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A REDUCED BASIS ELEMENT METHOD FOR THE STEADY STOKES

PROBLEM
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Abstract. The reduced basis element method is a new approach for approximating the solution of
problems described by partial differential equations. The method takes its roots in domain decomposi-
tion methods and reduced basis discretizations. The basic idea is to first decompose the computational
domain into a series of subdomains that are deformations of a few reference domains (or generic com-
putational parts). Associated with each reference domain are precomputed solutions corresponding to
the same governing partial differential equation, but solved for different choices of deformations of the
reference subdomains and mapped onto the reference shape. The approximation corresponding to a
new shape is then taken to be a linear combination of the precomputed solutions, mapped from the
generic computational part to the actual computational part. We extend earlier work in this direction
to solve incompressible fluid flow problems governed by the steady Stokes equations. Particular focus
is given to satisfying the inf-sup condition, to a posteriori error estimation, and to “gluing” the local
solutions together in the multidomain case.
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1. Introduction

The reduced basis element method is a new approach for approximating the solution of problems described
by partial differential equations. The method takes its roots in domain decomposition methods and in reduced
basis discretizations.

Reduced basis methods have been introduced in [8] and [15] as a computational approach that makes it
possible to obtain a good approximation by solving very small systems. The problem is described by partial
differential equations, and the solution depends on one or more parameters. For many problems, the dependency
of the solution on the parameters is often regular. It is thus possible to approximate the solution for general
values of the parameters as a linear combination of precomputed solutions for certain instances (or “snapshots”)
of the parameters. The best linear combination is often found by a Galerkin procedure.

The reduced basis framework may be applied to a particular region in physical space. The parameters may
be material properties or geometric parameters, say. An extension of this framework to solve more complex
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problems is based on first decomposing the domain into generic building blocks, and then applying the reduced
basis approach locally in the context of each building block. A global approximation is then constructed by
gluing together the local approximations using a mortar type method. These are the essential ingredients of
the reduced basis element method. The term ”element” here refers to the notion of a generic building block or
part like in the spectral element or mortar element method.

The reduced basis element method was introduced in [13] in the context of solving the Laplace equation
in a deformed geometry. In that work, the computational domain was broken into generic building blocks or
parts (e.g., “pipes”), and the geometry of each part played the role of the parameters. The reduced basis
approximations associated with all the parts were glued together through the use of Lagrange multipliers.

Further progress was made in [14] in the context of solving a thermal fin problem. In particular, a posteriori

error bounds were developed for the output of interest. We remark that this aspect represents an essential
ingredient in developing practical reduced basis methods. Since it is a priori difficult to guess the number of
reduced elements required in practical computations, a posteriori error bounds represent practical tools which
allow us to certify the computational results.

In this paper, we extend the results in [13] to solve incompressible fluid flow problems modeled by the steady
Stokes equations. What is similar to earlier work is the construction of a reduced basis for a particular generic
part based on “geometric snapshots,” and the representation of the individual basis functions on a reference
domain associated with the generic part. However, there are also several new extensions and new aspects
considered in this paper.

In Section 2 we state the steady Stokes problem we are considering together with the particular geometries
we are dealing with. The spectral discretization used to construct the reduced basis is also briefly reviewed.
In Section 3 we introduce the reduced basis method in the single domain case, and present numerical results.
Two different methods are presented, one where the velocity-pressure pair is computed (Method 1), and one
where only the velocity is computed (Method 2). We also extend the a posteriori analysis in [16] and [18] to
the compliant case.

Finally, in Section 4, we turn our attention to the multiple domain case. Of particular interest is the proper
gluing of the local approximations. As in the earlier work, we use a mortar type method based on Lagrange
multipliers; see [4]. The pressure is only in L2, so no particular problems occur here. However, special care has
to be given to the definition of the Lagrange multiplier spaces associated with the velocity vectorial field.

2. The steady Stokes problem

2.1. Governing equations

We consider here the two-dimensional steady Stokes equations

−ν∆u+ ∇p = f in Ω,

∇ · u = 0 in Ω,
(2.1)

where u = (u1, u2) is the velocity field, p is the pressure, f = (f1, f2) is a prescribed volumetric body force, and
ν is the fluid viscosity; see [1]. The steady Stokes equations model laminar flow at very low Reynolds number;
the nonlinear advection term of the Navier-Stokes equations is neglected, and we are left with a linear problem.
The velocity formulation (2.1) is an appropriate model when ν is constant and for certain types of boundary
conditions. For all the problems studied in this paper, this model will suffice. For more general problems, the
full stress formulation of the steady Stokes equations should be used.

