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Preface

In 2004, computer scientists and mathematicians at Simula Research Lab-
oratory joined forces with petroleum geologists and geophysicists at Hy-
dro Oil & Gas! and launched an R&D collaboration with the slogan “Making
the Invisible Visible”. I was very lucky to be invited into the pilot study to
pave the road for this long-lasting collaboration. Early in the project we met
Steen A. Petersen at Hydro’s research department in Bergen. He introduced a
set of new concepts for geomodeling to us that he had been working on and pro-
grammed as a prototype. I immediately found these ideas very attractive and
soon Steen and I were in a fruitful collaboration on software development and
later on publication of scientific papers. The software we started developing
should later become the Compound Earth Simulator (CES). This collaboration
is still lasting. Today, several of my colleagues in Kalkulo? are involved in the
development of CES, which is now being used on daily basis by geologists and
geophysicists in Statoil.

The academic part of the project linked me to TU Delft and Professor
Jacob Fokkema who had collaborated with Steen on well log simulation and
spatial resolution filtering techniques. In 2010 Steen was appointed Professor at
TU Delft, and later I sent a proposal for a PhD to be hosted by TU Delft. Jacob
and Steen became promotors for my PhD and it has been a great privilege to
work with these visionary scientists. Professor Peter van den Berg at TU Delft
was also a good discussion partner during meetings in Delft. I will always have
good memories of my visits to beautiful Delft, also of the dinners that Jacob
arranged at De Waag where conversations often drifted (away) in philosophical
directions when “propositions” were on the agenda.

This PhD would not have been realized without the support from Professor
Are Magnus Bruaset. It was Are Magnus who first came up with the idea to

"Hydro Oil & Gas merged with Statoil ASA in 2007.
2Kalkulo AS is a subsidiary of Simula Research Laboratory.



viii

convert some of my previous research and publications into a PhD, and he has
been pushing me constantly forward to finish this work. He has also been a
co-author and an acting supervisor at Simula. Hans Petter Langtangen has
also been of much help on mathematical issues in this period. Tor Gillberg
based his PhD on my early research for Statoil. He gained a huge amount of
knowledge on mathematical and numerical aspects of front propagation that I
benefited from. Tor was a good collaborator and discussion partner during his
four years stay in Kalkulo, until he finished his PhD last year.

Other researchers at Simula have also been of much help: Kent-
Andre Mardal, Morten Daehlen, Aslak Tveito, Bjorn Fredrik Nielsen, Xing Cai
and Christian Tarrou (and I should probably have acknowledged more of them).
And thanks to my colleagues in the development team of CES who have im-
plemented, tested and refined the results in this thesis to professional software.

Finally, I thank my daughters Ingvild and Guro, and my wife Marit for
their support and their patience during these years. Thanks to Guro for prepar-
ing the cover of this book, which is based on photos of beautiful fold structures
in a road cut in Bergen.

@yvind Hjelle
Delft, April 2014
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Chapter 1

Introduction and Background

When investigating the geological evolution of a region, concurrent theories
will arise and compete as geologists try to fit together information provided by
collected data. Traditionally, geology has been centered on a qualitative un-
derstanding of physical processes spanning tens and hundreds of million years.
However, through innovative use of different data sources, such as seismic pro-
files, electromagnetic recordings, and bore samples, computer-based models
have become quantitative supplements and corrections to the qualitative in-
terpretation. Such models are of particular value to oil and gas companies
searching for hydrocarbon reserves across wide ranges of geological settings,
often of very high complexity. For example, computer-based models of geolog-
ical folding and faulting are important when mapping out paleogeographical
features, such as when identifying geological structures that have supported
accumulation of sediments in a basin.

Over the past decades, advances in computer power and memory have
paved the way for new and more advanced software for subsurface modeling.
Interpretation systems managing huge seismic volumes in three dimensions
are now commonly integrated with a range of other software tools and work-
flows such as structural model building, property modeling, velocity modeling,
time-to-depth conversion, well planning, restoration, and more. Examples of
such software platforms are Petrel (Schlumberger), RMS (Roxar/Emerson) and
SKUA (Paradigm).

Statoil ASA’s Compound Earth Simulator (CES) is another geomodeling
system taking advantage of the rapid growth in computer power and memory.
CES is founded on a set of new ideas and a new concept for geomodeling,
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referred to as Earth Recursion (Petersen and Hjelle, 2008), which will be dis-
cussed below. CES aims to make geomodeling truly four-dimensional, in that
the geological evolution as a whole is reflected in the model, instead of be-
ing limited to the present day geology. The geological evolution is described
as a sequence of processes (possibly overlapping) acting over time, starting
with deposition of sediments. Deformations caused by tectonic changes such
as folding and faulting are superimposed on the model, new depositions are
imposed, and erosion, compaction and other structural changes are included
as they take place over geological time. Along with these events and structural
changes, the geological volume is populated with physical properties such as
velocity, density, porosity, gamma radiation, saturation, etc. One key concept
in CES is how the spatial distribution of properties is controlled by surfaces
representing horizons, faults, fluid contacts etc., and curves representing well
traces. Let p; denote a one-dimensional property function that depends on the
distance from a point x in 3D space to one or more structural elements, and
let d;(x) be the distance from x to the ith structural element. Conceptually, a
property value P; at x is then given by

Pj(X) = Cgeo—rules(pj(di(x)y 1= 1, Ceey N)) (1.1)

Here, the functional Cgeo—rules represents geological rules that specify how con-
tributions from different geometries are combined and composed into a final
property value at x. Cgeo—rules can be quite complex and may require an al-
gorithmic representation, but conceptually this equation is simple since it only
depends on one-dimensional property functions and distance fields. Complex
and realistic property distributions can be established by combining distance
fields. For example, when describing saturation changes along a well-bore, the
distance field of the original fluid contact can be used, and then the relevant
property can be modified with the help of a property derived from the distance
field of the well geometry. (See examples in Petersen et al. (2007) both in two
and three dimensions.) The starting point for the research in this disserta-
tion was to derive distance fields reflecting the different folding classes defined
in the classical literature of structural geology by Ramsay (1967) and Hudle-
ston (1973). This is covered in Chapters 2 and 3 in this thesis and have been
published in Hjelle and Petersen (2011), and in Hjelle et al. (2013). The results
are used directly in the property distribution function above to determine d;(x).

The concept of Earth Recursion (Petersen and Hjelle, 2008) formulates
the geological evolution as recurrently acting geological processes. By this
concept, spatial and temporal distribution of properties can be regarded as
a recursive sequence that can describe highly complex property distributions
that reflect the interference of any number of geological processes, such as on-
lapping, faulting, folding and compression. Earth Recursion forms the basis of



a set of concepts to describe and combine a process-based data restoration (dR)
workflow and a model reconstruction (mR) workflow for simultaneous seismic
interpretation and model building (Petersen et al., 2012). In the dR-workflow,
a depth seismic section is gradually altered by reverse, mainly structural, pro-
cesses in order to restore the seismic section as if it were recorded immediately
after the time of deposition (Fig. 1.1, left column). Thus, the impact of faults,
folds, compaction etc. is gradually removed by invoking the inverse of these
processes. The section looks “younger” and stratigraphic interfaces appear
easier to interpret. The mR-workflow (Fig. 1.1, right column) starts with
distribution of properties as it would appear immediately after the time of de-
position. Then the normal version of the previous reverse geological processes
in the dR-workflow are applied, now ordered forward in geological time. The
final property distribution is a reconstruction of the present day distribution.
The successive changes in both sequences of the dR/mR-~workflows act recur-
rently by the concept of Earth Recursion described above. A more detailed
description of the workflows in the example depicted in Fig. 1.1 can be found
in Petersen et al. (2012). Chapter 4 in this thesis presents a mathematical and
numerical framework for modeling processes in the dR/mR~workflows.

Fig. 1.2 shows a 2D example from Petersen et al. (2012) of the dR/mR-
workflows implemented in CES. The workflows are applied to a real case from
the North Sea starting with a seismic section (dR1). The original depositional
system (dRn) was reached after approximately 20 recurrently acting processes
initiated from a set of interpreted horizons and faults (lower right). The mR-
workflow (middle row) was initiated with properties distributed in a sheet-
like internal layering, including some pinch-outs (mR1). Then the layers were
transferred back to their present position (mRn) with some additional processes
added (truncation, overburden onlap and deformation). In the last step, a
synthetic section (lower left) was derived from mRn by a spatial resolution
filtering technique (Toxopeus et al., 2008). This section is then compared to
the original seismic in dR1 to verify correctness of interpretations and predicted
processes included in the dR-workflow. Note that any instance with property
distribution in the mR~sequence has its counterpart with restored seismic data
in the dR-sequence. Thus, comparison between predicted and observed data
can take place at any time in the geological history. This can be used to check
underlying hypotheses and to experiment with different scenarios along the
geological timeline. (See Petersen et al. (2012) for more details.)

In CES, geological models are represented as continua defined on regular
grids. Both property fields and distance fields, and derived fields use this simple
format. This also serves as a computational grid for finite difference solvers to
compute distance fields (Chapter 3), and to compute scalar fields for represent-
ing a parameterization of the 3D space (Chapter 4). Deformations representing
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Fig. 1.1: Synthetic example of the dR/mR-workflows. Left column: dR-
workflow where a seismic section is altered by inverse geological processes.
Right column: mR-workflow with the normal version of the same geologi-
cal processes. The arrows indicate the direction of the workflows. (Modified
from Petersen et al. (2012).)



Fig. 1.2: Real case from the North Sea of the dR/mR-workflows. Upper
row: dR-workflow with a seismic section (dR1) and original depositional
system (dRn) reached after approximately 20 processes. Middle row: mR-
workflow, reversing all the processes above, starting with mR1 and resulting
in mRn. Lower row: A synthetic seismic section based on mRn, and inter-
preted faults and horizons used to initiate processes. (From Petersen et al.
(2012).)

restoration in the dR-workflow, or reconstruction in the mR-workflow, are also
computed and represented on the same grid. Curves, surfaces and other geo-
metric objects are only used to control space when computing distance fields
and distributing properties initially. Their geometric representations are al-
ways kept separated from the computational model, however, these geometries
are implicitly defined as isocontours and isosurfaces of their respective distance
fields. This is in contrast to traditional geomodeling with a structural represen-
tation where interpreted surfaces representing horizons, faults, unconformities,
etc. are combined to form a structural model, and where a tetrahedral mesh
is constructed to honor the surfaces of the structural model.

This meshless volumetric approach may cause some operations to be mem-
ory consuming and computational demanding when the model is large. For
example, computation of distance fields on large grids in three dimensions is
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challenging with traditional methods. There is ongoing research with promising
results to compute distance fields on parallel multicore CPU and GPU archi-
tectures. This reduces computing times from several minutes to seconds, thus
enabling interactive restoration and reconstruction of huge complex geological
models with high-resolution in three dimensions (Gillberg, 2013; Gillberg et al.,
2014).

Note that the property function (1.1) only enters the spatial dimension
through the distance functions d;(x). This observation simplifies the imple-
mentation of the numerical kernel in CES, which is done generically, more or
less independently of the spatial dimension. Another important design feature
is that the spatial dependency of a property value is relative to one or more
structural elements in the model. Therefore, properties can stay fixed within a
geological time window in their relative position as structural changes or defor-
mation of the volume take place, while the same properties vary when observed
in the Euclidean space. However, properties can be overprinted or changed, for
example through chemical processes such as diagenesis. As shown in Chapter 4,
this principle simplifies the implementation of operations along the geological
time axis, for example processes for restoration by de-faulting and unfolding
horizons. Moreover, the geological rules in Cgeo—rules are designed to keep the
number of independent degrees of freedom as low as possible. When structural
information is altered or property functions are perturbed, or even geological
rules are changed, the updated information propagates automatically in space
and time to the whole model. This makes the model highly editable and makes
it possible to experiment with a number of different geological hypotheses and
scenarios along the geological timeline in the dR/mR-workflows.

The research reported in this thesis was motivated by the concept of Earth
Recursion and the process-based data restoration (dR) and model reconstruc-
tion (mR) workflows outlined above. The objective of the research has been
to develop a mathematical and numerical framework that can lay the founda-
tion for implementation of processes in the proposed dR/mR-workflows. The
results in the proceeding chapters have been realized as software libraries and
implemented in CES, and have been used by engineers and geoscientists in
Statoil ASA in a number of industrial cases. It should be emphasized that
the results have wide applicability beyond the use in CES, and most of the
material in this thesis has been published in international journals. Results
from Chapters 2 and 3 have also been the starting point for other recent aca-
demic work in Gillberg et al. (2012), and the research on multicore CPU and
GPU architectures mentioned above (Gillberg, 2013; Gillberg et al., 2014).

The main results that form the basis of this dissertation are reported in
Chapters 2, 3, 4, and Appendix A. Chapters 2, 3 and 4 comprise a coherent



presentation of the mathematical and numerical frameworks for the concepts
outlined above in Chapters 2 and 3, respectively, and extensions and applica-
tions of these frameworks in Chapter 4. Appendix A presents results that are
are important for realization of the results from the other chapters as software
and implementation in practical applications. More specifically:

Chapter 2 presents a unified mathematical framework for representing fold
classes defined in the classical literature of structural geology by Ram-
say (1967), Hudleston (1973), and others. A static Hamilton-Jacobi equation
is derived for modeling folds as generalized distance fields. Metric properties
such as gradient (dip and strike), curvature, and their spatial variations are
also derived. (Based on the journal paper Hjelle and Petersen (2011))

Chapter 3 presents the numerical counterpart to the mathematical model
derived in Chapter 2. A numerical scheme is derived to solve the Hamilton-
Jacobi equation by upwind finite differences, and represent folds as continua
on grids covering the geological volume. Numerical examples from CES are
given, where the fast marching method is used to generate the distance fields.
(Based on the journal paper Hjelle et al. (2013).)

Chapter 4 extends the mathematical and numerical frameworks in the two
preceding chapters and applies the results to data restoration and model recon-
struction with numerical examples from the dR/mR-workflows implemented
in CES. A novel method for parameterization of the 3D space is derived for
this purpose and given a meshless representation on the computational grid.
This parameterization is also used to derive metric tensors for quantifying
strain in connection to restoration.

Chapter 5 summarizes and concludes from the preceding chapters, and gives
some directions of further research.

Appendix A presents a multilevel approximation scheme for generating
smooth surfaces from huge scattered data sets. The method is well suited
to handle interpreted horizon and fault data extracted from seismic volumes,
for example by autotracking, and generates surfaces as input to distance field
computations (Chapter 3). (Based on the journal paper Hjelle and Dahlen
(2005), and Chapter 8 in the book Hjelle and Deehlen (2006).)

Appendix B presents Newton iteration schemes for computing the closest
point to parametric curves and surfaces, and Newton iteration schemes for
intersection of parametric curves and surfaces with straight lines. These oper-
ators are used in the initialization step of the fast marching algorithm presented
in Chapter 3.
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Appendix C contains finite difference operators for numerical derivatives used
in front propagation algorithms, and numerical operators for calculating cur-
vature.



Chapter 2

A Hamilton-Jacobi Framework for
Modeling Folds in Structural Geology'

A novel mathematical framework for modeling folds in structural geology is
presented. All the main fold classes from the classical literature: parallel folds,
similar folds, and other fold types with convergent and divergent dip isogons
are modeled in 3D space by linear and non-linear first-order partial differential
equations. The equations are derived from a static Hamilton-Jacobi equation
in the context of isotropic and anisotropic front propagation. The proposed
Hamilton-Jacobi framework represents folded geological volumes in an Eulerian
context as a time of arrival field relative to a reference layer. Metric proper-
ties such as distances, gradients (dip and strike), curvature, and their spatial
variations can then be easily derived and represented as 3D continua covering
the whole geological volume. In this chapter we intend to quantify the shapes
of folds, and not to model the physics of fold formation, although strain states
can also be analyzed by an extension of the model as presented in Chapter 4.

Classical methods for fold classification in structural geology focus on
practical methods in the sense that geologists can use these methods in the
field to recognize different fold types and describe folds quickly. Classification
has mostly been based on the shape of individual surfaces and layers of folds
and how two surfaces that enclose a layer interrelate. Ramsay (1967) classifies
different fold styles based on layer thickness variation (layer-thickness-to-dip-

'This chapter is based on Hjelle and Petersen (2011)
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Class 1, convergent isogons

AV AYA

B (parallel)
Class 2 Class 3, divergent isogons

2, similar

Fig. 2.1: The five fold classes defined in Ramsay (1967), modeled in the
Hamilton-Jacobi framework in sections 2.3.1-2.3.5. The orientations of the
fold profiles are standardized as upright anti-forms, concave downward, with

axial direction pointing upward. Dip isogons are shown between the two layer
boundaries for all fold classes. (Modified from Ramsay (1967, p. 365).)

angle-ratio) along the limb of a fold in a 2D profile section. A related method
by the same author is based on dip isogon characteristics of the upper and
lower boundaries of a layer, and how these boundaries interrelate by dip iso-
gons across the layer. Yet another method, by Hudleston (1973), is based on
the ratio between the dip isogon angle and the limb dip. These three clas-
sification methods lead to the same division into five main fold classes that
occur commonly in naturally deformed rocks: Class 1A, Class 1B, Class 1C,
Class 2, and Class 3 in the literature. The different fold classes are shown in
Fig. 2.1 and will be explained in detail below in view of the three classification
methods.

Other methods for classifying folds are also proposed in the literature.
A method given by Srivastava and Lisle (2004) models the profile sections
of folded surfaces using cubic Bézier curves (Farin, 2002). Piecewise cubic
polynomial functions approximate the shape of a fold limb between the hinge
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and the inflection point. A classification into “shape groups” is made based on
two parameters related to the shape of the resulting Bézier curve: a parameter
related to the distribution of curvature along the limb, and one related to the
ratio of amplitude to wavelength. This classification is carried out for one limb
and one layer boundary at a time and provides no information on how the
surfaces are related to each other. Stabler (1968) and Hudleston (1973) use
simple Fourier analysis and trigonometric functions to represent the geometry
of a layer, as opposed to polynomial functions used by Bézier curves in the
method mentioned above.

The aim of the research presented here is to establish a new mathemati-
cal framework for modeling folds and to relate this framework directly to the
classical methods mentioned above that divide folds into the five fold classes.
Before we derive the mathematical model, we first explain in more detail the
classification methods based on layer thickness variation and dip isogons along
2D profile sections in Sect. 2.1. Then Sect. 2.2 provides some mathematical
foundation on front propagation and the static Hamilton-Jacobi equation. The
new mathematical framework for modeling folds in both 2D and 3D is described
in detail in Sect. 2.3.

2.1 Classical Fold Classification

2.1.1 Classification by Layer Thickness Variations

Thickness variation along the limb of a fold can be represented by the ratio ¢, =
to/to, where t, is the orthogonal layer thickness at dip angle o and ¢y is
the thickness at the hinge (Fig. 2.2(a)) Following common conventions in the
literature, we assume that the orientation of the fold profile is standardized
as an upright antiform, concave downward, where the dip angle o > 0 on the
right limb, o < 0 on the left limb, and @ = 0 at the hinge. By plotting ¢/,
against the dip angle as in Fig. 2.2(b), division into the different fold classes
shown in Fig. 2.1 is carried out as follows.

The Class 1B fold, commonly called the parallel fold, has a constant ¢/ -
ratio equal to one, that is, the thickness measured orthogonally across the layer
boundaries of a parallel fold is constant.

The Class 2 fold, commonly called the similar fold, has ¢/, = cos a. Thus,
the thickness of a similar fold measured orthogonally to the layer boundaries
varies by the thinning of the limbs relative to that of the hinge zone, but the
thickness in the direction parallel to the axial surface is constant.
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The Class 1C and Class 3 folds also have thinning fold limbs with, re-
spectively, less and more thinning than that of the similar fold. Class 1A has
thickening of the fold limbs relative to that of the hinge zone.

Thickness variation along the limb of a fold can also be based on axial
plane thickness. This also leads to the fold classes described above (Ragan,
2009, p. 385).

(XK Class 1A

Class 1B, Parallel

c Class 1C
1 /@%
\)J‘
, g
t %

Class 3

(a) (b) ) a 45 90

Fig. 2.2: (a): Thickness variation along the limb of a Class 1C fold. The line
with bullets is a dip isogon. (b): Orthogonal layer thickness ratio ¢/, against
the dip angle « for the different fold classes. (Modified from Ramsay and Huber

(1987, p. 348 and 349).)

2.1.2 Classification by Dip Isogons

In the context of the mathematical model we derive below, classification with
dip isogons is of particular interest, since dip isogons coincide with the char-
acteristic curves of the static Hamilton-Jacobi equations we use to model the
different fold classes. A dip isogon connects two points with equal dip angles
on the upper and lower boundaries of a layer (Fig. 2.1). Class 1A-C folds have
convergent dip isogons, as seen when traced from the outer toward the inner
arc of a fold. Class 1B folds (parallel) have dip isogons that are orthogonal to
the layer boundaries. Class 1A and Class 1C folds have dip isogons that are,
respectively, strongly convergent and weakly convergent compared to those of
Class 1B. Class 2 folds (similar) have parallel dip isogons, and Class 3 folds
have divergent dip isogons, as seen when traced from the outer towards the in-
ner arc. The second and fourth columns in Table 2.1 summarize how the fold
classes are characterized by layer thickness variations and dip isogons. Another
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’ Fold class ‘ t, ‘ ¢ (a>0) ‘ Dip isogons
Class 1A >1 <0 strongly convergent
Class 1B =1 = orthogonal to boundaries
Class 1C | cosa <t <1 |0< ¢ < «a | weakly convergent
Class 2 =cos« =« parallel
Class 3 < cos >« divergent

Table 2.1: Characterization of the fold classes by layer thickness variation ¢,
dip isogon angle ¢, and convergence, divergence and parallelism of dip isogons.

complementary classification method by Hudleston (1973) is based on plotting
the dip isogon angle ¢, or isogon angle for short, against the dip angle c. The
isogon angle is measured relative to the normal vector of a layer boundary such
that ¢ = 0 for Class 1B folds, and it is positive when measured counterclock-
wise from the normal vector. At the hinge, ¢ = 0 for all fold classes. The third
column in Table 2.1 shows how the isogon angle varies for the different fold
classes on the right limb and how the isogon angle relates to the dip angle. See
also Ragan (2009, p. 387), for more details and how this classification method
can be used to analyze cleavage orientation around folded layers.

Other useful geometric characteristics of folds follow directly from the
classifications above. For example, in Class 3 folds the curvature of the inner
boundary is less than that of the outer boundary. In Class 2 folds the curvatures
of the inner and outer boundaries are the same, while for Class 1 folds the
curvature of the inner boundary is greatest and decreases along dip isogons
toward the outer boundary. We also note that for Class 1B and Class 2 folds
the dip isogons between two layers are of equal length.

2.2 Mathematical Foundation

The Hamilton-Jacobi framework we present in Sect. 2.3 is an Eulerian ap-
proach, which represents fold geometry as continua in the whole 3D volume of
geological layers. The mathematical model is founded on a front propagation
analogy by which a continuum of layer boundaries of a fold is modeled as a
propagating front starting from a reference layer boundary. The propagating
front evolves in space and time, and we seek its unique first arrival time value
everywhere in the domain of interest. The isosurfaces (isocurves in 2D) of
this time of arrival field is then associated with a continuum of layer bound-
aries. The notion of time in this context can be associated with geological
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time, although a direct correspondence is not immediately present. We will
return to this later. The front propagation analogy is stated as a boundary
value problem with partial differential equations (PDEs) derived from the static
Hamilton-Jacobi equation. This approach to modeling folds is different from
classical methods, which have mostly been based on a geometric description of
the boundary surfaces of folds.

To produce the numerical examples presented throughout this chapter, we
developed a variant of the fast marching method for anisotropic problems which
solves the PDEs on a finite difference grid (Chapter 3). The fast marching
method was first introduced by Sethian (1996) for isotropic front propagation,
and later extended to anisotropic front propagation by Vladimirsky (2001),
and Sethian and Vladimirsky (2003).

2.2.1 Front Propagation and Time of Arrival Fields

Let T be a curve evolving in 2D, or a surface evolving in 3D, and assume that
every point on I' moves in the direction normal to I', governed by a speed
function F(x,n), where n is the unit normal vector to I' as it passes through
the point x (Fig. 2.3). In the following we call I" a propagating front and the

__________ T,

1_‘1

Fig. 2.3: A front moving with variable speed F'(x,n) in its normal direction
from the initial front I'y.

motion of I' front propagation. We assume that F' is strictly positive such that
the front can pass through a point only once. Furthermore, let T'(x) represent
the time of arrival (or traveltime) of I' at x starting from the initial front T'g
at time ¢ = 0. Then the level sets of T correspond to the evolving front at
different times t,

Iy = {x € R¥€Z3} | 1(x) = t}. (2.1)
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The normal vector n(x) has the same direction as the gradient of T
in x. In three dimensions with x = (z,v,2), the gradient is VT'(x) =
(0T /0x,0T /0y, 0T /0z). Then the normal can be expressed as

VT(x)
n(x) = )
IVT ()]l
where || - || denotes the Euclidean norm. We observe that VT at a point x is

orthogonal to the level set passing through x. Here we assume that I'; and
thus T are sufficiently smooth such that the gradient and the normal vector
are well defined for all x. But this is not necessarily true everywhere, since the
propagating front can develop cusps and corners where the gradient is not well
defined. We return to this in Sect. 2.3.1.

