purp 9 g pents have multiple interfaces. Event based interfaces con-

dleware support. In Section 3 we discuss design issues 0 i s of ified St int
middleware supporting real-time content-based media ac-SUme or generale events of speciiie .t)./pes. ream inter-
faces consume media streams of specified formats. C com-

cess. Section 4 evaluates the adopted architectural princi- s h t based interf v E i
ples with respect to the required properties of the middle- PONENS have event based intertaces only, £ components

ware. In Section 5 we describe a first prototype of the DMJ have both event based and stream based interfaces while F
framework and report on initial experiments. In Section 6 components have stream based interfaces (the event based

we discuss some related work, while we in Section 7 offer interfaces OftF compones;[/? |Ilustrafl_ted '|n F|gu:e sz 'E ford
some conclusions and outlook to future work. managemen purposes_). . encon _|gu_r|ng asetorr, ,_an
C components such as in Figure 1, bindings (or communica-

. . tion associations) are established between sets of interfaces
2. Architectural overview of the associated components. Bindings can be one-one
such as the binding between components 8 and 9 in Fig-
A common way to build content analysis applications ure 1, one-many such as the binding between interfaces of
is to combine low-level quantitative media processing into components 1, 2, and 3, many-one such as the binding be-
high-level concept recognition. Typically, such applications tween interfaces of components 4, 5, and 6, and many-many
are logically organized as a hierarchy, as shown in Figure 1.(not illustrated in Figure 1).
At the lowest level of the hierarchy media streams are fil- A C component consumes events produced by other E
tered and transformed, such as transforming a video streanand/or C components and generates events that again may
from color to black and white only, reducing spatial or tem- be consumed by other C components, reported directly to
poral resolution, etc. The transformed media streams area user (e.g. as alarms), or stored in a database as index-
then fed to feature extraction algorithms. Feature extrac-ing information (meta-data). The DMJ middleware does
tion algorithms operate on samples or segments (a windownot make any assumptions as to what method is applied
of samples) from the transformed media streams and calin C components for detection of higher level domain con-
culate features such as texture coarseness, center of grawepts. However, in Section 5 we report on experiences with
ity, color histogram, etc. Results from feature extraction al- a prototype application in which the construction of C com-
gorithms are generally reported to classification algorithms ponents is based on dynamic object-oriented bayesian net-
higher up in the hierarchy that are responsible for detectingworks and particle filters[7].
higher level domain concepts such as a “person” occurring The DMJ middleware provides generic services main-
in a media stream. taining an extensible repository of F, E, and C components
In our architecture, the media processing hierarchy is and for selecting registered components based on the re-
similar, but the different algorithms are now encapsulated quired media processing function or higher level domain
in components - F (Filter), E (feature Extraction), and C concept, the cost of the algorithm and its reliability char-
(Classification) components, as illustrated in Figure 1. The acteristics.

content analysis task is realized as a collection of (po-
tentially distributed) interacting components, where com-
n ponents monitor other components and react to particular
changes in their state.

In the DMJ computational model, F, E, and C compo-



3. Design well known through published measurements, and the latter
can for most relevant applications be measured in advance.
In this section we will look at design issues, focusing on The remaining skew must be handled by the C components

time and synchronization, the interaction model and config- bY introducing intervals of uncertainties in the definition of
uration. interval-based operations such lzefore after, andwhile.

This will translate the time skew of the system into a minor
increase in either lost or hallucinated events, according to

3.1. Time and synchronization )
an overall system policy.

The task of a C component is basically to determine .
whether a higher level event has taken place, based on inpu?-z' Interaction model
from multiple E and/or C components. This raises ques-
tions related to the perception of time in the different com- ~ The analysis task is realized as a collection of interacting

ponents, and the definition of duration of events. components where some components monitor other compo-
The communication between the E and C componentsnents and react to particular changes in their state.

is designed as exchangeBbfent Descriptors Each Event An interaction model that enables multiple components

descriptor can be viewed as tuples on the forefS- to share results generated by other components is desirable

tart, eEnd, eType, elnstance> . The two first from a resource consumption viewpoint, for scalability rea-

elements indicate that we allow events to have a durationsons. The interaction model should alladaptation the
in time, thus we support a wide class of sustained actionsupdating of some state in a component to better fit the cur-
to be interpreted as events. Both the event type and therent environment and stage of computation, such as decre-
event instance are made explicit, to allow filtering of in- menting the value of a variable to reduce CPU usage in an
teresting events based on both type and value. Althoughoverload situation. Runtime removal, addition or substi-
events relating to multiple time-intervals are imaginable, tution of componentsteconfiguration should also be al-
we will not consider such events in this context. The ag- lowed, substituting a less reliable E component by a more
gregation of simple sustained events into composite sus-reliable one, trading improved event detection reliability
tained events is performed by C components, according tofor CPU cycles. Being able to move a running component
a temporal specification. Different methods includeer- from one host to anothemigration, is also a useful mech-
val, axes control flow event and script based synchro- anism, moving components away from loaded hosts (load-
nization specifications[19]. The information provided in balancing) or hosts being taken down for maintenance pur-
the Event Descriptors is designed to support such specifiposes. To achieve such functionality, it would be advanta-
cations. Interval-based methods [8, 1, 22] allows specifica-geous that the different components do not need to be aware
tions such agl before eandel while eZor eventseland of each other, but communicate indirectly.
e2 The outlined requirements and communication pat-
We have based our design upon a common knowledge ofterns fit very well with the publish/subscribe interaction
global time in all components. Itis well known that in a dis- paradigm, leading to an event based model. Event based
tributed system, global time can only be available down to systems rely on some kind of event notification service,
certain levels of accuracy. The most widely used global time such as an event (message) broker. The responsibility of
service in the Internetis the Network Time Protocol (NTP), the event broker is to propagate events (messages) from
as specified in RFC 1305[11]. Synchronization accuraciesthe event producer to event consumers residing in differ-
between different hosts is reported to be in the order of tensent computers, generally in a many-many manner. Figure
of milliseconds on the Internet in general and one millisec- 2 illustrates the logical coupling of components, where the
ond over LANs[12]. The required level of accuracy in our event broker acts as a level of indirection. In addition to
setting is application dependent, but if we consider video F, E, and C components &nd Consumecomponent has
streams with 25 frames per second, NTP may provide framebeen drawn in the figure. This component represents the fi-
level accuracy even over wide area networks. nal destination for the meta-data extracted from the media
The time stamping of each media stream is done as closestreams, such as a database or a user interface component.
to the source of the stream as possible. In most cases this Another important aspect regarding both the interaction
coincides with the first intelligent, NTP aware, node that the model and resource consumptionpsshversuspull style
stream passes through (e.g. the computer to which a vide@wommunication. Events produced by components at the
camera is connected). Hence the worst case skew in the peottom of the hierarchy are likely to be interesting to a large
ception of time in each media stream will be the sum of the number of other components. Push style interaction fits
worst case skew from NTP, and the worst case delay skew inone-many communication well, and the need for an explicit
time stamping the media stream. The former component isrequest message, introducing delay, is eliminated. From



a resource consumption viewpoint, an approach where allsource consumption.

components perform calculations and push these results In general, the choice between push/pull and lazy/eager
continuously, is not very attractive. In general, a compo- is an optimization problem which depends on different char-

nent is only interested in results from another componentacteristics, such as the computational environment (both
in certain cases. As an example, consider a C componentstatic and dynamic), the components and how they are dis-
C3, producing event®3 according to a specification such tributed, the media content, the acceptable latency, and the
asel before ewhereelis generated by compone6tl desired level of resource utilization.

ande2is generated by compone@®. In this caseC3 is

not interested in events from compon&2before an event 3.3, Configuration

elfrom C1 has been received. In this case comporiEht

may reduce overall resource consumption by explicitly re-  The configuration phase of an application for distributed
questing, pulling, results from compone@2. Both push  processing of media streams is handled in several stages. A
and pull style interaction have their advantages, but in dif- set of functions for fulfilling the media processing task is
ferent situations. The SU|tab|l|ty of pU" versus pUSh Style selected and for each function an appropriate imp|ementa_
interaction may also change during time. As an example, atjon is chosen. The details of this process are not discussed
component working in pull mode may enter push mode for any further in this paper and we assume that the set of F,

"‘-‘ ing of producer and consumer interfaces of F, E, and C
components, as well as connecting media streams to F and
E components. The binding of a media stream to a F or
E component is straightforward, as each F and E compo-

some time. E, and C components for a specific analysis task has been
selected.
‘@ RN The lowest level of configuration must deal with bind-

C: End Consumer

E : Classification nent is supposed to be able to handle one medium (e.g.

1@ E ffF?@I“f_e Extraction video) in one or several formats. The details of this bind-

= : Filtering . ! . .
p| 4 Filtered media stream ing might include other components responsible for send-
@ 4 :Mediastream ing/receiving the stream to/from the network and stream en-
— coding/decoding.

The binding of event consumer and event producer inter-
Figure 2. The event broker introduces a level faces is supported by an Event-Type Repository. An event
of indirection between components. interface is specified as the event type it produces or con-

sumes. The event type is interpreted as a reference into the
Event-Type repository, indicating the type of events gener-
Some algorithms are very complex and time consuming €d by the producer as expected by the consumer. Com-
and therefore not able to process each media sample in realP2tibility check is done at binding time simply by checking
time. From a resource consumption viewpoint it is impor- that the producer and consumer interfaces refer to the same
tant to execute such algorithms only when absolutely nec-EVent-Type.
essary and from a reliability viewpoint it is important to ac-
tivate such algorithms only for particularly interesting sam- 4. Evaluation
ples. This reasoning suggests that such algorithms should
be demand driven, pulled by other components. In [7] a  pesired framework characteristics, such as reuse-ability,
method for constructing C components is described whichscajability, performance, resource utilization, and fault tol-
allows a C componentto pull E components in a “hypothe- erance, are influenced by the degree by which the design

sis” driven fashion - when the information gain is eXpeCted of the framework supports the fo”owing undeﬂying mech-
to be significant compared to the computational cost. This gnjsms:

method is particularly interesting for these very complex

and time consuming algorithms. e Modularization: At one extreme, an analysis task
A further refinement of pull mode interaction is the dis- could be implemented and linked into one binary, ex-
tinction betweereagerandlazy components. A lazy com- ecuting as a single process. Such an approach is not
ponent may save host computer resources by not doingany  modular and would make both implementation and
calculations until explicitly requested. An eager pull mode reuse difficult. Our approach is component based, al-
component on the other hand, is able to deliver a result im- lowing new components to be plugged in whenever

mediately upon request, but at the expense of increased re-  available.



¢ Distribution: Although a single computer may host all @
components of a media processing task, the computa-
tional complexity and the massive amounts of data as- C : Classification
sociated with real-time processing of time-based me- o E :feature Extraction
. . . . . > F :Filtering
dia streams require a distributed solution. Figure 3 S : mediasireaming Source
is a further refinement of Figure 1 and illustrates the ¢ Event _
deployment of components onto different computers. ¢ Al s s
. . . * : Mediastream
The design allows the incremental addition of new pro- - Host clock synchronization
cessing nodes and network technology for improved O : Host boundary

scalability, giving a certain degree of scalability trans-

parency. NTP is a solution to the clock synchroniza-

tion problem at the same time as being a worldwide
distributed and scalable service. Hosts synchroniza-
tion and componentinteraction are both illustrated log-
ically in the figure.

e Adaptation: The complexity of the logic embedded 5. Prototype
inside a component increases with the components
adaptability. Components may themselves monitor  The current implementation of a prototype consists of
and adapt to environmental changes, but information the event broker, a component repository and a test applica-
may not be locally available or the decision is best tion, each described in this section. This prototype operates
taken by other components. In the last case, an inter-on a “best effort” basis.
face for receiving adaptation requests from other com-
ponents is necessary. The event broker can be used t&®.1. Event broker
deliver such adaptation requests.

Figure 3. An example of distributed process-
ing of the configuration in Figure 1.

Important requirements for an event notification ser-
vice supporting distributed processing of time-based media
streams are:

¢ Reconfiguration: Adaptation might be sufficient for
handling small changes, while reconfiguration, having
more overhead, has the potential of handling larger

changes. Adaptation is therefore used on a smaller e The event notification service must allow bindings

time-scale than reconfiguration. Support for reconfig-
uration is partly handled in our design, by the event
broker which makes communication between compo-

of different causalities, support both push and pull
style interaction and provide a level of indirection
to simplify adaptation, reconfiguration, migration and

nents both access and location transparent. replication. Additionally, the service must be real-
ized as a distributed and scalable service, balancing
requirements for real-time communication and low
event propagation delay against ordering and reliabil-

ity guarantees associated with event delivery.

e Migration: The level of indirection between compo-
nents simplifies migration, but communication is not
the only aspect relevant in this context. From a mi-
gration viewpoint, stateless components are preferable
because otherwise state has to be maintained during Different event notification service technologies, such
migration. In general this might require special code as CORBA Event Service[14], CORBA Notification
in the component itself. The design of the framework Service[13], SIENA[3] (Scalable Internet Event Notifica-
in this respect support migration transparency to a cer-tion Architecture), and somewhat related, shared spaces ap-
tain extent. proaches such as JavaSpaces[21] are available, but the event

broker in this prototype is based on Mbus[16].

Mbus is a standard[17] currently being worked out by the

IETF. Mbus is designed to supparpordination and con-

trol between different application entities, corresponding

roughly to components in our terminology. The standard

" defines message addressing, transport, security issues and

message syntax for a lightweight message oriented infras-
We believe that the design of the framework is flexi- tructure for ad-hoc composition of heterogeneous compo-
ble and distribution transparent to a certain extent, allowing nents. The authors of Mbus state that Mbus is not intended
new sub-technologies to be plugged into the framework asfor use as a wide area conference control protocol, for secu-
they become available. rity (conforming Mbus implementations must support both

¢ Replication:The design also allows components to be
replicated at a number of hosts for improved perfor-
mance, increased availability and fault tolerance. In
a simple approach, a certain degree of failure trans-
parency can be obtained by filtering identical events
received from different replicas.



authentication and encryption[17]), scalability, message re-but the rate of self-announcements is adapted to the number
liability and delay reasons[16]. In the following we evalu- of entities participating in a session.

ate the suitability of Mbus as an event broker, with respect  |p multicast also decreases latency which is very impor-
to the requirements given above. tant for the domain initially targeted by IP multicast, real-

Mbus supports binding of different causalities by using time, high bandwidth multi-user applications, such as video
a “broadcasting” and filtering technique. All components and audio conferences.

partipipating ina specific Mbus session subscribe to an IP 5 4o transport level, Mbus messages are encapsulated
multlc;’st a(:]dress afnd in effect l\r/I]bus_, messages are brogdl—n UDP packets, transported unreliably by IP multicast. In
f:asFe _to r: el\j”e;t 0 com_pute_:_s;] ol\jgng lcomp_o nenti particyq special case where the message is targeted at exactly one
Ipating in this I l\bljtsn ses&f(?_n. de usf_layer in eac colr:nl- receiver, reliable unicast delivery is supported by the Mbus
ponent sees all Mbus traffic and must filter messages. Fil-,vqr sing acknowledgement, timeout and retransmissions
tering as close to the_ source as possible is bgnefmlal frommechanisms. In general reliable delivery does not fit very

a resource consumption viewpoint and Mbus is rather SUb'WeII with applications having real-time properties and even

optimal in this respect. As an optimization, several Mbus \.se \when considering multicast delivery and ordering re-
sessions may be started, using a set of IP multicast ad-

d h = . b £ th quirements. Our approach is to handle the unreliability of
resses. E_ac component participate In a subset of thesg, o delivery in the same way as we handle the unrelia-
Mbus sessions and messages are sent to different sessio

; N rE)?Iity of analysis algorithms, which may fail to detect and
based upon some predefined scheme. Important forfllterlngreport an event or report false positives. The Mbus/UDP/IP

is the addressing used in Mbus. The address ofacomponer‘pﬁnulticast protocol stack does not give any ordering guar-

is specified when initializing the Mbus layer. The Mbus antees, but assuming global time and associating a time in-

header |ncludgs source and Qestlnatlon addresses, each 3 $Brval to each event (see section 3.1) handles this ordering
guence of attribute-value pairs, of which exactly one pair problem, except for very time-sensitive applications.

is guaranteed to be unique (combination of process iden- . . . .
From the discussion above, we believe that Mbus is a

tifier, process demultiplexer and IP address). Each Mbus - >
pod alternative as an event broker. From a prototyping

component receives messages addressed to any subset 8

its own address. A Mbus component is able to address aY/EWPOINt it is easy to integrate, requiring few lines of

single, “(id:7-1@129.240.64.28)" a subset“(module:pd code, gnd the text based message format simplifies message
media:video)” or all, “()" , Mbus components by specify- SNOOPING.

ing an appropriate sequence of attribute-value pairs. As a
result, bindings between components are implicit.

It should by now be evident that Mbus supports push
based interaction. Some higher level Mbus services are de-
scribed in [9], such as abstractions for remote procedure
call. Pull style interaction is achieved by either sending re-

5.2. Component repository

In the current prototype of the framework, ways to im-
e . plement F, E, and C components have been identified. A
quests as event notifications or by using the remote Procetomponent repository, where components are selected man-
dure call service. ually, has been realized. Handling the diversity and com-

An Mbus based event broker acts as a layer of indi- plexity of different media formats, such as audio and video,
rection between components giving both access and locais beyond the scope of our research. The F and E com-
tion transparency simplifying reconfiguration and migra- ponents are realized using the Java Media Framework[20].
tion. Component awareness is supported by a soft state apjMF performs low level media tasks, such as capture, trans-
proach, where the Mbus layer listens and periodically sendsport, streaming, (de)multiplexing, (de)coding, and render-
self-announcements messages on behalf of its componening. JMF also provides a pluggable architecture for inte-
When migrating a component to another host, its Mbus ad- grating custom media processing algorithms. The F and E
dress remains the same (except for the value ofdhe- components developed for the prototype are implemented
tribute, reported in succeeding self-announcements). as classes in the Java programming language and pluggable

Regarding scalability, message propagation delay andinto the JMF framework. F and E components implement a
reliability of event delivery, an Mbus based event broker method (e.g. iterating through all pixels of a video frame
inherits many of its characteristics from IP multicast[2], performing some calculations) which is invoked when a
which is realized as a distributed and scalable service. Thenew media sample is available. The C component im-
state necessary for forwarding IP multicast packets is cal-plemented for this prototype is based on dynamic object-
culated and stored in both routers and in hosts acting onoriented Bayesian networks (a generalization of the hidden
behalf of multicast receivers in a distributed fashion. The Markov model) and particle filters[7]. In the following sec-
Mbus component awareness functionality limits scalability, tion we will describe a few of the implemented components.



5.3. Test application The deployment of components onto hosts is performed
manually in this prototype. The flexibility of the Mbus
The purpose of the test application is to gain experience,based event broker was confirmed by experiments - con-
serve as a proof of concept, and to verify the flexibility of figuration and compilation was unnecessary before starting
Mbus with respect to bindings of different causalities as components on different hosts or when reconfiguring the
well as the requirements listed in section 5.1. media processing task. Mbus performs as expected, both
The chosen test case is an implementation of a video segas an intra-host event broker, but also when components are
mentation application, where the goal is to detect and asso-osted by different computers interconnected by a local area
ciate meta-data information, suchmstionandcut (scene network. Some successful migration experiments have also
change), with a streamed real-time video. The application isbeen conducted[15], using Voyager[6] for moving running
composed of a media streaming source, two E componentsomponents between hosts.
and a C component: We have performed some preliminary experiments, test-
ing different distribution strategies. On one extreme, all
e Media streaming source - streams video from a file or components executed on a single machine while on the
from a capture card connected to a video camera. Wegther extreme each component was hosted by a different
used applications such as vic[10] and JMStudio (bun- computer. The results show that distributing components to
dled with the JMF) for this purpose. The protocol stack different computers reduces the average load on each host.
was MIPEG/RTP[18]/UDP/IP multicast. This allows the development of more resource demanding,

« E componenPixelValueDiff- adds together the pixel but also more reliable components, improving scalability.

value difference between the previous and the current

frame. Object or camera movement between two con-6. Related work

secutive frames causes a larger difference value being

reported. The semantic multicast service, described in [4], is an

approach for dynamic information sharing, designed to sup-

port effective dissemination of the information produced in

collaborative sessions, such as a video conference. The de-

sign describes a network of proxy servers which gather, an-

notate, filter, archive and analyze (both on-line and off-line)

STInedia streams to better suit the needs of different users at
the right amount of detail. Users specify their needs in a

e C COmponensCenechangeclassiﬁereceives results prOfi|e, used during Subscription. Semantic multicast adds

from the E Components and Correlates the resu'ts froman addl“onal |eVe| Of |nd|rect|0n to IP mu|'[lcaS'[, used to
each E Component and repanhgtionandcut transport information and control messages. The paper as-

sumes that the meta-data for the streams (and profiles) have

In this test application we do not use any custom F com- standardized formats and have been generated, either manu-
ponents. However the JMF runtime system configures aally or automatically. Our framework could be used for gen-
flowgraph including components for receiving the video erating such meta-data by performing real-time processing
stream from the network, decoding, and transforming the of time-based media streams transported by IP multicast.
video data into a format supported by our E components. Section 5.1 listed some event natification service tech-

The bindings between the different components are simi-nologies, among others the SIENA[3] (Scalable Internet
lar to the bindings between component 1, 2, 3, 4, 5, and 6 inEvent Notification Architecture). The goal of the SIENA re-
Figure 1 (where component 2 and 3 represents the filteringsearch project is to design and build an Internet scale event
performed by the JMF runtime system). notification middleware service. SIENA is implemented as

Component interaction uses push style communication.a distributed network of servers, some providing an access
The video source application pushes (multicasts) the videopoint for clients. Access points receive subscriptions from
stream over the network. The stream is received by two consumers expressing their interest in events, and adver-
different processes, each executing the JMF runtime systentisements from generators about potentially notifications.
and hosting one of the E components. In each process, th&IENA is responsible for selecting and delivering events
JMF runtime system invokes the media processing methodmatching such subscriptions. The main challenge faced is to
of the E component whenever a new frame arrives. Eachbalance expressiveness in the selection mechanism against
E component pushes the calculated results encapsulated ithe scalability of event delivery. SIENA provides two mech-
messages over the event broker to the C component whictanisms for selection of notificationflters andpatterns A
is hosted by a separate process. filter is a specification of attributes and constraints on their

e E componenColorHistogramDiff- calculates the dif-
ference between a color histogram for the previous
frame and a color histogram for the current frame.
Moving objects or camera motion should not affect the
difference being reported, but cut (scene changes) mo
likely will.



values, while a pattern is syntactically a sequence of filters. [3]
Selections not expressible in the SIENA model, must be
handled at the application level. SIENA is designed as a
“best-effort” service, but assumes the existence of a global
clock, timestamping events to detect and account for latency
effects. This is similar to our approach, described in section
3.1. We think that SIENA is an interesting event broker
candidate in a future prototype.

(4]

(5]
7. Conclusions and future work

In this paper we have presented an approach for develop- [6]
ing middleware supporting distributed processing of time-
based media streams. We describe a logical processing ar-[7]
chitecture as a hierarchy of aggregated events. We argue
that a distributed solution is required to cope with the com-
putational complexity and the massive amounts of data to
be handled under real-time requirements. Additionally, a
distributed solution is often more appropriate for problem
domains having an inherent distributed nature. The frame-
work is designed with distributed processing and resource
management in mind and much attention has been paid to
required underlying mechanisms such as adaptation, recon{10]
figuration, migration, and replication. A prototype of the
framework as well as a test application have been imple- [11]
mented, serving as a proof concept and for evaluation pur-
poses. We find the results promising. [12]

In our future work we will conduct further experiments
to identify areas with potential for improvement. We will [13
target resource management and QoS issues specificly. Im-
portant from a resource management viewpoint is the use[14]
of pull style interaction, where host resources are not con-
sumed when not absolutely necessary. (15]

8. Acknowledgments [16]

We would like to thank all persons involved in the Dis-
tributed Media Journaling project for contributing to ideas
presented in this paper. We also would like to thank the [17]
reviewers for valuable comments.

The DMJ project is funded by the Norwegian Re- [18
search Council through the DITS program, under grant no.
126103/431. In addition, some of the technical equipment
has been sponsored by the Department of Informatics, at the[19]

University of Oslo, Norway.
[20]

References [21]

[1] J.F. Allen. Maintaining knowledge about temporal intervals. [22]
Communications of the ACN26(11):832-843, 1983.

[2] K. C. Almeroth. The Evolution of Multicast: From the
MBone to Interdomain Multicast to Internet2 Deployment.
|IEEE Network 2000.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving
scalability and expressiveness in an internet-scale event no-
tification service. InProceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing
pages 219-227, Portland OR, USA, July 2000.

S. K. Dao, E. C. Shek, A. Vellaikal, R. R. Muntz, L. Zhang,
M. Potkonjak, and O. Wolfson. Semantic Multicast: Intel-
ligently Sharing Collaborative Session&CM Computing
SurveysJune 1999.

V. S. W. Eide, F. Eliassen, O. Lysne, and O.-C.
Granmo. Distributed Journaling of Distributed Media. In
Norsk Informatikkonferansepages 31-42, available from
http://www.ifi.uio.no/"dmj/, 2000.

G. Glass. Voyager - the universal orb. Technical report,
Objectspace, January 1999.

0.-C. Granmo, F. Eliassen, and O. Lysne. Dynamic Object-
oriented Bayesian Networks for Flexible Resource-aware
Content-based Indexing of Media StreamScandinavian
Conference on Image Analysis, SCIA'202001.

8] C. Hamblin. Instants and intervals. Proceedings of 1st

Conference on the International Society for the Study of
Time pages 324-331, 1972.

9] D. Kutscher. The Message Bus: Guidelines for Applica-

tion Profile WritersInternet Draft , draft-ietf-mmusic-mbus-
guidelines-00.txt2001.

S. McCanne and V. Jacobsen. Vic: A flexible Framework for
Packet Videoln ACM Multimedia’'95, pp. 511-5221995.

D. L. Mills. Network Time Protocol (version 3). Specifica-
tion, Implementation and Analysi®RFC 1305 1992.

D. L. Mills. Improved Algorithms for Synchronizing Com-
puter Network Clocksl|EEE Transactions Networkpages
245-254, 1995.

] Object Management Group Inc. CORBA services, Notifica-

tion Service Specification, v1.0ttp://www.omg.org/2000.
Object Management Group Inc. CORBA services, Event
Service Specification, v1.http://www.omg.org/2001.

R. W. Olsen. Component Framework for Distributed Media
Journaling. Master’s thesis, (in Norwegian), Department of
Informatics, University of Oslo, May 2001.

J. Ott, D. Kutscher, and C. Perkins. The Message Bus: A
Platform for Component-based Conferencing Applications.
CSCW2000, workshop on Component-Based Groupware
2000.

J. Ott, C. Perkins, and D. Kutscher. A message bus for local
coordination.Internet Draft , draft-ietf-mmusic-mbus-04,txt
2001.

] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-

sen. RTP: A Transport Protocol for Real-Time Applications.
RFC 1889 1996.

R. Steinmetz and K. NahrstedtMultimedia: Computing,
Communications & ApplicationdPrentice Hall, 1995.

Sun Microsystems Inc. Java Media Framework, API Guide,
v2.0. http://java.sun.com/1999.

Sun Microsystems Inc. JavaSpaces Service Specification,
v1.1. http://www.java.sun.com2000.

T. Wahl and K.Rothermel. Representing time in multime-
dia systems. IfProceedings of International Conference on
Multimedia Computing and Systenmages 538-543. IEEE
Computer Society Press, 1994.



Paper Il

Real-time Processing of Media Streams: A Case for Event-based
Interaction

Viktor S. Wold Eide, Frank Eliassen,
Olav Lysne, and Ole-Christoffer Granmo

Published: In Proceedings of 1st International Workshop on Distributed Event-Based
Systems (DEBS’02), IEEE, pages 555-562, Vienna, Austria, July 2002.

Evaluation: In total, 43 papers were submitted to DEBS’02. The review process was
double blind. The paper was reviewed by three persons. As a result, 18 full papers
and 6 short papers were accepted for publication.

Author Contribution: Eide was the driving force behind this article and the principal
researcher. The coauthors contributed to the presented ideas through discussions and
by commenting on different draft versions of the paper. With respect to the described
prototype, Granmo implemented the C-components, while Eide did the rest of the
implementation.

87






Real-time Processing of Media Streams. A Case for Event-based I nteraction

Viktor S. Wold Eide!2, Frank Eliassen'2, Olav Lysne!2, and Ole-Christoffer Granmo?-?
{viktore, olegr}@ifi.uio.no, {frank, olavly} @simula.no

! Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, N-0314 Oslo, Norway

Abstract

There are many challenges in devising solutions for on-
line content processing of live networked multimedia ses-
sions. These include the computational complexity of fea-
ture extraction and high-level concept recognition, the mas-
sive amount of data to be analyzed under real-time require-
ments and the intricate correspondence between low-level
features and high-level concepts. Our approach to these
challenges is a distributed architecture consisting of in-
teracting components encapsulating feature extraction and
concept classifier algorithms. The purpose of the frame-
work is to simplify the development of applications for the
domain of on-line multimedia content processing.

In this paper we focus on the architecture of the frame-
work and argue that it fits well to the publish / subscribe
interaction paradigm, leading to an event-based interaction
model. Furthermore, we analyze different aspects of the ap-
plication domain in more depth, such as requirements for
scalability, reconfiguration, migration, event notification
selection, filtering, and ordering. The main contribution of
this paper is, that we for each aspect show how a suitable
event notification service may satisfy the corresponding re-
quirements. We also describe parts of a framework proto-
type. In particular we report on how the event notification
service used satisfies the identified requirements.

1. Introduction

The technical ability to generate volumes of digital me-
dia data is becoming increasingly “main stream” in today’s
electronic world. On the other hand, technology for auto-
matic indexing (associating meta-data to) such media data
is immature.

The main challenges that must be addressed include the
computational complexity of feature extraction and high-
level concept recognition, and the massive amount of data
to be analyzed under real-time constraints. By taking ad-

2Simula Research Laboratory
P.O. Box 134, N-1325 Lysaker, Norway

vantage of a parallel processing architecture, features can be
extracted in parallel. A multi agent based system for course-
grained distribution of feature extraction is presented in
[12]. Another challenge faced by real-world applications is
the noise introduced into the extracted features (e.g. shad-
ows in a video). In [8], a generic automatic video surveil-
lance system is described, for recognizing various kinds of
human activities. A statistical approach (Bayesian network)
is used for noise suppression.

In our research we are developing a component based
framework with the goal of simplifying the development
of distributed scalable applications for on-line media con-
tent analysis. The framework is a generic modular appli-
cation which is instantiated during the development of spe-
cific content analysis applications. An advantage of a care-
fully designed framework is that new sub-technologies can
be plugged into the framework as they become available.
As an example, third parties may extend the framework by
providing new and/or better feature extraction algorithms.

The focus of this paper is on the requirements for com-
munication and distribution of the content analysis frame-
work. Based on our analysis of different aspects of the ap-
plication domain, such as requirements for scalability, re-
configuration, and migration, we show that requirements
for communication and distribution is better supported by
a suitable distributed event notification service rather than
by a synchronous communication service such as RMI. Fur-
thermore, our experiments with a framework prototype ap-
prove this conclusion from the analysis.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the architecture of typical content anal-
ysis applications. In Section 3 we introduce our computa-
tional architecture and claim that it fits well to the publish
/ subscribe interaction paradigm. The rest of this section
is devoted to various aspects of our application domain and
the requirements imposed upon the event notification ser-
vice. In Section 4 we describe those parts of a prototype
of the framework which are relevant from an event notifi-
cation service point of view. In Section 5 we offer some
conclusions and outlook to future work.



: Classification

: feature Extraction

: Filtering

: media streaming Source
: Event

: Filtered media stream

: Media stream

=)
-

)
w
©
> Tmo

Figure 1. An example of a content analysis
hierarchy.

2. Content Analysis

A common way to build content analysis applications
is to combine low-level quantitative media processing into
high-level concept recognition. Typically, such applications
are logically organized as a hierarchy, as shown in Figure
1. At the lowest level of the hierarchy there are media
streaming sources. At the level above, media streams are
filtered and transformed. The transformed media streams
are then fed to feature extraction algorithms. Feature ex-
traction algorithms operate on samples/segments from the
transformed media streams and, in case of video, calculate
features such as texture coarseness, center of gravity, color
histograms, and motion vectors. Results from feature ex-
traction algorithms are generally reported to classification
algorithms higher up in the hierarchy that are responsible
for detecting higher level domain concepts such as a “per-
son” occuring in a media stream. In other words, classifica-
tion is interpretation of extracted features in some applica-
tion specific context.

Typically, content analysis applications are implemented
as monolithic applications making reuse, development,
maintenance and extension by third parties difficult. Such
applications are often executed in single processes, unable
to benefit from distributed processing environments. In the
following section we present a framework developed in the
DMJ project[4], addressing these weaknesses.

3. Application domain and Event Notification
Service Requirements

As a solution to the inherent problems of tradi-
tional monolithic content analysis systems, we suggest a
component-based approach. Logically, the media process-
ing hierarchy is similar, but the different algorithms are now
encapsulated in components - F (Filter), E (feature Extrac-

tion), and C (Classification) components. The content anal-
ysis task is realized as a collection of interacting compo-
nents, where components indirectly monitor other compo-
nents and react to particular changes in their state.

As we will see in the following, the requirements for our
application domain and the communication patterns fit very
well with the publish / subscribe interaction paradigm, lead-
ing to an event-based interaction model. Event-based sys-
tems rely on some kind of event notification service. The
responsibility of the event notification service is to propa-
gate events from the event producers to event consumers,
generally in a many-many manner.

We will now characterize and describe application re-
quirements and see how each of these translates into re-
quirements for the event notification service.

3.1. Event-based component interaction

From the example in Figure 1 it should be clear that com-
ponents interact in different ways, having different causal-
ities such as - one-one, one-many, many-one, and many-
many (not illustrated). In this paper we mainly focus on the
interaction between E and C components, which is designed
as exchange of event notifications.

One-many communication, often used for sharing results
between a number of components, is important for resource
consumption and hence scalability reasons. If a component
has high data rate input, spends a lot of time processing, has
relatively low data rate output, and the output is of interest
to a number of other components, then it is a good candidate
for sharing.

The causality of the interaction as well as the loose cou-
pling between components are some of the arguments for en
event-based interaction model, illustrated in Figure 2. The
“End Consumer” component in the figure represents the fi-
nal destination for the meta-data extracted from the media
streams, such as a database or a user interface component.
In our framework, components are the unit of distribution.

3.2. Distribution

The framework must support distributed processing to
cope with the massive amount of data to be analyzed in
real-time and the computational complexity of feature ex-
traction and concept recognition. Scalability is important
along several axes, including the complexity of the content
to be recognized and the number of media streams concur-
rently analyzed. Additionally, a distributed solution may
be more appropriate for problem domains having an inher-
ent distributed nature. As an example, in a traffic surveil-
lance application video cameras are distributed geograph-
ically. Processing of video data in a host located close to
a camera reduces network bandwidth consumption. As a



EC: End Consumer

: Classification

: feature Extraction

: Filtering

: Filtered media stream
: Media stream

+>>nmo

The event notification service in-

Figure 2.
troduces a level of indirection between com-
ponents.

consequence, the event notification service should be able
to operate across wide area networks.

On the other hand, parts of an application may consist
of a number of tightly coupled components, configured to
execute inside a single host. Even more tightly coupled
components may execute inside a single process, in order
to exploit data locality even further and avoid copying large
amounts of data between different address spaces. Other
cases requiring intra host and/or intra process component
interaction include situations where the runtime environ-
ments available for the media processing task is limited to
a single computer. From our framework perspective, the
event notification service should handle such cases too, in
order to simplify application development and offer consis-
tency with respect to both programming and execution.

A distributed event notification service is also required
for scalibility and in order to avoid a single point of failure.

Figure 3 illustrates how the set of components may be
deployed onto a set of hosts. As can be seen, some of the
computers host several components. Neither the distribu-
tion of the event notification service itself nor the process
boundaries are illustrated in the figure, but as described, a
number of components may share a single address space.

3.3. Resource management

Common processing environments do not support re-
source reservation of CPU, memory, network bandwidth,
etc. and can not give any guarantees beyond “best effort”.
As a consequence, the available resources change dynami-
cally over time. A component executing in this kind of envi-
ronment may experience overflow situations when it is not
able to perform processing within the limited time frame,
determined by the real time properties. Similarly, underflow
situations may occur if the network is overloaded, causing

starvation at components. The infrastructure is also dy-
namic, although on a different time scale. It undergoes evo-
lution where computers, cameras, sensors, etc. are added
and removed. Handling such changes gracefully is impor-
tant, especially for large scale, continuously running appli-
cations. Adaptation might be sufficient for handling small
changes on a relatively short time scale, while reconfigura-
tion, having more overhead, has the potential of handling
larger changes. The level of indirection between compo-
nents introduced by an event-based interaction model sim-
plifies both reconfiguration and migration, also described in
[5]. However, a resource management part of the frame-
work must know the hosts and which components are cur-
rently executing at each, in order for reconfiguration and
migration to be meaningful.

An approach where all components process and push re-
sults continuously is not always suitable, although it fits pe-
riodic processing of time-based media and one-many com-
munication well. Some components are interested in re-
sults from other components only in certain cases and a de-
mand driven event distribution is more appropriate from a
resource consumption viewpont. As an example, consider
a C component, C3, producing events, €3, according to a
specification such as el before e2, where el is generated by
component C1 and e2 is generated by component C2. In
this case C3 is not interested in events from component C2
before an event el from C1 has been received. In this case
component C3 may reduce overall resource consumption by
explicitly requesting, pulling, results from component C2.
A hybrid between push and pull is also possible, such as
push for n seconds. The most suitable style may change
during runtime. The event notification service should allow
components to dynamically select the appropriate operation
point from the push/pull spectrum. In [7], a method for
constructing C components is described which allows a C
component to pull E components in a “hypothesis driven”
fashion - when the information gain is expected to be sig-
nificant compared to the computational cost.

3.4. Event notifications

Our approach for specifying event notification types is
to use a sequence of type, name (and value) tuples. As an
example, an E component may generate event notifications
containing the following types and names:

string nedia_type
string media_source
string function
string conmponent_type
f | oat noti on

time start

time stop



: Classification
: feature Extraction

: Filtering

: media streaming Source

: Event

: Filtered media stream

: Media stream

: Host clock synchronization
: Host boundary

O] >~ vonmo

Figure 3. An example of distributed process-
ing of the configuration in Figure 1.

The purpose of the motion variable is to represent a quan-
tization of the level of motion, calculated by an E compo-
nent on the basis of two consecutive video frames. The vari-
ables start and stop represent the interval in which the event,
reported in an event notification, took place. An instance of
such an event notification may look something like:

string nmedia_type vi deo

string nmedia_source rtp://224.0.7.1/1111
string function noti on_esti mati on
string conponent_type E

f1 oat noti on 0.32

tinme start 3215927128. 020

time stop 3215927128. 060

3.5. Event selection and filtering

Following the example above, a C component may sub-
scribe to event notifications generated by E components
processing video from a specific source, performing mo-
tion estimation, but limited to event notifications where the
motion is above some threshold, by supplying the following
filter:

string nmedia_type vi deo

string nmedia_source rtp://224.0.7.1/ 1111
string function noti on_estimati on
string conponent_type E

f1 oat noti on > 0.5

The effect of filtering depends on where the filtering
takes place. At one extreme, the code responsible for event
notification filtering is supplied as a library and linked into
the component code. In this case the event notification ser-
vice “broadcasts” all event notifications to all components
which perform filtering by executing this library code. The
scalability of this approach is very limited, since all network
components (routers, switches), all hosts (their network in-
terface cards and operating systems) and all processes (the

library code) see all events. At the other extreme, the event
notification service is implemented as a distributed service,
either provided as a native and ubiquitous service of the net-
work itself or alternatively added as an overlay network,
executing on some hosts and/or network nodes. The fil-
ter specifications from each subscriber are propagated to-
wards the event producers, and at each internal node new
filter specifications are merged with old ones. Event noti-
fications which do not match any subscriptions are stopped
early. The event notification service should also provide an
API for notifying producers when there are no interested
consumers, to improve scalability even more.