We consider here a domain Ω with an inflow boundary, Γin, an outflow boundary, Γout, and wall boundaries,
Γw. On this domain we introduce the velocity space

X = {v ∈ (H1(Ω))2, v|Γw
= 0 and vt|Γin

= vt|Γout
= 0}, (2.2)
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where vt is the tangential velocity component. In addition, we have the Neumann type boundary conditions
given by specifying σn = ν ∂un

∂n
− p to be σin

n = −1 along Γin and σout
n = 0 along Γout; here, un is the normal

velocity component and ∂/∂n denotes the derivative in the outward normal direction. From the divergence free

condition and the fact that ut = 0 along the inflow and outflow boundaries, we deduce that ∂un

∂n
= 0 along Γin

and Γout, which implies that the Neumann conditions correspond to specifying the pressure along the inflow
and outflow boundaries (in a weak sense).

With the given boundary conditions, we define the pressure space to be

M = L2(Ω). (2.3)

In order to solve the steady Stokes equations we define the bilinear forms

a(v,w) = ν

∫

Ω

∇v · ∇w dΩ = ν

2
∑

i,j=1

∫

Ω

∂vi

∂xj

∂wi

∂xj

dΩ, (2.4)

b(v, q) = −

∫

Ω

q∇ · v dΩ =

2
∑

i=1

−

∫

Ω

q
∂vi

∂xi

dΩ, (2.5)

and consider the weak form: Find u ∈ X and p ∈M such that

a(u,v) + b(v, p) = l(v) ∀ v ∈ X
b(u, q) = 0 ∀ q ∈M,

(2.6)

where

l(v) = (f ,v) +

∫

Γin

σin
n v · nds+

∫

Γout

σout
n v · nds . (2.7)

For the steady Stokes problem (2.6), the coercivity condition

a(w,w) ≥ α||w||2H1(Ω), ∀ w ∈ X, α > 0, (2.8)

and the inf-sup condition

inf
q∈M

sup
v∈X

b(v, q)

||q||L2(Ω)||v||H1(Ω)
= β > 0, (2.9)

see [2] and [6], are both satisfied, which ensures a unique solution.

2.2. Mapping to a reference domain

In the following, we focus on two-dimensional problems where the domain Ω is at least Lipschitz continuous,
and can be considered as a mapping of a reference domain Ω̂ = (−1, 1)2, see Figure 1. We write Ω = Φ(Ω̂),

where Φ is a one-to-one mapping, and the left and right vertical edges on Ω̂ correspond to the inflow and outflow
boundaries on Ω, respectively. In terms of the reference variables, we can then alternatively express (2.4) and
(2.5) as

a(v,w) = ν

∫

Ω̂

J −T ∇̂(v ◦ Φ) · J −T ∇̂(w ◦ Φ)|J | dΩ̂, (2.10)

b(v, q) = −

∫

Ω̂

(q ◦ Φ)∇̂ · [J−1(v ◦ Φ)]|J | dΩ̂, (2.11)

where J is the Jacobian of Φ,

J =

[

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]

, (2.12)
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Figure 1. Mapping of the reference domain.

and J denotes the determinant of J . A similar transformation can be done to the linear form (2.7); in the
following, we set f = 0 and ν = 1.

As is well known, this transformation is useful for the discretization of the Stokes problem. However, it will
also prove very useful when we consider the reduced basis element method. As discussed in Section 3, we will
exploit the fact that the solution u and p can be considered dependent on the geometry (or shape) through the
mapping Φ, i.e., u = u(Φ) and p = p(Φ); see [13].

2.3. Spectral discretization

We now consider a discretization of the steady Stokes problem (2.6) using a pure spectral method based on
high order polynomials; see [11] and [12]. For the sake of completeness and in order to introduce the proper

notation, let us first briefly recall some classical material on spectral approximation for Stokes flows. Let Pn(Ω̂)
be the space of all functions which are polynomials of degree less than or equal to n in each spatial direction of
the reference domain Ω̂. The discrete space for the velocity is then taken to be

XN = {v ∈ X, v ◦ Φ ∈ (PN (Ω̂))2}, (2.13)

while the discrete space for the pressure is

MN = {q ∈M, q ◦ Φ ∈ PN−2(Ω̂)}. (2.14)

The bases for XN and MN are conveniently expressed in terms of the reference variables ξ and η. As a basis
for XN we use a nodal basis through the tensor-product Gauss-Lobatto Legendre (GLL) points, while the basis
for MN is a nodal basis through the tensor-product Gauss-Legendre (GL) points; see [11] and [12]. Specifically,
we write uN ∈ XN as