Consider a point x on the front that is moving with speed F'(x,n) in the
normal direction of I'. Let the point move a small distance ¢ to a new point
X = x + 0n(x). Using the fact that distance=speedxtime, we have

T'x) -T(x)

5 ~ 1/F(x,n),

and in the limit as § — 0 we obtain the boundary value problem

_ VT(x)_
|IVT(x)| =1/F (Xv ||VT(x)H> ) (2.2)
given T = 0 on T'y.

This is a non-linear first-order PDE that belongs to the class of static Hamilton-
Jacobi equations or more generally, to hyperbolic conservation laws (LeVeque,
1992). The boundary value problem will serve as a unified model to model the
different fold classes defined in Sect. 2.1. We will frequently refer to

H(x,VT) = ||VT||F <x, Hggﬂ> (2.3)

as the Hamiltonian such that a more general form of the static Hamilton-Jacobi
equation can be written H(x,VT) = 1. Since F depends on n in general, the
front propagation is anisotropic. Suppose, on the other hand, that the front
propagation is isotropic, that is, F(x,n) = F(x). Then Eq. (2.2) reduces to
the eikonal equation

IVT(x)|| = 1/F(x). (2.4)

In the special case with constant speed F' = 1, T corresponds to a distance
field relative to I'g where the distance is zero.
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2.2.2 Characteristics

The characteristic curves of a PDE, or just characteristics, are curves in the
solution domain along which the PDE can be reduced to an ordinary differ-
ential equation (ODE). Then the solution value 7'(x) in a point x depends
only on other values of T' along the characteristic passing through x. Let the
static anisotropic Hamilton-Jacobi equation in the boundary value problem
of Eq. (2.2) be expressed by the Hamiltonian as

H(x,p) =1,

where p = VT'(x). Let (x(t),p(t)) represent curves in the solution domain.
Along these curves we have

dH (x(t),p(t)) dx dp
yr .E+VPH.7_O, (2.5)

where Vy and V, are gradient operators with respect to x and p, respectively!.
Then, dx/dt and dp/dt can be considered as a system of (coupled) ODEs. In
particular, dx/dt represent tangent vectors of (x(¢), p(t)). The following system
of ODEs satisfies Eq. (2.5).

dx

T —V.H 2.
7 VpH, (2.6)
dp

— = —VH. 2.
7 \V (2.7)

We return to these equations in Sect. 2.3, where we model the different fold
classes by different Hamiltonians and thus by different characteristic curves. In
particular, we will see that there is an important link between characteristics
and dip isogons.

The static Hamilton-Jacobi equation and the boundary value problem
of Eq. (2.2) arise naturally in geometric optics for wave propagation. Geometric
optics is a simplified model to describe how light propagates as geometric rays,
and has many applications in partial differential equations. In particular, the
characteristics defined by Eq. (2.6) and (2.7) play an important role in this
field. We sometimes use terminology established in geometric optics, although
our focus is on the description of folds in structural geology. The following
establishes some links and adopts some notations.

In geometric optics, a level set I'y of T given by Eq. (2.1) is called a
wavefront and n(x) = VT'(x)/||VT(x)| is the wavefront normal in x. The

!Throughout this thesis, when the gradient operator V is without a subscript, the gradient
is with respect to the spatial variables x = (z,y, 2) in 3D and x = (z,y) in 2D.
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gradient p is sometimes called a slowness vector, since the elements of p are
the reciprocals of velocity. Then

1
P

is called the phase speed (in the normal direction of the wavefront), and we
get

Vu(x,n(x))

n(x)
p(x)= ———.
R ACRNE)
With the Hamiltonian on the form H(x,p) = 1, the phase speed can be written
H (x,p(x))
V(e n(x)) = ZLPUD) gy ), (2.8)
8 Ip(x)]

In the last equality we have moved the denominator inside the parenthesis
assuming that H is homogeneous of degree 1 in the second argument. The
characteristic curves (x(t),p(t)) are called ray trajectories. Eq. (2.6) defines
the group velocity vector, which points in the ray direction. The magnitude of
the group velocity vector is the group speed,

dx

= Hi.
> = 1p

vg(x,P) = ‘

In general, the group speed depends on both position and the slowness vector
(traveltime gradient), implying so-called directional dependence.

In a homogeneous anisotropic medium, the phase speed depends only
on the direction of the front, V,(x,n(x)) = V,(n(x)), and the Hamiltonian
becomes H(x,p) = H(p). In an isotropic medium, the group velocity vec-
tor dx/dt and the slowness vector p have the same direction, and group speed
equals phase speed. In an anisotropic medium this is not the case. Numerical
schemes and algorithms for solving the boundary value problem of Eq. (2.2)
must take this difference into account. The isotropic problem can be solved nu-
merically on a regular grid directly and elegantly with Sethian’s fast marching
method (Sethian, 1999b), but the anisotropic problem requires other numerical
schemes.

By using the results above, we can add a third ODE to Eq. (2.6) and (2.7),
for the time of arrival T" along the characteristic curves. Since T' = T'(x) we
have IT (%) J

X X
—vr- X .V, H
dt v dt p Vp (Xv p)a
and from Eq. (2.8) we have

H(x,p) = H(x,n)|p|-
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Then the group velocity vector can be written

p p P
VpH(x,p) = H(x,n) — = Vp(x,n) -— = —,
i Ipl — * el Ipl?
which leads to T
— —p. H=1. 2.9
dt p vp ( )

We also mention the method of characteristics, which is a technique to solve
more general hyperbolic PDEs: First the characteristic curves are found and
the ODEs along the characteristics are established. Once the coupled system
of ODEs (corresponding to Eq. (2.6) and (2.7)) is solved, solution values of the
original PDE along the trajectories are found (here by solving Eq. (2.9)).

2.3 The Mathematical Model from an Eulerian Per-
spective

This section specializes the mathematical model from Sect. 2.2 to represent the
different fold classes described in Sect. 2.1. The model is founded directly on
the front propagation analogy by which we regard a continuum of layer bound-
aries of a fold as a propagating front starting from an initial layer boundary I'y.
The boundary value formulation in Eq. (2.2) is used to model this motion of
the front such that level sets I'; given by Eq. (2.1) correspond to the continuum
of layer boundaries of the fold. In general, we use the anisotropic formulation
where the motion is governed by a speed function F'(x,n) that depends both
on the position x and the direction n = VT'/||VT|| of the front. Typically, I'y
corresponds to the lower (older) boundary and the level sets I'; correspond to
boundaries of younger layers deposited at a later geological time. Note that
the variable ¢ does not necessarily correspond to geological time here. The
boundary problem of Eq. (2.2) with unknown 7" is typically solved numerically
on a regular or triangular grid. Metric properties such as distances, gradi-
ents, and curvature can then also be easily derived and represented by scalar
fields and vector fields covering the whole geological volume. A key feature
of the mathematical model is that the characteristics of the Hamilton-Jacobi
equations representing the different fold classes coincide with the dip isogons
used in the fold classification. This has important theoretical and practical
implications.

The following designs appropriate speed functions F'(x,n) to the front
propagation model that result in time of arrival fields which correspond to
the different fold classes defined in Sect. 2.1. Each of the five fold classes
are treated separately through Sect. 2.3.1 (Class 1B), Sect. 2.3.2 (Class 2),
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Sect. 2.3.3 (Class 1C), Sect. 2.3.4 (Class 1A), and Sect. 2.3.5 (Class 3). Then
we summarize with a unified mathematical framework for representing all the
fold classes in Sect. 2.4.

2.3.1 Class 1B Fold (Parallel)

A class 1B fold has no layer thickness variation in its normal direction along
the boundary of a layer. In the context of front propagation, this corresponds
to a speed model with constant speed in the outward normal direction of a
level set I'y. That is, the speed does not depend on the orientation of the front,
and so the front propagation is isotropic. Then the static Hamilton-Jacobi
equation (2.2) reduces to the eikonal equation

Forop(x) VT (x)]| = 1, (2.10)

where the subscript of Fp;op indicates that the speed is a normal propagation
speed independent of direction, and the Hamiltonian is

H(x,p) = Fprop(x)|P-

Inserting the Hamiltonian into the ODEs (2.6) and (2.7) representing the char-
acteristics, we obtain

dx o)

7:Fro X)o7
ar = e
dp

=~V Fprop() [Pl

Recall from Sect. 2.2.2 that the characteristic lines in the isotropic case follow
the gradient lines in the normal direction of the front, and that gradient lines
and characteristics coincide.

The first ODE above defines the group velocity vector and has the same di-
rection as the outward normal direction. Suppose that sediments are deposited
on horizontal layers. Then, since the direction of the velocity vector is orthogo-
nal to the geological layers, we can relate the speed Fprop to the sedimentation
rate at the time of the geological layer’s deposition and relate traveltime T to
geological time. However, to make a direct correspondence to sedimentation
rate and geological time, compaction and other geomechanical and physical
processes must also be accounted for. From the second ODE above, we see
that if F,rop is constant, then p is also constant along characteristics in both
direction and magnitude. If Fprop varies, for example to reflect varying sedi-
mentation rate, then Fyrop(x) must be constant along any level set I'; for the
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propagating front to resemble parallel layers of a Class 1B fold. The prop-
agation speed can then be recasted to a one-dimensional function Fprop(s)
along a characteristic, and the characteristic curve reparameterized accord-
ingly to x(s). We assume that s is a spatial variable that corresponds to arc
length such that ||dx(s)/ds|| = 1. Since s is constant along a level set I'; and
the characteristic points in the gradient direction p = V7, this also implies
that Vs = p/||p||, and since s is a fixed parameterization, Fprop(s) is the same
along all characteristics. As Fprop(s) varies by s, the gradient VFprop(x) is
always directed along the same characteristic since

dFprop(s dFprop(s) p
V Fprop(X(s)) = Pdsp) Vs = pdsp(HpH'

Then, by the second ODE, the gradient direction is constant along the charac-
teristic, and the characteristics are also straight lines under these assumptions.

In 2D the dip angle is

T,
s = i T -1 Y
agip = sign(T;) cos <”VT||> )

where VI' = (T,,T,). Since the gradient direction is constant along a char-
acteristic, the dip angle is also constant along the characteristic. Thus, dip
isogons and characteristics coincide. For parallel folds the dip isogons between
two layers have equal lengths, since this corresponds to the orthogonal layer
thickness. If the corresponding level sets of 1" of the two layers are I'y; and I,
and Fprop is constant, the layer thickness is Fprop(to — t1).

Given the boundary condition 7" = 0 on Iy, the fast marching
method (Sethian, 1996) can be applied directly to solve Eq. (2.10) numeri-
cally on a finite difference grid. Fig. 2.4 shows examples from fast marching
in 2D and 3D with Fprep(x) = 1 such that 71" represents the distance field rela-
tive to a parametric curve in 2D and to a parametric surface in 3D. We notice
the solution in the core of the fold where parallelism breaks down and where
the solution is clearly not smooth. This is also where characteristic curves of
the PDE (and thus dip isogons) meet from different directions. Although VT
vanishes in these regions, the fast marching method ensures that a unique so-
lution of Eq. (2.10) is found on the finite difference grid by the principles of
viscosity solution of Hamilton-Jacobi equations as introduced in Crandall and
Lions (1983). Note that 7" has different signs on each side of I'y. In the 2D
case we define the positive side to the left of I'y, as seen when walking along
the curve in the parameter direction. A similar convention is used in the 3D
case relative to a parametric surface, where the positive side is in the normal
direction of the surface.
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Fig. 2.4: Parallel Class 1B folds in 2D and 3D represented as time of arrival
fields T'. Level sets of T" are shown in the 2D plot in (a).
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2.3.2 Class 2 Fold (Similar)

Let a be a unit vector representing the axial direction of a similar fold. In the
front propagation context we want to translate the level sets I'; in the a di-
rection such that I'y, and I'y, at two time steps are “similar” in shape, with
no thickness variation between I'y, and I'y, in the direction of a. This simple
motion could, of course, be represented for each time step as a graph in a
Cartesian system with the abscissa orthogonal to a, but we want to keep this
in the context of front propagation to develop a unified mathematical model
for all fold classes. The motion can be governed by an underlying advection
field in the direction of a and with constant magnitude on the front I';. We
interpret this as a velocity field

wadv (X) a,

where 1,4y 18 the advection speed in the direction of a. The advection speed
component F,4, normal to the front depends on the direction of the front and
can be expressed by the scalar product

Fagy (X,1) = Yaqv(x) (a-n).

Since the speed in the outward normal direction of the propagating front de-
pends on direction, this is an anisotropic front propagation, as opposed to the
isotropic case that models the Class 1B fold. Inserting the speed in the normal
direction into Eq. (2.2) and rearranging, we obtain

VYaav(x) (a- VT'(x)) = 1. (2.11)

This is a linear PDE, as opposed to the non-linear PDE that models Class 1B
folds. If the speed taqy(x) = 1, then T represents a “distance field”, where
distances are measured in the direction of a.

Since the advection speed F,q4y normal to the front must always be positive
for the motion to be monotonic in the outward direction,

cos ' (a-n) < 7/2

everywhere along the front. This must also be satisfied for I'g representing the
lower boundary. Of course, this must also be satisfied for the front propagation
to have geological relevance to similar folding, but we will see below that when
advection is combined with normal propagation to model other fold classes,
FLqv can be less than zero, as long as the total speed in the normal direction
is positive. Fig. 2.5 illustrates the Class 2 fold with .4y, = 1.0 and axial
direction a = (—0.2, 1.0).
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Fig. 2.5: Similar Class 2 fold represented as a time of arrival field with .4, =
1.0 and a = (—0.2,1.0).

For similar folds, the dip isogons along which the dip angle and the di-
rection n are constant are parallel and in the direction of a. This is also the
direction of the characteristics of the linear PDE (2.11), since the solution
of T'(x) along curves parallel to a depends only on other values along that

same curve, L
T(X(S)) :/mds.

Here we use the same spatial parameterization s along the characteristic curve
as that introduced for the parallel fold in Sect. 2.3.1.

The system of ODEs representing the characteristics becomes

Ccli_? = wadv(x) a, (2'12)
Ccll—? = —Vt)agv(x) (a - p), (2.13)

(2.14)

and the Hamiltonian is

H(Xv p) = ";Z)adv(x) (a : p)'
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As for the parallel Class 1B fold, the dip isogons between two layers that
correspond to level sets I'y; and I'y, have equal lengths 14y (te — t1) if the
advection speed 1,4y is constant. This corresponds to layer thickness in the
axial direction. In addition, when .4, is constant, the advection speed Flagy
normal to the front depends only on the direction of the front. In terms of
geometric optics (Sect. 2.2.2), taqy is the group speed, ¥agya is the group
velocity vector, and Fqy is the phase speed. Since the phase speed depends only
on direction, a similar fold under these restrictions relates to a homogeneous
anisotropic medium in geometric optics.

2.3.3 Class 1C Fold

The remaining three fold classes in Fig. 2.1, Class 1A, Class 1C, and Class 3, are
best analyzed by starting with the Class 1C fold. From the discussion above,
Class 1C is “between” Class 1B and Class 2, with regard to both thickness
variations of the limbs and convergence of the dip isogons. More specifically,
while Class 2 has parallel dip isogons, Class 1C has convergent dip isogons
(as seen when traced from the outer toward the inner arc of a fold), but they
are less convergent than dip isogons of Class 1B. In addition, while Class 1B
has constant layer thickness in the normal direction, Class 1C has thinning of
the limbs relative to that of the hinge zone, but the thinning is less than for
Class 2. As such, Class 2 and Class 1B represent two extremes of Class 1C,
with regard to both thickness variations of the limbs and convergence of the
dip isogons. So, to model this fold as a propagating front, we construct a speed
function with contributions from both normal propagation and advection. In
the outward normal direction, the combined speed is

F (X, Il) Fprop(x) + Fagv (Xa Il)
F

prop(X) + Yaay(x) (a-n), (2.15)

with positive Fprop and ¥aqv. We note that this is an anisotropic motion with a
speed function that depends on the direction n = Hg—;” of the front. Inserting

for F' into the Hamilton-Jacobi equation Eq. (2.2) and rearranging, we obtain
the non-linear PDE

Forop (%) [|[ VT (x)[| + taav(x) (2~ VT'(x)) = 1. (2.16)

We observe that the two terms on the left-hand side come from Eq. (2.10)
and (2.11), representing, respectively, Class 1B and Class 2. Fig. 2.6 illustrates
the Class 1C fold with Fyrep = 1.0, ¥agy = 1.0, and axial direction (—0.2,1.0).
The system of ODEs representing the characteristics of Eq. (2.16) are then also
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Fig. 2.6: Class 1C fold represented as a time of arrival field with Fyrop =
1.0, ¥agy = 1.0, and axial direction a = (—0.2, 1.0).

sums of terms from the characteristics of Class 1B and Class 2,

dx P

— = Fprop(X) 1 + Yaav(X) a, 2.17
dt p P( )HpH d( ) ( )
dp

_VFprop(X) ”pH - VT;[}adv(x) (a : p)’

—

= 2.1
dt 8

—~

2.19)

and the Hamiltonian becomes

H(x,P) = Fprop(X)||P[| + Yaav(x)(a - p).

Similarly as for Class 1B and Class 2, the normal propagation speed and
advection speed can be recasted to one-dimensional functions Fyrop(s) and
Yaav(s), where s is a spatial parameter representing arc length. The charac-
teristic curves can be reparameterized accordingly. Then Fyrop(s) and taav(s)
can vary along the gradient lines and in the direction of a, respectively. But
for the gradient lines and the characteristics to be straight lines, it follows
from Eq. (2.17) and (2.18) that one must require

Fpr
Forop(s) = constant. (2.20)

wadv (3)

—
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Then the dip angle is constant along the characteristic, and the dip isogons
and characteristics coincide.

The vector sum in Eq. (2.17), which defines the group velocity and the
tangent vector along the characteristic, can be given a precise geometric inter-
pretation in agreement with the discussion in the introduction to this section.
The first vector in the sum has the same direction as the dip isogons of the
Class 1B fold, and the second vector has the same direction as the dip iso-
gons of the Class 3 fold (Fig. 2.7). Class 1B has convergent dip isogons and
Class 3 has parallel dip isogons. Thus, since Fyrop and 1agy are both positive,
the characteristics expressed by the vectors in Eq. (2.17) are less convergent
than the characteristics of the Class 1B fold, and as long as Fprop is greater
than zero, the characteristics are indeed convergent. As Fprop becomes smaller
relative to 1.4y, the characteristics become less convergent, and in the limit
as Fprop — 0, the characteristics become parallel and we obtain Eq. (2.11) for
the similar Class 2 fold. As 1),q, becomes smaller relative to Fprop, we get
the isotropic case in the limit with the eikonal equation (2.10) for the parallel
Class 1B fold.

2.3.4 Class 1A Fold

From the discussion above on the vector sum in Eq. (2.17) representing the
tangent vector of the characteristics, we can now conclude that if Fprop is
greater than zero and .4y is less than zero, the characteristics, and thus the
dip isogons, are more convergent than those of the Class 1B fold. Fig. 2.8
illustrates this situation. The total speed in the normal direction must be
positive for the front propagation to be monotonic, so from Eq. (2.15) the
restriction on the advection speed along the front is

FPI'OP

wadv > — a-n . (2.21)

From here we follow the same line of arguments as above for Class 1C. In
particular, we find that the characteristics are straight lines along which the
gradient direction is constant under the restriction of Eq. (2.20). Thus, the
characteristics and dip isogons coincide. Moreover, if Eq. (2.21) is satisfied
everywhere on the initial front Iy, it is satisfied along all characteristics and
therefore in the whole domain. We conclude that the propagating front gov-
erned by the static Hamilton-Jacobi Equation (2.16), with Fyrop greater that
Z€r0, Paqv less than zero, and with the above restriction on .4y, represents the
Class 1A fold (Fig. 2.9).



2.83. The Mathematical Model from an Eulerian Perspective 27

dx P
—=F -
d[ prop pH +l//adva

p
F =
™ Ilel

Fig. 2.7: Illustration of the vector sum in Eq. (2.17) for the Class 1C fold
that sums to the group velocity in the direction of the dip isogon. Both Fprqp
and Y.qy are positive.
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dx p
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Fig. 2.8: Illustration of the vector sum in Eq. (2.17) for the Class 1A fold that
sums to the group velocity in the direction of the dip isogon. Here Fpop is
positive and 1.4y is negative.

2.3.5 Class 3 Fold

Similarly as above for Class 1A and Class 1C, we examine the vector sum
in Eq. (2.17) representing the tangents of the characteristics. If Fyrop is less
than zero and 1,4, is greater than zero, the characteristics are divergent. Still,
the total speed in the normal direction must be positive for the front prop-
agation to be monotonic, so from Eq. (2.15) the restriction on the normal
propagation speed is

Forop > —(aava) - n. (2.22)

The rest of the discussion above also applies directly here. We conclude
that Eq. (2.16) with Fprep less than zero, 1)aqv greater than zero, and with
the above restriction on Fprop represents the Class 3 fold. Fig. 2.10 shows an
example with the same initial front I'g as was used for the other fold classes.
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Fig. 2.9: Class 1A folds represented as time of arrival fields with Fprop =
1.0, ¥agy = —0.5, and axial direction a = (—0.2, 1.0).
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Fig. 2.10: Class 3 fold represented as a time of arrival field with Fprop =
—0.2, a9y = 1.0, and axial direction a = (—0.2,1.0). A set of (divergent) dip
isogons is also shown.

2.4 The Unified Mathematical Model for all Fold
Classes

We now have a unified mathematical model for all five fold classes in Fig. 2.1
represented by the Hamiltonian

H(x,VT) = Fprop(X)||VT|| + thaqv(x) (a- VT).

The boundary value problem for the front propagation modeling the fold classes
is

Forop(X) VT (%) || + taav(x) (a- VT'(x)) = 1,
given T =ty on I'y. (2.23)

In the previous examples we have used the boundary condition tg = 0 on I'g,
but tg can be any constant. For the sake of completeness, we also repeat the
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’ Fold class \ Forop ‘ Yadv ‘ Curvature
Class 1A >0 <0 K1 > K9
Class 1B, Parallel | >0 0 K1 > K9
Class 1C >0 | >0 K1 > Ko
Class 2, Similar 0 >0 K1 = K9
Class 3 <0 >0 K1 < Kg

Table 2.2: Characterization of the fold classes by the sign of the normal prop-
agation speed Fprop and the advection speed t)aq,. The curvatures k1 and ko
refer to the inner and the outer arcs, respectively.

ODEs representing the characteristic curves (and the dip isogons),

d

= VpH = Fpmp(x)”%” + Yaae(X) a, (2.24)

d

£ = —-VxH = _VFprop(X) ||p” - Vwadv(x) (a ’ p)' (2'25)
(2.26)

Here we have also included the general form of the characteristics for the general
static anisotropic Hamilton-Jacobi equation (Sect. 2.2.2).

Different fold classes are modeled by varying the sign of the normal prop-
agation speed Fyrop and the advection speed a4y, as summarized in Table 2.2.
Comparing this table with Table 2.1 in Sect. 2.1.2 reveals the relation between
the speed components Fprop and 1agy in the Eulerian model and thickness vari-
ation t/, and isogon angle ¢ in Ramsay’s classification model. Moreover, the
five folding regimes can be continuously spanned by varying the magnitude
of the two speed components. The total speed in the normal direction must
always be positive, so when taqy or Fyrop is less than zero, they are restricted
by Eq. (2.21) and (2.22), respectively.

The PDE in Eq. (2.23) can also be interpreted as a generalized eikonal
equation used in acoustics for traveltime modeling (Kornhauser, 1953). For
example, we may think of 'y as a point source that is moving (or advected) in
a medium in the direction of a with speed 1,4y, and radiating sound waves with
speed Fprop in all directions. Then the solution 7'(x) represents the traveltime
of the sound from I'y to x. In this simple case, when I'g is just a point source
and Fprop and a4y are constant, the solution for 7' can be found analytically.

