
ABSTRACT
Massive multiplayer games have to cope with scalability

problems that arise from the necessity of supporting network
traffic for different game elements concurrently. In this paper, we
show a simple means of separating these traffic styles in a proxy
architecture by defining levels of urgency and relevance for each
style. With this simple separation, low latency traffic styles can be
preferred effectively over other traffic within the same game.

We continue with a proposal for a middleware approach to the
use of this infrastructure. It is based on the assumption that game
developers can specify static requirements for the distributed
objects at design and development time. In this case, we propose a
combination of code-generation and run-time support for the use
of the network architecture.

KEYWORDS
Games, Distribution Infrastructure, Middleware

1. INTRODUCTION

More and more massive multiplayer games with action
elements, strategy elements and a persistent game world are
developed. Like most other networked games, they have the
problem of latency due to their large geographical coverage, and
of throughput due to the bandwidth restrictions of modem users.
They have to cope with scalability problems that are worsened if
server-controlled client-server architectures are applied that try to
achieve an identical experience for all participants in the game.

In contrast to shoot-them-up games, massive multiplayer
games require a communication subsystem that solves several
competing requirements of the different game elements. These
requirements must be taken into account in game design, but we
realize that a perfectly identical experience is not necessary for all

data. A persistent world requires that game servers are informed
of all modifications to persistent objects of the game world, while
much other information need not be kept. The necessary time in
which the servers must be informed about such information may
vary, but it must necessarily reach them reliably. Action elements
involve direct player-to-player interaction with a need for low
latency. Role-playing and strategic elements add requirements for
communicating with other players or non-player characters, but
the speed of human reflexes is not required. Player-to-player
chatting comes in two variations, textual and audio chat. For
textual chat, little bandwidth is required and considerable latency
is acceptable, but reliable transfer is necessary. For audio chat,
latency and jitter must be low but may still exceed the low latency
required in action sequences that rely on reflexive behavior. This
kind of chat may require considerable bandwidth but limited
reliability may be acceptable, since players won’t currently expect
telephone quality in a game.

For the solution of these co-existing demands, we must take
into account that the requirements may change within the course
of the game. A massive multiplayer game tries to attract players
with different interests and typically offers action-heavy and
strategy-heavy, as well as social elements. This implies that it is
not feasible to set network resources for one kind of game
element aside for the duration of the game. Resources have to be
re-assigned dynamically to suit the most important aspects of
game play at any given time. An approach to exploit the different
requirements to support such dynamics is proposed in section 2,
including a protocol design and an evaluation of the approach. To
make these functions available for game developers, we propose a
middleware approach in section 3.

2. DISTRIBUTION INFRASTRUCTURE

2.1 Requirement mapping
The examples in section 1 present the variety of needs in a

single massive multplayer game. In some of the examples, low
latency is required from the network, in some reliable transfer is
required, and in some both is essential. They demonstrate as well
that different game elements have differently strong needs for low
latency. Other examples may be found that demonstrate more than
two intensities for reliability as well.

Permission to make digital or hard copies of all or part of this work fo
personal or classroom use is granted without fee provided that copies ar
not made or distributed for profit or commercial advantage and that copie
bear this notice and the full citation on the first page. To copy otherwise, t
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee. NetGames2002, April 16-17, 2002, Braunschweig
Germany.

A9 2002 ACM 1-58113-493-2/02/0004 5.00

State replication for multiplayer games

Carsten Griwodz
University of Oslo - Department of Informatics

Gaustadalléen 23 - 0371 Oslo, Norway

griff@ifi.uio.no

We assume that the lowest latency requirements of a game are
typical for its action elements. Since most games have physical
models for these elements, these requirements concerns typically
very small groups of participants (players and servers), while
other participants that are not actively involved in a given scene
can accept higher delays. In a game with a limited number of
participants, the selection of permissible latency may be made
dynamically in the communication system for each message and
each receiver. Potentially frequent changes of relative positions of
participants and the potentially large number of receivers in a
massive multplayer game make this infeasible. Similar examples
may apply for reliability. By assigning a common limit for all
receivers of a message, management complexity and computing
resources can be reduced at the price of network resources. The
specification of these limits can be expressed in two separate
values:
• an urgency value: a higher urgency indicates a requirement