(uN ◦ Φ) (ξ, η) =

N
∑

i,j=0

uij `i(ξ)`j(η), (2.15)

where `i(ξ) refers to a one-dimensional N -th order Lagrangian interpolant through the GLL points ξm, m =
0, ...,N ; hence, `i(ξm)`j(ξn) = δimδjn for a given point (ξm, ξn) in the underlying tensor-product GLL grid.
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In a similar fashion, we write pN ∈MN as

(pN ◦ Φ) (ξ, η) =

N−2
∑

i,j=0

pij
˜̀
i(ξ)˜̀j(η), (2.16)

where ˜̀
i(ξ) refers to a one-dimensional (N−2)-th order Lagrangian interpolant through the (interior) GL points

ζm, m = 0, ...,N−2; hence, ˜̀
i(ζm)˜̀j(ζn) = δimδjn for a given point in the tensor-product GL grid.

The discrete velocity uN ∈ XN is then uniquely determined by (N + 1)2 coefficients for each spatial compo-
nent, where some of the coefficients are fixed due to the prescribed Dirichlet boundary conditions. The discrete
pressure is determined by (N − 1)2 basis coefficients.

The mapping Φ is realized computationally through a Gordon-Hall algorithm, see [9], and by using an
isoparametric representation of the geometry. Each edge of Ω is given as a one-to-one mapping of a corresponding
edge [−1, 1] on Ω̂ and approximated as an N -th order polynomial; the location of the interior points are then
simply (xm, yn) = Φ(ξm, ξn), 1 ≤ m,n ≤ N − 1.

The bilinear forms and the linear form in (2.6) are expressed in terms of the reference variables, and the
integrals are evaluated using GLL and GL quadrature. This gives us the following discrete system: Find
uN ∈ XN and pN ∈MN such that

aN (uN ,v) + bN (v, pN ) = lN (v) ∀ v ∈ XN

bN (uN , q) = 0 ∀ q ∈MN ,
(2.17)

where aN , bN and lN refer to integration of the bilinear and linear forms using Gauss-type quadrature. Using the
chosen bases (2.15) and (2.16), we arrive at a system of algebraic equations for the unknown basis coefficients;
this system is solved using the conjugate gradient method in the context of the Uzawa algorithm; see [12].

We remark that the use of a spectral approximation is legitimate here since the solution of the Stokes problem
with the prescribed boundary conditions and the selected geometries is rather regular (especially in weighted
norms [5]) and very rapid convergence is expected. For any solution to the Stokes problem we consider in the
following, we assume that

εN ≡ ||u − uN ||H1 (2.18)

is much smaller than the tolerance we want to obtain for the computational results based on the methods we
now discuss.

3. A reduced basis method

3.1. Geometry as a parameter

In Section 2 we considered the numerical solution of a steady Stokes problem using a pure spectral method
based on high order polynomials. We had given a domain Ω as well as prescribed boundary conditions along
∂Ω.

Imagine now that we would like to solve similar problems, i.e., the same governing equations, imposing the
same boundary conditions, but now in a different domain. The only restriction is that the new domain should
also be obtained as the deformation of the reference domain Ω̂ through some regular one-to-one mapping; see
Figure 1.

The mapping from Ω onto the reference domain as explained in Section 2.2, suggests that the solution of
the steady Stokes problem will depend on the geometry (or shape) of the domain in a fairly regular manner.
The idea behind the reduced basis method is to exploit this fact. We will first solve the steady Stokes problem
for different “snapshots” of possible shapes, and then express the solution corresponding to a new and untried
shape as a linear combination of the precomputed solutions. To find the best linear combination, a Galerkin
procedure will be used.
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Note that the standard velocity and pressure bases introduced in Section 2.3 are expressed in terms of the
reference variables. In the reduced basis method, we will also express the bases with reference to Ω̂, but now
the basis functions will be the precomputed steady Stokes solutions mapped to the reference domain Ω̂.

3.2. Precomputing the basis solutions

We propose to use the same technique as for the Poisson problem in [13], in order to generate basis functions

for the steady Stokes problem. For a sample set of mappings of a reference domain, {Φi : Ω̂ → Ωi}
N
i=1, the

steady Stokes problem (2.1) with exact solutions (ui, pi) are approximated by the numerical solutions of (2.17)

which we denote by (ui ≡ ui
N , pi ≡ pi

N ). Again the left and right edges of Ω̂ correspond to the inflow and
outflow boundaries on Ωi, respectively. These solutions are then used as basis functions to find the solution for
a generic deformation. In order to do this we must map the solutions found on the deformed geometries,

