Routing Efficiency with Link Failures using
Multiple Routing Configurations

Amund Kvalbein, Tarik Ci¢i¢, Stein Gjessing
{amundk, tarikc, steing}@simula.no

Simula Research Laboratory Technical Report 02-2006
August 2006

Abstract

The slow convergence of IGP routing protocols after a topology change
has led to several proposals for proactive recovery schemes in IP networks.
These proposals are limited to guaranteeing loop-free connectivity after
a link or node failure, and do not take into account the resulting load
distribution in the network. This can lead to congestion and packet drops.
In this work, we show how a good load distribution can be achieved in
pure IP networks immediately after a link failure, when Multiple Routing
Configurations (MRC) is used as a fast recovery mechanism. This paper is
the first attempt to improve the load balancing when a proactive recovery
scheme is used. Unlike load balancing methods used with normal TP
rerouting, our method does not compromise on the routing performance in
the failure free case. Our method is evaluated using simulations on several
real and synthetically generated network topologies. The evaluation shows
that our method yields good routing performance, making it feasible to
use MRC to handle transient network failures.

1 Introduction

Traditional intradomain routing protocols, such as OSPF and IS/IS, recover
from component failures by exchanging link state information and converging
upon a new global view of the network state. This is a time-consuming process,
that typically involves a period of instability and invalid routing in the network
[20, 7], and is not sufficient for emerging time-critical internet applications.
Recently, the idea of proactive and local recovery at the IP layer has been
proposed [8, 2, 16, 6]. In these schemes, backup next-hops are prepared before
a failure occurs, and the discovering router handles a component failure locally,
without signalling to the rest of the network. The advantage of such solutions is

that they allow an almost instantaneous response to a failure. Often, proactive
recovery schemes are thought of as a first line of defense against component
failures. They are used to maintain valid routing paths between the nodes in
the network, until the routing protocol converges on a new global view of the
topology. Such a strategy is particularly germane when facing transient failures,
which are common in today’s IP networks [9].

However, existing proactive IP recovery schemes are limited to guaranteeing
loop-free connectivity in the network after a failure, and do not consider the
post-failure load distribution. The shifting of traffic to alternate links after
a failure can lead to congestion and packet loss in parts of the network [5].
This limits the time that the proactive recovery scheme can be used to forward
traffic before the global routing protocol is informed about the failure, and hence
reduces the chance that a transient failure can be handled without a full global
routing re-convergence. Ideally, a proactive recovery scheme should not only
guarantee connectivity after a failure, but also do so in a manner that does not
cause an unacceptable load distribution. This requirement has been noted as
being one of the principal challenges for precalculated IP recovery schemes [12].
We believe that a well engineered distribution of recovered traffic will be crucial
for the adoption of any fast IP recovery method.

Important work on traffic engineering in OSPF /IS-IS networks focus on op-
timizing link weights, so that traffic is well distributed across the available links.
The work in this area has focused either on the failure free case [3, 19, 18], or
on finding link weights that work well both in the normal case and when the
routing protocol has converged after a single link failure [10, 4, 17]. A major
drawback of these solutions is that they compromise performance in the failure
free case in order to give reasonable performance after a failure. Also, these
schemes focus on the load distribution after the convergence of the IGP routing
protocol, and are not designed to work with fast IP recovery schemes. Very
little work has been done on the traffic engineering properties of proactive IP
recovery methods.

We have previously proposed the use of Multiple Routing Configurations
(MRCQ) to achieve fast recovery from link and node failures in IP networks [6].
MRC is a proactive recovery scheme, based on maintaining a small set of backup
network configurations in the routers, which are used to reroute traffic locally in
case of a failure. The local rerouting performed in MRC guarantees that a valid
routing exists between any pair of nodes in an arbitrary biconnected network
after a single link or node failure.

With MRC, the link weights are set individually in each backup configu-
ration. This gives great flexibility with respect to how the recovered traffic is
routed. The backup configuration used after a failure is selected based on the
failure instance, and thus we can choose link weights in the backup configura-
tions that are well suited for only a subset failure instances.

1.1 Our contributions

In this paper, we discuss how we can achieve a good load distribution in the
network immediately after a link failure, when MRC is used as a fast recovery
mechanism. We present an algorithm to create the MRC backup configurations
in a way that takes the traffic distribution into account. Then, we present a
heuristic aimed at finding a set of link weights for each backup configuration that
distributes the load well in the network after any single link failure. Our scheme
is strictly proactive; no link weights need to be changed after the discovery of a
failure.

With MRC, all recovered traffic is routed in the backup configurations. This
allows us, unlike previous proposals, to optimize for link failures without com-
promising performance in the failure free case. Also, our work is the first to
address the issue of load balancing after a failure in the context of a proactive
IP recovery scheme.

Our solution consists of three phases; first the link weights in the normal
configuration are optimized while only taking the failure free situation into ac-
count, second we take advantage of the load distribution in the failure free case
to construct the MRC backup configurations in an intelligent manner, and third
we optimize the link weights in the backup configurations to get a good load
distribution after any link failure.

Our method for link weight setting is based on perturbing link weights using
a local search heuristic. The link weights in the backup configurations are
optimized to give good performance after any link failure. Optimizing for all
possible link failures does not scale well as network size increases, because of
the number of evaluations needed. To overcome this problem, we assume that
only a few link failures are critical with respect to the load distribution after
failure, and optimize only over these failures [4].

We have evaluated our approach using simulations on several real and syn-
thetically generated network topologies, and we find that we achieve a load
distribution while using MRC that is better than after a full OSPF/IS-IS re-
convergence with original link weights. Our results approach those of a method
aimed at a good load distribution after the routing protocol has converged on the
new topology [18], with the additional benefits that our method does not com-
promise on the performance in the failure free case. We also show a connection
between the post failure load balancing and the number of backup configura-
tions used by MRC. The load balancing is generally improved if we allow the
use of one or two backup configurations more than the minimum required.

