
Post-Failure Routing Performance with Multiple
Routing Configurations

Amund Kvalbein, TarikČičić, Stein Gjessing
Simula Research Laboratory, Oslo, Norway

Abstract— The slow convergence of IGP routing protocols after
a topology change has led to several proposals for proactive
recovery schemes in IP networks. These proposals are limited to
guaranteeing loop-free connectivity after a link or node failure,
and do not take into account the resulting load distribution in
the network. This can lead to congestion and packet drops.
In this work, we show how a good load distribution can be
achieved in pure IP networks immediately after a link failure,
when Multiple Routing Configurations (MRC) is used as a fast
recovery mechanism. This paper is the first attempt to improve
the load balancing when a proactive recovery scheme is used.
Unlike load balancing methods used with normal IP rerouting,
our method does not compromise on the routing performance in
the failure free case. Our method is evaluated using simulations
on several real and synthetically generated network topologies.
The evaluation shows that our method yields good routing
performance, making it feasible to use MRC to handle transient
network failures.

I. I NTRODUCTION

Traditional intradomain routing protocols, such as OSPF
and IS/IS, recover from component failures by exchanging
link state information and converging upon a new global view
of the network state. This is a time-consuming process, that
typically involves a period of instability and invalid routing in
the network [1], [2], and is not sufficient for emerging time-
critical internet applications.

Recently, the idea ofproactive and local recovery at the
IP layer has been proposed [3], [4], [5]. In these schemes,
backup next-hops are prepared before a failure occurs, and the
discovering router handles a component failure locally, without
signalling to the rest of the network. The advantage of such
solutions is that they allow an almost instantaneous response
to a failure. Often, proactive recovery schemes are thoughtof
as a first line of defense against component failures. They are
used to maintain valid routing paths between the nodes in the
network, until the routing protocol converges on a new global
view of the topology. Such a strategy is particularly germane
when facing transient failures, which are common in today’s
IP networks [6].

However, existing proactive IP recovery schemes are limited
to guaranteeing loop-free connectivity in the network after a
failure, and do not consider the post-failure load distribution.
The shifting of traffic to alternate links after a failure can
lead to congestion and packet loss in parts of the network [7].
This limits the time that the proactive recovery scheme can
be used to forward traffic before the global routing protocol
is informed about the failure, and hence reduces the chance
that a transient failure can be handled without a full global

routing re-convergence. Ideally, a proactive recovery scheme
should not only guarantee connectivity after a failure, butalso
do so in a manner that does not cause an unacceptable load
distribution. This requirement has been noted as being one of
the principal challenges for precalculated IP recovery schemes
[8]. We believe that a well engineered distribution of recovered
traffic will be crucial for the adoption of any fast IP recovery
method.

Important work on traffic engineering in OSPF/IS-IS net-
works focus on optimizing link weights, so that traffic is
well distributed across the available links. The work in this
area has focused either on the failure free case [9], [10],
[11], or on finding link weights that work well both in the
normal case and when the routing protocol has converged after
a single link failure [12], [13], [14]. A major drawback of
these solutions is that they compromise performance in the
failure free case in order to give reasonable performance after
a failure. Also, these schemes focus on the load distribution
after the convergence of the IGP routing protocol, and are not
designed to work with fast IP recovery schemes. Very little
work has been done on the traffic engineering properties of
proactive IP recovery methods.

We have previously proposed the use of Multiple Routing
Configurations (MRC) to achieve fast recovery from link and
node failures in IP networks [5]. MRC is a proactive recovery
scheme, based on maintaining a small set of backup network
configurations in the routers, which are used to reroute traffic
locally in case of a failure. The local rerouting performed in
MRC guarantees that a valid routing exists between any pair
of nodes in an arbitrary biconnected network after a single
link or node failure.

With MRC, the link weights are set individually in each
backup configuration. This gives great flexibility with respect
to how the recovered traffic is routed. The backup config-
uration used after a failure is selected based on the failure
instance, and thus we can choose link weights in the backup
configurations that are well suited for only a subset failure
instances.

A. Our contributions

In this paper, we discuss how we can achieve a good load
distribution in the network immediately after a link failure,
when MRC is used as a fast recovery mechanism. We present
an algorithm to create the MRC backup configurations in a
way that takes the traffic distribution into account. Then, we
present a heuristic aimed at finding a set of link weights

for each backup configuration that distributes the load well
in the network after any single link failure. Our scheme is
strictly proactive; no link weights need to be changed after
the discovery of a failure.

With MRC, all recovered traffic is routed in the backup
configurations. This allows us, unlike previous proposals,to
optimize for link failures without compromising performance
in the failure free case. Also, our work is the first to address
the issue of load balancing after a failure in the context of a
proactive IP recovery scheme.

Our solution consists of three phases; first the link weights
in the normal configuration are optimized while only taking the
failure free situation into account, second we take advantage
of the load distribution in the failure free case to construct the
MRC backup configurations in an intelligent manner, and third
we optimize the link weights in the backup configurations to
get a good load distribution after any link failure.

Our method for link weight setting is based on perturbing
link weights using a local search heuristic. The link weights
in the backup configurations are optimized to give good
performance after any link failure. Optimizing for all possible
link failures does not scale well as network size increases,
because of the number of evaluations needed. To overcome this
problem, we assume that only a few link failures arecritical
with respect to the load distribution after failure, and optimize
only over these failures [13].

We have evaluated our approach using simulations on
several real and synthetically generated network topologies,
and we find that we achieve a load distribution while using
MRC that is better than after a full OSPF/IS-IS re-convergence
with original link weights. Our results approach those of a
method aimed at a good load distribution after the routing
protocol has converged on the new topology [11], with the
additional benefits that our method does not compromise on
the performance in the failure free case.