for lower latency, and
• an relevance value: a higher relevance value indicates a

requirement for higher reliability
The definition of a limited range of values along with the

definition of receiver groups reduces the number of options that
must be processed by the communication system. The specific
mapping of these values must be defined by game design: each
urgency value refers to a latency, each relevance value to a
mechanism that increases reliability.

The interpretation of the two values depends on the features
that are offered by the communication infrastructure. Some
infrastructures may support service guarantees such as a limited
end-to-end delay or a limited loss ratio, which could be exploited.
In the current Internet, the meaning is weaker:

A high urgency value in a message requires that this message
is transferred with a latency that is less or at most equal to that of
messages with a lower urgency value. A low urgency value, on
the other hand, indicates that forwarding of a message may be
deferred.

A high relevance value makes the delivery of a relevant
message safer than that of a less relevant one. One option for
increasing safety is the use of retransmission. If these messages
are also urgent, forward error correction may be chosen to prevent
loss problems. The communication infrastructure may also drop
less relevant messages, which can be used in several ways to
reduce the bandwidth. They may be retransmitted only a fixed
number of times before they are discarded. They may be kept by
the communication infrastructure only for a limited amount of
time, after which they are discarded. They may be dropped in an
intermediate queue of the communication infrastructure when a
threshold is reached.

2.2 Protocol use
To develop an architecture for the communication subsystems

of a massive multplayer game with several urgency and relevance
levels, we allocate several important details to the game design.
One of the most important is concerned with the bandwidth that is
consumed by the application. Just as with current game
implementations, we require a game design that keeps the
required bandwidth within the bounds that can be supported by

the infrastructure - but these bounds will be slightly higher than
before. We require the game design to handle issues of latency
and jitter as before - but again, the bounds will be higher.

We call the data that is generated by the participants of a game
events. Each event is created with an urgency, a relevance, and the
id of a receiver group. Since these events must be delivered to
groups of receivers, the use of multicast is an option. However,
we refrain from using IP multicast for several reasons. One is that
few ISPs support IP multicast, another that considerable effort is
necessary to protect IP multicast groups from eavesdropping, a
third that the assigned of one multicast addresses to each group
would consume a large number of addresses. Finally, we assume
that group membership is frequently changing, which does not
work well with the time needed to join a multicast group [1].
Instead, we propose to deploy an overlay network of proxy
servers that distribute the events to all participants that are
members of the target group. Participants send all events that they
generate to a statically assigned ‘closest’ proxy server for
redistribution, which redistributes it all other proxy servers. Each
event contains an identifier for its target group, which is evaluated
by each proxy servers. The proxy servers identify all participants
that are assigned to them and members of the group, and forward
the event to them. We use the term channel to refer to such a
group and its identifier.

Since event destinations are uniquely identified by their target
channel and source IP address, we can multiplex events at the
application level. A participant or proxy receives all events from
another one on the same port. A pair of hosts that communicate
directly are said to have a bi-directional connection, each with an
outgoing and an incoming interface. The architecture exploits the
urgency and relevance values of the events by introducing one
priority queue for each supported urgency and for each outgoing
interface. The queues are ordered by relevance and arrival time.
Events from the queue with the highest urgency are always sent
first. The relevance is considered in case of retransmissions and
queue overruns.