The rest of this paper is structured as follows. We give a formal description
of MRC in Sec. 2. In Sec. 3, we discuss what decides the post-failure load
distribution under MRC, and present our algorithm for creating the backup
configurations and our link weight optimization heuristic. Then we evaluate
our method in Sec. 4, before we conclude and offer directions for further work
in Sec. 6.

2 Fast recovery using Multiple Routing Config-
urations

MRC is a method for fast recovery in arbitrary biconnected IP networks with
shortest path routing. The method is based on creating a small set of backup
routing configurations that are used in the case of a link or node failure. In
the backup configurations, some links are given a weight much higher than the
normal maximal link weight used in the network, thus restricting the routing in
parts of the network.

The configurations are defined by the network topology, which is same in all
configurations, and the associated link weights, which differ among configura-
tions. We formally represent the network topology as a graph G = (N, A), with
a set of nodes N and a set of unidirectional links (arcs) A. A configuration is
defined by this topology graph and the associated link weight function:

Definition. A configuration C' is an ordered pair (G, w) of the graph G and a
function w : A — {1,..., Wmaz, |A| - Wmaz, 00} that assigns an integer weight
w(a) to each link a € A.

Let P = {1,...,pmaz} be the set of backup configuration identifiers. We
distinguish between the normal configuration Cy and the backup configurations
Cp,p € P. We denote the weight function in configuration C, by w,. In the
normal configuration Cjy, all links have weights wg(a) € {1,..., Wmas}. In the
backup configurations, some links are given high weights to inhibit transit traffic:

Definition. A link a € A is isolated in C), if w,(a) = oo.
Definition. A link a € A is restricted in C, if wy(a) = |A| - Wmaz-

The isolated links are never used for data forwarding, while the restricted
links have weights so that they are used only to access an isolated node:

Definition. A node u € N is isolated in C), if

V(u, U) €4, w;v(ua U) > Wmag
A F(u,v) € A, wy(u,v) < 00 (1)

In other words, nodes are isolated by assigning high weights to all their attached
links. A link is always isolated in the same configuration as one of its attached
nodes, but all links attached to a node can not be isolated in the same config-
uration, in order to make the node reachable in all configurations. The set of
isolated nodes in C), is denoted S,.

Restricted and isolated links always have the same weight in both directions.
All other links in Cp, that are neither isolated nor restricted, have weights in
the normal weight range 1,..., w4z, and may have asymmetric link weights.
Figure 1 shows how all links and nodes in an example network graph can be
isolated using three backup configurations.

The backup configurations have to be constructed so that, after the failure
of a node or a link in the network, there will still exist a valid, loop-free path
between every source and destination in the backup configuration where the
failed element was isolated. Let d,(u,v) denote the sum of the link weights on
the shortest path from v to v in configuration C).

Definition. A configuration C), is valid if

Yu,v € N\ Syt dp(u,v) < |A| - Winag
AN Yue S, Jve N\S,: wy(u,v) =|A] Wnas (2)

In what follows, we assume all constructed configurations are valid. All valid
backup configurations in MRC share a characteristic internal structure, in that
all isolated nodes are directly connected to a core of nodes connected by links
with normal weights:

Definition. A configuration backbone B, = (N,,4,), N, € N, A, C A con-
sists of all non-isolated nodes in C), with their internally connecting links:

N, = N\S,
Ap = {a S A|’LUp((l) < wmaz} (3>

In every valid configuration, all node pairs are connected by a path of length
less than the weight of three restricted links:

Vp € P,Yu,v € N,dp(u,v) < 3|A| - Wnas (4)

MRC constructs a set of backup configurations so that all links and nodes
are isolated in a backup configuration:

Definition. A set of backup configurations is complete if

Va € A:3p € Plwy(a) =0 (5)
A YVue N,3pe Plue S, (6)

The number of backup configurations in a complete set for a given topology may
vary depending on the construction model. In the construction algorithm used
in this paper, each link and node is isolated in exactly one backup configuration.
If more configurations are created, fewer links and nodes need to be isolated per
configuration, giving a richer (more connected) backbone in each configuration.

For each configuration, a standard routing algorithm like OSPF or IS/IS is
used to calculate configuration-specific shortest paths. Conceptually, we have a
separate forwarding table for each configuration. In the normal, failure-free case,
all traffic in the network is forwarded according to the normal configuration,
where no links are restricted or isolated.

Let T': N — P be a function mapping each node u € N to a backup config-
uration identifier. We denote by T'(u) the identifier of the backup configuration

Co (Normal) Cy

O—0 OQ—0—O

N\ Q)
)

Figure 1: An example network topology with three backup configurations. In
the normal configuration, all links have weights in the normal link weight range.
In the backup configurations, isolated nodes and links are depicted dotted, while
restricted links are dashed.

where node u is isolated, i.e., T(u) = p € Plu € Sp. Similarly, T'(a) is the
identifier of the configuration where link «a is isolated.

When a failure occurs, the discovering node locally diverts traffic that would
normally go through the failed element to a backup configuration. The recovered
packets are marked with a configuration identifier. The appropriate configura-
tion is selected using locally available information only, and without knowing
whether the loss of connectivity is due to a link or a node failure. Assume that
traffic bound for egress node ¢ can no longer be forwarded over link (u,v). Node
u will select the correct backup configuration identifier p as

_f Tw) ifv#tVvT(u,v)=T(v) (1)
b= T(u) ifv=tAT(u,v)#T(v)

For the details on how the backup configuration selection is performed, please
refer to [6].