In Chapter 3 we discretize the boundary value problem of Eq. (2.23) by
upwind finite differences and compute 7' on a regular grid by a variant of the
fast marching method inspired by Sethian and Vladimirsky (2003). Variants
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of the fast sweeping method (Kao et al., 2005; Qian et al., 2007; Zhao, 2005),
or the fast iterative method (Jeong and Whitaker, 2008) could also be used to
compute 7.

Fig. 2.11 shows the result from modeling folds and simulating property
distribution over the folds on the surface of a road cut. Seven interfaces have
been digitized in the photo in (a). Then Fyrop and t)aay values are set to model
the folding regimes between the interfaces. The folds are of type Class 1C and
Class 2 (similar). The Class 1C folds have small Fyrop/%agy ratios that make
them almost Class 2 type. Properties (here representing image intensities)
are distributed from each interface in the directions of the characteristics of
the underlying PDE. A weighted average of properties distributed from the
interface below and above each point in the computational grid is then set
as the property value. This scheme for property distribution extends easily
to 3D, where the interfaces are surfaces (Petersen et al., 2007). We return
to this in Chapter 4. The modeling was done in Statoil’s Compound Earth
Simulator (CES).

Metric properties such as distances, gradients, curvature, and their spatial
variations can also be consistently computed by the numerical scheme. In
particular, the gradient VT'(x) uniquely represents the dip and strike of a fold
at any point x in 3D space. Fig. 2.12 shows a 2D example with the gradient
field components T, and T}, corresponding to the Class 1C fold in Fig. 2.6.

Curvature also plays an important role in the description of folded layers.
In the two-dimensional case, the scalar curvature is the divergence of the unit
normal vector to the front,

VT TyaTy — 2T, Ty Ty + Ty T2
v (T2 +T2)%/2 ’

k=V-n=V

where we have use the notation 7}, = 9*T/(0udv). The right hand side is
easily obtained by applying the chain rule (see details in Appendix C). In 3D
the Gaussian curvature and the mean curvature can be calculated similarly
from the first and second derivatives (Goldman, 2005). The second derivatives
can be computed in the same upwind fashion as the first derivatives, though
a numerical scheme of at least second-order is required to express the second
derivatives consistently.

2.4.1 Characteristics and Dip Isogons Revisited

Recall that the value of T at a point x depends only on the values of T" along the
characteristic passing through x. We have imposed restrictions on the speed
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(b)

Fig. 2.11: (a) Photo of a vertical planar road cut with metamorphosed mica
schists of Silurian age, and (b) the result of fold modeling and simulating
property distribution over the folds in (a).
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Fig. 2.12: Gradient field VT = (T, T,) of the Class 1C fold in Fig. 2.6 (T left
and T}, right).

functions to obtain an exact match between the characteristics and dip isogons
of the fold classes defined in the classical literature in structural geology. Thus,
the characteristics are the key to modeling different folding regimes. We focus
more attention on characteristics here for several reasons.

(i) The exact match between characteristics and dip isogons links the
Hamilton-Jacobi mathematical model directly to an intuitive geometri-
cal model (Fig. 2.7 and 2.8), which makes it easy to derive and analyze
metric properties everywhere in the geological volume.

(ii) Characteristics play an important role in the initial critical step of numeri-
cal methods, such as the fast marching method (Sethian and Vladimirsky,
2003), the fast sweeping method (Kao et al., 2005; Qian et al., 2007; Zhao,
2005), and the fast iterative method (Jeong and Whitaker, 2008). All
these methods start by computing solution values on a finite difference
grid in a narrow band around the initial front I'g. The solution value
for a grid point near I'y can be found by solving the ODE (2.24) for a
characteristic that passes through the grid point.

(iii) Characteristics are the key to understanding how the solution of the PDEs
develops and propagates downwind from the solution around the initial
front I'g. As a consequence, characteristics are the key to designing con-
sistent local solvers for the numerical methods mentioned above (Qian
et al., 2007; Vladimirsky, 2001).

We return to these properties of the characteristics in the next chapter. Char-
acteristic curves of a hyperbolic PDE can cross each other. Then multivalued
solutions can exist, since the solutions of the ODEs along the characteristics can
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be different at the crossings. This causes so-called shock waves. In the context
of front propagation modeled by the static Hamilton-Jacobi equation (2.23),
the characteristics can also meet when they are convergent. Since T'(x) is
the time of arrival value of the propagating front at x, however, and more
specifically the “first arrival time value,” T is never multivalued and therefore
continuous. On the other hand, the gradient VT is not continuous where char-
acteristics meet, for example, in the core of the Class 1B fold in Fig. 2.4(a).
In a similar fold characteristics are parallel and never meet, such that both T
and VT are continuous everywhere.

The system of ODEs by Eq. (2.24) and (2.25) shows how the velocity and
gradient develop over time along the characteristics. To see how the solution
develops in space along the characteristics, we also give the derivatives with
respect to the space variable s, which corresponds to arc length along the
characteristic. We first note that the group speed is v, = ||VpH| = ds/dt.
Applying the chain rule to the ODEs, we get

dx  VpH
ds [|[VpH||’
d£ _ VxH
ds IVeH|
In addition, we have
dT dx VeH 1

- =p- = ,
ds ds IVeH[ [IVoH]

where we have used p- VpH =1 from Eq. (2.9).

Recall from Sect. 2.1.2 the method by Hudleston (1973) for classifying
folds based on the isogon angle. The isogon angle ¢ was defined as the angle
between the normal vector and the dip isogon. If we disregard the sign of ¢,
the isogon angle can be expressed as the angle between the gradient vector and
the group velocity vector,

VT - VpH 1

cos ¢ = = .
VTV H[ VTV H|l

In the Eulerian model, this measure can be calculated in the whole 3D space
when an approximation for the gradient VT is known. We observe that in the
isotropic case with 1aqy = 0, we get [|VT||[|VpH|| = 1 and the isogon angle is
zero. Fig. 2.13 shows the isogon angle for a Class 1C fold.
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Fig. 2.13: Isogon angle ¢ in degrees for a Class 1C fold with Fprep = 1, 9agy = 1,
and a = (—0.2,1.0). The time of arrival field is shown in Fig. 2.6.

2.5 Summary

A mathematical framework for modeling folds in structural geology is proposed.
The mathematical model is founded on a front propagation analogy by which
a continuum of layer boundaries of a fold is regarded as a propagating front
starting from a reference layer boundary. Each of the five fold classes from the
classical literature of structural geology is represented in an Eulerian context
as a time of arrival field T, which is the solution of a static Hamilton-Jacobi
equation. We pay special attention to dip isogons of folds, and we chose to
align dip isogons with the characteristic curves of the Hamilton-Jacobi equa-
tion when we derive the mathematical model. This links the Hamilton-Jacobi
mathematical model directly to an intuitive geometrical model which makes it
easy to derive and analyze metric properties in the geological volume. Char-
acteristics also play an important role in the numerical framework we develop
in the next chapter for computing the T-field and other metric properties.

In the next chapter we derive a numerical scheme and an algorithmic
framework based on a variant of the fast marching method to compute the T-
field representing the geological folds. In Chapter 4 we extend the mathemati-
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cal and numerical frameworks, developed in this chapter and in Chapter 3, and
develop novel methods for data restoration, model reconstruction and property
distribution. These methods are applied to support processes in the dR/mR-
workflows in CES. Chapter 4 also pay attention to the physical problem of
folding, including strain states set up during fold formation.






Chapter 3

A Numerical Framework for Modeling
Folds in Structural Geology'

In this chapter a rigorous numerical framework is developed for the Hamilton-
Jacobi formulation for fold modeling presented in Chapter 2. The static
Hamilton-Jacobi equation, which models all the fold classes from the classical
literature, is discretized by upwind finite differences and a dynamic stencil con-
struction. This forms the basis of numerical solution by finite difference solvers
such as fast marching and fast sweeping methods. A new robust and accurate
scheme for initialization of finite difference solvers for the static Hamilton-
Jacobi equation is also derived. In the context of the mathematical model
derived in Chapter 2, fold classification based on dip isogons is particularly
relevant. This specific interest is present since dip isogons coincide with the
characteristic curves of the static Hamilton-Jacobi equation. The numerical
scheme uses the direction of the characteristics for the upwind stensil con-
struction, and thus propagates the solution of the T-field along the dip isogons
of the fold. This framework, together with extensions presented in Chapter 4,
serve as the numerical engine in the dR/mR-workflows in CES for process
based data restoration and model reconstruction outlined in Chapter 1. A
numerical example from CES is presented in the end of this chapter based on
seismic data collected from the Karama Block in the North Makassar Strait
outside Sulawesi.

'This chapter is based on Hjelle et al. (2013)
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In Sect. 3.1 we first outline the fast marching algorithm that we use for
solving the Hamilton-Jacobi problem. In particular we derive a robust and
accurate scheme for the initialization of fast marching methods and other finite
difference solvers in Sect. 3.1.1 and 3.1.2. Then we discretize the Hamilton-
Jacobi formulation by upwind finite differences and derive a numerical scheme
for the solution on a finite difference grid (Sect. 3.1.3, 3.1.4 and 3.1.5). In
Sect. 3.2 we present numerical examples of fold modeling with some discussion.

3.1 Numerical Scheme for Fold Modeling

In this section we discretize the boundary value problem in Eq. (2.23) by
upwind finite differences and derive a numerical scheme that forms the basis of
numerical solution by several methods. In particular, one may apply variants of
the fast marching method (Sethian and Vladimirsky, 2003), the fast sweeping
method (Kao et al., 2005; Qian et al., 2007; Zhao, 2005), or fast iterative
methods (Jeong et al., 2007; Gillberg, 2011). The isotropic front propagation
problem in Eq. (2.4), which models the parallel Class 1B fold, can be solved
directly and elegantly on a rectangular finite difference grid by the original fast
marching method introduced by Sethian (1996). The fast iterative method,
which enables implementation on parallel hardware, is also a good choice. The
other special case, modeling the Class 2 fold, can be easily solved when the
axial direction a is constant (Sect. 3.1.4).

To solve the fully non-linear problem in Eq. (2.23), we implement a vari-
ant of the fast marching method for anisotropic problems, inspired by Sethian
and Vladimirsky (2003) and Lin (2003). The basic structure of our algorithm
is the same as the original fast marching method. However, the finite dif-
ference operators are different since the upwind and causality conditions are
more complicated for anisotropic problems, where the directions of the gra-
dients and the characteristics of the PDE do not coincide as in the isotropic
case (cf. Eq. (2.24)). The finite difference grid has still a rectangular pattern,
but the diagonal directions are used in the stencil construction both for better
directional resolution and to guarantee the causality condition. =~ While the
finite difference approach is Eulerian in the sense that fold geometry is rep-
resented as continua in the whole three-dimensional volume, we also present
a Lagrangian approach in Sect. 3.1.1, which is used in the initialization step
of the finite difference solvers. The numerical scheme for the initialization is
given in Sect. 3.1.2.

For the sake of completeness and as an explanation of terms used later,
the fast marching algorithm is outlined here first. Details of the algorithm are
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Fig. 3.1: Snapshot of the progress of fast marching at time ¢, cf. Algorithm 3.1,
steps 4-7. Points on the upwind side of I'; have got a fixed value and are tagged
as Known. Points in a narrow band just on the downwind side of I'y, filled with
red colour, have been computed, tagged as Trial and put on the heap. Other
points on the downwind side are Unknown points, yet to get values.

given in the numerical schemes throughout the chapter. The other algorithms
are thoroughly explained in the references given above and are not pursued
further here. Although the boundary value problem (2.23) is global, the fast
marching algorithm computes all arrival time values in one pass only. This is
done by computing grid point values in a narrow band around the propagating
front T' as it evolves in space and time. A snapshot of the progress of the
algorithm is illustrated in Fig. 3.1.

Initialization of fast marching starts by tagging all grid points in the do-
main as Unknown (Algorithm 3.1, Step 1). Then, grid points in a small neigh-
bourhood around the initial front I'y are computed (Step 2). This is a critical
step that requires high geometric accuracy, since these grid points are used
by the finite difference operators in the next step of the algorithm. We use a
Lagrangian approach and a fast converging Newton iteration scheme to com-
pute these points, where the characteristic equation (2.24) is solved in each
step of the iteration. This is described in detail in Sects. 3.1.1 and 3.1.2. The
computed points are tagged as Known and will never be re-computed. In the
last Step 3 of the initialization, edge connected Unknown neighbours of the
Known points are computed by solving a discretized version of Eq. (2.23).
These points are tagged as Trial and put on a heap data structure (Sedgewick
and Wayne, 2010), where the points are kept sorted on their calculated value.
When discretizing Eq. (2.23), we will see in the next sections that only points



42 Chapter 3. A Numerical Framework for Modeling Folds ...

Algorithm 3.1 The fast marching algorithm, cf. Fig. 3.1

Initialization:
1. Tag all grid points as Unknown.

2. Compute grid point values in a small neighbourhood around I'y using
Algorithm 3.2 in Sect. 3.1.2. Tag these points as Known.

3. Compute all Unknown edge connected neighbours of Known points by
solving the discretized version of Eq. (2.23). Tag these points as Trial
and put them on the heap.

Loop:

4. Let A be the Trial point with the smallest computed value. Remove A
from the heap and tag it as Known.

5. Tag as Trial all edge connected neighbours of A that are Unknown and
put them on the heap.

6. Re-compute all Trial neighbours of A by solving the discretized version
of Eq. (2.23).

7. Go to Step 4

on the upwind side are used in the finite difference operators.

The algorithm then proceeds in a loop and computes all points that are
not yet Known in one pass (Steps 4-7). In each iteration of the loop, the point
with the smallest Trial value is accepted, tagged as Known and removed from
the heap. This ordering of accepting computed values is motivated by the
fact that T" represents first arrival times of the propagating front as it reaches
the grid points. Its non-accepted neighbours are computed, or re-computed,
and put on the heap if they have not already been stored there. As such, the
narrow band with Trial values is advanced downwind with the propagating
front, with accepted points tagged as Known on its upwind side and Unknown
points on its downwind side, until all points are eventually tagged as Known
and the heap is empty. The heap operations, removing and inserting a new
Trial point or reorganizing the heap when a Trial point is given a new value, are
logarithmic. Therefore, if the discretized domain has N grid points and NV}, is
the maximum number of trial values on the heap, the fast marching algorithm
is of order O(N log Np,). When applied to fold modeling as proposed here, Np,
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(a)

Fig. 3.2: (a): Marker particles marked with e moving upward along charac-
teristics of the PDE from the initial front I'g. In this example Fprop = 0.3,
agy = 0.5 and axial direction is (0,1). (b): Swallow-tail solution from the
marker particle method with intersecting characteristics.

is small compared to N in most cases, such that the computational complexity
is almost linear in V.

3.1.1 Lagrangian Approach

When solving the front propagation problem, there are alternatives to the
Eulerian finite difference approach. In this section, we present a Lagrangian
method since it will be of practical interest when implementing the boundary
condition of Eq. (2.23) in the narrow band of grid points around the initial
front I'g. The Lagrangian approach can also be used to model individual
layers of a fold. The procedure proposed here can be regarded as a variant
of so-called marker particle methods (Harlow and Welch, 1965; Sethian, 1985).
The principle of marker particle methods is to consider the propagating front as
a set of discrete points whose positions at any time represent the propagating
front. The technique has been used in a variety of applications, for example,
to compute Voronoi diagrams in flow fields (Nishida et al., 2007).

We have already established Eq. (2.24) and (2.25) for the motion of a
particle along a characteristic of the Hamilton-Jacobi equation (2.23). Recall
that characteristics coincide with dip isogons. In our marker particle model
particles are moved along dip isogons governed by these equations. Let I'y
be the initial front with a set of marker particles on it. For simplicity, con-
sider the two-dimensional problem where the propagating front is an evolving
curve (Fig. 3.2(a)). We want to calculate new positions for the marker particles
as they move along the characteristics from I'g at time ¢y to new positions on
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the level set I'y at time ¢;. The time step t; — g is small. Assume first that I'y
is represented as a smooth parametric curve. Let x; = x(7) = (zi(7), vi(7:))
be the position of a marker particle on Iy, where 7; is the parameter value of x;
on the curve, and let n; = n(7;) be the outward unit normal vector of I'y at x;.
If 'y has continuous first derivatives, the normal vector can be evaluated from
the tangent vector x(7;) = (2/(1), 9/ (7)) as

(= (7). 2'(7:))
%)l

where n; points to the left as seen when walking along I'y in the parameter
direction. Alternatively, if I'g is represented by linear segments between marker
particles, the normal vector can be computed by central differences from the
positions of the marker particles. If the particles are equally spaced, a first
order approximation to the unit normal is

n;, =

(—(Yit1 — Yi-1), (Tig1 — xi—1)) |
(@is1 — 2i-1)? + (Yis1 — yi1)?) "/

n; =

We utilize the fact that the solution value (arrival time or spatial displacement
of a marker particle) of the propagating front in a point depends only on the
solution values along the characteristic passing through this point. The position
of a marker particle at any time can be found by solving the ODE (2.24),
and thus by “moving” the marker particle along a characteristic of the PDE
(and along a dip isogon) a time step. If we assume local homogeneity with
constant Fyrop, ¥agv and a, the velocity vector in x; can be expressed as

Vi = Fyrop i + agy a. (3.1)
The new position of the particle at time t; becomes

x, = X; + vi(t1 — to),
and the time of arrival in x, is

g — x|

T(x,) =t + (3.2)

vl

The Lagrangian approach is easy to implement using these principles when
marker particles are moved along characteristics. Fig. 3.2(a) shows an exam-
ple of an evolving curve between two time steps. The displacement of each
marker particle is shown as a line connecting positions of the same particle
on I'g and I'y. The fold classes in Fig. 2.1 are also modeled by the Lagrangian
approach by varying the sign of Fprop and taqy in Eq. (3.1) in agreement with
Table 2.2.
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The marker particle approach always works for the Class 2 fold with con-
tribution from advection only when the characteristics are parallel. On the
other hand, when Fyrop # 0 the method does not resolve problems with char-
acteristics that cross each other. Fig. 3.2(b) shows an example where char-
acteristics cross and a so-called “swallow-tail” solution results in the core of
a Class 1B fold. There exist Lagrangian methods (Sethian, 1985; Pons and
Boissonnat, 2007) that can handle such situations in two dimensions, which
resemble a viscosity solution of Eq. (2.23) as introduced in Crandall and Lions
(1983), but in three dimensions the problem is much more complex. When
the Lagrangian approach is used for initialization of the finite difference solver
around the initial front I'g, the solution is only computed close to I'y where the
characteristics do not cross each other.

3.1.2 Initialization of the Finite Difference Solvers

A critical step in fast marching methods and other finite difference solvers
is the initial computation of solution values at grid points in a narrow band
around I'g, which enforces the boundary condition of the boundary value prob-
lem (2.23) (Algorithm 3.1, Step 1, 2 and 3). The fast marching algorithm
propagates the solution downwind from I'g to the whole solution domain in one
pass. For each grid point that is being computed in Step 6 of Algorithm 3.1,
only solution values of grid points tagged as Known on the upwind side are
used. Therefore, the quality of the solution away from I'y depends heavily on
the quality of grid point values in the narrow band around I'g. Numerical errors
introduced at this stage will propagate to the whole domain. This is also true
for iterative solvers based on upwind finite differences. The initial narrow band
around I'g must be sufficiently wide, such that enough points are known on the
upwind side when the fast marching method or the fast iterative method starts
propagating the front away from I'y. A second order finite difference scheme
requires a narrow band that is approximately twice as wide as a first order
scheme. In the following we present a fast, stable and highly accurate solution
to the initialization step for the general anisotropic case.

Let x4 be a grid point in the narrow band around I'p, and let x; be the (un-
known) point on I'g where the characteristic through x, intersects I'g (Fig. 3.3).
Note that the gradient direction, and thus the group velocity vector (2.24), is
not known a priori in a point away from I'g. Assume local homogeneity with
constant Furop, Yagv and a, such that the group velocity vector in x4 is the
same as that in x;. The group velocity is then given by Eq. (3.1), and the time
of arrival T'(x4) is given by Eq. (3.2) with to = 0.

In our implementation, I'g is represented as a bicubic tensor product
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Fig. 3.3: Ilustration for Algorithm 3.2 in two dimensions when Iy is a curve.
The small circle o indicates the unknown intersection point between I'g and the
characteristic passing through grid point x,. The closest point found in Step 1
is x.. The markers o indicate intersection points from Step 3. Superscripts
on Xinter and vy indicate the iteration numbers in the loop over steps 2 and 3.
Three iterations are shown.

Bézier surface in three dimensions, and as a cubic Bézier curve in two dimen-
sions (Farin, 2002). Both are on parametric form with C! continuity, which is
sufficient for T'(x) to be smooth near I'y when the narrow band is initialized
by the numerical scheme outlined below. Two fundamental operations were
implemented to support Algorithm 3.2 in locating the intersection point x;,

(i) computing the closest point on I'y from an arbitrary (sufficiently close)
point, and

(ii) computing the intersection point between a straight line and I'y.

Both use Newton iteration schemes and techniques borrowed from computer
aided design and computer graphics. When I'g is a surface, the operations
return a (u, v)-parameter tuple such that the closest point, or the intersection
point, is found by evaluation of the parametric surface, x = I'g(u,v). Details
on the Newton itertion schemes can be found in Sect. B.1 and B.2. Based on
these two operations, we find an approximation for x; in Eq. (3.2) by iteration
as outlined in Algorithm 3.2 and illustrated in Fig. 3.3.

In Step 1 of the algorithm, the closest point x. to x4 on I'g is found as
a first approximation to x; with operation (i). Then in Step 2, the group
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Algorithm 3.2 Computing the traveltime value T'(x) in grid point x, near I'y.

Intersection of characteristic through x, with I'y , cf. Fig. 3.3:

1. Find the closest point x. on I'y to grid point x,4, and set

Xk < Xe

2. Find the unit normal vector ng of I'g in x; and compute the group velocity
vector through xj as

Vi = Fprop ng + Yagy @

3. Find the intersection point Xinter between I'y and the straight line
through x, with direction vy,

4. If not converged, set
X} < Xinter
go to Step 2
Computing T'(x,):

5. Set X; &~ Xinter and find the normal vector n; in x;.

6. Compute T'(x,4) from Eq. (3.2) with ¢y = 0.

velocity vector v through x. is found as a first approximation to the group
velocity vector through x;. The first straight line found in Step 3, intersecting
[y in Xinter (operation (ii)), has the same direction as the group velocity vector
through x.. Then the iteration in the loop over steps 2 and 3 moves Xinter
towards the exact intersection point, since the direction of vi converges to
the direction of the characteristic through x,. The iteration is stopped when
Xinter and xj are sufficiently close. The deviation between these points can
be measured geometrically by the distance ||Xipter — Xgl||, or since I'g(u,v)
is a parametric surface, by differences in parameter values |uipter — ug| and
|Vinter — Ug|. Convergence is usually very fast, in most cases two or three
iterations are sufficient.



48 Chapter 3. A Numerical Framework for Modeling Folds ...

In the isotropic case with ¥aqy = 0, for the parallel Class 1B fold, only
the closest point computation in Step 1 is necessary, since the characteristic
through x4 has the same direction as the vector (x4, — x.). Thus x; = x. and
the solution value is T'(x4) = ||Xg — Xc||/Fprop under the same assumptions
as above. When Fprop = 0, for the similar Class 2 fold, the direction of the
characteristic is known a priori and equals the axial direction a. Then x; is
found directly by operation (ii) as the intersection point between I'y and the
straight line through x, with direction a, and T'(x4) = ||xg — X;||/¢aav. And,
in the special case when I’y is (locally) planar, one iteration is sufficient.

Along with the traveltime value T'(x,), the gradient V1'(x4) can be com-
puted directly from v(x;) = v; and n(x;) = n;, found upon convergence of
Algorithm 3.2. The gradient direction in the intersection point x; equals the
direction of the surface normal n(x;). The assumption with local homogeneity
implies that the gradient is constant along the characteristic between x; and x,,
thus VT'(x4) = [|[VT'(x;)||n(x;). The gradient is frequently referred to as the
slowness vector in geometric optics since the elements of V1" are the reciprocals
of velocity. Thus, ||[VT(x;)|| is the reciprocal of the speed v(x;) - n(x;) in the
outward normal direction at x;. The gradient in x, is then

1

VT (x4) = m

n(xi).

3.1.3 Approximation of the Gradient with Upwind Finite Dif-
ferences

The discretized version of Eq. (2.23) can be written
FprOpHVTCH + ¢adv (a : VTC) =1, (33)

where T, represents the unknown solution value in a grid point position x. of
the finite difference grid. We assume that Fyrop, 1agv and a are constant from
the initial layer boundary I'g to x. along the characteristic. This equation must
be solved locally, usually several times, for each grid point in the fast marching
loop in Algorithm 3.1, or by other algorithms operating on the finite difference
grid. The first step is then to find an approximation for the gradient V7, in x..
We examine the two-dimensional case first.