The rest of this paper is structured as follows. We give a
formal description of MRC in Sec. II. In Sec. III, we discuss
what decides the post-failure load distribution under MRC,and
present our algorithm for creating the backup configurations
and our link weight optimization heuristic. Then we evaluate
our method in Sec. IV, before we conclude and offer directions
for further work in Sec. V.

II. FAST RECOVERY USINGMULTIPLE ROUTING

CONFIGURATIONS

MRC is a method for fast recovery in arbitrary biconnected
IP networks with shortest path routing. The method is based
on creating a small set of backup routing configurations that
are used in the case of a link or node failure. In the backup
configurations, some links are given a weight much higher
than the normal maximal link weight used in the network,
thus restricting the routing in parts of the network.

The configurations are defined by the network topology,
which is same in all configurations, and the associated link
weights, which differ among configurations. We formally
represent the network topology as a graphG = (N,A), with

a set of nodesN and a set of unidirectional links (arcs)A.
A configuration is defined by this topology graph and the
associated link weight function:

Definition. A configurationCp is an ordered pair(G,wp) of
the graphG and a functionwp : A → {1, . . . , wmax, |A| ·
wmax,∞} that assigns an integer weightwp(a) to each link
a ∈ A.

We distinguish between the normal configurationC0 and the
backup configurationsCp, p > 0. In the normal configuration
C0, all links have “normal” weightsw0(a) ∈ {1, . . . , wmax}.
In the backup configurations, some links are given high
weights to inhibit transit traffic:

Definition. A link a ∈ A is isolated in Cp if wp(a) = ∞.

Definition. A link a ∈ A is restricted in Cp if wp(a) = |A| ·
wmax.

The link weight of restricted links is chosen so that any
available path consisting of only “normal” links will be
selected before one containing a restricted link by a shortest
path routing algorithm. The isolated links are never used for
data forwarding, while the restricted links are used only to
access an isolated node:

Definition. A nodeu ∈ N is isolated in Cp if

∀(u, v) ∈ A,wp(u, v) ≥ |A| · wmax

∧ ∃(u, v) ∈ A,wp(u, v) < ∞ (1)

In other words, nodes are isolated by assigning high weights
to all their attached links. A link is always isolated in the same
configuration as one of its attached nodes, but all links attached
to a node can not be isolated in the same configuration, in order
to make the node reachable in all configurations. The set of
isolated nodes inCp is denotedSp, and the set of normal
(non-isolated) nodesSp = N \ Sp.

Restricted and isolated links always have the same weight
in both directions. All other links inCp, that are neither
isolated nor restricted, have weights in the normal weight
range1, . . . , wmax, and may have asymmetric link weights.
Figure 1 shows how all links and nodes in an example network
graph can be isolated using three backup configurations.

The backup configurations have to be constructed so that,
after the failure of a node or a link in the network, there will
still exist a loop-free path with finite weight between every
source and destination in the backup configuration where the
failed element was isolated. Letπp(u, v) denote the shortest
path fromu to v in configurationCp, and letN (π) denote
the nodes on this path.

Definition. A configurationCp is valid if and only if

∀u, v ∈ N : N (πp(u, v)) \ (Sp ∪ {u, v}) = ∅

∧ wp(πp(u, v)) < ∞ (2)

In what follows, we assume all constructed configurations
are valid. All valid backup configurations in MRC share a

� � �

� �

� � �

� 	

� �

 � �

C0 (Normal) C1

� � �

� �

� � �

� � �

� �

� � �

C2 C3

Fig. 1. An example network topology with three backup configurations. In
the normal configuration, all links have weights in the normal link weight
range. In the backup configurations, isolated nodes and links are depicted
dotted, while restricted links are dashed.

characteristic internal structure, in that all isolated nodes are
directly connected to a core of nodes connected by links with
normal weights:

Definition. A configuration backboneBp = (Sp, Ap), Ap ⊆
A consists of all non-isolated nodes inCp and all links that
are neither isolated nor restricted:

a ∈ Ap ⇔ wp(a) ≤ wmax (3)

A backbone is connected if all nodes inSp are connected
by paths containing links with normal weights only. LetA(π)
denote the set of links on a pathπ.

Definition. A backboneBp is connectedif and only if

∀u, v ∈ Bp : a ∈ A(πp(u, v)) ⇒ wp(a) ≤ wmax (4)

MRC constructs a set of valid backup configurations so that
all links and nodes are isolated in a backup configuration. Let
C = {C1, ...Cn} be a set of backup configurations. We say
that

Definition. A set,C, of backup configurations iscompleteif

∀a ∈ A,∃Cp ∈ C : wp(a) = ∞

∧ ∀u ∈ N,∃Cp ∈ C : u ∈ Sp (5)

The number of backup configurations in a complete set for a
given topology may vary depending on the construction model.
In the construction algorithm used in this paper, each link and
node is isolated inexactlyone backup configuration. If more
configurations are created, fewer links and nodes need to be
isolated per configuration, giving a richer (more connected)
backbone in each configuration.

For each configuration, a standard routing algorithm like
OSPF or IS/IS is used to calculate configuration-specific
shortest paths. Conceptually, we have a separate forwarding
table for each configuration. In the normal, failure-free case,
all traffic in the network is forwarded according to the normal
configuration, where no links are restricted or isolated.