Filtering also allows a number of event consumers to
share a single event producer in a conform way. As an
example, consider a component specifying the filter given
previously, and a new consumer on the same host which
subscribes with a similar filter, where motion > 0.3. The
event notification service resolves the filter specification in-
compatibility, but a more restrictive filter is effective im-
mediately (although delivery is not optimized) while a less
restrictive filter may have to propagate through all the event
notification service nodes and possibly also notify the pro-
ducer component. A low and predictable delay is important
for the domain of real-time media processing, because it de-
termines on which time scale filters may be used as a means
of turning on and off event producers.

3.6. Event notification delivery

The event notification service must balance requirements
for real-time communication, low event propagation delay,
and high throughput against reliability and ordering guar-
antees associated with event notification delivery. Perfor-
mance numbers for an implementation of the CORBA No-
tification Service [13] is given in [19] for both “best effort”
delivery and the highest event delivery guarantee possible
with CORBA notification service - consumers receive all
events in spite of supplier, consumer, and notification ser-
vice crashes and network failures. A decrease in perfor-
mance of more than 80% is reported when using both event
and connection persistence compared to “best effort” de-
livery. In both cases the number of event/second as seen
by each consumer decreases rapidly as the number of con-
sumers increases, because the event notification service it-
self performs the group communication.

Our approach is to handle the unreliability of event deliv-
ery in the same way as we handle the unreliability of analy-
sis algorithms, which may fail to detect and report an event
or report false positives. In our framework, the C compo-
nents are designed to handle this by the use of a statistical
approach [7]. Consequently, an event notification service
which also supports unreliable transport, such as UDP, is
desirable in order to capitalize on the scalability of native



IP multicast[1].

Another issue related to the real-time characteristics, is
the buffering policy used in event notification delivery. The
event notification service should provide an API for spec-
ifying a policy to use when buffers are filled up, such as
“discard oldest” or “discard newest” event notification.

3.7. Event notification ordering

Applications built on top of our framework need to tem-
porarily relate event notifications, potentially originating
from arbitrarily distributed components, and hence some
ordering mechanism is required. Each event notification
is associated with a time interval, given by a start and a
stop time, illustrated in Section 3.4. This indicates that
we allow events to have a duration in time, supporting a
wide class of sustained actions to be interpreted as events.
A language for specifying temporal relations (e.g. before,
after, and within 10 seconds) is needed, but not addressed
in this paper. The aggregation of simple sustained events
into composite sustained events is performed according to
such a temporal specification. The ordering mechanisms
must be sufficiently strong in order to support the specifica-
tion language expressiveness. The design of our framework,
supporting such global ordering, is based upon a common
knowledge of time in all components.

It is well known that in a distributed system, global time
can only be available down to a certain level of accuracy.
The most widely used global time service in the Internet is
NTP (Network Time Protocol, RFC 1305) where synchro-
nization accuracies between different hosts is reported to be
in the order of tens of milliseconds on the Internet in general
and one millisecond over LANs[11]. In general the required
level of accuracy is application dependent, but considering
video streams with 25 frames per second, NTP may provide
frame level accuracy even over wide area networks. Some
additional inaccuracy is introduced by the indeterministic
skew (OS scheduling, etc.) on the data path from capture
device to the timestamping application. Hence, timestamp-
ing should happen as close to the source as possible. As
an example, a computer with a video camera connected
through a video grabber card, should timestamp each video
frame in the video grabber card or in the driver. Inaccura-
cies introduced by NTP and the timestamping process intro-
duce intervals of uncertainties, where the system is unable
to determine ordering (e.g. which event took place first).

As a result, our framework does not require any kind of
ordering or synchronization support in the event notification
service. Ordering is handled and implemented at the frame-
work level. Assuming that timestamps are obtained from
globally synchronized clocks, components are able to de-
tect and handle delays introduced by the event notification
service. In SIENA[2] (Scalable Internet Event Notification

Architecture) a similar approach is used to detect and ac-
count for latency effects.

As a conclusion, event notification services designed to
provide ordering guarantees may have problems related to
scalability, and in this case they are unsuited for our appli-
cation domain.

3.8. Event notification size

As an example of a “medium sized” event notification,
consider an E component doing motion estimation, treating
each frame as a number of blocks of, say 16216 pixels, cal-
culating a motion vector and difference value for each block
on the basis of two consecutive video frames. A 6402480
pixel frame size results in 1200 motion vectors and differ-
ence values. Another example of space consuming events
is compressed images, an important class of data in media
processing applications. A component may perform skin
classification on particular video frames, where the intensity
in the resulting gray scale image represents the skin color
probability. An event notification service which is able to
handle such potential space consuming event notifications
is beneficial.

However, for filtering reasons all these data should prob-
ably not always be embedded inside a single event notifi-
cation. There is a tradeoff between filtering granularity and
performance. Event consumers may have interest in only
parts of a video frame. Event notifications which fit in a
single link layer frame reduces fragmentation and reassem-
bly costs in the communication protocol stack and at the
same time allows relatively fine grained filtering.

3.9. Event notification service and media streaming

Until now we have focused on the communication be-
tween E and C components and argued that an event-based
interaction model fits well. From a media processing point
of view, it is also interesting to use the event notification
service itself for interaction between F and E components,
and even for streaming time-based media (e.g. video) to F
components. The extension of event notification services
for handling stream based interaction internally has been
described in [3] and [18].

An event notification service which is capable of han-
dling such “stream events” is attractive, especially when
used in combination with filtering. A producer publishing
video frames as event notifications may associate a type,
name, and value tuple expressing the type of a particular
video frame, such as an | (intra), P (predictive), or B (bidi-
rectional) coded frame. Different media processing compo-
nents may then subscribe and register interest in | frames
only, or in only every 10th I frame (temporal division),
depending on the expressiveness of the filter specification



language. A producer may send different areas of a video
frame as different event notifications, providing consumers
with the ability to express interest in certain areas of a video
frame only (spatial division). An E component doing mo-
tion estimation may subscribe only to events which contain
the boarder blocks of a video frame, and a C component
may use these values to detect entry or exit from a camera
view.

4. Prototype

In this section we describe a prototype of the framework
with emphasis on the parts relevant for distributed event-
based systems.

4.1. Event notification service

Different event notification service technologies, such as
CORBA Event Service[14], CORBA Notification Service,
and SIENA are available. We are at the time of writing in
the process of starting to use SIENA and CORBA Notifica-
tion Service. The event notification service in this prototype
is based on Mbus[16], which we will now describe and dis-
Cuss.

Mbus is a standard[17] currently being worked out by the
IETF. Mbus is designed to support coordination and con-
trol between different application entities, corresponding
roughly to components in our terminology. The standard
defines message addressing, transport, security issues and
message syntax for a lightweight message oriented infras-
tructure for ad-hoc composition of heterogeneous compo-
nents. The authors of Mbus state that Mbus is not intended
for use as a wide area conference control protocol, for secu-
rity (conforming Mbus implementations must support both
authentication and encryption[17]), scalability, message re-
liability and delay reasons[16]. In the following we evaluate
the suitability of Mbus as an event notification service, with
respect to the requirements discussed in Section 3.

Mbus supports binding of different causalities by using
a “broadcasting” and filtering technique. All components
participating in a specific Mbus session subscribe to an IP
multicast address and in effect Mbus messages are “broad-
casted” to the set of computers hosting components par-
ticipating in this Mbus session. Currently, Mbus is imple-
mented as a library which is linked into the applications. By
linking the Mbus code into the application itself, the Mbus
layer in each component sees all Mbus traffic and must filter
messages. Mbus could have been implemented as a part of
the operating system, pushing the filtering one step closer
to the event notification producer. In this respect Mbus is
rather suboptimal. As an optimization, several Mbus ses-
sions may be started, using a set of IP multicast addresses.

Each component participate in a subset of these Mbus ses-
sions and messages are sent to different sessions based upon
some predefined scheme.

Important for event notification selection and filtering is
the addressing used in Mbus. The address of a component is
specified when initializing the Mbus layer. In other words,
selection and filtering is associated with the address given
to a component, not by specifying filters. The Mbus header
includes source and destination addresses, each a sequence
of attribute-value pairs, of which exactly one pair is guaran-
teed to be unique (combination of process identifier, process
demultiplexer and IP address). Each Mbus component re-
ceives messages addressed to any subset of its own address.
A Mbus component is able to address a single, “(id:7-
1@129.240.64.28)™, a subset, ““(media_type:video compo-
nent_type:E)”, or all, ““()””, Mbus components by specify-
ing an appropriate sequence of attribute-value pairs. As a
result, bindings between components are implicit.

It should by now be evident that Mbus supports push-
based interaction. Some higher level Mbus services are de-
scribed in [9], such as abstractions for remote procedure
call. Pull style interaction is achieved by either sending re-
quests as event notifications or by using the remote proce-
dure call service.

An Mbus-based event notification service acts as a layer
of indirection between components giving both access and
location transparency, simplifying reconfiguration and mi-
gration. Component awareness is supported by a soft state
approach, where the Mbus layer listens and periodically
sends self-announcements messages on behalf of its com-
ponent. When migrating a component to another host, its
Mbus address remains the same (except for the value of the
id attribute, reported in succeeding self-announcements).

Regarding scalability, message propagation delay, and
reliability of event delivery, an Mbus-based event notifica-
tion service inherits many of its characteristics from IP mul-
ticast, which is realized as a distributed and scalable service.
The state necessary for forwarding IP multicast packets is
calculated and stored in both routers and in hosts acting on
behalf of multicast receivers in a distributed fashion. The
Mbus component awareness functionality limits scalability,
but the rate of self-announcements is adapted to the number
of entities participating in a session.

IP multicast also decreases latency (by sending only one
instance of a packet over any link) which is very important
for the domain initially targeted by IP multicast, real-time,
high bandwidth multi-user applications, such as video and
audio conferences.

At the transport level, Mbus messages are encapsulated
in UDP packets and transported unreliably by IP multicast.
In the special case where the message is targeted at exactly
one receiver, reliable unicast delivery is supported by the
Mbus layer, using acknowledgement, timeout, and retrans-



missions mechanisms. The Mbus/UDP/IP multicast proto-
col stack does not give any ordering guarantees, but assum-
ing global time and associating a time interval to each event
(see section 3.7) handles this ordering problem, except for
very time-sensitive applications.

From the discussion above, we believe that Mbus is a
reasonable alternative as an event notification service for
small scale experiments. From a prototyping viewpoint it is
easy to integrate, requiring few lines of code, and the text-
based message format simplifies message snooping.

4.2. F, E, and C, components

In the current prototype of the framework, ways to im-
plement F, E, and C components have been identified.

We have used applications such as JMStudio, bundled
with JMF[21] (Java Media Framework), and vic[10] for
streaming video from a file or from a capture card connected
to a video camera.

The F and E components are realized using JMF. JMF
performs low level media tasks, such as capture, trans-
port, streaming, (de)multiplexing, (de)coding, and render-
ing. JMF also provides a pluggable architecture for inte-
grating custom media processing algorithms. The F and E
components developed for the prototype are implemented
as classes in the Java programming language and pluggable
into the JIMF framework. F and E components implement a
method (e.g. iterating through all pixels of a video frame
performing some calculations), which is invoked by the
JMF system whenever a new media sample is available.

The C component implemented for this prototype is
based on dynamic object-oriented Bayesian networks (a
generalization of the hidden Markov model) and particle fil-
ters [7].

4.3. Component interaction

In our implementation of the media processing frame-
work, the communication between media sources and F
components is done by standard techniques for streaming
media data, such as MPEG/RTP[20]/UDP/IP multicast. An
E component executes, together with some F components,
inside a single process and communication between these
F and E components is handled by shared buffers and per-
formed by JMF. Interaction between E and C components
is handled by the Mbus-based event notification service.

4.4. Event notification ordering

As described in Section 3.7, a common knowledge of
global time in all components is assumed. When media
(e.g. video) is streamed by using RTP, each RTP packet
contains an RTP timestamp. This RTP timestamp is only

relative and it is used by receivers to determine the dura-
tion between two consecutive media samples. However it is
possible for receivers to determine the global NTP time of
the media sample in spite that such RTP packets contain no
NTP timestamp themselves. RTP has a companion proto-
col, RTCP[20], which is used for sending reports about the
session itself. Such reports are sent “out of band” on a sep-
arate port. RTCP packets include so called “sender reports”
which, for each source gives a NTP timestamp and the cor-
responding RTP timestamp. When a receiver, a F compo-
nent, has seen two such RTCP “sender reports” from a me-
dia source, it is able to derive a mapping from an arbitrary
RTP time, for this source, to global NTP time. The times-
tamps then follow the filtered and transformed media data
to E components, which inserts the timestamps into event
notifications. Then C components use these timestamps in
order to relate events temporaly.

4.5. Experiences

The purpose of the prototype is to gain experience, serve
as a proof of concept, and to verify the flexibility of Mbus
with respect to the different requirements discussed in Sec-
tion 3.

Component interaction uses push style communication.
The media source applications push video streams over the
network, using IP multicast. The video streams are received
by processes executing the JMF runtime system and hosting
F and E components. In each process, the JMF runtime
system invokes the media processing methods of F and E
components whenever a new video frame arrives. Each E
component pushes the calculated results, features extracted
from video frames, over the event notification service. A
C component, hosted by a separate process, receives these
results and performs classification.

The deployment of components onto hosts is performed
manually in this prototype. The flexibility of the Mbus-
based event notification service was confirmed by experi-
ments - configuration and compilation was unnecessary be-
fore starting components on different hosts or when recon-
figuring the media processing task. Mbus performs as ex-
pected, both as an intra host event notification service, but
also when components are hosted by different computers in-
terconnected by a local area network. Some successful mi-
gration experiments have also been conducted [15], using
Voyager[6] for moving running components between hosts.

We have performed some preliminary experiments, test-
ing different distribution strategies. On one extreme, all
components executed on a single machine while on the
other extreme each component was hosted by a different
computer. Distributed processing of the media anlysis task
allows the development of more resource demanding, but
also more reliable components, improving scalability.



5. Conclusions and future work

In this paper we have presented an architecture for
a framework for developing applications supporting dis-
tributed real-time processing of time-based media streams.
We have described different aspects of our target application
domain and argued that this domain is a case for distributed
event-based interaction. The main contribution of this paper
is the analysis of different aspects relevant to the application
domain and the translation to corresponding requirements
for a suitable event notification service. These requirements
include scalability, reconfiguration, migration, event noti-
fication selection and filtering. Ordering is handled at the
framework level by assuming globally synchronized clocks
and association of timestamps to events. A prototype of
the framework has been implemented, serving as a proof
of concept and for evaluation purposes. We find the results
promising.

We are currently working on a new prototype of both
framework and test application. The test application cho-
sen is tracking of objects in video, an application which is
challenging and extensible along several axes. It should be
possible to increase complexity, with respect to feature ex-
traction and classification, by going from object tracking to
recognition of persons, and maybe also their identity. For
scalability tests, a number of video streams can be analyzed
concurrently. Additionally, some of the algorithms are rel-
atively compute intensive, but also suited for parallel pro-
cessing (e.g. motion estimation).

6. Acknowledgments

We would like to thank all persons involved in the Dis-
tributed Media Journaling project for contributing to ideas
presented in this paper. We also would like to thank the
reviewers for valuable comments.

The DMJ project is funded by the Norwegian Re-
search Council through the DITS program, under grant no.
126103/431.

References

[1] K. C. Almeroth. The Evolution of Multicast: From the
MBone to Interdomain Multicast to Internet2 Deployment.
|EEE Network, 2000.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving
scalability and expressiveness in an internet-scale event no-
tification service. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing,
pages 219-227, Portland OR, USA, July 2000.

[3] D. Chambers, G. Lyons, and J. Duggan. Stream Enhance-
ments for the CORBA Event Service. In Proceedings of
the ACM Multimedia (S GMM) Conference, Ottawa, Octo-
ber 2001.

[4]
[5]

(6]
[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

DMJ,  (Distributed  Media
http://www.ifi.uio.no/"dmj/.

V. S. W. Eide, F. Eliassen, and O. Lysne. Supporting Dis-
tributed Processing of Time-based Media Streams. In Pro-
ceedings of the 3rd International Symposium on Distributed
Objects and Applications (DOA 2001), Rome, Italy, pages
281-288, Sept 2001.

G. Glass. \Voyager - the universal orb. Technical report,
Objectspace, January 1999.

0O.-C. Granmo and F. V. Jensen. Real-time Hyphothesis
Driven Feature Extraction on Parallel Processing Architec-
tures. In Proceedings of the 2002 Special Session on Par-
allel and Distributed Multimedia Processing & Retrieval
(PDMPR 2002), Las Vegas, USA, June 2002.

S. Hongeng, F. Brémond, and R. Nevatia. Bayesian Frame-
work for Video Surveillance Application. In Proceedings of
the 15th International Conference on Pattern Recognition,
pages 164-170, Sep 2000.

D. Kutscher. The Message Bus: Guidelines for Applica-
tion Profile Writers. Internet Draft , draft-ietf-mmusic-mbus-
guidelines-00.txt, 2001.

S. McCanne and V. Jacobsen. Vic: A flexible Framework for
Packet Video. In ACM Multimedia’ 95, pp. 511-522, 1995.
D. L. Mills. Improved Algorithms for Synchronizing Com-
puter Network Clocks. |EEE Transactions Networks, pages
245-254, 1995.

Y. Nakamura and M. Nagao. Parallel Feature Extraction
System With Multi-Agents-PAFE. 11th IAPR International
Conference on Pattern Recognition (ICPR), vol. 2:371-375,
1992.

Object Management Group Inc. CORBA services, Notifica-
tion Service Specification, v1.0. http://mww.omg.org/, 2000.
Object Management Group Inc. CORBA services, Event
Service Specification, v1.1. http://www.omg.org/, 2001.

R. W. Olsen. Component Framework for Distributed Media
Journaling. Master’s thesis, (in Norwegian), Department of
Informatics, University of Oslo, May 2001.

J. Ott, D. Kutscher, and C. Perkins. The Message Bus: A
Platform for Component-based Conferencing Applications.
CSCW2000, workshop on Component-Based Groupware,
2000.

J. Ott, C. Perkins, and D. Kutscher. A message bus for local
coordination. Internet Draft , draft-ietf-mmusic-mbus-04.txt,
2001.

T. Qian and R. Campbell. Extending OMG Event Service
for Integrating Distributed Multimedia Components. In Pro-
ceedings of the Fourth International Conference on Intelli-
gencein Services and Networks, Como, Italy. Lecture Notes
in Computer Science by Springer-Verlag, May 1997.

S. Ramani, B. Dasarathy, and K. S. Trivedi. Reliable Mes-
saging Using the CORBA Notification Service. In Proceed-
ings of the 3rd International Symposium on Distributed Ob-
jectsand Applications (DOA 2001), Rome, Italy, pages 229-
238, Sept 2001.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
sen. RTP: A Transport Protocol for Real-Time Applications.
RFC 1889, 1996.

Sun Microsystems Inc. Java Media Framework, AP1 Guide,
v2.0. http://java.sun.com/, 1999.

Journaling)  project.



Paper Il

Scalable Independent Multi-level Distribution in Multimedia
Content Analysis

Viktor S. Wold Eide, Frank Eliassen,
Ole-Christoffer Granmo, and Olav Lyshe

Published: In Proceedings of Joint International Workshops on Interactive Distributed
Multimedia Systems and Protocols for Multimedia Systems (IDMS/PROMS 2002),
volume 2515 of Lecture Notes in Computer Science, Springer, pages 37-48, Coimbra,
Portugal, November 2002.

Evaluation: In total, 112 papers were submitted to IDMS/PROMS 2002. The review
work was done by the program committee members and additional reviewers. As a
result, 30 papers were accepted for publication.

Author Contribution: This is a project article, where Granmo and Eide did most

of the writing. Granmo is the sole author of section 3.5, while sections 3.1 - 3.4
were written by Eide. The remaining sections were written iteratively, mainly by
Granmo and Eide. The supervisors have contributed to the ideas presented in this
paper and commented on different draft versions of the paper after each iteration. In
order to integrate the results, the experiments were designed collaboratively. Granmo
implemented the classifier part, while Eide did the rest of the implementation.

LAuthors are listed alphabetically

97






Scalable Independent Multi-level Distribution in
Multimedia Content Analysis

Viktor S. Wold Eide!-2, Frank Eliassen?,
Ole-Christoffer Granmo'-2, and Olav Lysne?* **

! Department of Informatics, P.O. Box 1080 Blindern, N-0316 Oslo, Norway
{viktore,olegr}@ifi.uio.no
2 Simula Research Laboratory, P.O. Box 134 N-1325 Lysaker, Norway
{viktore,frank,olegr,olavly}@simula.no

Abstract. Due to the limited processing resources available on a typical host,
monolithic multimedia content analysis applications are often restricted to simple
content analysis tasks, covering a small number of media streams. This limitation
on processing resources can often be reduced by parallelizing and distributing an
application, utilizing the processing resources on several hosts. However, mul-
timedia content analysis applications consist of multiple logical levels, such as
streaming, filtering, feature extraction, and classification. This complexity makes
parallelization and distribution a difficult task, as each logical level may require
special purpose techniques. In this paper we propose a component-based frame-
work where each logical level can be parallelized and distributed independently.
Consequently, the available processing resources can be focused on the processing
bottlenecks at hand. An event notification service based interaction mechanism is a
key factor for achieving this flexible parallelization and distribution. Experiments
demonstrate the scalability of a real-time motion vector based object tracking
application implemented in the framework.

1 Introduction

The technical ability to generate volumes of digital media data is becoming increasingly
“main stream”. To utilize the growing number of media sources, both the ease of use and
the computational flexibility of methods for content-based access must be addressed.

In order to make media content more accessible, pattern classification systems which
automatically classify media content in terms of high-level concepts have been taken
into use. Roughly stated, the goal of such pattern classification systems is to bridge
the gap between the low-level features produced through signal processing (filtering
and feature extraction) and the high-level concepts desired by the end-user. Automatic
visual surveillance [1], automatic indexing of TV Broadcast News [2] (e.g. into News-
caster, Report, Weather Forecast, and Commercial segments), and remote sensing image
interpretation [3] are examples of popular application domains.

* Authors are listed alphabetically
** The DMJ project is funded by the Norwegian Research Council under grant no. 126103/431

F. Boavida et al. (Eds.): IDMS/PROMS 2002, LNCS 2515, pp. 37-48, 2002.
(© Springer-Verlag Berlin Heidelberg 2002



38 V.S.W. Eide et al.

Due to the limited processing resources available on a typical host, monolithic
multimedia content analysis applications are often restricted to simple content anal-
ysis tasks. Multimedia content analysis applications consist of multiple logical levels,
such as streaming, filtering, feature extraction, and classification. This complexity makes
parallelization and distribution a difficult task, as each logical level may require special
purpose techniques. For instance, in [4], it is shown how the filtering in a video based
people counting application can be distributed to the sensors, based on a special purpose
multimedia surveillance network. Accordingly, a higher frame rate can be achieved or
more advanced filtering can be conducted.

In the DMJ (Distributed Media Journaling) project we are developing a component
based framework for real-time media content analysis. New sub-technologies (e.g. a new
feature extraction algorithm) may be plugged into the framework when available.

The resource requirements for the framework application domain are very challeng-
ing and will most likely remain so in the near future, justifying the need for scalability.
In this paper we show the framework scalability for a relatively tightly coupled applica-
tion (components interact with the video framerate frequency) processing a single video
stream. A massively distributed application utilizing a large number of cameras (e.g. for
traffic surveillance) may require such tight coupling only between some components.

The relative complexity of streaming, filtering/transformation, feature extraction,
and classification depends on the application. Therefore the framework should support
focusing of processing resources on any given logical level, independently of other
logical levels. E.g., if only the filtering is parallelized and distributed (as in the case from
[4]), the feature extraction and the classification may become processing bottlenecks.

In this paper we focus on the parallelization and distribution mechanisms of the DMJ
framework. In Sect. 2 we describe the general approach for building content analysis
applications. We also introduce our application case, tracking of a moving object in a
video stream. In Sect. 3 we first give an overview of the DMJ framework. In Sect. 3.1 we
shortly describe inter component communication and synchronization. We then proceed
to motivate and present the special purpose parallelization and distribution techniques
for each logical level in Sect. 3.2 to Sect. 3.5. In Sect. 4 we present the results of an
experiment which demonstrate the scalability of our framework. In Sect. 5 we present
plans for future work. Lastly, we provide some conclusions in Sect. 6.

2 Content Analysis

A general approach for building content analysis applications is to combine low-level
quantitative media processing into high-level concept recognition. Typically, such appli-
cations are logically organized as a hierarchy, as shown in Fig. 1. At the lowest level of
the hierarchy there are media streaming sources. At the level above, the media streams
are filtered and transformed. The transformed media streams are then fed to feature
extraction algorithms as media segments (e.g. video frame regions). Feature extraction
algorithms operate on the media segments from the transformed media streams, and in
the case of a video frame region, calculate features such as color histograms and motion
vectors. Finally, results from feature extraction algorithms are reported to classification
algorithms higher up in the hierarchy that are responsible for detecting high level domain



Scalable Independent Multi-level Distribution in Multimedia Content Analysis 39

A

Classification

AT

CO: Coordination
feature @ @ PF : Particle Filtering
Extraction : : ME: Motion Estimation
i i CF : Color Filtering

VS : Video Streaming
4 . Event Notification

Filtering @ @ P8
4 . Filtered media stream
Streaming 4 : Media stream

Fig.1. A specific configuration, out of many possible configurations, of a content analysis
application for real-time tracking of a moving object in a video stream

concepts, such as a moving object in a video stream. In other words, classification is
interpretation of extracted features in some application specific context.

Fig. 1 illustrates a possible configuration of a content analysis application for real-
time tracking of a moving object in a video stream, the application henceforth used for
illustration purposes. The video stream is filtered by two algorithms, each doing video
stream decoding and color-to-grey level filtering. Each filtered video frame is divided
into m X n blocks (media segments) before two motion estimators calculate motion
vectors for the blocks. The block motion vectors are then submitted to two so-called
particle filters (described in 3.5) for object detection and tracking. The coordinator uses
the results from all the particle filters to determine the position of the moving object.

Often, the above type of content analysis applications are implemented as monolithic
applications making reuse, development, maintenance, and extension by third parties
difficult. Such applications are often executed in single processes, unable to benefit
from distributed processing environments.

3 The DMJ Framework

As a solution to the inherent problems of traditional monolithic content analysis systems,
we suggest a component-based approach. Logically, the media processing hierarchy
is similar, but the different algorithms at each logical level are now encapsulated in
components - S (Streaming), F (Filtering), E (feature Extraction), and C (Classification)
components. The content analysis task is realized as a collection of components, which
indirectly monitor other components and react to particular changes in their state.

The resulting content analysis hierarchy can then be executed as a pipeline (each
level of the hierarchy is executed in parallel). For instance, the application described
in Sect. 2 can be executed on five CPUs, where the streaming is conducted from one
CPU, the filtering is executed on a second CPU, the motion estimation is conducted on
a third CPU, and so forth. Such distribution allows an application to take advantage of
a number of CPUs equal to the depth of the hierarchy. In addition, the DMJ framework



40 V.S.W. Eide et al.

also supports independent parallelization and distribution within each logical level. In
the current prototype of the framework, each logical level implements special purpose
parallelization and distribution techniques, as we will see in Sect. 3.2 to Sect. 3.5. In
combination, this opens up for focusing the processing resources on the processing
bottlenecks at hand. An example of such parallelization is found in Fig. 1 where the
motion estimation (and the particle filtering) can be conducted on two CPUs.

3.1 Component Interaction and Synchronization

Components interact in different ways, such as one-one, one-many (sharing or parti-
tioning of data), many-one (aggregation), and many-many. In [5] we argue that the
requirements for our application domain fit very well with the publish/subscribe inter-
action paradigm, leading to an event-based interaction model. Event-based systems rely
on some kind of event notification service which introduces a level of indirection. The
responsibility of the event notification service is to propagate/route event notifications
from the event producers to interested event consumers, based on content and generally
in a many-many manner. A component does not need to know the location, the identity,
or if results have been generated by a single or a number of components. The binding
between components is loose and based on what is produced rather than by whom.
Note that the event notification service should take advantage of native multicast on the
network layer for scalability reasons, as will become clear in the following sections.

Some kind of synchronization and ordering mechanism is required in order to support
parallel and distributed processing. Such a mechanism is described in [5], in which each
media sample and event notification is assigned a timestamp (actually a time interval)
from globally synchronized clocks. In other words, the design of our framework is based
upon a common knowledge of time in all components. This is realized by synchronizing
the computers by e.g. the Network Time Protocol, RFC 1305.

3.2 Media Streaming

Each media source receives its input from a sensor, implemented in software (e.g. a
program monitoring files) or as a combination of both hardware (video camera, mi-
crophone, etc.) and software (drivers, libraries, etc.). From a scalability point of view,
reducing sender side processing and network bandwidth consumption is important.

Some media types may generate large amounts of data, requiring effective encoding
in order to reduce bandwidth requirements to a reasonable level. We currently work
with live video, a quite challenging media type with respect to processing requirements,
the massive amounts of data, and the imposed real-time requirements. E.g., a television
quality MPEG-2 encoded video stream, Main profile in the Main Level, 720 pixels/line
x 576 lines, may require as much as 15 Mbps [6]. The actual data rate depends on both
intra- and inter frame redundancy, i.e. the media content. Real-time encoding is likely
to remain costly in the near future too, considering a likely increase in video quality.

A media source should be able to handle a number of interested receivers, belonging
to the same or to different applications. A video streaming source which must handle each
and every component individually will not scale. Scalable one to many communication is
what IP multicast [ 7] has been designed for. Each packet requires a single send operation
and should traverse each network link only once. In the current prototype, we have used
IP multicast for streaming video data, as illustrated by label 1 in Fig. 2.



Scalable Independent Multi-level Distribution in Multimedia Content Analysis 41

CO: Coordination
PF : Particle Filtering

1
| VS: Video Streaming
: ) A

ME: Motion Estimation
: Event Notification

CF : Color Filtering
2 : = !
@ """" '@ A . Filtered media stream

4 : Media stream

Fig.2. Inter component communication for the configuration in Fig.1. Feature extraction and
classification components interact through an Event Notification Service, labeled ENS

3.3 Filtering and Transformation

Filtering and transformation bridge the gap between what a S component offers and an
E component can handle. As an example, filtering and transformation components may
be used to convert MPEG-2 to YUV to 32 bit RGB to 8 bit gray level video frames.

An effective encoding of a media stream reduces network bandwidth consumption,
but results in increased processing requirements for decoding. If components both receive
and decompress each and every frame of a high quality video stream entirely, the number
of CPU cycles left for the rest of the processing may be severely reduced. As an example,
real-time software decoding of a MPEG-2 TV quality video stream requires a fairly
powerful computer. Furthermore, filtering and transformation may be computationally
costly by itself. Consequently, our framework should support parallel and distributed
filtering and transformation.

In the current prototype the filtering and transformation is executed in the same
process as the feature extraction, and data is transferred to feature extraction components
by reference passing. This data flow is labeled 2 in Fig. 2.

3.4 Feature Extraction

A feature extraction algorithm operates on media segments from the filtering and trans-
formation level (e.g. video frame blocks) and extracts quantititave information, such as
motion vectors and color histograms. The features of each media segment are used at
the classification level to assign a high-level content class to each media segment.
Feature extraction algorithms may use information from the compressed or partial
decompressed domain if available (e.g. utilize the motion vectors in a MPEG-2 video).
Some feature extraction algorithms require relatively small amounts of processing,
such as a color histogram calculation which may only require a single pass through each
pixel in a video frame. But even such simple operations may become costly when applied
to a real-time high quality video stream. In general the algorithms may be arbitrarily
complex. In combination with the high data rate and often short period of time between
succeeding frames this may easily overwhelm even a powerful computer. A scalable



42 V.S.W. Eide et al.

solution necessitates parallelization, which requires a partitioning of the data in the
media stream, spatially and/or temporally.

Feature extraction algorithms for video, such as motion vector extraction, color his-
togram calculation, and texture roughness calculation, often operate locally on image
regions (e.g. a block). The DMJ framework supports spatial parallelization and dis-
tribution of such feature extractors. As an example, block-based motion estimation is
computationally demanding, but the calculation of a single block motion vector is local-
ized to a small image region. Accordingly, the calculation of motion vectors in a single
video frame can be parallelized and distributed. For the sake of completeness we give a
short description of parallel block motion vector extraction in the DMJ framework.

Block-based Motion Estimation. In order to identify and quantify motion between
two consecutive frames, a block-based scheme is used. A block from the previous frame
is compared to the corresponding block in the current frame. A block difference value
is calculated by summing all the pixel value differences and this value indicates the
similarity between the two blocks. If an object or the camera moves between two con-
secutive frames, the calculated block difference value may become large and a search
for a similar block in the current frame is necessary. Searching is done by offsetting
the corresponding block in the current frame some pixels horizontally and vertically. A
search area is defined by the maximum number of pixels to offset the block. In the worst
case, a brute force search must compare the block in the previous frame with all blocks
defined by the search area. This searching requires lots of processing and a number of
algorithms have been proposed in order to reduce the number of blocks compared [8].
The search is usually terminated whenever a block with difference value below some
threshold has been found, introducing indeterminism since the processing requirements
depend on the media stream content. The offset [dz, dy] which produces the smallest
difference value, below a threshold, defines the motion vector for this block.

Our implementation allows a component to calculate motion vectors for only some
of the blocks in the video frame, defined by a sequence of rectangles, each covering some
blocks. In case of parallel processing, such motion estimation components are mapped
onto different hosts, each processing some of the blocks in the whole frame.

In Fig. 3, the motion vectors calculated by a single component have been drawn into
the left video frame. The figure also illustrates how a component may get configured to
process only some regions of the video stream. The blocks processed are slightly darker
and they also have the motion vectors drawn, pointing from the center of their respective
block. The motion vectors indicate that the person is moving to the left.

The motion vectors calculated for blocks in video frames are sent as event notifi-
cations. The event notification service will then forward such event notifications to the
interested subscribers, as indicated by label 3 in Fig. 2.

3.5 Classification

The final logical level of the DMJ framework is the classification level. At the classifi-
cation level each media segment is assigned a content class based on features extracted
at the feature extraction level. For instance, if each video frame in a video stream is
divided into m X n blocks as seen in the previous section, the classification may consist
of deciding whether a block contains the center position of a moving object, based on
extracted motion vectors.



Scalable Independent Multi-level Distribution in Multimedia Content Analysis 43

Fig.3. Left: Block-based motion estimation example. Right: The center position of the tracked
object, calculated by the coordinator, has been drawn as a white rectangle

Features may be related spatially and temporally to increase the classification ac-
curacy. E.g., if a block contains the stomach of a person moving to the left, above
blocks should contain “person” features. Blocks to the right in previous video frames
should also contain such features. When features are related spatially and temporally,
the classification may also be referred to as tracking or spatial-temporal data fusion.

In this section we first discuss how the classification can become the processing
bottleneck in a content analysis application, as well as the consequences. We then propose
a parallelizable multi-component classifier which addresses this bottleneck problem.

Processing Bottlenecks. The classification may become a processing bottleneck due
to the complexity of the content analysis task, the required classification rate, and the
required classification accuracy. E.g., rough tracking of the position of a single personin a
single low rate video stream may be possible using a single CPU, but accurately tracking
the position of multiple people as well as their interactions (talking, shaking hands,
etc.) could require several CPUs. Multiple media streams, such as video streams from
multiple cameras capturing the activity on an airport, may increase the content analysis
complexity even further. In the latter setting we may for instance consider tracking the
behavior and interaction of several hundred people, with the goal of detecting people
behaving suspiciously. This example would probably require a very large number of
CPUs for accurate classification at an appropriate video frame rate. In short, when the
classifier is running on a single CPU, the classification may become the processing
bottleneck of the content analysis application.

When the classification becomes the processing bottleneck either the content analy-
sis task must simplified, the classification rate/accuracy requirements must be relaxed,
or the amount of processing resources available for classification must be increased.
Simplifying the content analysis task may be costly in terms of implementation effort.
Furthermore, reducing the accuracy of a classifier, in order to reduce the processing
resource usage, may be an intricate problem depending on the classifier. Changing the
classification rate is easily done, but this may have implications on the other logical
framework levels (which also should reduce their operation rate accordingly). In addi-



44 V.S.W. Eide et al.

tion, the content analysis task and the classification rate/accuracy requirements are often
given by the application and cannot be modified. Consequently, often the only option is to
increase the amount of processing resources available for classification. Unfortunately,
if the classification cannot be distributed, increasing the available processing resources
is only effective to a limited degree.

A Parallel and Distributed Classification Component. To reduce the problems
discussed above, the DMJ framework classification level supports: effective specification
of content analysis tasks through the use of dynamic Bayesian networks [9], flexible
execution of content analysis tasks based on the particle filter algorithm [9], fine grained
trading of classification accuracy against classification processing resource usage as a
result of using particle filters, and fine grained trading of feature extraction processing
resource usage against classification accuracy [10] [11].

In the following we describe our use of the particle filter in more detail. Then we
propose a distributed version of the particle filter, and argue that the communication and
processing properties of the distributed particle filter allow scalable distributed classifi-
cation, independent of distribution at the other logical levels of the DMJ framework.

The Particle Filter: Our particle filter is generated from a dynamic Bayesian net-
work specifying the content analysis task. During execution the particle filter partitions
the media stream to be analysed into time slices, where for instance a time slice may
correspond to a video frame. The particle filter maintains a set of particles. A single
particle is simply an assignment of a content class to each media segment (e.g. object or
background) in the previously analysed time slices, combined with the likelihood of the
assignment when considering the extracted features (e.g. motion vectors). Multiple par-
ticles are used to handle noise and uncertain feature-content relationships. This means
that multiple feature interpretations can be maintained concurrently in time, ideally until
uncertainty can be resolved and noise can be supressed.

When a new time slice is to be analysed, each particle is independently extended to
cover new media segments, driven by the content analysis task specification. In order
to maintain a relevant set of particles, unlikely particles are systematically replaced by
likely particles. Consequently, the particle set is evolved to be a rich summarization
of likely content interpretations. This approach has proven effective in difficult content
analysis tasks such as tracking of objects. Note that apart from the particle replacement,
a particle is processed independently of other particles in the particle filter procedure.

The Distributed Particle Filter: Before proposing the distributed version of the par-
ticle filter, we briefly discuss how the classification in some cases can be distributed
without any inter-classifier communication. This is the case when the content analysis
task can be split into independent content analysis sub tasks. For instance, a particle filter
tracking the position of people in unrelated media streams can be replaced by one particle
filter for each media stream. These particle filters can then be executed independently
on multiple CPUs.

The above distribution approach may be undesirable when the content analysis sub
tasks depend on each other; the lack of coordination between the particle filters may
cause globally incoherent classification. E.g., a particle filter tracking n people in a single
media stream could be replaced by n particle filters, each tracking a single person, but
then the sub tasks are dependent. As a result, particle filters tracking different persons
may start tracking the same person, resulting in some persons not being tracked.