Among proxy servers, we use UDP to apply prioritized
retransmission and event dropping. The communication between
proxy server and modem-connected clients is expected to be
limited by the throughput rather than latency, so the TCP is also
an option. On connections that use UDP, we implement
retransmission. If the relevance of an event is so low that it will
not be retransmitted, it is not kept after its transmission.
Otherwise, it is re-inserted into its queue with a decreased
retransmission count if it is not acknowledged. If a connection
becomes a throughput bottleneck, the priority queue grows until
the least relevant events are dropped. Since a proxy forward all
events that it receives from a participant to all other proxies, the
use of IP multicast among proxy is conceivable. Provided an
appropriate retransmission approach, this would reduce
bandwidth requirements in the backbone.

2.2.1 Reordering
The chosen approach deliver events out of order to the

application. Even though events with identical urgency and
relevance will not be reordered in the priority queues, packet loss
may result in an out-of-order arrival. We assume that this is not a
relevant problem. A distributed game must be able to handle out-

of-order arrival of events from several participants, and out-of-
order arrival of events from the same participant is only a minor
additional problem. Additionally, events may be further de-
multiplexed to unrelated game object inside the application, in
which case out-of-order arrival may not have any significance at
all.

2.2.2 Congested modem connections
Games are currently designed to restrict the bandwidth needs

so that dial-up connections are sufficient. Our model does not
overcome bandwidth limitation; the same amount of data has to
be exchanged among hosts. The goal of re-ordering is to reduce
the impact of temporary congestion on the game experience.

The described approach has no means of protecting the game
from congestion between a client and its assigned proxy. Since we
expect that a variable number and size of events is generated by
participants and distributed to all receivers of the event’s
channels, temporary congestion at a modem link is likely even if
the game design reduces the average throughput of the channel.
Jitter in the network may result in similar temporary congestion.
Longer term congestion may be the result of reduced backbone
bandwidth. If this overloads is transient, reordering gives more
urgent packets the opportunity to pass less urgent ones. If it is not
transient, the approach will still result in a preferred delivery of
urgent events, while less urgent events will be lost. We consider
this a game design issue. The game may allow the participant on
the congested link to play the game with reduced quality.

2.3 Packing
Game participants produce events of different sizes. It is likely

that many events are considerably smaller than a maximum MTU
size, which implies that several events should be packed into a
single packet. If we don’t combine several events into a single IP
packet, the traffic that is generated in the backbone may be
considerable. For modem-connected clients, the reduced
overhead that is achieved by packing will also increase the
throughput of the connection. These advantages have to be
weighed against a latency increase for some events on the other
side.

In general, a participant in a game will generate independent
events that should be made available to other participants with the
lowest possible latency. This contradicts the necessity to delay the
transmission of events in order to fill a packet.

In our approach, we apply the urgency criteria again. We
introduce additional latency depending on the urgency of a
specific event. The distribution system has two intuitive positions
to perform packing. A packet may first be delayed at the client,
and second in the proxy. The delays will result in more events to
arrive in the priority queues, which can be combined into a single
packet to exploit the maximum MTU size and reduce the
networking overhead. Most urgent packets always trigger
immediate transmission of a packet, even if it does not reach the
MTU size.

The artificial delay will obviously result in a higher average
end-to-end transfer time for events. This can only be turned into
an advantage if more events reach their destination within a
certain deadline than without packing and/or without the priority

scheme. It is important to investigate whether the priority scheme
by itself (i.e. by considering retransmission problems only) is
more efficient than the priority scheme with packing.

2.3.1 Operation
It is a task of the game design to assign delay value to the

urgency levels of the game. Whenever an event becomes
available for transmission, its transmission deadline is determined
from its urgency value, and it is inserted into a packing queue.
The events is also marked with a maximum retransmission count
(ala SCTP) depending on its relevance before it is inserted into
the queue. The packing queue is a priority queue that is ordered
by urgency as the first criterion and the latest possible
transmission deadline for the event as the second criterion. The
transmission deadline for the queue is the shortest deadline of all
entries.

When a packet is filled, it is not necessary to pack events of
the same urgency, relevance of channel. If events are in the same
queue, they are relevant for all receivers at the other end of the
queue.