{(ui, pi) ∈ XN (Ωi) ×MN (Ωi)}
N
i=1, (3.1)

to the reference domain, where they are stored. The pressure is a scalar field and will be mapped as such,
p̂i(ξ, η) = pi ◦ Φi(ξ, η). Since the regular mapping Φi(ξ, η) = (x, y) is one-to-one from Ω̂ to Ωi, this is well
defined. The velocity solution, ui, is a divergence free vector field on the deformed domain, and we want the
solution to keep this property when mapped to the reference domain. In particular, this means that if the flow
is perpendicular to a surface of the deformed domain, the mapped flow should be perpendicular to the mapped
surface. If we let ∇̂ be the gradient operator on the reference domain, we have the following relationship with
the gradient operator on the deformed domain

∇̂ = J T
i ∇. (3.2)

To find the proper mapping for the velocity, we start with the fact that

∫

Ωi

q ∇ · ui dΩi = 0 ∀ q ∈MN (Ωi), (3.3)

and demand that ûi = Ψi(ui) satisfies

∫

Ω̂

q̂ ∇̂ · ûi dΩ̂ = 0 ∀ q̂ ∈MN (Ω̂). (3.4)

By mapping the integral in (3.4) to Ωi, we get

∫

Ωi

q ∇ · [Ji(ûi ◦ Φ−1
i )|J−1

i | ] dΩi = 0 ∀ q ∈MN (Ωi). (3.5)

Equation (3.5) holds if Ji(ûi ◦ Φ−1
i )|J−1

i | = ui, which is known as Piola’s transformation; see [17] and [7] for

general properties. The proper mapping of the velocity from Ωi to Ω̂ will therefore be

ûi = Ψi(ui) = J−1
i (ui ◦ Φi)|Ji|, (3.6)

where

J −1 =

[

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

]

=
1

J

[

∂y
∂η

−∂x
∂η

−∂y
∂ξ

∂x
∂ξ

]

. (3.7)

Mapping the velocity-vectors to the reference domain in this way, will certainly keep the velocity perpendicular
to the same lines on the reference domain as the lines’ mapped counterparts on the deformed domain, and the
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velocity will be divergence free on the reference domain. We define the reduced basis reference spaces as

V̂N = VN (Ω̂) = span{ûi, i = 1, ..., N},

M̂N = MN (Ω̂) = span{p̂i, i = 1, ..., N}.
(3.8)

Note here that the basis functions ûi are divergence free (thus the standard notation ”V ” for the associated

space), but unfortunately the basis functions are not polynomials in (PN (Ω̂))2. Rather, due to our choice of an

isoparametric representation of the geometry, the basis functions ûi are polynomials in (P2N (Ω̂))2.
Some of the precomputed basis functions are not symmetric with respect to the horizontal center-line η = 0

in the reference domain. These basis functions are reflected across the line η = 0 in order to enrich the basis and
to eliminate directional effects; see [13]. In the following, we let N denote the total number of basis functions
such that the definition of the reduced basis reference spaces in (3.8) still holds.

For a generic domain Ω = Φ(Ω̂) we will now define the reduced basis solution spaces XN ⊂ XN and
MN ⊂MN that we will use. Our objective is to find a unique reduced basis solution uN ∈ XN and pN ∈MN

satisfying

aN (uN ,v) + bN (v, pN ) = lN (v) ∀ v ∈ XN

bN (uN , q) = 0 ∀ q ∈MN .
(3.9)

As before the coercivity of a(·, ·) holds for all v ∈ XN . The inf-sup condition (2.9), however, depends strongly
on XN and MN .

Since we have assumed that Φ : Ω̂ → Ω is one-to-one, and the pressure pN is a scalar field over Ω, we define
the reduced basis pressure space MN as

MN = span{p̂i ◦ Φ−1, i = 1, ..., N}. (3.10)

We could map the precomputed velocity fields ûi to the new geometry Ω as

Ψ−1(ûi) ≡ J (ûi ◦ Φ−1)|J−1|, i = 1, ..., N, (3.11)

and then define the discrete velocity space X0
N as equal to the space

VN = span{Ψ−1(ûi), i = 1, ..., N}. (3.12)

Unfortunately, due to the inverse Piola transform (3.11), the complexity of the functions Ψ−1(ûi) has increased
even more in the sense that they are not even polynomials. We thus set

X0
N = span{ũi = IN (Ψ−1(ûi) ◦ Φ) ◦ Φ−1, i = 1, ..., N}. (3.13)

where IN is the interpolation operator defined over C0(Ω̂) at the Gauss-Lobatto Legendre points (ξm, ξn), 0 ≤

m,n ≤ N onto PN (Ω̂). By construction, X0
N is now a subspace of XN , but the basis functions for X0

N are now
only approximately divergence free. Specifically, using the optimality of the interpolation operator both in the
L2 and H1 norms together with the fact that div(Ψ−1Ψi(u

i)) = 0 in Ω, it can be proven that

||∇ · ũi||L2(Ω) ∼ O(εN ). (3.14)

We now present two different methods to solve the steady Stokes problem (3.9).