3 Routing optimization with MRC

MRC recovers from a link or node failure in the network by redirecting the
affected traffic using predefined backup configurations. In this work, we restrict
ourselves to only look at link failures. For a given traffic demand matrix, the
load distribution in the network after a link failure depends on three factors:

1. The link weight assignment used in the normal configuration Cj.

2. The structure of the backup configurations, i.e. which links and nodes are
isolated in each C), € {C1,...,Cy}.

3. The link weight assignments used in the backup configurations C1, ..., C,,.

Given a network G = (NN, A) and a demand matrix D, let ® be the cost of
routing the traffic load through the network. ® depends on how the load is dis-
tributed in the network, and the exact definition of ® could depend on whether
we want to minimize delay, avoid congestion etc. Our method is agnostic with
respect to the choice of a particular function ®, as long as it penalizes the use
of heavily loaded links. The cost function we use in our evaluations is defined
in Sec. 4.

With the shortest path routing used in OSPF/IS-IS, the cost ® is determined
by the network graph G, the demand matrix D, and the weight assignment
w used in the network. Our goal is to minimize cost ® in both the normal
case and after any single link failure for a given G and D. Our strategy for
achieving this is threefold. First, we use a heuristic to optimize the link weights
in the normal configuration Cjy. Second, we create the backup configurations
C1,...,C,. Third, we again use a heuristic to optimize the link weights used in
these backup configurations.

3.1 The failure free case

With MRC, all traffic is routed according to Cj in the failure free case. When
there is a failure, all recovered traffic is routed according to the appropriate
backup configurations. This logical separation gives us great flexibility to dis-
tribute the recovered traffic across available links without sacrificing perfor-
mance in the normal case. One of the attractive features of our solution, is
that we can optimize the weights wg used in the normal configuration Cj for
the failure free case only, without taking the post-failure load distribution into
account.

To optimize wg, we adopt a modified version of the local search heuristic pre-
sented in [3]. We use this heuristic because it is well known and has been shown
to give good performance with modest complexity, but in principle we could
use any other weight search heuristic with the same objective of minimizing the
cost function ®.

The heuristic starts with a weight assignment wg where wo(a) = Wyna./2 for
all a € A, and calculates the load I(a) on each link and the value of the cost
function ® resulting from wg. Then a given number of iterations are performed.
In each iteration, ® is evaluated for a subset of the neighborhood of wgy. A
neighbor of wy is a weight assignment obtained by changing the link weight of
a single link. For each link in the network (one at a time), a new link weight
from the range {1,..., Wy} is randomly picked, and & is evaluated after each
change. The neighbor that gives the lowest value of @, is selected as the new
wy. To escape from local minima in the search space, the heuristic randomly
changes the weight of a fraction of the links if there is no improvement after a

given number of iterations. A hashing function is used to avoid looping between
solutions. For a detailed explanation of the search heuristic, see [3].

3.2 Creating the backup configurations

The structure of the backup configurations is important for the load distribution
after a failure. Traffic that is recovered in configuration C), is forwarded only in
the backbone B, except in the first and last hops. A configuration where many
nodes and links are isolated gives a sparse (less connected) backbone. Such a
configuration gives few options with regards to where recovered traffic should be
routed. Conversely, a backup configuration with a rich backbone leaves more
choices with respect to routing, and increases the possibilities to get a good
distribution of load after a failure.

With MRC, the distribution of recovered traffic depends on the interaction
between the structure of the backup configurations, and the weight assignments
wi, ..., wy,. Ideally, we would like to create the backup configurations and decide
w1, ..., W, at the same time in such a way that the cost ® is minimized. How-
ever, such a solution would probably have to involve heavy computations, and
in this work we instead settle for a solution where we first create the backup con-
figurations, and then decide the link weight assignments. Joint optimization of
the backup configuration structure and the link weight assignments w1, ..., w,
is left for future study.

The intuition behind our algorithm for creating backup configurations, is
that we want the amount of traffic that is potentially recovered in each backup
configuration to be approximately equal. We want to avoid that the failure of
heavily loaded links results in large amounts of traffic being recovered in backup
configurations with a sparse backbone. Instead, this traffic should be routed in
a rich backbone, where we have a better chance of distributing it over less
loaded links by setting appropriate link weights. The algorithm described here
resembles the one we introduced in [6], with the major difference that while [6]
tries to balance the number of isolated elements in each backup configuration,
we here try to balance the amount of recovered traffic.

When we have decided the weight assignment wq, the load on each link in
the failure free case is given. We use this information to decide the potential of
each node in the network and the potential of each backup configuration.

Definition. The potential v(u) of a node u is the sum of the load on all its
incoming and outgoing links:

() =Y (Uu,0) +U(v,u) (8)

Definition. The potential «, of a backup configuration C,, is the sum of the
potential of all nodes that are isolated in C):

=) () (9)

u€Sy

The input to our algorithm for generating backup configurations is the nor-
mal configuration Cp, and the number n of backup configurations we want to
create. As we have shown before, n can be set surprisingly low; 3 or 4 backup
configurations is usually sufficient to isolate all elements in a network [6]. In
Sec. 4, we evaluate the effect the choice of n has on the post failure load distri-
bution.

We start our layer generation algorithm by ordering all nodes with respect to
their potential. Then each node is assigned to a tentative backup configuration,
so that the potential 7, of each backup configuration is approximately equal.
The nodes with the smallest potential are assigned to Cf, those with somewhat
higher potential to Cs, and so on with the nodes with the highest potential in
Ch.

We then go through all nodes in the network, and isolate each node in its
tentative backup configuration C,,. For some nodes, this might not be possible
without breaking the definition of a valid configuration as defined by Eq. (2).
This node is then attempted isolated in backup configuration Cj,11, Cpi2 and
so on, until all backup configurations are tried. If a node can not be isolated
in any backup configuration, we give up and abort. We must then try again
with a higher n. Note that when nodes can not be isolated in the backup con-
figuration it was assigned to, this will disturb the desired property of equalizing
v, among the backup configurations. However, in our experience this typically
only happens for a very limited number of nodes, and the consequences are not
severe.