Let C(u) denote the backup configuration where nodeu
is isolated, i.e.,C(u) = Cp ⇔ u ∈ Sp. Similarly, let
C(u, v) denote the backup configuration where the link(u, v)
is isolated, i.e.,C(u, v) = Cp ⇔ wp(u, v) = ∞.

When a failure occurs, the discovering node locally diverts
traffic that would normally go through the failed element to
a backup configuration. The recovered packets are marked
with a configuration identifier. The appropriate configuration is
selected using locally available information only, and without
knowing whether the loss of connectivity is due to a link or a
node failure. Assume that traffic bound for egress nodet can
no longer be forwarded over link(u, v). Node u will select
the correct backup configurationCp as

Cp =

{

C(v) if v 6= t ∨ C(u, v) = C(v)
C(u) if v = t ∧ C(u, v) 6= C(v)

(6)

For the details on how the backup configuration selection is
performed, please refer to [5].

III. ROUTING OPTIMIZATION WITH MRC

MRC recovers from a link or node failure in the network
by redirecting the affected traffic using predefined backup
configurations. In this work, we restrict ourselves to only look
at link failures. For a given traffic demand matrix, the load
distribution in the network after a link failure depends on three
factors:

1) The link weight assignment used in the normal config-
urationC0.

2) The structure of the backup configurations, i.e. which
links and nodes are isolated in eachCp ∈ {C1, . . . , Cn}.

3) The link weight assignments used in the backup config-
urationsC1, . . . , Cn.

Given a networkG = (N,A) and a demand matrixD, let
Φ be the cost of routing the traffic load through the network.
Φ depends on how the load is distributed in the network, and
the exact definition ofΦ could depend on whether we want to
minimize delay, avoid congestion etc. Our method is agnostic
with respect to the choice of a particular functionΦ, as long as
it penalizes the use of heavily loaded links. The cost function
we use in our evaluations is defined in Sec. IV.

With the shortest path routing used in OSPF/IS-IS, the cost
Φ is determined by the network graphG, the demand matrix
D, and the weight assignmentw used in the network. Our
goal is to minimize costΦ in both the normal case and after
any single link failure for a givenG andD. Our strategy for
achieving this is threefold. First, we use a heuristic to optimize
the link weights in the normal configurationC0. Second, we
create the backup configurationsC1, . . . , Cn. Third, we again
use a heuristic to optimize the link weights in these backup
configurations.

A. The failure free case

With MRC, all traffic is routed according toC0 in the
failure free case. When there is a failure, all recovered traffic
is routed according to the appropriate backup configurations.
This logical separation gives us great flexibility to distribute

the recovered traffic across available links without sacrificing
performance in the normal case. One of the attractive features
of our solution, is that we can optimize the weightsw0 used
in the normal configurationC0 for the failure free case only,
without taking the post-failure load distribution into account.

To optimizew0, we adopt a modified version of the local
search heuristic presented in [9]. We use this heuristic because
it is well known and has been shown to give good performance
with modest complexity, but in principle we could use any
other weight search heuristic with the same objective of
minimizing the cost functionΦ.

The heuristic starts with a weight assignmentw0 where
w0(a) = wmax/2 for all a ∈ A, and calculates the loadl(a)
on each link and the value of the cost functionΦ resulting
from w0. Then a given number of iterations are performed. In
each iteration,Φ is evaluated for a subset of theneighborhood
of w0. A neighbor ofw0 is a weight assignment obtained by
changing the link weight of a single link. For each link in the
network (one at a time), a new link weight from the range
{1, . . . , wmax} is randomly picked, andΦ is evaluated after
each change. The neighbor that gives the lowest value ofΦ,
is selected as the neww0. To escape from local minima in
the search space, the heuristic randomly changes the weight
of a fraction of the links if there is no improvement after a
given number of iterations. A hashing function is used to avoid
looping between solutions. For a detailed explanation of the
search heuristic, see [9].

B. Creating the backup configurations

The structure of the backup configurations is important for
the load distribution after a failure. Traffic that is recovered in
configurationCp is forwarded only in the backboneBp, except
in the first and last hops. A configuration where many nodes
and links are isolated gives a sparse (less connected) back-
bone. Such a configuration gives few options with regards to
where recovered traffic should be routed. Conversely, a backup
configuration with arich backbone leaves more choices with
respect to routing, and increases the possibilities to get agood
distribution of load after a failure.

With MRC, the distribution of recovered traffic depends on
the interaction between the structure of the backup configu-
rations, and the weight assignmentsw1, . . . , wn. Ideally, we
would like to create the backup configurations and decide
w1, . . . , wn at the same time in such a way that the cost
Φ is minimized. However, such a solution would probably
have to involve heavy computations, and in this work we
instead settle for a solution where we first create the backup
configurations, and then decide the link weight assignments.
Joint optimization of the backup configuration structure and
the link weight assignmentsw1, . . . , wn is left for future study.

The intuition behind our algorithm for creating backup
configurations, is that we want the amount of traffic that
is potentially recovered in each backup configuration to be
approximately equal. We want to avoid that the failure of
heavily loaded links results in large amounts of traffic being
recovered in backup configurations with a sparse backbone.

Instead, this traffic should be routed in a rich backbone, where
we have a better chance of distributing it over less loaded links
by setting appropriate link weights. The algorithm described
here resembles the one we introduced in [5], with the major
difference that while [5] tries to balance the number of isolated
elements in each backup configuration, we here try to balance
the amount of recovered traffic.

When we have decided the weight assignmentw0, the load
on each link in the failure free case is given. We use this
information to decide thepotentialof each node in the network
and the potential of each backup configuration.