Scalable Independent Multi-level Distribution in Multimedia Content Analysis 45

So, in order to achieve globally coherent classification only a single particle filter
is used in our second distribution approach. In short, the particles of the single particle
filter are parted into n groups which are processed on n CPUs. An event based commu-
nication scheme maintains global classification coherence. The communication scheme
is illustrated in Fig. 2 and discussed below.

n particle filter (PF) components and a coordinator (CO) component cooperate to
implement the particle filter. Each PF component maintains a local set of particles and
executes the particle filter procedure locally. When a new time slice is to be analysed,
the components operate as follows. First, m locally likely particles are selected and
submitted to the other PF components through the event notification service (label 4 in
Fig. 2). Then, each PF component executes the particle filter procedure on the locally
maintained particles, except that the local particles also can be replaced by the (n —1)m
particles received from the other PF components. After execution, each PF component
submits the likelihood of media segment content classes to the coordinator (label 5 in
Fig. 2) which estimates the most probable content class of each media segment.

Fig. 3 illustrates the effect of the distributed particle filter when applied to our content
analysis application case. The input to the PF components (motion vectors) as well as
the output of the CO component (the center position of the moving object) have been
drawn into the respective video frames.

In the above communication scheme only 27 (from PF components) +1 (from the CO
component) messages are submitted per time slice, relying on multicast support in the
event notification service (and the underlying network). In addition, the size of the mes-
sages is controlled by m. Accordingly, this allows scalable distribution of classification
on relatively tightly coupled CPUs, independent of distribution at the other logical levels
of the DMJ framework. Finally, the classification properties of the distributed particle
filter are essentially identical to the classification properties of the traditional particle
filter when m equals the number of particles in a single PF component. By manipulating
m, classification accuracy can be traded off against the size of the messages.

4 Empirical Results

In this section we present the results of an experiment where the object tracking appli-
cation was parallelized and distributed based on a prototype of our framework.

A separate PC (700Mhz Celeron CPU) hosted a standard video streaming application
(vic [12]) which captured and multicasted a MJPEG video stream (352 x 288 pixels,
quality factor of 70) on a switched 100 Mbps Ethernet LAN. The frame rate was varied
between 1 f/s and 25 f/s and generated a data rate of approximately 100 kbps to 2.5
Mbps. Java Media Framework [13] was used to implement a motion estimation Java
class. We configured the block size to 16 x 16 pixels and the search area to £6 pixels,
both horizontally and vertically, i.e. a search area of 169 blocks. A “full search” was
always performed, even though a perfect match between two blocks was found before
having compared with all 169 possible blocks. The number of blocks processed in
each frame was 20 x 16 (edge blocks were not processed). A parallel multi-component
particle filter has been implemented in the C programming language. For particle filtering
1100 particles were used. Five Dual 1667 Mhz AMD Athlon computers were used as a
distributed processing environment. The motion estimation components and the particle



46 V.S.W. Eide et al.

Table 1. The achieved frame rate, in frames/second, for different configurations

1 CPU 2 CPUs 4 CPUs 8 CPUs 10 CPUs

Ideal Frame Rate 2.5 5 10 20 25
Streaming 2.5 5 10 20 25
Filtering and Feature Extraction 2.5 5 8.5 13.5 16
Classification 2.5 5 10 20 25

filter components communicated across Mbus[14]. In [5] we discuss the suitability of
Mbus as an event notification service. Mbus takes advantage of IP multicast.

In order to examine the distribution scalability of our framework we implemented
five object tracking configurations, targeting 1, 2, 4, 8, and 10 CPUs respectively. The
first configuration, consisting of decoding and filtering components, one motion estima-
tion component, one particle filter component, and one coordination component, was
executed as a pipeline on one CPU. In the second configuration the pipeline was executed
on two CPUs, that is, the filtering and motion estimation components were executed on
one CPU and the particle filter and coordination component were executed on another
CPU. This configuration was extended stepwise by adding a motion estimation com-
ponent (and implicitly also filtering components) as well as a particle filter component,
each running on a dedicated CPU.

The configurable parameters of the above components were set so that the feature
extraction and the particle filtering had similar processing resource requirements. Then,
we kept the content analysis task and the other configurable parameters constant, while
we measured the video frame rate of each configuration. If our framework is scalable
the frame rate should increase approximately linearly with the number of CPUs. This
also means that the operation rate at both the feature extraction level as well as the
classification level should increase accordingly.

The achieved frame rate for each configuration is shown in Table 1. From the table
we can see that the frame rate increased linearly with the number of CPUs, except for
the filtering and feature extraction part of the computation.

In order to find out what caused this effect, we modified the implementation of
the motion estimation method in the Java class so that it returned whenever called
by the JMF runtime system, without doing any processing. We observed that when
streaming at 25 f/s, the filtering and transformation part (depacketization and JPEG to
RGB transformation) consumed roughly 30% of the processing power of a single CPU.
Each component must decode and filter the complete multicast MJPEG stream, despite
the fact that each component only operates on a subpart of each video frame. Scalability
is reduced, illustrating the point made in 3.3. Note that the ability of the distributed
classifier to handle the full frame rate was tested on artificially generated features.

5 Further Work

Sending a full multicast stream to all receivers wastes both network and receiver pro-
cessing resources when each receiver only processes some regions in each video frame.
In [15], heterogeneous receivers are handled by layered video coding. Each layer en-
codes a portion of the video signal and is sent to a designated IP multicast address. Each



Scalable Independent Multi-level Distribution in Multimedia Content Analysis 47

enhancement layer depends on lower layers and improves quality spatially/temporarily.
Parallel processing poses a related kind of heterogeneity challenge, but the motivation is
distribution of workload by partitioning data. In this respect, using an event notification
service for video streaming, as described in [16] and [17], seems interesting. A video
streaming component may then send different blocks of each video frame as different
event notifications. A number of cooperating feature extraction components may then
subscribe to different regions and process the whole video frame in parallel.

With respect to filtering, we consider an approach where (a hierarchy of) filters can
be dynamically configured to adapt each media stream to the varying requirements of
different receiving components. A similar approach for managing content adaptation in
multicast of media streams has been proposed in [18].

The “full search” motion estimation strategy described in Sect. 4 gives deterministic,
but also worst case processing requirements. A strategy which terminates the search is
more challenging from a load balancing point of view. A moving object increases the
processing requirements for a local group of blocks (a processing hotspot), suggesting
that blocks processed by a single CPU are spread throughout the whole video frame. The
tracking information calculated by a classifier, e.g. the object location and movement
direction, can be subscribed to and used as a hint to improve searching.

We will also add resource aware and demand driven feature extraction to the frame-
work [10], i.e., the features are ranked on-line according to their expected ability to
contribute to the current stage of the content analysis task. Only the most useful features
are extracted, as limited by the available processing resources.

Finally, we will extend our application case and increase the need for scalability by
analyzing several video streams concurrently. Content from different video streams can
then be related in the classification, e.g. tracking of an object across several cameras. For
this purpose, we will add a parallelizable color feature extractor for more robust object
tracking, i.e. objects can be identified and tracked based on color features.

6 Conclusion

In this paper we have presented a component based framework which simplifies the
development of distributed scalable applications for real-time media content analysis.
By using this framework, we have implemented a real-time moving object tracker. The
experimental results indicate that the framework allows construction of scalable appli-
cations by the means of parallelization and distribution of the main logical application
levels, namely streaming, transformation/filtering, feature extraction, and classification.

References

1. Hongeng, S., Bremond, F., Nevatia, R.: Bayesian Framework for Video Surveillance Appli-
cations. In: 15th International Conference on Pattern Recognition. Volume 1., IEEE (2000)
164-170

2. Eickeler, S., Muller, S.: Content-based Video Indexing of TV Broadcast News using Hidden
Markov Models. In: Conference on Acoustics, Speech and Signal Processing. Volume 6.,
IEEE (1999) 2997-3000



48

10.

11.

12.

13.
14.

15.

16.

17.

18.

V.S.W. Eide et al.

A. Pinz, M. Prantl, H.G., Borotschnig, H.: Active fusion—a new method applied to remote
sensing image interpretation. Special Issue on Soft Computing in Remote Sensing Data
Analysis 17 (1996) 1340-1359

. Remagnino, P, Jones, G.A., Paragios, N., Regazzoni, C.S., eds.: Video-Based Surveillance

Systems. Kluwer Academic Publishers (2002)

Eide, V.S.W., Eliassen, F., Lysne, O., Granmo, O.C.: Real-time Processing of Media Streams:
A Case for Event-based Interaction. In: Proceedings of International Workshop on Distributed
Event-Based Systems (DEBS’02), IEEE, Vienna, Austria. (2002)

Steinmetz, R., Nahrstedt, K.: Multimedia: Computing, Communications & Applications.
Prentice Hall (1995)

. Almeroth, K.C.: The Evolution of Multicast: From the MBone to Interdomain Multicast to

Internet2 Deployment. IEEE Network (2000)

. Furht, B., Smoliar, S.W., Zhang, H.: Video and Image Processing in Multimedia Systems.

Kluwer Academic Publishers (1995)

Granmo, O.C., Eliassen, F., Lysne, O.: Dynamic Object-oriented Bayesian Networks for
Flexible Resource-aware Content-based Indexing of Media Streams. In: Proceedings of
Scandinavian Conference on Image Analysis (SCIA2001), Bergen, Norway. (2001)
Granmo, O.C., Jensen, F.V.: Real-time Hypothesis Driven Feature Extraction on Parallel Pro-
cessing Architectures. In: Proceedings of The 2002 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’02), Las Vegas, USA, CSREA
Press (2002)

Granmo, O.C.: Automatic Resource-aware Construction of Media Indexing Applications for
Distributed Processing Environments. In: Proceedings of the 2nd International Workshop on
Pattern Recognition in Information Systems (PRIS2002), Alicante, Spain, ICEIS Press (2002)
124-139

McCanne, S., Jacobson, V.: Vic: A flexible Framework for Packet Video. In ACM Multime-
dia’95, pp. 511-522 (1995)

Sun Microsystems Inc.: Java Media Framework, API Guide, v2.0. http://java.sun.com/ (1999)
Ott, J., Kutscher, D., Perkins, C.: The Message Bus: A Platform for Component-based Con-
ferencing Applications. CSCW2000, workshop on Component-Based Groupware (2000)
McCanne, S., Vetterli, M., Jacobson, V.: Low-complexity video coding for receiver-driven
layered multicast. IEEE Journal of Selected Areas in Communications 15 (1997) 983-1001
Chambers, D., Lyons, G., Duggan, J.: Stream Enhancements for the CORBA Event Service.
In: Proceedings of the ACM Multimedia (SIGMM) Conference, Ottawa. (2001)

Qian, T., Campbell, R.: Extending OMG Event Service for Integrating Distributed Multimedia
Components. In: Proceedings of the Fourth International Conference on Intelligence in
Services and Networks, Como, Italy, Lecture Notes in Computer Science by Springer-Verlag
(1997)

Rafaelsen, H.O., Eliassen, F.: Trading Media Gateways with CORBA Trader, Proceedings of
Distributed Objects and Applications. In: Proceedings of the 3rd International Symposium
on Distributed Objects and Applications (DOA 2001), Rome, Italy. (2001) 115-124



Paper IV

Extending Content-based Publish/Subscribe Systems with
Multicast Support

Viktor S. Wold Eide, Frank Eliassen,
Olav Lysne, and Ole-Christoffer Granmo
Published: Technical Report 2003-03, Simula Research Laboratory, July 2003.
Author Contribution: The work presented in this technical report was primarily
conducted by Eide, i.e., the work related to the requirement analysis, specification,

design, implementation, validation, experimentation, and the paper writing. The con-
tributions of he coauthors are commenting on draft versions of the report.

111






Extending Content-based Publish/Subscribe Systems with
Multicast Support

Viktor S. Wold Eide'?, Frank Eliassen?, Olav Lysne?, and Ole-Christoffer Granmo!-3

niversity of Oslo 2Simula Research Laboratory  3Agder University College

P.O. Box 1080 Blindern P.O. Box 134 Grooseveien 36
N-0314 Oslo, Norway N-1325 Lysaker, Norway N-4876 Grimstad, Norway
viktore,olegr@Qifi.uio.no  viktore,frank,olavly@simula.no ole.granmo@hia.no

Simula Research Laboratory
Technical Report 2003-03

July 2003

Abstract

Event-based interaction is recognized as being well suited for loosely coupled distributed
applications. Current distributed content-based event notifications services are often archi-
tectured to operate over WANSs (wide area networks). Additionally, one to one transport layer
communication primitives are used. As a result, these services are not suitable for (parts of)
applications having a combination of high event notification rates and locally a large number
of interested parties for the same event notifications.

In this paper we describe the architecture of a distributed content-based event notification
service, designed to take advantage of the available performance and native multicast support
provided by current “off the shelf” network equipment. Our event notification service is
designed primarily as a LAN (local area network) service and hence complementary to event
notification services for WANs. A prototype has been implemented and experiments indicate
that our service provides both scalability and high performance. A client may publish several
thousand event notifications, carrying several MBytes of data, per second. The service is
unaffected by the number of interested parties, due to the use of native multicast.






1 Introduction

Traditionally, the client/server interaction model has been used extensively for building distributed
applications. However, a large class of distributed applications are better structured as a number
of asynchronously processing and communicating entities. Such applications fit well to the pub-
lish/subscribe interaction paradigm, leading to an event-based interaction model. Event-based
interaction provides a number of distinguishing characteristics, such as asynchronous many to
many communication, lack of explicit addressing, indirect communication, and loose coupling.

Event-based systems rely on some kind of event notification service, as illustrated in Figure 1.
A distributed event notification service is realized by a number of cooperating servers, also de-
noted brokers in the literature. Clients connect to these servers and are either objects of interest,
interested parties, or both. An object of interest publishes event notifications, or just notifications
for short. Some systems may allow/require the object of interest to advertise the notifications
potentially generated before publishing. Interested parties subscribe in order to express interest in
particular notifications. The responsibility of the event notification service is routing and forward-
ing of notifications from objects of interest to interested parties. In essence, the servers jointly
form an overlay network of notification routers. A survey of the publish/subscribe communication
paradigm and the relations to other interaction paradigms are described in e.g. [6].

Publish/subscribe systems differ with respect to the expressiveness of their subscription lan-
guages. In channel-based systems, e.g. as specified by the CORBA Event Service [8], an interested
party may subscribe to a channel and in effect receive all notifications sent across that particular
channel. Subject-based systems, such as e.g. TIBCO Rendezvous[14], provide somewhat finer
granularity with respect to selection of notifications. An object of interest determines the most
appropriate subject for each notification published. The content of a notification is not used by
the service for forwarding. Subject-based systems may also support hierarchical subject names
and/or wild-card expressions on subject identifiers to further improve the expressiveness of sub-
scriptions. Content-based publish-subscribe systems, such as Elvin[12], Gryphon[9], Hermes[11],
and SIENA[2] provide even finer granularity. In such systems notifications typically consist of a
number of attribute/value pairs. A subscription may include an arbitrary number of attribute
names and filtering criteria on their values. Hence, content-based systems increase subscription
selectivity by allowing subscriptions along multiple dimensions.

Distributed content-based publish/subscribe systems, such as Gryphon, Hermes, and SIENA,
are often architectured to operate over WANS, e.g. public networks or the Internet. A main
concern is how to efficiently distribute event notifications between servers. E.g. in [9], the servers
are treated as the communication endpoints.

In contrast, in this report we are mainly concerned about how to efficiently distribute very high
rate event notifications between a large number of objects of interest and interested parties within
a smaller region, e.g. a LAN or an administrative domain. A scalable and high performance event
notification service allows development of new classes of applications which utilize event-based
interaction, e.g. high performance parallel computing within clusters of powerful computers and
real-time video streaming to clients hosted by heterogeneous computers and network connections.
The application domain of real-time content analysis[4] covers both these areas. A service capable
of handling the data rates of several concurrent high quality real-time video streams is definitely
useful for other application domains as well. Highly important is how to transport the notifications
all the way from the objects of interest and to the clients, i.e. not only between the servers.

With respect to the communication path between an object of interest and a server, it is
important to ensure that only the relevant notifications are generated and sent, i.e. to support
filtering at the source. Elvin relies on a quenching mechanism[12] where (parts of) the subscription
database is sent to objects of interest. This strategy is described as relatively complex and is
optional in order to support thin clients. With respect to the communication path between a
server and the interested parties, efficient multicast is crucial in order to distribute each notification
to a large number of interested parties. A notification sent by native multicast requires only a
single send operation and propagates over each network link only once, regardless of the number of
computers hosting interested parties and the number of interested parties hosted by each computer.



) Object of interest
(® Interested party

e T
Event Notification Server
Service

1 Advertise
—

>
3 Publish 2 Subscribe
-

——
4 Notify

Figure 1: A Distributed Event Notification Service

Utilizing native multicast communication in channel-based and subject-based publish/sub-
scribe systems is relatively straightforward. In such systems, a notification is basically mapped
onto a channel or a subject which is then mapped onto a multicast address.

The principles and techniques used for routing and forwarding notifications between servers
in distributed content-based publish/subscribe systems are similar to those used by IP routers
in order to support IP multicast. In e.g.[1], an efficient multicast protocol for content-based
publish/subscribe systems is described. The challenge of utilizing native multicast support for
content-based publish/subscribe systems is well known[6]. Simulation results for some algorithms
for distributing notifications in a network of brokers is presented in [9]. But to our knowledge,
native multicast support has not been implemented in current content-based publish/subscribe
systems. Hence, it may be desirable to enhance existing content-based publish/subscribe systems
to take advantage of network level multicast communication. A major challenge is how to achieve
this while affecting neither the API nor the semantics of the event notification service.

Some event notification services adopt a hierarchical approach where the intra domain and the
inter domain cases are handled differently, e.g. [14], using specialized routing daemons between
domains. A hierarchical approach is particularly useful when notifications have high regionalism,
i.e. when notifications have high interest in certain parts of the network and little or no interest in
other parts. Non-uniform distribution of subscriptions is likely due to e.g. distributed applications
built with locality in mind for performance and cost reasons, location based services, security, what
people are interested in, etc.

In this paper we describe the architecture, the implementation, and the measured performance
for our distributed content-based event notification service. The service takes advantage of the
native multicast support provided by current network equipment, such as switches and network
interface cards. By limiting ourselves to the LAN /administrative domain case, we are able to make
certain assumptions not acceptable in the WAN case. We envisage that instances of our event
notification service software are executed inside LANs, but connect to a WAN event notification
service, by e.g. gateways/routing daemons. We therefore view our work as complementary to
WAN event notification services.

In our current implementation so-called mapping specifications are generated manually, but
may be changed during runtime. The principle used to determine such specifications is to map
notifications generated at a high rate onto separate multicast channels, i.e. to isolate such high rate
traffic. Our approach is useful for a large class of applications and also a natural first step towards a
more dynamic solution, where mappings are generated and updated automatically during runtime.

The rest of the report is structured as follows. First we provide some background information
in Section 2. Then we present the requirements for our event notification service in Section 3.
Based on these requirements, we describe the architecture of our service in Section 4. In Section 5
we describe our prototype. In Section 6 we describe some experiments and present some empirical
results. In Section 7 we discuss some ideas for further work. Lastly, in Section 8 we conclude.



Method

publish(noti fication n)

subscribe(string identity, pattern expression)
unsubscribe(string identity, pattern expression)
advertise(string identity, filter expression)
unadvertise(string identity, filter expression)

Table 1: Interface of SIENA

2 Background

In this section we provide some more background information for content-based publish subscribe
systems. Our description is biased towards SIENA[2], on which we have based our prototype
implementation.

2.1 Event Notification Service API

An event notification service typically provides a method used by objects of interest to publish
notifications and a method used by interested parties to register interest in notifications. Ad-
ditionally, the event notification service may provide a method used by an object of interest to
inform the event notification service about the kind of notifications potentially generated. Meth-
ods for unregistering are typically also available. As an example, Table 1 illustrates the interface
of STENA. Objects of interest and interested parties must identify themselves to the event noti-
fication service, which maintains references to the clients. A pattern is basically a sequence of
filters[2], but in the rest of the paper we assume that filters are used for subscriptions.

2.2 Event Notifications

In STENA, an event notification is basically a set of type, name, value tuples. The most common
types are supported, e.g. string, integer, float, etc.

An example of a notification is given in Table 2. This particular notification contains a small
region of a video frame - the luminance part, encoded in 8 bits of resolution. The video frame
region is a rectangular block, 16216 pixels. The encoding is represented as a string, for illustration
purposes. This block is intra coded, i.e. independent from blocks in earlier and later frames.
The pizels attribute contains the pixel values for this 16x16 block, illustrated as characters.
This particular block has a (horizontal,vertical) placement within the frame of (1,5). Video
client software may translate spatial and temporal requirements into subscriptions, based on the
particular encoding scheme used.

In this report we have used real-time video streaming as an example of an application domain
requiring a high performance event notification service. The challenge of supporting heterogeneous
receivers in video streaming applications is well known. As an example, a combination of a layered
video compression algorithm and receiver driven multicast is described in [7], providing scalable
multicast video transmission. Each layer encodes a portion of the video signal and is sent to a
designated IP multicast address.

In an event-based approach, each video frame may be published as a number of notifications.
E.g. in [3], an extension for the CORBA Event Service is described which supports stream events
and multicast delivery. Content-based publish/subscribe systems have the potential of supporting
even more fine grained selection, compared to direct use of multicast or a channel-based approach.
Interested parties may subscribe to only a certain part of a video stream as explained above and
thereby reduce resolution both spatially and temporally. Additionally, a content-based approach
may better support parallel processing, as pointed out in [4].



Type Name Value

string  media_type video

string  media_source  fnasa.simula.no

string  encoding Jraw/luminance/8/16x16
string  block_type intra_coded

integer  block_h 1

integer  block_v 5

byte[ | pizels q34i23QR ... D

Table 2: Event Notification Example

2.3 Filters

A filter is a sequence of attributes and constraints on the attributes. The constraints are specified
in a constraint language, which also defines some supported operators. The expressiveness of such
languages may differ, but an important design issue is the balance between the expressiveness of
the language and the associated computational complexity[2]. A filter may be used in different
contexts - for subscriptions or advertisements.

An example of a filter for subscriptions is given in Table 3. This filter may be used to express
interest in notifications from a particular source, which contain video data, with a particular
encoding, with a particular block type, but only the 10 leftmost (block) columns.

An example of a filter for advertisements is given in Table 4. This filter may be used to
advertise notifications which will contain parts of a particular encoded video stream, but only the
intra encoded blocks and only the two leftmost columns, where block_h is 0 or 1.

2.4 Filtering

In very simple publish/subscribe systems, each server may broadcast notifications to all other
servers. All servers connect to a well known multicast address and notifications are sent to the
multicast address and are then forwarded by the multicast service. Each server then filters notifi-
cations on behalf of their interested parties. The result of this late filtering is reduced scalability,
as both network bandwidth and processing resources are wasted. This is the approach used in
Mbus[10]. Mbus is designed to support coordination and control between different application
entities hosted by different computers on a LAN. In [5] we have evaluated the suitability of Mbus
as a LAN event notification service.

For most applications the number of notifications is likely to be significantly larger than the
number of subscriptions. Hence a better approach is to broadcast subscriptions, which are then
used to prune the delivery of notifications. The gain of this strategy clearly depends on the ratio
of notifications to subscriptions.

Similarly, in publish/subscribe systems which support advertisements, the advertisements may
be broadcast and used to prune the delivery of subscriptions, which are then used to reduce the
flow of notifications.

It should be noted that in the last two approaches, subscriptions/advertisements are not for-
warded unless they are more general than the current forwarded ones.

In Hermes[11], a different approach is used. So-called rendezvous nodes ensure that sub-
scriptions and advertisements meet somewhere between objects of interest and interested parties,
without any global broadcasts.

2.5 The Covering Relation

The covering relation is described in [2] and is important in order to understand the rest of the
report. The relation x <{§ y is read as x matches y or alternatively y covers . X and Y indicate
the type of # and y respectively and may be of type N (Notification), S (Subscription filter), or



Type Name Value/Expression

string  media_type video

string  media_source  fnasa.simula.no

string  encoding Jraw/luminance/8/16x16
string  block_type intra_coded

integer  block_h >=0

integer  block_h <10

Table 3: Subscription Filter Example

Type Name Value/Expression

string  media_type video

string  media_source  fnasa.simula.no

string  encoding Jraw/luminance/8/16x16
string  block type intra_coded

integer  block_h >=0AND <2

integer  block_v ANY

byte[ | pizels ANY

Table 4: Advertisement Filter Example

A (Advertisement filter). In the following, the symbol « represents an attribute in a notification
and the symbol ¢ represents an attribute constraint in a subscription or advertisement filter. The
most important relations are:

a < ¢ & type, = typey N name, = namegy A operatory(valuey,valuey) : The attribute o
matches the attribute constraint ¢ if and only if the types and names are identical and the
operator returns true

n<Ys&Voes:Jaen:a< ¢ : The notification n matches the subscription filter s if and
only if each and every attribute constraint in s is matched by an attribute in n. Multiple
constraints for the same attribute is interpreted as a conjunction

n <% a<Vaen:dp €a: a< ¢: The notification n matches the advertisement filter o if and
only if each attribute in n is matched by an attribute constraint in a. Multiple constraints
for the same attribute is interpreted as a disjunction

s <5 a< 3InYN :n <aAn < s: The subscription filter s matches the advertisement filter a
if and only if there exists a notification n which matches both s and a. In other words, if
the set of notifications defined by s and the set of notifications defined by a have nonempty
intersection

2.6 The Mapping Problem

In general, each notification is of interest to a subset of all interested parties. Theoretically and
ideally, a multicast address may be used for each possible combination of computers hosting the
interested parties. In practice this is not possible, as the required number of multicast addresses
grows exponentially and quickly beyond practical limits.

In [9], some algorithms are presented, targeting this mapping problem. In the article, brokers,
and not the computers hosting clients, are treated as the communication endpoints. In addition
to the theoretically ideal algorithm, five algorithms are presented. The principles used in order
to reduce the required number of multicast groups are to reduce group precision (brokers receive
and filter out notifications which are of no interest to its clients), send multiple multicast, and



send over multiple hops. In all algorithms, except a so-called group approximation algorithm, the
mapping is static. Simulation results on a wide area network are presented. The authors find that
a flooding approach is viable over a range of conditions, but in case of high selectivity and high
regionalism of subscriptions the non flooding approaches are significantly better.

3 Service Requirements

In this section we describe the requirements for our scalable and high performance LAN event
notification service.

3.1 Exploit Locality

The programming of applications utilizing event-based interaction should to a reasonable extent
be handled independently from the deployment, i.e. where clients are instantiated and where they
are executed. A different API should not be necessary, e.g. when an object of interest and an
interested party for performance reasons are deployed on the same computer. Therefore, our event
notification service must efficiently support:

e intra LAN communication: between objects of interest and interested parties hosted by
different computers connected via a LAN

e intra host communication: between objects of interest and interested parties hosted by
different processes on the same computer

e intra process communication: between objects of interest and interested parties hosted by a
single process

The first case is important for distributed applications executing on a LAN. Although LANs
offer vast amounts of bandwidth and short delay, this is not automatically the case for an event
notification service deployed on top of it. Care must be taken in order to provide performance
close to the bare hardware capabilities. A high performance service may allow applications within
the domain of high performance parallel computing to utilize event-based interaction for efficient
communication, e.g. between powerful computers within a cluster or on a LAN.

By supporting the second case, it becomes easier to take advantage of the processing capa-
bilities of multiprocessor computers. Additionally, different processes and hence address spaces
provide protection, both for a single user and between different users. It also allows application
development by using a single computer.

Considering the third case, if notifications published by an object of interest are not of interest
to any clients outside the process itself, then no such notifications should ever leave the process.
Having both objects of interest and interested parties inside the same process is useful in order
to exploit locality, e.g. to avoid copying large amounts of data between different address spaces.
The exchange of notifications in this case must happen directly, i.e. without relying on some other
process hosted by the same or another computer.

3.2 Utilize Multicast

The event notification service must also be able to take advantage of native multicast support in
order to reduce the demand for both processing and network resources.

By utilizing multicast, only a single send operation is required by a server in order to publish
a notification. In effect, the processing requirements are independent of the number of other
computers hosting interested parties and the number of interested parties hosted by each computer.

With respect to network resources, the benefit of using multicast depends on both the appli-
cations and the underlying LAN technology. For LAN technologies which are broadcast by nature
(e.g. wireless) or by design (e.g. traditional Ethernet), the cost of sending a single packet is basi-
cally the same for multicast and unicast. If the event notification service uses one to one transport



layer communication, each notification in effect is broadcasted several times, i.e. all computers
on the LAN receive the same notification several times, dramatically reducing the performance.
For switched wired LANSs, supporting multicast natively, the situation is somewhat similar. If the
event notification service is incapable of utilizing native multicast and there are several computers
hosting interested parties, each notification will propagate over some links several times.

It is important to consider the mapping of network layer multicast onto link layer multicast,
because this mapping is not always one to one. As an example, several IP multicast addresses
could map to the same Ethernet multicast address.

An event notification service utilizing IP multicast inherits its dynamic properties. An IP
multicast address is dynamically associated to a group of computers, by means of protocols such
as IGMP (Internet Group Management Protocol). As an example, consider the case where a server
is hosted by a computer for which the IP address is changed. As long as the computer continues to
register interest in the multicast addresses, other servers hosted by other computers do not need
to be aware of this change. As a result, IP multicast may also simplify runtime reconfiguration.

3.3 Support Runtime Reconfiguration

We expect that a large class of applications built on top of an event notification service may
have rather dynamic characteristics, but along different dimensions. When considering an event
notification service architecture, it is important to distinguish between changes in: the number
of objects of interest, the number of interested parties, the location of clients, the notification
types used by objects of interest, the notification publishing rates, and the subscriptions made by
interested parties. Therefore, in order to adapt to the communication pattern of the applications,
it should be possible to change the way notifications are mapped onto multicast addresses during
runtime, without affecting the semantics of the service. Such reconfigurations should happen
quickly and the performance should remain close to normal during such periods.

3.4 Provide Robustness

A distributed event notification service should provide robustness and tolerate certain failures. As
an example, process, operating system, host, and link failures must not render the whole service
useless. A link failure may partition the LAN into groups of computers which are not able to
communicate with each other. However, the event notification service should still continue to
operate inside such partitions. The value of the service should degrade gracefully.

4 Architecture

Based on these requirements, we now describe the architecture of our event notification service.
First we discuss some assumptions which are typically acceptable for LANs, but not always for
WANS.

4.1 Assumptions

For LANS it is reasonable to assume a single administrative domain. It is also reasonable to
assume that IP multicast is (made) available within a domain and that the network equipment
supports multicast natively. The mapping between notifications and IP multicast addresses may
be done locally, within the domain, and administratively scoped IP multicast addresses may be
used (RFC2365). In other words, the mapping is invisible outside the administrative domain.

The number of computers inside a LAN is also relatively limited, which is important when
considering both architecture and algorithms. Additionally, stationary computers within a LAN
often have relatively large amounts of computational capacity.

For wired equipment inside a LAN it is reasonable to assume low latency, typically sub mil-
lisecond, and lots of bandwidth, typically 100Mbps - 1 Gbps switches and network interface cards.
Additionally, both jitter and the risk of packet loss are likely to be low.



4.2 Exploit Locality

A single server may be sufficient within a LAN as long as the number of objects of interest, the
number of interested parties, and the publication rates are low. In this case, it may even be
considered reasonable that notifications for which there are no interested parties are filtered at
the server side. However, as the publishing rate increases and the number of objects of interest
increases a quenching mechanism becomes important.

Similarly, as the number of clients which have interest in the same notifications increases, a
server which handle each client separately by utilizing unicast will run out of steam.

By replacing the single server with a number of servers the processing is distributed between
the servers, but the total network bandwidth consumption will most likely increase.

A native multicast approach is required in order to reduce this bandwidth consumption problem
and to distribute notifications to a potentially very large number of interested parties. But in order
to utilize native multicast, the computers hosting clients also must execute some software in order
to determine which multicast addresses to subscribe to.

This reasoning indicates that each computer which hosts clients also should execute some
software in order to handle quenching and subscriptions to IP multicast addresses. Therefore, in
our architecture each computer hosting clients execute part of the event notification service, i.e.
the software responsible for the intra process, the intra host, and the intra LAN event notification
service. As a result, the event notification service software is executed cooperatively by computers
within a LAN, which are often fairly powerful. However, some computers may act as dedicated
servers, i.e. hosting no clients, or thin clients, i.e. interacting with the service through a server on
another computer, but in this report we will not discuss these cases any further.

The software for the intra process case provides clients with the event notification service API.
The intra host software is responsible for aggregating subscriptions for all the clients on the host
as well as for executing the LAN event notification service protocol. In which context the software
is actually executed on a particular computer is an implementation and deployment issue which
may be realized in different ways, e.g. within a client process, within a separate process, within
the operating system, or combinations of these. As an example, the intra process software may
be implemented as a library, while a possible implementation of the intra host software may be a
daemon process which is started whenever the first client is instantiated on a particular computer.
In this case, the daemons hosted by different computers within the LAN exchange information
and cooperatively realize the distributed event notification service.

In the following we will continue to use the term “server” and generally assume that all com-
puters which host clients also host servers.

In our current approach, each server informs the other servers about the most general sub-
scriptions made by their locally interested parties, i.e. subscriptions are used in order to prune
the delivery of notifications.

4.3 Utilize Multicast

In order to take advantage of multicast, the challenge of mapping event-based communication
onto multicast communication must be addressed. In the following we discuss our approach and
issues related to this mapping problem. Note that we plan to extend our event notification service
in order to take advantage of different transport protocols concurrently, but in this paper the
emphasis is on utilizing native multicast support.

Additionally, note that the service described in this paper does not give any guarantees with
respect to race conditions. As an example, interested parties may receive notifications even after
the unsubscribe() method has been called. Clients are required to handle such cases. This is
similar to the best-effort service as provided by SIENA[2].



Advert. Filter

—  Communication Identifier
A —  udpipm : //239.0.10.1 : 6666
A —  udp_ipm : //239.0.10.2 : 6666
4 —  udpipm : //239.0.10.3 : 6666
A —  udp_ipm : //239.0.10.4 : 6666

Table 5: Mapping Specification Example

4.3.1 Mapping Specification

Table 5 gives an example of a mapping specification, where each row specifies an advertisement
filter and a communication identifier. The communication identifier consists of a protocol name
and a protocol specific part. The protocol used for all entries in this table is udp_ipm, our protocol
for encapsulating notifications in UDP packets and transmission by IP multicast. The protocol
specific part specifies different IP multicast addresses and a port number.

For now we assume that each server has a private copy of the mapping specification table. The
table is required in order to handle subscriptions and publications.

First we describe how a subscription made by an interested party may make a server register
interest in IP multicast addresses. Then we describe how a server maps notifications onto IP
multicast addresses, which are then forwarded to the appropriate servers by the multicast service.

4.3.2 Subscriptions

When an interested party subscribes with the filter s% as parameter, its server (executing on the
same computer) checks if s° is covered by subscriptions already made by any of its clients. If s
is covered by current subscriptions, the server just register this interested party.

Otherwise the server must also make sure all the other servers become aware of this new sub-
scription (e.g. by sending s° on a well known multicast address, which all servers have registered
interest in). Additionally, the server consults the mapping specification in order to determine
which communication channels may potentially carry notifications covered by s°. The table is
checked sequentially. If f ]A covers any notifications which are also covered by s, i.e. s <5 fj, the
server must make sure it will receive these notifications. As an example, if s° is the subscription
filter in Table 3 and f3' is the advertisement filter given in Table 4, then the server must register
interest in the multicast address specified by udp_ipm : //239.0.10.2 : 6666, since s <f‘ f2. Observe
that a subscription filter may cover (partially) several advertisement filters. In order to maintain
the semantics of the service, the server therefore may have to register interest in several multicast
addresses.

4.3.3 Publications

When an object of interest publishes a notification n'V, its server (executing on the same computer)
checks if any subscriptions made by other servers cover n”™. If this is the case, the mapping
specification is consulted in order to determine the associated communication identifier. The
advertisement filters are checked sequentially. If n® is covered by fJA, then the server sends n'¥ to
the associated multicast address. The server also checks if there are any locally interested parties.
If this is the case, these are also notified.

As an example, assume that n? is the notification given in Table 2, s° is the subscription filter
given in Table 3, and f4' is the advertisement filter given in Table 4. If f{* does not cover n’¥ and f3*
covers nV and there is another server which has made the subscription s¥ on behalf of its client(s),
then n'V is sent to the multicast address specified for fi!, i.e. udp_ipm : //239.0.10.2 : 6666.

Note that in our current architecture a notification is sent only once, on the multicast address

associated with the first advertisement filter which covers the event notification.



4.3.4 Mapping Mismatch and Filtering

A notification is only forwarded by a server if it is covered by one or more subscriptions. If there
is only a single interested party, only notifications covered by its subscriptions are forwarded.
Filtering is performed early, by the server executing on behalf of an object of interest.

Depending on both the current mapping specification and the current subscriptions, some
filtering may happen on the interested party side. If an interested party has specified a restrictive
subscription filter and another interested party has specified a more general subscription filter and
all notifications are mapped to the same multicast address, then the server executing on behalf of
the first interested party must discard some notifications arriving on the multicast address.

The penalty for mapping mismatches is paid in terms of wasted network bandwidth and com-
putational resources, raising the question of how to determine mapping specifications.

4.3.5 A Simple Mapping Heuristic

The following simple heuristic is currently used to generate mappings: Notifications generated at
a high rate, of large size, and not of interest to all interested parties are mapped onto separate
multicast addresses.

E.g., assume that a single mapping entry is used initially, which maps all possible notifications
to a single multicast address. The effect of this mapping specification is late filtering, i.e. by servers
hosting interested parties. As long as the rate of notifications is low or all interested parties have
similar interests, this is most likely acceptable for a LAN service. For broadcast based LANs
this is the effect anyway from a network point of view, although not from a processing or power
consumption point of view.

However, a problem arises if one or more objects of interest start generating notifications at a
very high rate (e.g. for publishing real-time video) and only some of the interested parties have
subscribed to these notifications. Many servers would then have to discard these high rate event
notifications, wasting network and processing resources.

Our approach allows a new entry to be installed into the mapping specification table, which
maps all notifications part of a high rate notification “stream” to a different multicast address.
When the mapping specification is updated, each server must check subscriptions made by its
interested parties against the new mapping specification and register interest in the appropriate
multicast addresses. Following the example above, the servers executing on behalf of clients
interested in the high rate notifications (e.g. the video stream) would find their subscriptions to
match the new advertisement filter and register interest in the newly announced multicast address.
Similarly, the server executing on behalf of the publisher (e.g. the video server), would map and
then send these high rate event notifications to this multicast address. As a result, the event
notifications generated at a high rate are only forwarded to computers hosting interested parties
which have actually subscribed to (some of) these notifications.

4.4 Runtime Reconfiguration

In the following we argue that some of the runtime changes discussed in Section 3.3 are handled
by the IP multicast service while others should be handled by updating the mapping specification.

Due to the distributed architecture, changes in the number of objects of interest and the
number of interested parties will have little effect on the service. The consumption of processing
and network resources is distributed between the computers hosting clients. Additionally, by
utilizing IP multicast, changes in the number of interested parties will have little impact on the
service. A notification is sent at most once by a server anyway.

The dynamic properties of IP multicast also simplifies changes in client location. An object
of interest which changes location may continue to publish notifications through a server. The
computer hosting the server may send to IP multicast groups without joining them. An interested
party which changes location will continue to receive notifications since its server registers interest
in the appropriate IP multicast addresses and the computer joins IP multicast groups accordingly.
Consequently, the number of clients and their location may change radically during runtime.