Consider a triangle x,xpx., where x, and x; are both upwind from x.
(Fig. 3.4). If solution values T, and T} are computed and T, is unknown, and if
the characteristic through x. lies inside x,X;X., with the triangle x,xpx. being
sufficiently small and acute, the solution value T, > max (T}, T}) for the causal-
ity condition to hold. In this example, the x,x. leg of the triangle is a diagonal
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Xy Xp!

Fig. 3.4: The gradient V7, in grid point position x. is computed from known
solution values T, and T} in x, and X, respectively, in the upwind direction
from x.. The second order scheme also uses computed values T, and Ty if
they are smaller than, respectively, T, and Tj.

of a grid cell. In addition to improving the directional resolution, the use of
diagonal directions might be necessary in the anisotropic case since computa-
tion of the traveltime at x. is not restricted to be based on grid points that are
immediate neighbours (Sect. 3.1.5). If x, and x; are interior grid nodes that
belong to the same rectangular grid cell as x., there are also grid nodes in x/,
and x in the upwind direction from x,. that can be used to construct a second
order stencil. If we assume local homogeneity with constant Fyrep, taqv and a
near X., the characteristics are straight lines such that the triangle x, Xy x.
also contains the characteristic through x..

Let pa = (Xec — Xq)/||%ec — Xq|| and pp = (xc — x3)/[|Xc — Xp|| be downwind
directions of the two triangle sides meeting at x., and let the 2 x 2 matrix P
have rows p. and pg, ie.

T
P= <p;>. (3.4)
Py
If VT, is an approximation for the gradient at x., then v, = V1, - p, and v, =

VT, pp are approximations to the directional derivatives of T" along p, and py,
respectively. This can be written in matrix form as

v:<%>:PVﬂ.
Up
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Clearly P is non-singular since p, and pp are linear independent, and thus
VT.=P'v.

Using backward differences, the first order and second order approximations
for the directional derivatives can be written (second order in parentheses)

Te—T, <3Tc — 4T, + Tw)
Vo = 7 71 )

l[xc — Xa| 2||xc — Xa|

Te—Tp <3Tc — 4Ty, + Tb’>
vp =

e — x| 2[|xe — x|

More generally, the difference approximations can be expressed as linear com-
binations of the solution values as

Vg = raTc + Sq

vy = 1pLe + Sp,

using first order and second order difference operators (second order in paren-
thesis)

1 ( 3 > T, (—4Ta +Ta/)
Tg = ———————— — ], §g=T— —_ ],
¢ % — Xall 2|xe — Xall ¢ [%e — Xal| 2% — Xall
1 < 3 > Ty <_4Tb + Tb’>
r,= ——— — ), §=— _ .
[[xc — x| 2|[xc — x| [[%c — x| 2([xc — x|

The directional derivatives can be written
v=rT.+s, (3.5)
where r = (74,75)7 and s = (54, 55)”. The gradient then becomes
VT.= P '(xT.+s). (3.6)

In an algorithmic setting one will typically switch between first order and sec-
ond order difference operators to ensure a proper upwind construction that
satisfies the causality condition. For example, the second order backward op-
erator for v, above requires T, < T,. If this is not true, the first order approx-
imation is used instead. For an overview of the the finite difference operators,
see Appendix C.

3.1.4 Local Solver over Triangles and Tetrahedra

The gradient VT, depends linearly on 7. and other grid point values in the
upwind direction from x., both for the first order and second order operator,
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but the first term of Eq. (3.3) is non-linear. Separating non-linear and linear
terms in Eq. (3.3) and squaring the equation, we get

F}?I‘OpHVTCHQ = (1 - wadv a-: VTC)2 . (37)

Since ||VT.||? = (VT,)TVT.,, the left hand side can be written as the quadratic
expression

Froov (PP v,
where v is given by Eq. (3.5), and P by Eq. (3.4). Inserting for v, the left
hand side becomes

Foo [(27Qr) T2 + (267 Qs) T. + " Qs]
where @) = (PPT)_l. The right hand side of Eq. (3.7) can be written
V2 Vo Te + (2020 Ys — 20aav¥e) Te + Voay Vs — 2¥aavys + 1,
where

v =al'P7r and

Ve = aTP_ls. (38)

Merging these expressions and rearranging, we obtain a quadratic polynomial
in T,

(Aprop + féladv)Tc2 + (Bprop + Badv)TC + (Cprop + C’adv) -1= 07 (39)

where coefficients with contribution from normal propagation and advection
have been separated as

Aprop = Fp2rop (rTQr) ) Ay = _wgdv737
BPIOP = F}?rop (QrTQS) ) Bagv = 2¢aqvyr — 21/}de'77‘757
Cprop = Fp2rop (STQS) ) C'adv = 2wadv78 - wzdvﬂyz'

Clearly, the particular speed profile used in our front propagation problem
results in an analytical expression for the local solver that can be evaluated
directly to find the solution value in a grid point. This might not be true for
anisotropic problems with more complex speed profiles that must be solved
iteratively (Vladimirsky, 2001). Since a quadratic equation must be solved to
find T,, there are two distinct roots in general, and we have to choose the one
that satisfies the causality condition.

In the special case of the Class 1B fold (parallel) with t,qy = 0, which
corresponds to isotropic front propagation, the quadratic equation becomes

(rTQr) T2 + (2rTQs) T.+s'Qs =1/F?

2 op- (3.10)
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We note that

_ 1 1 —
Q:(PPT)lz 2 < C?SOZ)’

sin“ ¢ \ — Cos «

where « is the interior angle of the triangle at x. (Fig. 3.4). If we solve the
isotropic case over a rectangular grid without using diagonal directions in the
stencil construction, then @ = 90 degrees and @ is the identity matrix. Using
a first order scheme, Eq. (3.10) then reverts to

T. - T, 2+ T.—-T,\° 1 (3.11)
Ax Ay R ’

This is the discretized version of Eq. (2.4) which agrees with the first order

standard Godunov upwind scheme for solving the eikonal equation (Sethian,
1999b).

The other special case, with Fyrop = 0, models Class 2 (similar) folds.
Then the discriminant of Eq. (3.9) is zero and the equation is linear. Solving
for T, we get

= — Baav — 1 — Yaavs _ 1 — tagy a’'P~ls
2Aaav ¢adv’7/r ¢adv alP—1¢ ’

T, (3.12)

which is the discretized version of Eq. (2.11). The downwind direction, and
equivalently, the direction of the characteristics represented by the ODE (2.24),
now reduces to dx/dt = 1aav(x)a. Thus, the downwind direction is uniquely
defined by the axial direction a of the fold. If a is constant, Eq. (3.12) could
then be recast to a graph in a Cartesian system with abscissa orthogonal to a,
and thus solved explicitly without a finite difference formulation.

Conceptually, extension of the numerical scheme to three dimensions is
straightforward. The stencil is then spanned by a tetrahedron with four ver-
tices, say X1, X2, X3 and X., where x. is downwind from the three other vertices.
The tetrahedron must embed the characteristic through x. such that the three-
dimensional group velocity vector (2.24) points away from the tetrahedron.
Assume that solution values T7,T5 and T3 are known and that T, is unknown.
We have the three downwind directions along the legs of the tetrahedron meet-
ing at vertex x., namely p; = (X, — x1)/[|xc — X1||, P2 = (Xc — X2)/|Xc — X2,
and p3 = (xc — x3)/||xc — x3]|. These unit vectors constitute the rows of
the 3 x 3 matrix P. The approximation to the gradient takes the same form
as Eq. (3.6), with r and s now being vectors in three dimensions. The general
discretized PDE (3.9) also takes the same form with the axial direction a being
a vector in three dimensions.
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The fast marching method and most other single-pass methods rely on
the Hamiltonian of Eq. (2.23) being convex in the gradient argument p =
VT (Vladimirsky, 2001). Since the second term of H(x,p) is linear in p, we
only need to examine the first term, Fyrop(x)||VT(x)||. The Euclidean norm
is linear and strictly increasing radially away from the origin p = 0, and
thus convex. H(x,p) is then convex downward for Fprop > 0, when modeling
Class 1A, 1B and 1C folds with convergent dip isogons, and convex upward
for Fprop < 0, when modeling Class 3 folds with divergent dip isogons. A
systematic approach for checking causality and choosing the correct root that
satisfies the causality condition can be found in Qian et al. (2007).

3.1.5 Dynamic Upwind Stencil Construction for Anisotropic
Problems

The original fast marching method (FMM) by Sethian (1996) hinges on the im-
portant property of isotropic problems that the gradient V1 points in the same
direction as the characteristic of the PDE everywhere in the solution domain.
For anisotropic problems, when modeling fold classes other than Class 1B, this
is no longer true. While the fast marching method only uses adjacent neigh-
bours when updating a grid point, the Ordered Upwind Method for anisotropic
problems (Sethian and Vladimirsky, 2003) considers a larger neighbourhood.
Since this neighbourhood is bounded by a so-called anisotropy coefficient, a
one-pass method similar to fast marching is still achieved, but with the compu-
tational complexity of O(YN log N), where T > 1 is the anisotropy coefficient.
Since the neighbourhood can be quite large, and the number of re-computations
of trial points can be large, the algorithm is more time consuming than FMM.
The implementation is also more complex. A simplified scheme was proposed
in Lin (2003). This method uses only immediate neighbours when updating a
grid point, similarly to FMM. Unlike the Ordered Upwind Method, the sim-
plified scheme is not guaranteed to converge to the unique viscosity solution of
the PDE.

The scheme we propose here is inspired by both these methods. The finite
difference grid still has a rectangular pattern, but we use diagonal directions in
the stencil construction both for better directional resolution and to guarantee
the causality condition. The neighbourhood used for updating a grid point is
tentatively larger than in FMM, but the basic structure and the computational
complexity of FMM are maintained. Like in Lin (2003), we have no mathe-
matical proof of convergence to the viscosity solution, but experiments show
that the accuracy is sufficient for the applications of fold modeling that we
target (Petersen et al., 2007; Petersen and Hjelle, 2008). The larger neigh-
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Fig. 3.5: (a) A situation in two dimensions when the point in x. is being
computed. Three immediate neighbours marked with e have already been
computed. An approximation Vpﬁc to the group velocity in x. is based
on VpHy and VpHs. (b) A stencil is constructed from points x,, x; and x.
such that Vpﬁc points away from the triangle x,xpx,.

bourhood used in the dynamic stencil construction proposed here (Fig. 3.5)
ensures that information always flows in the downwind direction, like in FMM.
To compute T'(x.) by solving Eq. (3.9), we want to find a simplex that embeds
the characteristic through x. such that a stencil can be constructed that sat-
isfies the causality condition (Fig. 3.5). Ideally, we should first find the group
velocity vector through x. as

VT (xc)

VpH: = Fyrop VT + Yagy Q, (3.13)
which has the same direction as the characteristic through x.. Since the gra-
dient VT'(x.) is unknown until 7'(x.) is computed, we must find an approx-
imation VPPNIC ~ VpH, based on points on the upwind side that are already
known. Fig. 3.5(a) illustrates a situation in two dimensions. On the upwind
side from x., there are points that have been computed and marked either as
known or trial points. The points on the downwind side are all unknown. Only
known points that are immediate neighbours to x. will be considered when es-
timating Vpﬁc. Immediate neighbours means that they are neighbours to x.
horizontally, vertically or diagonally across a grid cell, as the points X1, X2, X3
and x4 in the figure. In the two-dimensional case, experiments show that in
most cases there are exactly two such known points on the upwind side, in
other cases there are up to five, and in some rare cases there is just one known
point on the upwind side among the immediate neighbours. The gradient in
each known point x; can be consistently computed by Eq. (3.6) with upwind
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finite differences on the same stencil that was used by the local solver when T;
was computed. The direction of the characteristic through x; is then given by
Eq. (2.24). Then VpH, is determined by one of these two rules, depending on
the configuration of known points on the upwind side.

(i) If there are two or more known points among which there are pairwise
neighbours, Vpﬁc is computed as the mean of the group velocity vectors
through the most correlated pair of neighbours. The rationale behind this
approach is to avoid outliers and reduce noise. The degree of correlation
is measured by the angle between the vectors.

ii) If there are no pairwise neighbours, V fIC is set as the mean of the
P
group velocity vectors through the known points among the immediate
neighbours.

In Fig. 3.5(a), rule (i) is applied to compute Vpﬁc from the group velocity
vectors in x9 and x3. Next, a simplex with known points on the upwind side
is sought for that embeds the characteristic through x., that is, such that the
group velocity in VpH, points from the simplex. This is not always possible
by using only immediate neighbours. For example, in Fig. 3.5(a), Vpﬁc points
from the simplex (x1,X2,X.), but the point in x; has not yet been computed,
and the simplex is thus not a candidate for the stencil. On the other hand,
by searching in the upwind direction, a known point is found on the next grid
line such that a valid stencil can be constructed from the simplex (xg, Xp, X¢)
in Fig. 3.5(b). It may happen that x; never will be computed, for example, if
it is near the boundary of the domain. Then a void area with non-computed
grid points may be left in the downwind direction along the characteristic
through x;. Examples are shown in the lower left and upper right corner of
Fig. 3.6, and in the lower left corner of Fig. 3.7(b). =~ When this scheme is
inserted into Step 6 of Algorithm 3.1, the same O(N log Nj,) computational
complexity of fast marching is retained.

The solution of Hamilton-Jacobi equations may develop corners and cusps
with singularities in the derivatives even when the initial conditions are smooth.
In these locations the solution does not satisfy the equation in the classical
sense. The upwind stencil construction described above, and the ordering of
how points are accepted in Algorithm 3.1, Step 4, resolves this by producing a
viscosity solution (Crandall and Lions, 1983; Crandall et al., 1984) similar to
how this is achieved by the original fast marching algorithm for isotropic front
propagation. Examples can be seen in the core of the folds in Fig. 3.7(b).
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3.2 Numerical Examples

Fig. 3.6 shows an example of using Algorithm 3.1 and the numerical schemes
above to simulate a Class 3 fold. The transverse lines representing dip iso-
gons, or equivalently characteristics of Eq. (2.23), has been computed directly
from Eq. (3.13) in each grid point along with T'(x.). An example in three
dimensions of a Class 1B fold is shown in Fig. 2.4 on page 21.
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Fig. 3.6: Class 3 fold style represented as a time of arrival field with Fprop =
—0.2, and axial direction ¥uq,a = (—0.25,1.0). Isocurves of the T-field are
shown as field lines propagating from the red reference curve I'y. A set of
(divergent) dip isogons is also shown as transverse lines emanating from Ty,
corresponding to characteristics of Eq. (2.23).

The numerical framework presented in this chapter, together with ex-
tensions presented in the next chapter, serve as the numerical core in the
dR/mR-~workflows in CES for process based data restoration and model re-
construction. Fold modeling is implemented as a separate process that can be
preceded or proceeded by other structural processes, such as faulting presented
in Sect. 4.4.4. The scheme extends to three dimensions, where the interfaces
are surfaces (Petersen et al., 2007). Fig. 3.7 shows the CES result from mod-
eling compressional folds from a seismic line across the Karama Block in the
North Makassar Strait outside Sulawesi. An interface I'g is digitized from the
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seismic line in (a) and the T-field shown in (b) is computed. The folds are of
Class 1C type with small tagy/Fprop ratio that make them almost a Class 1B
type. Properties representing velocity and density are then distributed from I'g
in the directions of the characteristics of the underlying PDE. The image in (c)
shows the corresponding migrated seismic response. Note that only one inter-
face is used for modeling the folds in this example. This is not always sufficient
since the geometry of a fold may vary through a volume. In many cases layers
delimited by two or more interfaces must be modeled to produce one T-field
that is a blending between two or more T-fields. This is explained in detail
in Sect. 4.3, where the method for populating properties in space is also ex-
plained. Other numerical examples with plots of a gradient field and T-fields in
two and three dimensions of all the five fold classes can be found in Chapter 2.
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Fig. 3.7: (a) Seismic line with compressional folds across the Karama Block in
the North Makassar Strait outside Sulawesi (courtesy of TGS), with a digitized
interface in red. (b) The T-field corresponding to the digitized interface. (c)
Migrated seismic response derived from 1D density and velocity distributions
over the simulated fold in (b).



Chapter 4

A Numerical Framework to Support Data
Restoration and Model Reconstruction

With Extensions of the Hamilton-Jacobi Framework

This chapter extends the mathematical and numerical frameworks from Chap-
ters 2 and 3 to support processes for data restoration, model reconstruction
and property distribution. The techniques we develop rely on a parameter-
ization of the 3D space that serves as a reference system for both property
distribution and spatial transformations involving deformations. The parame-
terization also forms the basis of a numerical framework for computing metric
tensors and assessing strain. Contrary to other published methods for restora-
tion, the methods presented here are meshless without the need for constructing
a complex tetrahedral mesh to honor surfaces of a structural model.

The research presented in this chapter was motivated by the concept of
Earth Recursion and the dR/mR-workflows outlined in Chapter 1, but it should
be emphasized that the techniques we develop have applicability beyond the
dR/mR-workflows. The results have been implemented in CES, and numerical
examples from CES are given. Note that the main focus is on the mathematical
and the numerical frameworks that can lay the foundation for implementation
of processes for restoration and model reconstruction. Details of the actual
implementation are beyond the scope of this thesis and will be published else-
where.
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Fig. 4.1: Parameterization of the 3D space. Two isosurfaces I'g and I'y of
the T-field are shown with two u-lines and two v-lines of the curvilinear grid
on each isosurface. In addition, two t-lines are shown.

4.1 Parameterization of the 3D Space

We want to impose a parameterization on the 3D space such that any point x =
(z,y,2) has a parametric representation

x(u,v,t) = (z(u,v,t), y(u,v,t), z(u,v,t)).

Then we have a unique mapping from the parameter space to the Euclidean
space by
u=(u,v,t) — x = (2,9, 2), (4.1)

and the inverse mapping
x = (z,y,2) — u = (u,v,t). (4.2)

This parameterization can be associated with a curvilinear and logically rect-
angular grid in the Euclidean space consisting of directed w-lines, v-lines and t-
lines as illustrated in Fig. 4.1. We assume that the three parameter directions
obey the right-hand rule as in the figure. Along each parameter line, the re-
spective parameter value is monotonically increasing/decreasing while the two
other parameter values are constant. Thus, the intersection curve between
an isosurface with constant u-vale and an isosurface with constant v-value is
a t-line. Similarly, a v-isosurface and a t-isosurface intersect in a w-line, and
a t-isosurface and a u-isosurface intersect in a v-line. This implies the following
orthogonality properties.
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P1: the normal vector of a u-isosurface passing through a point x is orthog-
onal to the ¢-line through x,

P2: the normal vector of a v-isosurface passing through a point x is orthogonal
to the t-line through x.

A natural choice for the field {t(x)} of the parameterization is to use the
time of arrival field 7" in which the isosurfaces represent a continuum of layer
boundaries of a fold (Sect. 2.3). The T-field is known from the numerical
solution of Eq. (2.23) on the computational grid, where parameters Fyrop, ¥aay
and a are properly chosen from Table 2.2 to model the actual fold type. Recall
that the reference surface I'g(u,v) in the numerical framework for computing
the T-field was represented as a parametric surface, and that I'g(u,v) defined
the zero set of T' (Sect. 3.1.2). We adopt this parameterization for points in 3D
space located on the surface I'g, which implies

x(u,v,0) = To(u,v).

If the fields {u(x)} and {v(x)} were known in the whole domain, then any
isosurface of the T-field, which corresponds to a layer boundary, could be
associated with an implicitly defined parametric surface I';(u,v) such that

x(u,v,t) = T'(u,v).

We seek a meshless representation of the parameterization on the discrete finite
difference grid where the T-field is computed. Thus, we want to find a set of
parameter triples

{(w,v,t)ijr}, i €Ix, j €Ly, k€I,

over the m x n x p grid such that the mapping in Eq. (4.2) can be performed
locally by a trivariate interpolator. Here we have introduced the index sets

Iy ={1,...,m}, Z,={1,...,n} and Z,={1,...,p} (4.3)

that we will use throughout this chapter to define scalar fields on the com-
putational grid. The grid values {¢; j 1} can then be taken directly from the
computed T-field. The corresponding scalar fields for v and v that we derive
in the next section are

Su=A{uijr}, 1€y, j €Iy, k€I, and
SU = {Ui,j,k‘}a (&S IX7 .7 € va ke IZ-

We will call S, and S, parameter distribution fields, or S-fields for short.
Since the scalar fields T, S,, and S, are defined on the same regular grid,
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the mapping in Eq. (4.2) can be done by simple table look-up for a grid
point x((u,v,t); %), and by a local trivariate interpolator for an arbitrary
point x(u, v,t). To perform the inverse operation in Eq. (4.1), we need to con-
struct functions (u,v,t) = x, (u,v,t) = y and (u,v,t) — z. We return to this
later.

Before we can derive the S-fields, we need to constrain the direction of
the u, v and ¢-lines. When the T-field models a fold, it is tempting to align
the t-lines with the direction of the dip isogons. Recall from Sect. 2.4.1 that dip
isogons coincide with the characteristic curves of the Hamilton-Jacobi equation
that models the T-field. Thus, they point in the direction of the group velocity
vector which is uniquely given by

VT (x)

VpH(x,p) = Fpmp(X)m + Yagv(X) a. (4.4)
We could make this more general by replacing Fyrop and taqy with other func-
tions such that the direction of t-lines is any linear combination of the gradient
direction VT'(x)/||VT'(x)|| and the axial direction a. Or, we could restrict the
direction to the gradient direction such that t-lines are always orthogonal to
isosurfaces I'y of T'. For notational clarity when deriving the S-fields, and for
reusing the numerical framework developed in Chapter 3, we choose to align ¢-
lines with Vp,H. We will also see that this has physical relevance by looking
at the physical processes and strain states set up during fold formation.

4.2 Construction of the S-Fields

In the narrowband around the reference surface I'g(u,v), grid point values
for S, and S, can be found by using the same scheme as that used for initializa-
tion of T-values in Sect. 3.1.2. Assume local homogeneity such that Fprop, $aay
and a are constant in the narrowband arround I'g(u, v), and that the ¢-lines are
aligned with the characteristics with direction V, H. Under these assumptions,
for a grid point location x4 near I'g(u,v), Sy(x4) and S,(x4) should take the
parameter values u and v in the parameter space of I'g(u,v) where a straight
line with direction VH, through x4 intersects I'g(u, v), as shown in Fig. 4.2.
Then, grid values Sy,(xXg) = Uinter and Sy(Xy) = Vinter, Where (Uinter, Vinter)
is the parameter pair of the last intersection point found upon convergence
of Algorithm 3.2. Away from I'g(u,v), where the T-field is computed by fast
marching or another upwind finite differences solver, the S-field can be com-
puted together with the T-values as shown in the following discussion.

Recall the orthogonality properties P1 and P2 from the previous section.
The normal vector of a u-isosurface has the direction V.S,, and the normal
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Su (xg) = Ujnter
Sy (xg) = Vinter

(uinterr vinter)

I'y(u,v)

Fig. 4.2: Computation of S, (x4) and S,(x4) in a grid point x, near the refer-
ence surface I'o(u, v).

vector of a v-isosurface has the direction V.S,,. Then, since we chose to align
the t-lines with V, H, we conclude that the S-fields must obey the orthogonality
conditions

VSu(x) - VpH(x,p) =0 and

VSy(x) - VpH(x,p) = 0. (4.5)

These two equations are independent and can be discretized separately on the
finite difference grid. Recall from Sect. 3.1.3 that when T, in a grid point
location x. is known, the gradient of T' in x. is given by

VT.= P '(xT. +5s).

Here s is a vector with elements that involve T-values on the upwind side
of x., while P and r only involve coordinates of grid points. The gradient
of Sy and S, in x. can be expressed accordingly based on the corresponding
grid point values of S, and S, on the upwind side of x.. We examine the
two-dimensional case first, similarly to how VT was discretized in Sect. 3.1.3.