Definition. The potentialγ(u) of a nodeu is the sum of the
load on all its incoming and outgoing links:

γ(u) =
∑

v∈N

(l(u, v) + l(v, u)) (7)

Definition. The potentialγp of a backup configurationCp is
the sum of the potential of all nodes that are isolated inCp:

γp =
∑

u∈Sp

γ(u) (8)

The input to our algorithm for generating backup con-
figurations is the normal configurationC0, and the number
n of backup configurations we want to create. As we have
shown before,n can be set surprisingly low; 3 or 4 backup
configurations is usually sufficient to isolate all elementsin a
network [5]. In Sec. IV, we evaluate the effect the choice of
n has on the post failure load distribution.

We start our layer generation algorithm by ordering all
nodes with respect to their potential. Then each node is as-
signed to a tentative backup configuration, so that the potential
γp of each backup configuration is approximately equal. The
nodes with the smallest potential are assigned toC1, those
with somewhat higher potential toC2, and so on with the
nodes with the highest potential inCn.

We then go through all nodes in the network, and isolate
each node in its tentative backup configurationCp. For some
nodes, this might not be possible without breaking the defini-
tion of a valid configuration as defined by Eq. (2). This node
is then attempted isolated in backup configurationCp+1, Cp+2

and so on, until all backup configurations are tried. If a node
can not be isolated in any backup configuration, we give up
and abort. We must then try again with a highern. Note that
when nodes can not be isolated in the backup configuration
it was assigned to, this will disturb the desired property of
equalizingγp among the backup configurations. However, in
our experience this typically only happens for a very limited
number of nodes, and the consequences are not severe.

The outcome of this algorithm is dependent on the network
topology and the traffic demand matrixD. If the load is close
to equally distributed on the links before a failure, we end up
with approximately the same number of nodes isolated in each
backup configuration. If the traffic distribution is more skewed
(as is the case with the traffic model used in our evaluations),
the algorithm typically ends up with isolating many nodes with

a small potential inC1, while only very few nodes, with a high
potential, are isolated in backup configurationCn. This is in
accordance with the goal of having a rich backbone in which
to reroute traffic after the failure of heavily loaded links.

C. Optimizing link weights in the backup configurations

When we have created the backup configurations
C1, . . . , Cn, the next challenge is to decide the weight
assignmentsw1, . . . , wn. We use a similar search heuristic as
in the failure free case. The straightforward way of doing this
would be to evaluate the cost of the network for all possible
link failures and for each candidate set of weight assignments.
However, evaluating a candidate weight assignment is a rather
expensive operation in terms of computing resources. The
large number of evaluations needed to cover all failure
instances makes this unfeasible for large networks. We
therefore apply a strategy where we assume that a limited
number of link failures are the most critical with respect to
the load distribution, as introduced in [13]. Our method for
deciding the weight assignmentsw1, . . . , wn in the backup
configurations then consists of two subproblems. First we
need to find the critical links, i.e the subset of links whose
failure has the most grave impact on the load distribution in
the network. Then we evaluate each candidate set of weight
settings against the failure of the small set of critical links
only. This gives a significant reduction in the number of cost
evaluations needed, and makes our method feasible also for
large networks.

1) Identifying critical links: Let Φa denote the cost of
routing the demands through the network when linka has
failed. We define the critical link setLC as thek links that
give the highest value ofΦa upon failure, i.e.LC is the set of
links with cardinalityk so that∀a ∈ LC , b /∈ LC : Φa ≥ Φb.
Note that the initial calculation ofLC is performed after we
have optimizedw0, but before we have optimizedw1, . . . , wn.

There are two potential dangers with this choice of critical
links. First, there might be links whose failure will give a
high cost underany weight assignment, e.g. if there is only
one possible backup path. Trying to optimize for the failure
of such links is obviously futile. Second, the impact of a link
failure on the network cost is a function of the current set of
weight assignments. A failure that has little impact with one
weight assignment, might have a grave impact with another
weight assignment. We might thus end up with a situation
where the failures that are in fact most damaging for the
routing performance with the final weight assignment, are not
included in the critical link set.

However, the independent routing of recovered traffic in
the backup configurations greatly reduces the second point
of criticism against our method for selecting critical links
stated above. We only manipulate the weight assignments
w1, . . . , wn used in the backup configurations in the second
phase of our heuristic, and never changew0. Hence, it is only
therecoveredtraffic that is affected by the different weight set-
tings evaluated. This makesLC less dependent on the current
weight assignments. To compensate for the dependency that

c(a)c(a)

l0(a) l0(a)

lp(a)
lq(a)

Fig. 2. Traffic on linka before and after a failure.

still exists, we recalculateLC a few times during our search.
While the first objection against our measure of criticality still
holds (some failures give high cost independent of weight
assignment), we will see that our selection ofLC gives good
performance.

With MRC, there is a dependency between a particular
link failure and the two backup configurations used to route
the recovered traffic, as given by Eq. (6). Hence, the cost
Φa after the failure of a linka in LC is influenced only
by the weight assignmentswp and wq used in these two
configurations, and not by the assignments used in the other
backup configurations. For each backup configurationCp, we
defineLp ⊆ LC as the set of critical links whose failure results
in recovered traffic being routed according toCp:

Definition. The set of critical linksLp of a configurationCp

is

Lp = {a ∈ LC |a /∈ Bp} (9)

2) Local search heuristic:When we have defined the
critical links of each backup configuration, we perform a
local search to optimize the weight assignmentsw1, . . . , wn.
Note first that according to Eq. (6), traffic is diverted to two
different backup configurations after a failure, dependingon
the destination. After a failure, we will in general have traffic
in two backup configurationsCp and Cq (in addition to the
normal configuration). Lettinglp(a) denote the load on link
a that is routed according to configurationCp, we have that
l(a) = l0(a) + lp(a) + lq(a), as illustrated in Fig. 2.