10



The notification types used by objects of interest are not likely to change very often. But by
updating the mapping specification during runtime and hence reconfiguring the service, new types
of notifications may get introduced and efficiently handled.

With respect to changes in notification publishing rates, some objects of interest may generate
notifications with a relatively fixed rate while others may generate notifications sporadic. If it is
possible to determine the parts of the “event notification space” potentially generated at a high
rate, either a priori or during runtime, a mapping specification which partitions the “event notifi-
cation space” accordingly may be used to reconfigure the service. For all notifications generated
at a low rate, a single or only a few multicast addresses are sufficient since the client side filtering
in this case is acceptable.

Clients which frequently subscribe and unsubscribe to the same notifications are handled sim-
ilarly to changes in the number of interested parties. For interested parties which frequently
change their subscriptions in order to receive a different part of the “event notification space”,
such changes are most likely limited to within part of the “event notification space”. E.g., client
software written in order to receive notifications carrying stock ticker information will not register
interest in notifications carrying video data. By updating the mapping specifications, different
parts of the “event notification space” may be further partitioned or merged in order to better
match the subscriptions made by clients.

In effect, the mapping specification introduces a level of indirection between event-based com-
munication and the underlying multicast communication and allows runtime reconfiguration. The
IP multicast service is also capable of handling some of the runtime changes. Our approach, of
manually specifying a mapping, is valuable when the mapping specification needs relatively few
updates in order to maintain efficiency.

The problem of distributing a new mapping specification to all servers is not addressed in this
paper. But in order to maintain the semantics of the service, it is important that either all servers
change the mapping specification or none. This is a well known problem in the distributed systems
field for which many techniques exist.

4.5 Robustness

The robustness of our architecture is due to the fact that there are no central computers (ignoring
configurations with dedicated servers and thin clients). Each computer hosting one or more clients,
also executes part of the event notification service. We use a soft state approach, relying on refresh
and timeout mechanisms, in order to handle crashed processes, crashed computers, link failures,
etc. Each server (hosted by some computer) periodically informs the other servers (hosted by
other computers) about the notifications of interest to any of its clients, e.g. by sending the
aggregated subscriptions on a well known multicast address. Each server expires subscriptions
which have not been refreshed for some time. The reason for subscriptions not being refreshed, is
of no concern. As an example, if a server does not receive any subscriptions for some time due to
e.g. a link failure, then no notifications generated by its client(s) are sent. Whenever the failed
link comes up and the server starts receiving relevant subscriptions, the server will again start
sending notifications.

5 Prototype

Our prototype is based on the event notification service software developed in the SIENA[2]
project. More specifically we have extended the software provided in the siena-java-1.4.2.tar.gz
package. This software is written in Java and so are our extensions.

In our current prototype, the server software is linked into the client code and executes within
the same address space, as illustrated in Figure 2. A server executes the intra process, the intra
host, and the intra LAN event notification service software on behalf of clients hosted by the same
process. It should be noted that we consider restructuring this software in order to have a single

11



Computer boundary
Process boundary

Clients:
— Object of interest
. Interested party
(P]s] (P]s]; SIENA AT
ENS ENS ENS ENS Server
- Operating System
(o0s J(os ] Cos ] perating Sy

~

=

Figure 2: The LAN Event Notification Service

instance responsible for aggregation on a host basis and another part which is executed within
each process.

Each server maintains references to its interested parties and their subscriptions. The server
also maintains state to keep track of subscriptions made by other servers (on behalf of their clients)
in order to determine if a notification is of interest to any other server, hosted by another process
on the same computer or another computer on the LAN.

5.1 Intra Process Communication

For intra process communication, a server relies on method calls. Interested parties must imple-
ment an interface which define a so-called notify method. When a server receives a notification,
the server notifies all its clients, for which the subscriptions cover the notification.

5.2 Intra host and Intra LAN Communication

Currently, IP multicast is used to forward notifications from one server to other servers, both
within a single computer and between different computers on a LAN.

IP multicast provides some mechanisms which determine if an IP multicast packet is delivered
to other processes on the same computer and if the packet is sent out on the LAN. An IP multicast
packet is sent out on the LAN if the value of the time to live field is 1 or larger. If a so-called
loopback socket option is set, then a packet is delivered to the other processes on the same computer
which have registered interest in this particular IP multicast address. These two mechanisms may
be used to forward notifications to other servers hosted by this computer, other servers hosted by
other computers on the LAN, or both.

If two servers hosted by the same computer register interest in the same multicast address,
then only a single instance of each packet is received by this computer. Aggregation is handled
by the multicast software in the operating system, i.e. packets containing event notifications are
copied to the different servers by the operating system.

5.3 Subscription Forwarding

Each server aggregates subscriptions on behalf of their interested parties and periodically forwards
these subscriptions to all other servers by IP multicast. A separate IP multicast address is used, in
order to reduce the risk of operating system buffers being overwritten. Currently, each server for-
wards its subscriptions independently of the subscriptions made by other servers, i.e. subscriptions
are not aggregated, neither on a host basis nor on a LAN basis.

12



5.4 Packet Senders and Packet Receivers

Servers rely on so-called packet senders and packet receivers in order to send and receive notifica-
tions respectively. An instance of a packet receiver is handled by a separate thread. The thread
is waiting for packets on a particular multicast address. A packet sender on the other hand does
not have any associated thread, but is executed by the calling thread. Packet senders and packet
receivers are handled by a soft state approach, i.e. they are instantiated on demand and timed
out whenever not used for some time.

5.5 Outline of Server Algorithm

Each server performs the following actions:

e Periodically: (1) Forwards aggregated subscriptions to the other servers, (2) time out sub-
scriptions which have not been refreshed, and (3) time out unused packet senders and packet
receivers

e When one of its interested parties subscribes: Unless the subscription is covered by earlier
subscriptions made by its interested parties, immediately forwards the subscription to the
other servers

e When a subscription is received from another server: Stores/resets timeout value for the
received subscription

e When a notification is received from one of its objects of interest: (1) Unless the notification
is not of interest to any other server, forwards the notification to the multicast address
associated with a covering advertisement filter and (2) notifies by method call each of its
interested parties which have subscriptions covering the notification

e When a notification is received from one of the other servers: Notifies its interested parties
which have subscriptions covering the notification, by method calls

e On demand: (1) Instantiates packet senders/receivers or (2) updates mapping specification

6 Empirical Results

In the following we describe the experiments conducted in order to measure the performance and
the scalability of our service.

6.1 Environment

For the experiments, standard dual 2GHz AMD Athlon PCs running the Linux 2.4.19 operat-
ing system have been used. The PCs were connected by 100Mbps (Mbits per second) switched
Ethernet, provided by a Cisco Catalyst 2950XL switch. The switch was configured with IGMP
snooping enabled, a technique where the switch maps network layer multicast to link layer multi-
cast by looking for e.g. IGMP host join messages encapsulated within the IP part of packets. The
computers were equipped with Intel Ethernet Pro 100 and 3Com 3¢905C network interface cards.
The software was compiled and executed by a standard Java edition from SUN, version 1.4.1-b21.

6.2 Experiments

For the experiments some client software was written - the object of interest and the interested
party code. Each notification had the following attributes: source, type, sequence number, and
array. The mapping specification had four advertisement filters, where the source and the type
attributes and their values were used to map notifications to potentially four different IP multi-
cast addresses. Interested parties used the sequence number value for measuring the number of

13



Objects of interest Event Notification Interested Parties
ervice
Experiment

O O

Figure 3: The Different Experiment Configurations

notifications received per second. The length of the array was used to adjust the size of the noti-
fications. A maximum size of 1450 bytes/notification was chosen in order to avoid fragmentation
in the protocol stack. The publishing rate for the object of interest was configurable.

The different experiment configurations are illustrated in Figure 3. Each experiment was
expected to give information about a certain aspect - (1) the throughput, when notifications are
forwarded from an object of interest to a single interested party, (2) the scalability, when several
interested parties register interest in the same notifications, (3) the ability to support interested
parties with different needs, and (4) the ability to map parts of the “event notification space” to
different multicast addresses in order to provide isolation between different (parts of) applications.

Note that the mapping specifications and the subscription filters used in the following exper-
iments have been configured manually to test the performance potential of our service. Clearly,
poorly chosen mapping specifications may have reduced the performance.

6.2.1 Experiment 1: One to One Throughput

In the first experiment, a single interested party subscribed to the notifications generated by a
single object of interest. The purpose of this experiment was to measure the maximum number of
notifications per second transfered between an object of interest and an interested party, for the
the intra LAN, the intra host, and the intra process cases. Each client was hosted by a process
which also hosted an instance of the server. In the intra process case, a single server was shared
between the object of interest and the interested party.

In order to avoid buffer overruns and loss of notifications for the intra LAN and intra host
cases, the size of the socket buffers in the operating systems were increased to 2 MBytes. Without
this increase lots of notifications were lost, especially for large sized notifications.

The object of interest (and its server) was capable of publishing roughly twice as many noti-
fications per second as the interested party (and its server) was able to receive. Therefore, the
publication rate was reduced for the intra host and the intra LAN cases, in order to match the
maximum receive rate of the interested party.

The measured throughput, in notifications per second, is given in Table 6. The intra process
case provides best performance, although only a single CPU is utilized. The thread which invokes
the publish method executes both the server code and the notify method of the interested party.
For the intra host and the intra LAN experiments, two CPUs were utilized concurrently, either on
the same computer or on different computers.

For the intra LAN and the intra host cases a maximum of approximately 6.5 MBps (MBytes per
second), roughly 52Mbps, was measured. These tests were CPU bound, limited by the maximum
receive rate of the interested party. Note that more than half the network link capacity was
utilized. For comparison, a television quality MPEG-2 encoded video, Main profile in the Main
Level, 720 pixels/line * 576 lines, requires maximum 15Mbps[13].

14



Locality Notification size in bytes
100 500 1000 1450
Notifications received per second
Intra LAN 9000 7000 5500 4500
Intra Host 9000 7000 5500 4500
Intra Process | 115000 100000 85000 75000

Table 6: The Maximum Number of Notifications Received per Second

6.2.2 Experiment 2: One to Many Scalability

The purpose of the second experiment was to measure the scalability of the service. Four interested
parties, each hosted by a separate computer, subscribed to and received the same notifications.

For this experiment, the measured numbers of notifications received per second by each inter-
ested party, were the same as in the intra LAN case in the first experiment. Hence, the three
additional subscribers did not affect the server executing on behalf of the object of interest, neither
with respect to processing nor with respect to network bandwidth consumption. The switch was
able to handle the copying of packets to the appropriate ports.

It should be noted that if the event notification service had not been able to utilize multicast,
the computer hosting the object of interest would have become 10 bounded, i.e. the maximum rate
of the network link would have been exceeded. In the 1450 bytes/notification case, a unicast-based
service would have hit an IO bottleneck even for only two interested parties. The aggregated data
rate for the four interested parties in the 1450 bytes/notification case was 26.1 MBps (4 * 4500
notific. /sec. * 1450 bytes/notific.).

6.2.3 Experiment 3: One to Many Heterogeneity

The purpose of the third configuration illustrated in Figure 3 was to verify that our event noti-
fication service is able to support interested parties hosted by heterogeneous computers and/or
network connections. Each client was hosted by a separate computer. One of the interested parties
subscribed to and received only some of the event notifications, i.e. only notifications with a par-
ticular value for the type attribute. The mapping specification used, mapped these notifications
to a separate IP multicast address.

The measurements confirmed that consumption of both network bandwidth and processing
resources were reduced accordingly for this interested party and its server.

6.2.4 Experiment 4: Many to Many Isolation

The purpose of the forth experiment illustrated in Figure 3, was to verify that different (parts
of) applications may be isolated by using an appropriate mapping specification. Two objects of
interest generated notifications with different source attribute value. The mapping specification
used, mapped notifications with different value for the source attribute to different IP multicast
addresses. The notifications from each object of interest were received by two interested parties.
Each client was hosted by a separate computer.

The measured numbers of notifications per second, received by each interested party, were the
same as in the intra LAN case in the first experiment. The aggregated publishing rate for the
1450 bytes/notification experiment was 13.05 MBps (2 * 4500 notific. /sec. * 1450 bytes/notific.).
For a 100Mbps LAN based on broadcast technology, the throughput most likely would have been
reduced. This indicates the strength of our event notification service when coupled with switched
LAN technology with native multicast support.

15



7 Further Work

In our further work, we will develop an algorithm for calculating mapping specifications in order to
handle dynamic changes in applications and the environment in a more adaptable way. The input
to such an algorithm may include the number of multicast addresses, the LAN characteristics (e.g.
broadcast, switched), information about imperfections in network to link layer multicast mapping
(e.g many to one), some statistics about the past as well as the likely future. The information
about the past may be provided by each server measuring and generating statistics about the
notifications received and required and the notifications received but discarded. The information
about the future may be QoS parameters included in advertisements made by objects of interest,
e.g. notification rate, size, and distribution.

We plan to enhance our event notifications service to concurrently utilize a combination of dif-
ferent protocols. The motivation is that different parts of applications have different requirements
with respect to e.g. throughput, reliability, and delay. Clients may then indicate QoS parameters
in subscriptions and advertisements.

We also would like to avoid the broadcast of subscriptions between servers. A server could
hold back subscriptions already covered by subscriptions made by other servers. This is similar to
the approach used by IGMP, where only one host sends a membership report for a particular IP
multicast address during each time interval.

8 Conclusion

Event-based interaction is inherently many to many communication. Therefore, event-based com-
munication does not map well, performance wise, onto one to one communication primitives. The
challenge of utilizing network and link layer multicast support for event notification services is
well known, but to our knowledge no implementations for content-based publish/subscribe sys-
tems exist.

In this paper we have presented the architecture of a distributed content-based event notifica-
tion service where notifications are mapped onto multicast communication. The service is targeted
at usage within a local area network or an administrative domain. We envisage that the service
will be connected to a wide area network event notification service by means of a gateway.

A prototype has been implemented and experiments confirm that our service has a potential for
providing both high performance and scalability. Objects of interest may publish several thousand
notifications, carrying several MBytes of data, per second. For the experiments performed, the
service was unaffected by the number of interested parties, due to the ability of the service to take
advantage of native multicast support in network and end system devices.

The scalability and performance allows new application domains to take advantage of event-
based interaction. The performance is e.g. more than sufficient for real-time streaming of very high
quality video. Application domains requiring parallel processing, e.g. real-time content analysis,
may also take advantage of such a service.

9 Acknowledgments
We would like to thank all persons involved in the DMJ (Distributed Media Journaling) project

for contributing to the ideas presented in this paper. The DMJ project is funded by the Norwegian
Research Council through the DITS program, under grant no. 126103/431.

16



References

1]

2]

3]

[4]

[5]

(6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman. An
Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems. In Proceedings of
ICDCS, pages 262—-272. IEEE, 1999.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems, 19(3):332-383, August 2001.

D. Chambers, G. Lyons, and J. Duggan. Stream Enhancements for the CORBA Event Service.
In Proceedings of the ACM Multimedia (SIGMM) Conference, Ottawa, pages 61-69, October
2001.

V. S. W. Eide, F. Eliassen, O.-C. Granmo, and O. Lysne. Scalable Independent Multi-
level Distribution in Multimedia Content Analysis. In Proceedings of the Joint International
Workshop on Interactive Distributed Multimedia Systems and Protocols for Multimedia Sys-
tems (IDMS/PROMS 2002), Coimbra, Portugal, LNCS 2515, pages 37-48. Springer-Verlag,
Nov. 2002.

V. S. W. Eide, F. Eliassen, O. Lysne, and O.-C. Granmo. Real-time Processing of Media
Streams: A Case for Event-based Interaction. In Proceedings of 1st International Work-
shop on Distributed Fvent-Based Systems (DEBS’02), Vienna, Austria, pages 555-562. IEEE
Computer Society, July 2002.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys (CSUR), 35:114-131, June 2003.

S. McCanne, M. Vetterli, and V. Jacobson. Low-Complexity Video Coding for Receiver-
Driven Layered Multicast. IEEE Journal of Selected Areas in Communications, 15(6):983—
1001, August 1997.

Object Management Group Inc. CORBA services, Event Service Specification, v1.1.
http:/ /www.omg.org/, 2001.

L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman. Exploiting IP
Multicast in Content-Based Publish-Subscribe Systems. In Proceedings of Middleware 2000,
LNCS 1795, pages 185-207. Springer-Verlag, 2000.

J. Ott, C. Perkins, and D. Kutscher. A message bus for local coordination. RFC3259, 2002.

P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed Event-Based Middleware Archi-
tecture. In Proceedings of 1st International Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria, pages 611-618. IEEE Computer Society, July 2002.

B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based Routing with
Elvind. In Proceedings of AUUG2K, Canberra, Australia, June 2000.

R. Steinmetz and K. Nahrstedt. Multimedia: Computing, Communications & Applications.
Prentice Hall, 1995.

TIBCO Software Inc. TIBCO Rendezvous FAQ. http://www.tibco.com/solutions/products/
active_enterprise/rv/faq.jsp, 2003.

17






Paper V

Supporting Timeliness and Accuracy in Distributed Real-time
Content-based Video Analysis

Viktor S. Wold Eide, Frank Eliassen,
Ole-Christoffer Granmo, and Olav Lyshe

Published: In Proceedings of the 11th ACM International Conference on Multimedia
(MM’03), ACM, pages 21-32, Berkeley, California, USA, November 2003.

Evaluation: In total, 255 papers were submitted to ACM MM’03. Three program
committee members reviewed each submission. The paper was updated based on
review comments and the final version approved by a shepherd. As a result, 43 full
papers were accepted for publication.

Author Contribution: This project article combines results from Paper Ill, Paper 1V,

as well as some other relevant results contributed by Granmo. Hence, the contribu-
tions of Eide follow from the contributions in Paper Il and Paper IV. The conceptual
integration was done by all authors, while the writing was primarily done by Granmo,
Eide, and Eliassen.

2Authors are listed alphabetically

133






Supporting Timeliness and Accuracy in Distributed
Real-time Content-based Video Analysis

Viktor S. Wold Eide'?, Frank Eliassen?, Ole-Christoffer Granmo'22, and Olav LysneQ*

!University of Oslo
P.O. Box 1080 Blindern
N-0314 Oslo, Norway

viktore,olegr@ifi.uio.no

ABSTRACT

Real-time content-based access to live video data requires
content analysis applications that are able to process the
video data at least as fast as the video data is made available
to the application and with an acceptable error rate. State-
ments as this express quality of service (QoS) requirements
to the application. In order to provide some level of control
of the QoS provided, the video content analysis application
must be scalable and resource aware so that requirements of
timeliness and accuracy can be met by allocating additional
processing resources.

In this paper we present a general architecture of video
content analysis applications including a model for speci-
fying requirements of timeliness and accuracy. The salient
features of the architecture include its combination of prob-
abilistic knowledge-based media content analysis with QoS
and distributed resource management to handle QoS re-
quirements, and its independent scalability at multiple log-
ical levels of distribution. We also present experimental re-
sults with an algorithm for QoS-aware selection of configura-
tions of feature extractor and classification algorithms that
can be used to balance requirements of timeliness and ac-
curacy against available processing resources. Experiments
with an implementation of a real-time motion vector based
object-tracking application, demonstrate the scalability of
the architecture.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distri-
buted Systems— Distributed applications; D.2.11 [Software
Engineering]: Software Architectures—Domain-specific ar-
chitectures; 1.2.10 [Artificial Intelligence]: Vision and
Scene Understanding— Video analysis

*Authors are listed alphabetically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MM’03, November 2-8, 2003, Berkeley, California, USA.

Copyright 2003 ACM 1-58113-722-2/03/0011 ...$5.00.

2Simula Research Laboratory
P.O. Box 134
N-1325 Lysaker, Norway

viktore,frank,olavly@simula.no ole.granmo@bhia.no

3Agder University College
Grooseveien 36
N-4876 Grimstad, Norway

General Terms

Algorithms, design, measurement, performance

Keywords

Real-time video content analysis, parallel processing, task
graph scheduling, event-based communication, QoS and re-
source management

1. INTRODUCTION

There is evidence that the need for applications that can
analyse concurrently and in real-time the content of multi-
ple media streams, such as audio and video, is increasing.
For example, in video content analysis applications including
feedback control or interaction such as road traffic control
systems, automated surveillance systems, and smart rooms,
timeliness is an important aspect [1,6,29]. This requires that
content analysis applications are able to process the media
streams at least as fast as the data is made available to the
application.

Real-time content analysis is an active research field where
efficient techniques for e.g. multi-object detection and track-
ing have been found. In such applications, pattern clas-
sification systems which automatically classify media con-
tent in terms of high-level concepts have been taken into
use. Roughly stated, the goal of such pattern classification
systems is to bridge the gap between the low-level features
produced through signal processing (filtering and feature ex-
traction) and the high-level concepts desired by the end user.

The above challenges become even more critical when co-
ordinated content analysis of video data from multiple video
sources is necessary. Typically, a parallel processing environ-
ment is required for real-time performance.

When building a real-time content analysis application,
not only must the processing properties of the application be
considered, but also the content analysis properties. Such
properties we might refer to as Quality of Service (QoS)
dimensions and include dimensions such as timeliness and
acceptable error rate.

Statements of QoS must generally be expressed by the ap-
plication user according to some domain specific QoS model
that defines the QoS dimensions for the specific application
domain. In order to provide some level of control of the
QoS provided, the video content analysis application must
be scalable so that requirements of timeliness can be met



by allocating additional processing resources. Furthermore,
the selection of analysis algorithms must be resource aware,
balancing requirements of accuracy against processing time.

In this paper we present a general architecture of video
content analysis applications that includes a model for spec-
ifying requirements of timeliness and accuracy. The archi-
tecture combines probabilistic knowledge-based media con-
tent analysis with resource awareness to handle QoS require-
ments. Based on an application for real-time tracking of
a moving object in a video stream, we demonstrate that
the architecture is independently scalable at multiple logical
levels of distribution by measuring the performance of the
application under different distribution configurations. Fur-
thermore, we present experimental results with an algorithm
for resource-aware selection of configurations of feature ex-
tractor and classification algorithms. In our prototype im-
plementation the algorithm is used to balance requirements
of timeliness and accuracy against available processing re-
sources for the same application as above. Although we in
this paper focus on video as input, the architecture itself is
not limited to video only. It has been designed to handle
and exploit input from any combination of different types of
sensors in the same application.

Several frameworks for parallel execution of video content
analysis tasks have been developed. For instance, in [25] a
multi-agent based system for coarse-grained parallelization
and distribution of feature extraction is presented. A fine-
grained solution for parallel feature extraction is described
in [20] where feature extraction is distributed in a hypercube
multicomputer network. Other frameworks for parallel and
distributed video analysis include [12,21, 22, 34]. However,
these frameworks lack an explicit QoS-model and do not
support balancing of accuracy and timeliness against the
available processing resources.

The rest of this paper is structured as follows. First, in
Section 2 we present a general architecture for (video) con-
tent analysis applications. Then we present a QoS model for
such applications in Section 3. In Section 4 we discuss archi-
tectural requirements that are important for supporting the
QoS model. Based on these requirements, the architecture
is presented in Section 5. In Section 6 we present empirical
results. Lastly, in Section 7 we conclude and provide some
pointers to further work.

2. CONTENT ANALYSIS

A general approach for building content analysis applica-
tions is to combine low-level quantitative video processing
into high-level concept recognition. Typically, such applica-
tions are logically organized as a hierarchy of logical modules
each encapsulating a video processing task, as illustrated in
Figure 1. A task is a well-defined algorithm involved in the
video analysis process.

We define task categories according to their functionality
in the system. At the lowest level of the hierarchy there
are tasks representing video streaming sources. At the level
above, the video streams are filtered and transformed by fil-
tering tasks. The transformed video streams are then fed to
feature extraction tasks as video segments (e.g. video frame
regions). Feature extraction tasks operate on the video seg-
ments from the transformed video streams, and in the case
of a video frame region, calculate features such as color his-
tograms and motion vectors. Finally, results from feature
extraction tasks are reported to classification tasks higher

Classification @
©

feature
Extraction @ @ @
Filtering w @

Streaming @ @

Figure 1: Content analysis hierarchy example.

: Classification

: feature Extraction
: Filtering

: Streaming

: Extracted Features
: Filtered media stream
: Media stream

> > > A

up in the hierarchy that are responsible for detecting high
level domain concepts, such as a moving object in a video
stream. In other words, classification is interpretation of
extracted features in some application specific context. We
will hereafter denote the Streaming, Filtering, feature Ex-
traction, and Classification by the letters S, F, E, and C
respectively as seen in Figure 1.

Tasks generally form a directed acyclic graph where the
tasks are represented by the nodes in the graph, and the
edges represent the directed flows of data between tasks.

Often, the above type of content analysis applications are
implemented as monolithic applications making reuse, de-
velopment, maintenance, and extensions by third parties
difficult. Such applications are often executed in single pro-
cesses, unable to benefit from distributed processing envi-
ronments.

3. QOS MODEL

In this section we present a QoS model for real-time con-
tent based video analysis applications. The model consists
of QoS dimensions that we believe characterize the timeli-
ness and accuracy requirements of such applications. Other
QoS dimensions such as reliability and availability are con-
sidered outside the scope of this work.

The QoS model we have adopted in this work includes
the following QoS dimensions: accuracy, temporal resolu-
tion, and latency.

The accuracy of a media content analysis application can
be characterized by its estimated error rate, defined as the
number of misclassifications divided by the total number of
classifications when analysing a set of media streams. De-
pending on the media content analysis application, various
levels of error rate may be acceptable. For instance, misclas-
sifying events when monitoring an airport for security rea-
sons may be more critical than misclassifying events when
indexing a baseball video stream.

The temporal resolution dimension specifies the minimum
temporal length of an event that the content analysis appli-
cation should be able to detect. According to the Nyquist
sampling theorem [31], any function of time (e.g. stream of
high-level concepts) whose highest frequency is W can be
completely determined by sampling at twice the frequency,
2W. In other words, if a stream of high-level concepts is
sampled at a frequency less than twice the frequency of the
finest temporal details in the stream, high-level concepts
may be missed. Hence the value of the temporal resolu-



tion dimension determines the required sampling frequency
of the media streams to be analysed.

The latency dimension specifies the maximum acceptable
elapsed time from an event occur in the real world until it
is reported by the appropriate classifier algorithm. For real-
time video content analysis applications including feedback
control (e.g. road traffic control systems) this dimension is
important.

In general, different classes of quality of service can also
be identified, varying from best effort service to guaranteed
service. The latter class requires support from the system in
terms of resource reservation and admission control, while
the former does not. Although the problem of resource reser-
vation and admission control have been studied for a long
time, their solution has not generally been integrated into
more general-purpose operating systems and networks. We
therefore restrict the class of processing platforms that we
consider to general-purpose ones without special real-time
processing features. However, we do assume that we have
some level of control over the load of competing applications
in the processing environment. Furthermore, we believe our
results can easily be adapted to take advantage of processing
platforms providing real-time scheduling policies.

4. ARCHITECTURAL REQUIREMENTS

It seems evident that the resource requirements for the ap-
plication domain of real-time video content analysis are very
challenging and will most likely remain so in the near future.
This calls for an architecture that is scalable in the sense
that the performance of the application scales well with the
amount of processing resources allocated to it. Scalability
is required in order to be able to cope with increasing QoS
requirements and coordinated analysis of an increasing num-
ber of media streams.

A scalable application architecture can generally only be
obtained by adopting distribution as its basic principle. Scal-
ability of distributed applications is usually achieved by par-
allelizing application algorithms and distributing the pro-
cessing of their parts to different processors.

The relative complexity of streaming, filtering/ transfor-
mation, feature extraction, and classification depends on the
application. Therefore the architecture should support fo-
cusing of processing resources on any given logical level, in-
dependently of other logical levels. E.g., if only the filtering
is parallelized and distributed, the feature extraction and
the classification may become processing bottlenecks.

A scalable interaction mechanism which also supports such
independent parallelization is therefore required.

The level of accuracy that can be supported by a video
content analysis application depends on the misclassification
behavior (error rate) of the selected configuration of feature
extractor and classifier algorithms. Hence configurations of
such algorithms must be carefully selected based on the de-
sired level of accuracy.

However, selecting configurations of algorithms which give
a high accuracy might result in increased processing time
since configurations of algorithms with better accuracy usu-
ally require more processing cycles than configurations with
poorer accuracy. Therefore, algorithms that can be used to
decide whether a QoS requirement can be satisfied in a given
distributed physical processing environment are needed. This
will include search for an appropriate configuration of fea-
ture extractor and classifier algorithms that provides the

desired accuracy and that can be allocated to different pro-
cessors in such a way that the requirements for latency and
temporal resolution are fulfilled.

Reduced latency and a smaller temporal resolution may
be achieved in a scalable distributed architecture by allo-
cating independent tasks to different processors. A further
decrease in temporal resolution may be achieved by deploy-
ing dependent tasks as pipe-lines also on different processors.
E.g., in a maximally distributed video processing pipe-line a
frame rate of R may be sustained if no task in the pipe-line
has an average processing time per frame exceeding 1/R.

S. ARCHITECTURE

In this section we develop an architecture that supports
the three following content analysis application construction
steps:

1. Decomposition of a content analysis application into
tasks. The tasks form a task graph as discussed in
Section 2. The granularity of the decomposition should
be a modifiable parameter because what granularity
is appropriate depends on the processing environment
at hand, and in particular the number of processors
available.

2. Fine grained trading of accuracy against latency (and
consequently temporal resolution). The starting point
is a “brute force” task graph. By a “brute force” task
graph we shall mean a task graph that contains the
filtering, feature extraction, and classification tasks
deemed relevant, without regard of the processing re-
sources available. Tasks are removed iteratively from
the task graph so that either the latency/temporal res-
olution requirement is met (success) or the accuracy
falls below the required level (failure).

3. Scalable deployment and execution of the resulting
task graph on multiple processors in a distributed pro-
cessing environment.

In the next subsections we will first describe some example
task graphs. These will be used to exemplify the function-
ality of the different parts of our architecture. Then, we
present the ARCAMIDE algorithm which is used in step
two above. Finally, we introduce the architectural basis for
applying the ARCAMIDE algorithm. This includes the sup-
port of step one and three above. With respect to step
three, an event-based interaction mechanism is a key factor
for achieving flexible parallelization and distribution.

5.1 Example Task Graphs

Figure 2 illustrates the functional decomposition of a con-
tent analysis application for real-time tracking of a moving
object in a video stream, the application henceforth used
for illustration purposes. The video stream is filtered by
an algorithm doing video stream decoding and color-to-grey
level filtering. The filtered video frame is divided into m x n
blocks (video segments) before a motion estimator calculates
motion vectors for the blocks. The block motion vectors are
then received by a classification task (a so-called particle
filter) and used for object detection and tracking.

We base our example application on motion vector cal-
culation and particle filtering, because these techniques are
recent and promising approaches to object/region tracking



Classification

OT: Object Tracking

feature @

Extraction Y . ME: Motion Estimation
H E CF : Color Filtering

!ﬁ

VS: Video Streaming
A
s

: Event Notification
: Filtered media stream
* : Media stream

Filtering @

Streaming

Figure 2: The functional decomposition of the real-
time object tracking application.

Parallel processing
at different levels

Tracked
Classification v“‘l‘)‘("‘Slllon_(l})
@ .

A ‘1-—2, M
CF : Color Filtering

feature @ @
Extraction
VS : Video Streaming

N A
Filteri @ @ * : Event Notification
iltering \m A
Streaming 4

: Filtered media stream

: Video Stream
Figure 3: A configuration of the real-time object
tracking application where the computation at sev-
eral levels is parallelized.

CO: Coordination
PF : Particle Filtering
ME: Motion Estimation

in video. To elaborate, calculation of motion vectors (also
called optical flow) is a typical pre-processing step in track-
ing of moving objects/regions [2,27], and the particle filter
is a promising approach to object-tracking which allows e.g.
simultaneous tracking and verification [18].

The above content analysis task graph can be executed
as a pipeline (each level of the chain is executed in paral-
lel). For instance, the application can be executed on four
processors, where the streaming is conducted from one pro-
cessor, the filtering is executed on a second processor, the
motion estimation is conducted on a third processor, and the
classification on a forth processor. Such distribution allows
an application to take advantage of a number of processors
equal to the depth of the hierarchy.

Figure 3 illustrates a task graph with a finer granularity
compared to the task graph in Figure 2. The finer granu-
larity has been achieved by independently decomposing the
filtering, feature extraction and classification into pairs of
two tasks. Such decomposition opens up for focusing the
processing resources on the processing bottlenecks at hand.
For instance, in Figure 3 the motion estimation could be con-
ducted on two processors while the classification, i.e. par-
ticle filtering and coordination (see Section 5.3.5), can be
conducted on three processors.

5.2 Determining Accuracy and Latency

In this subsection we describe the ARCAMIDE algorithm
[14] for fine grained trading of accuracy against latency (and

|
Classifier | .
Specification ﬁ[ Error Rate Estlmator]

|

|

\ Error Rate Candidate

1 Estimate Task Graph |

: : Solution
"Brute Force" ! Task Graphs
Task Graph e ARCAMIDE

I | Lat. & Acc.

| Latency & Candidate Req. Met?

| Load Task Graph

 Measurements

gf;fi fication %{Processing Time Estim. ]

Figure 4: Architecture supporting the accuracy and
latency dimension.

hence temporal resolution). Before we go into the details of
the ARCAMIDE algorithm, let us provide an overview of
the overall ARCAMIDE architecture. As shown in Figure
4, the architecture includes the following functionality:

e An error rate estimator which is used to estimate the
content analysis (classification) error rate of candidate
task graphs, based on a specification of the classifica-
tion goal (e.g. object tracking). As we will see later,
we use so-called dynamic Bayesian networks as a clas-
sifier specification language.

e A processing time estimator which is used to mea-
sure the latency and parallelizability of candidate task
graphs, given a specification of the distributed process-
ing environment (DPE) at hand.

e The ARCAMIDE algorithm which systematically re-
moves tasks from the task graph in order to reduce
the latency of the task graph while at the same time
trying to minimize the loss of accuracy.

The output of the architecture is a sequence of solution task
graphs ordered so that the estimated latency is decreasing
while the estimated error rate is increasing. In this sequence,
the first task graph which meets the latency requirement,
must also meet the accuracy requirement. Otherwise, the
specified DPE will not be able to support the given latency
and accuracy requirements. In the following we will first dis-
cuss the inputs of the architecture, and then the estimator-
and ARCAMIDE functionality in more detail.

5.2.1 The Task Graph and the DPE Specification

We assume that the task graph is annotated with the es-
timated processing time of each task in milliseconds on the
available classes of processors. Furthermore, each edge is
assumed to be annotated with the size in bytes of the data
communicated between the respective tasks. When this is
done for the available streaming, filtering, feature extrac-
tion, and classification tasks, we get the “brute force” task
graph which the ARCAMIDE algorithm takes as input.

The DPE specification consists of the number and class of
processors as well as the network latency and bandwidth be-
tween each pair of processors. To simplify the estimation of



the latency of a task graph, we make the following assump-
tions about the communication between each pair of proces-
sors: the communication is contention free and the network
latency and bandwidth are constant. These assumptions
are introduced to avoid the additional complexity caused by
communication contention, routing, etc. (which are not the
focus of this paper) while still handling a significant class of
DPEs (e.g. dedicated homogeneous computers connected in
a dedicated switched LAN).

5.2.2 Dynamic Bayesian Networks and Error Rate
Estimation

Dynamic Bayesian networks (DBNs) [16] represent a par-
ticularly flexible class of pattern classifiers that allows sta-
tistical inference and learning to be combined with domain
knowledge. Indeed, DBNs have been successfully applied to
a wide range of video content analysis problems [5, 13, 26].
The successful application of DBNs can be explained by
their firm foundation in probability theory, combined with
the effective techniques for inference and learning that have
been developed.

In order to be able to automatically associate high-level
concepts (e.g. object position) to video segments, a DBN
can be trained on manually annotated video streams. Gen-
erally stated, the training is based on finding a more or less
accurate mapping between feature space and high-level con-
cept space, within a hypothesis space of possible mappings.

After training the DBN on manually annotated video str-
eams (the training set), the DBN can be evaluated by esti-
mating the number of misclassifications on another manually
annotated video stream not used for training (the test set).
We shall by the estimated error rate of a DBN mean the
number of misclassifications divided by the total number of
classifications on the test set. This estimated error rate can
be seen as a measure on how accurately the DBN will index
novel video streams.

One important reason for basing the classification on DBNs
is the fact that DBNs can classify even when features are
missing. In contrast, other types of classifiers, like neural
networks and decision trees, must be retrained whenever
the feature set is changed. Accordingly, by using DBNs we
make the exploration of the space of possible task graphs
and thereby feature subsets more efficient.

5.2.3 The Processing Time Estimator

In this section we describe a simple scheduling algorithm
targeting the class of task graphs and DPEs defined in Sec-
tion 5.2.1. The algorithm is based on generic task graph
scheduling principles, as described in [17], adopted to suit
the needs of the ARCAMIDE algorithm. That is, we pro-
pose measures of latency and parallelizability. These mea-
sures are used to guide the ARCAMIDE algorithm.

The goal of the scheduling algorithm is to minimize the
estimated latency of the task graph when allocating and
scheduling the tasks to the available processors in the DPE.
Based on the allocation and scheduling of tasks, the result-
ing latency and temporal resolution can be estimated. Fur-
thermore, the parallelizability of the task graph can be mea-
sured. The respective procedures are summarized in Figure
5 and described below.

We examine the scheduling algorithm first. Let entry tasks
be tasks without parents and let ezit tasks be tasks without
children in the task graph. We define the b-level of a task

; The scheduling algorithm

schedule (Tasks)
; Initially all tasks are unallocated
A :=0;
N := Tasks;

WHILE #N > O DO
; Identifies task with largest b-level
nmax := ARGMAX n IN N: b_level(n);
; Identifies the processor which allows
; the earliest start time

p-min := ARGMIN p IN P: start_time(n-max, p);

; Allocates n_maz to p_min
allocate(n-max, p-min);
A := A U {nmax};
N := N \ {nmax};
; Returns the ready time of each processor
RETURN {ready-time(pi), ..., ready_time(pp)};

; The latency estimation procedure
le(Tasks)
RETURN MAX(schedule(Tasks));

; The parallelizability measurement procedure
par (Tasks)
RETURN STD_DEV(schedule(Tasks));

Figure 5: The scheduling, latency, and paralleliz-
ability procedures.

to be the length of the longest path from the task to an exit
node. Likewise, the s-level of a task is the length of the
longest path from the task to an entry node. The length of
a path is simply the sum of the task processing times (as
given by the task graph) on the path. If multiple classes
of processors are available, the average processing time of a
task over the available classes of processors is used. Note
that when calculating the b-level or the s-level of a task the
task itself is included in the path.

A task is either allocated to a processor (A) or not allocated
to a processor (V). Initially, none of the tasks are allocated
to processors. At each iteration of the scheduling algorithm,
the non-allocated task with the largest b-level is allocated to
a processor. This means that execution of long task graph
paths are prioritized before execution of short task graph
paths. The main reason behind this strategy is that the
longest task graph paths often determine the latency of the
task graphs when multiple processors are available, and ac-
cordingly should be executed as early as possible.

When a task is to be allocated to a processor the task is
scheduled at the earliest start time possible. The task may
be started when the processor becomes available after previ-
ous processing, and the task receives the data produced by
its task graph parents. The scheduled stop time of a task
is simply the sum of its scheduled start time and its pro-
cessing time (specified by the task graph). A task receives
data from a task graph parent at the scheduled stop time of
the parent if the two tasks are located on the same proces-
sor. Otherwise, the communication time of the data must
be added to the data receive time.