The outcome of this algorithm is dependent on the network topology and
the traffic demand matrix D. If the load is close to equally distributed on the
links before a failure, we end up with approximately the same number of nodes
isolated in each backup configuration. If the traffic distribution is more skewed
(as is the case with the traffic model used in our evaluations), the algorithm
typically ends up with isolating many nodes with a small potential in C7, while
only very few nodes, with a high potential, are isolated in backup configuration
C,,. This is in accordance with the goal of having a rich backbone in which to
reroute traffic after the failure of heavily loaded links.

3.3 Optimizing link weights in the backup configurations

When we have created the backup configurations C1, ..., C),, the next challenge
is to decide the weight assignments wy, ..., w,. We use a similar search heuristic
as in the failure free case. The straightforward way of doing this would be
to evaluate the cost of the network for all possible link failures and for each
candidate set of weight assignments. However, evaluating a candidate weight
assignment is a rather expensive operation in terms of computing resources.
The large number of evaluations needed to cover all failure instances makes
this unfeasible for large networks. We therefore apply a strategy where we
assume that a limited number of link failures are the most critical with respect
to the load distribution, as introduced in [4]. Our method for deciding the
weight assignments wi,...,w, in the backup configurations then consists of

two subproblems. First we need to find the critical links, i.e the subset of links
whose failure has the most grave impact on the load distribution in the network.
Then we evaluate each candidate set of weight settings against the failure of the
small set of critical links only. This gives a significant reduction in the number of
cost evaluations needed, and makes our method feasible also for large networks.

3.3.1 Identifying critical links

Let ®* denote the cost of routing the demands through the network when link a
has failed. We define the critical link set Lo as the k links that give the highest
value of ®¢ upon failure, i.e. L¢ is the set of links with cardinality k so that
Va € Le,b ¢ Lo : ®* > ®°. Note that the initial calculation of L¢ is performed
after we have optimized wg, but before we have optimized wy, ..., w,.

There are two potential dangers with this choice of critical links. First, there
might be links whose failure will give a high cost under any weight assignment,
e.g. if there is only one possible backup path. Trying to optimize for the failure
of such links is obviously futile. Second, the impact of a link failure on the
network cost is a function of the current set of weight assignments. A failure
that has little impact with one weight assignment, might have a grave impact
with another weight assignment. We might thus end up with a situation where
the failures that are in fact most damaging for the routing performance with
the final weight assignment, are not included in the critical link set.

These considerations have led the authors of [17] to propose a strategy that
incorporates both the failure instance and the routing when selecting the critical
links. They observe that assigning a high weight to a link vaguely resembles the
failure of this link. They then exploit the high number of weight assignments
evaluated while optimizing for the failure free case, by gathering statistical in-
formation about the cost of the network when a link has “failed” in this way.
However, this method does not work well with MRC. Since recovered traffic is
routed according to backup configurations with completely independent weight
assignments, setting a high weight on a link in Cy does not give a good indication
of what will happen if that link fails.

However, the independent routing of recovered traffic in the backup config-
urations greatly reduces the second point of criticism against our method for
selecting critical links stated above. We only manipulate the weight assignments
wy,...,w, used in the backup configurations in the second phase of our heuris-
tic, and never change wy. Hence, it is only the recovered traffic that is affected
by the different weight settings evaluated. This makes Lo less dependent on
the current weight assignments. To compensate for the dependency that still
exists, we recalculate Lo a few times during our search. While the first objec-
tion against our measure of criticality still holds (some failures give high cost
independent of weight assignment), we will see that our selection of Lo gives
good performance.

With MRC, there is a dependency between a particular link failure and the
two backup configurations used to route the recovered traffic, as given by Eq. (7).
Hence, the cost of the network after the failure of a link in L is influenced only

10

lo(a) lo(a) -

Figure 2: Traffic on link a before and after a failure.

by the weight assignments w,;, and w, used in these two configurations, and not
by the assignments used in the other backup configurations. For each backup
configuration C),, we define L, C L as the set of critical links whose failure
results in recovered traffic being routed according to Cp:

Definition. The set of critical links L, of a configuration C), is

L,={a€ Lcla¢ By} (10)

3.3.2 Local search heuristic

When we have defined the critical links of each backup configuration, we perform
a local search to optimize the weight assignments wq,...,w,. Note first that
according to Eq. (7), traffic is diverted to two different backup configurations
after a failure, depending on the destination. After a failure, we will in general
have traffic in two backup configurations p and ¢ (in addition to the normal
configuration). Letting [, (a) denote the load on link a that is routed according
to configuration C,, we have that I(a) = lop(a) + [,(a) + l4(a), as illustrated in
Fig. 2.

The traffic distribution after a failure is thus dependent on the weight as-
signment in more than one backup configuration. Because of this, we can not
optimize the weight assignments one at a time. Instead, we use an algorithm
that tries to optimize all weight assignments wy, ..., w, at the same time.

Like in the optimization of wqy described above, we start with weight assign-
ments where wy(a) = Winaz/2,a € Ay, p € P. We then perform a given number
of iterations, evaluating the cost function ® over the critical link failures with
different weight assignments. In our search heuristic, the aim is to minimize the
sum ¥ of the cost of the network after the failure of each link in L¢:

v=)" o (11)

a€Lc

In each iteration step, we perform the following operations:

1. First we select the next backup configuration C), in a round robin fashion.

11

2. For each link a in the backbone B, of this configuration (one link at a
time), we choose a random link weight w,,(a) from the interval [1,. .., Wnaqz)-
This corresponds to evaluating 1/wy,q, of the neighborhood of w,,.