3.3. Method 1

In our first method for choosing the reduced basis velocity space we will define XN such that (3.9) can be
solved directly for both the velocity and the pressure. In order to properly satisfy the inf-sup condition we
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have to enrich the velocity basis. One way of doing this is for each pressure solution p̂i that spans M̂N , to find
v̂(p̂i) = v̂i ∈ X̂N = XN (Ω̂) such that

v̂i = arg max
û∈X̂N

∫

Ω̂
p̂i∇̂ · û dΩ̂

|û|H1

. (3.15)

It is well known that the solution of (3.15) also satisfies

∫

Ω̂

∇̂v̂i · ∇̂ŵ dΩ̂ =

∫

Ω̂

p̂i∇̂ · ŵ dΩ̂, ∀ ŵ ∈ X̂N . (3.16)

We thus find the v̂i’s by solving (3.16) for the precomputed p̂i, i = 1, ..., N . In practice, we evaluate the integrals
in (3.16) using GLL quadrature. We define the enriched velocity reference space as

X̂e
N = span{v̂i, i = 1, ..., N}, (3.17)

with corresponding enriched velocity space defined on Ω as

Xe
N = span{ IN (Ψ−1(v̂i) ◦ Φ) ◦ Φ−1, i = 1, ..., N }. (3.18)

If we then define
XN = X0

N ⊕Xe
N , (3.19)

the inf-sup condition will be satisfied since

inf
q̂∈M̂N

sup
û∈X̂0

N
⊕X̂e

N

∫

Ω̂
q̂∇̂ · û dΩ̂

||q̂||L2 ||û||H1

≥ inf
q̂∈M̂N

sup
û∈X̂e

N

∫

Ω̂
q̂∇̂ · û dΩ̂

||q̂||L2 ||û||H1

= inf
q̂∈M̂N

C
|v̂(q̂)|H1

||q̂||L2

= β > 0, (3.20)

where C is a constant, and v̂(q̂) is the solution of (3.16) with p̂ = q̂. We remark that β may depend on N .

3.4. Method 2

In our second method we will explicitly use the fact that the basis functions in X0
N are almost divergence

free. It is well known that the solution of the steady Stokes problem (2.17) corresponds to solving an underlying
min-max problem; see [7]. With the availability of a divergence free basis, this min-max problem reduces to the
pure minimization problem

uN = arg min
v∈VN

I(v) =
1

2
aN (v,v) − lN (v),

where
VN = {v ∈ XN , bN (v, q) = 0 ∀q ∈ MN }.

This minimization problem is again equivalent to the (vector) Poisson problem: Find uN ∈ VN such that

aN (uN ,v) = lN (v) ∀ v ∈ VN . (3.21)

To solve this Poisson-type problem the inf-sup condition is irrelevant, and (3.21) has a unique solution uN ∈ VN
due to the coercivity of aN (·, ·).

Method 2 then consists of approximating VN by X0
N and instead solve the problem: Find uN ∈ X0

N such
that

aN (uN ,v) = lN (v) ∀ v ∈ X0
N . (3.22)

The advantage of this approach lies in the fact that the resulting algebraic system is very small. In fact, the
dimension of this system is just N . An extension of this approach to three dimensions would also yield a system
of dimension N for N precomputed basis functions.
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The solution of (3.22) only gives the velocity. In order to compute the pressure, we proceed as follows: We
know that for all v ∈ VN , bN (v, q) = 0 ∀ q ∈ MN . On the other hand, for Method 2 we know that for all
v ∈ X0

N , bN (v, q) will be approximately equal to zero for all q ∈ MN ; see (3.14). Besides, we know that the
inf-sup condition is fulfilled for the previously defined spaces Xe

N and MN . We can then compute the pressure
pN ∈MN uniquely by solving

bN (v, pN ) = −aN (uN ,v) + lN (v) ∀ v ∈ Xe
N . (3.23)

The dimension of the algebraic system corresponding to (3.23) is just N , similar to the velocity system.

3.5. Relation between Method 1 and Method 2

Since the ability to work with divergence free functions is tempting, let us make a few remarks that will allow
us to better understand the links between the two methods.

First, one could imagine to modify the basis functions ũi so that these are exactly divergence free, at least
in the reduced basis sense. To do that, let us first compute corrections u′

i ∈ Xe
N so that

bN (u′
i, q) = bN (ũi, q) ∀q ∈MN .