Let .S denote the parameter distribution field in two dimensions, and let .S,
be the unknown value of S in x. (Fig. 4.3). Then

74 Se + 33)

4.6
TSe + 8, (4.6)

VS, =P (xS, +¢)=P! (

where s’ = (s, s)7 takes the same form as the vector s supporting the gradi-
ent VT, but with grid point values for S replacing those for T'. The first and
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Fig. 4.3: The gradient V.S, in grid point position x. is computed from known
solution values S, and S in x, and xp, respectively, in the upwind direction
from x.. The second order scheme also uses computed values S, and Sy .

second order difference operators for s’ are (second order in parentheses)

o —Sq (—4Sa + Sa/)
¢ e — xall 2[jxc —xall )’
S;, _ -5 <4Sb + Sb/> ‘
e =l \2lx —

When T is known, the field vector V,H. through x. can be expressed by the
discretized version of Eq. (4.4) as

VpH. = Fprop oot

roi"i_ va-
P g7, Ve

The orthogonality condition in Eq. (4.5) in x. then becomes
P HrS.+8)-VpH, =0, (4.7)
and solving for S. we get

VpH. Pl

Se = :
¢ VpH. - P~lr

(4.8)

The S-field is consistently computed on the same grid as the T-field by exactly
the same upwind construction. Computation of a grid value S, can take place
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Fig. 4.4: (a): T-field of a Class 1C fold modeled with Fprop = 0.3, taqy =
1 and a = (—0.5,1). (b): The corresponding S-field with isocurves. The
parameterization of the curve runs from left to right.

immediately after T, has been computed such that the correct upwind val-
ues Ty, Ty, Sa, Sp, and Ty, Ty, Syr, Sy for second order differences, are available
(Fig. 4.3). Conceptually, extension to three dimensions for computing S, (x.)
and S,(x.) associated with a parametric surface T'g(u,v) is straightforward,
and can be explained following the same line of arguments as used for the
three-dimensional T-field in Sect. 3.1.4. Fig. 4.4(b) shows an example of an
S-field for a Class 1C fold in two dimensions. The isocurves of the S-field
represent a field of dip isogons as a continuum in the whole domain.

4.2.1 Dependency Graph for Post-Computation of the S-field

From an application point of view, it might be necessary to compute the S-
field (and other scalar fields that depend on the T-field) on demand in a post-
process, and not along with the T-values in the front propagation algorithm.
This can be consistently done if the stencils used for computing 7T-values are
recorded. For example, the stencil in Fig. 4.3 for calculating T, can be com-
pactly stored as the quadruple (—1,—1,0,—1) for first order finite differences.
The two first entries represent the offset in the grid from x. to x,, and the
two last entries represent the offset from x. to x;. If second order finite dif-
ferences are used, the quadruple is (—2,—2,0,—2) in this example. In three
dimensions, the stencil is a tetrahedron with three stencil legs meeting at x.,
and we need nine offset entries to store the stencil. To each grid point we
can associate a dependency graph, which is a binary tree in two dimensions
and a ternary tree in three dimensions. Note that S, depends on grid point
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values S, and S}, (and S, and Sy for second order differences) on the upwind
side of x.. Therefore, post-computing grid point values in .S must be done
in proper order. This is unlike post-processing of, e.g., the gradient field VT
by Eq. (3.6), which can be done in arbitrary order. One solution is to store
the order in which T-values are computed and then compute S-values in the
same order from known upwind values. Or, S-values can be computed recur-
sively by starting from an arbitrary grid point x. and following the dependency
graph upwind until one reaches known values, or at the deepest level until one
reaches the initial narrowband around I'j where S-values are known from the
initialization step. This recursive approach requires that the dependency graph
is acyclic, but this is guaranteed since the stencils are constructed from grid
points with known T-values.

4.3 Blending of Scalar Fields

Until now, T-fields and S-fields have been constructed from one single inter-
face corresponding to the boundary condition in the front propagation problem
given by Eq. (2.23). The propagating front, which corresponds to isosurfaces
of T', has then been used to represent a continuum of layer boundaries. How-
ever, this continuum of layer boundaries will not, in general, align with other
interfaces observed in the same fold.

Consider the sample fold in Fig. 4.5(a), with T-field T} generated from the
interface I'y. Another observed interface I's in the same geological fold should
then coincide with an isosurface of 17, but this is not the case in the example
since 717 is computed independently of I'y. Let 75 be the T-field generated
from T'9, as shown in Fig. 4.5(b), with zero set at I's and negative values on
that side which I'; is located. Let G1,>0 and G1,<o be the sets of grid points
where 17 is positive and T5 is negative, respectively. We want to create a
new field T12 on Gy, = Gry>0 N G1,<0 such that I'y and I'y coincide with
two isosurfaces of 115, and such that the isosurfaces of T12 have monotonically
increasing t-values between the two interfaces as in Fig. 4.5(c). We first modify
field Ty with a constant value t1i¢1o = max |Th € Gpy,| and set

Ty =T, + t1ift2, (4.9)

where the plus sign denotes the element-wise sum of all array elements with the
scalar t15¢¢9. Then Tg is greater than zero everywhere in G'1y,, and ¢1;¢¢2 is the
value of the isosurface at I's. 715 can be generated as a linear blend between T
and Th using weights that resemble inverse distance weights. Let W; and Ws
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Fig. 4.5: Blending of scalar fields. (a): T-field generated from an interface I';.
Another interface I'y is observed in the same fold. The two T-fields in (a)
and (b), computed from interfaces I'y and I'9, respectively, are blended to
produce the combined T-field in (c). (d) shows an example of a blended T-
field in 3D. (e) and (f) show the S-fields generated from I'y and I's, that are
blended to produce the S-field in (g).
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be scalar fields defined over the same grid as 77 and T,

W1 = —T2 / (T1 — TQ) and
Wy =-T1 /| (Tr — T1),

where the division sign denotes element-wise division. Wj has zero-values
at I's and monotonically increasing values away from I's towards I'y where W}
equals 1. Similarly, W5 has zero-values at I'y and monotonically increasing
values towards I'y where Wy equals 1. The element-wise sums of the weights
are 1 in the blending area. Then 772 can be computed by

Tio =Ty o Wi + Ty 0 W, (4.10)

where T;0W; denotes element-wise product of array elements. Fig. 4.5(c) shows
the blended field T12, and (d) shows an example of a blended T-field in 3D.
When T; and T5 are smooth, the weights are also smooth, and consequently the
resulting field T35 is smooth. Other scalar fields derived from T} and 15 can be
blended on Gr,, using the same weights. Fig. 4.5(e) and (f) show S-fields S;
and Sy generated from 77 and Ts, respectively, and (g) shows the blended field

S1o =510 Wi + .55 0 Ws. (4.11)

Note that this blending of T-fields and S-fields have geological relevance, like
the computation of T and T5, which is based on information about the ac-
tual folding regime. Close to I'y the blended field T2 takes on values that are
approximately the values of T7, and close to I'y the values of Tio are approx-
imately the values of T5. Then the blending produces a smooth transition of
the fields between I'; and I'y. One should note that the example in Fig. 4.5 is
exaggerated. In a real example the two interfaces I'y and I's would be more
similar in shape when they belong to the same fold and the corresponding
geological time lag is not too big.

This blending scheme can be made more general to blend scalar fields
assosiated with more than two interfaces. The weights can be constructed
to resemble Lagrange polynomials such that a Lagrangiangian interpolation
scheme can be written as

F=) FjoW, (4.12)
j

to produce the blended field ' from the fields F;. For example, to blend three
scalarfields we would need the three weights

Wi =(T013) [/ [(Th —T2) o (T1 — T3)],
W2 = (Tl o T3) / [(TQ — Tl) o (TQ — T3)] s and
Wi=(TvoTz) / (T3 —T1) o (T3 — T2)],
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where 17, T5 and T3 are T-fields from three non-overlapping interfaces. Blend-
ing of three T-fields and three S-fields can then be computed by

Tiog =17 oW1 +TQOW2+T3OW3, and

S123 = S10 W1 4 520 Wa + S30Ws,

respectively, where 15 is given by Eq. (4.9), and T; is constructed similarly
such that it is positive everywhere in the blending area.

Blending of scalar fields are used in the restoration scheme presented in
the next section. It can also be used to populate properties in space between
two interfaces. Fig. 4.6 shows an example of distributing property data from
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Fig. 4.6: Property function from a well log and property distribution in a
volume between two layer boundaries.

a well log between two layer boundaries. The blended T-field of the volume to
the right is shown in Fig. 4.5(d). Here we assume that there are no faults or
unconformities present. First the two horizontal lines on the well log to the left
are identified so that they correspond to the lower and upper interface of the 3D
volume. The depth interval between the lines is mapped to [t1,t2], where t;
and to are T-values corresponding to the lower and upper interface, respectively.
Conceptually, property values can then be interpolated and represented by a
univariate property function

fo:it— @.
A grid point with value ¢, from the blended T-field is then given the property
value ¢4 = fs(ty). This property distribution is without lateral variation in
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the parameter space. Having more than one well log present may require
correlation and blending of property data from the logs, and properties that
are sampled from a trivariate function

fo: (u,v,t) — ¢.

Thus, a grid point with parameter values (ug,vg,tq), with uy € S, and vy € Sy,
is given the property value ¢ = fy(ug, vy, tg)-

4.4 Numerical Framework for Restoration and Re-
construction

Several methods have been proposed for restoration of geological volumes. To
provide a point of reference for our method, which is based on the Hamilton-
Jacobi framework and the parameterization of the 3D space presented in
Sect. 4.1, a brief review of the principles underlying some alternative meth-
ods is first given.

4.4.1 Brief Overview of Some Existing Methods

Maerten and Maerten (2006) and Moretti et al. (2006) use principles of contin-
uum mechanics and finite element formulations to compute the restored model.
First, a tetrahedral mesh is constructed to represent the structural model. This
mesh must conform to the geological interfaces such that no edge of the mesh in-
tersects an interface. An example in 2D is shown in Fig. 4.7(a). Geomechanical
properties for rock units and appropriate displacement boundary conditions are
then associated to mesh nodes. For example, the displacement of a rock block
along a fault surface is given by specifying source and destination locations of
some of the mesh nodes, and a selection of other nodes may be constrained
to have a fixed location. The same type of constraints are used for unfolding
horizons to recover an original depositional system. The restored structural
model with strain and stress fields are then computed by solving the equation
system resulting from the finite element formulation. The system in Maerten
and Maerten (2006) is solved by the Gauss-Seidel method, while the system
in Moretti et al. (2006) is solved by a Newton-Rapson iteration scheme (Golub
and Loan (1996)). Recently, Durand-Riard et al. (2010) proposed an approach
where faults and horizons are implicitly defined as distances to nodes of the
tetrahedral mesh. Then the mesh need not be constrained to conform to fault
surfaces and horizons. Another approach based on geomechanical principles
was presented in Santi and Martha (2003) for restoration of faults in geological
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cross-sections. This method employs dynamic relaxation (Underwood, 1983)
coupled with the finite element method as a numerical scheme to compute
the restored model. The methods above rely on linear elastic material behav-
ior, but heterogeneous properties can be assigned to honor vertical and lateral
variations in rock rheology.

(a) (b)

Fig. 4.7: (a): Unrestored structural model with a triangular mesh conforming
to a reference horizon to be unfolded. (b): Restored model with the unfolded
horizon and the transformed mesh. (Illustration from Gilardet et al. (2013);
courtesy of Mathieu Gilardet.)

Geomechanical properties are not always available, in particular at an
early stage of the interpretation workflow. A simple approach to seismic im-
age restoration of cross-sections, without the need to define rock properties,
is given in Gilardet et al. (2013). This approach is based directly on a gen-
eral purpose geometric shape deformation framework borrowed from computer
graphics (Weng et al., 2006). Similar to the methods by Maerten and Maerten
and Moretti et al., this method requires a mesh (2D triangulation) conforming
to geological interfaces. De-faulting and unfolding horizons are controlled by
pure geometric constraints, and deformations are defined as pure geometric
transformations of the mesh without taking into account the physical prop-
erties of the rock. Instead of taking into account rheological behavior, the
algorithm aims to preserve two local shape properties of the mesh: the relative
position of nodes on the boundary of the mesh expressed by Laplacian co-
ordinates, and the relative position of interior nodes expressed by mean value
coordinates (Floater, 2003). The set-up results in a non-linear least squares op-
timization problem that is solved by a Gauss-Newton iteration scheme. Fig. 4.7
shows an example of unfolding a horizon using this method. The transforma-
tion is intrinsically bijective such that the inverse transformation can be defined
in a reconstruction process.
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4.4.2 Data Restoration and Model Reconstruction Based on
the Hamilton-Jacobi Framework

The parameterization derived in Sect. 4.1 and 4.2 provides us with a powerful
tool for restoration of geological volumes both in 2D and 3D. Contrary to the
finite element based methods mentioned in the previous section, the method
we derive here does not require geomechanical properties of the rock as in-
put. Nevertheless, the method makes physical and geological sense since the
underlying parameterization controlling deformations reflects the actual fold-
ing regime of the geological volume. Another advantage is that the method
is meshless, thus eliminating the need for constructing a complex tetrahedral
mesh to represent the geological model. All calculations of deformations take
place on the regular finite difference grid by utilizing the T-field, and the 5,-
and S,-fields computed by the numerical scheme in Sect. 4.2. This yields fast
and stable numerical computations and simple concepts for the user for setting
up the restoration workflow.

To explain the main ideas we start with simple unfolding of a horizon, and
for ease of explanation we look at the two-dimensional case first. Let I'op(u)
and Tg(u) be parametric curves corresponding to a horizon before and af-
ter restoration, respectively, as shown in Fig. 4.8. Geometrical constraints
are imposed such that a selection of source points {x(up,t = 0)} on I'g(u)
corresponds to specified target locations {X(u,,t = 0)} on the restored hori-
zon [o(u). That is, a particle of sediment at location x(uy,0) will be reposi-
tioned to location X(uy,0) in Euclidean space during restoration. For example,
the set {x(up,0)} may be the start and end points of I'y(u), and optionally
some points in the interior of the curve. Due to extensional or compressional
forces that may have acted over geological time, the curves may have different
lengths, but the curves are properly parameterized such that the parameter
values {u,} corresponding to points on 'y and Iy specified by the user are
preserved. Thus, we have a mapping of a set of distinct source points to target
points on the two curves

{x(up,0)} = {To(up)} — {To(up)} = {%(up,0)}.

Similarly, we assume that any point on I'g(u) can be associated with a point
on I'y(u) by the mapping

x(u,0) = To(u) — To(u) = %(u,0).

Mapping of a particle with location (u,t), where t < 0 (i.e., the particle is
positioned away from I'g and is older than particles on I'y) follows the same
principle: the particle is repositioned to a new position X(u,t) in Euclidean
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(b) x(u, t)

Fig. 4.8: Restoration of a layer between two horizons I'g(u) and I';(u). (a): Be-
fore restoration with a particle of sediment at location x(u,0) on the horizon,
and another older particle located at x(u,t). (b): After restoration where the
particles have been moved to new positions in the Euclidean space, but the
location (u,t) in the parameter space of each particle is preserved.

space, but the particle’s location (u,t) in the parameter space is always pre-
served by the mapping

x(u,t) — x(u,t).

The model space is typically populated with properties such as porosity,
permeability and oil saturation, or velocity and density needed for calculation
of seismic responses and generation of synthetic seismics. Properties can also
be seismic amplitudes in the case of seismic image restoration. In a restoration
process following the principles outlined above, one or more property values are
associated to x(u,t) and thus mapped along with the particle of sediment to
a new position X(u,t) in the Euclidean space. Properties can of course change
over geological time by post-depositional transformations such as diagenesis
and metamorphism, but we assume here that a property value at X(u,t) can
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be derived from the corresponding property at x(u, t) before restoration. Let G
and G denote the m x n and m x 72 regular grids of the unrestored and restored
volume, respectively. Recall that the parameterization expressed by the S-field
and the T-field of the geological volume is distributed on the regular grids G
and G, say, as (S,T) and (S, T). Similarly, a set of property values, say ®, is
distributed as a scalar field on the unrestored volume. Thus, on the grid G we
have the three data sets

(Sa T7 Q)) = {(U,t, ¢)i7j}7 (RS Ixa j € Iy7 (413)

where Zy and Zy are grid indices given in Eq. (4.3). These scalar fields exist
in regular grid positions in the Euclidean space, but in the parameter space
the property field ® exists in scattered locations {(u,t);;}. In the restora-
tion process we want to map the property values to the restored volume and
populate G with new properties. Thus, we want to establish

(S’, T, (i)) = {(’I_L,L?, Q_S)i,j}, 1€ j.x, j e j.y,

where S and T are known. Since a grid point location in G' does not map
to a grid point location in G in general, we must resample properties in lo-
cations {(@,);;} of the regular grid G to find the mapped properties. Based
on S, T and the existing property field ® on G, given by Eq. (4.13), we define
a bivariate property function

f(b : (U,t) — ¢7

that can be evaluated in an arbitrary parameter pair (u,t). The construc-
tion of f, is a scattered data interpolation problem. Given distinct loca-
tions {(u,t);;} in the parameter space and corresponding data values {¢; ;},
we seek the surface fy(u,v) (hypersurface in 3D) that approximates the data
values

f¢(u,t)i7j%¢i,j, 1=1,....m j=1,...,n.

Since locations of particles in the parameter space are preserved, the mapped
property field ® can be found by evaluating f, in all grid points of G, thus

é = {élﬂ} = {f(b(avi)z,j}? (NS ix; ] c iy-

The construction of f; can be computational demanding when m and n are
large. We used multilevel B-splines (Lee et al., 1997; Hjelle, 2001) for generat-
ing fs, which is fast and stable also in the trivariate case when G and G are 3D
grids. The multilevel method in Appendix A produces a smoother function fy
when the data are irregular spaced, but there is no implementation of this
method in 3D. Both methods produce a tensor product function fy that is fast
to evaluate for finding the mapped properties on G.
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To illustrate how deformation of material takes place in a 2D section by
the mapping described above, we use a simple property field ® consisting of
a pattern of black circles on a white background. Fig. 4.9(a) illustrates a
flat layer with no initial compaction or strain around a reference curve I';.
The T- and S-fields are generated by Fyrop = 1.0 and a9, = 0. (Fprop =0
and 1,qy = 1.0 would produce the same result since I'; is horizontal.) The
fold in (b) simulates a parallel Class 1B fold with T- and S-fields generated
by Fprop = 1.0 and t)agy = 0 based on a reference curve I';.  In (c) and (d)
the u- and ¢-lines of the parameterization of the folds in (a) and (b) are shown.
The property pattern ® in (a) is mapped to ® in (b) in agreement with the
scheme above. The resulting strain field for the fold in (b) can be characterized
by compression parallel to layer boundaries below the anticline, and stretching
above the anticline (away from from the hinge). For the syncline, the opposite
applies. I'q is a neutral curve with no tangential strain. Moreover, straight lines
orthogonal to the neutral line remain orthogonal and preserve arc lengths dur-
ing fold formation with no tangential strain along the lines (Fig. 4.9(d)). This
folding regime corresponds to orthogonal flexure folding, also called neutral
surface folding (Twiss and Moores, 2007). The strain pattern is also said to be
tangential longitudinal (Ramsay and Huber, 1987; Bobillo-Ares et al., 2006).
The pattern in (e) illustrates pure compaction (very simplified) of the layer
in (a) with the 7- and S-fields in (e) generated by Fprop = 0.6 and t)aqy = 0
from the same curve as in (a).

Note that only T-fields, S-fields and the original property field ® are in-
volved in the mapping above, while the geometries of the interfaces are only
used to compute T-fields and S-fields. In many practical cases one is inter-
ested in mapping a layer delimited by two existing interfaces I'1 and I's to
a new restored layer delimited by two interfaces I'y and I'y specified by the
user. Then the fields S, S and 7, T must be the blended scalar fields com-
puted by Eq. (4.10) and Eq. (4.11), respectively. This can be generalized
to map between layers delimited by more than two interfaces by producing
blended T and S-fields as described by the a Lagrangiangian interpolation
scheme in Eq. (4.12).

Conceptually, extension to three dimensions is straightforward. The inter-
face between two layers is then a parametric surface I'(u, v) leading to two S-
fields S, and S, on 3D grids G and G. In particular, on the m x n x p grid G
we have the four scalar fields

(S’M7SU7T7 (I)) == {(uavat7¢)i,j,k}7 1€ va j S Iy7 k € Izv

and on G we want to establish
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where S,, S, and T are known. The property function is then a trivariate
function

fo(u,v,t) — ¢ (4.14)

constructed by a trivariate version of the multilevel B-spline algorithm (Lee
et al., 1997_). The mapped property field ® is found by evaluating fy4 in all grid
points of G, thus

(i) = {g)i,j,k} = {f¢(aaﬁvﬂi,j,k}a (XS j'X> ] S j'ya ke iz' (415)

Fig. 4.10 shows an example of 3D seismic image restoration implemented in
Statoil ASA’s Compound Earth Simulator (CES) using the scheme presented
above. The reverse mapping, that is, the construction process forward in ge-
ological time, can be described symmetrically by exchanging G and G. The
different steps in restoration of a single horizon can be summarized as fol-
lows (consult Fig. 4.8 and 4.10).

(i) Identify horizon I'y in the seismic image and generate a set P of points
(e.g. by autotracking) laying on T'.

(ii) Fit a surface I'g(u,v) to P, e.g. by using multilevel least squares approx-
imation (Appendix A).

(iii) Define the target horizon and construct the surface T'o(u,v). This may
require specialized interactive software modeling tools, or the surface may
exist in the workflow of another geomodeling system.

(iv) Compute scalar fields (S,,S,,T) from Tg(u,v), and (S,,S,,T)
from T (u, v).

(v) Establish the trivariate property function Eq. (4.14) from (S, Sy, T") and
the property field ® of the unrestored volume, e.g. by using multilevel
B-splines (Lee et al., 1997).

(vi) Find the mapped property field ® of the restored volume by the sampling
in Eq. (4.15).

Successive application of restoration or reconstruction of horizons in a geologi-
cal volume as proposed here, combined with restoration of faults (Sect. 4.4.4),
realizes the theoretical concept of Earth Recursion (Petersen and Hjelle, 2008)
in the dR/mR-workflows in CES. Fig. 4.14 on page 87 shows folding of a vol-
ume after a sequence of fault processes. More examples of data restoration
and model reconstruction on realistic volumes can be found in Petersen et al.
(2012).
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Fig. 4.10: Restoration of a 3D seismic volume: (a): A horizon and two seismic
cross sections originating from offshore Angola. (b): The leftmost-rightmost
cross section from (a) before restoration. (c): The same cross section after
restoration. Arrows on the left indicate the horizon that is unfolded. The
horizion in (a) was modeled from autotrack data with the multilevel method
in Appendix A. (Screen shots from Statoil ASA’s Compound Earth Simula-
tor (CES).)
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4.4.3 Discussion

The Hamilton-Jacobi mathematical framework for modeling the different fold
classes as a propagating front, presented in Chapter 2, was primarily designed
to reflect the geometry of the present day fold, and not to reflect physical pro-
cesses of fold formation in general. Consequently, restoration by the mapping
presented above does not always reflect the actual strain pattern of a natural
fold, and particles are not necessarily mapped to correct positions in the Eu-
clidean space. Nevertheless, as demonstrated above by the Class 1B fold formed
under orthogonal flexure folding, the strain pattern agrees reasonably well with
that of a natural fold when the parameterization is constructed directly from
the Hamilton-Jacobi framework. The reason is the choice of the t¢-lines of
the parameterization that were aligned with the group velocity vector V,H
in Eq. (4.4), and that V,H points in the direction of the dip isogons. In this
particular example with folding of a competent layer, the dip isogons deform
indeed as material lines (Srivastava and Shah, 2008). Since the locations of
particles in the parameter space are preserved under the mapping, the strain
pattern agrees well with that of natural folding.

Consider a standardized upright antiform of Class 1B type formed under
orthogonal flexure folding, as for the left half of the fold in Fig. 4.9(b) and (d).
Suppose that homogeneous strain is superimposed in the upward axial direc-
tion. Then thinning of the limbs, thickening of the hinge, and less convergent
dip isogons result (Srivastava and Shah, 2008).  The result is a Class 1C
fold (Fig 2.1). Further modification by increasing the homogeneous strain,
will approach it towards a Class 2 fold (but remain a Class 1C fold). Folds
formed in this way are also called flattened parallel folds. In our front prop-
agation model we obtain the Class 1C fold type by Fprop > 0 and 9agy > 0,
and by decreasing the Firop/1aay ratio the fold approaches Class 2 type for
which Fprep = 0 (Table 2.2). If we assume that dip isogons deform as material
lines under such flattening, we may expect the modeled strain pattern to agree
well with that of a natural fold.

On the other hand, suppose that homogeneous strain is superimposed
outward and orthogonal to the axial direction of the standardized Class 1B
fold formed under orthogonal flexure folding. Then thinning of the hinge,
thickening of the limbs, and more convergent dip isogons result. The result of
the flattening is a Class 1A fold. In our front propagation model we obtain the
Class 1A fold type by Fprop > 0 and 9agy < 0. If we assume that dip isogons
still deform as material lines, we may expect that the modeled strain pattern
agrees well with that of a natural fold also in this case.