3. We evaluate U for each of these candidate weight assignments.

Note that for the failure of the links that are not included in L, for the
current configuration, the evaluation performed in the third step will always
yield the same @, irrespective of w,. Hence, these values can be reused for
all candidate weight assignments. We only have to recompute the cost of the
network for the failures of the links in L,. This significantly reduces the number
of evaluations we have to perform in our heuristic.

If we do not see an improvement of ¥ after a given number of consecutive
iterations, we jump to another area of the search space by randomly changing
the link weight of a fraction of the links in the network.

3.3.3 Complexity

Optimizing n different weight assignments for a multitude of potential link fail-
ures is a complex task. An important goal in our approach has therefore been to
create a heuristic that scales to networks of hundreds of nodes. This is achieved
through the use of the critical link set Lo, and the further division of this into
a set of critical links L, for each backup configuration.

We can get an idea of the complexity of our heuristic by counting the num-
ber of evaluations of the network cost ®* we need to perform, compared to the
methods in [4, 17]. These methods try to optimize a single link weight assign-
ment only, and use the same strategy of only evaluating the most critical link
failures. In each iteration, they need to calculate the value of &% |L¢| times for
each candidate weight assignment. With our heuristic, we only need to evaluate
®® |L,| times for each candidate weight assignment. The number of links in L,
is dependent on the size of Lo and the number of backup configurations used to
protect the network. The failure of a link (u, v) results in recovered traffic being
diverted to one or two backup configurations according to Eq. (7), depending on
whether v and v are isolated in the same configuration. The failure of a link can
thus give traffic in at most 2 out of n backup configurations. If we assume that
the number of isolated nodes are not very different between the configurations,
we have that, on average, |L,| is roughly |Lc|- 2.

In each iteration, we only alter the link weights of links A, in the backbone
B, of the current configuration. The weights of the isolated and restricted links
that are not included in B, are decided by MRC, and can not be changed.
Obviously, the number of links |A,| in each backbone B, is less than |A|.

To sum up our discussion so far; if we use ¢ iterations with the methods
described in [4, 17], evaluating the network cost ®* |A| times with |L¢| different
link failures in each iteration, we will perform a total of i-|A|-|L¢| evaluations of
®*. With our method, if we perform i iterations for each backup configuration,
we end up with a total of

i [Ap]-ILpl <2-i-[A]- |Lc] (12)

12

evaluations of ®*. This means that even if we let the number of backup config-
urations grow, we never need more than twice the number of evaluations needed
by [4] and [17].

Evaluating ®“ involves calculating a shortest path tree for each destination
in the network. This can be done in a more efficient way by relying on incre-
mental calculations [13] when evaluating ®* for different failures. Evaluating
®* is somewhat more expensive when using MRC, since we need to calculate
shortest paths in one or two backup configurations in addition to the normal
configuration. On the other hand, since we optimize for a smaller number of
failures in each backup configuration, we have found that we can decrease the
number of iterations used per configuration, and still achieve good results. All
in all, our experience is that the running time of our heuristic is comparable to

that of [17].

4 Performance evaluation

We have evaluated our approach using simulations for a range of real and syn-
thetically generated network topologies. We use the network cost and the max-
imum link load after failure as performance metrics.

4.1 Method
4.1.1 Topologies and traffic

We have tested our mechanism on topologies from four existing or planned real-
world network topologies from the Rocketfuel [14] database: Sprint US (PoP
level, 32 nodes, 64 links), COST239 (11 nodes, 26 links), Geant (19 nodes, 30
links) and German Telecom (10 nodes, 17 links). We have also performed tests
on synthetically generated topologies. We generated topologies of four different
classes - 32 nodes and 64 links, 32 nodes and 96 links, and 128 nodes and 256
links. The synthetic topologies were generated using the Waxman topology
model [21]. For all the topologies, both real and synthetic, all links have an
equal abstract link capacity of 1 in our tests.

To evaluate the link load changes after the failure, it is necessary to know
the traffic demands between all network origins and destinations. Even for
real networks, this data is generally unavailable, due to its confidentiality and
difficulties in collecting it. We chose to synthesize the origin-destination (OD)
flow data by drawing flow values from a probability distribution, and matching
the values with the OD pairs using the heuristic described in [11]. In short, we
sorted the OD pairs according to their node degree and the likelihood of one of
them being used as the backup node in the case of a single link failure. Then, we
matched the sorted OD pair list with the sorted list of flow intensities generated
using the gravity model, which is suited for this purpose [15].

Once the OD matrix is generated, it needs to be scaled to the link capacities
so that it can provide a meaningful evaluation of the effect of link failures on
the flows. It has proven hard to find a general parameter setting that achieves

13

this for all networks. We chose to tune the load so that the maximum link load
after the worst case failure is about 100%. In most cases, this corresponds to
a maximum link load in the failure-free case of approximately 2/3 of the link
capacity.

4.1.2 Routing and cost function

We used shortest path routing in all calculations. When multiple equal cost
paths toward a destination were available, the load was split equally among
them.

To evaluate a given weight assignment, we must define the cost ® of routing
a given traffic demand through the network. In this work we choose to adopt
the commonly used cost function introduced in [3]. Using this cost function,
each link a is given a cost ¢, dependent on its load I(a) and its capacity c(a).
The total network cost ® = >, ¢4 is then the sum of the cost of each link.
The cost ¢4(I(a)) of a link is defined as the continuous function with ¢,(0) =0
and derivative:

1 for 0 <uz/cla) <1/3,
3 for 1/3 < ax/c(a) < 2/3,
/ 10 for 2/3 <ax/e(a) < 9/10
9a(z) = 70 for 9/10 <uz/c(a) < (13)
500 for 1 <ax/e(a) < 11/10
) <

5000 for 11/10 <z/c(a

The cost function ¢4 (I(a)) is illustrated in Fig. 3. It is defined so that it is
cheap to send traffic over lightly-loaded links, while adding traffic to a link a
that is already overloaded gives a very high value of ¢,.