The existence of u′
i follows from the inf-sup condition and dim(MN ) = dim(Xe

N ), with the norm of u′
i presumably

bounded by C ||ui − ui||H1(Ωi), and with C depending on β. Based on ǔi = ũi − u′
i we could then define a

space
X̌0

N = span{ǔi, i = 1, . . . , N}

so that
∀v ∈ X̌0

N , bN (v, q) = 0 ∀q ∈MN .

We could then propose a method based on X̌0
N following (3.22) named Method 2̌.

Second, it is interesting to note that Method 1 and Method 2̌ now coincide, which can be seen as follows.
Although uN according to Method 1 is an element in X0

N ⊕Xe
N , we will argue that uN ∈ X̌0

N . First we let

uN = ǔ0
N +

N
∑

i=1

αivi, (3.24)

where ǔ0
N ∈ X̌0

N , and vi ∈ Xe
N for i = 1, ..., N . This gives the relation

bN (uN , q) = bN (

N
∑

i=1

αivi, q) ∀ q ∈MN . (3.25)

Next we take q =
∑N

i=1 αipi, where {pi}N
i=1 is the basis for MN , and get

bN (uN , q) = bN (

N
∑

i=1

αivi,

N
∑

i=1

αipi), (3.26)

which according to (3.16) leads to

bN (uN , q) = aN (

N
∑

i=1

αivi,

N
∑

i=1

αivi) ≥ 0 . (3.27)

We already know that
bN (uN , q) = 0 ∀ q ∈MN , (3.28)
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Figure 2. The domain Ω with velocity and pressure solution.

so we must have
∑N

i=1 αivi = 0, which again means that αi = 0 for i = 1, ..., N since the vi’s are linearly

independent, which follows directly from the linear independence of the pi’s. Hence, uN ∈ X̌0
N ⊂ XN . Method

1 and Method 2̌ are thus equivalent (at least for the single domain case considered here), however, the two
methods lead to different computational schemes with different computational complexities.

Third, we expect Method 2 and Method 2̌ to give very similar velocity fields. This remark is justified
heuristically by the fact that ũi and ǔi differ with a very small amount (they are ”spectrally close”, i.e., the
error is based on the spectral accuracy ||ui −ui||H1 and not on the reduced basis accuracy). This claim is also
substantiated by numerical evidence since Method 1 and Method 2 give almost the same convergence rate; see
for example the numerical results reported in Table 1 in the context of a simple geometric framework. However,
the results from Method 2 may not always be as good as the results from Method 1, in particular, when the
reduced basis error is very small.

Finally, we remark that for both methods, the exact (spectral) solution is recovered on the geometries that
have been used to build the reduced basis (consistency of the approach), and also on the geometries obtained
through symmetry acting on these geometries.

3.6. Numerical results

We now define the domain Ω = Φ(Ω̂) to be the deformed annulus in Figure 2. For a polynomial degree
N = 25 we compute the solution (uN , pN ) of (2.17), and use it to assess the quality of our reduced basis
approximation (uN , pN ). The velocity and pressure functions {(ui, pi) ∈ XN (Ωi) ×MN (Ωi)}8

i=1 are found by
solving (2.17) on the different geometries appearing in Figure 3. After mapping these functions to the reference
domain as p̂i = pi ◦ Φi and ûi = Ψi(ui), i = 1, ..., 8, we have obtained the first eight basis functions. The
velocity and pressure basis functions 2 through 8 are then reflected across the horizontal center line on the
reference domain to produce basis functions 9 through 15, i.e. N = 15. Finally, for each pressure basis function,
one additional velocity basis function is constructed according to (3.16) to enrich the velocity basis. A precise
definition of Ω and {Ωi}

8
i=1 is given in [14], where a scalar Poisson problem is solved with the reduced basis

method using the same deformed geometries.
We use Method 1 for compatible spaces XN and MN to solve the steady Stokes equations (3.9) in the reduced

basis context for different values of N . These results are presented in Table 1. We clearly see in Table 1 that
the error between uN ∈ XN and uN ∈ XN decreases as N grows. Similar to the results for the scalar Poisson
problem studied in [14], the reduced basis method gives good results also for incompressible vector fields.