These observations justify the choice of aligning t-lines of the parameteri-
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zation with Vo H (Eq. (4.4)), at least for the deformation types demonstrated
above. And, by the principle of preserving the locations of particles in the
parameter space under the mapping derived in Sect. 4.4.2, particles and prop-
erties are mapped to correct positions in the Euclidean space in the restoration
process. Other folding mechanisms, many of which can be very complex, may
require other directions of ¢-lines, but using the direction of V,H appears rea-
sonable if Furop, 1agy and a are chosen carefully. In addition, the blending
scheme in Sect. 4.3 can be used to generate more complex S and T fields for
a layer delimited by two interfaces. In a flexural slip fold, material lines will
be discontinuous over bedding planes on the fold limb. Then each layer be-
tween two bedding planes must be modeled individually if we want the model
to reflect the actual strain pattern, possibly by blending S-fields and T-fields
as described above.

4.4.4 Modeling and Restoration of Faults

Faulting involves displacement of material in a volume of rock. This may
happen simultaneously with folding and other geological processes, but in the
following we regard faulting as a separate process in a sequence of geologi-
cal processes. We assume that displacement of material takes place inside a
portion of the volume denoted the influence region (Fig. 4.11). Our meshless
volumetric approach suggests that a fault be modeled as a 3D vector displace-
ment field inside the influence region. Thus, a vector representing the relative
displacement of material in space will be associated to each grid point inside
the influence region. For restoration and reconstruction of faults we utilize the
mathematical and numerical frameworks derived above for restoration and re-
construction of horizons. As it turns out, after setting up the parameterization
of the 3D space relative to the fault surface with proper scalar fields (.S, Sy, T')
and (Sy, Sy, T) for the unrestored and the restored volume, respectively, map-
ping of a property field ® to ® when restoring a fault is performed exactly
as summarized in the end of Sect. 4.4.2 for restoration of a horizon. In the
following, we first derive the vector displacement field for representing a fault.
For ease of explanation we first make some assumptions and simplifications,
but in the end of the section we indicate how to generalize this in different
ways.

Consider a dip-slip listric fault’ where the fault surface is represented as
a parametric surface I'g(u,v). Assume that the maximum displacement vec-
tor dmax is located at a point x. on the fault surface and that displacements

LA listric fault is a fault with a curved fault plane, concave upwards. A dip-slip fault has
its primary movement in the dip direction of the fault surface.
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Fig. 4.11: Displacement vectors inside the influence region of a dip-slip listric
fault in a 2D section.

gradually decrease away from x. reaching zero at the boundary of the in-
fluence region (Fig. 4.11). Without loss of generality, assume that I'g(u,v) is
parameterized such that the u-line through x. is aligned with the slip direction
of the fault. The T-field is constructed relative to I'g such that I'g corresponds
to the zero set of T'. A natural choice is to let T" be an isotropic distance field
with Fyrop = 1.0 and tPaay = 0 in Eq. (2.23). If T'g has high curvature, a smaller
value for Fyrop and a positive value for 1,4y, and axial direction a pointing in
the normal direction of the surface at x., may be a better choice to guarantee
that t-lines do not intersect inside the influence region. We return to this be-
low. Since the T-field is zero at I'g, the scalar fields S, and S, yield u-lines
and v-lines aligned with 'y, and with proper choice of parameters when con-
structing T, the curvilinear (u,v,t)-grid is well defined with non-intersecting
and separated parameter lines inside the influence region as in the 2D exam-
ple in Fig 4.12. In particular, if 1aey = 0 it follows from Eq. (4.4) and (4.5)
that t-lines are orthogonal to both w-lines and v-lines. In the vicinity of x. the
vector displacement field is parallel to the fault surface and directed in the slip
direction, and (inax is aligned with the u-line through x.. If the deformation in-
side the influence region is of simple shear type, we may assume that the whole
vector displacement field is aligned with the wu-lines of the parameterization.

We define the shape of the influence region as an ellipsoid in the parameter
space with center in
pe = (uev v€7 0)7

corresponding to X, = X(ue, Ve, 0) in the Euclidean space, with its semi-major
axis aligned with the u-line in the slip direction, and semi-minor axes aligned
with the v-line and the t-line through pe. So, when drawn in the Euclidean
space the ellipsoid is deformed in general, as shown in Fig. 4.12 of a listric
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Fig. 4.12: (a): A sample property field and a fault trace in a 2D section of a
folded structure before faulting. (b): Faulting downwards along one side of the
fault trace based on simple shear. Extension of material above the epicenter
of the fault, and compression below. (c) and (d): Sy-fields inside the influence
region before and after faulting, respectively. The isolines of S, are t-lines of
the parameterization. (e): The T-field with isolines, which represent u-lines of
the parameterization. (f): Examples of the cumulative distribution function
in Eq. (4.16), with different parameters p; and py controlling the shape.
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fault. The lengths of the semi-axes must be set so that the ellipsoid in the
parameter space approximates the observed influence region in the Euclidean
space.

To distribute displacements inside the influence area, we define bell shaped
functions with value = 1.0 in p., and with decaying values away from p.
vanishing at the periphery. This bell shape can be resembled by the cumulative
distribution function

- (1—rP)P2 0<r<1
d = 4.16
be11() { 0, r>1, ( )

where r is the distance in the parameter space from p., normalized such
that » = 1.0 on the periphery of the ellipsoid, and p; and p are parame-
ters for controlling the shape. If p; > 1 and py > 1, the derivative is zero
in pe and at the periphery. In particular, if p; ~ 1.9 and p2 = 2.2, the function
approximates a sinusoid. If p; = 1.0 and po = 1.0 we get the linear func-
tion 1 — r. When p; increases from 1.0, a wider flattening occurs from r = 0,
and when ps increases from 1.0, a wider flattening occurs at » = 1.0. Some ex-
amples of dye11(7) are shown in Fig. 4.12(f). We want the distribution function
to depend on direction in space. This can be achieved by specifying three func-
tions of the form defined in Eq. (4.16), one for each of the u, v and ¢-directions,
with different parameters p; and po, say

dpe11(Tu)s  dper1(1v), d‘f)ell(rt)'

Here, 7y, 7, and 7, take the role of r in Eq. (4.16) in each of the parameter
directions. These functions can then be combined by a (tensor) product to
produce the distribution function

doer1 (1, 0,1) = diye1 (7u) - dpe11 (1) - diery (71)-
Alternatively, displacements in the fault surface can be modeled as
dyer1 (u, v,0) = d1 (72,) cos® a + dlqq; (1) sin®
where « is the angle relative to the u-axis, and the combined function as
dpers (u,v,t) = (dgell (ru) cos? a + digyy () sin® a) 11 (71)-

Both alternative constructions of dpe11(u,v,t) open up for modeling complex
and geologically relavant displacement patterns. The latter is similar to an
approach published recently in Laurent et al. (2013). The scalar displacement
field inside the influence region is then

d(“» v, t) = |gmax| : dbell (’LL, v, t), (4.17)
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where u, v and t are known in the grid points of the regular grid embedding the
fault from Sy, S, and T', respectively. We discretize the distribution function
on the grid by

Dpe11 = {dve11(u, v, t); i1}, 1 € Ix, j € Ly, k € I,.

As a consequence of the orthogonality properties P1 and P2 in Sect. 4.1, the
directions of the u-lines are V.S, x VI'. Then the vector displacement field can
be written

— - Sv T
D = |5ma| - Dyer1 © | VS, X V (4.18)

VS, x VT||’
Here, o stands for the element-wise product of the 3D array on the left hand
side with each of the three components of the gradient vector field on the
right hand side. If T is an isotropic distance field, the u-lines are aligned with
the gradient field of S, and Eq. (4.18) can be simplified accordingly by V.S,
replacing VS, x VT.

So, how can we impose a fault on a property field of an un-faulted model,
or conversely, how can we restore a fault by removing the impact of the fault
on recorded seismic data? To restore a fault we need to reverse the vector
displacement field represented by Eq. (4.18), that is, displacements —D must
be applied to grid points inside the influence region. As for restoration of a
horizon in Sect. 4.4.2, we have the scalar fields

(Su)SU7T7 (b) == {(uavut7¢)i,j,k}7 1€ IX7 J S Iy) k S IZa

where @ is the property field, for example recorded seismic data. We want to
find the restored property field ®, which will differ from ® in grid points inside
the influence region of the fault. Since we assume that the vector displacement
field is of simple shear type, a property value ®(u,v,t) should take its value
from ®(u+0d,, v,t), where J,, is an increment in the u-direction in the parameter
space that corresponds to the displacement value from Eq. (4.17) in the Eu-
clidean space. Suppose that the parameterization of the fault surface I'g(u,v)
is scaled such .

Ou(Ue, Ve, 0) = |Omax|- (4.19)

Then we can prepare the mapping of properties from ® to ® by perturbing S,,
and preserving S, and T, thus

_u = Su — 5u(ueave,0) * Dye11,

S, =S,, and

T=T.
By the property in Eq. (4.19), we can also assume that the perturbations S, —§u
are approximately Euclidean lengths. Fig. 4.12(c) and (d) show S, and S,
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and how the t-lines of the parameterization are deformed with the perturbation
of S,. The restored property field of the de-faulted volume is then computed
exactly as for restoration of a horizon in Steps (v) and (vi) in the procedure at
the end of Sect. 4.4.2. The reverse process, that is, the inclusion of a fault in
a volume, can be described and computed symmetrically.

Fig. 4.13 shows examples of how normal and reverse faults, with both nor-
mal and reverse drags (Grasemann et al., 2005), can be modeled by applying
different distribution functions to perturb the underlying 7" and S-fields of the
parameterization. For example, normal drag is modeled by choosing p; > 1
and po > 1 in the distribution function di,;(r¢) in the outward direction
from the fault surface. This ensures natural deflection of layer boundaries
in agreement with that of a normal drag. (See also Fig. 4.12(f).) In addi-
tion, Fprop, Yaav and a are set so that the ¢-lines of the parameterization, with
directions given by Eq. (4.4), are aligned with the layer boundaries adjacent
to the fault surface. Reverse drags in the lower row of Fig. 4.13 were mod-
eled by p1 = 1 in d},;;(r¢), which yields a distribution function that is convex
without an inflection point.

Fig. 4.14(a) shows the result from a sequence of processes in a workflow
including both faulting, erosion and folding. A new fault is activated in (b),
and then the whole volume is again folded in (c¢). Fault displacements on each
side of the fault surfaces were modeled independently with different influence
areas and distribution functions.

Several extensions and generalizations can be introduced to model more
complex displacement patterns, for example:

- Displacements other than the simple shear type in the u-direction can be
modeled by vector displacement fields in the v- and t-directions. Dis-
placement fields in the wv-direction may simulate strike-slip faults, or
oblique-slip faults when superimposed on the dip-slip displacement field.
Displacement fields in the ¢t-direction may simulate strain caused by com-
pressional or extensional forces. Perturbations of S, and T to form S,
and T are then performed similarly as for S,, and we get

S’u = Su - 5u(ue, Ve, 0) : Dbella
Sy = Sy — 0p(te, Ve, 0) - Dper1, and (4.20)
T=T — 5t(uevvmo) * Dye11.

- The influence region need not be restricted to an ellipsoid. A slightly
more general shape is a superellipsoid. But, any shape that is convex,
or more generally, star-shaped in the parameter space relative to the
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Fig. 4.13: Normal and reverse faults, with normal and reverse drags, modeled
by using different distribution functions for perturbing the underlying 7" and S-
fields of the parameterization. Normal drag and reverse drags are modeled by
choosing p; > 1 and p; = 1, respectively, in the distribution function d.;; (r¢)
in the outward direction from the fault. (See also Fig. 4.12(f).)

center (e, ve,0) could be used. Construction of such regions may require
specialized interactive software modeling tools.

- Several displacement vectors, in addition to gmax, could be specified inside
the influence region. The displacement field can then be constructed by
interpolation, possibly with zero and zero derivative constraints at the
boundary of the influence region to maintain a smooth distribution of
displacements.

For the proposed fault modeling, the computationally most expensive op-
erations are the generation of the T-field from the fault surface and the compu-
tation of the trivariate function from the scalar fields (S, Sy, T, ®) in Step (v)
of the procedure described at the end of Sect. 4.4.2. Since displacements take
place inside the influence region only, these operations can be optimized to
operate only on a subset of the regular grid. This enables an interactive work
session for fault modeling where computations can be performed repeatedly
with different parameters and thus approach a geologically feasible solution by
trial and error. Note also that only a few parameters need to be considered
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Fig. 4.14: (a): Faulted, eroded and folded slump. (b): A new fault is activated
on the left with a displacement field that also intrudes the faults on the right.

(c): Folding of the already deformed and faulted volume. (Screen shots from
the mR-workflow in (CES).)
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to model quite different deformation regimes. Other geological phenomena in-
volving deformation of geological structures and displacement of material can
probably also be modeled by vector displacement fields by using using the
same principles and tools as described here. For example, extensional fault-
propagation folding from the tip of a fault is an interesting topic for further
research, as pointed out in Chapter 5.

4.5 Assessing Deformations

In this section, we derive useful metric properties from the parameterization
of the 3D space and the scalar fields 7', S, and S5, defined on the finite dif-
ference grid of the geological volume. These metric properties can be used to
quantify deformations related to folding, restoration and reconstruction. The
mathematical framework we derive below is using fundamentals of classic dif-
ferential geometry. The framework has similarities to Mallet (2004), but here
we also establish the numerical framework for computing deformations and re-
lated quantities from 7', S,, and S,. We start by constructing a tangent space
as a means for assessing strain and deformations in folded layers.

Fig. 4.15: Local frame and tangent space, and illustration of the first funda-
mental form on the isosurface I';.
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4.5.1 Construction of a Tangent Space

The parameterization introduced in Sect. 4.1 induces a local frame of vectors
in each point x(u,v,t) in 3D space that we denote

ox ox ox
Xy = — XU:%, and tha,

as depicted in Fig. 4.15. These vectors are tangents to the u, v and ¢-lines of the
parameterization, respectively. Note that since the t-lines are aligned with the
group velocity vector in Eq. (4.4), we have x;, = VpH. The T-field may have
corners and cusps with singularities in the derivatives (Sects. 2.3.1 and 3.1.5).
Therefore, the derived functions x(u, v,t) = (z(u,v,t), y(u,v,t), z(u,v,t)) are
not necessarily smooth everywhere. Still, in the following we will assume that
the functions are smooth whenever this is needed for the discussion to ensure
mathematical correctness. Moreover, we will also assume that x,, x, and x;
are linearly independent such that the cross products (x, X X,), (X, X X)
and (x; X X,) are nonzero vectors. Furthermore, we assume that the three
directions x,, x,, and x; obey the right-hand rule like the vectors in Fig. 4.15.
For a point x(u,v,0) on the surface I'g(u,v), x, and x, are tangent vectors
to the surface, and more generally, for any point x the vectors x,, and x, are
tangents to an isosurface of the T-field through x. Similarly, the vectors x,
and x; are tangents to an isosurface of .5, and x; and x, are tangent vectors
to an isosurface of S,. The normal vectors to isosurfaces S,, S, and T can
then be expressed as

Nt — VS Xy XXy
IVSull % x x¢]|
0 — VS, XXXy (4.21)
IVSull [l x xull’
‘ vT Xy X Xy

IVTIE [l > x|

These normal vectors are well defined under the assumption of linear indepen-
dency of x,, x, and x; stated above. It is also easy to establish the following
orthogonality conditions

VT %, =0, VS, Xu=0,
VT x, =0, VS, x,=0,
VS, xt =0, VS, x;=0,

where the two last conditions correspond to Eq. (4.5). Recall from Section 2.4.1
that VI'- Vo, H = 1. This also follows directly by differentiation along the
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characteristic curve, where we have

ar 1
ds [

and

ar_gp. X

ds [
thus giving VI'- x; = 1. (Here, we have replaced VpH by x;.) It is straight-
forward to derive similar relations along the u- and v-parameter lines. Thus,
we have

VS %y =1,
VS, Xy = 1, (4.22)
VT'Xt:L

As a consequence of the orthogonality conditions in Eq. (4.5), the vector V.S, x
VS, points in the same direction as x;, which implies

VS, x VS,

x = Il g5, vs, T

If we take the scalar product with V7' on both sides and rearrange, we get

|VSy x VS|
(VSy x VS,) - VT’

Il =

and by combining the two expressions above we get

VSy x V.S,

= . 4.23
T VS, x VSy) - VT (4.23)
Similarly, x,, and x, can be derived in terms of VS,, V.S, and VT
VS, x VT
u = ) 4.24
*u T V8, x VT) - VS, (4.24)
X, = VT x VS, (4.25)

(VT x VS,) - V8,

From an implementation point of view, we observe that the expressions for x,,,
x, and x; have a common denominator by using the formula (a x b) - ¢ =
(bxc)-a. The gradient fields VS, and V.S, can be consistently computed for
a grid point by the upwind construction in Eq. (4.6). This can be done along
with the computation of T, VT, S, and S, in the front propagation algorithm
such that the correct upwind construction is used. Alternatively, they can be
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computed in a post-process directly from a dependency graph as explained in
Sect. 4.2. The tangent vectors x,,, x, and x; uniquely characterize the metric
properties in the vicinity of a point x(u,v,t) and are used below for assessing
deformation in folded layers. The vectors are computed in a grid point from
grid point values of V.S,,, V.S, and VT that have all been consistently computed
from upwind values. The vector x; can also be computed directly by Eq. (2.24)
when VT is known, without using V.5, and V.5,,.

Remark  The two-dimensional equivalent to this tangent space is as follows:
Let VS+ denote a vector field orthogonal to VS, with direction to the left as
seen when looking in the direction of VS. Thus VS+ = (-S,,S,), and has
the same direction as x;. Moreover, let VI~ = (Ty, —T), that is, VTt
is orthogonal to VT and pointing to the right as seen when looking in the
gradient direction. Then

o VTt
v vT-L.vs’

Vst
Xt:ivsL-VT (:va)

Similar to the 3D equivalent, we observe that the two tangent vectors have a
common denominator.

4.5.2 Strain and the Metric Tensor

Many metric properties of a volume with folded, faulted and compacted layers
can be characterized in the tangent space by the vectors x,, x, and x;. The
classical theory of differential geometry (Do Carmo, 1976; Kreyszig, 1991) uses
the notion of the first fundamental form for surfaces to determine the intrinsic
geometry in a neighbourhood of a given point. Consider, e.g., the arc s starting
from x(u,v,t) on the isosurface I'; in Fig. 4.15 for which the parameter ¢ is
constant, and let ds be the principal linear part of the differential of s. Then
the first fundamental form of I'; is

ds® = (xudu + x,dv) - (xudu + x,dv)
= Xy - Xy (du)? + 2%, - X, (dudv) + X, - X, (dv)2.

Thus, ds can be considered as the image on I'; of the displacement (du, dv) in a
plane of the parameter space with constant ¢. The coefficients of this quadratic
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form can be arranged in a matrix called a metric tensor

Xu * X Xu * X
ot = (270 7).
)

where ® denotes tensor product of vectors. This gives

2 du
ds (dudv)I(dU .

Similarly, if we consider the displacement (du,dv,dt) in the parameter space,
the image ds in the three-dimensional Euclidean space can be expressed by the
quadratic form

ds® =%, - Xy (du)? + %, - X, (dv)? 4+ x4 - x4 (dt)? +
2x,, + Xy (dudv) + 2%y, - x¢ (dudt) 4+ 2%, - % (dv dt).

Then the coefficients can be arranged in a three-dimensional metric tensor

Xy Xy Xy * Xy Xy © Xt
G(x) = (Xu Xy Xt) @ (X X Xt) = | Xy Xy Xy Xy Xy Xt |, (4.26)
Xy * Xt Xy - Xt Xt - Xt

such that
du

ds®> = (du dv dt) G | dv
dt

The symmetric matrix G(x) characterizes the metric properties in the vicinity
of a point x(u,v,t), and may serve as a tool to quantify and analyze spatial
distribution of deformations. As shown below it can be used to characterize
deformations during folding and compaction over geological time. In particular,
G(x) can be used in applications for restoration and reconstruction to quantify
deformations in the neighbourhood of the image of a point x in the restored
state at the time of deposition. The entries in G(x) are easily computed on
the finite difference grid from the equations in Sect. 4.5.1.

4.5.3 The Metric Tensor applied to Sedimentation, Com-
paction and Restoration

The definitions of sedimentation rate, compaction and decompacted sedimen-
tation rate given below are taken from Mallet (2004). Assume that the fold-
ing is of Class 1B (parallel) type, such that sedimentary layers have constant
orthogonal thickness along fold limbs. Consider a thin layer with observed
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thickness Ah that has been deposited over a geological time lag At. Then
the sedimentation rate is ¥ = Ah/At if there has not been any compaction.
Assume that the T-field and the time variable ¢ in the parameterized model
(Sect. 4.1) correspond to geological time. The sedimentation rate at a point x

can then be expressed as
1

RZACSI

Note that this equation corresponds to the isotropic case of the eikonal equation
in our front propagation model with ¥(x) taking the role as the normal prop-
agation speed Fyrop(x) in Eq. (2.10). (See also the discussion in Sect. 2.3.1.)
The sedimentation rate given above does not account for compaction of layers
over geological time from the time of deposition. Therefore, the sedimenta-
tion rate calculated from observed layer thickness today is too slow if there
has been compaction. Assume that compaction in a point is represented by a
compaction coefficient ¢(x) € [0,1). The decompacted sedimentation rate is
then

¥(x)

V(%)
Pp(X) = ———.
The actual geological time lag over which the layer has been deposited is
Ah
At(x) = Bhelx)
V(%)

where Ahg(x) is the observed (decompacted) layer thickness at x.

Consider a special case with a volume consisting of a stack of hori-
zontal layers. Assume that the wu-line and the v-line of the parameteriza-
tion are aligned with the global x- and y-axes, respectively, and that an arc
length parameterization is imposed such that tangent vectors x, = (1,0,0)
and x, = (0,1,0). Assume further that the ¢-line of the parameterization is
aligned with the vertical global z-axis and that ¢ represents geological time.
Then the tangent vector x;, which points upwards, can be interpreted as the
sedimentation velocity

x¢ = (0,0,04(x)).

Under these assumptions, for an unfolded layer, the metric tensor in Eq. (4.26)

reduces to
0

10
Go(x)=10 1 0
00 [
Mallet (2004) proposed a restoration model to define a strain tensor char-

acterizing the deformation of a layer between the time of deposition and present
time. It is assumed that sediments are always deposited on a horizontal plane,
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while at the time of deposition of a layer the deeper layers and horizons may
have already been deformed. A thin layer between two horizons H; and H;_a¢
is considered, where H; has been deposited at geological time ¢ and the deeper
horizon H;_a; has been deposited at geological time ¢t — At. The restoration
process then transforms H; to a horizontal layer as it was at the geological
time ¢ of deposition, while H;_a; then was already deformed. Then the met-
ric tensor defined above is used to characterize the metric properties in the
neighbourhood of the image of a point x in the restored state at the time of
deposition. The strain tensor characterizing the deformation of a layer between
the time of deposition and present time is then defined as

£(x) = 5 (G(x) ~ Golx))

More details on this mathematical model can be found in Mallet (2004) and the
more recent Mallet (2008). As shown above, our meshless volumetric approach
with scalar fields .S,,, S, and T consistently computed and defined on a regular
grid, together with the derived tangent space in Sect. 4.5.1, provides all the
tools needed to implement the metric tensors and quantify deformation locally
in any point in space.

4.6 Summary

The parameterization of the 3D space proposed in this chapter is derived di-
rectly from the Hamilton-Jacobi framework for fold modeling presented in
Chapter 2. This parameterization can be associated with a curvilinear grid
in the Euclidean space consisting of directed u-lines, v-lines and t-lines as illus-
trated in Fig. 4.1. We derive a meshless representation of the parameterization
on the finite difference grid where the T-field is computed. Thus, the parame-
terization is represented as a set of triples {(u,v,t); jr} over the 3D grid. The
t-values are taken from grid values of T. Grid values for v and v are com-
puted in a finite difference scheme that propagates parameter values from the
parametric surface I'g(u, v), representing the reference layer, in the direction
of the group velocity vector Vp,H. We argue that this construction of the
parameterization is a natural choice since isosurfaces of T' are associated with
a continuum of layer boundaries, and VpH points in the direction of the dip
isogons of a fold.

This parameterization of the volume provides a powerful tool for restora-
tion of layers and faults. The restoration scheme we present is meshless with-
out the need for constructiong a complex tetrahedral mesh conforming to layer
boundaries and fault surfaces. At the core of the restoration scheme there is
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a mapping between a source and a target volume, both parameterized as out-
lined above. A blending scheme is proposed when layers are delimited by two
or more boundaries. The underlying principle of the mapping is to preserve a
particle’s location (u,v,t) in the parameter space, while the particle is mapped
to a new position (z,y, z) in the Euclidean space. A fast and stable mapping
procedure is proposed that computes restored property values in the grid nodes
of the restored volume. Restoration of faults follows a similar scheme. Then
the fault surface represents both the source and the target geometry, and per-
turbation of parameter values in the parameter space is imposed to make a
vector displacement field representing displacement of material induced by the
fault.