The traffic distribution after a failure is thus dependent on
the weight assignment in more than one backup configuration.
Because of this, we can not optimize the weight assignments
one at a time. Instead, we use an algorithm that tries to
optimize all weight assignmentsw1, . . . , wn at the same time.

Like in the optimization ofw0 described above, we start
with weight assignments wherewp(a) = wmax/2, a ∈ Ap. We
then perform a given number of iterations, evaluating the cost
function Φ over the critical link failures with different weight
assignments. In our search heuristic, the aim is to minimize
the sumΨ of the cost of the network after the failure of each
link in LC :

Ψ =
∑

a∈LC

Φa (10)

In each iteration step, we perform the following operations:

1) First we select the next backup configurationCp in a
round robin fashion.

2) For each linka in the backboneBp of this configuration
(one link at a time), we choose a random link weight
wp(a) from the interval[1, . . . , wmax]. This corresponds
to evaluating1/wmax of the neighborhood ofwp.

3) We evaluateΨ for each of these candidate weight
assignments.

Note that for the failure of the links inLC that are not
included in Lp for the current configuration, the evaluation
performed in the third step will always yield the sameΦ,
irrespective ofwp. Hence, these values can be reused for all
candidate weight assignments. We only have to recompute the
cost of the network for the failures of the links inLp. This
significantly reduces the number of evaluations we have to
perform in our heuristic.

If we do not see an improvement ofΨ after a given number
of consecutive iterations, we jump to another area of the search
space by randomly changing the link weight of a fraction of
the links in the network.

3) Complexity:Optimizing n different weight assignments
for a multitude of potential link failures is a complex task.An
important goal in our approach has therefore been to create a
heuristic that scales to networks of hundreds of nodes. Thisis
achieved through the use of the critical link setLC , and the
further division of this into a set of critical linksLp for each
backup configuration.

We can get an idea of the complexity of our heuristic
by counting the number of evaluations of the network cost
Φa we need to perform, compared to the methods in [13],
[14]. These methods try to optimize a single link weight
assignment only, and use the same strategy of only evaluating
the most critical link failures. In each iteration, they need to
calculate the value ofΦa |LC | times for each candidate weight
assignment. With our heuristic, we only need to evaluate
Φa |Lp| times for each candidate weight assignment. The
number of links inLp is dependent on the size ofLC and the
number of backup configurations used to protect the network.
The failure of a link(u, v) results in recovered traffic being
diverted to one or two backup configurations according to
Eq. (6), depending on whetheru and v are isolated in the
same configuration. The failure of a link can thus give traffic
in at most 2 out ofn backup configurations. If we assume that
the number of isolated nodes are not very different between
the configurations, we have that, on average,|Lp| is roughly
|LC | ·

2

n
.

In each iteration, we only alter the link weights of linksAp

in the backboneBp of the current configuration. The weights
of the isolated and restricted links that are not included inBp

are decided by MRC, and can not be changed. Obviously, the
number of links|Ap| in each backboneBp is less than|A|.

To sum up our discussion so far; if we usei iterations with
the methods described in [13], [14], evaluating the network
cost Φa |A| times with |LC | different link failures in each
iteration, we will perform a total ofi · |A| · |LC | evaluations
of Φa. With our method, if we performi iterations foreach

backup configuration, we end up with a total of

n · i · |Ap| · |Lp| < 2 · i · |A| · |LC | (11)

evaluations ofΦa. This means that even if we let the number
of backup configurations grow, we never need more than twice
the number of evaluations needed by [13] and [14].

EvaluatingΦa involves calculating a shortest path tree for
each destination in the network. This can be done in a more
efficient way by relying on incremental calculations [15] when
evaluatingΦa for different failures. EvaluatingΦa is somewhat
more expensive when using MRC, since we need to calculate
shortest paths in one or two backup configurations in addition
to the normal configuration. On the other hand, since we
optimize for a smaller number of failures in each backup
configuration, we have found that we can decrease the number
of iterations used per configuration, and still achieve good
results. All in all, our experience is that the running time of
our heuristic is comparable to that of [14].

IV. PERFORMANCE EVALUATION

We have evaluated our approach using simulations for a
range of real and synthetically generated network topologies.
We use the network cost and the maximum link load after
failure as performance metrics.

A. Method

1) Topologies and traffic:We have tested our mechanism
on topologies from four existing or planned real-world network
topologies from the Rocketfuel [16] database: Sprint US (PoP
level, 32 nodes, 64 links), COST239 (11 nodes, 26 links),
Geant (19 nodes, 30 links) and German Telecom (10 nodes, 17
links). We have also performed tests on synthetically generated
topologies. We generated topologies of four different classes -
32 nodes and 64 links, 32 nodes and 96 links, and 128 nodes
and 256 links. The synthetic topologies were generated using
the Waxman topology model [17]. For all the topologies, both
real and synthetic, all links have an equal abstract link capacity
of 1 in our tests.

To evaluate the link load changes after the failure, it is
necessary to know the traffic demands between all network
origins and destinations. Even for real networks, this datais
generally unavailable, due to its confidentiality and difficulties
in collecting it. We chose to synthesize the origin-destination
(OD) flow data by drawing flow values from a probability
distribution, and matching the values with the OD pairs using
the heuristic described in [18]. In short, we sorted the OD
pairs according to their node degree and the likelihood of one
of them being used as the backup node in the case of a single
link failure. Then, we matched the sorted OD pair list with
the sorted list of flow intensities generated using the gravity
model, which is suited for this purpose [19].