When allocating the non-allocated task with the largest
b-level to a processor, the processor which allows the earli-
est task start time is selected. This corresponds to a greedy



step towards the goal of minimizing the estimated latency
of the task graph. Consequently, the processor selection is
determined by the location of the tasks parents in the task
graph as well as the communication time of the correspond-
ing data.

This iteration continues until all the tasks have been allo-
cated. Finally, the scheduled stop time, ready_time(p;), of
the last task to be executed on each processor is returned.

To conclude, the estimated latency of the task graph cor-
responds to the largest processor ready time. Also, by tak-
ing the standard deviation of the processor ready times, we
measure how well the scheduling algorithm was able to bal-
ance the processing load on the available processors. These
two measurements are used by the ARCAMIDE algorithm
to search for task graphs with low latency, and which take
advantage of the available processors without considering
pipelining.

5.2.4 The ARCAMIDE Algorithm

In this section we describe a heuristic search algorithm,
the ARCAMIDE algorithm, which prunes a “brute force”
task graph in order to offer tradeoffs between estimated error
rate and latency. An important goal in this context is to take
advantage of the available processors so that the temporal
resolution is maximized.

Note that the ARCAMIDE algorithm does not remove
the classification tasks from the task graph. Without classi-
fiers the task graph will only output low-level features and
no high-level concepts. This means that the classifier tasks
should be treated as a special case. Therefore, we partition
the tasks (in the brute force task graph) into Streaming, Fil-
tering and feature Extraction tasks, hereafter denoted SFE-
tasks, and classification tasks, hereafter denoted C-tasks.

If the search for a task graph that does not violate the
QoS requirements is to be computationally practical, only a
very small number of the possible task graphs may be evalu-
ated. E.g. if there are no edges in a task graph containing n
SFE-tasks, there are 2™ possible candidate subgraphs. Con-
sequently, the choice of which subgraphs to evaluate is of
paramount importance.

In contrast to evaluating all the possible subgraphs of the
“brute force” task graph, the ARCAMIDE algorithm con-
sists of two task selection stages. In both stages of the al-
gorithm, the most inefficient parts of the task graph (when
considering estimated error rate and latency) are pruned.
Roughly stated, this procedure corresponds to a standard
sequential backward feature subset search (see [7]), extended
to handle task graphs. The task graph search is performed
backwards, rather than forwards, in order to avoid a compu-
tationally expensive n-step look-ahead search, made neces-
sary by the task graph data dependencies, and in some cases
by complexly interacting features. Obviously, other feature
subset search procedures can be applied by the ARCAMIDE
algorithm (such as beam search [24], genetic algorithms, or
branch and bound search [7]) by extending them to handle
task graphs. However, due to its simplicity, computational
efficiency and goal-directed behavior this paper applies a
sequential backward task graph search procedure.

The ARCAMIDE algorithm (see Figure 6) takes as input a
set of SFE-tasks, a set of C-tasks, a task irrelevance thresh-
old i, and a parallelizability threshold c¢. The irrelevance
threshold is used for removing tasks irrelevant to the con-
tent analysis goal. That is, the error rate of each SFE-task

; The ARCAMIDE algorithm
arcamide(SFE, C, i, c)
; Stage 1
FOR EACH t IN SFE
; Removes t if irrelevant
IF er({t} U desc(t, SFE)) > i THEN
SFE := SFE \ ({t} U desc(t, SFE));
; Stage 2
WHILE #SFE > O DO
; Determines whether critical paths
; need to be shortened
IF par(SFE U C) > c THEN
; Shortens critical paths
SFE’ := ARGMAX t IN SFE:s_level(t);
tmax := ARGMAX t IN SFE’:ef(t, SFE);
ELSE
tomax := ARGMAX t IN SFE:ef(t, SFE);

; Removes t_maz and its
; task graph descendants
SFE := SFE \ ({tmax} U desc(t_max, SFE));

; Outputs SFE U C, error rate, and
; processing time of F

OUTPUT <SFE U C, er(SFE), 1e(SFE U C)>;

RETURN;

Figure 6: The ARCAMIDE algorithm.

(and its task graph descendants) is estimated individually. If
the resulting estimated error rate is not significantly better
than what is achieved with pure guessing, i, the SFE-task is
removed along with its descendants. This completes stage
one of the ARCAMIDE algorithm.

The parallelization threshold ¢ controls whether critical
paths are to be shortened or the least efficient tasks are to
be removed in stage two of the ARCAMIDE algorithm. We
take par(SFE UC) > c as an indication that the scheduling
algorithm is not able to take advantage of the available pro-
cessors due to the length of critical paths. Then, the only
way to reduce the latency is to remove SFE-tasks at the end
of these paths:

SFE' := argmaz s_level(t).
tESFE

If, on the other hand, par(SFE U C) < ¢ we take this as an
indication that the scheduling algorithm is able to balance
the processing load between the available processors. Ac-
cordingly, the least “efficient” SFE-task should be removed
from the task graph along with its descendants.

Among the tasks considered for removal, the task ¢ that
maximizes the efficiency function

er(SFE) — er(SFE \ ({t} U desc(t, SFE)))

ef(t, SFE) = le({t} U desc(t, SFE))

is removed from SFE in addition to its task graph descen-
dants in SFE, desc(t, SFE). Here, er(T) denotes the esti-
mated error rate of task set T, and le(T) denotes the esti-
mated latency of task set T'. In short, the efficiency function
rewards tasks which contribute to maintaining the estimated
error rate of SFE and which in addition are computationally
cheap.



When the ARCAMIDE algorithm stops, it has generated
a sequence of task graphs with different estimated error
rate/latency tradeoffs. These task graphs are sought con-
figured to fully utilize the specified processing environment
without considering pipelining. The task graph which best
fits the provided QoS requirements (in terms of latency, tem-
poral resolution, and accuracy) is selected for deployment in
the actual processing environment, as discussed in the fol-
lowing subsection.

5.3 Scalability

The distributed and parallel processing of one of the task
graphs suggested by the ARCAMIDE algorithm enables that
QoS requirements can be satisfied by throwing processing re-
sources at the problem. In our architecture components are
the unit of deployment. The scalability of the overall appli-
cation is determined by the scalability of the inter compo-
nent communication mechanism and the scalability provided
at the different levels, i.e. video streaming, filtering/trans-
formation, feature extraction, and classification [8]. We now
describe how scalability is achieved in each of these cases.

5.3.1 Event-based Component Interaction

An event-based interaction mechanism enables scalable
and independent parallelization of the different levels in the
content analysis hierarchy, as described in the following.
From Figure 1, 2, and 3, it should be clear that components
interact in different ways, such as one to one, one to many
(sharing or partitioning of data), many to one (aggregation),
and many to many.

In [9], we argue that the requirements for the real-time
content analysis application domain fit very well with the
publish/subscribe interaction paradigm, leading to an event-
based interaction model. Event-based interaction provides
a number of distinguishing characteristics, such as asyn-
chronous many to many communication, lack of explicit ad-
dressing, indirect communication, and hence loose coupling.
Event-based systems rely on some kind of event notifica-
tion service. A distributed event notification service is re-
alized by a number of cooperating servers. Clients connect
to these servers and are either objects of interest, interested
parties, or both. An object of interest publishes event no-
tifications, or just notifications for short. In content-based
publish/subscribe systems, such as [3,28, 30, 33], a notifica-
tion may be a set of type, name, and value tuples. Interested
parties subscribe in order to express interest in particular no-
tifications. A subscription is an expression with constraints
on the names and values of notifications. The responsibility
of the event notification service is routing and forwarding
of notifications from objects of interest to interested parties,
based on content, i.e. the type, name, and value tuples. The
servers jointly form an overlayed network of content-based
routers. A survey of the publish/subscribe communication
paradigm and the relations to other interaction paradigms
are described in e.g. [11].

In our architecture, the different components connect to
and communicate through the event notification service, as
illustrated in Figure 7 for the application configuration in
Figure 3. As a consequence, a component does not need to
know if notifications have been generated by a single or a
number of components or the location or the identity of the
other components. The bindings between components are
loose and based on what is produced rather than by whom.

Re >

CO: Coordination

PF : Particle Filter
ME: Motion Estimation
CF : Color Filtering

VS: Video Streaming
4 . Event Notification

" ENS

® @

Figure 7: Inter component communication for the
configuration in Figure 3. Components interact
through an Event Notification Service, labeled ENS.

The what- rather than whom-characteristics of event-based
communication is a key factor for achieving the flexible par-
allelization and distribution. As an example, assume that
each PF component subscribes to notifications covered by
the following subscription:

src=vs func=me

Assume further that each ME component publishes the
calculated motion vectors as notifications:

src=vs func=me time=[t,dt] block=[1,1] vector=[ 0 ,0]...
src=vs func=me time=[t,dt] block=[3,2] vector=[-1 ,0]...
src=vs func=me time=[t,dt] block=[4,4] vector=[ 0 ,0]

The event notification service is then responsible for for-
warding these notifications to the PF components, as in-
dicated by label 3 in Figure 7. As a result, from a ME
component’s point of view it does not matter if there is a
single or a number of components interested in the pub-
lished notifications. Similarly, from a PF component’s point
of view it does not matter if the motion vectors have been
calculated by a single or a number of ME components. This
illustrates that event-based interaction enables independent
parallelization of the different levels in the content analy-
sis hierarchy. In Section 6, we present some performance
numbers for a scalable distributed content-based event no-
tification service, which is able to take advantage of native
IP multicast support.

5.3.2  Video Streaming

Real-time video is quite challenging with respect to pro-
cessing requirements, the massive amounts of data, and the
imposed real-time requirements. A video streaming source
which must handle each and every interested component in-
dividually will not scale. Therefore, the sender side pro-
cessing and network bandwidth consumption should be rel-
atively unaffected by the number of receiving components.

Scalable one to many communication is what IP multi-
cast has been designed for. However, sending a full mul-
ticast video stream to all receivers wastes both network
and receiver processing resources when each receiver only
processes some regions in each video frame. In [23], het-
erogeneous receivers are handled by layered video coding.
Each layer encodes a portion of the video signal and is sent
to a designated IP multicast address. Each enhancement
layer depends on lower layers and improves quality spatially



and/or temporarily. Parallel processing poses a related kind
of heterogeneity challenge, but an additional motivation is
the distribution of workload by partitioning data. When
using an event notification service for video streaming, as
described in [4,9,32], the video streaming component may
send different blocks of each video frame as different noti-
fications. By publishing each video frame as a number of
notifications, interested parties may subscribe to only a cer-
tain part of a video stream and thereby reduce resolution
both spatially and temporally. This strategy, coupled with
an event notification service capable of mapping notifica-
tions onto IP multicast communication, provides scalable
video streaming.

5.3.3 Filtering and Transformation

If the representation, the spatial resolutions, or the tem-
poral resolutions offered by a S component is not appropriate
for an E component, filtering and transformation is neces-
sary. Filtering and transformation bridge the gap between
what a S component offers and an E component can han-
dle. Scalable filtering and transformation requires that an F
component may process only some part of a video stream.
Therefore, in our approach an F component may subscribe
to only some blocks of the video stream, both spatially and
temporally, illustrated in Figure 7, labeled 1. The filtered
and transformed blocks are then published as notifications,
labeled 2 in the same figure. As a result, filtering and trans-
formation is efficiently distributed and parallelized. This is
also illustrated in Figure 3, where the left and the right part
of each video frame is received by different motion estima-
tion components.

5.3.4 Feature Extraction

A feature extraction algorithm operates on video segments
from the filtering and transformation level (e.g. video frame
blocks) and extracts quantitative information, such as mo-
tion vectors and color histograms.

A scalable solution for feature extraction requires that E
components may process only some part of a filtered video
stream. Some feature extraction algorithms require rela-
tively small amounts of processing, such as a color histogram
calculation which may only require a single pass through
each pixel in a video frame. But even such simple opera-
tions may become costly when applied to a real-time high
quality video stream. Additionally, the algorithms may be
arbitrarily complex, in general.

Feature extraction algorithms for video, such as calcula-
tions of motion vectors, color histograms, and texture rough-
ness, often operate locally on image regions. In our architec-
ture spatial parallelization and distribution of such feature
extractors are supported by a block-based approach.

Our implementation of a motion estimation component
allows calculation of motion vectors for only some of the
blocks in a video frame. In Figure 8, the motion vectors
calculated by a single component have been drawn into the
video frame. The blocks processed are slightly darker and
they also have the motion vectors drawn, pointing from the
center of their respective block. The motion vectors indicate
that the person is moving to the left.

The calculated motion vectors are published as a notifi-
cations. The event notification service forwards each notifi-
cation to the interested subscribers, as illustrated by label 3
in Figure 7.

Figure 8: Block-based motion estimation example.

5.3.5 Classification

The final logical level of our architecture is the classifica-
tion level. At the classification level each video segment is
assigned a content class based on features extracted at the
feature extraction level. For instance, if each video frame in
a video stream is divided into m x n blocks as seen in the
previous section, the classification may consist of deciding
whether a block contains the center position of a moving
object, based on extracted motion vectors.

The classification may become a processing bottleneck due
to the complexity of the content analysis task, the required
classification rate, and the required classification accuracy.
E.g., rough tracking of the position of a single person in a
single low rate video stream may be possible using a sin-
gle processor, but accurately tracking the position of mul-
tiple people as well as their interactions (talking, shaking
hands, etc.) could require several processors. Multiple video
streams may increase the content analysis complexity even
further. In short, when the classifier is running on a sin-
gle processor, the classification may become the processing
bottleneck of the content analysis application.

The particle filter (PF) [19] is an approximate inference
technique that allows real-time DBN-based video content
analysis. In the following we briefly describe our use of the
PF in more detail. Then we propose a distributed version of
the PF, and argue that the communication and processing
properties of the distributed PF allow scalable distributed
classification, independent of distribution at the other logi-
cal levels.

Our PF is generated from a dynamic Bayesian network
specifying the content analysis task. During execution the
PF partitions the video stream to be analysed into time
slices, where for instance a time slice may correspond to a
video frame. The PF maintains a set of particles. A sin-
gle particle is simply an assignment of a content class to
each video segment (e.g. object or background) in the pre-
viously analysed time slices, combined with the likelihood
of the assignment when considering the extracted features
(e.g. motion vectors). Multiple particles are used to han-
dle noise and uncertain feature-content relationships. This



Figure 9: The center position of the tracked object,
calculated by the coordinator, has been drawn as a
white rectangle.

means that multiple feature interpretations can be main-
tained concurrently in time, ideally until uncertainty can be
resolved and noise can be suppressed. When a new time slice
is to be analysed, each particle is independently extended to
cover new video segments, driven by the dynamic Bayesian
network specification. In order to maintain a relevant set of
particles, unlikely particles are then systematically replaced
by likely particles. Consequently, the particle set is evolved
to be a rich summarization of likely content interpretations.
This approach has proven effective in difficult content anal-
ysis tasks such as tracking of objects. Note that apart from
the particle replacement, a particle is processed indepen-
dently of other particles in the PF procedure.

In order to support scalability, we propose a distributed
version of the PF. The particles of the single PF are parted
into n groups which are processed on n processors. An event
based communication scheme maintains global classification
coherence. The communication scheme is illustrated in Fig-
ure 7 and discussed below. n PF components and a coordi-
nator (CO) component cooperate to implement the particle
filter. Each PF component maintains a local set of particles
and executes the PF procedure locally. When a new time
slice is to be analysed, the components operate as follows.
First, m locally likely particles are selected and submitted
to the other PF components through the event notification
service (label 4 in Figure 7). Then, each PF component exe-
cutes the PF procedure on the locally maintained particles,
except that the local particles also can be replaced by the
(n — 1)m particles received from the other PF components.
After execution, each PF component submits the likelihood
of video segment content classes to the coordinator (label
5 in Figure 7) which estimates the most probable content
class of each video segment. E.g., in Figure 9 the output
of the CO component has been drawn based on the object
position likelihoods produced by the PF components.

In the above communication scheme only 2n+ 1 messages
are submitted per time slice, relying on native multicast sup-
port in the event notification service. As shown empirically

in [15], by only submitting a single particle per message no
loss of accuracy is detected in the object tracking case.

6. EMPIRICAL RESULTS

In this section, we first present some empirical results
for the ARCAMIDE algorithm, when applied to our ob-
ject tracking application. Then we present the measured
performance for this application, when executed by a vary-
ing number of processors. Lastly, performance numbers are
presented for our distributed content-based event notifica-
tion service, which should reduce an observed bottleneck
problem for the first implementation of this application.

6.1 Accuracy and Latency

We now modify the object tracking example application
from Figure 3 to evaluate the ARCAMIDE algorithm em-
pirically. First of all, we assume that each video frame in
the video stream is partitioned into 8 x 8 video frame blocks.
The modification consists of adding a color histogram cal-
culation task and a texture calculation task to each video
frame block. We assume that the motion estimation in a
video frame block depends on color-to-grey level filtering of
that block. Finally, the goal of the content analysis appli-
cation is refined to recognition of whether an object passes
from the left to the right or from the right to the left.

Thus, we have five different types of SFE-tasks related
to each video frame block: streaming, color-to-grey level
filtering, motion estimation, texture calculation, and color
histogram calculation. These have different content analy-
sis and processing characteristics. In our simulation, when
using motion to detect an object in a video frame block, the
probability of false positives and false negatives are assumed
to be 0.3. Likewise, when using texture the probability of
false positives is assumed to be 0.5 and the probability of
false negatives is assumed to be 0.3. When using color the
latter probabilities are reversed. Color-to-grey-level filter-
ing only produces intermediate results used in the motion
estimation. Obviously, the specified probabilities depend on
the environment (e.g. sunshine, darkness) and are here set
to reflect rather difficult environment conditions. Finally,
the processing time of the streaming task is set to 3 ms, and
the processing time of the other tasks are set to 1 ms. The
transmission time of a video frame block (either color-to-
grey level filtered or not) across the network is considered
to be 1 ms.

To evaluate the ARCAMIDE algorithm we trained two
10-state Hidden Markov Models (one for each object pass-
ing direction) on 1000 simulated video frame sequences of
objects moving from the left to the right and 1000 simulated
video frame sequences of objects moving from the right to
the left. Here, an object appears on average twice in each
video frame block of the two center rows when passing the
camera view. We used another independent set of simulated
video frame sequences (of identical size) to prune the task
graph.

When trading off estimated error rate and latency, the
ARCAMIDE algorithm behaves as shown in Figure 10, 11,
and 12 respectively for 1 processor, 10 processor, and 100
processor environments. When selecting SFE-tasks for 1
processor, we see from Figure 10 that the estimated latency
initially can be reduced with little increase in estimated er-
ror rate (while inaccurate SFE-tasks are removed). How-
ever, when e.g. SFE-tasks near the first and eighth video



I I,
m e /.
\k.\\/

o FeFer

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

[—=—Processing Time —e—Error Rate

Figure 10: The estimated latency and error rate (y-
axis) after each task removal (x-axis) - 1 CPU.

s \
o oo M \
12345678 910111213 141516 17 18 18 20 21 22 20 26 25 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 41 42 43 44

[—=—Processing Time —e— Error Rate

Figure 11: The estimated latency and error rate (y-
axis) after each task removal (x-axis) - 10 CPUs.

frame block columns (the object entry regions) must be re-
moved, the estimated content analysis error rate increases
more dramatically. When introducing 10 processors, we see
in Figure 11 that the estimated latency is reduced in steps
— the processing time of all the processors must be reduced
before the latency can be reduced. Also note that the data
dependencies between color-to-grey level filtering and mo-
tion estimation make these tasks the target of removal from
removal number 28 and thereafter. When considering 100
processors (Figure 12), initially only the removal of motion
SFE-tasks will reduce the processing time due to the depen-
dency of motion SFE-tasks on color-to-grey level filtering
tasks. As seen in Figure 12, there are mainly two interest-
ing task graphs; one containing all the relevant SFE-tasks
and one containing only texture and color SFE-tasks.

6.2 Scalability of Object Tracking Application

In order to examine the scalability of our architecture, five
object tracking configurations were used — targeting 1, 2,
4, 8, and 10 processors respectively. A separate computer
hosted the video streaming component. The configurable
parameters of the motion estimation component (e.g. the
search area) and the particle filtering component (e.g. the

|

3 7]
2 s
| o .
M‘x//

12345678 91011121314 151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44 45 46 47

[—=—Processing Time —e— Error Rate

Figure 12: The estimated latency and error rate (y-
axis) after each task removal (x-axis) - 100 CPUs.

Table 1: The Measured Number of Frames per Sec-
ond for Different Configurations of the Real-time
Object Tracking Application

Number of processors
1 2 4 8 10
Frames per second

Ideal Frame Rate 25 5 10 20 25
Streaming 25 5 10 20 25
Filtering/Feature Extraction | 25 5 85 13.5 16
Classification 25 5 10 20 25

number of particles) were set so that they had similar pro-
cessing resource requirements. The process hosting a motion
estimation component also always hosted a video decoding
and filtering component.

The first configuration was similar to the configuration in
Figure 2. One video decoding and filtering component, one
motion estimation component, one particle filter component,
and one coordination component were all executed on a sin-
gle processor. In the second configuration this pipeline was
executed on two processors, that is, the filtering and mo-
tion estimation components were executed on one processor
and the particle filter and coordination component were ex-
ecuted on another processor. In order to take advantage of
additional processors, new configurations were created by
stepwise adding one motion estimation component (and im-
plicitly also one filtering component) and one particle filter
component, each executed by a dedicated processor. The
configuration illustrated in Figure 3 was executed on 4 pro-
cessors. In the 10 processor configuration, five motion es-
timation components and five particle filtering components
were used.

For the experiments, standard 1667MHz dual AMD Athlon
PCs running the Linux operating system have been used.
The PCs were connected by 100Mbps switched Ethernet.
Additionally, standard IP multicast video streaming was
used in this implementation.

The achieved frame rate, i.e. the temporal resolution, for
each configuration is shown in Table 1. The frame rate in-
creased linearly with the number of processors, except for
the filtering and motion estimation part of the computation.



Table 2: Maximum Number of Notifications Re-
ceived per Second for Notifications of Different Sizes

Locality Notification size in bytes
100 500 1000 1450
Notifications received per second
Intra LAN 9000 7000 5500 4500
Intra Host 9000 7000 5500 4500
Intra Process | 115000 100000 85000 75000

This was caused by the IP multicast based video streaming
used in these experiments. Each filtering component had to
decode and filter the complete IP multicast video stream,
despite the fact that the motion estimation component pro-
cessed only some blocks of each video frame. The ability of
the distributed classifier to handle the full frame rate was
tested on artificially generated features.

6.3 Event Notification Service

As a solution to the bottleneck observed in the previous
experiment, an event-based approach to video streaming has
been developed. E.g. a filtering component may register
interest in only certain blocks and reduce resolution both
spatially and temporally. However, a scalable and high per-
formance event notification service is required in order to
provide the necessary throughput. In [10], we present the
architecture, the implementation, and the measured perfor-
mance for our distributed local area network content-based
event notification service. The service provides both intra
process, intra host, and intra LAN communication.

The throughput for components located on different com-
puters (intra LAN) varied from 4500 notifications per second
(1450 bytes each) to 9000 notifications per second (100 bytes
each), as illustrated in Table 2. A maximum of approxi-
mately 6.5 MBps (MBytes per second) was measured. The
performance of the service was unaffected when there were
a number of interested parties for the same notifications,
due to the fact that the service utilizes native IP multicast
support. Additionally, the service is able to isolate different
parts of the “event notification space” by mapping notifica-
tions to different multicast addresses. As a result, the service
is able to handle a number of video streams concurrently.

7. CONCLUSION AND FURTHER WORK

In this paper we have presented a general architecture
for distributed real-time video content analysis applications.
Furthermore, we have proposed a model for specifying re-
quirements of timeliness and accuracy that can be used to
deduce the application’s resource requirements from a given
QoS specification.

A salient feature of the architecture is its combination of
probabilistic knowledge-based media content analysis with
QoS and distributed resource management to handle QoS
requirements. A further feature is its independent scalability
at multiple logical levels of distribution to be able to meet
increasing QoS requirements in different QoS dimensions.

This has been achieved by first developing a parallel ver-
sion of an approximate inference technique known as the
particle filter. We demonstrated that the parallel parti-
cle filter allows for real-time video content analysis based
on dynamic Bayesian networks. Next, we presented an al-

gorithm for balancing the requirements of timeliness and
accuracy against available distributed processing resources.
We demonstrated its behavior for a real-time motion vector
based object tracking application.

Independent scalability at multiple logical levels was pri-
marily achieved through the development of a high perfor-
mance event notification service as the preferred communi-
cation mechanism of the architecture. The scalability was
demonstrated through experiments with an implementation
of the application mentioned above.

Our future work will include the development of a com-
plete QoS management architecture for real-time video con-
tent analysis applications. The work presented here repre-
sents steps towards that goal.

8. ACKNOWLEDGMENTS

We would like to thank all persons involved in the DMJ
(Distributed Media Journaling) project for contributing to
the ideas presented in this paper. The DMJ project is
funded by the Norwegian Research Council through the DITS
program, under grant no. 126103/431.

9. REFERENCES

[1] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik.
A Real-time Computer Vision System for Measuring
Traffic Parameters. In Computer Vision and Pattern
Recognition (CVPR’97), San Juan, Puerto Rico,
pages 495-501. IEEE, June 1997.

[2] A. Bors and I. Pitas. Prediction and tracking of
moving objects in image sequences. [EEE
Transactions on Image Processing, 9:1441-1445,
August 2000.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer
Systems, 19(3):332-383, August 2001.

[4] D. Chambers, G. Lyons, and J. Duggan. Stream
Enhancements for the CORBA Event Service. In
Proceedings of the ACM Multimedia (SIGMM)
Conference, Ottawa, October 2001.

[5] S.-F. Chang and H. Sundaram. Structural and
Semantic Analysis of Video. In Multimedia and Expo
2000 IEEE, volume 2, pages 687-690, 2000.

[6] C. Chen, Z. Jia, and P. Varaiya. Causes and Cures of
Highway Congestion. Control Systems Magazine,
IEEE, 21(6):26-32, December 2001.

[7] M. Dash and H. Liu. Feature selection for
classification. Intelligent Data Analysis, 1(3), 1997.

[8] V. S. W. Eide, F. Eliassen, O.-C. Granmo, and
O. Lysne. Scalable Independent Multi-level
Distribution in Multimedia Content Analysis. In
Proceedings of the Joint International Workshop on
Interactive Distributed Multimedia Systems and
Protocols for Multimedia Systems (IDMS/PROMS),
Coimbra, Portugal, LNCS 2515, pages 37-48.
Springer-Verlag, November 2002.

[9] V. S. W. Eide, F. Eliassen, O. Lysne, and O.-C.
Granmo. Real-time Processing of Media Streams: A
Case for Event-based Interaction. In Proceedings of 1st
International Workshop on Distributed FEvent-Based
Systems (DEBS’02), Vienna, Austria, pages 555-562.
IEEE Computer Society, July 2002.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

V. S. W. Eide, F. Eliassen, O. Lysne, and O.-C.
Granmo. Extending Content-based Publish/Subscribe
Systems with Multicast Support. Technical Report
2003-03, Simula Research Laboratory, July 2003.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys (CSUR), 35:114-131, June
2003.

A. R. Frangois and G. G. Medioni. A Modular
Software Architecture for Real-Time Video
Processing. In Proceedings of the Second International
Workshop on Computer Vision Systems (ICVS),
Vancouver, Canada, volume 2095 of Lecture Notes in
Computer Science, pages 35—49. Springer, July 2001.
A. Garg, V. Pavlovic, J. Rehg, and T. Huang.
Integrated Audio/Visual Speaker Detection using
Dynamic Bayesian Networks. In Fourth IEEE
International Conference on Automatic Face and
Gesture Recognition 2000, pages 384-390, 2000.
0O.-C. Granmo. Automatic Resource-aware
Construction of Media Indexing Applications for
Distributed Processing Environments. In Proceedings
of the 2nd International Workshop on Pattern
Recognition in Information Systems (PRIS2002),
pages 124-139. ICEIS Press, April 2002.

0O.-C. Granmo, F. Eliassen, O. Lysne, and V. S. W.
Eide. Techniques for Parallel Execution of the Particle
Filter. In Proceedings of the 13th Scandinavian
Conference on Image Analysis (SCIA2003), volume
2749 of Lecture Notes in Computer Science, pages
983-990. Springer, June 2003.

F. V. Jensen. Bayesian Networks and Decision
Graphs. Series for Statistics for Engineering and
Information Science. Springer Verlag, 2001.

Y .-K. Kwok and I. Ahmad. Benchmarking and
comparison of the task graph scheduling algorithms.
Journal of Parallel and Distributed Computing,
59(3):381-422, 1999.

B. Li and R. Chellappa. A generic approach to
simultaneous tracking and verification in video. IEEE
Transactions on Image Processing, 11:530-544, May
2002.

J. S. Liu and R. Chen. Sequential Monte Carlo
methods for Dynamic Systems. Journal of the
American Statistical Association, 93(443):1032-1044,
1998.

V. Manian and R. Vasquez. A Computational
Framework for Analyzing Textured Image
Classification. In IEEE Conference on Intelligent
Systems for the 21st Century, volume 1, pages
717-723. IEEE, 1995.

L. Marcenaro, F. Oberti, G. L. Foresti, and C. S.
Regazzoni. Distributed Architectures and
Logical-Task Decomposition in Multimedia
Surveillance Systems. Proceedings of the IEEE,
89(10):1419-1440, October 2001.

[22]

[23]

[24]

[25]

[26]

[27]

28]

29]

[30]

31]

32]

[33]

[34]

J. Martinez, E. Costa, P. Herreros, X. Sanches, and
R. Baldrich. A modular and scalable architecture for
PC-based real-time vision systems. Real-Time
Imaging, 9:99-112; April 2003.

S. McCanne, M. Vetterli, and V. Jacobson.
Low-complexity video coding for receiver-driven
layered multicast. IEEE Journal of Selected Areas in
Communications, 15(6):983-1001, August 1997.

T. M. Mitchell. Machine Learning. Computer Science
Series. McGraw-Hill International Editions, 1997.

Y. Nakamura and M. Nagao. Parallel Feature
Extraction System with Multi Agents -PAFE-. In 11th
TAPR International Conference on Pattern
Recognition, volume 2, pages 371-375. IEEE, 1992.
M. Naphade and T. Huang. Extracting semantics from
audio-visual content: the final frontier in multimedia
retrieval. IEEE Transactions on Neural Networks,
13(4):793-810, 2002.

R. Okada, Y. Shirai, and J. Miura. Object tracking
based on optical flow and depth. In Proceedings of the
International Conference on Multisensor Fusion and
Integration for Intelligent Systems, pages 565-571.
IEEE, December 1996.

L. Opyrchal, M. Astley, J. Auerbach, G. Banavar,

R. Strom, and D. Sturman. Exploiting IP Multicast in
Content-Based Publish-Subscribe Systems. In
Proceedings of Middleware, pages 185-207, 2000.

B. Ozer and W. Wolf. Video Analysis for Smart
Rooms. In Internet Multimedia Networks and
Management Systems, I TCOM, Denver Colorado
USA, volume 4519, pages 84-90. SPIE, July 2001.

P. R. Pietzuch and J. M. Bacon. Hermes: A
distributed event-based middleware architecture. In
Proceedings of 1st International Workshop on
Distributed Fvent-Based Systems (DEBS’02), Vienna,
Austria. IEEE Computer Society, July 2002.

W. K. Pratt. Digital Image Processing.
Wiley-Interscience. John Wiley & Sons, Inc., 1991.
T. Qian and R. Campbell. Extending OMG Event
Service for Integrating Distributed Multimedia
Components. In Proceedings of the Fourth
International Conference on Intelligence in Services
and Networks, Como, Italy. Lecture Notes in
Computer Science by Springer-Verlag, May 1997.

B. Segall, D. Arnold, J. Boot, M. Henderson, and

T. Phelps. Content based routing with Elvin4. In
Proceedings of AUUG2K, Canberra, Australia, June
2000.

W. Zhou, A. Vellaikal, and S. Dao. Cooperative
Content Analysis Agents for Online Multimedia
Indexing and Filtering. In Proceedings of the Third
International Symposium on Cooperative Database
Systems for Advanced Applications, pages 118-122,
2001.



Paper VI

Exploiting Content-Based Networking for Video Streaming

Viktor S. Wold Eide, Frank Eliassen, and Jargen Andreas Michaelsen

Published: In Proceedings of the 12th ACM International Conference on Multime-
dia, Technical Demonstration, (MM’04), ACM, New York, New York, USA, pages
164-165, October 2004.

Evaluation: No written review was received for this technical demonstration paper.
The paper was accepted for publication and a technical demonstration was given at
the ACM MM’'04 conference by Michaelsen and Eide.

Author Contribution: An initial version of the software described in this paper was
written by Eide, while the ideas were discussed with Eliassen. However, this imple-
mentation was quite rudimentary and did, e.g., not include any code for compression.
Michaelsen and Eide collaboratively developed the software into the state described
in this paper, both with respect to design and implemen@tiﬁide was the driving

force behind writing this paper, while both coauthors contributed by commenting on
draft versions of the paper.

3A history file included in the software, tries to document changes and contributions

147






Exploiting Content-Based Networking for Video Streaming

Viktor S. Wold Eide'? Frank Eliassen' Jgrgen Andreas Michaelsen?

!Simula Research Laboratory
P.O. Box 134
N-1325 Lysaker, Norway

{viktore,frank} @simula.no

ABSTRACT

This technical demonstration shows that content-based net-
working is a promising technology for multireceiver video
streaming. Each video receiver is provided with fine grained
selectivity along different video dimensions, such as region
of interest, quality, colors, and temporal resolution. Effi-
cient delivery is maintained, in terms of network utilization
and processing requirements. A prototype demonstrates the
feasibility of this approach and is available as open source.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols— Content-based networking; H.4.3 [Information
Systems Applications]: Communications Applications—
Video streaming

General Terms

Design, experimentation

Keywords

Content-based networking, distributed content-based pub-
lish subscribe systems, fine granularity video streaming, scal-
able video coding, layered video

1. INTRODUCTION

A lot of effort has been made in order to efficiently deliver
video data over best-effort networks, such as the Internet [6].
Unicast delivery may provide each client with a customized
stream, but is inefficient and does not scale. Multicast de-
livery, provided at the network level or by overlay networks,
may improve network efficiency. However, a single multicast
stream provides clients with no selectivity. Simulcast deliv-
ery may provide clients with a choice between a few number
of streams, each having a different tradeoff between quality
characteristics and resource requirements. A combination of
layered coding and multicast is also rather course grained,
but improves network efficiency as the amount of redundant
information in different streams is reduced [7].

However, fine grained selectivity along different video qual-
ity dimensions is important for domains such as real-time
distributed video content analysis, where timeliness and ac-
curacy requirements may necessitate parallel processing of

Copyright is held by the author/owner.
MM’ 04, October 10-16, 2004, New York, New York, USA.
ACM 1-58113-893-8/04/0010.

2University of Oslo
P.O. Box 1080 Blindern
N-0314 Oslo, Norway

{viktore,jorgenam}@ifi.uio.no

& Video Server
(® Video Client(s)
;) Network node

Content—Based Network

1 Publish
—
B 2 Subscribe
2 Subscribe -
— -

—
ol 3 Notif}
3 Notify oy

Figure 1: Content-based network example.

video data. The video streaming software presented here is
part of our framework targeting this application domain [3].
The software exploits content-based networking in order to
provide fine grained selectivity and efficient delivery.

2. CONTENT-BASED NETWORKING

In content-based networking [2], messages are forwarded
based on content, and not on an explicit address. Each
message contains a set of attribute/value pairs and clients
express interest in certain messages by specifying predicates
over these attribute/value pairs. These predicates are used
by the network nodes for routing. Messages are forwarded
based on these routing tables and delivered only to clients
having matching selection predicates. Filtering is pushed to-
wards the source and each message should traverse a link at
most once. Content-based networks are currently realized
as overlay networks. Distributed content-based publish sub-
scribe systems [1] are examples of content-based networks.
The messages, called notifications, are injected into the net-
work by publishing as illustrated in Figure 1. Clients ex-
press their interests in subscriptions as predicates over the
attributes/value pairs and are notified accordingly.

3. VIDEO STREAMING

Video servers publish notifications, which encapsulate en-
coded video data. Each notification contains a subset of the
video data for a single frame and is delivered to all video
clients having matching subscriptions. The presented video
coding software exploits well known video compression tech-
niques, but is implemented from scratch as extending e.g.
other MPEG implementations for content-based network-
ing seemed non-trivial. The software is Open Source and is
available from http://www.ifi.uio.no/ dmj/.



SPECIFY SUBSCRIPTION:

Stream Id: sid, Time: tl [0 - 2], Quality: gl [0 - 2]
Calar: £ [0 - 1], Column: cal [0 - x], Rowe row [0 - 4]
Eid=4660 <=3 al<=3f<=1c0l<=2 row<=2

o subscribe [ unsubscribe

STATISTICS
Time: 10 sec
Eeceiwved
Frames: recy; 254, dropped: 0, ffsec 25
Decaded
Frames: decoded: 254, fjsec: 25, gop_index: 1
Celay ms: min: 28, max: 292, cur: 162
Motif; to1; 18288, njsec: 1828, nff. 72
Bytes: tot kB 1539, kBfsec: 153, B/f: 8059, Bfn: 84
Intra Bff: max: 227332, avly: 223911, cur 22069, avg bfpix: 1.657
Diff BJf. max: 7270, avg: 2630, cur: 3402, avg bfpix 0.262
Eendered
Celay end to end ms: 167
STATUS:
Subscribed toisid=4€60 tl<=32 gl<=3 f<=1col<=2 row<=2
Exit

Figure 2: Experimental video client controller.

3.1 Fine Granularity Selectivity

Our video coding scheme supports selectivity along the
following dimensions: regional, quality, color, and temporal.

The smallest selectable region is a so-called superblock,
which is a number of 16 x 16 pixel macroblocks.

In the quality dimension, a layered coding is used. Each
block within a macroblock is transformed to the frequency
domain by using the Discrete Cosine Transform. The DCT
coefficients are quantized and bit-plane coded [5]. The differ-
ent bit-planes are mapped to different quality layers. Notifi-
cations for the base layer contain the most significant bits.

With respect to colors, the luminance part of the video
signal is handled separately from the chrominance part and
sent in different notifications.

The temporal dimension is realized by a layered coding
scheme. The first frame in a gop (group of pictures) is intra
coded, i.e. self contained. The rest of the gop is coded to
exploit temporal redundancy. Only the difference between
two blocks is sent, taking the layering into consideration.
FEach additional temporal layer, doubles the frame rate.

The maximum number of notifications generated pr. frame
is given by: #superblocks x #color layers x #quality lay-
ers. A 384 x 288 pixel frame and a superblock size of 8 x 6
macroblocks implies 3 x 3 superblocks, hence a maximum of
9 x 2 x 4 = 72 notifications/frame.

3.2 Description of Demonstration

This technical demonstration will show how different video
clients may subscribe to video data with fine grained selec-
tivity. An experimental video client controller is shown in
Figure 2, illustrating a subscription and some statistics ob-
tained during execution. Figure 3 shows how e.g. four dif-
ferent video clients may request different parts of the video
data (if unclear in the printed copy, please refer to the elec-
tronic version) - upper left: full quality and colors, lower
left: luminance and lowest quality for some superblocks,
upper right: luminance, chrominance, and both for different
columns, lower right: luminance and lowest quality, except
for a part in the middle having full quality and colors.

The content-based networking is handled by Siena [1], ex-
tended with IP multicast support [4]. The demonstration
will also show how the mapping from the “notification space”

Figure 3: Four video clients with different interests.

to IP multicast addresses may be changed during runtime.
Our Java implementation is capable of encoding/decoding
a 384 x 288 pixel video at 25 frames/sec. on a standard PC.