The parameterization is also used to derive metric properties to quantify
deformations related to folding and restoration of layers and faults. A tangent
space is first derived, and then fundamentals of classic differential geometry
is used to derive a metric tensor that characterizes metric properties in the
volume. This is then applied to quantify spatial distribution of deformations
related to restoration.






Chapter 5

Conclusions and Further Perspectives

The research reported in this thesis was motivated by the theoretical concept
of Earth Recursion, and the process-based data restoration (dR) and model
reconstruction (mR) workflows outlined in Chapter 1. The thinking behind
Earth Recursion and the dR/mR-workflows is that by carefully examining the
past and the geological evolution, we enhance our understanding of the present
day geological environments. In particular, for the petroleum and mineral in-
dustries it is crucial to understand the processes that have acted through mil-
lions of years and created hydrocarbon and mineral reserves. The Hamilton-
Jacobi mathematical and numerical frameworks presented in this thesis lay the
foundation for implementation of processes in the proposed dR/mR-workflows.
Most of the results in the preceding chapters, and the surface approximation
method in Appendix A, have been realized as software libraries and imple-
mented in CES. They have been used by engineers and geoscientists in Sta-
toil ASA in a number of industrial cases, for example in the Troll field (Norway’s
largest oil field) and in prospects in the Middle East. Although the motivation
for the research was the concept of Earth Recursion and the dR/mR-workflows,
it should be emphasized that the results have wide applicability beyond the
use in these contexts. Results from Chapters 2 and 3 have also been the start-
ing point for other recent academic work (Gillberg et al., 2012; Gillberg, 2013;
Gillberg et al., 2014).

In the following we first summarize conclusions from the technical chapters
of this thesis, and then we point at some possible directions of further research
based on the results.

Chapter 2 proposes a rigorous mathematical framework for modeling folds
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in structural geology. A folded geological volume is modeled as a continuum
of layer boundaries by a front propagation analogy and represented as a time
of arrival field. The propagating front is governed by a static Hamilton-Jacobi
equation with a velocity model consisting of two parts in general: a normal
propagation speed and an advection speed in a specified direction. All five
folding regimes classified in the classical literature (Ramsay, 1967) are then
continuously spanned by varying the sign and magnitude of the two speed
components. In the simplest isotropic case with zero advection, the Hamilton-
Jacobi equation reduces to the eikonal equation, which models the parallel
Class 1B fold. In the simplest anisotropic case, a linear PDE results, which
models the Class 2 (similar) fold. The general anisotropic case consists of a
generalized eikonal equation modeling the other fold classes: Class 1A, Class 1C
and Class 3.

There is an exact match between the characteristic curves of the Hamilton-
Jacobi equation and the dip isogons of the different folding classes. This consti-
tutes a correspondence between the Hamilton-Jacobi mathematical framework
and an intuitive geometrical representation that makes it easy to derive and
analyze metric properties in the geological volume.

This novel approach to modeling folds differs from classical methods,
which have mostly been based on geometric descriptions of the boundary sur-
faces of standardized folds. Our approach is Eulerian in the sense that the
fold geometry is represented as a continuum in the whole 3D volume, and iso-
surfaces (isocurves in 2D) of the solution of the Hamilton-Jacobi equation can
be regarded as a continuum of layer boundaries. Thus, metric properties such
as distances, gradients (dip and strike), curvature, and their spatial variations
are easily derived and represented as 3D continua covering the whole geological
volume.

In Chapter 3 a robust numerical framework is derived to solve the
Hamilton-Jacobi equation that models the different fold classes by the prop-
agating front analogy. A variant of the fast marching method is introduced
to compute the solution as a time of arrival field 7" on a regular grid. The
Hamilton-Jacobi equation is discretized by upwind finite differences and a dy-
namic stencil construction to take anisotropy into account. While the original
fast marching method for isotropic problems only uses stencil legs aligned with
the grid lines, the dynamic stencil construction also uses diagonal directions
both for better directional resolution and to satisfy the causality condition.
Even though the neighbourhood used for updating a grid point is tentatively
larger than for the original fast marching method, the computational complex-
ity is retained as O(N log N}, ), where N is the number of unknown grid points
and N, is the maximum number of grid values in the narrow band around the
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propagating front I' as it evolves in space and time. The basic structure of the
original fast marching method is also maintained,

Based on the upwind finite difference discretization a local solver is derived
consisting of a quadratic polynomial equation that is solved explicitly without
iterations to find the solution value in a grid point. Once the solution values
represented by the T-field are found, other metric properties can be consistently
computed using the same upwind stencils as those used for computing the T-
values.

Initialization of the boundary condition of the Hamilton-Jacobi equation
is computed via a Lagrangian formulation and implemented by a Newton it-
eration scheme over smooth Bézier curves and surfaces representing the initial
front I'g. This ensures high accuracy and robustness and avoids erroneous val-
ues to propagate to the computational domain where the solution values are
computed with the dynamic upwind finite difference scheme. Smooth Bézier
surfaces can be generated efficiently from autotrack data via the multilevel
method presented in Appendix A. This method produces a semi-regular sur-
face triangulation that can be resampled on a regular grid and interpolated by
a bicubic tensor product Bézier surface that is used in our Newton iteration
schemes.

Chapter 4 extends the mathematical and numerical frameworks from the
two preceding chapters to support processes for data restoration, model re-
construction and property distribution. The parameterization of the 3D space
introduced in this chapter forms the basis of a sound mathematical and nu-
merical framework for restoration and property distribution, and for numerical
schemes capable of quantifying deformations that take place through folding
and faulting of a geological volume. The parameterization is consistently com-
puted on the same finite difference grid as the T-field by exactly the same
upwind construction. Thus, the representation format for all scalar fields rep-
resenting the geological volume is meshless. Contrary to many other published
methods for restoration, there is no need for constructing a complex tetra-
hedral mesh to honor surfaces of a structural model. Structural information
representing curves and surfaces is only used initially when generating the pa-
rameterization of the 3D space, and the geometric representation is then kept
separate from the computational model that performs the actual restoration.
For example, unfolding horizons becomes conceptually simple by operating in
the parameter space, and displacement of material by faulting and de-faulting
are naturally imposed by perturbations of parameter values in the parameter
space, such that displacements align naturally with the fault surface. This sim-
plifies the numerical schemes for restoration of horizons and faults, and yields
fast and stable numerical schemes and simple concepts for the user. Metric ten-
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sors and deformations are also consistently quantified from standard concepts
in differential geometry using the proposed parameterization as a reference
System.

For certain deformation regimes, such as orthogonal flexure folding com-
bined with superimposed homogeneous strain, the mathematical model reflects
well the physical processes of fold formation, although geomechanical principles
are not used directly in our framework. In particular, material lines deform
with the t-lines of the parameterization, which ensures that the restoration
model moves material to correct positions in the Euclidean space when the
volume is mapped back in geological time.

Further Perspectives

There is a diversity of possible extensions and refinements of the mathemat-
ical and numerical frameworks presented in this thesis that can be useful in
workflows in geomodeling software. A rigorous mathematical and numerical
foundation has been established, which is easy to extend with new function-
ality. In the following we point at some directions of further research based
directly on the results in the preceding chapters'.

We have already demonstrated that finite strain states can be quantified
and analyzed via the parameterization of the 3D space. We have also claimed
that the mathematical model for restoration reflects the physical processes of
fold formation, at least for certain deformation regimes, although geomechan-
ical principles are not used in our restoration model. Further research could
explore this further and compare the proposed scheme with methods based on
finite element formulations to compute the restored model, and to quantify
strain and stress states set up during fold formation (Maerten and Maerten,
2006; Moretti et al., 2006).

In chapter 4 we associated the parameterization of the 3D space with a
curvilinear grid in the Euclidean space. By the blending scheme we proposed
in Sect. 4.3, this grid conforms naturally to the geological interfaces such that
isosurfaces of the T-field coincide with the interfaces. It is tempting to utilize
this logically rectangular grid for grid generation to produce grids for the finite
element method, which is used in oil and gas reservoir simulators. This would
have some similarities with a numerical technique proposed in Sethian (1999a),
which is based on a propagating level set function. This technique produces
grids that conform to one interface only, and only construction of 2D grids is

1Some of the ideas presented below have been prototyped in CES and other software, but
we do not pursue these experiments in detail here since they are very premature.
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demonstrated. Further directions of research indicated in Sethian (1999a) in-
clude generation of grids that confirm to several interfaces, extension to three
dimensions, and blending with more traditional methods for grid generation.
The Hamilton-Jacobi framework, with the meshless representation of the pa-
rameterization derived in chapter 4, may provide useful numerical tools to
support research in these directions.

In Sect. 4.4.4 we demonstrate a powerful tool based on the Hamilton-
Jacobi framework to model faults as vector displacement fields. The main
ingredients in this setup are:

a geometry (fault surface) with a parameterization used to control the
space and to align the vector displacement field,

- distribution functions (bell shaped functions) in the three parameter di-
rections used to distribute deformations around the geometry,

- an influence region used to limit the area where displacements take place,
and

- perturbations of parameter values in the parameter space to model the
actual deformations.

Displacement fields of, for example, normal and reverse faults with normal
and reverse drags can then be modeled by choosing appropriate distribution
functions, and T and S-fields for the parameterization. The resulting vec-
tor displacement field is represented meshless on the regular grid embedding
the geological volume. We believe that similar principles can be applied to
model other geological phenomena involving deformation of geological struc-
tures and displacement of material. For example, extensional fault-propagation
folds have received attention in the oil industry due to the frequent occurrence
of hydrocarbons associated with them (Hardy and McClay, 1999). Deforma-
tion patterns in connection to these foldings could be modeled starting from
a parameterization of an extension of the fault surface from the fault tip. By
choosing influence region, distribution functions, and 7" and S-fields for the
parameterization carefully, realistic vector displacement fields could be gener-
ated to represent strain resulting from the extensional foldings. This would
require the whole range of perturbations set up by Eq. (4.20). For example,
one could aim at replicating strain patterns from the trishear kinematic models
in Hardy and McClay (1999), and in Jin and Groshong Jr. (2006). Deformation
of rock surrounding intrusive bodies like sills, dikes and salt domes, which are
of great importance for hydrocarbon recovery (Braccini et al., 2008; Petersen
and Skjei, 2005), could also be modeled as vector displacement fields using the
same principles.






Appendix A

Multilevel Least Squares Approximation of
Scattered Data over Binary Triangulations!

An adaptive method for fitting surfaces to huge scattered data sets is presented.
The approximation scheme generates multilevel triangulations obtained using
a subdivision scheme known as longest edge bisection. Nested function spaces
are defined over the multilevel triangulations. The approximation problem is
solved by successive refinement of the triangulation while iterative methods are
used for solving a system of linear equations at intermediate levels of the multi-
level scheme. Regularization terms are coupled with a standard least squares
formulation to guarantee uniqueness and control smoothness of the solution.

The motivation for the approximation scheme proposed here is to handle
huge scattered data sets with noise, data with uneven distribution, and to
handle situations where the surface topography varies rapidly over the domain.
We emphasize the practical relevance of these qualities in applications like
geological modeling, when fitting surfaces to data extracted with autotracking
techniques, and approximation of cartographic data.

'This chapter is based on Hjelle and Daehlen (2005) and Chapter 8 in Hjelle and Dachlen
(2006).
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A.1 Related Work

Several multilevel methods for surface construction have been studied and pre-
sented over the past years, although relatively few deal with approximation of
scattered data. In Lee et al. (1997) multilevel B-splines were used to generate a
coarse-to-fine sequence of tensor product B-splines whose sum approaches the
final approximation of given scattered data. The method is local in the sense
that on the finer tensor product grids each B-spline coefficient is computed
from nearby points only. Consequently, the method is also fast. However, if
the scattered data are subject to noise or if the data are unevenly distributed
over the domain, undesirable behaviour may occur near data locations. Nu-
merical examples and explanations of these phenomena can be found in Lee
et al. (1997), and in Hjelle (2001).

Hierarchical B-splines were introduced in Forsey and Bartels (1988), and
applied to approximation of data arranged on a regular grid in Forsey and
Bartels (1995). Application to scattered data was discussed in Greiner and
Hormann (1997). Contrary to multilevel B-splines, the basic idea with hier-
archical B-splines is to refine a tensor product grid locally where the approx-
imation error exceeds a specified tolerance. Thereby a global approximation
problem is subdivided into a series of local problems. Each local problem gives
rise to a (small) linear equation system. This is done recursively until the B-
spline surface approximates the scattered data within the given tolerance. The
data structure is rather complex and implementation of the method requires
considerable more effort than for multilevel B-splines.

A scheme for constructing smooth regular grid functions approximat-
ing scattered data was presented in Arge et al. (1995). In a first local step
called regularization, a subset of the grid values are determined from nearby
points using a classic scattered data interpolation technique like Shepard’s
method (Shepard, 1968) or the radial basis function method (Powell, 1992).
Then, in the next extrapolation step, the grid values found in the first step
are extended to the entire grid by solving a biharmonic differential equation.
The method can also handle constraints (break lines) imposed on the surface,
which makes the method suited for modeling faulted geological structures.

A.2 Binary Triangulations

An important part of the multilevel approximation scheme presented in this
chapter is the construction of a nested sequence of semi-regular triangulations.
We want to apply a subdivision scheme that generates an adaptive triangu-
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Fig. A.1: Recursive longest edge bisection. Dashed arrows indicate parent-child
relationships. The rightmost triangulation has only one active vertex from the
finest refine level.

lation where the triangle density reflects the variation in surface topography
and distribution of the given data. A scheme known as longest edge bisection
has become popular for view-dependent visualization (Lindstrom et al., 1996;
Rottger et al., 1998). The scheme is also called 4 —k meshes (Velho and Gomes,
2000), or restricted quad-tree triangulations (Pajarola, 1998). In the following,
meshes generated by longest edge bisection are called binary triangulations
since they can be considered as the result of recursive splitting of one triangle
into two new triangles. One important property of the scheme, and variations
over it, is that refinement can be done locally without the need to maintain
the entire mesh at the same resolution.

Consider the initial triangulation on the left in Fig. A.1 with four isosce-
les triangles. The recursive splitting starts by inserting vertices on the longest
edge of each triangle. To maintain a valid triangulation, new edges must be
introduced as indicated by dashed arrows. The new triangulation has eight
isosceles triangles, whose longest edges are bisected to obtain a new triangu-
lation with 16 triangles (second from right). Each dashed arrow represents
a parent-child relationship where the black bullets are parents and each circle
represents a child. We say that a vertex is active when it has been inserted into
the mesh. Every vertex at a certain refine level need not be active to obtain
a valid triangulation. The general rule is that if a vertex is active, then its
parents, its grandparents, etc. and all its ancestors at coarser levels must also
be active. The four corner vertices are active by default. An example is shown
by the rightmost binary triangulation in Fig. A.1. For the vertex drawn as a
circle to be active, all the vertices drawn as black bullets must also be active.
A unique triangulation then results with edges determined by the parent-child
relationships involved.

We have implemented an algorithm based on the fact that the triangle
vertices at any level of a binary triangulation constitute a subset of a regular
grid. Starting from the initial triangulation on the left in Fig. A.1 we have a
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grid ¥y with 2 x 2 rectangular grid cells. For each grid cell in ¥; a criterion for
subdivision is examined. Criteria for subdivision will be explained shortly. If
subdivision is required within the grid cell, the vertex in the middle of the cell,
say v, belonging to the next finer grid W, with 4 x4 grid cells is activated. Then
the parents of v must also be activated and a unique triangulation results with
vertices which are a subset of those in the triangulation shown second from
right. The algorithm proceeds on finer and finer grids where each grid ¥y is
obtained by inserting grid lines halfway between the grid lines of U _;.

We have implemented a simple data structure for the binary triangulation
similar to that used in Lindstrom and Pascucci (2002) for view-dependent visu-
alization. A triangulation is represented implicitly only by its (active) vertices
and references from each vertex to its two parents. Algorithms operating on
the data structure also become simple and efficient, for example algorithms
for point localization and algorithms for generating triangle strips for efficient
visualization.

A.3 Overview of the Approximation Scheme

The general scheme for computing surface triangulations over binary triangu-
lations can briefly be outlined as follows. Given scattered data P = {(x;,v;)}
with corresponding real values {z;}. Over each triangulation A in a coarse-
to-fine sequence of binary triangulations we construct a least squares surface
approximation f to the given data. Dependent on the application, different
subdivision criteria can be used. For example, a prescribed tolerance may be
given to control the maximum deviation between the surface approximation
at the finest level and the given data values {z;}. Thus, the accuracy of the
approximation at one level can be used to decide where to refine, hence to
produce the triangulation at the next finer level. For huge data sets it is im-
portant to reduce the amount of data or to create a triangulation that reflects
the distribution of the scattered data. One way to achieve this, without taking
any error measure into account, is to use a counting measure whereby Ay is
refined as long as there is more than a prescribed number of data locations
from P within some portion of the domain, for example inside a grid cell of
W,.. Variation over curvature measures could also be used to decide where to
refine, for example by using a thin-plate energy measure locally over triangle
edges. Since iterative methods are used for computing the least squares ap-
proximations, the solution found at one level can be used to compute a starting
vector for the next level. More details on the numerical scheme and numerical
examples are given in sections A.5 and A.6, respectively.
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A.4 The Least Squares Approximation

We restrict the least squares approximation to piecewise linear surfaces. In geo-
logical modeling and geographic information systems systems, piecewise linear
surfaces are often sufficient and may also be preferred to higher degree surfaces,
which may cause undesirable oscillations (e.g. Gibbs phenomena) when model-
ing terrain with rapidly varying topography. Piecewise linear surfaces are also
more efficient to compute and more compliant with other software components
in such applications.

Given a set of distinct non-collinear data points

P = (‘Tlﬂyl)a ($27y2), ) (:Em,ym)a m > 3,

in the plane and corresponding real values z1, 22, . .., z;,, We seek a function f
over the binary triangulation A that approximates the data. We restrict f to
the finite dimensional space

S?(A) = {f S CO(Q) : f‘tz € Hl},

where II; is the space of bivariate linear polynomials, ¢; is a triangle in A and
Q) is a rectangular domain. As a basis for SY(A) we use standard compactly
supported nodal basis functions

Ni(z,y), Na(z,y), ..., Np(z,y)

which satisfy
Ni(vj) = 61’]’7 ] = 1, ey

where the v; = (x;,y;) are vertices in the underlying triangulation and d;; is
the Kronecker delta function. Thus, a function in SY(A) is written,

flz,y) = ZCiNi(l';y), ¢ € R.
i—1

Figure A.2 shows an example of a basis function N;(z,y). The support €;
of N;(z,y) is the union of those triangles that have v; = (z;,y;) as a common
vertex. KEach basis function is greater than zero strictly inside its support
and zero elsewhere. The basis functions are also linearly independent! on .
This is an important (and necessary) property for the approximation schemes
presented later in this chapter.

'Linear independency implies that for 37" | a;N;(z,y) to be zero for all (z,y) € ©, then
all the real values a;, i = 1,...,n must be zero.
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Fig. A.2: A basis function N;(x,y) for the function space SY(A), and its com-
pact support £2;.

In the basic least squares problem we seek a coefficient vector ¢ =
(c1,...,¢n)T that minimizes

> (Flar ) — ) (A1)

k=1

This classical least squares fitting problem always has a solution, however the
solution is not necessarily unique. Also, the resulting surface f(z,y) may not
be sufficiently smooth, especially if the given data are subject to noise. We are
particularly interested in different types of measured data, which often contain
noise. One may augment Eq. (A.1) with a regularization term, also called
smoothing term or penalty term in Von Golitschek and Schumaker (1990), to
guarantee uniqueness and control smoothness of the solution. Many commonly
used smoothing terms can be written on the quadratic form

J(c) = c'Ec, (A.2)

where E is a symmetric and positive semidefinite n x n matrix. When working
with spaces of functions of higher degree, the smoothing term usually involves
first and second derivatives. For the piecewise linear space S?(A) we may use
discrete analogues where J(c) is the sum of some roughness measure around
each vertex or across each interior edge of the triangulation. The functional
we want to minimize is now

Ic) =S (f(@r, k) — 2)* + Ac"Ec = |Be — z|? + A" Ec, (A.3)
k=1

for some real value A > 0, and where || - | denotes the Euclidean norm. Here
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z=(z1,...,2n)" and B is the m x n matrix
Nl(xlvyl) Nn(ﬂfl,?/l)
Ni(z2,y2) -+ Nn(22,92
s | Milem) o) | "
Nl(xmvym) Nn(xrmym)

Setting the gradient of I(c) equal to zero leads to the normal equations
(BB + AE) c = B’z (A.5)

The n x n matrix BB is symmetric and positive semidefinite, so the solution
to Eq. (A.5) with A = 0 is not necessarily unique. If E is positive definite,
then the system matrix (BTB + )\E) with A > 0 is also positive definite, and
thereby nonsingular, which implies that Eq. (A.5) has a unique solution.

To justify the use of the smoothing term for controlling the behaviour
of the least square fit, we briefly go through a result in Von Golitschek and
Schumaker (1990). Assume for now that (BB + AE) is nonsingular for A >
0. Let fa(x,y) be the penalized least squares fit to the given data with the
smoothing parameter A\. Then the mean square error given by

1 m
= — > (Sal@ru) — 2)? (A.6)
m
k=1
is monotone increasing for A > 0 with derivatives T,(0) = 0

and limy oo T,(A) = 0. Thus, A controls the trade-off between smoothness
and mean square error. A best fit, best in the sense of minimizing the mean
square error, is then obtained by setting the value of the smoothing parameter A
to zero.

It can be shown that the basic least squares problem BT'Bc = BTz with-
out a smoothing term has a unique solution if and only if B has linearly in-
dependent columns (Golub and Loan, 1996). If one or more columns of B
are zero vectors, then the columns are not linearly independent. We observe
from Eq. (A.4) that each basis function N;, j = 1,...,n makes a column. A
column, say column number [, is a zero vector if Ny(z;,y;) =0fori=1,...,m.
This happens if no point of P falls strictly inside the domain §2; of N;, which
often occurs for cartographic data and geological data, whose distribution may
vary rapidly over the domain. For instance, autotrack data and hypsographic
data (contour lines) in cartography typically possess such uneven distributions.
So in most cases when constructing surfaces from such data, we need a smooth-
ing parameter \ greater than zero to guarantee uniqueness of Eq. (A.5).
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An approximation scheme without a smoothing term based on refinement
of arbitrary triangulations was proposed by Rippa (1992). Uniqueness then
relied on the fact that the vertices of the triangulation were always chosen as a
subset of the input data. Consequently, there are n rows of B that constitute
the identity matrix (with a proper ordering of the rows), and the columns are
trivially linearly independent.

The system matrix BTB of the basic least squares problem is clearly
sparse. Indeed, an element

m
(B"B),; = Nk, yr) Nj (2, ve)
k=1

is non-zero only if 7 = j or if the domains of the basis functions N; and N; over-
lap with two triangles that share a common edge. Thus, a non-zero off-diagonal
element (BTB)ij corresponds to an edge in the triangulation connecting the
two vertices v; and v;. It can be shown that the number of edges in a triangula-
tion with V vertices has an upper bound 3V — 6. Then the number of non-zero
off-diagonal elements in the n x n matrix BB has an upper bound 2(3n — 6),
and counting the diagonal which is also non-zero, we find that the average
number of non-zeros in each row is approximately 7.

A.4.1 Smoothing Terms

Smoothing terms on the quadratic form in Eq. (A.2) can be obtained from the

membrane energy,
[1va = [ g2+ (A7)

and from an approximation of the thin-plate energy,

/ 9ae + 295, + 9oy, (A.8)

for some differentiable function g. Loosely speaking, in the context om mini-
mizing the functional (A.3), the membrane energy prefers surfaces with small
area, while the thin-plate energy prefers surfaces with small overall curvature.
Since functions in SY(A) are not twice differentiable, we will use an approxi-
mation to the thin-plate energy based on divided differences.

The smoothing term based on the membrane energy can be expressed on
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Fig. A.3: Stencil for the second order divided difference operator

the following quadratic form,

/Nf\? —/ ;ciVNi
= zn:zn: / (VN; - VN;) cicj = ' Ec.

i=1 j=1

2

Ji(c)

Thus, the elements of the smoothing matrix are
E;; = /VNi -VN;.

Matrix E is symmetric and sparse with the same sparsity pattern as BT B,
thus Ej; is non-zero when ¢ = j or when (7, j) corresponds to an edge in the
triangulation.