Once the OD matrix is generated, it needs to be scaled to the
link capacities so that it can provide a meaningful evaluation
of the effect of link failures on the flows. It has proven hard
to find a general parameter setting that achieves this for all
networks. We chose to tune the load so that the maximum

link load after the worst case failure is about 100%. In most
cases, this corresponds to a maximum link load in the failure-
free case of approximately 2/3 of the link capacity.

2) Routing and cost function:We used shortest path routing
in all calculations. When multiple equal cost paths toward a
destination were available, the load was split equally among
them.

To evaluate a given weight assignment, we must define the
costΦ of routing a given traffic demand through the network.
In this work we choose to adopt the commonly used cost
function introduced in [9]. Using this cost function, each link
a is given a costφa dependent on its loadl(a) and its capacity
c(a). The total network costΦ =

∑

a∈A φa is then the sum
of the cost of each link. The costφa(l(a)) of a link is defined
as the continuous function withφa(0) = 0 and derivative:

φ′

a(x) =































1 for 0 ≤ x/c(a) < 1/3,
3 for 1/3 ≤ x/c(a) < 2/3,

10 for 2/3 ≤ x/c(a) < 9/10,
70 for 9/10 ≤ x/c(a) < 1,

500 for 1 ≤ x/c(a) < 11/10,
5000 for 11/10 ≤ x/c(a) < ∞

(12)
The cost functionφa(l(a)) is defined so that it is cheap to

send traffic over lightly-loaded links, while adding trafficto a
link a that is already overloaded gives a very high value of
φa.

3) Evaluation setup: In our experiments, we optimized
C0 for the failure free case using the heuristic described in
Sec. III-A with 1000 iterations. We jumped to another area
of the search space by randomly perturbing weights if we
saw 200 iterations without an improvement. When optimizing
the link weights in the backup configurationsC1, . . . , Cn, we
used as little as 20 iterations per backup configuration, and
did a random perturbation after 10 non-improving iterations.
We used a critical link set size|LC | = 20.

As an evaluation benchmark in our experiments with the
GEANT network, we compare our method to an unrealistic
full rerouting approach where link weights are optimized to
fit the new topology after each specific link failure. This
optimization is done in the same way as the optimization of the
failure freeC0. Performing this operation for every link failure
takes much computing resources, and is only feasible in our
experiments for small networks. To test the performance of our
weight setting heuristic, we also compare to an idealized MRC
approach where link weights in the backup configurations are
optimized to fit a single link failure only. We use the same
heuristic as before, but in each iteration we evaluateΦa for a
single link only, instead of taking all critical links into account.

In our evaluation of real and synthetic networks shown
in Tab. I, we show the performance of MRC using 5 and
10 backup configurations. We compare this to the results
given by a complete OSPF/IS-IS re-convergence on the nor-
mal configuration. Also, in lack of other proactive recovery
mechanisms that try to optimize the routing after a failure,
we compare MRC performance against the method for robust

a)

 1.2

 1.6

 2

 2.4

 2.8

 0 5 10 15 20 25 30

C
os

t φ
a

Failed link id

GEANT network - 5 backup configurations

Optimal
MRC ideal

MRC

b)

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30
Lo

ad
Failed link id

GEANT network - 5 backup configurations

Optimal
MRC ideal

MRC

Fig. 3. CostΦa and maximum link load in the network after each link
failure.

routing described in [14]. This method constructs a single set
of link weights that performs well in both the failure free
case and with a single link failure. It is not designed to work
with any fast reroute mechanism, and the load distribution is
hence only achieved after a full shortest path re-convergence
on the new topology. A drawback with this method is that its
performance can not be optimized for failure free operation
only. In our experiments, parameters are set so that we allow
a cost increase of up to 20% in the failure free case with this
method.

We use the costΦ and the load on the most loaded link in the
network as our evaluation parameters. To be able to compare
networks of different size, we normalizeΦ with the cost of
routing the demand through the same network with unlimited
link capacities, i.e. a network whereφa = l(a)/c(a) according
to Eq. (12).

B. Results and discussion

1) Cost and link loads in a single network:Figure 3a
shows the network costΦa after the failure of each link in
the GEANT network topology. The cost is shown for the
unrealistic optimal shortest path rerouting, idealized MRC, and
our MRC approach. The link failures are sorted on the x-axis
after increasing cost in the optimal case. The traffic demandis
scaled so that the costΦ is 1.33 in the failure free case, giving
a maximum link load of 0.67. Figure 3b shows the maximum
link load in the network after the same link failures.

The graphs show that for most failures, MRC performance
is close to that of the unrealistic optimal rerouting. For a
few link failures, our MRC approach diverts more from the

 0

 2

 4

 6

 8

 4 6 8 10 12 14

C
os

t φ

Number of backup configurations

32 node network - synthetic traffic

Average
Max

 0.8

 0.9

 1

 1.1

 1.2

 4 6 8 10 12 14

M
ax

 L
oa

d

Number of backup configurations

32 node network - synthetic traffic

(a) (b)

Fig. 4. CostΦa and maximum link load in the network after the worst case
link failure. Φa is median over 20 runs, maximum load is mean over 20 runs.

optimal. In these cases, the MRC backup configurations are
constructed so that recovered traffic is routed over links that
are already somewhat loaded. We see that when this happens,
the performance of our heuristic is close to that of the idealized
MRC. This indicates that if we want to further improve the
performance of MRC, we could expect the best results by
improving the backup configuration construction algorithm,
instead of creating a better weight search heuristic. Note that
MRC sometimes gives a lower maximum link load than the
optimal shortest path rerouting. This happens when MRC is
forced to create longer recovery paths (giving a higherΦ)
due to the restrictions in the backup configurations, but this
happens to avoid the most heavily loaded link that would
otherwise be used.