4. CONCLUSION AND FURTHER WORK

Exploiting content-based networking for video streaming
has a potential for offering each video receiver with fine
grained selectivity along different quality dimensions, while
providing efficient delivery. We currently investigate how to
adapt to available resources by e.g. changing subscriptions.

5. REFERENCES

[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and Evaluation of a Wide-Area Event Notification
Service. ACM Transactions on Computer Systems,
19(3):332-383, August 2001.

[2] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A
Routing Scheme for Content-Based Networking. In
Proceedings of IEEE INFOCOM 2004, Hong Kong,
China, March 2004.

[3] V. S. W. Eide, F. Eliassen, O.-C. Granmo, and
O. Lysne. Supporting Timeliness and Accuracy in
Real-time Content-based Video Analysis. In
Proceedings of the 11th ACM International Conference
on Multimedia, ACM MM’03, Berkeley, California,
USA, pages 21-32, November 2003.

[4] V. S. W. Eide, F. Eliassen, O. Lysne, and O.-C.
Granmo. Extending Content-based Publish/Subscribe
Systems with Multicast Support. Technical Report
2003-03, Simula Research Laboratory, July 2003.

[5] W. Li. Overview of Fine Granularity Scalability in
MPEG-4 Video Standard. IEEE Transactions on
Clircuits and Systems for Video Technology,
11(3):301-317, March 2001.

[6] J. Liu, B. Li, and Y.-Q. Zhang. Adaptive Video
Multicast over the Internet. IEEE Multimedia,
10(1):22-33, Jan-Mar 2003.

[7] S. McCanne, M. Vetterli, and V. Jacobson.
Low-Complexity Video Coding for Receiver-Driven
Layered Multicast. IEEE Journal of Selected Areas in
Communications, 15(6):983-1001, August 1997.



Paper VII

Exploiting Content-Based Networking for Fine Granularity
Multi-Receiver Video Streaming

Viktor S. Wold Eide, Frank Eliassen, and Jgrgen Andreas Michaelsen

Published: In Proceedings of the 12th Annual Conference on Multimedia Computing
and Networking (MMCN '05), SPIE, San Jose, California, USA, January 2005.

Evaluation: Approximately 100 papers were submitted to MMCN’05. The paper
was reviewed by three individuals. As a result of the review process, 16 full papers
and 8 short papers were accepted for publication.

Author Contribution: An initial version of the software described in this paper was
written by Eide, while the ideas were discussed with Eliassen. However, this imple-
mentation was quite rudimentary and did, e.g., not include any code for compres-
sion. Michaelsen and Eide collaboratively developed the software into the state de-
scribed in this paper, both with respect to design and implemerﬂbﬂ'm decision
about which experiments to conduct were decided by Eide and Michaelsen, while
Michaelsen did the final measurements. Eide was the driving force behind writing
this paper, while both coauthors contributed by commenting on draft versions of the
paper.

4A history file included in the software, tries to document changes and contributions

151






Exploiting Content-Based Networking for Fine Granularity
Multi-Receiver Video Streaming

Viktor S. Wold Eide®? Frank Eliassen® Jorgen Andreas Michaelsen®

2Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway
bUniversity of Oslo, P.O. Box 1080 Blindern, N-0314 Oslo, Norway

ABSTRACT

Efficient delivery of video data over computer networks has been studied extensively for decades. Still, multi-
receiver video delivery represents a challenge. The challenge is complicated by heterogeneity in network avail-
ability, end node capabilities, and receiver preferences.

This paper demonstrates that content-based networking is a promising technology for efficient multi-receiver
video streaming. The contribution of this work is the bridging of content-based networking with techniques
from the fields of video compression and streaming. In the presented approach, each video receiver is provided
with fine grained selectivity along different video quality dimensions, such as region of interest, signal to noise
ratio, colors, and temporal resolution. Efficient delivery, in terms of network utilization and end node processing
requirements, is maintained. A prototype is implemented in the Java programming language and the software is
available as open source. Experimental results are presented which demonstrate the feasibility of our approach.

Keywords: Content-based networking, distributed content-based publish subscribe systems, fine granularity
video streaming, scalable video coding, layered video, multi-receiver video streaming

1. INTRODUCTION

Efficient delivery of video data over computer networks, such as the Internet, has been studied extensively for
decades. Still, multi-receiver video delivery represents a challenge [1]. Unicast delivery, where clients connect
directly to a server, may provide each client with a customized stream, but is inefficient and does not scale.
Multicast delivery, provided at the network level or by overlay networks, may improve network efficiency. How-
ever, a single multicast stream provides clients with no selectivity. Simulcast delivery may provide clients with
a choice between a few streams, each having a different tradeoff between quality characteristics and resource
requirements. A combination of layered coding and multicast, as described in [2], is also rather course grained,
but improves network efficiency as the amount of redundant information in different streams is reduced. Clearly,
the challenge is to provide each video client with fine grained and independent selectivity along different video
quality dimensions, while maintaining efficiency in terms of network and processing resource consumption.

Fine grained and independent selectivity would give each video receiver more freedom when trading off video
quality in different dimensions against the available resources, such as network bandwidth, processing capabilities,
display resolution, and power. A video receiver may then prefer to increase the temporal resolution, while another
video receiver may prefer to increase the signal to noise ratio, without any conflicts. Fine grained selectivity with
respect to regions of interest may also support virtual pan and zoom in very high quality video streams. Maybe
even more challenging is adapting quality in regions based on visual focus - high quality for the regions looked
at and less quality in the periphery. For domains such as real-time distributed video content analysis, timeliness
and accuracy requirements may necessitate parallel processing, as described in [3]. Parallel processing of video
data also represents a heterogeneity challenge. Workload may be distributed among different processing entities
by partitioning the video data spatially and/or temporally. The above reasoning illustrates that fine grained and

Further author information:
V.S.W.E.: E-mail: viktore@simula.no, viktore@ifi.uio.no
F.E.. E-mail: frank@simula.no
J.AM.: E-mail: jorgenam@ifi.uio.no



independent selectivity may support heterogeneity, where receivers range from small mobile hand held devices
to high resolution display walls, as well as parallel processing.

In [4], an extension for the CORBA Event Service is described which supports stream events and multi-
cast delivery of video data. However, in channel based systems each notification is not forwarded (routed)
independently.

In this paper we demonstrate that content-based networking is a promising technology which enables fine
grained and independent selectivity. Content-based networking provides rich routing capabilities as well as a level
of indirection. This allows a more dynamic and flexible video streaming solution compared to more traditional
approaches, such as layered multicast. In the presented approach, a single video server may handle a large
number of heterogeneous video receivers. Each video receiver may independently select region of interest, signal
to noise ratio, colors, and temporal resolution. The contribution of this work is the bridging of content-based
networking with well known techniques from the fields of video compression and streaming. A prototype has been
implemented as a proof of concept [5]. Performance measurements indicate that efficient delivery is maintained,
in terms of bit rates and end node processing requirements.

The video streaming approach presented in this paper is developed in the context of the DMJ (Distributed
Media Journaling) project [6]. The project develops a framework targeting the application domain of distributed
real-time video content analysis. The video streaming software is also used in our research related to this
application domain.

The rest of the paper is structured as follows. First, in Sect. 2 we present some background information
on content-based networking. Then, in Sect. 3 we describe our architecture for video streaming over content-
based networking. In particular, the different techniques used to achieve fine grained selectivity along each video
quality dimension are described. A prototype implementation is presented in Sect. 4, along with performance
measurements for coding efficiency and processing requirements. In Sect. 5 we conclude and describe further
work.

2. CONTENT-BASED NETWORKING

In this section, some background information regarding content-based networking and its relation to distributed
content-based publish subscribe systems is described. For a survey on the publish subscribe communication
paradigm and the relations to other interaction paradigms, the reader is referred to [7].

In content-based networking, as described in [8], messages are forwarded based on content, and not on an
explicit address. Each message contains a set of attribute/value pairs and clients express interest in certain
messages by specifying predicates over these attributes and values. The predicates are used by the network
nodes for routing. Messages are forwarded based on content-based routing tables and delivered only to clients
having matching selection predicates. Filtering of messages is pushed towards the source while replication is
pushed towards the destinations. Consequently, each message should traverse a link at most once. Content-
based networks are currently realized as overlay networks.

Distributed content-based publish subscribe systems are intimately related to content-based networking.
Examples of content-based publish subscribe systems include Elvin [9], Gryphon [10], Hermes [11], and Siena [12].
In such systems, the messages are called event notifications, or just notifications for short. Clients may inject
notifications into the network by publishing, as illustrated in Fig. 1. Other clients express their interests in
subscriptions, as predicates over the attribute/value pairs, and are notified accordingly. In a video streaming
scenario, each video receiver subscribes and thereby expresses interest in some part of the video signal.

As an example, consider a scheme for video streaming which supports region of interest selectivity by dividing
each frame in m X n regions. In this scheme, each notification contains four attribute names - sid (stream
identifier), row (row), col (column), and blob (binary video data). A video server may then publish each video
frame as m X n notifications. In each notification values are assigned to each attribute. As an example, a
notification may have the following content: [sid=10 col=1 row=2 blob=q34i23QR....D]. A video receiver may
then express interest in only one of the columns with the following subscription: [sid=10 col=1]. A second video
receiver may receive only one of the rows using another subscription, e.g.: [sid=10 row=2]. Similarly, a third
video receiver may receive all regions by using a subscription such as: [sid=10].



® video server
@ video client(s)
Content—based network network node
" intra domain
~ subscribe
-

—
notify

subscribe
-

Figure 1. Content-based networking example.

Both subscriptions and notifications are being pruned inside the content-based network. As an example,
consider the case where two video clients are connected to the same network node, as illustrated in Fig. 1.
Notifications are not forwarded in the network before at least one video receiver has expressed interest. When
the first video receiver subscribes and thereby registers interest in some part of the video signal, the subscription
may get forwarded over the links numbered 5,4,3,2, and 1. State is then maintained in the network nodes
to allow notifications to flow e.g. on the reverse path. When the client connected by the link numbered 6
subscribes, the first network node only forwards the subscription if this new subscription is not covered by the
first subscription. Consequently, both subscriptions and notifications are pruned in the network.

Different protocols may be used concurrently for different links in the content-based network, such as TCP
for some server-server links and UDP over IP multicast for other server-server links.

The architectures and algorithms for scalable wide area publish subscribe systems have been studied exten-
sively [10,12]. The principles and techniques used for routing and forwarding notifications between servers in
distributed content-based publish subscribe systems are similar to those used by IP routers in order to support
IP multicast. In [13], an efficient multicast protocol for content-based publish subscribe systems is presented.
The challenge of utilizing native multicast support for content-based publish subscribe systems is well known [7].
Simulation results for some algorithms for distributing notifications are presented in [10], where the network
nodes are treated as the communication endpoints. Complementary to the WAN case is the challenge of effi-
ciently distributing very high rate event notifications between a large number of clients within a smaller region,
e.g. a LAN or an administrative domain. In Fig. 1 this corresponds to the notifications forwarded over the
links numbered 5,6, and to a potentially large number of other interested clients within the domain. In Sect. 4
performance issues and measurements are presented which show that content-based publish subscribe systems
may handle the rates required for streaming compressed high quality video.

3. FINE GRANULARITY VIDEO STREAMING

The different techniques we use to achieve fine granularity selectivity along each video quality dimension is
described in this section. Different video coding techniques were considered in the design, but the judgements
were based on the suitability with respect to content-based networking and similarities with MPEG. In other
words, the techniques used are well known in the fields of video compression and streaming.

Each video server connects to the content-based network to publish notifications. Each notification encapsu-
lates encoded video data and contains a subset of the video data for a single frame. The content-based network
is then responsible for forwarding and delivering each notification to video clients having matching subscriptions.

The purpose of the coding and encapsulation scheme presented in this section is to allow each video receiver
to independently tradeoff between the video quality characteristics and the resource requirements. The coding
scheme supports selectivity along the following video quality dimensions: region of interest, signal to noise ratio,
colors, and temporal resolution. In the following we describe the techniques used to achieve selectivity for each
of these dimensions.



Region of interest selectivity
col

row 0 1 n
: — e
| block
' = Vava
m

Figure 2. Region of interest selectivity scheme.

3.1. Region of Interest Selectivity

Video receivers may select the region of interest in terms of so-called superblocks. A superblock contains a
number of 16 x 16 pixel macroblocks. Each macroblock contains luminance and chrominance blocks. This is
illustrated in Fig. 2. A superblock represents the smallest selectable region and is self contained. Superblocks
are indexed by row and a column number and the attribute names are row and col respectively. This implies
that if a video receiver is interested in a region which is located within a superblock, the client must receive video
data for the whole superblock and discard the uninteresting parts. Given that each superblock is self contained,
motion compensation must be restricted to within such superblocks. However, each superblock may be analyzed
by a separate computer in a distributed video content analysis application.

3.2. Signal to Noise Ratio Selectivity

In the signal to noise ratio (SNR) dimension, a layered coding is used. Each block within a macroblock is
transformed to the frequency domain by using the Discrete Cosine Transform (DCT). The DCT coefficients
are quantized and viewed as bit-planes. These bit-planes have certain statistical properties which are exploited
by variable length coding. The different bit-planes are mapped to different SNR layers, as illustrated in Fig.
3. Notifications for the base layer contain the most significant bits. The sign bit for a DCT value is encoded
together with its most significant bit. The attribute for selecting the signal to noise ratio is named ¢l (quality).
The reader is referred to [14] for an in-depth description of bit-plane coding for Fine Granularity Scalability in
MPEG-4.

Currently, neither the quantization nor the partitioning of the bit planes into SNR layers are varied during
a video streaming session. However, we consider the alternative approach of allocating a fixed number of bits to
the different SNR layers, by varying the quantization and/or the partitioning into bit planes.

3.3. Luminance and Chrominance Selectivity

With respect to colors, the luminance part of the video signal is handled separately from the chrominance part.
The video encoder takes as input the video signal represented in YUV420 planar format. In other words, the
chrominance part of the signal is sub-sampled 2:1 both horizontally and vertically. Hence, each 16 x 16 pixel
macroblock consists of four luminance 8 x 8 blocks, a 8 x 8 U block, and a 8 x 8 V block.

Currently, the video server partitions the luminance part (Y) and the two chrominance parts (U and V) of the
video signal in the same number of SNR layers. The encoded luminance part of the video signal is sent in separate
notifications, while each notification carrying color information encapsulate both U and V. The motivation for
this approach was to increase the payload in each notification and thereby reduce the total number of notifications
generated. The number of notifications could have been kept the same by encapsulating U and V in different
notifications and halving the number of SNR layers for the U and the V components. This illustrates a tradeoff
where the expected usage is taken into account, i.e. that video receivers usually are interested in either both
color components or none.



Signal to noise ratio selectivity
ql bit
sign

0— 10 MSB
.. MSB-1

e
2

2—_ 1

3/ 0 LSB

01 2 62 63
DCT values of 8x8 block

Figure 3. Signal to noise ratio selectivity scheme.

The attribute for selecting luminance and chrominance is named f (color flag). As an example of the fine
granularity selectivity, a receiver may subscribe to the luminance part of the video signal at a higher SNR than
the chrominance part, or visa versa. Currently, this requires two subscriptions, e.g. [f=0 ql<=3] and [{=1 ql<=1].
This could also be done by having a scheme with “quality luminance” and “quality chrominance” attributes.
Then only a single subscription would have sufficed. However, the important point is that each video receiver
may independently tradeoff luminance and chrominance according to its own preferences.

3.4. Temporal Resolution Selectivity

The temporal dimension is also realized by a layered coding scheme. The first frame in a group of pictures (GOP)
is intra coded and thus self contained. The rest of the GOP is coded to exploit temporal redundancy. Each
additional temporal layer increases the frame rate.

The currently implemented scheme is illustrated in Fig. 4. Each additional temporal layer adds a frame
in between all frames at lower layers. Consequently, the frame rate is doubled when adding a temporal layer.
Additionally, irrespectively of the number of layers a client requests, frames are spread out evenly in time. The
first frame in a GOP, with index 0, is self contained. The other frames are predictively coded, similar to P frames
in MPEG. The reference frame used for calculating the difference is the previous frame at a lower layer. Only
the difference between a block in the reference frame and a block in the current frame is coded. The attribute
for selecting the temporal resolution is named ¢/ (temporal layer).

An advantage of such a scheme is that the end to end delay can be kept low, because the sender may encode
a frame as soon as it becomes available. Only (some of the) previously encoded frames are used when encoding
a new frame.

The amount of redundant information is small in the two lowest temporal layers. But when adding more
layers, the amount of redundant information may increase. As an example, consider the case where the content
of a block changes between GOP index 0 and 1, but then remains the same for the rest of the GOP. First the
block difference for the frames with GOP index 0 and 1 is encoded and sent at layer 3. Then the frame with
GOP index 0 is again used as reference when encoding the frame with GOP index 2. This is necessary, because
some video clients may receive only notifications for temporal layer 2 and below. Consequently, the information
sent at layer 2 for this block is the same as the information sent previously at layer 3. The same will then happen
for the frame with GOP index 4, which is sent at layer 1.

We are currently working on a scheme which reduces the bit rate at the cost of an increased end to end delay.
The amount of redundant information sent at the higher layers can be reduced by allowing references to future
frames, similar to B frames in MPEG. By following the example above, the block can then be encoded in the
frame with GOP 4. Then the frames with GOP indexes 1, 2, and 3 could be encoded very efficiently relatively
the frame with GOP index 4. Such out of ordering encoding increases the end to end delay and requires more
buffering and computational resources.



Temporal resolution selectivity =~ — references
tl

3
2
1
0
0 1 2 3 4 5 6 1 0
b GOP index ik

Figure 4. Temporal resolution selectivity scheme.

3.5. Fine Grained Selectivity and Network Efficiency

With typical network equipment each packet has a high initial cost and an additional cost per byte of payload.
Therefore, in order to provide efficient network utilization for high volume video data, each packet should carry
a reasonable amount of the video information. On the other hand, in order to provide fine granularity selectivity
and a good match between client interests and what is actually received over the network, each notification should
contain little information. Clearly, the challenge is to balance selectivity against efficient network delivery.

The number of superblocks, SNR layers, and color layers determine the tradeoff between selectivity and the
number of notifications generated. The maximum number of notifications generated per frame in our coding
scheme is given by: #superblocks x #color layers x #SNR layers. Hence, the granularity may be customized in
order to suit the requirements imposed by a given application. As an example, a CIF sized video frame (352 x 288
pixels) and a superblock size of 11 x 6 macroblocks implies three superblock rows and two superblock columns.
With four SNR layers and two color layers, the maximum number of notifications per frame is 6 x 2 x 4 = 48.
In the following section, this level of granularity has been used for performance measurements.

4. PROTOTYPE

In the following we present our implementation for video streaming over content-based networking. First some
information regarding content-based networking is given. Then we present the video streaming software and
performance numbers related to coding efficiency and processing requirements.

4.1. Content-Based Networking Software

For content-based networking we have used Siena [12], a distributed content-based publish subscribe system. In
the DMJ project, we have made some extensions to the Siena software. The motivation for these extensions was
to support applications requiring high notification rates in combination with a large number of interested receivers
within a smaller region, such as a LAN or an administrative domain. The architecture of our distributed content-
based event notification service is described in [15]. The service takes advantage of the available performance and
native multicast support provided by current “off the shelf” network equipment. In short, a mapping from the
“event notification space” to IP multicast addresses is specified. Each notification is mapped to an IP multicast
address and efficiently forwarded to all clients having matching subscriptions. The service is designed for use
within a LAN or an administrative domain. A client may publish several thousand notifications, carrying several
MBytes of data, per second. The service is unaffected by the number of interested parties, due to the use of
native network level and link level multicast. Such rates are more than sufficient for streaming compressed high
quality video.

It should be noted that Siena in its current implementation uses a text based format, which may incur
a substantial overhead when transferring compressed binary video data. In the following, we were therefore
restricted to measure data rates as seen by the video receivers. A more efficient implementation of encapsulation
in Siena is future work.



YUWRenderer control &
SPECIFY SUBSCRIPTIOMS:

Stream Id: sid, Time: 1 [0 - 3], Quality. gl [0 - 3]
Color: T [0 - 1], Column: col [0 - x], Row: row [0 - 4]

sid=1tl<=2 gl<=3f<=1col<=2 row<=2 W’g
sid=1ltlc=3ol<=1f<=1colc<=2 row<=2 A
= 1=
STATISTICS

Time: 100 sec [capture=1083832305076]

Received

Frames: recv: 2012, dropped: 0, Tfsec: 20
Decoded

Frames: decoded: 3012, ffsec: 20, gop_index: 1

Delay ms: min: 26, max: 428, cur: 90

Notif: tot: 144576, nfsec 1445, n/f 48

Byies tot kB 15648, kBjsec: 156, B/f: 5195, B/n: 108

Intra B/f: max: 19799, avg: 18635, cur 18538, avg bfpix: 1.54%

Diff B/f. max: 13403, avg: 312%, cur: 2323, avg bfpix: 0.246
Rendered

Delay end to end ms: 92
STATUS:

Subscribed 1o: sid=11<=2 gl<=3 f<=1col<=2 row<=2

Exit |

Figure 5. An experimental video client controller.

4.2. Video Streaming Software

The presented video streaming software exploits well known video compression techniques, but is implemented
from scratch because other MPEG implementations seemed unsuited. The software is implemented in the Java
programming language. Different versions of Java, J2SE 1.4 and 1.5 from Sun Microsystems, have been used
and tested. The software is open source and is available from our project web page [6].

Fig. 5 shows a screenshot of an experimental video receiver controller. The controller is used to interactively
modify subscriptions and to subscribe and unsubscribe to video data. During execution, the controller displays
some statistics about the received, decoded, and rendered video data.

Fig. 6 illustrates that different video receivers may independently select different parts of the video signal.
(If the images are unclear in the printed copy, please refer to the electronic version.) The figure illustrates
the effect of selecting full quality and colors (upper left), only luminance, only color and both (upper right),
only luminance and some superblocks at lowest quality (lower left), and only luminance and low quality, except
for a region having full quality and colors (lower right). A video receiver may also specify different temporal
resolutions for different superblocks within a frame.

4.3. Video Streaming Performance Measurements

In this section we present performance measurements for coding efficiency and processing requirements for the
supported video quality dimensions, i.e. region of interest, signal to noise ratio, colors, and temporal resolution.
The effect of varying the quantization scale was also measured. Ideally, the bit rates and processing requirements
should drop when a video receiver reduces the quality in any dimension. All measurements were done at the
video receiver side.

With respect to the bit rates, only the amount of video data was measured. The protocol overhead asso-
ciated with encoding the attribute names and the other attribute values in each notification is not measured.
The overhead depends on the length of the attribute names and the encoding of the values. In addition to
the attributes already described, the video streaming software internally uses a sequence number attribute, a
timestamp attribute, and an attribute for the binary compressed video data. All attribute values are integers,
except for the video data which is encoded in a byte array.



Y 19
il mrEGa
WORLD ERRWAd [l WORLD

gl MPEGA4
WORLD RS I WORLD

Figure 6. Four video clients with different interests.

With respect to processing requirements, a single thread was responsible for decoding the video data received
in notifications. The percentage of time (user and system) spent by this thread was measured by instrumenting
the software with native code using the times system call. The numbers gathered were consistent with the
numbers reported by programs such as top and zosview.

For the measurements, we used some well known video test sequences. These sequences are News and Foreman
in CIF resolution (352 x 288 pixels). The full frame rate in all experiments was 30 frames pr. second. The News
sequence has steady camera and little motion, while the Foreman sequence has camera motion. Standard dual
AMD Athlon MP 2400+ PCs running Debian GNU/Linux were used. The PCs were connected by 100Mbps
switched Ethernet. Java Standard Edition build 1.4.2_.03-b02 was used for compilation and execution.

4.3.1. DCT Coefficient Quantization

In this experiment the compression performance for varying values of the quantizer scale (qscale) was measured.
The purpose was to fix the gscale value for the other experiments. The gscale value determines the quantization
of the DCT coefficients. The video receiver subscribed to the full temporal resolution, all quality layers, all
superblocks, but only the luminance part of the video signal. The decompressed video was written to a file and
compared to the video signal provided to the encoder. The peak signal to noise ratio (PSNR) was calculated,
based on the mean square error. The average number of bytes pr. frame and the number of bits pr. pizel (bpp)
for both the intra frames and the difference frames were measured. The results are listed in Table 1. The table
presents the number of kilo bits pr. second (kbps). A gscale value of four gives relatively good PSNR for both
the News and the Forman sequence. For the Foreman sequence and low gscale values, the number of bits pr.
pixel for the difference coded frames are similar to those for the intra coded frames. The reason is that motion
compensation is not implemented in the current prototype.

Based on these observations, a gscale value of four and only the News sequence is used in the rest of the
experiments.



Table 1. DCT coefficient quantization measurements.

News CIF Y

gscale PSNR bpp intra bpp diff  kbps
0 46.46 4.15 0.69 3495

1 44.47 2.42 0.49 2275

4  39.32 1.18 0.20 1003

8 35.50 0.82 0.11 621

16 31.77 0.56 0.05 366

32 28.38 0.36 0.02 207

Foreman CIF Y
gscale PSNR bpp intra bpp diff  kbps

0 4799 4.87 3.98 12456
1 43.38 2.88 2.93 8893
4 36.25 1.33 1.06 3339
8  32.72 0.88 0.51 1703
16 29.53 0.58 0.22 819
32 26.57 0.39 0.08 377

Table 2. Region of interest measurements.

News CIF Y

col row % CPU bppintra bpp diff kbps
0 0 9.50 0.70 0.16 116
0 1 11.82 1.20 0.29 208
0 2 5.79 1.52 0.03 114
1 0 7.08 0.88 0.20 147

1 1 11.99 1.34 0.40 268

1 2 8.17 1.44 0.12 149
Sum 54.35 1.18 0.20 1002
All 55.37 1.18 0.20 1003

4.3.2. Region of Interest Selectivity

The purpose of this experiment was to validate that each superblock is encoded independently. Hence, the
data rates and processing requirements should drop accordingly when only some superblocks are received and
decoded. Only the luminance part of the video signal was received, but all SNR layers and the full temporal
resolution.

First the coding efficiency for each superblock was measured by changing the values for the row and the
column attributes in the subscriptions. The results are listed in Table 2. The table illustrates that both the
processing requirements and the bit rates are reduced when only a single superblocks is received. The processing
requirements and bit rates vary somewhat between the different superblocks due to differences in the video
content from superblock to superblock. In the second to last row the numbers for all superblocks have been
added or averaged. The last row contains the measured numbers when subscribing to all superblocks at once.
The numbers are almost identical.

We also measured the processing requirements as a function of the number of superblocks decoded. The
numbers are presented in Fig. 7. The measured values as well as the average values are plotted. E.g., in the
case when four superblocks were received, the CPU requirements were measured for different combinations of
superblocks in order to reduce the effect of differences in media content for different superblocks. The dashed line
represents the linear approximation and indicates that the processing requirements are linearly in the number of
superblocks decoded.



-~ y=9.23x +0.11
701 o avg. measurements
colL_+__measurements )
&
=50 .
g 4
2% :
O 3t R
: ey
20
[
10 k
¢
S 5 6

3 4
SB count
Figure 7. Region of interest measurements.

Table 3. Signal to noise ratio measurements.

News CIF Y
ql PSNR % CPU bpp intra bpp diff kbps
+ 3 39.32 55.37 1.18 0.20 1003
+ 2 34.72 54.20 0.72 0.11 592
+1 30.24 53.31 0.46 0.06 349
base  26.63 53.10 0.29 0.03 213

These two experiments show that each superblock is handled individually and that processing and bandwidth
consumption scale according to the regions of interest.

4.3.3. Signal to Noise Ratio Selectivity

The purpose of this experiment was to measure the bit rates at the different quality layers. The full temporal
resolution, but only the luminance part of the video signal was received. The number of quality layers was
reduced by one, until the video receiver only received the base layer. The results are listed in Table 3. From the
table, it can be seen that the decoding processing requirements are not significantly reduced when reducing the
number of SNR layers.

From the table it can be seen that the PSNR decreases as the number of SNR layers are reduced. The
required bit rates also decreases. By comparing the numbers in this table with the numbers in Table 1, it can
be seen that reducing the number of SNR layers is similar to increasing the gscale value.

4.3.4. Luminance and Chrominance Selectivity

In this experiment, the bit rates and processing requirements were measured for receiving luminance and chromi-
nance information separately and combined. The full temporal resolution and all SNR layers were received. The
measured results are presented in Table 4. From the table it can be seen that both processing and bit rates
are reduced when only luminance or chrominance video data is received. The numbers for both bit rates and
processing requirements add up. This shows that the luminance and the chrominance part of the video signal
are handled separately.

4.3.5. Temporal Resolution Selectivity

The effect of reducing the frame rate by subscribing to a reduced number of temporal layers was measured in this
experiment. All superblocks were received in full quality, but only the luminance part. The measured results are
presented in Table 5. The full temporal resolution was 30 frames pr. second, while the base layer represents 3.75
frames pr. second. The table shows that both processing and bit rates are reduced when the number of temporal
layers is reduced, although not proportionally. At the base layer, only the intra coded frames are received. Intra



Table 4. Luminance and chrominance measurements.

News CIF
f % CPU bppintra bpp diff kbps
YUV 78.00 1.55 0.24 1257
uv 23.99 0.37 0.04 253
Y 55.37 1.18 0.20 1003

Table 5. Temporal resolution measurements.

News CIF Y
tl % CPU bpp intra bpp diff kbps
+3 55.37 1.18 0.20 1003
+ 2 38.33 1.18 0.27 774
+1 26.40 1.18 0.33 586
base 19.34 1.18 0.00 448

coded frames are more demanding in terms of both processing and bit rate requirements. The average number
of bits per pixel for the difference frames increases as the number of temporal layers is reduced. The reason is
most likely that the time interval between frames increases as the number of temporal layers is reduced, and
therefore the difference between the frames is also bigger.

5. CONCLUSION AND FURTHER WORK

In this paper, we have presented an approach for exploiting content-based networking for video streaming. The
novel feature is that each video receiver is provided with fine grained selectivity along different video quality
dimensions, while efficient delivery, in terms of bit rates and end node processing requirements, is maintained.
The video quality dimensions considered in this paper are region of interest, signal to noise ratio, colors, and
temporal resolution. A prototype is implemented as a proof of concept. Performance measurements show that
bandwidth and processing requirements decrease significantly when video quality is reduced in the different
dimensions. The software is available as open source.

We are currently working on motion compensation, adaptation, and spatial scalability support. With respect
to adaptation, video receivers may change their subscriptions in order to reduce the resource requirements.
Additionally, the content-based network itself may perform adaptation. Closely related to resource availability
is Quality of Service issues, which is considered interesting in the content-based networking research community.
We are also considering closer integration with MPEG-4, e.g., each superblock may be encoded as a video object
plane. The coding scheme, using attribute names and values, may also be suitable for storage in database
systems.

ACKNOWLEDGMENTS

We would like to thank all persons involved in the Distributed Media Journaling project for contributing to the
ideas presented in this paper. Additionally, Hans Ole Rafaelsen took part in valuable discussions and commented
on both the ideas and the implementation issues. We also would like to thank the reviewers for valuable feedback.

The DMJ project is funded by the Norwegian Research Council through the DITS program, under grant no.
126103/431.



10.

11.

12.

13.

14.

15.

REFERENCES

. J. Liu, B. Li, and Y.-Q. Zhang, “Adaptive Video Multicast over the Internet,” IEEE Multimedia 10, pp. 22—
33, Jan-Mar 2003.

. S. McCanne, M. Vetterli, and V. Jacobson, “Low-Complexity Video Coding for Receiver-Driven Layered
Multicast,” IEEE Journal of Selected Areas in Communications 15, pp. 983-1001, August 1997.

. V.S. W. Eide, F. Eliassen, O.-C. Granmo, and O. Lysne, “Supporting Timeliness and Accuracy in Real-time
Content-based Video Analysis,” in Proceedings of the 11th ACM International Conference on Multimedia,
ACM MM’03, Berkeley, California, USA, pp. 21-32, November 2003.

. D. Chambers, G. Lyons, and J. Duggan, “Stream Enhancements for the CORBA Event Service,” in Pro-
ceedings of the ACM Multimedia (SIGMM) Conference, Ottawa, pp. 61-69, October 2001.

. V. S. W. Eide, F. Eliassen, and J. A. Michaelsen, “Exploiting Content-Based Networking for Video Stream-

ing,” in Proceedings of the 12th ACM International Conference on Multimedia, Technical Demonstration,

ACM MM’04, New York, New York, USA, pp. 164-165, October 2004.

“The Distributed Media Journaling Project.” http://www.ifi.uio.no/~dmj/.

P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many Faces of Publish/Subscribe,”

ACM Computing Surveys (CSUR) 35, pp. 114-131, June 2003.

. A. Carzaniga, M. J. Rutherford, and A. L. Wolf, “A Routing Scheme for Content-Based Networking,” in
Proceedings of IEEE INFOCOM 2004, (Hong Kong, China), March 2004.

. B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps, “Content Based Routing with Elvin4,” in

Proceedings of AUUG2K, Canberra, Australia, June 2000.

L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman, “Exploiting IP Multicast in

Content-Based Publish-Subscribe Systems,” in Proceedings of Middleware 2000, LNCS 1795, pp. 185-207,

Springer-Verlag, 2000.

P. R. Pietzuch and J. M. Bacon, “Hermes: A Distributed Event-Based Middleware Architecture,” in Pro-

ceedings of 1st International Workshop on Distributed Event-Based Systems (DEBS’02), Vienna, Austria,

pp- 611-618, IEEE Computer Society, July 2002.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and Evaluation of a Wide-Area Event Notification

Service,” ACM Transactions on Computer Systems 19, pp. 332-383, August 2001.

G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman, “An Efficient

Multicast Protocol for Content-Based Publish-Subscribe Systems,” in Proceedings of ICDCS, pp. 262-272,

IEEE, 1999.

W. Li, “Overview of Fine Granularity Scalability in MPEG-4 Video Standard,” IEEE Transactions on

Clircuits and Systems for Video Technology 11, pp. 301-317, March 2001.

V. S. W. Eide, F. Eliassen, O. Lysne, and O.-C. Granmo, “Extending Content-based Publish/Subscribe

Systems with Multicast Support,” Tech. Rep. 2003-03, Simula Research Laboratory, July 2003.



Paper VI

Real-time Video Content Analysis: QoS-Aware Application
Composition and Parallel Processing

Viktor S. Wold Eide, Ole-Christoffer Granmp
Frank Eliassen, and Jgrgen Andreas Michaelsen

Published: Submitted to ACM Transactions on Multimedia Computing, Communi-
cations, and Applications (TOMCCAP), April 2005.

Author Contribution: This is a project article which extends Paper V and integrates
the results presented in Paper IV, VI, and VII. Additionally, the article includes a new
prototype application which is based on the software described in these earlier papers.
Hence, the contributions of Eide follow from the contributions in Paper IV, V, VI,
and VII. The necessary additional implementation work as well as the experimental
measurements were done collaboratively by Granmo, Michaelsen, and Eide. The
conceptual integration was done collaboratively by all authors, while the writing of
the paper was done mainly by Granmo and Eide. The other authors commented on
draft versions of the paper.

5The two first authors are listed alphabetically

165






Real-time Video Content Analysis: QoS-Aware
Application Composition and Parallel Processing

VIKTOR S. WOLD EIDE!

Simula Research Laboratory
OLE-CHRISTOFFER GRANMO!
Agder University College

FRANK ELIASSEN

Simula Research Laboratory

and

JORGEN ANDREAS MICHAELSEN
University of Oslo

Real-time content-based access to live video data requires content analysis applications that are
able to process video streams in real-time and with an acceptable error rate. Statements as these
express quality of service (QoS) requirements. In general, control of the QoS provided can be
achieved by sacrificing application quality in one QoS dimension for better quality in another,
or by controlling the allocation of processing resources to the application. However, controlling
QoS in video content analysis is particularly difficult, not only because main QoS dimensions like
accuracy are non-additive, but also because both the communication- and the processing resource
requirements are challenging.

This paper presents techniques for QoS-aware composition of applications for real-time video
content analysis, based on dynamic Bayesian networks. The aim of QoS-aware composition is to
determine application deployment configurations which satisfy a given set of QoS requirements.
Our approach consists of: (1) an algorithm for QoS-aware selection of configurations of feature
extractor and classification algorithms which balances requirements for timeliness and accuracy
against available processing resources, (2) a distributed content-based publish/subscribe system
which provides application scalability at multiple logical levels of distribution, and (3) scalable
solutions for video streaming, filtering/transformation, feature extraction, and classification.

We evaluate our approach based on experiments with an implementation of a real-time motion
vector based object-tracking application. The evaluation shows that the application largely be-
haves as expected when resource availability and selections of configurations of feature extractor
and classification algorithms varies. The evaluation also shows that increasing QoS requirements
can be met by allocating additional CPUs for parallel processing, with only minor overhead.

LThe two first authors are listed alphabetically

The Distributed Media Journaling (DMJ) project is funded by the Norwegian Research Council
through the DITS program, under grant no. 126103/431.

Eide, Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway, viktore@simula.no
Granmo, Agder University College, Grooseveien 36, N-4876 Grimstad, Norway, ole.granmo@hia.no
Eliassen, Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway, frank@simula.no
Michaelsen, University of Oslo, P.O. Box 1080 Blindern, N-0314 Oslo, Norway, jorgenam@ifi.uio.no
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2005 ACM 0000-0000/2005/0000-0001 $5.00

ACM TOMCCAP, Vol. x, No. x, x 2005, Pages 1-30.



2 . Eide et al.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distri-
buted Systems— Distributed applications; D.2.11 [Software Engineering]: Software Architec-
tures—Domain-specific architectures; 1.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing— Video analysis

General Terms: Algorithms, design, measurement, performance

Additional Key Words and Phrases: Real-time video content analysis, parallel processing, task
graph scheduling, event-based communication, publish/subscribe, QoS and resource management

1. INTRODUCTION

There is an increasing need for applications that can analyse the content of multi-
ple media streams in real-time. Real-time performance is important for interactive
applications and feedback control systems, such as smart rooms, automated surveil-
lance systems, and road traffic control systems[Beymer et al. 1997; Chen et al. 2001;
Ozer and Wolf 2001].

Real-time content analysis is an active research field where efficient techniques
for e.g. multi-object detection and tracking have been found. Pattern classification
systems which automatically classify media content in terms of high-level concepts,
represent one particular approach. Roughly stated, the goal of such pattern clas-
sification systems is to bridge the gap between the low-level features produced
through signal processing (filtering and feature extraction) and the high-level con-
cepts desired by the end user. In this context, real-time performance implies that
the filtering, feature extraction, and classification of media data is performed at
least as fast as the data is made available to the application.

When building a real-time content analysis application, not only must the pro-
cessing properties of the application be considered, but also the content analysis
properties. For instance, misclassifying events when monitoring an airport for se-
curity reasons may be more critical than misclassifying events when indexing a
baseball video stream. Furthermore, when a classification error occurs, the conse-
quences of various types of errors may have different costs. E.g., it may be more
costly to misclassify a friendly airplane as hostile, than to classify an enemy airplane
as friendly (depending on the situation).

Application critical properties as those discussed above can be referred to as
Quality of Service (QoS) dimensions. In this paper, we consider the QoS dimensions
latency, temporal resolution, and accuracy. We view these as the most relevant
for the targeted application domain. However, controlling these QoS dimensions of
video content analysis applications is difficult, since some of them (e.g., accuracy) do
not have strict additive behavior. In contrast, in earlier work on QoS management,
it is not unusal to assume additive behavior of QoS dimensions to simplify the
reasoning about and control of end-to-end QoS, as in [Gu and Nahrstedt 2005].