The pressure solution is a scalar field, and we see that it converges somewhat faster than the velocity. We
would like exponential convergence both for velocity and pressure, but if we study the results in Table 1 for
N = 1, ..., 4, the convergence is very slow. For N = 5, ..., 8, however, the convergence is very good. A natural
explanation for this is that the first four basis functions in XN and MN are constructed from the solutions of
(3.9) on squares with deformed lower edges, see Figure 3. Since Ω is a deformed annulus, the next four basis
functions approximate the solution better. The effect of using only the four basis functions constructed from
the deformed annuli in Figure 3 is shown in Figures 4(a) and 4(b). From this it is easy to see that a good choice
of domains Ωi is essential in order to make our method effective. How to make this choice for a generic Ω will

10



N |uN − uN |H1 ||pN − pN ||L2

1 1.7 · 10−2 2.3 · 10−1

2 1.4 · 10−2 1.7 · 10−1

3 1.2 · 10−2 1.6 · 10−1

4 1.2 · 10−2 1.6 · 10−1

5 8.8 · 10−3 1.0 · 10−1

6 8.6 · 10−3 5.2 · 10−2

7 3.2 · 10−3 1.9 · 10−2

8 2.7 · 10−3 1.8 · 10−2

9 2.6 · 10−3 1.4 · 10−2

10 2.0 · 10−3 9.7 · 10−3

11 2.0 · 10−3 9.7 · 10−3

12 1.8 · 10−3 9.5 · 10−3

13 1.7 · 10−3 9.3 · 10−3

14 1.4 · 10−3 9.2 · 10−3

15 1.4 · 10−3 8.6 · 10−3

Table 1. Convergence results for Method 1. The dimension of XN is 2N , while the dimension
of X0

N is N .

be addressed in a later paper. The approach consists in combining the a posteriori tool presented in the next
section in a recursive manner. This “greedy approach” follows the paper [19].

The results for Method 2 are almost identical to the results presented for Method 1 in Table 1. The main
difference between the two approaches lies in the computational complexity associated with solving the resulting
algebraic systems. In Method 1 we solve a coupled Stokes system involving 2N degrees of freedom for the velocity
and N degrees of freedom for the pressure. In Method 2 we first solve a system of dimension N for the velocity
and then a system of dimension N for the pressure. In fact, if we don’t need the pressure solution, Method 2
permits us to only solve the velocity system of dimension N .

Linear independence of the basis functions can generally be expected in most practical cases. However,
some of the basis functions may be nearly linearly dependent, and this issue can be controlled by using an
orthogonalization procedure. The orthogonalization also greatly reduces conditioning issues associated with
the resulting systems of algebraic equations. For the velocity, orthogonalization is done on Ω̂ with respect to
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Figure 3. The deformed geometries used to construct the basis functions.
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aN (·, ·), while the pressure is orthogonalized with respect to the discrete L2 inner product. Since this is done
on the reference domain it is part of the preprocessing stage. Note that in order to preserve the divergence free
property of the original velocity basis functions, the orthogonalization must be done after ordering the basis
functions in a proper way. First we orthogonalize the elements in X0

N , followed by the elements in Xe
N .

For the fully coupled system of Method 1, the corresponding Uzawa pressure operator can be constructed
explicitly, and the smallest eigenvalue of this operator is directly connected to the inf-sup parameter β; see [10].
By computing numerically the minimum eigenvalue and the condition number of the Uzawa pressure operator,
the numerical results indicate that these are constant for our problem and equal to 7.3·10−2 and 14, respectively,
independent of N (at least for the range of values we are dealing with).

3.7. A posteriori error estimation

In order to assess the quality of our reduced basis method we need a posteriori error estimation. For some
specified output of interest, s(u), it will consist in providing lower and upper output bounds s−(uN ) and
s+(uN ), such that

s−(uN )
<
∼ s(u)

<
∼ s+(uN ) , (3.29)

where a
<
∼ b means that a− b� εN . In this work, we focus on a compliant output, i.e.

s(u) = l(u). (3.30)

The hypothesis made on the spectral method is that |s(u) − s(uN )| � εN .
The following derivation is based on the solution provided by Method 1. We will follow the theory developed

in [16] for operators which are continuous, coercive, symmetric and affine in terms of the parameter, in the
similar way as has been done in [18] for the steady Stokes problem for more standard parameter dependencies.
The steady Stokes operator is symmetric and continuous, but not coercive, and due to the geometric parameter
it is not affine either.

We introduce the diffusion operator

â(v,w) =

∫

Ω̂

g(Φ)∇̂(v ◦ Φ) · ∇̂(w ◦ Φ)dΩ̂, (3.31)

on the reference domain, where g(Φ) is a geometry dependent positive function. The reconstructed error e ∈ X̃N

is then defined as the field that for some g(Φ) satisfies

â(e,v) = l(v) − a(uN ,v) − b(v, pN ) ∀ v ∈ X̃N , (3.32)

where X̃N = {v ◦ Φ ∈ (PN (Ω̂))2,v|Γw
= 0}. The operator g(Φ) is chosen such that

α0||v||
2
XN

≤ â(v,v) ≤ a(v,v) ∀ v ∈ XN , (3.33)

for some positive real constant α0. For this reconstructed error we claim that

s−(uN) = l(uN ), and (3.34)

s+(uN ) = l(uN) + â(e, e) (3.35)

are lower and upper bounds for the exact output s(u) up to spectral accuracy. We remark that we throughout
this section will drop the subscript N indicating that we actually evaluate all the bilinear and linear forms using
GLL quadrature.