4.1.3 Evaluation setup

In our experiments, we optimized Cj for the failure free case using the heuristic
described in Sec. 3.1 with 1000 iterations. We jumped to another area of the
search space by randomly perturbing weights if we saw 200 iterations without an
improvement. When optimizing the link weights in the backup configurations
Ci,...,C,, we used as little as 20 iterations per backup configuration, and did
a random perturbation after 10 non-improving iterations. We used a critical
link set size |La| = 20.

As an evaluation benchmark in our experiments with the GEANT network,
we compare our method to an unrealistic full rerouting approach where link
weights are optimized to fit the new topology after each specific link failure.
This optimization is done in the same way as the optimization of the failure
free Cy. Performing this operation for every link failure takes much computing
resources, and is only feasible in our experiments for small networks. To test
the performance of our weight setting heuristic, we also compare to an idealized
MRC approach where link weights in the backup configurations are optimized
to fit a single link failure only. We use the same heuristic as before, but in each

14

14 ‘ -

12 + J g

Cost

Figure 3: Link cost ¢(I(a)) as a function of I(a) for link capacity c(a) = 1.

iteration we evaluate ®“ for a single link only, instead of taking all critical links
into account.

In our evaluation of real and synthetic networks shown in Tab. 1, we show the
performance of MRC using 5 and 10 backup configurations. We compare this
to the results given by a complete OSPF /IS-IS re-convergence on the normal
configuration. Also, in lack of other proactive recovery mechanisms that try to
optimize the routing after a failure, we compare MRC performance against the
method for robust routing described in [17]. This method constructs a single set
of link weights that performs well in both the failure free case and with a single
link failure. It is not designed to work with any fast reroute mechanism, and the
load distribution is hence only achieved after a full shortest path re-convergence
on the new topology. A drawback with this method is that its performance can
not be optimized for failure free operation only. In our experiments, parameters
are set so that we allow a cost increase of up to 20% in the failure free case with
this method.

We use the cost ¢ and the load on the most loaded link in the network as
our evaluation parameters. To be able to compare networks of different size,
we normalize ® with the cost of routing the demand through the same network
with unlimited link capacities, i.e. a network where ¢, = l(a)/c(a) according to
Eq. (13).

4.2 Results and discussion
4.2.1 Cost and link loads in a single network

Figure 4a shows the network cost ®* after the failure of each link in the GEANT
network topology. The cost is shown for the unrealistic optimal shortest path

15

rerouting, idealized MRC, and our MRC approach. The link failures are sorted
on the x-axis after increasing cost in the optimal case. The traffic demand is
scaled so that the cost ® is 1.33 in the failure free case, giving a maximum link
load of 0.67. Figure 4b shows the maximum link load in the network after the
same link failures.

The graphs show that for most failures, MRC performance is close to that
of the unrealistic optimal rerouting. For a few link failures, our MRC approach
diverts more from the optimal. In these cases, the MRC backup configurations
are constructed so that recovered traffic is routed over links that are already
somewhat loaded. We see that when this happens, the performance of our
heuristic is close to that of the idealized MRC. This indicates that if we want to
further improve the performance of MRC, we could expect the best results by
improving the backup configuration construction algorithm, instead of creating
a better weight search heuristic. Note that MRC sometimes gives a lower max-
imum link load than the optimal shortest path rerouting. This happens when
MRC is forced to create longer recovery paths (giving a higher ®) due to the
restrictions in the backup configurations, but this happens to avoid the most
heavily loaded link that would otherwise be used.

4.2.2 Varying the number of backup configurations

Figure 5a shows the network cost ®* after the worst case link failure for a syn-
thetically generated network with 32 nodes and 64 links, using a varying number
of backup configurations. Since our weight setting search contains an element
of randomness, we sometimes experience cost values that deviate significantly
from what is expected. To mitigate this effect, the values shown are the median
value obtained by running our algorithm 20 times with a different seed.

As expected, we see that the cost is highest when the minimum number of
backup configurations (3 for this network) is used. The load balancing improves
when we increase the number of backup configurations used. Since each node
in the network is isolated in exactly one backup configuration, increasing the
number of backup configurations gives richer backbones to route the recovered
traffic in. We see that increasing the number of configurations used beyond 8
gives a very limited effect for this network. We have observed similar trends
for other networks. This indicates that it is possible to achieve a good load
balancing using a modest number of backup configurations. As seen in Fig. 5b,
the maximum link load after the worst case failure shows more variation than
the maximum ®¢. This is a result of the piecewise linear nature of the cost
function in Eq. (13), which does not prefer two links with load 0.95 to one link
with load 0.90 and one with load 1.00.

4.2.3 Evaluation over different networks

16

Cost ¢*

Load

Figure 4: Cost ®® and maximum link load in the network after each link failure.

2.8

2.4

1.6

12

0.9

0.8

0.7

0.6

GEANT network - 5 backup configurations

17

Optin‘”nal ‘
MRC ideal +
MRC x
X
X
X
Xx
! .t X%
* X ¥
L X% X * X *
*xx X
*
Il Il Il Il Il
0 5 10 15 20 25 30
Failed link id
(a)
GEANT network - 5 backup configurations
Optirﬁal ‘ *
MRC ideal + *
MRC x
X
X * +
X O
X
*
N B /\ ﬁ
*
BRI X 2 ¥ v
4
Il Il Il Il Il
0 5 10 15 20 25 30
Failed link id
b)

32 node network - synthetic traffic 32 node network - synthetic traffic
8 T 12 T
Average
‘ Max --------
6 11
'\, -
- 4 3 1
4]
S | 3
\ =
F 09
ettt |
0 | | | | | | 08 | | | | | |
4 6 8 10 12 14 4 6 8 10 12 14
Number of backup configurations Number of backup configurations
(a)

(b)

Figure 5: Cost ®* and maximum link load in the network after the worst case
link failure. ®“ is median over 20 runs, maximum load is mean over 20 runs.