2.3.2 Performance issues
Besides the latency problem, computing resources for the

packing process must be considered. In clients, packing is a
performance advantage because it reduces interrupts for arriving
packets. The same is the case in servers. Proxies may serve a
considerable number of participants, which increases the
probability of good packing results. But the scalability of the
proxy servers can be limited if disassembling packets and newly
packing them consumes computing resources that impact the
scalability.

The additional load must be compared with an applications
that forwards individual events based on their channel. For the
packing approach, a received packet must be disassembled,
delayed, and packed. The disassembly does not necessarily
involve copying of the data, but only parsing of the received
packet. Similarly, sending a packet does not require a copy
operation if a system call such as writev is available, which takes
several memory blocks for combination into a single write
operation. Considering the timing for delays, the number of
interrupts can be reduced to maintaining a single timer per proxy,
for the next deadline. Since the latency will always be dominated
by network latency, specialized timers should not be necessary.

2.4 Evaluation
The evaluation of the approach is performed by simulation.

The simulation consists of a fully meshed network of proxies, to
which several clients are directly attached. Events are generated
randomly at such a rate that their average combined bandwidth
consumption does not exceed the link capacity of all receiving
hosts.

We want to investigate the effect of the reordering in proxies
and access networks on the average delay for events. To model
the behavior in a wide-area network, we consider 300 ms delay in
the backbone network, and 3 ms in access networks.

Figure 2 shows the results of a test that demonstrates the
effects of the delay separation. Using the topology shown in

Figure 1, the average delay of events is shown when urgent and
non-urgent traffic is combined (1a and b), no mechanisms are
applied (2), and packing is used (3).

In this experiment, we investigate the use of different loss
rates. To see the development of end-to-end delays for the case of
the various classes with increasing packet loss, we limit the access
link speed to 56 KB/s but do not limited the capacity of the
backbone links. In this experiment, 50% of all events are urgent,
and 50% are non-urgent. The relevance is identical; events are
retransmitted until they reach their goal. The average bandwidth
consumed by the events is slightly below that of the clients’
access links. As expected, the end-to-end delay of the system
without the urgency mechanism (2) is quite accurately in the
middle between that of graphs (1a) and (1b). The steep increase in
the end-to-end delay with an increased loss is also expected
because we require retransmissions by time-out until a successful
acknowledgment has been received.

The clarity of the separation is more astounding, considering
that retransmission time-outs are identical, the bandwidth of
access links is not exceeded, and events are not artificially
delayed at any host, but are combined into a packet if they are
queued for transmission. This means that a latency differentiation
of 50 ms is achieved by re-ordering the queue for jitter
compensation at the downlink and retransmitted packets that enter
the send queues between proxies.

3. MIDDLEWARE

Based on the networking infrastructure introduced in section
2, we propose a middleware that can help in the development and
deployment of massive multplayer games and allows players to
act in the presence of latency in the update transmission of events.

We have noted that some events which are generated by one
participant in a massive multplayer game have high, and others
have low relevance to other participants. We expect that
developers will be able to determine high-level urgency and
relevance requirements at game design time, in the same way as
game developers make design time decisions for graphical quality
or the exactness of physical models. Design time decisions allow
distinctions between data that influences highly interactive scenes
like fighting, slightly less time-critical data such as player-chats,
and time-uncritical interaction like selling and buying of goods,
which influences long-term game play but has little relevance for
the immediate update of the display. At design time it is known,
for example, in which way the requirements of data delivery from

a client to a game server and the delivery of the same data to other
clients differ.

3.1 Philosophy
We aim at support for games that are designed as distributed,

partially replicated applications. Our middleware approach
supports the development and operation of such replicated
application. The middleware is applied in the development phase
and in the operational phase. It is intended to reduce the effort of
mapping liberties that are identified in the game design to
working code. The middleware should allow the handling of an
object in spite of its transparently changing state like local data in
most situations. It must also enable the application to react to
events that are received and need specific action.