2) Varying the number of backup configurations:Figure
4a shows the network costΦa after the worst case link failure
for a synthetically generated network with 32 nodes and 64
links, using a varying number of backup configurations. Since
our weight setting search contains an element of randomness,
we sometimes experience cost values that deviate significantly
from what is expected. To mitigate this effect, the values
shown are the median value obtained by running our algorithm
20 times with a different seed.

As expected, we see that the cost is highest when the min-
imum number of backup configurations (3 for this network)
is used. The load balancing improves when we increase the
number of backup configurations used. Since each node in
the network is isolated in exactly one backup configuration,
increasing the number of backup configurations gives richer
backbones to route the recovered traffic in. We see that
increasing the number of configurations used beyond 8 gives a
very limited effect for this network. We have observed similar
trends for other networks. This indicates that it is possible
to achieve a good load balancing using a modest number of
backup configurations. As seen in Fig. 4b, the maximum link
load after the worst case failure shows more variation than the
maximumΦa. This is a result of the piecewise linear nature
of the cost function in Eq. (12), which does not prefer two
links with load 0.95 to one link with load 0.90 and one with
load 1.00.

3) Evaluation over different networks:We have evaluated
the network cost and the maximum link load after the worst

case link failure for a range of real-world and synthetically
generated network topologies, as shown in Tab. I. Results
are shown for MRC using 5 and 10 backup configurations, a
normal full SPF re-convergence, and the method described in
[14], denoted S/G. We have run experiments for 5 different
topologies of each type of synthetic topologies. For each
recovery method we show the average costΦa

avg after each
link failure, the costΦa

max after the worst case link failure, and
the loadlmax of the most heavily loaded link after the worst
case link failure. We also show the costΦ and the maximum
link load in the failure free case. The values shown in the table
are median values over 3 runs with different seed.

The general trend is that MRC performs better than the
normal shortest path rerouting after the worst case link failure,
with respect to both cost and maximum link load. MRC
performance is improved if we increase the number of backup
configurations used. Using 10 backup configurations, MRC
performance gets close to that of the S/G method, and for
networks of moderate size and connectivity (T32-64), MRC
performance is as good as that of S/G. The costΦ in the
failure free case is up to 20% higher with the S/G method
than with MRC - in our experiments we typically saw values
that were 3-15% higher.

Normal SPF re-convergence performs better for larger net-
works (T128-256) than for small networks. We believe this is
partly a result of the traffic model used. With larger networks,
the chance that a heavily loaded link is selected in a backup
path decreases, and a normal shortest path re-convergence is
closer to the optimal solution.

V. CONCLUSION AND FUTURE WORK

In this paper, we have argued that the post-failure load
distribution should be taken into account when designing a
proactive recovery scheme for IP networks. We think this is
imperative for the adoption of any such scheme. We presented
an algorithm for creation of backup configurations and a
link weight assignment heuristic that reduces the chance of
congestion after a link failure when MRC is used for recovery.
Our method does not compromise performance in the failure-
free case, and it is strictly pre-configured; no calculations are
necessary after the failure.

We have evaluated our method using both real and syn-
thetic network topologies. Our results show that by using our
scheme, MRC offers better post-failure load distribution in the
network than what is achieved by a full global rerouting using
the original link weights. In particular, our heuristic reduces
the load on the most loaded links in the network after a worst-
case link failure compared to a normal shortest path rerouting.
The performance of our method is about the same as that of
the method described in [14], which is not designed to be
used with a proactive IP recovery scheme and that reduces
performance in the failure free case.

There are several possible directions for future work re-
lated to the present study. While in this paper the backup
configuration construction and the link weight optimization
are two separate steps, we believe that even better results can

TABLE I

COST AND MAXIMUM LINK LOAD FOR SELECTED REAL AND SYNTHETIC NETWORK TOPOLOGIES

Proactive recovery Reactive recovery
Failure free MRC n=5 MRC n=10 S/G Normal SPF

Network Φ lmax Φ
a
avg

Φ
a
max

lmax Φ
a
avg

Φ
a
max

lmax Φ
a
avg

Φ
a
max

lmax Φ
a
avg

Φ
a
max

lmax

German Tel 1.40 66% 1.91 4.85 102% 1.95 5.00 102% 1.63 2.05 81% 14.60 86.53 117%
Geant 1.36 68% 1.65 2.39 101% 1.69 4.94 108% 1.58 1.90 90% 2.54 31.91 120%
Sprint US 1.18 64% 1.40 6.05 110% 1.39 6.00 110% 1.40 5.58 110% 1.35 5.53 110%
Cost239 1.39 66% 1.57 2.62 99% 1.56 2.62 99% 1.51 1.94 79% 1.55 2.61 99%

T32-64-0 1.33 66% 1.48 2.20 103% 1.45 1.59 82% 1.42 1.60 87% 1.41 1.63 98%
T32-64-1 1.26 59% 1.39 1.73 95% 1.38 1.54 75% 1.36 1.54 94% 1.34 1.91 102%
T32-64-2 1.33 67% 1.48 2.21 100% 1.48 2.21 100% 1.42 1.52 89% 1.42 2.15 104%
T32-64-3 1.30 67% 1.46 2.65 105% 1.46 2.65 105% 1.61 3.04 109% 1.47 5.17 111%
T32-64-4 1.29 66% 1.42 1.91 96% 1.41 1.79 90% 1.35 2.04 102% 1.36 2.28 103%