18

61

Table 1: Cost and maximum link load for selected real and synthetic network topologies

Proactive recovery

Reactive recovery

Failure free MRC n=5 MRC n=10 S/G Normal SPF
Network @ lmaw (I)Z,Uq (I)frlnax lmaw (bqu q)gnaw lmam (I)qu q)glax lmalﬂ (bqu (I)gnaw lma$
German Tel | 1.40 | 66% 1.91 | 4.85 | 102% | 1.95 | 5.00 | 102% | 1.63 | 2.05 | 81% | 14.60 | 86.53 | 117%
Geant 1.36 | 68% 1.65 | 2.39 | 101% | 1.69 | 4.94 | 108% | 1.58 | 1.90 | 90% | 2.54 | 31.91 | 120%
Sprint US 1.18 | 64% 1.40 | 6.05 | 110% | 1.39 | 6.00 | 110% | 1.40 | 5.58 | 110% | 1.35 5.53 | 110%
Cost239 1.39 | 66% 1.57 | 2.62 99% | 1.56 | 2.62 99% | 1.51 1.94 79% 1.55 2.61 99%
T32-64-0 1.33 | 66% 1.48 | 2.20 | 103% | 1.45 | 1.59 82% | 1.42 | 1.60 87% 1.41 1.63 98%
T32-64-1 1.26 | 59% 1.39 | 1.73 95% | 1.38 | 1.54 % | 1.36 | 1.54 94% 1.34 1.91 | 102%
T32-64-2 1.33 | 6% 1.48 | 2.21 | 100% | 1.48 | 2.21 | 100% | 1.42 | 1.52 89% 1.42 2.15 | 104%
T32-64-3 1.30 | 67% 1.46 | 2.65 | 105% | 1.46 | 2.65 | 105% | 1.61 | 3.04 | 109% | 1.47 517 | 111%
T32-64-4 1.29 | 66% 142 | 191 96% | 1.41 | 1.79 90% | 1.35 | 2.04 | 102% | 1.36 2.28 | 103%
T32-96-0 1.35 | 67% 1.43 | 1.99 | 104% | 1.42 | 1.62 99% | 1.39 | 1.47 92% 1.41 2.23 | 109%
T32-96-1 1.34 | 8% 1.46 | 3.60 | 110% | 1.45 | 3.22 | 111% | 1.39 | 1.85 | 101% | 1.50 | 10.86 | 114%
T32-96-2 1.36 | 2% 1.59 | 7.60 | 117% | 1.46 | 1.85 | 103% | 1.43 | 3.05 | 111% | 1.56 6.88 | 114%
T32-96-3 1.35 | 65% 144 | 2.27 | 108% | 1.42 | 1.63 | 100% | 1.41 | 1.57 | 98% | 1.39 1.69 | 101%
T32-96-4 1.36 | 76% 1.48 | 5.05 | 113% | 1.48 | 4.02 | 111% | 1.40 | 1.53 97% 1.46 4.89 | 112%
T128-256-0 | 1.23 | 67% 1.27 | 1.34 91% | 1.26 | 1.32 95% | 1.25 | 1.28 86% 1.25 1.28 90%
T128-256-1 | 1.21 | 66% 1.24 | 1.30 83% | 1.24 | 1.30 8% | 1.23 | 1.25 73% 1.22 1.24 70%
T128-256-2 | 1.18 | 67% 1.21 1.31 92% | 1.21 | 1.33 93% | 1.19 | 1.22 2% 1.19 1.22 2%
T128-256-3 | 1.20 | 66% 1.23 | 1.31 84% | 1.23 | 1.31 90% | 1.22 | 1.23 82% 1.21 1.24 82%
T128-256-4 | 1.20 | 66% 1.23 | 1.31 84% | 1.23 | 1.31 90% | 1.21 1.24 76% 1.21 1.23 76%

We have evaluated the network cost and the maximum link load after the
worst case link failure for a range of real-world and synthetically generated
network topologies, as shown in Tab. 1. Results are shown for MRC using
5 and 10 backup configurations, a normal full SPF re-convergence, and the
method described in [17], denoted S/G. We have run experiments for 5 different
topologies of each type of synthetic topologies. For each recovery method we
show the average cost g, after each link failure, the cost 7, after the worst
case link failure, and the load [,,,, of the most heavily loaded link after the
worst case link failure. We also show the cost ® and the maximum link load in
the failure free case. The values shown in the table are median values over 3
runs with different seed.

The general trend is that MRC performs better than the normal shortest
path rerouting after the worst case link failure, with respect to both cost and
maximum link load. MRC performance is improved if we increase the number of
backup configurations used. Using 10 backup configurations, MRC performance
gets close to that of the S/G method, and for networks of moderate size and
connectivity (T32-64), MRC performance is as good as that of S/G. The cost
® in the failure free case is up to 20% higher with the S/G method than with
MRC - in our experiments we typically saw values that were 3-15% higher.

Normal SPF re-convergence performs better for larger networks (T128-256)
than for small networks. We believe this is partly a result of the traffic model
used. With larger networks, the chance that a heavily loaded link is selected in
a backup path decreases, and a normal shortest path re-convergence is closer to
the optimal solution.

5 Related work

Several methods for proactive IP fast rerouting have recently been proposed
[8, 2, 16]. However, the objective of these proposals is only to guarantee that
there is a valid routing between all nodes after a failure. None of them make
any effort to achieve a good post-failure load distribution.

Substantial work has been done on how link weights can be set to achieve
a good load balancing with shortest path IGP routing protocols [3, 19, 18].
Methods have also been proposed to find robust weight settings, i.e. weight
settings that perform well in both the failure free case and after a link failure [10,
4, 17]. These methods are not designed to work with a fast rerouting mechanism,
and the load balancing is only achieved after a full IGP re-convergence on the
new topology. Also, the robust weight setting methods must compromise on the
performance in the failure free case in order to avoid congestion after a failure.