The handling of dynamically changing objects like transparent
atomic data is similar to the handling of streaming media objects
in multimedia middleware. In addition to the consumption of their
output, which is time-aware, they can frequently also be
manipulated like static objects. In the same way that a state
change in a video object may be triggered by the arrival of a
frame, our objects change their state when an event arrives. By
taking this view, it is intuitive to see the similarity to other
streamed data such as audio, video and 3D scenes.

The objects can thus be interpreted by the applications as
event streams. A distributed data item in this design is not a
passive data unit for the application that includes it, but it can be
considered as a time-dependent stream of events.

For want of better terms, we use terms data type for the
generated code of these objects, and object for their instances. It
would be inappropriate to use the term component because we
don’t intend to re-use the results of the code generation.

3.2 Task List
To exploit the advantages of limited exactness, it must be

made possible to implement software that formulates its
requirements. This requires several levels of support to
developers. At the top level, it must be possible to design
applications with a finely granular definition of the requirements.
These definitions can be statically verified and exploited in code

Figure 1: Topology

Proxy

Proxy

Proxy

Proxy

Proxy

Client

Client

Client

Client

300ms

3ms

300

350

400

450

500

550

600

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(1a) urgent events
(1b) non-urgent events

(3) with queueing
(2) simple forwarding

Figure 2: Delay separation

loss ratio

de
la

y

generation, which should result in data types and functions that
simplify the asynchronous communication at run-time.

For this reason, we have identified issues that are performed in
each of the phases. We use compile time decisions for information
that depends only on game design decisions:
• Assignment of urgency and relevance level
• Evaluation of relations between objects
• Selection of resolution models
• Selection of a prediction mechanism
• Intermediate data types for delayed evaluation support

Run-time decisions are related to object handling based on
these decisions, such as:
• Dereferencing of object vs. remote procedure call
• Replication and de-replication, including garbage collection

of the final copy
• Output from generated objects to local objects, including pre-

diction
• Creation of related objects with the same channel, and

dynamic assignment of participants to channels as they deref-
erence the object

3.3 Code and Data
In our assumption about the distribution of code and data, we

follow the design that is derived from the idea of state machines
that communicate by exchanging events. Code and static data is
distributed off-line, and distributed copies of shared dynamic data
are updated by exchange of events. This approach is similar to
remote function calls but application level processing results are
not handled implicitly by the middleware. An implementation of
function calls on top of it would be straight-forward. It is also
similar to distributed shared memory but the data units that are
transferred are typed at the middleware level.

Code that influences the locally available data is locally
available to all participants. Code that manipulates data that is not
locally available, such as statistics or writable copies of the user
profile, exists only on some hosts; typically all of the game
servers.

Objects are dynamically created and named by a host. The
objects will be made available indirectly available to other hosts,
by updating objects that include pointers to the newly created
object. Two critical problems of this scheme are race conditions in
the creation of new objects and conditions for their deletion.

3.3.1 Context Separation
To enable the use of a distributed object like a local object by

the application, we need to perform the distribution of events
transparently for the application. We distinguish a transport
context, that handles communication matters of objects on behalf
of the application, and an application context, in which the local
copy of the game executes with limited awareness of the
distribution of its objects.

Figure 3 depicts the separation. In the transport context the
middleware communicates with its peers asynchronously to the
application that uses the objects. Updates that are received from
peers modify the local copies of objects transparently unless
conditions are met that require notification of the application
context. In the application context the middleware provides

access to the objects. The available mechanisms for loss or
latency hiding are applied on-demand when the application reads
data from the objects. As seen in Figure 4, a write operation in the
application context results in the distribution of events in the
transport context.