In this article we present techniques for QoS-aware composition of applications
for real-time video content analysis. QoS-aware application composition is the pro-
cess of determining the deployment configuration of an application to satisfy a given
set of application QoS requirements. First of all, we propose a dynamic Bayesian
network (DBN) algorithm for QoS-aware selection of feature extractor- and clas-
sification configurations. The algorithm balances requirements of timeliness and

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 3

accuracy against available processing resources. Additionally, the algorithm ex-
ploits that DBNs allow features to be removed during classification, at the cost of
decreased accuracy, but for the benefit of reduced processing requirements (CPU
and network). Configurations are assumed deployed in a particular generic appli-
cation architecture that allows applications to be independently distributed and
parallelized at muliple logical levels of processing. In essence, we propose scal-
able solutions for video streaming, filtering/transformation, feature extraction, and
classification. This includes a novel classifier that parallelize inference in dynamic
Bayesian networks. Furthermore, a scalable content-based publish/subscribe inter-
action mechanism supports communication of video and feature data among multi-
ple distributed senders and receivers. The purpose is to allow processing resources
to be focused at points in the processing that are not performing well enough to
satisfy the required QoS.

The work presented in this article extends the work presented in [Eide et al.
2003], both in terms of architecture and evaluation of our work. In particular we
have extended the content-based publish/subscribe service with multicast support
[Eide et al. 2003] and implemented video streaming on top of this service [Eide
et al. 2004; 2005]. Furthermore, we provide significantly extended empirical results
based on observations of a real video content analysis application that integrates
the use of the newly developed content-based publish/subscribe service throughout
the whole application architecture. This way we are able to observe if the QoS
properties of the outputs of the application are as expected. The new experiments
show that the bottlenecks observed in [Eide et al. 2003] do not occur with the use
of the new video streaming service.

The rest of this paper is structured as follows: First, in Section 2, we present a
generic architecture for (video) content analysis applications, and a QoS model for
such applications. We also discuss architectural requirements that are important
for supporting QoS-aware composition. Based on these requirements, details of our
approach to QoS-aware composition are presented in Section 3. Additionally, we
propose scalable solutions for communication, streaming, filtering/transformation,
feature extraction, and classification. In Section 4, we present evaluation results,
while section 5 compares our approach with representative previous work. Lastly,
in Section 6, we conclude and provide some outlook to further work.

2. GENERIC APPLICATION ARCHITECTURE

Our proposed solution to QoS-aware application composition assumes a partic-
ular generic application architecture that allow applications to be independently
distributed and parallelized at multiple logical levels. This section covers the appli-
cation architecture, the QoS model, and the architectural requirements important
for supporting QoS-aware composition of video content analysis applications.

2.1 Generic Content Analysis Architecture

A general approach for building content analysis applications is to combine low-level
quantitative video processing into high-level concept recognition. Typically, such
applications are logically organized as a hierarchy of modules, each encapsulating a
video processing task, as illustrated in Figure 1. A task is a well-defined algorithm
involved in the video analysis process.

ACM TOMCCAP, Vol. x, No. x, x 2005.



4 . Eide et al.

Classification @
©

feature >
Extraction @ @ @
Filtering w C? : Extracted Features
: Filtered media stream

sueaming® @ 4 : Mediastream

Fig. 1.  Content analysis hierarchy example.

C : Classification

E :feature Extraction
F :Filtering

S : Streaming

A

-

We define task categories according to their functionality in the system. At the
lowest level of the hierarchy there are tasks representing video streaming sources. At
the level above, the video streams are filtered and transformed by filtering tasks.
The transformed video streams are then fed to feature extraction tasks as video
segments (e.g., video frame regions). Feature extraction tasks operate on the video
segments from the transformed video streams, and in the case of a video frame
region, calculate color, texture, shape, and motion characteristics. Finally, results
from feature extraction tasks are reported to classification tasks higher up in the
hierarchy that are responsible for detecting high level domain concepts, such as a
moving object in a video stream. In other words, classification is interpretation of
extracted features in some application specific context. We will hereafter denote
the streaming, filtering, feature extraction, and classification by the letters S, F, E,
and C respectively, as seen in Figure 1.

Tasks generally form a directed acyclic graph where the tasks are represented by
the nodes in the graph, and the edges represent the directed flows of data between
tasks. We refer to a task graph specifying the architecture of a video content
analysis application as the composition specification of the application.

Often, the above type of content analysis applications are implemented as mono-
lithic applications making reuse, development, maintenance, and extensions by
third parties difficult. Such applications are often executed in a single process,
unable to benefit from distributed processing environments. However, it should be
possible to deploy the tasks of a task graph to different processors within a computer
and/or to different interconnected computers. In this case the edges are mapped
to network level bindings or to intra-host communication mechanisms, depending
on the location of communicating tasks. We discuss this further below.

2.2 Application QoS Model

In this article we use to the term QoS to refer only to the timeliness and accuracy
of the outputs of the application. The QoS model therefore includes the following
QoS dimensions: accuracy, temporal resolution, and latency.

The accuracy of a media content analysis application can be characterized by its
estimated error rate, defined as the number of misclassifications divided by the total
number of classifications when analysing a set of media streams. Depending on the

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 5

media content analysis application, various levels of error rate may be acceptable.
E.g., misclassifying events when monitoring an airport for security reasons may be
more critical than misclassifying events when indexing a baseball video stream.

The temporal resolution dimension specifies the minimum temporal length of an
event that the content analysis application should be able to detect. According to
the Nyquist sampling theorem [Pratt 1991], any function of time (e.g., stream of
high-level concepts) whose highest frequency is W can be completely determined
by sampling at twice the highest frequency, 2W. In other words, if a stream of
high-level concepts is sampled at a frequency less than twice the frequency of the
finest temporal details in the stream, high-level concepts may be missed. Hence,
the value of the temporal resolution dimension determines the required sampling
frequency of the media streams to be analysed, i.e., the frame rate in video analysis.

The latency dimension specifies the maximum acceptable elapsed time from an
event occurs in the real world until it is reported by the appropriate classifier
algorithm. For real-time video content analysis applications that are interactive or
feedback control based, this dimension is important.

In general, different classes of quality of service can also be identified, varying
from best effort service to guaranteed service. The latter class requires support from
the system in terms of resource reservation and admission control, while the former
does not. Although problems of resource reservation and admission control have
been studied for a long time, their solution has not generally been integrated into
more general-purpose operating systems and networks. We therefore restrict the
class of considered processing platforms, to general-purpose ones without special
real-time processing capabilities. However, we do assume that we have some level
of control over the load of competing applications in the processing environment.
Furthermore, we believe our results can easily be adapted to take advantage of
processing platforms providing real-time scheduling policies.

2.3 Application Architectural Requirements

It seems evident that the resource requirements for the application domain of real-
time video content analysis are very challenging and will most likely remain so in
the near future. This calls for an architecture that is scalable in the sense that
the performance of the application scales well with the amount of processing re-
sources allocated to it. Scalability is required in order to be able to cope with
increasing QoS requirements and coordinated analysis of an increasing number of
media streams. A scalable application architecture can generally only be obtained
by adopting distribution as its basic principle. Scalability of distributed applica-
tions is usually achieved by parallelizing application algorithms and distributing the
processing of their parts to different processors. The relative complexity of stream-
ing, filtering/transformation, feature extraction, and classification depends on the
application. Therefore, the architecture should support focusing of processing re-
sources on any given logical level, independently of other logical levels. E.g., if only
the filtering is parallelized and distributed, the feature extraction and the classifica-
tion may become processing bottlenecks. A scalable interaction mechanism which
supports such independent parallelization is also required.

The level of accuracy that can be supported by a video content analysis appli-
cation depends on the misclassification behavior (error rate) of the selected con-

ACM TOMCCAP, Vol. x, No. x, x 2005.



6 . Eide et al.

Tracked
Classification 4 Ppostion=(3,3)

@

1234

i
: 2
feature @ OT: Object Tracking
Extraction ry ME: Motion Estimation
m CF : Color Filtering
H L VS: Video Streaming
Filtering @ . 4 : Event Notification
‘m 4 Filtered media stream
Streaming @ L 4 : Mediastream

Fig. 2. The functional decomposition of the real-time object tracking application.

figuration of feature extractor and classifier algorithms. Hence, configurations of
such algorithms must be carefully selected based on the desired level of accuracy.
However, selecting configurations of algorithms which give a high accuracy might
result in increased processing time since configurations of algorithms with better
accuracy usually require more processing cycles than configurations with poorer
accuracy. Therefore, algorithms that can be used to decide whether a QoS require-
ment can be satisfied in a given distributed physical processing environment are
needed. This will include search for an appropriate configuration of feature extrac-
tor and classifier algorithms that provides the desired accuracy and that can be
allocated to different processors in such a way that the requirements for latency
and temporal resolution are fulfilled.

Reduced latency and improved temporal resolution may be achieved in a scalable
distributed architecture by allocating independent tasks to different processors. A
further improvement in temporal resolution may be achieved by deploying depen-
dent tasks as pipelines also on different processors. I.e., in a maximally distributed
video processing pipeline, a frame rate of R may be sustained if no task in the
pipeline has an average processing time per frame exceeding 1/R.

In the next subsection we describe some example task graphs. These will be used
to exemplify the functionality of the different parts of our application architecture.

2.4 Example Task Graphs

A composition specification of a content analysis application is a decomposition of
the video content analysis into tasks. The tasks form a task graph, as discussed
above. The granularity of the decomposition should be a modifiable parameter,
because the appropriate granularity depends on the processing environment at hand
and in particular on the number of processors available.

Figure 2 illustrates the functional decomposition of a content analysis application
for real-time tracking of a moving object in a video stream, the application hence-
forth used for illustration purposes. The video stream is filtered by an algorithm
doing video stream decoding and color-to-grey level filtering. The filtered video
frame is divided into m x n blocks (video segments) before a motion estimator cal-
culates their motion vectors. The block motion vectors are then received by a clas-
sification task (a so-called particle filter) and used for object detection and tracking.

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 7

‘@ Lracked Parallel processin,
Classification Y ‘fc"s"m'(s'a) A dfferntiovas
7'y 1‘12 ‘w_,.s*n" ry

g@ © e | CO: Coordination.
feature. @ @ PF : Particle Filtering
Extraction 'y ! ME: Motion Estimation
. » CF : Color Filtering
H VS: Video Streaming

— : E A . ege A
Filtering @,\!! @ A : Event Notification

: Filtered media stream
Streaming 4 :Video Stream

Fig. 3. A configuration of the real-time object tracking application where the computation at
several levels is parallelized.

We base our example application on motion vector calculation and particle filter-
ing, because these techniques are recent and promising approaches to object/region
tracking in video. To elaborate, calculation of motion vectors (also called optical
flow) is a typical pre-processing step in tracking of moving objects/regions[Okada
et al. 1996; Bors and Pitas 2000], and the particle filter is a promising approach to
object-tracking which allows, e.g., simultaneous tracking and verification [Li and
Chellappa 2002].

The content analysis task graph in Figure 2 can be executed as a pipeline, where
each level of the chain is executed in parallel. For instance, the application can be
executed on four processors, where the streaming is conducted from one processor,
the filtering is executed on a second processor, the motion estimation is conducted
on a third processor, and the classification on a forth processor. Such distribution
allows an application to take advantage of a number of processors equal to the
depth of the hierarchy.

Figure 3 illustrates a task graph with a finer granularity. The finer granularity
has been achieved by independently decomposing the filtering, feature extraction,
and classification into pairs of two tasks. Such decomposition opens up for focusing
the processing resources on the processing bottlenecks at hand. For instance, the
motion estimation could be conducted on two processors, while the classification,
i.e. particle filtering and coordination, can be conducted on three processors.

3. APPLICATION COMPOSITION

In this section we present the algorithms and mechanisms supporting QoS-aware
application composition. Input to the composition process is a task graph model of
the video content analysis application and meta data describing both the resource
requirements of each task and the processing environment. For a given input, the
process consists of the following two steps:

(1) Fine grained trading of accuracy against latency/temporal resolution. The
starting point is a “brute force” task graph. By a “brute force” task graph we
shall mean a task graph that contains the streaming, filtering, feature extrac-
tion, and classification tasks deemed relevant, without regard of the processing

ACM TOMCCAP, Vol. x, No. x, x 2005.



8 . Eide et al.

Classifier :
Spectication ———{__ Error Rete Estimator |

Error Rate '(E%(d' d ateh
Estimate ! Grap -?)agfleon X
"Brute Force" raphs
Task Graph ’4’{ ARCAMIDE ]7*
Latency and
Lo Candidate  Accuraty
Il\-llmrements Task Graph ;\Rﬂ%' rements

%nmim = Processing Time Estimator

Fig. 4. Structure of algorithm for controlling the accuracy and latency dimensions.

resources available. Tasks are removed iteratively from the task graph un-
til either the latency/temporal resolution requirement is met (success) or the
accuracy falls below the required level (failure).

(2) Scalable deployment and execution of the resulting task graph on multiple
processors in a distributed processing environment.

In the following, we first present the ARCAMIDE algorithm used for composition,
i.e., step one above. Then we discuss support for step two, i.e., scalable solutions
for communication, filtering/transformation, feature extraction, and classification.

3.1 Determining Accuracy and Latency

ARCAMIDE is a technique for fine grained trading of accuracy against latency/-
temporal resolution. As shown in Figure 4, ARCAMIDE includes the following
functionality:

—An error rate estimator measures the content analysis error rate of candidate task
graphs based on a specification of the classification goal (e.g., object tracking).
—A processing time estimator measures the latency and parallelizability of candi-
date task graphs, given a specification of the distributed processing environment
at hand.

—The ARCAMIDE algorithm systematically removes tasks from the task graph,
trying to reduce latency while at the same time minimizing loss of accuracy.

Based on the above functionality, ARCAMIDE seeks to produce a sequence of solu-
tion task graphs that provide a wide range of application composition latency /error
rate tradeoffs. Let us now turn to the details of ARCAMIDE by considering how
the sequence of solution task graphs actually is produced.

3.1.1 Task Graph- and Distributed Processing Environment Specification. As
shown in Figure 4, ARCAMIDE takes a “brute force” task graph as input. The
brute force task graph contains the S, F, E, and C-tasks deemed relevant for the
application. We assume that each task in the graph is annotated with its processing
time (the time elapsed from a task receives input until it has produced its output).
Furthermore, each edge is assumed annotated with the size (in bytes) of the data
communicated along the edge.

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 9

ARCAMIDE also needs a specification of the processing environment at hand,
i.e., the number and class of processors available as well as the network latency
and bandwidth between each pair of processors. To simplify the estimation of
latency, we assume that communication is contention free and that network latency
and bandwidth do not change. These assumptions are introduced to avoid the
additional complexity caused by communication contention, routing, etc. (which
are not the focus of this paper), while they still allow handling of a significant class
of distributed processing environments (e.g., dedicated computers connected in a
dedicated switched LAN).

3.1.2  Dynamic Bayesian Networks and Error Rate Estimation. In order to rea-
son about accuracy, ARCAMIDE also needs a specification of the classification goal
of the application. We specify classification goals by means of dynamic Bayesian
networks (DBNs) [Jensen 2001]. DBNSs represent a particularly flexible class of pat-
tern classifiers that allows statistical inference and learning to be combined with
domain knowledge. Indeed, DBNs have been successfully applied to a wide range of
video content analysis problems [Chang and Sundaram 2000; Naphade and Huang
2002; Garg et al. 2000].

The successful application of DBNs can be explained by their firm foundation in
probability theory, combined with the effective techniques for inference and learning
that have been developed. For instance, DBNs can learn to automatically associate
high-level concepts to video segments from manually annotated video segments, i.e.,
a training set of concept/feature associations. Generally stated, training consists
of finding a more or less accurate mapping between feature space and high-level
concept space, within a hypothesis space of possible mappings.

We use a separate set of concept/feature association examples (test set) to es-
timate the error rate of candidate task graphs. By the estimated error rate of a
candidate task graph, we shall mean the number of times the DBN misclassifies
high-level concepts in the test set, divided by the total number of high-level con-
cepts found in the set. This estimated error rate can be seen as a measure on how
accurately the candidate task graph indexes novel video streams.

One important reason for us to base classification on DBNs is the fact that DBNs
can classify even when features are missing. In contrast, other types of classifiers,
like neural networks and decision trees, must be retrained whenever the feature set
changes. Accordingly, by using DBNs exploring the space of possible task graphs
becomes more efficient.

3.1.3 The Processing Time Estimator. In this section we describe a scheduling
algorithm that targets the class of task graphs and distributed processing envi-
ronments defined in Section 3.1.1. The algorithm is based on generic task graph
scheduling principles, as described in [Kwok and Ahmad 1999]. We adapt these
generic principles to suit the needs of the ARCAMIDE algorithm. That is, we
propose measures of latency and parallelizability that are used to guide task graph
pruning.

Our scheduling algorithm seeks to find the allocation of tasks to processors in
the distributed processing environment that minimizes latency. As a result of al-
locating and sequencing tasks to processors, we are able to estimate latency and

ACM TOMCCAP, Vol. x, No. x, x 2005.



10 . Eide et al.

temporal resolution. Furthermore, we measure how well the distributed processing
environment is taken advantage of, i.e., the parallelizability of the task graph. The
respective procedures can be summarized as follows.

We examine the scheduling algorithm first. Let entry tasks be tasks without
parents and let ezit tasks be tasks without children in the task graph. We define
the b-level of a task to be the length of the longest path from the task to an exit
node. Likewise, the s-level of a task is the length of the longest path from the task
to an entry node. The length of a path is simply the sum of the task processing
times (as given by the task graph) on the path. If multiple classes of processors
are available, the average processing time of a task over the available classes of
processors is used. Note that when calculating the b-level or the s-level of a task
the task itself is included in the path.

A task is either allocated to a processor or not allocated to a processor. Initially,
none of the tasks are allocated to processors. At each iteration of the scheduling
algorithm, the non-allocated task with the largest b-level is allocated to a processor.
This means that execution of long task graph paths are prioritized before execution
of short task graph paths. The main reason behind this strategy is that the longest
task graph paths often determine the latency of the task graphs when multiple
processors are available, and accordingly should be executed as early as possible.

When a task is to be allocated to a processor the task is scheduled at the earliest
start time possible. The task may be started when the processor becomes available
after previous processing, and the task receives the data produced by its task graph
parents. The scheduled stop time of a task is simply the sum of its scheduled start
time and its processing time (specified by the task graph). A task receives data
from a task graph parent at the scheduled stop time of the parent if the two tasks
are located on the same processor. Otherwise, the communication time of the data
must be added to the data receive time.

When allocating the non-allocated task with the largest b-level to a processor,
the processor allowing the earliest task start time is selected. This corresponds to a
greedy step towards the goal of minimizing the estimated latency of the task graph.
Hence, the processor selection is determined by the location of the tasks parents as
well as the communication time of the data communicated from the tasks parents
to the task itself.

The above procedure is repeated until all the tasks have been allocated to proces-
sors. Based on the resulting scheduling of tasks, we estimate latency and measure
parallelizability as follows. First of all, note that the scheduled stop time of the
last task to be executed on a processor is the time the processor becomes ready
for further processing. We define the estimated latency of a task graph to be the
largest processor ready time. By taking the standard deviation of the processor
ready times, we measure how well the scheduling algorithm was able to balance the
processing load on the available processors. Accordingly, we use the latter quantity
to measure the parallelizability of a task graph.

3.1.4 The ARCAMIDE Algorithm. In this section we describe a heuristic search
algorithm, the ARCAMIDE algorithm, which prunes a “brute force” task graph
in order to offer trade-offs between estimated error rate and latency. Note that
the ARCAMIDE algorithm does not remove classification tasks from a task graph.

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 11

Without classifiers a task graph will only output low-level features and no high-level
concepts. This means that the classifier tasks should be treated as a special case.
Therefore, we partition the tasks (in the brute force task graph) into streaming, fil-
tering and feature extraction tasks, hereafter denoted SFE-tasks, and classification
tasks, hereafter denoted C-tasks.

If the search for a task graph that does not violate the QoS requirements is to be
computationally practical, only a very small number of the possible candidate task
graphs may be evaluated. E.g., if there are no edges in a task graph containing n
SFE-tasks, there are 2" possible candidate subgraphs. Consequently, the choice of
which subgraphs to evaluate is of paramount importance.

In contrast to evaluating all the possible subgraphs of the “brute force” task
graph, the ARCAMIDE algorithm consists of two task selection stages. In both
stages of the algorithm, the most inefficient parts of the task graph (when consid-
ering estimated error rate and latency) are pruned. Roughly stated, our procedure
corresponds to a standard sequential backward feature subset search (see [Dash and
Liu 1997]), extended to handle task graphs. The task graph search is performed
backwards, rather than forwards, in order to avoid a computationally expensive n-
step look-ahead search, made necessary by the task graph data dependencies, and
in some cases by complexly interacting features. Obviously, other feature subset
search procedures can be applied by the ARCAMIDE algorithm (such as beam
search [Mitchell 1997], genetic algorithms, or branch and bound search [Dash and
Liu 1997]) by extending them to handle task graphs. However, due to its simplic-
ity, computational efficiency, and goal-directed behavior, we here apply a sequential
backward task graph search procedure.

The ARCAMIDE algorithm takes as input a set of SFE-tasks, a set of C-tasks,
a task irrelevance threshold 4, and a parallelizability threshold c¢. The irrelevance
threshold is used for removing tasks irrelevant to the content analysis goal in order
to reduce the task graph search space. To elaborate, the error rate achieved by
each SFE-task on its own (including its task graph descendants) is estimated. If
the resulting estimated error rate is not significantly better than what is achieved
with pure guessing, i, the SFE-task is removed along with its descendants. This
completes stage one of the ARCAMIDE algorithm.

Let T be the tasks of the current task graph (after previous pruning). In stage
two of the ARCAMIDE algorithm, tasks are pruned iteratively from T'. Ideally, the
least efficient task should be pruned from the task graph at each iteration. The idea
is to remove the most costly and/or inaccurate tasks so that the remaining tasks
can be completed quicker (improves latency) at minimal loss of accuracy. However,
in some cases, removing the least efficient task does not improve latency at all. This
occurs when critical paths in the task graph hinder the scheduling algorithm taking
advantage of the available processors. Then, sometimes even highly accurate tasks
must be pruned before latency can be further reduced.

We resolve the above problem by basing pruning on the parallelization threshold
c. Essentially, the threshold controls whether critical paths are to be shortened
or the least efficient tasks are to be removed from iteration to iteration. If the
standard deviation of the processor ready times (see Section 3.1.3) currently is
larger than ¢, we take this fact to mean that the scheduling algorithm is not able

ACM TOMCCAP, Vol. x, No. x, x 2005.



12 . Eide et al.

to take advantage of the available processors due to the length of critical paths.
Accordingly, only SFE-tasks at the end of these paths are considered for removal.
If, on the other hand, the standard deviation is less than or equal to ¢, we take
this to indicate that the scheduling algorithm is able to balance the processing load
between the available processors. Then, the least efficient task is removed from the
task graph along with its descendants.

Among the tasks considered for removal (either all or those at the end of critical
paths), the task ¢ that minimizes the following efficiency function:

er(T\ ({t} Udesc(t,T))) — er(T)

ef(t,T) = la({t} U desc(t, T))

is removed from T in addition to its task graph descendants in T, desc(t, T).
Here, er(T') denotes the estimated error rate of task set 7', and la(T") denotes the
estimated latency of task set 7. In short, the efficiency function rewards tasks
which contribute to maintaining the estimated error rate of 7' and punishes tasks
that are computationally expensive.

When the ARCAMIDE algorithm stops, it has generated a sequence of task
graphs with different estimated error rate/latency trade-offs. These task graphs
are sought configured to fully utilize the specified processing environment. The
task graph which best fits the provided QoS requirements (in terms of latency,
temporal resolution, and accuracy) is selected for deployment in the actual pro-
cessing environment, as discussed in the following subsection.

3.2 Scalability

Distributed and parallel processing of the task graph suggested by the ARCAMIDE
algorithm allows QoS requirements to be satisfied by making available more process-
ing resources. The unit of deployment in our architecture is components, which may
encapsulate one or more tasks. Application efficiency depends on scalable solutions
for communication, video streaming, filtering/transformation, feature extraction,
and classification, each described in the following.

3.2.1 FEvent-based Component Interaction. From Figure 1, 2, and 3, it should
be clear that components interact in different ways, such as one-to-one, one-to-
many (sharing or partitioning of data), many-to-one (aggregation), and many-to-
many. Event-based interaction is well suited in this respect and is additionally
characterized by lack of explicit addressing, indirect communication, and hence
loose coupling[Eugster et al. 2003]. Clients connect to the event notification service
and publish information in so-called event notifications or express their interest
by subscribing. Event-based systems differ with respect to the data model for
the notifications and the expressiveness of the subscription language. Content-
based systems[Segall et al. 2000; Opyrchal et al. 2000; Pietzuch and Bacon 2002;
Carzaniga et al. 2001] offer most expressiveness and hence flexibility. Typically,
each notification contains a set of attribute/value pairs and clients subscribe to
notifications of interest by specifying predicates over these attributes and values.

In our architecture, components connect to and communicate through an event
notification service, as illustrated in Figure 5. Consequently, a component does not
need to know if notifications have been generated by a single or a number of com-

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 13

°Rer

CO: Coordination

PF : Particle Filter

ME Motion Estimation
CF: Color Filtering

E
ENS

s ‘ VS: Video Streaming
@ @ @ 4 : Event Notification

Fig. 5. Inter component communication for the application configuration in Figure 3. The com-
ponents connect to and interact through a content-based event notification service, labeled ENS.

ponents, nor the location or the identity of the other components. The bindings
between components are loose and based on what is produced rather than by whom.
The what- rather than whom-characteristics of event-based communication is a key
factor for achieving flexible parallelization and distribution. As an example, assume
that each PF component subscribes to notifications covered by the following sub-
scription: (src=vs func=me). Assume further that each ME component publishes
the calculated motion vectors as notifications, e.g., (src=vs func=me time=[t,dt]
block=[x,y] vector=[dx,dy]). The event notification service is then responsible for
forwarding these notifications to the PF components, as indicated by label 3 in
Figure 5. As a result, from a ME component’s point of view it does not matter
if there is a single or a number of components interested in the published notifi-
cations. Similarly, from a PF component’s point of view it does not matter if the
motion vectors have been calculated by a single or a number of ME components.
This illustrates that event-based interaction enables independent parallelization of
the different levels in the content analysis hierarchy.

Scalable content-based publish /subscribe systems are realized as overlay networks
of content-based routing nodes, i.e., servers. Each server manages content-based
routing tables and forwards notifications towards clients having matching selection
predicates. The distributed content-based event notification service used in our
project is based on Siena[Carzaniga et al. 2001]. We have extended Siena with IP
multicast support in order to support applications requiring high notification rates
in combination with a large number of interested clients within a smaller region,
such as a LAN or an administrative domain. In short, a mapping from the “event
notification space” to IP multicast addresses is specified. When a client publishes
a notification through a server, the server maps the notification to an IP multicast
address. The notification is thereby efficiently forwarded to all servers which host
clients which have matching subscriptions. Note that the inter server communica-
tion is transparent to clients. The mapping specification may also be changed on
the fly to better fit the current flow of notifications. With our extension of Siena, a
client may publish several thousand notifications, carrying several MBytes of data
per second, more than sufficient for streaming high quality video.

3.2.2  Video Streaming. Real-time video is quite challenging with respect to pro-
cessing requirements, the massive amounts of data, and the imposed real-time re-
quirements. A video streaming source which must handle each receiver individually
will not scale. A heterogeneity challenge also arises when each receiver would like

ACM TOMCCAP, Vol. x, No. x, x 2005.



14 . Eide et al.

19 AR | ‘
MPEGA4 , MPEG4
WORLD % WORLD

Fig. 6. Screenshots of three video receivers with different subscriptions, illustrating the effect of
selecting: (left) only luminance, lowest quality and only some regions, (middle) only luminance,
only chrominance, and full quality color for different rows, and (right) only luminance and low
quality, except for a region having full quality and colors.

to receive only a part of the video signal, due to limitations in capacity or interest.
The motivation for parallel processing is the distribution of workload by partition-
ing the video data spatially (e.g., regions within a frame) and/or temporally (e.g.,
every n’th frame). By receiving only what is needed, both network and processing
resource consumption can be reduced and efficiency maintained.

Our approach to this challenge is to exploit content-based publish/subscribe sys-
tems for fine granularity multi-receiver video streaming?. Each video frame is en-
coded and published in a number of notifications, each encapsulating only a small
part of the full video signal. FEach such notification is routed independently by
the content-based event notification service to all clients expressing interest in this
particular part. Hence, each video receiver may independently customize the video
signal along different video quality dimensions, such as region of interest, signal
to noise ratio, colors, and temporal resolution. Consequently, efficient delivery is
maintained, in terms of network utilization and end node decoding requirements.
Figure 6 illustrates that different video receivers may independently subscribe to
and thereby select different parts of the video signal. (If the images are unclear
in the printed copy, please refer to the electronic version.) A video receiver may
even specify different temporal resolutions for different regions within a frame. This
flexibility reduces the need for filtering by the application to some degree, e.g., sep-
arating the luminance and the chrominance part of the video signal by filtering is
not necessary, because this is already handled by the video streaming scheme.

3.2.3 Filtering and Transformation. If the fine grained selectivity along the dif-
ferent video quality dimensions is not able to provide an E component with what
it needs directly, filtering and transformation is necessary. In other words, filtering
and transformation bridge the gap between what a S component offers and an E
component can handle. Scalable filtering and transformation requires that a F com-
ponent may process only some part of a video stream, spatially and/or temporally.
In our approach a F component may, e.g., subscribe to only some regions of the
video stream, as illustrated in Figure 5, labeled 1. The filtered and transformed

2An open source prototype is available from the project web pages[DMJ 1999).

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 15

regions are then published as notifications, labeled 2 in the same figure. As a result,
filtering and transformation is efficiently distributed and parallelized.

3.2.4  Feature Fxtraction. A feature extraction algorithm operates on video seg-
ments from the filtering and transformation level, e.g., video frame blocks, and
extracts quantitative information, such as motion vectors and color histograms.

A scalable solution for feature extraction requires that E components may process
only some part of a video stream. Some feature extraction algorithms require
relatively small amounts of processing, such as a color histogram calculation which
may only require a single pass through each pixel in a video frame. But even such
simple operations may become costly when applied to a real-time high quality video
stream. Additionally, in general the algorithms may be arbitrarily complex.

Feature extraction algorithms for video often operate locally on image regions,
e.g., calculating motion vectors, color histograms, and texture roughness. In our
architecture, spatial parallelization and distribution of such feature extractors are
supported by a block-based approach. Our implementation of a motion estimation
component calculates motion vectors for only some of the blocks in a video frame.
The motion vectors are published as notifications and forwarded by the event no-
tification service to all interested subscribers, illustrated by label 3 in Figure 5.

3.2.5  C(lassification. The final logical level of our architecture is the classifica-
tion level. At the classification level each video segment is assigned a content class
based on features extracted at the feature extraction level. For instance, if each
video frame in a video stream is divided into m X n blocks as seen in the previ-
ous section, the classification may consist of deciding whether a block contains the
center position of a moving object, based on extracted motion vectors.

The classification may become a processing bottleneck due to the complexity of
the content analysis task, the required classification rate, and the required classifica-
tion accuracy. E.g., rough tracking of the position of a single person in a single low
rate video stream may be possible using a single processor, but accurately tracking
the position of multiple people as well as their interactions (talking, shaking hands,
etc.) could require several processors. Multiple video streams may increase the
content analysis complexity even further. In short, when the classifier is running
on a single processor, the classification may become the processing bottleneck of
the content analysis application.

The particle filter (PF) [Liu and Chen 1998] is an approximate inference technique
that allows real-time DBN-based video content analysis. In the following we briefly
describe our use of the PF in more detail. Then we propose a distributed version
of the PF, and argue that the communication and processing properties of the
distributed PF allow scalable distributed classification, independent of distribution
at the other logical levels.

Our PF is generated from a dynamic Bayesian network specifying the content
analysis task. During execution the PF partitions the video stream to be anal-
ysed into time slices, where for instance a time slice may correspond to a video
frame. The PF maintains a set of particles. A single particle is simply an as-
signment of a content class to each video segment (e.g., object or background) in
the previously analysed time slices, combined with the likelihood of the assignment

ACM TOMCCAP, Vol. x, No. x, x 2005.



16 . Eide et al.

when considering the extracted features (e.g., motion vectors). Multiple particles
are used to handle noise and uncertain feature-content relationships. This means
that multiple feature interpretations can be maintained concurrently in time, ide-
ally until uncertainty can be resolved and noise can be suppressed. When a new
time slice is to be analysed, each particle is independently extended to cover new
video segments, driven by the dynamic Bayesian network specification. In order
to maintain a relevant set of particles, unlikely particles are then systematically
replaced by likely particles. Consequently, the particle set is evolved to be a rich
summarization of likely content interpretations. This approach has proven effective
in difficult content analysis tasks, such as object tracking. Note that apart from
the particle replacement, a particle is processed independently of other particles in
the PF procedure.

In order to support scalability, we propose a distributed version of the PF. The
particles of the single PF are parted into n groups which are processed on n pro-
cessors. An event based communication scheme maintains global classification co-
herence. The communication scheme is illustrated in Figure 5 and discussed below.
A coordinator (CO) component and n PF components cooperate to implement the
particle filter. Each PF component maintains a local set of particles and executes
the PF procedure locally. When a new time slice is to be analysed, the components
operate as follows. First, m locally likely particles are selected and submitted to
the other PF components through the event notification service (label 4 in Figure
5). Then, each PF component executes the PF procedure on the locally maintained
particles, except that the local particles also can be replaced by the (n — 1)m parti-
cles received from the other PF components. After execution, each PF component
submits the likelihood of video segment content classes to the coordinator (label 5
in Figure 5) which estimates the most probable content class of each video segment.

In the above communication scheme only 2n messages are submitted per time
slice. As shown empirically in [Granmo et al. 2003], by only submitting a single
particle per message no loss of accuracy is detected in the object tracking case.

4. EMPIRICAL RESULTS

In this section we first study the effectiveness of the application composition strat-
egy used by the ARCAMIDE algorithm. To render the problem challenging and
realistic, we simulate highly noisy features that interact both spatially and tem-
porally. Furthermore, we extend our object tracking example task graph so that
different parts of the task graph are suitable for different levels of parallel execution.
This means that what tasks should be pruned from the task graph depends on the
level of parallelization. In short, we want to evaluate the ARCAMIDE pruning
strategy under particularly challenging conditions. We then deploy and execute
a selection of object tracking task graphs. The purpose is to examine whether
our architecture allows the latency and temporal resolution of an application to
be improved by increasing the number of processors available to the application.
Furthermore, we want to demonstrate that timeliness can be improved by reducing
the number of features extracted from each video frame, at the potential cost of
reduced accuracy. In other words, we aim to examine the main premises of the
ARCAMIDE algorithm, not to evaluate the accuracy of the tracking method used.

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 17

50 T 05 50 ey ] 08 50 ey 05
atency i
Error Rate —v— || 04° Error Rate —v— [| %45 Error Rate —v— | %45
40 i 04 40 04 40 0.4
. 1035 108 035
> 30 Ho3 § 3 30 03§ 7 03 3
g ‘\& Hoxs T & TWﬁJ 105 £ & }2— 025
S 2 5 Ho2 5 5 2 02 5 S 2 02 &
N 018 4 015 4 015
10 o 0.1 10 bkt 0.1 10 0.1
o 0.05 Swipeing 0.05 0.05
0 0 o 0 [ 0
5 10 15 20 25 30 35 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 45
Pruning Step Pruning Step Pruning Step

Fig. 7. The estimated latency and error rate (y-axis) after each task removal (x-axis) for different
configurations: 1 processor (left), 10 processors (middle), and 100 processors (right).

4.1 Application Composition by means of Task Graph Pruning

We evaluation the ARCAMIDE algorithm empirically based on simulating features
extracted from 8 x 8 video frame blocks. The simulation is constructed from the
object tracking example application shown in Figure 3, however, we refine the
content analysis problem to recognition of whether an object passes from the left
to the right or vice versa. Furthermore, we also add a color histogram calculation
task and a texture calculation task to each video frame block.

Thus, we have five different types of SFE-tasks related to each video frame block:
streaming, color-to-grey level filtering, motion estimation, texture calculation, and
color histogram calculation. These have different content analysis and processing
characteristics. In our simulation, when using motion to detect an object in a video
frame block, the probability of false positives and false negatives are assumed to
be 0.3. Likewise, when using texture the probability of false positives is assumed
to be 0.5 and the probability of false negatives is assumed to be 0.3. When using
color the latter probabilities are reversed. Color-to-grey-level filtering only pro-
duces intermediate results used in the motion estimation. Obviously, the specified
probabilities depend on the environment (e.g., sunshine and darkness) and are here
set to reflect rather difficult environment conditions. Finally, the processing time
of the streaming task is set to 3 ms, and the processing time of the other tasks are
set to 1 ms. The transmission time of a video frame block (either color-to-grey level
filtered or not) across the network is considered to be 1 ms.

To evaluate the ARCAMIDE algorithm we trained two 10-state Hidden Markov
Models (one for each object passing direction) on 1000 simulated video frame se-
quences of objects moving from the left to the right and 1000 sequences of objects
moving from the right to the left. Here, an object appears on average twice in each
video frame block of the two center rows when passing the camera view. We used
another independent set of simulated video frame sequences (of identical size) to
prune the task graph.

When trading off estimated error rate and latency, the ARCAMIDE algorithm
behaves as shown in Figure 7 for configurations targeting 1 processor (left), 10
processors (middle), and 100 processors (right). When selecting SFE-tasks for 1
processor, we see from the left plot that the estimated latency initially can be
reduced with little increase in estimated error rate (while inaccurate SFE-tasks are
removed). However, when e.g. SFE-tasks near the first and eighth video frame
block columns (the object entry regions) must be removed, the estimated content

ACM TOMCCAP, Vol. x, No. x, x 2005.



18 . Eide et al.

Fig. 8. Left: Video input as seen by the motion estimation tasks. Middle: Output from the
motion estimation tasks when extracting 40 % of the features. Right: Output from the motion
estimation tasks when extracting 80 % of the features. In the screenshot images, x indicates
a skipped block, - illustrates no motion, arrows represent the motion vectors, + represents the
object’s true position, while the tracked position is drawn as a white square.

analysis error rate increases more dramatically. When introducing 10 processors,
we see from the middle plot that the estimated latency is reduced in steps — the
processing time of all the processors must be reduced before the latency can be
reduced. Also note that the data dependencies between color-to-grey level filtering
and motion estimation make these tasks the target of removal from removal number
28 and thereafter. When considering 100 processors, as seen in the right plot,
initially only the removal of motion SFE-tasks will reduce the processing time due
to the dependency of motion SFE-tasks on color-to-grey level filtering tasks. In
the right plot there are mainly two interesting task graphs; one containing all the
relevant SFE-tasks and one containing only texture and color SFE-tasks.

4.2 Task Graph Case Studies with Timeliness, Accuracy, and Scalability Results

Performance measurements for the experiments with a distributed object tracking
application are presented in this section. Our aim was to investigate how accuracy,
temporal resolution, and latency are affected by deploying different task graph
configurations on a varying number of processing nodes.