T32-96-0 1.35 67% 1.43 1.99 104% 1.42 1.62 99% 1.39 1.47 92% 1.41 2.23 109%
T32-96-1 1.34 78% 1.46 3.60 110% 1.45 3.22 111% 1.39 1.85 101% 1.50 10.86 114%
T32-96-2 1.36 72% 1.59 7.60 117% 1.46 1.85 103% 1.43 3.05 111% 1.56 6.88 114%
T32-96-3 1.35 65% 1.44 2.27 108% 1.42 1.63 100% 1.41 1.57 98% 1.39 1.69 101%
T32-96-4 1.36 76% 1.48 5.05 113% 1.48 4.02 111% 1.40 1.53 97% 1.46 4.89 112%

T128-256-0 1.23 67% 1.27 1.34 91% 1.26 1.32 95% 1.25 1.28 86% 1.25 1.28 90%
T128-256-1 1.21 66% 1.24 1.30 83% 1.24 1.30 85% 1.23 1.25 73% 1.22 1.24 70%
T128-256-2 1.18 67% 1.21 1.31 92% 1.21 1.33 93% 1.19 1.22 72% 1.19 1.22 72%
T128-256-3 1.20 66% 1.23 1.31 84% 1.23 1.31 90% 1.22 1.23 82% 1.21 1.24 82%
T128-256-4 1.20 66% 1.23 1.31 84% 1.23 1.31 90% 1.21 1.24 76% 1.21 1.23 76%

be achieved by unifying these two processes. We also think
that the idea of multiple parallel network configurations can be
used to give dynamic load balancing in the failure-free case,
by diverting traffic away from heavily-loaded links using an
alternative configuration.

In the final stages of the work on this paper, we discovered
the technical report [20]. This report describes a method for
creating multiple topologies to achieve fast rerouting in IP
networks, and a heuristic to set link weights in the topolo-
gies. They compare their post-failure load distribution tothat
achieved by using the not-via approach [4], and find that
their multi-topology strategy performs better for the tested
networks according to their metrics. Both the method for
creating backup topologies and for setting link weights is
substantially different from ours. As future work, we plan to
compare the performance of this method to that of our own.

ACKNOWLEDGEMENTS

We would like to thank our colleague Olav Lysne for help
and insightful comments during the work with this paper.

REFERENCES

[1] D. Watson, F. Jahanian, and C. Labovitz, “Experiences with monitoring
OSPF on a regional service provider network,” inICDCS ’03: Proceed-
ings of the 23rd International Conference on Distributed Computing
Systems. IEEE Computer Society, 2003, pp. 204–213.

[2] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “DelayedInternet
Routing Convergence,”IEEE/ACM Transactions on Networking, vol. 9,
no. 3, pp. 293–306, June 2001.

[3] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive
vs. reactive approaches to failure resilient routing,” inProceedings
INFOCOM, Mar. 2004.

[4] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-via
addresses,” Internet Draft (work in progress), Oct. 2005, draft-bryant-
shand-IPFRR-notvia-addresses-01.txt.

[5] A. Kvalbein, A. F. Hansen, T.̌Cičić, S. Gjessing, and O. Lysne, “Fast IP
network recovery using multiple routing configurations,” inProceedings
INFOCOM, Apr. 2006.

[6] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N.Chuah, and
C. Diot, “Characterization of failures in an IP backbone network,” in
Proceedings INFOCOM, Mar. 2004.

[7] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to
alleviate link overload as observed on an IP backbone,” inProceedings
INFOCOM, Mar. 2003, pp. 406–416.

[8] S. Rai, B. Mukherjee, and O. Deshpande, “IP resilience within an
autonomous system: Current approaches, challenges, and future direc-
tions,” IEEE Communications Magazine, vol. 43, no. 10, pp. 142–149,
Oct. 2005.

[9] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights.” inProceedings INFOCOM, 2000, pp. 519–528.

[10] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” inProceedings INFOCOM, April 2001, pp. 565–
571.

[11] A. Sridharan, R. Guirin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,”IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 234–247, April 2005.

[12] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot,
“IGP Link Weight Assignment for Transient Link Failures,” in18th
International Teletraffic Congress, Berlin, Germany, Aug. 2003.

[13] B. Fortz and M. Thorup, “Robust optimization of OSPF/IS-IS weights,”
in INOC, oct 2003, pp. 225–230.

[14] A. Sridharan and R. Guerin, “Making IGP routing robust to link
failures,” in Proceedings of Networking, Waterloo, Canada, 2005.

[15] G. Ramalingam and T. Reps, “An incremental algorithm for ageneral-
ization of the shortest-path problem,”J. Algorithms, vol. 21, no. 2, pp.
267–305, 1996.

[16] “Rocketfuel topology mapping,” WWW, http://www.cs.washington.edu.
[17] B. M. Waxman, “Routing of multipoint connections,”IEEE Journal on

Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, Dec.
1988.

[18] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically
generating IP traffic matrices: Initial recommendations,”SIGCOMM
Comput. Commun. Rev., vol. 35, no. 3, pp. 19–32, July 2005.

[19] M. Roughan, “Simplifying the synthesis of internet traffic matrices,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 93–96, Oct.
2005.

[20] G. Apostolopolous, “Using multiple topologies for IP-only protection
against network failures: A routing performance perspective,” ICS
FORTH, Crete, Greece, Tech. Rep., apr 2006.