3.3.2 Data Types
As usual, classes in our approach are specified during the

development phase. In contrast to a purely data-driven design of
the data types, we allow the specification of urgency and
relevance level for a class. The mapping of these urgency levels to
maximum transmission delays, and relevance levels to
retransmission counts is done for the entire application. In the
code generation phase, strong resolution between data types are
detected, and the use of different urgency and relevance levels for
strongly related data types is refused.

In addition to these levels, we introduce a choice of conflict
resolution models into the data type specification phase.
Resolution models determine the choice of synchronization
mechanism that is instantiated for each object of the class.
Examples are merge or rewind operations. Each class has two
resolution models, one model if chosen for conflict resolution if
the urgency deadline is met, one for conflict resolution if it is not
met. Resolution functions that need insight into the semantics of
object can only be generated for simple data types. For complex
data types, developers have to provide the specific resolution
functions. This means that a ‘rewind’ resolution can be generated,
but a ‘merge’ resolution will usually require developer code.

While the conflict resolution is performed in the transport
context, access to data is performed in the application context. To
retrieve a valid value, two mechanisms are applied: a prediction
mechanism for delay compensation and delayed evaluation for
improved performance.

Like resolution models, prediction mechanisms can only be
generated automatically for simple data types and simple
prediction mechanisms. More complex data types need support
functions for the computation of member of the data type that are
not transferred. More complex prediction mechanisms, such a
prediction based on a physical game model, requires developer
code.

Delayed evaluation functions and intermediate data types are
generated to allow abstract processing in the code. In the
application, the generated data types are used like regular object,
but unless output to a non-generated data type is produced, the

delayed
evaluation

Figure 3: Separation of contexts

namespace
administration

garbage
collection

application
context

transport
context

object
interface

object
reference

variable

instantiated
object

evaluation of the current state of the object is not performed. This
has several advantages:
• Costly prediction is not performed as frequently as if evalua-

tion would be performed immediately.
• When the evaluation has to be performed, further updates

from peer objects may have arrived, yielding a more accurate
result.

• If the procedure involves a dereference operation on an object
that has been replicated yet, the evaluation delay hides part of
the time before the object becomes available

3.3.3 Grouping of Objects
Grouping of objects is an appropriate means of reducing the

management overhead of the transport context. It can help in
predicting whether objects will be used by a participant in the
near future. If this information is know, a group defines common
receivers for events and can be mapped to the channels that we
defined as a multicast replacement in section 2. Groups of objects
may also require a certain degree of synchronity, resulting in
similar urgency and relevance values. An automatic
determination of groups would thus be helpful. However, we find
that it requires considerable work by the game developer. Two
approach to grouping can be taken A group can identify objects
that are related by implementation, i.e. if one of the objects
changes, the others will be changed as well. And it can identify
objects that are related by presentations, i.e. that will likely be
important to a participant at the same time, without allowing an
abundance of information that could be used for cheating.

Relations between objects by implementation should be
prevented by the game developers. Objects should be as
independent from each other as possible. Data types should be
specified as unrelated as possible. Unrelated objects have no
semantic relation with each other and can be handled separately.
This is the ideal situation because no synchronity between the
events that are distributed for each of the objects must be taken

into account for the other. Each of the objects can even be re-
synchronized with each copies according to differ virtual clocks.
Lightly related objects are such that do not actively influence each
other but that should not be manipulated independently. Such a
relation must be specified by the game developer because it may
mean a relation due to user perception (two items located close
together in the game) or due to a relation that is introduced by a
mutual influence through non-generated code. If such a light
relation exists, the objects will share an urgency level and a
virtual clock. Closely related objects can result in dependent
updates, i.e. when an update to data arrives for one object,
computations on the related object lead to an update that should
be made available to all other participants in the communication
as well. For this reason, relations have to be specified explicitly to
our code generator. To prevent broadcast storms, we update the
dependent objects in all copies of the game where it has been
dereferenced, without generating updates for these changes. The
code generator will enforce that in the presence of transitive
operations (A is updated, A changes B, B changes C), a
dereference-operation on A and C will automatically result in a
dereference operation on B.