In all experiments, a single component streamed the video data in CIF resolution
(352x288 pixels). In order to measure accuracy precisely, full control of the video
content, e.g., object position and movement, was needed. Hence, synthetic video
data was used. The video background was static, but some noise was added to each
video frame. The real object position and a timestamp was published each time
a new video frame was captured from the synthetic video source, but before video
compression. A logging component subscribed to this real object position as well as
the tracked position from the coordinator. Precise timing of the end-to-end latency
required a single reference clock. The logging component therefore executed on the
same computer as the video streaming component. The log data were written to file
for off-line analysis. Regarding accuracy, we defined the tracked position as correct
if the position was within the true position block or in any other neighboring blocks
(16x16 pixels block size). Otherwise we defined it as a misclassification.

The motion estimation task was handled by one or more motion estimation com-
ponents. Each component was configured to process a region within each frame,

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 19

but subscribed to a slightly larger region in order to calculate motion vectors for the
border blocks. Consequently, some parts of the frame is decoded by several com-
ponents during parallelization. The components subscribed to only the luminance
part of the video signal, eliminating transport and decoding of color information.
An example video image is shown in Figure 8, left. The search area was +6 pixels,
both horizontally and vertically, in other words a search area of 169 displacements.
A full search was always performed, i.e., enforcing worst case behavior. The number
of blocks processed in each frame was 20x 16, i.e., border blocks were not processed.
Note that a full frame needs to be buffered before motion vectors can be calculated
based on the previous and the current frame, introducing a frame rate dependent
delay.

The task graphs included one or more particle filtering components and a single
coordinator component. 2000 particles were evenly distributed among the particle
filters. Each particle filtering component subscribed to both motion vectors and
particles submitted by the other particle filters. The particle filters published object
position probability distributions, which the coordinator subscribed to.

The distributed content-based publish/subscribe system handled all communica-
tion, including the streamed video data. The mapping specification used, mapped
the notification space to 18 different IP multicast addresses. Each video frame was
divided in 11 columns, each mapped to a separate IP multicast address.

The distributed computing platform was realized by standard 1667MHz dual
AMD Athlon PCs running Debian GNU/Linux. The PCs were connected by
100Mbps switched Ethernet. Java Standard Edition build 1.4.2_.03-b02 was used
for compilation and execution.

4.2.1  Improving Timeliness by Parallel Processing. In the first experiment, we
increased the frame rate and hence the temporal resolution by deploying the appli-
cation on an increasing number of processing nodes. The accuracy and end-to-end
latency were measured for the different configurations. The CPU consumption for
each component type was also measured and reveals the scalability of the applica-
tion in particular, but also indicate the scalability of the architecture in general.
Note that the number of CPUs reported does not include the separate computer
hosting both the video streaming and the logging component.

The first configuration was executed on two processors; the motion estimation
component was executed on one processor and the particle filter and coordina-
tion component were executed on another processor. In order to take advantage
of additional processors, new configurations were created by stepwise adding one
motion estimation component and one particle filter component, each executed by
a dedicated processor. The configuration illustrated in Figure 3 was executed on
4 processors. Similarly, in the 10 processor configuration five motion estimation
components and five particle filtering components were deployed.

From Table I it can be seen that the accuracy remains more or less constant as
the frame rate increases. This is as expected, because the application performs the
same work, although at a faster rate and in a distributed fashion. Additionally, the
end-to-end latency decreases as motion estimation and particle filtering is processed
in parallel. The shorter inter frame delay also contributes to the decrease in latency
For the 10 CPU case, there is an increase in median latency. Our log traces seem

ACM TOMCCAP, Vol. x, No. x, x 2005.



20 . Eide et al.

Table I. The frame rate, accuracy, latency, and CPU load for different configurations of the real-
time object tracking application.

Number of processors
2 4 8 10
Overall Frame Rate 5 10 20 25
Accuracy (%) 98.1 99.5 99.2 98.2
End-to-End Latency (ms)
Min 475 244 133 117
5th percentile 488 255 144 137
Median 499 266 179 232
95th percentile 596 337 341 589
Max 829 535 590 803
CPU Load (%)
Streaming 12 28 60 70
Feature Extraction 69 69 73 75
Particle Filtering 69 71 76 78
Coordination 2 2 3 5

to indicate that parts of the system are approaching the saturation point, causing
queues which retain data due to temporary overloads.

The CPU requirements for each motion estimation component increases slightly
as the frame rate increases, and is most likely due to the video decoding overhead
inherent in motion estimation. However, this is a significant improvement compared
to results presented in [Mayer-Patel and Rowe 1999a] and [Eide et al. 2003], where
each component decodes a full video stream sent over IP multicast before processing
only a region within each frame (cf. Section 5.2.7). The particle filtering part of the
computation shows a similar slight increase in CPU load as processors are added.
The video streaming component was executed by a single processor, which explains
the increase in CPU consumption. Due to its low complexity, the coordination task
consumes small amounts of processing resources

4.2.2  Improving Timeliness by Task Graph Pruning. In the second experiment,
different task graph configurations were generated. The configurations differed with
respect to the percentage of features calculated for each video frame. As an exam-
ple, in the 20% configuration only 64 motion vectors were calculated for each frame,
out of 320. Figure 8 shows two example frames, where respectively 40% and 80%
of the features have been extracted. Three dual CPU computers were used in this
experiment. One computer hosted the video streaming and logging components.
Another computer hosted two motion estimation components, while the third com-
puter hosted two particle filter components and the coordinator component. E.g.,
in the 20% configuration, each motion estimation component received the video
data required for computing 32 motion vectors.

Table II shows the accuracy, latency, and CPU load for the different task graphs.
Accuracy increases as more features are extracted, and accordingly, more infor-
mation is given to the particle filters about the object position. Latency and CPU
load decrease when less features are extracted. Essentially, the amount of work each
processor has to do is reduced, because tasks are being removed. Furthermore, the
particle filters perform less calculations when processing fewer features, which re-

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 21

Table II. Accuracy, latency, and CPU load are all influenced by the percentage of features extracted
from each video frame.
Percentage of features extracted

0 20 40 60 80 100

Overall Frame Rate 10 10 10 10 10 10
Accuracy (%) 0.9 653 952 959 96.8 99.5
End-to-End Latency (ms)
Min 79 144 166 195 224 244
5th percentile 131 157 181 207 232 255
Median 136 161 186 215 243 266
95th percentile 192 219 243 278 315 337
Max 344 340 357 416 456 535

CPU Load (%)
Feature Extraction 20 33 48 60 69
Particle Filtering 6 23 33 47 61 71

©

duces the load of particle filtering. Coordination and streaming are unaffected by
the percentage of features extracted and are therefore not included in the table.
To conclude, we have demonstrated that our architecture allows the latency and
temporal resolution of an application to be significantly improved by utilizing an
increasing number processors. Furthermore, we have demonstrated that timeliness
can be improved by reducing the number of features extracted from each video
frame at the cost of reduced accuracy, as assumed by the ARCAMIDE algorithm.

5. COMPARISON WITH RELATED WORK

This section provides a discussion of related work and is structured as three sub-
sections: one-to-many communication, media streaming and processing, and clas-
sification.

5.1 One-to-Many Communication

Efficient one-to-many communication has been studied extensively over several
decades. Here we consider technologies suited for the targeted application domain,
where real-time, and hence efficient dissemination, is important.

5.1.1 Multicast and Group Communication. Lack of group communication sup-
port in the IP communication suite inspired a number of research efforts in the 1980s
and lead to technologies for reliable group communication[Birman et al. 2000] and
IP multicast[Deering and Cheriton 1990]. Reliable group communication allows,
e.g., replication of data and computation for improved robustness. The develop-
ment of IP multicast was driven by a need to also support real-time streaming of
video and audio data. By pushing multicast functionality into the network, link
stress could be reduced to a minimum.

Despite tremendous efforts, IP multicast is still not an ubiquitous service. In the
past few years, peer-to-peer systems[Crowcroft and Pratt 2002] have emerged as a
viable approach for implementing multicast functionality (e.g., group membership
control, routing, and packet forwarding) solely in the end systems[Chu et al. 2002].
Such overlay networks may also be customized for application specific requirements,
e.g., trading off reliability for increased bandwidth and reduced delay. However, the

ACM TOMCCAP, Vol. x, No. x, x 2005.



22 . Eide et al.

main challenge is to keep the link stress down[Castro et al. 2003]. These group-
based systems provide a level of indirection between senders and receivers.

5.1.2  Ewvent-Based Communication. Compared to group-based systems, event-
based systems[Eugster et al. 2003] provide finer granularity for expressing interest.
Most flexibility and expressiveness are offered by content-based event-notification
services[Segall et al. 2000; Opyrchal et al. 2000; Pietzuch and Bacon 2002; Carzaniga
et al. 2001]. The major difference compared to group-based systems is that data is
forwarded based on the content, not on explicit group addresses. Similarly to group-
based systems, the construction and maintenance of an efficient overlay network for
content-based routing is challenging. Recently, peer-to-peer technologies have also
been exploited in this respect[Pietzuch and Bacon 2003; Terpstra et al. 2003].

5.1.3 Discussion. Group-based systems, such as IP multicast, forward data
based on group membership. This is a rather course grained way of expressing
interest, but the situation can be improved somewhat by using a number of groups.
However, a major drawback is the difficulty of determining mappings between con-
tent and groups. Additionally, the mappings become relatively static.

The finer granularity and the improved flexibility, by having an additional level
of indirection, motivated us to exploit content-based publish/subscribe systems for
real-time video content analysis. To the best of our knowledge, existing content-
based publish/subscribe systems do not take advantage of native multicast support.
Therefore, we extended Siena[Carzaniga et al. 2001] with IP multicast support[Eide
et al. 2003] in order to provide efficient dissemination of notifications. Other group-
based systems may have been used instead of IP multicast, e.g., for improving ro-
bustness. Altogether, the added complexity, compared to using group-based com-
munication directly, seems manageable. The experimental results presented in this
paper demonstrate the benefits and potential of our approach.

5.2 Media Streaming and Processing

5.2.1 Commercial Frameworks. Several commercial frameworks for developing
multimedia applications exist, including the Java Media Framework (JMF) [Sun Mi-
crosystems 1999] and DirectShow[Blome and Wasson 2002] from Microsoft. Since
the functionality is similar, only JMF is discussed. Applications are modeled as a
flow graphs in JMF — nodes represent media handling modules, while the edges
represent media flows. JMF performs low level media tasks, such as capture, trans-
port, streaming, (de)multiplexing, (de)coding, and rendering. Access to the raw
media data is provided by means of a plug-in architecture which allows integration
of customized processing. Standard streaming protocols are also supported. Pro-
grammers specify media sources/sinks, using URLs, and JMF internally tries to
build a flow graph by connecting different components.

5.2.2  Infopipe. The Inforpipe project[Black et al. 2002] aims at simplifying ap-
plication development within the domain of media streaming. Certain aspects of the
communication are made explicit, allowing application level monitoring and adap-
tation in response to varying resource availability. The defined building blocks, e.g.,
sources, sinks, buffers, filters, pumps, remote pipes, and split and merge tees, may
be composed into Infopipelines. Reasoning about compositions, both with respect

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 23

to functionality and QoS characteristics is supported (e.g., validating data flow and
determining end-to-end latency). The authors recognize that some QoS properties
do not have strict additive behavior, making reasoning very difficult. The ideas
from the Infopipe project have influenced the development of GStreamer|[Taymans
et al. 2004], an open source framework for developing streaming media applications.

5.2.3 Media Gateway Systems. In order to bridge the heterogeneity gap created
by differences in resource availability, hardware capabilities, and software incom-
patibilities, media gateway systems have been proposed for streaming[Ooi and van
Renesse 2001; Rafaelsen and Eliassen 2002]. These systems are overlay networks —
the media gateways are internal network nodes, while senders and receivers are at
the edges. Gateways receive media streams from upstream nodes, before forward-
ing the processed and potentially transformed streams to downstream gateways
and receivers. Bandwidth requirements may be reduced by temporal-, spatial-, and
signal to noise ratio scaling and the format may be changed. More complex op-
erations may compose streams, e.g., generating picture-in-picture effects. Overlay
construction is challenging; the goal may be to minimize (average/maximum) de-
lay, processing, or bandwidth consumption, but receivers may join and leave at any
time. In [Ooi and van Renesse 2001] the media processing is represented by small
scripts. The computation may be decomposed into sub-computations and then
mapped onto gateways, driven by the goal of reducing bandwidth consumption.

5.2.4  Receiwver-driven Layered Multicast (RLM). An approach for handling both
the multi-receiver and the heterogeneity challenge is to combine layered video cod-
ing techniques with transport over several multicast channels. A pioneering work in
this respect is video coding for receiver-driven layered multicast (RLM) [McCanne
et al. 1997]. The video signal is encoded cumulatively into a number of layers, each
sent on a separate multicast address. The base layer provides the lowest quality,
and each additional layer improves the video quality. Clients with low bandwidth
connections may register interest in the base layer only, while other clients may
subscribe to a number of additional multicast addresses, as bandwidth permits. A
layering policy determines the dimension to be refined for each additional layer.

5.2.5 MediaMesh. MediaMesh[Amini et al. 2000] is an architecture for integrat-
ing isochronous processing algorithms into media servers. Operations on live media
streams are supported, e.g., security (watermarking and encryption), time shifting
(pause and seek), adaptation, and (de)multiplexing. Media streams are modelled
as directed graphs where edges represent communication and nodes represent pro-
cessing modules. In contrast to the media data, control information flows in both
directions - upstream for control requests and downstream for replies. The architec-
ture is QoS aware and resource management support is deterministic. During setup
of a flow graph, overall CPU and memory usage is predicted, based on properties
associated to each filter module (e.g., CPU and memory requirements). From our
understanding, the processing of a flow graph is limited to a single host.

5.2.6  Parallel Software-only Video Effects Processing System (PSVP). A re-
search effort for exploiting functional, temporal, and spatial parallelization of video
effects is described in [Mayer-Patel and Rowe 1998; 1999a; 1999b]. The target

ACM TOMCCAP, Vol. x, No. x, x 2005.



24 . Eide et al.

domain is Internet video. Effects, such as fade, blend, and affine transformations
are supported as well as the ability to compose video streams. Effect processing
is specified in a high level language and a compiler generates a directed graph,
which is then mapped onto the available processors. For spatial parallelization,
each processor receives the stream over IP multicast, decodes the full video images,
and applies the effects processing on a region. The different frame regions are then
combined by a processor into an effect-enhanced video stream. In [Mayer-Patel
and Rowe 1999a], performance numbers are presented for a general affine trans-
form effect, executed by one to seven processors. The reported latency for the one
processor configuration is 250 ms. Seven processors and spatial parallelization re-
sults in 70 ms latency and 50% efficiency, bounded by the overhead due to receiving
and decoding the full video stream before applying the effects.

5.2.7 Discussion. The graph building processes in both JMF and MediaMesh do
not take into account more than one computer. The graph building process in JMF
is automatic, implicit, and to the best of our knowledge undocumented. Infopipe
supports explicit connections and allows reasoning about distributed compositions.
Media gateway systems have internal support for reasoning about some overall goal
during construction and maintenance of the media distribution overlay network.
However, for reasoning about more high level and non-additive dimensions, such
as accuracy, more than the streaming and video processing part of the application
must be taken into account. A predictive cost model for reasoning about video
effect graphs was planned by the authors of PSVP, but we were unable to find any
more details. In contrast, we present both a model and an algorithm for reasoning
about the combination of latency, temporal resolution, and accuracy.

In JMF, Infopipe, and MediaMesh components are connected directly, without a
level of indirection. This makes (re)configuration and independent parallelization of
the different levels in the video analysis hierarchy difficult. Additionally, no support
for parallel and distributed processing of video streams is provided. The authors of
PSVP acknowledge the difficulty of distributing different parts of a video stream to
different processors, due to spatial and temporal dependencies. The authors also
recognize that sending a full video stream to all processors gives a significant decod-
ing overhead, confirmed by their experiments. RLM is a significant improvement,
but an inherent problem is conflicting user preferences. Since the layering policy is
fixed at the sender side, each video receiver is unable to customize the video stream
independently. Media gateway systems support stream customization — a gateway
may perform any kind of filtering and transformation. E.g., a gateway may parti-
tion a video stream spatially as a preparation step for parallel processing. The cost
associated with this flexibility is increased network and processing resource con-
sumption and additional delay. Several receivers may also share interest in some
part of the video signal, and handling such cases efficiently seems very difficult.

Our experiences with earlier prototypes, based on JMF and streaming over IP
multicast[Eide et al. 2003], were a driving factor for us to exploit content-based
networking for fine granularity multi-receiver video streaming. In our approach
additional processors for partitioning the video data are not needed, since this
is handled by the video coding scheme and the content-based publish/subscribe
system. Additionally, each video receiver may independently customize the stream,

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 25

along different quality dimensions. In effect, CPU and bandwidth consumption is
reduced and latency decreased. The performance numbers reported herein show
the strength of our approach — the overhead for feature extraction is small and
most likely due to the dependencies inherent in motion vector estimation.

5.3 Classification

With respect to classification, we first review application specific- as well as generic
approaches that use task/feature selection to manipulate classification accuracy and
timeliness. We then review representative work that focus on task scheduling for
controlling timeliness in video content analysis.

5.3.1 Task Selection. In the application specific approach found in [Zhou et al.
1998], different scene change detection algorithms are evaluated. The purpose is to
identify which algorithm is most appropriate for real-time analysis under different
data bandwidths. Based on performance studies, the authors are able to choose
the right algorithm for the best performance in each case.

A related approach to resource-awareness is found in [Leszczuk and Papir 2002],
where a technique for shot (scene change) detection is accelerated by only processing
every n’th pixel in the horizontal and vertical directions. As the number of pixels
analyzed is reduced, the scene change detection accuracy will in general deteriorate.

A more generic approach to selecting image content analysis algorithms/tasks is
feature selection. In [Yang and Honavar 1998] feature selection is based on multi-
criteria optimization. Medical diagnosis is pointed out as a motivating example,
because not only the accuracy of diagnostic tests (features) are of importance, but
also the various associated costs and risks of the tests. The relevance of this work
is the introduction of feature/test cost into the feature criterion function.

The technique proposed in [Smits and Annoni 2000] also considers feature ex-
traction cost. A stepwise procedure is suggested, where one feature is added at a
time (to an initially empty feature set), until a given target classification accuracy
is achieved. When several features achieve the target accuracy, the least costly
feature is selected. The aim of the procedure is on-line feature selection. This is in
contrast to the off-line approach of [Yang and Honavar 1998] where a potentially
more thorough, but also more costly feature subset inspection approach is applied
(genetic algorithm based).

5.3.2 Task Scheduling. Recent work on task scheduling within video content
analysis include [Marcenaro et al. 2001] and [Yang et al. 2003]. [Marcenaro et al.
2001] proposes a physical and a logical architecture for third generation surveillance
systems (defined as a distributed multimedia computer system based on multi-
sensory input data and which offers automatic scene understanding capabilities).
The physical architecture is organized as a tree whose nodes are processing enti-
ties such as intelligent cameras, hubs and control centers. Links are associated
with communication channels. The logical architecture is described as the informa-
tion process necessary to obtain the desired system functionality (i.e., the content
analysis application), combined with a hierarchical partitioning of this information
process into a set, of logical processing tasks — e.g., image acquisition, image change
detection, object filtering, and tracking. A main issue is the dynamic allocation of
the logical processing tasks to the processing nodes of the physical architecture,

ACM TOMCCAP, Vol. x, No. x, x 2005.



26 . Eide et al.

with the purpose of minimizing the overall processing time of each video image.
The computational complexity of individual tasks as well as the bandwidth re-
quired for data flows between tasks are estimated. These estimates form the basis
for evaluating the response time of different candidate task allocations to cameras,
hubs, and control centers, so that an optimal allocation can be found.

A similar approach is found in [Yang et al. 2003]. An automatic compile-time
scheduler is proposed that schedules the tasks of a video processing application on
available processors. The scheduler exploits both spatial (parallelism) and tempo-
ral (pipelining) concurrency to make the best use of available machine resources.
Two important scheduling problems are addressed. First, given a task graph and
a desired throughput (video processing image rate), a schedule is constructed to
achieve the desired throughput with as few processors as possible. Second, given
a task graph and a finite set of resources, a schedule is constructed such that the
throughput is sought maximized.

5.3.3 Discussion. The two application specific approaches, i.e., [Zhou et al.
1998; Leszczuk and Papir 2002], allow accuracy to be traded against timeliness, but
are rather limited in scope since only scene change detection algorithms are con-
sidered. The more generic feature selection approaches [Yang and Honavar 1998;
Smits and Annoni 2000] typically apply a too simplified view on task scheduling and
parallel processing, compared to the needs in the real-time video content analysis
domain. In real-time video content analysis, task execution precedence constraints
as well as processing/communication resource restrictions influence how feature
selection should proceed, introducing difficulties for traditional feature selection.
The task graph scheduling work presented in [Marcenaro et al. 2001; Yang et al.
2003] are similar to our approach. However, these efforts were conducted indepen-
dently of our work. More importantly, our focus has not been on task scheduling
for controlling timeliness alone. Rather, we have focused on a different and previ-
ously unaddressed problem, namely, combining task graph scheduling with feature
selection so that both accuracy and timeliness can be controlled.

6. CONCLUSION AND FURTHER WORK

In this paper paper we have presented techniques for QoS-aware application compo-
sition and solutions for scalable distributed and parallel processing for the domain
of real-time video content analysis.

QoS-aware application composition is the process of determining the deployment
configuration of an application to satisfy a given set of QoS requirements. Our
solution includes a generic application architecture that allows applications to be
independently distributed and parallelized at multiple logical levels of processing,
and an application QoS model that can be used to communicate QoS require-
ments for a particular application instantiation. A salient feature of our QoS-aware
composition approach is the combination of probabilistic knowledge-based media
content analysis and QoS. For this purpose we proposed an algorithm for balancing
the requirements of latency, temporal resolution, and accuracy against the available
distributed processing resources.

For classification, a parallel version of an approximate inference technique, known
as the particle filter, has been developed. We demonstrated that the parallel particle

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 27

filter enables scalable real-time video content analysis based on dynamic Bayesian
networks. Independent scalability at multiple logical levels was primarily achieved
through the development of a high performance content-based event notification
service, the preferred communication mechanism used throughout the architecture.
Our experience as reported in this paper, indicates that high-performance content-
based publish/subscribe systems are more suitable for real-time distributed and
parallel video content analysis, than using group-based communication directly.
This paper has also shown how scalable video processing can be achieved by means
of a novel fine granularity multi-receiver video coding scheme, which exploits the
content-based publish/subscribe system. This new video encoding scheme supports
fine granularity selectivity for each video receiver along different video quality di-
mensions, such as region of interest, signal to noise ratio, colors, and temporal
resolution. As a consequence, efficiency can be maintained for parallel processing
of video data.

The scalability of our approach was demonstrated through experiments with an
implementation of a real-time motion vector based object tracking application. The
experiments show that increasing QoS requirements can be met by increasing the
number of CPUs used for parallel processing, with only minor overhead.

Overall, we believe this work has shown that it is feasible to provide generic
support for developing scalable distributed real-time video content-analysis appli-
cations from reusable components, i.e., content analysis tasks. In particular we
believe our framework assists the developer in separating functional concerns from
non-functional ones thus simplifying the development of this kind of applications.

Further experiments to validate the scalability and extensibility of the architec-
ture can be done along different dimensions, separately or in combination. This
includes demonstrating its extensibility with respect to the use of different media
types and different feature extractor types concurrently, and the combination of
temporal and spatial parallelization.

Future work will also include better support for developing distributed real-time
content-based video applications. In particular we are addressing the question of
how general purpose software component architectures can be made to support this
kind of applications. We will also investigate how complex content analysis appli-
cations can take advantage of high-performance computational Grids. Grid sys-
tems have not yet been designed to handle real-time applications. In this respect,
real-time distributed and parallel multimedia analysis represents a challenging ap-
plication domain which may influence research in grid technologies.

7. ACKNOWLEDGMENTS

We would like to thank all persons involved in the Distributed Media Journaling
project[DMJ 1999] for contributing to the ideas presented in this paper.

REFERENCES

AMmiNI, L., LEPRE, J., AND KIENZLE, M. G. 2000. Mediamesh: An architecture for integrating
isochronous processing algorithms into media servers. In Multimedia Computing and Network-
ing (MMCN’00), K. Nahrstedt and W. chi Feng, Eds. Vol. 3969. SPIE, 14-25.

BEYMER, D., McLAUCHLAN, P., ColFrMAN, B., AND MALIK, J. 1997. A Real-time Computer
Vision System for Measuring Traffic Parameters. In Computer Vision and Pattern Recognition
(CVPR’97), San Juan, Puerto Rico. IEEE, 495-501.

ACM TOMCCAP, Vol. x, No. x, x 2005.



28 . Eide et al.

BirMAN, K., CONSTABLE, R., HAYDEN, M., HICKEY, J., KREITZ, C., VAN RENESSE, R., RODEH,
O., AND VOGELSs, W. 2000. The Horus and Ensemble Projects: Accomplishments and Limita-
tions. In DARPA Information Survivability Conference and Ezposition (DISCEX 2000). IEEE
Computer Society Press. 149-160.

BLACK, A. P., HuaNG, J., KOSTER, R., WALPOLE, J., AND Pu, C. 2002. Infopipes: An abstraction
for multimedia streaming. Multimedia Systems 8, 5, 406—419.

BLOME, M. AND WAsSON, M. 2002. DirectShow: Core Media Technology in Windows XP Em-
powers You to Create Custom Audio/Video Processing Components. Microsoft, MSDN Mag-
azine 17, 7 (July).

Bors, A. AND PrTas, I. 2000. Prediction and tracking of moving objects in image sequences.
IEEE Transactions on Image Processing 9, 1441-1445.

CARZANIGA, A., ROSENBLUM, D. S.; AND WoLF, A. L. 2001. Design and Evaluation of a Wide-
Area Event Notification Service. ACM Transactions on Computer Systems 19, 3 (August),
332-383.

CASTRO, M., JONES, M. B., KERMARREC, A.-M., ROWSTRON, A., THEIMER, M., WANG, H., AND
WOLMAN, A. 2003. An evaluation of scalable application-level multicast built using peer-to-peer
overlays. In INFOCOM.

CHANG, S.-F. AND SUNDARAM, H. 2000. Structural and Semantic Analysis of Video. In Multimedia
and Expo 2000 IEEE. Vol. 2. 687-690.

CHEN, C., Jia, Z., AND VARAIYA, P. 2001. Causes and Cures of Highway Congestion. Control
Systems Magazine, IEEE 21, 6 (December), 26-32.

CHu, Y., Rao, S. G., SESHAN, S., AND ZHANG, H. 2002. A case for end system multicast. IEEE
Journal on Selected Areas in Communications (JSAC) 20, 8 (October), 1456-1471.

CROWCROFT, J. AND PrRATT, I. 2002. Peer to peer: Peering into the future. In NETWORKING
Tutorials, E. Gregori, G. Anastasi, and S. Basagni, Eds. Lecture Notes in Computer Science,
vol. 2497. Springer, 1-19.

DasH, M. AND L1u, H. 1997. Feature selection for classification. Intelligent Data Analysis 1, 3.

DEERING, S. E. AND CHERITON, D. R. 1990. Multicast Routing in Datagram Internetworks and
Extended LANs. ACM Trans. Comput. Syst. 8, 2, 85-110.

DMJ. 1999. The Distributed Media Journaling Project. http://www.ifi.uio.no/ dmj/.

EmbE, V. S. W.; ELIASSEN, F., GRANMO, O.-C., AND LysNE, O. 2003. Supporting Timeliness
and Accuracy in Real-time Content-based Video Analysis. In Proceedings of the 11th ACM
International Conference on Multimedia, ACM MM’03, Berkeley, California, USA. 21-32.

EIDE, V. S. W., ELIASSEN, F., LysNE, O., AND GRANMO, O.-C. 2003. Extending Content-based
Publish/Subscribe Systems with Multicast Support. Tech. Rep. 2003-03, Simula Research
Laboratory. July.

EDE, V. S. W., ELIASSEN, F., AND MICHAELSEN, J. A. 2004. Exploiting Content-Based Net-
working for Video Streaming. In Proceedings of the 12th ACM International Conference on
Multimedia, Technical Demonstration, ACM MM’04, New York, New York, USA. 164-165.

EIDE, V. S. W., ELIASSEN, F.; AND MICHAELSEN, J. A. 2005. Exploiting Content-Based Network-
ing for Fine Granularity Multi-Receiver Video Streaming. In Proceedings of the Twelfth Annual
Multimedia Computing and Networking (MMCN ’05), San Jose, California, USA, S. Chandra
and N. Venkatasubramanian, Eds. Vol. 5680. 155-166.

EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., AND KERMARREC, A.-M. 2003. The Many Faces
of Publish/Subscribe. ACM Computing Surveys (CSUR) 35, 114-131.

GARG, A., Pavrovic, V., REHG, J., AND HuaNg, T. 2000. Integrated Audio/Visual Speaker
Detection using Dynamic Bayesian Networks. In Fourth IEEE International Conference on
Automatic Face and Gesture Recognition 2000. 384-390.

GRrANMO, O.-C., ELIASSEN, F., LysNE, O., AND EIDE, V. S. W. 2003. Techniques for Parallel
Execution of the Particle Filter. In Proceedings of the 13th Scandinavian Conference on Image
Analysis (SCIA2003). Lecture Notes in Computer Science, vol. 2749. Springer, 983-990.

Gu, X. AND NAHRSTEDT, K. 2005. Distributed Multimedia Service Composition with Statistical
QoS Assurances. To appear in IEEE Transactions on Multimedia.

ACM TOMCCAP, Vol. x, No. x, x 2005.



QoS-Aware Application Composition and Parallel Processing . 29

JACOBSEN, H.-A., Ed. 2003. Proceedings of the 2nd International Workshop on Distributed Event-
Based Systems, DEBS 2003, Sunday, June 8th, 2003, San Diego, California, USA (in con-
junction with SIGMOD/PODS). ACM.

JENSEN, F. V. 2001. Bayesian Networks and Decision Graphs. Series for Statistics for Engineering
and Information Science. Springer Verlag.

Kwok, Y.-K. AND AHMAD, I. 1999. Benchmarking and comparison of the task graph scheduling
algorithms. Journal of Parallel and Distributed Computing 59, 3, 381-422.

LESzczUK, M. AND PAPIR, Z. 2002. Accuracy vs. Speed Trade-Off in Detecting of Shots in Video
Content for Abstracting Digital Video Libraries. In Protocols and Systems for Interactive
Distributed Multimedia (IDMS/PROMS 2002) (November). LNCS, vol. 2515. Springer, 176
189.

L1, B. AND CHELLAPPA, R. 2002. A generic approach to simultaneous tracking and verification in
video. IEEE Transactions on Image Processing 11, 530-544.

Liu, J. S. AND CHEN, R. 1998. Sequential Monte Carlo methods for Dynamic Systems. Journal
of the American Statistical Association 93, 443, 1032-1044.

MARCENARO, L., OBERTI, F., FORESTI, G. L., AND REGAZZONI, C. S. 2001. Distributed Architec-
tures and Logical-Task Decomposition in Multimedia Surveillance Systems. Proceedings of the
IEEE 89, 10 (October), 1419-1440.

MAYER-PATEL, K. AND ROWE, L. A. 1998. Exploiting temporal parallelism for software-only video
effects processing. In Proceedings of the sixzth ACM International Conference on Multimedia,
September 13-16, 1998, Bristol, United Kingdom, W. Effelsberg and B. C. Smith, Eds. ACM,
161-169.

MAYER-PATEL, K. AND ROWE, L. A. 1999a. Exploiting spatial parallelism for software-only video
effects processing. In Multimedia Computing and Networking (MMCN’99), San Jose, Califor-
nia, USA, D. D. Kandlur, K. Jeffay, and T. Roscoe, Eds. Vol. 3654. SPIE, 252-263.

MAYER-PATEL, K. AND ROWE, L. A. 1999b. A multicast scheme for parallel software-only video
effects processing. In Proceedings of the seventh ACM International Conference on Multimedia,
October 80 - November 05, 1999, Orlando, Florida, USA, J. Buford, S. Stevens, D. Bulterman,
K. Jeffay, and H. Zhang, Eds. Vol. 1. ACM, 409-418.

MCcCANNE, S., VETTERLI, M., AND JACOBSON, V. 1997. Low-complexity video coding for receiver-
driven layered multicast. IEEE Journal of Selected Areas in Communications 15, 6 (August),
983-1001.

MiTcHELL, T. M. 1997. Machine Learning. Computer Science Series. McGraw-Hill International
Editions.

NAPHADE, M. AND HuANG, T. 2002. Extracting semantics from audio-visual content: the final
frontier in multimedia retrieval. IEEE Transactions on Neural Networks 13, 4, 793-810.

OxkADA, R., SHIRAL, Y., AND MIURA, J. 1996. Object tracking based on optical flow and depth.
In Proceedings of the International Conference on Multisensor Fusion and Integration for
Intelligent Systems. IEEE, 565-571.

Oor, W. T. AND VAN RENESSE, R. 2001. Distributing media transformation over multiple media
gateways. In Proceedings of the ninth ACM international conference on Multimedia, September
30 - October 05, Ottawa, Canada, N. D. Georganas and R. Popescu-Zeletin, Eds. 159-168.

OPYRCHAL, L., ASTLEY, M., AUERBACH, J., BANAVAR, G., STROM, R., AND STURMAN, D. 2000.
Exploiting IP Multicast in Content-Based Publish-Subscribe Systems. In Proceedings of Mid-
dleware. 185-207.

OZER, B. AND WoLF, W. 2001. Video Analysis for Smart Rooms. In Internet Multimedia Networks
and Management Systems, ITCOM, Denver Colorado USA. Vol. 4519. SPIE, 84-90.

PieTzucH, P. R. AND BAcCON, J. 2003. Peer-to-peer overlay broker networks in an event-based
middleware. See Jacobsen [2003].

PieTzucH, P. R. AND BAcoN, J. M. 2002. Hermes: A distributed event-based middleware ar-
chitecture. In Proceedings of 1st International Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria. IEEE Computer Society.

PraTT, W. K. 1991. Digital Image Processing. Wiley-Interscience. John Wiley & Sons, Inc.

ACM TOMCCAP, Vol. x, No. x, x 2005.



30 . Eide et al.

RAFAELSEN, H. O. AND ELIASSEN, F. 2002. Design and performance of a media gateway trader. In
CooplS/DOA/ODBASE, R. Meersman and Z. Tari, Eds. Lecture Notes in Computer Science,
vol. 2519. Springer, 675-692.

SEGALL, B., ARNOLD, D., BooT, J., HENDERSON, M., AND PHELPs, T. 2000. Content based routing
with Elvind. In Proceedings of AUUG2K, Canberra, Australia.

SmiITs, P. AND ANNONI, A. 2000. Cost-based feature subset selection for interactive image analysis.
In Proceedings of the 5th International Conference on Pattern Recognition. Vol. 2. IEEE, 386—
389.

Sun Microsystems 1999. Java Media Framework, API Guide, 2.0 ed. Sun Microsystems.
http://java.sun.com/.

TAYMANS, W., BAKER, S., WINGO, A., AND BULTJE, R. S. 2004. GStreamer application develop-
ment manual, 0.8.8 ed. http://gstreamer.freedesktop.org/documentation/.

TERPSTRA, W. W., BEHNEL, S., FIEGE, L., ZEIDLER, A., AND BUCHMANN, A. P. 2003. A peer-
to-peer approach to content-based publish/subscribe. See Jacobsen [2003].

YANG, J. AND HONAVAR, V. 1998. Feature subset selection using a genetic algorithm. Intelligent
Systems 13, 44-49.

YanNGg, M.-T., KASTURI, R., AND SIVASUBRAMANIAM, A. 2003. A Pipeline-Based Approach for
Scheduling Video Processing Algorithms on NOW. IEFEE Transactions on Parallel and Dis-
tributed Systems 14, 119-129.

Zuou, W., VELLAIKAL, A., SHEN, Y., AND Kvo, J. C.-C. 1998. Real-time content-based processing
of multicast video. In Conference Record of the Thirty-Second Asilomar Conference on Signals,
Systems and Computers. Vol. 1. IEEE, 882-886.

ACM TOMCCAP, Vol. x, No. x, x 2005.



	Abstract
	Acknowledgements
	Preface
	Contents
	I Overview
	1 Introduction
	1.1 Thesis Context: The DMJ Project
	1.1.1 Framework
	1.1.2 Application Domain
	1.1.3 Real-Time
	1.1.4 Analysis
	1.1.5 Distribution
	1.1.6 Media Streams

	1.2 Thesis Motivation
	1.3 Research Topics and Goals
	1.4 Research Method
	1.5 Unaddressed Issues
	1.6 Results and Implications
	1.6.1 Event-Based Communication
	1.6.2 Fine Granularity Multi-Receiver Video Streaming
	1.6.3 Real-Time Distributed and Parallel Video Processing

	1.7 Thesis Organization

	2 Many-to-Many Communication
	2.1 Background
	2.2 Network Layer Multicast
	2.3 Application Layer Multicast
	2.4 Reliable Group Communication
	2.5 Mbus
	2.6 Event-Based Communication
	2.7 Discussion

	3 Multi-Receiver Video Streaming
	3.1 Background
	3.1.1 Heterogeneity Challenges
	3.1.2 Efficient Delivery Challenges

	3.2 Layered Video Coding and Multicast
	3.3 Priority-Progress Multicast
	3.4 Media Streaming over the CORBA Event Service
	3.5 Media Gateway Systems
	3.6 Discussion

	4 Video Processing
	4.1 Background
	4.2 OpenCV
	4.3 Java Media Framework
	4.4 The Dali Multimedia Software Library
	4.5 Infopipe
	4.6 MediaMesh
	4.7 Parallel Software-only Video Effect Processing
	4.8 Discussion

	5 Papers and Contributions
	5.1 Overview of Research Papers
	Paper I: Supporting Distributed Processing of Time-based Media Streams
	Paper II: Real-time Processing of Media Streams: A Case for Event-based Interaction
	Paper III: Scalable Independent Multi-level Distribution in Multimedia Content Analysis
	Paper IV: Extending Content-based Publish/Subscribe Systems with Multicast Support
	Paper V: Supporting Timeliness and Accuracy in Distributed Real-time Content-based Video Analysis
	Paper VI: Exploiting Content-Based Networking for Video Streaming
	Paper VII: Exploiting Content-Based Networking for Fine Granularity Multi-Receiver Video Streaming
	Paper VIII: Real-time Video Content Analysis: QoS-Aware Application Composition and Parallel Processing
	5.2 Discussion
	5.2.1 Many-to-Many Communication
	5.2.2 Multi-Receiver Video Streaming
	5.2.3 Video Processing


	6 Conclusion and Further Work
	6.1 Research Topics and Goals
	6.2 Major Contributions
	6.2.1 Event-Based Communication
	6.2.2 Fine Granularity Multi-Receiver Video Streaming
	6.2.3 Real-Time Distributed and Parallel Video Processing

	6.3 Critical Remarks
	6.4 Further Work
	6.4.1 Event-Based Communication
	6.4.2 Multimedia Streaming
	6.4.3 Real-Time Distributed Multimedia Content Analysis


	Bibliography

	II Research Papers
	Paper I: Supporting Distributed Processing of Time-based Media Streams
	Paper II: Real-time Processing of Media Streams: A Case for Event-based Interaction
	Paper III: Scalable Independent Multi-level Distribution in Multimedia Content Analysis
	Paper IV: Extending Content-based Publish/Subscribe Systems with Multicast Support
	Paper V: Supporting Timeliness and Accuracy in Distributed Real-time Content-based Video Analysis
	Paper VI: Exploiting Content-Based Networking for Video Streaming
	Paper VII: Exploiting Content-Based Networking for Fine Granularity Multi-Receiver Video Streaming
	Paper VIII: Real-time Video Content Analysis: QoS-Aware Application Composition and Parallel Processing