An approximation to the thin-plate energy functional in Eq. (A.8) can be
based on a second order divided difference operator. Fig. A.3 shows a stencil
with the triangles and vertices involved in the construction of the divided
difference. Let g; = flt,, ¢ = 1,2, where t; and t3 are the triangles sharing the
edge e;. Further, let n,, be a unit vector in the xy-plane orthogonal to the
projection of ey in the xy-plane, and let |E7| be the number of interior edges
in the triangulation. We define the discrete thin-plate energy as the following
sum over all interior edges,

|Er|

Ja(c) = Vf- nek]Q
2 ;/@k J

where [Vf-ng,]; = (Vg2 — Vgi1) - n, is the jump in the derivative of f over
the interior edge e in the direction of n.,. This measure was used in Dyn
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et al. (1990) for constructing data dependent triangulations, and equivalent
measures were used in Guskov (1998), and in Guskov et al. (1999) as divided
difference operators in subdivision schemes for triangulations. We obtain the
following quadratic form,

2

|Ex| n

Je) = 3 / [Zci(VNi.nek)]
k=1"¢k Li=1 7
n n |E1

- ZZZ/ [VNl ' nek]J [VNj : n6k]JciCj =c'Ec

i=1 j=1k=1"¢

where
|Er]

By=3 [ VN, [VN; n),.
k=1"%k

In general, an element Fj; is non-zero if ¢ = j, or if 7 and j correspond to
vertices of the same stencil. This occurs if the line segment (v;,v;) spans an
edge, or if v; is the vertex on the opposite side of an edge from v;. The latter
case corresponds to the vertices with indices [ and r in Fig. A.3. Compared
to the operator for the membrane energy, this operator generates a sparsity
pattern with more non-zero entries in the system matrix.

A.4.2 Uniqueness

It follows from basic linear algebra that since both matrices BB and E are
positive semidefinite, the system matrix (BTB + )\E) for A > 0 can also be
positive semidefinite. But here we show through geometric analysis that the
system matrix is strictly positive definite such that the system of equations
in (A.5) has a unique solution.

For (BTB + AE) to be positive semidefinite, we must have
" (BTB+AE)c=c" (B'B)c+ Ac"Ec =0, (A.9)

where both terms ¢’ (B?B)c = 0 and ¢’ Ec = 0 for some vector ¢ # 0. We
first observe that ¢/ Ec = J(c), the general energy term.

The membrane energy generates the functional

7| [T
Fi(e) =Y AVl =Y Ak [(0g/02) + 991/ 09)?]
k=1 k=1
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where |T'| is the number of triangles and Aj is the area of triangle ¢ (in
the zy-plane). For this expression to be zero we must have dgx/0x = 0 and
g /0y =0 for k =1,...,|T|. But then, since the triangulation is connected,
all coefficients must be equal. Thus, c’Ec = 0ifand onlyifc; =co = -+ = ¢,.
Furthermore, for the first term in Eq. (A.9) stemming from the basic least
squares problem, we must have

c’'(BTB)c = ||Bc|* = 0, (A.10)

which implies that (Bc); = Y i, eiNi(xj,y5) = f(zj,y;) = 0 for all j =
1,...,m. But since all coefficients ¢, are equal, the function f must then be
zero everywhere and all coefficients ¢z must be zero. Thus, ¢/ (BB + AE)c =
0 implies that ¢ = 0 and we conclude that the system matrix (BTB + AE)
is indeed positive definite, and therefore nonsingular. Hence, the system of
equations (A.5) always has a unique solution when E is constructed from the
membrane energy.

The discrete thin-plate operator generates the functional

|Eq|

(&) =3 [ (Vo= Vo) m P
k=17

For this expression to be 0 for ¢ # 0, and thus for E to be positive semidefi-
nite, we must have (Vga — Vg1) = 0 over all interior edges in the triangulation.
Then, since the triangulation is connected, all the gradients of f|;, over all tri-
angles t; in A are equal and f must be a linear polynomial. But then Eq. (A.10)
again implies that f(z;,y;) = 0 for j = 1,...,m under the same assumption
that BTB is positive semidefinite. This implies, that f is zero everywhere
and that all coefficients in ¢ must be zero. Thus, we arrive at the same con-
clusion as above that the system matrix (B”B + AE) is positive definite and
that Eq. (A.5) always has a unique solution when E is constructed from the
thin-plate energy functional.

A.5 Numerical Schemes

At each level k of the multilevel scheme, the system of equations in (A.5) is
relaxed with the Gauss-Seidel method (or alternatively the conjugate gradient
method). A nested iteration scheme has been implemented where the resulting
surface fr € SY(Ay) at one level is used to supply an initial guess for fryq €
S9(Ag11) at the next level. Since all vertices of the triangulation Ay are also
in Ay, all coefficients from fj, are transferred directly to the next level as
starting values for the unknown coefficients of fy11. Moreover, each coefficient
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kL of fr+41 corresponding to a vertex (z;,y;) in Agy; that is not in Ay, is

ij
simply initialized as cfjﬂ = fr(xs,y;). Since the triangulations generated by
the binary subdivision scheme are nested, the function spaces defined over them
constitute a nested sequence of subspaces, SY(A;) C SY(Ag) C -+ C SY(AR),
where Ay, is the triangulation at the finest level. In addition to providing fast
solution of the linear equation system, this coarse-to-fine scheme also generates
a sequence of surface approximations to the scattered data at different levels

of detail.

C

In Von Golitschek and Schumaker (1990) generalized cross validation is
proposed for computing the smoothing parameter A\. This method is rather
CPU-extensive. In our implementation we use a simpler approach adopted
from Floater (1998), where the default value is set to

A= [|BTB|,./ Bl ;. (A1)

where || - || denotes the Frobenius matrix norm. The idea is that the con-
tributions from BB and AE to the system matrix in Eq. (A.5) should have
roughly the same weight. For data without noise this value works well in most
cases, but with noise present a much larger A, up to 1000 times A4, is necessary
to obtain a sufficiently smooth solution.

At the first levels of the multilevel scheme the system is solved to yield
an exact solution. This establishes a good global trend of the surface as a
basis for successive improvements when iterating at the finer levels with more
unknowns. A combined stopping criterion based on relative improvement of
the solution and decrease of the residual, measured by the lo norm, was used
for the iterative solver. The Gauss-Seidel method performed better than the
conjugate gradient method as an iterative solver, even though the conjugate
gradient method converges faster when applied on a fixed mesh without a good
initial guess. In most cases, between 10 and 20 iterations at each level were
sufficient. Any further iterations did not improve the solution significantly
when the smoothing parameter was chosen as in Eq. (A.11). But with larger A
the number of iterations at each level was higher, e.g. up to 200 when A was
between 500 and 1000 times \g.

A natural improvement of this simple coarse-to-fine ascending scheme is
to include recursive coarse grid correction at each level and thus obtain a true
geometric multigrid solver (Briggs et al., 2000). To ease implementation we
used a standard algebraic multigrid solver from the software library ML (Hu
et al., 2000), by which the coarse grid correction step need not be provided
explicitly by the user. This library is generic in the sense that its algorithms can
operate on any data structure for vectors and matrices if a specified interface
is provided by the user. Both full multigrid and repeatedly V-cycles and W-
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cycles are available in ML. The algorithms, which takes as input a system of
equations at the finest level only, run with a fixed number of iterations at
each level specified by the user, for example between five and ten Gauss-Seidel
iterations as in our examples. For details on the theory of algebraic multigrid,
see for example Brandt et al. (1984) and Brandt (1986).

With the default smoothing parameter in Eq. (A.11), the algebraic multi-
grid schemes and the simple coarse-to-fine scheme outlined above were approx-
imately equally good. But for larger A the multigrid schemes were significantly
faster. An advantage with multigrid, if V-cycles or W-cycles are employed, is
that an initial guess for the solution at the finest level can be given when start-
ing the solver. A good approximation of the coefficient in each triangle vertex
is easily obtained in most cases by a fast local approximant or interpolant
that uses nearby scattered data only, for example Shepard’s method (Shepard,
1968).

Due to an ill-condition system there is no clear correspondence between
the residual and the error, and thus, the number of repeated V-cycles or W-
cycles might be difficult to determine. A solution in practical applications is to
examine by visual inspection if the resulting surface triangulation is sufficiently
smooth and pleasant looking, and then decide if additional multigrid cycles
should be performed.

A.6 Numerical Examples

In this section we present numerical examples based on two different data
sources: data sampled from Franke’s test function (Franke, 1982) and real
data from a terrain consisting of a combination of hypsographic data (contour
data) and scattered measurements from the terrain surface. The regularization
term is based on the thin-plate energy in both examples.

Approximation of data sampled from Franke’s function. (Consult
Figs. A.4 and A.5). The scattered data set consists of 3000 points sampled
over the unit square. The points are unevenly distributed in the domain with
relatively more data in areas with steep gradient or high curvature. A com-
bined subdivision criterion based on a counting measure and an error measure
is used. A grid cell is thus refined if more than two points are inside the grid
cell and the error for at least one of the points inside the cell is greater than
the prescribed tolerance. The tolerance was 0.25 percent of |zmax — Zmin| Of the
given data, and the default value for A was used. The coarse-to-fine algorithm
terminated after subdivision of the grid ¥; and delivered a triangulation Ag
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Fig. A.4: Approximation to the Franke function, and the resulting binary
triangulation imposed on the surface

with 1476 vertices and 2866 triangles. The number of Gauss-Seidel iterations
at each level was between 9 and 12 to reach the stopping criterion. As ex-
pected, there are more triangles in areas with large curvature and high density
of data due to the combined error and counting measure used as a subdivision
criterion. Also note the nice spatial grading from small triangles to larger tri-
angles in Fig. A.5. If the middle vertex of all grid cells were activated when
operating on ¥y, the resulting triangulation would have 33025 vertices, which
also would be the number of unknowns in the equation system at that level.
Thus, less than 4.5 percent of the maximum number of available vertices are
used in the triangulation.

Fig. A.6 demonstrates the effect of choosing a very large A (10 000
times \g), and thus demanding much smoothing. The surface leaves the given
data points, and for even larger A when the smoothing term becomes more
dominant, the surface approaches a plane. Also recall that the mean square
error given by Eq. (A.6) increases monotonically towards a maximum with
increasing .

Approximation of noisy data from Franke’s function. Normally dis-
tributed noise was added to the data set used in the previous example. Subdi-
vision of a grid cell was performed when there was more than two points inside
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Fig. A.5: The same binary triangulation as in Fig. A.4 together with input
data for numerical examples. The lower left corner corresponds to the nearest
corner in Fig. A.4.
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Fig. A.6: Approximation with huge smoothing parameter

Fig. A.7: Approximation to Franke’s function from a data set with noise
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Fig. A.8: Approximation of terrain data, and the given data imposed on the
surface

the cell, but no error measure was used. To obtain a smooth pleasant looking
surface comparable to the surface produced in the previous example, it was
necessary to increase A to 600 times Ag. The number of Gauss-Seidel iterations
at each level with the coarse-to-fine scheme was between 73 and 207. The
algorithm terminated at the same level as in the previous example. Fig. A.7
shows the approximation and the given noisy data points.

When algebraic multigrid was used starting from the triangulation pro-
duced at the finest level, 5 V-cycles with 6 Gauss-Seidel iterations at each level
were necessary to obtain the same residual norm. (The initial guess was simply
the mean value of all data values {z;}.) When more noise was added to the
data and A\ was increased, multigrid was even more superior.

Terrain modeling from hypsographic data and scattered data.
The terrain model shown in figures A.8 and A.9 was derived from
approximately 50 000 points consisting of both hypsographic data and scat-
tered data points measured from the underlying terrain. An error measure was
used as a subdivision criterion although the data contained noise. An accept-
able smooth surface was obtained with a smoothing factor 10 times Az. The
number of Gauss-Seidel iterations at each level was between 41 and 593 by the
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Fig. A.9: Approximation of terrain data, and triangulation imposed on the
surface

coarse-to-fine scheme. With an error tolerance of 2.5 percent of |zZmax — Zmin|,
the algorithm terminated after subdivision at level 11 and delivered the tri-
angulation Ajo with 31204 vertices. Relatively few subdivisions were done at
the last two levels to capture remaining details in the terrain and meet the
given tolerance. The number of vertices in A1s is only 1.5 percent of the maxi-
mum number of available vertices at that level. Algebraic multigrid (V-cycles)
performed slightly better with A = 10\;, but when A was increased algebraic
multigrid was superior. The triangulation shown in Fig. A.9 was produced by
a larger tolerance to avoid too many triangles in the presentation. The mesh
is finer in areas with rapidly varying topography, and thereby captures the
necessary details. We also observe the natural extrapolation of the surface to
areas without input data, which is due to the thin-plate energy. Algorithms
with good extrapolation properties are important in many applications. For
example, in geological modeling faults and horizons must be extended to in-
tersect each other with clean cuts outside their initial domain when creating
boundary-based volume models (Schneider, 2002).
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A.7 Summary

The novelty of the method presented in this chapter lies in the use of binary
triangulations as an effective tool for generating a nested sequence of triangula-
tions used in a multilevel scheme for solving the scattered data approximation
problem. Binary triangulations give rise to extremely simple data structures.
The fact that binary triangulations are standard tools for view-dependent vi-
sualization, also makes the resulting surfaces well suited for fast rendering. In
particular the method is efficient when fitting surfaces to huge scattered data
sets and data unevenly distributed over the domain. When using subdivision
criteria based on error measure or counting measure, the triangle density adapts
automatically to the distribution of the data with nice spatial grading as can
be seen in Fig. A.4 and A.9. The triangle density also reflects the variation in
surface topography. Another useful feature observed by numerical experiments
is the natural extrapolation of the surface to areas without data.

Even though the simple coarse-to-fine scheme works well for data with-
out noise, convergence is significantly improved by using a standard algebraic
multigrid solver when a large smoothing parameter X\ is necessary for noisy
data. We would probably benefit even more from a geometric multigrid solver
based on the triangular grids produced by our coarse-to-fine scheme. Another
interesting topic for further research is to study methods for computing a good
A when approximating data with noise.






Appendix B

Operations on Parametric Curves and
Surfaces

In the fast marching method, and optionally in other upwind finite difference
solvers, we use curves and surfaces on parametric form to represent the initial
front. For example, a curve is given in R? and R? by the parametric represen-
tations

NECK R
o= | 50| ana et = | w0 |

respectively, and a surface is given in R? by

Standard representation formats for smooth curves and surfaces are cubic
Bézier curves and bicubic tensor product Bézier surfaces (Farin, 2002). Bézier
surfaces are defined over regular rectangular grids and are relatively easy to
construct from rectangular grid formats used by many geo-applications. They
are also fast to compute and to evaluate. Bézier surfaces can also be con-
structed from unorganized scattered data points obtained from auto-tracking
of horizons in 3D seismics, via regularization to regular grids by approxima-
tion methods such as the method in Appendix A. Both curves and surfaces on
Bézier form have C! continuity, that is, the Cartesian coordinates z,y, z are
differentiable functions with continuous first derivatives. Standard basic func-
tions include those for evaluating the spacial position and the derivatives in a
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given parameter value, from which we construct other functions. For example,
the tangent vector of a curve in 2D is

ey 20 (0]

dt

and the unit normal vector in ¢ is
(—y/(t),2'(1)T
@)l

where n(¢) points to the left when walking in the parameter direction. Simi-
larly, for surfaces we use the notation

Js(u,v)
ou '

and the unit normal vector in (u,v) is

n(t) =

SU(U,’U) — M’

Su(u,v) = 5y

Su(u,v) X sy(u,v)

B = o) < s o)

Triangulated surfaces are also frequently used in geo-applications for repre-
senting horizons and fauls. When triangles are planar patches these surfaces
do not possess the smoothness we require to obtain sufficiently smooth time
of arrival fields and other derived fields. On the other hand, the triangles can
be associated with cubic Bézier triangles, joined smoothly together with C!
continuity. A practical guide to Bézier curves and surfaces is Farin (2002).
This book may also serve as an excellent guide for implementaion.

B.1 Closest Point Calculation

The initialization steps of fast marching use closest point calculations to de-
termine the distance from grid points of the finite difference grid to curves,
surfaces and other geometric objects (Sect. 3.1.2). There is no closed form for
distances to general parametric curves and surfaces, so we use Newton iteration
to find approximations. We first demonstrate how this can be done for closest
point calculation relative to a parametric curve c(t) by first and second order
schemes.

Let p be a point in space (e.g. a grid point) and p; = c(t;) a guess
point for the closest point to p on the curve, see Fig. B.1. Then the following

orthogonality condition determines the increment At of the parameter value
for the next guess point p;+1 = c(t; + At) in the Newton iteraton,

< (p—pi) —¢(t;)At, ¢(t;) >= 0, (B.1)
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P—P,; ]
C(ti)At
__——
P, =c(; + A1)
~
p; =¢(t,)

Fig. B.1: Correction step in Newton iteration for first order closest point cal-
culation

where < -, - > denotes the inner product. This gives the linear equation
At = (P=Pi) - €t)
¢(t;) - ¢(t:)
In each step of the iteration, p; is moved along the curve to the next guess
point p;+1 = c(t; + At) until |p;+1 — pi|| < €, for some user defined geometric

tolerance e. Alternatively, the stop criterion can be based on the difference in
parameter values |t;11 — t;].

Faster convergence, and in many cases more reliable computations, can be
obtained by a second order scheme where the tangent vector ¢(¢;) in the second
term of the inner product of the orthogonality condition (B.1) is replaced by
the tangent vector ¢(t; + At) at the next guess point. This tangent vector can
be approximated by the first order Taylor expansion,

c(t; + At) = ¢(t;) + () At,
where &(t) = d?c(t)/dt?. The orthogonality condition then becomes
< (p—pi) — ¢c(t;)At, ¢(t;) + E(t;)At >= 0. (B.2)
This results in a quadratic equation in At,
—&(t) - E(t)(A0? + [(p — pi) - &(ts) — &(t:) - &(t)] At + (p — pi) - &(t) = 0.

The schemes can easily be extended to surfaces. Then we move the guess
point for the closest point in each iteration a distance on the surface which
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corresponds to increments Au and Awv in the parameter plane. Let the guess
point p; have parameter value (u;,v;). A first order scheme is obtained by the
orthogonality conditions

< (p — pz) — (su(ui,vi)Au + Sv(ui,vi)Av) s su(ui,vi) > =

< (p—pi) — (su(wi,vi) Au 4 sy (ug, v;)Av) , sy(ui,v)) > =0 (B-3)

That is, the difference vector (p — p;) — (Su(us, vi)Au + sy (u;, v;)Av) is or-
thogonal to the tangent plane at the guess point p;. Let s, = sy(ui,v;)
and s, = s,(u;,v;). We get a linear system with two equations in the un-
knowns Au and Auw,

Sy *Su Sy Sy Au _ (p_pi)'su
Sy " Sy Sy, Sy Av] (p*pi)’sv '

Similarly as for curves a second order scheme is obtained by replacing
the second term of the inner products in Eq. (B.3) by s,(u; + Au,v; + Av)
and s,(u; + Au,v; + Av), respectively, such that the difference vector is or-
thogonal to the tangent plane at the next guess point. A first order Taylor
expansion about (u;,v;) gives the approximations

Su(ui + Au, v; + A’U) ~ Su(uia Ui) + Suu(uia Uz)Au + Suv(uh Ui)AU
Su(u; + Au, v + Av) & 8y (Ui, V;) + Sup (Ui, Vi) A + Sy (ug, v;) Av.

This results in a non-linear equation system, contrary to the linear system
above,

Su - suu(Au)2 + 8y - suv(Av)2 + [Su Sy — (P — Pi) - Suu]Au
+ [Sv * 8y — (p - pi) : Suv]AU
+ (Sv “Syyu + Sy - SuU)AUAU = (p - pi) * Sy

Sy - sw(Au)2 + s, - sw(Av)2 + [su sy — (P — Pi) - Sw]Au
+ [Sv * 8y — (P - pi) : SU’U]AU
+ (Sv “Syy T Sy - SvU)AUAU = (p - pi) Sy

We linearize the system such that the coefficient matrix depends on the
unknowns,
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where u = (Au, Av)T, b =[(p — ;) - Su, (P — Pi) - Su]” and the elements of A
are

a11 = Sy - Sy AU+ Sy - Sy — (p - pi) * Syu + (Sv * Syu + Sy - Suv)AUa
a12 = Sy - SuvAU + Sy - Sy — (p - pi) * Sy
a21 = Sy - Sup AU + 8y - Sy — (p - pz) " Suyw,

a2 = Sy - SU’UAU + 8y -8y — (p - pz) “Syy + (Sv * Syv + Sy va)Au-

A simple iteration scheme based on successive substitutions solves the system
in a few iterations,

A(uF)uft = b, k=0,1,...

with start vector u® = 0.

A good initial guess for p; is necessary for convergence to the correct
solution for all the iterative schemes above. In the context of fast marching
the point p will be a grid point in a small neighborhood of a geometric object.
These points are collected in the initialization step by marching along the
curve or the surface object and then given a reference to a parameter value of
a nearby point on the geometry. This serves as a sufficiently good guess for
the closest point if the computational grid is sufficiently dense.

B.2 Intersection with Straight Lines

Another basic operation used in the initialization step of fast marching in
Sect. 3.1.2 is intersection of a straight line with a curve or a surface. A Newton
iteration scheme similar to the closest point calculation does the job. Let d be
the direction of a line [ that passes through a (grid) point p, and let p; = c(¢;)
be an initial guess of the intersection point between [ and the curve c(t). A first
order scheme is obtained by replacing the tangent vector ¢(¢;) in the second
term of the inner product in Eq. (B.1) with a fixed direction L d orthogonal
to [,
<(p—pi)—e(t)At, Ld>=0.

This gives the parameter correction

&) Ld

for each step in the Newton iteration.
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A similar approach can be used for intersecting a straight line [ with a
surface Let [ have direction d and be passing through a (grid) point p, and
let L d1 and L dQ be two non-collinear vectors that both are orthogonal to d.
We modify the orthogonality condition for closest point calculation above to

< (p = pi) — (sulug, vi)Au + sy (ui, v))Av) , Ld; >=0
< (p = pi) — (su(ug, vi)Au+ sy (ui, v;)Av) , L dy > =0.

That is, the difference vector in the Newton iteration is now orthogonal to a
plane spanned by 1 d; and L ds.



Appendix C

Finite Difference Operators for Derivatives
and Curvature

The upwind schemes require first and second order backward and forward dif-
ferencing for computing approximations to the first and second derivatives.
Second derivatives are required when calculating curvature. This section con-
tains a catalogue of finite difference operators on Cartesian grids with equally
spaced grid lines in each space direction. Operators for directional deriva-
tives used in the dynamic upwind stencil construction for anisotropic problems
(Sect. 3.1.5), can be written down accordingly by reinterpreting the indices
and the spacing Ax.

C.1 Numerical Derivatives

Second order backward approximation to the first derivative

3T; — 4T, 1 + T _ Ar
T, ~ =D 4+ —D7*7*T
v 2Ax T '
where T T _or T
B T o A 1+ T o
D ggT _ i i—1 d D T xT _ 1 i—1 7 )
Ax a Ax?

Second order forward approximation to the first derivative

_31—‘7, - 41—‘i+1 + T:i+2 _ D+1T . ED+‘T+$T,
2Ax 2

T, ~
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where
Tiyo — 2141 + TG

DY =
Ax?

Second order central approximation to the first derivative

T ~ Ti—o—8T;—1 4+ 81541 — Tito
v 12Az '

First order central approximation to the first derivative

Tiv1 — T
T, ~ ——.
v 2Ax

Second order backward approximation to the second derivative

2T; — 5T +4T;—2 — T3
Ty =~ A2 .

Another formula derived by differentiating the backward version of T, above
is

31 — TTi—1 + 512 — Ti3

Tow 2Az2

Second order central approximation to the second derivative

=T o+ 16151 — 3075 + 16751 — Ti42
12Az2 '

Tow ~

Second order central approximation to the mixed derivative

Tiv1+1 — Tic1 41 — Tig1,5-1 + Tim1,5-1

Toy &~
i 4AzAy

C.2 Curvature as Divergence of the Unit Normal

The scalar curvature in 2D can be expressed as the divergence of the unit
normal vector,

VT 9 T, ) T,

RENREVIST] T o (121 122 T oy (T2 4 T2
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Applying the chain rule, the first term on the right hand side becomes

o T _
Oz (T2 +THV?

Too (T2 + T2)Y? = T3 (T2 + T2) V2 (2T, Ty + 2T, Ty
(T +7T3)
(T2 +12) (T2 + T2)3/2

3/2

and the second term on the right hand side becomes

ﬁ 1y _ Tnyxz — LT, T%,
Oy (T2+ T2~ (12 + T2

The curvature can then be written

Ty T — 2T, Ty Ty + Ty T2
R = s
(T2 +1T2)%?

where the numerical derivatives can be taken from Sect. C.1. In three di-
mensions the Gaussian curvature and the mean curvature can be calculated
similarly from first and second derivatives (Goldman, 2005).
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