Relations between objects by presentation can be mapped
more easily to a common channel. It would seem feasible to group
related objects automatically based on the relation between them
that can be identified at run-time. In the case of games this is
unfortunately not appropriate. It is conceivable that data should
not be available to a participant before certain requirements are
met. For example, enemy positions should not be given away
before they get into the participants line of sight. If the opponents
are in the same room, it is likely that they interact with the same
object without seeing each other. This means that although a
relation between the mutually available object and each player is
available, the closure of relations must not be used to determine
which objects to make available to each participant. The solution
that we consider feasible is that the game developer provides a
segmentation algorithm to allow for the dynamic creation of
groups; since the semantics are unknown to the middleware, it can
not make reasonable decisions about presentation groups of
objects without support by the specific application.

4. CONCLUSION

We have presented a network architecture to support the
variety of networking requirements that massive multplayer
games have because of their integration of several game elements.
The approach relies on proxy servers but not on network QoS
support. We propose to separate the traffic of the competing game
elements be specifying their precedence in term of an urgency
level and a relevance level. A high urgency level gives events
forwarding precedence and reduces the average end-to-end delay.
A high relevance level gives events loss protection. We have
shown by simulation that these goals can be met, and that the
preferred traffic achieves a relevant performance gain over a
situation without classification.

To make these mechanisms available to game developers, we
propose a middleware that provides of compile-time and run-time
support. It separates transport context and application context to

Figure 4: Interaction of contexts

prediction

read access

app-
visible

state

write access

network

application

transport

verified
state

resolution

incoming event

context

context

reduce the visibility of the network support in the application
code to the necessary level.

4.1 Related work
The interface to the application reminds of SCTP with partial

reliability extensions and in, this would be one means of
implementing the protocol between the proxy servers [2].
Extended SCTP allows the definition of a transmission time-out
as well as a retransmission count. It would reduce the necessity of
the proxy infrastructure because of its additional operation as a
filter.

A publisher/subscriber model for games has been proposed
[3]. In our model, the channel assignment is defined by
algorithms that are chosen by the game developers at design time.
The operation is not as granular as the definition in the publisher/
subscriber and may lead to overhead, we consider it the better
choice because the assignment of channels to clients can be made
by game servers. This prevents clients from cheating assign
subscribing to events illegitimately.

An application of the relevance levels to fully exploit the
bandwidth of clients is to integrate elements into the gameplay
that are optional and can increase the players experience if
present. This behavior is untypically for data distribution in
games, but it is frequently applied in the graphics aspects of
games [4].

4.2 Future work
In the near future, we want to complete an implementation of

the distribution infrastructure, and verify the observations that
were made by simulation. We plan to experiment with an
integration into Quake and another game. A first version of the
code generator will be built to support this integration. We will
extend the simulation to validate new mechanisms. While the
evaluation in section 2 is using simple priority queues, other
schemes may be more feasible, such as priority promotion for
retransmissions. We will also determine the applicability of the
technique in other multimedia environment, for example
interactive scenes in MPEG-4 sessions.

5. REFERENCES

[1] A. Garg, S. K. Kasera, R. Kumar and D. Towsley, “Measure-
ment of Join Latency on the Mbone”, UM-CS-1999-047,
August, 1999

[2] R. Stewart et al., “Stream Control Transmission Protocol”,
RFC 2960, IETF, October 2000

[3] Ashwin R. Bharambe, Sanjay Rao, Srinivasan Seshan, “Mer-
cury: A Scalable Publish-Subscribe System for Internet
Games”, Proc. of NetGames 2002, April 16-17, 2002

[4] P. Astheimer, M.-L. Pöche, “Level-Of-Detail Generation and
its Application in Virtual Reality”, Proc. of VRST’94 confer-
ence, August 23-26, 1994