6 Conclusion and future work

In this paper, we have argued that the post-failure load distribution should be
taken into account when designing a proactive recovery scheme for IP networks.

20

We think this is imperative for the adoption of any such scheme. We presented
an algorithm for creation of backup configurations and a link weight assignment
heuristic that reduces the chance of congestion after a link failure when MRC is
used for recovery. Our method does not compromise performance in the failure-
free case, and it is strictly pre-configured; no calculations are necessary after
the failure.

We have evaluated our method using both real and synthetic network topolo-
gies. Our results show that by using our scheme, MRC offers better post-failure
load distribution in the network than what is achieved by a full global rerouting
using the original link weights. In particular, our heuristic reduces the load on
the most loaded links in the network after a worst-case link failure compared
to a normal shortest path rerouting. The performance of our method is about
the same as that of the method described in [17], which is not designed to be
used with a proactive IP recovery scheme and that reduces performance in the
failure free case.

There are several possible directions for future work related to the present
study. While in this paper the backup configuration construction and the link
weight optimization are two separate steps, we believe that even better results
can be achieved by unifying these two processes. We also think that the idea
of multiple parallel network configurations can be used to give dynamic load
balancing in the failure-free case, by diverting traffic away from heavily-loaded
links using an alternative configuration.

In the final stages of the work on this paper, we discovered the technical
report [1]. This report describes a method for creating multiple topologies
to achieve fast rerouting in IP networks, and a heuristic to set link weights
in the topologies. They compare their post-failure load distribution to that
achieved by using the not-via approach [2], and find that their multi-topology
strategy performs better for the tested networks according to their metrics.
Both the method for creating backup topologies and for setting link weights
is substantially different from ours. As future work, we plan to compare the
performance of this method to that of our own.

References

[1] George Apostolopolous. Using multiple topologies for IP-only protection
against network failures: A routing performance perspective. Technical
report, ICS FORTH, Crete, Greece, apr 2006.

[2] S. Bryant, M. Shand, and S. Previdi. IP fast reroute using not-via ad-
dresses. Internet Draft (work in progress), October 2005. draft-bryant-
shand-IPFRR-notvia-addresses-01.txt.

[3] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimiz-
ing OSPF weights. In Proceedings INFOCOM, pages 519-528, 2000.

21

[4]

[5]

[10]

[11]

[12]

Bernhard Fortz and Mikkel Thorup. Robust optimization of OSPF /IS-IS
weights. In INOC;, pages 225-230, oct 2003.

Sundar Iyer, Supratik Bhattacharyya, Nina Taft, and Cristophe Diot. An
approach to alleviate link overload as observed on an IP backbone. In
Proceedings INFOCOM, pages 406-416, March 2003.

Amund Kvalbein, Audun Fosselie Hansen, Tarik Ci¢i¢, Stein Gjessing, and
Olav Lysne. Fast IP network recovery using multiple routing configurations.
In Proceedings INFOCOM, April 2006.

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed
Internet Routing Convergence. IEEE/ACM Transactions on Networking,
9(3):293-306, June 2001.

Sanghwan Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C-N. Chuah. Proac-
tive vs. reactive approaches to failure resilient routing. In Proceedings IN-
FOCOM, March 2004.

Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya,
Chen-Nee Chuah, and Christophe Diot. Characterization of failures in
an IP backbone network. In Proceedings INFOCOM, March 2004.

A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot. IGP
Link Weight Assignment for Transient Link Failures. In 18th International
Teletraffic Congress, Berlin, Germany, August 2003.

Antonio Nucci, Ashwin Sridharan, and Nina Taft. The problem of synthet-
ically generating IP traffic matrices: Initial recommendations. SIGCOMM
Comput. Commaun. Rev., 35(3):19-32, July 2005.

Smita Rai, Biswanath Mukherjee, and Omkar Deshpande. IP resilience
within an autonomous system: Current approaches, challenges, and fu-
ture directions. IEEE Communications Magazine, 43(10):142-149, October
2005.

G. Ramalingam and Thomas Reps. An incremental algorithm for a gener-
alization of the shortest-path problem. J. Algorithms, 21(2):267-305, 1996.

Rocketfuel topology mapping. WWW. http://www.cs.washington.edu.

Matthew Roughan. Simplifying the synthesis of internet traffic matrices.
SIGCOMM Comput. Commun. Rev., 35(5):93-96, October 2005.

Gero Schollmeier, Joachim Charzinski, Andreas Kirstdter, Christoph Re-
ichert, Karl J. Schrodi, Yuri Glickman, and Chris Winkler. Improving the
resilience in IP networks. In Proceedings of HPSR, pages 91-96, Torino,
Italy, June 2003.

Ashwin Sridharan and Roch Guerin. Making IGP routing robust to link
failures. In Networking, Waterloo, Canada, 2005.

22

[18] Ashwin Sridharan, Roch Guirin, and Christophe Diot. Achieving near-
optimal traffic engineering solutions for current OSPF/IS-IS networks.
IEEE/ACM Transactions on Networking, 13(2):234-247, April 2005.

[19] Yufei Wang, Zheng Wang, and Leah Zhang. Internet traffic engineering
without full mesh overlaying. In Proceedings INFOCOM, pages 565-571,
April 2001.

[20] David Watson, Farnam Jahanian, and Craig Labovitz. Experiences with
monitoring OSPF on a regional service provider network. In ICDCS ’03:
Proceedings of the 23rd International Conference on Distributed Computing
Systems, pages 204-213. IEEE Computer Society, 2003.

[21] Bernard M. Waxman. Routing of multipoint connections. IEEE Journal
on Selected Areas in Communications, 6(9):1617-1622, December 1988.

23