Before we prove (3.34) and (3.35), we put v = uN in (2.17) and (3.9) to derive that

a(uN ,uN − uN) + b(uN , pN ) = 0. (3.36)
13



For the lower bound we now get

s−(uN ) = s(uN ) + l(uN − uN )
= s(uN ) + a(uN ,uN − uN ) + b(uN − uN , pN )
= s(uN ) + a(uN ,uN − uN ) + b(uN , pN )
= s(uN ) + a(uN ,uN − uN ) + a(uN ,uN − uN ) + 2b(uN , pN )
= s(uN ) + a(uN − uN ,uN − uN ) + 2b(uN , pN ).

(3.37)

It follows that
s−(uN ) ≤ s(uN ) + 2b(uN , pN ) (3.38)

independent of g(Φ), and hence,

s−(uN )
<
∼ s(u) + 2b(uN , pN ). (3.39)

For the upper bound we denote the error on the deformed domain by eu = uN − uN , and find that

2â(e, eu) = l(uN − uN) + l(uN − uN )
−2a(uN ,uN − uN) − 2b(uN , pN )

= l(uN − uN) + a(uN ,uN − uN )
+b(uN − uN , pN ) − 2a(uN ,uN − uN ) − 2b(uN , pN )

= l(uN − uN) + a(uN − uN ,uN − uN )
−a(uN ,uN − uN ) − b(uN , pN ) − 2b(uN , pN )

= l(uN − uN) + a(eu, eu) − 2b(uN , pN ).

(3.40)

To prove that (3.35) is an upper bound we now use (3.40) to get

s+(uN ) = l(uN) + â(e, e)
= l(uN) + â(e, e)

−2â(e, eu) + l(uN − uN ) + a(eu, eu) − 2b(uN , pN )
+â(eu, eu) − â(eu, eu)

= l(uN ) + â(e− eu, e− eu) − 2b(uN , pN )
+a(eu, eu) − â(eu, eu)

≥ s(uN ) − 2b(uN , pN ),

(3.41)

where the inequality is due to (3.33) and the coercivity of â(·, ·). Hence, for the upper bound we have

s+(uN)
>
∼ s(u) − 2b(uN , pN ). (3.42)

To conclude, we notice that b(uN , pN ) = b(uN , pN − pN), and by using (3.14) and Cachy-Schwarz, this term is
upper bounded by εN ||p− pN ||L2 � εN .

It now remains to find a positive function g(Φ), such that

a(v,v) ≥ â(v,v) ∀ v ∈ XN . (3.43)

For a constant g(Φ) = λ, we can use the theory of [16] to see that λ should be chosen as large as possible
without violating (3.43). This largest constant may be found, as in [14], by computing the smallest eigenvalue
of the generalized symmetric eigenvalue problem

a(v,v) = λ

∫

Ω̂

∇̂(v ◦ Φ) · ∇̂(v ◦ Φ)dΩ̂. (3.44)

We tried this approach also for the current problem, and used an inverse Rayleigh quotient iteration to estimate
λ, but the resulting upper bound gap proved much too conservative.
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To get a better estimate we consider the Jacobian, J (Φ), of the mapping from Ω̂ to Ω. We start with the
left hand side of (3.43), and use the fact that

∇ = J −T ∇̂ (3.45)

to rewrite (2.4), like we did in (2.10), to get

a(v,v) =
∫

Ω̂
(∇̂(v ◦ Φ))TJ−1J−T ∇̂(v ◦ Φ)|J |dΩ̂

=
∫

Ω̂
wT Gw dΩ̂,

(3.46)

where w = ∇̂[v ◦ Φ] and G = G(Φ) = (J TJ )−1|J |. At each point x̂ ∈ Ω̂ we diagonalize the 2 × 2 symmetric
positive-definite matrix G, that is, we write G(Φ(x̂)) = QT ΛQ, where Q consists of the orthonormal eigenvectors

of G. If we (at each point x̂ ∈ Ω̂) replace the two diagonal elements of Λ with the smallest one, Λmin, we get

∫

Ω̂

wT Gw dΩ̂ ≥

∫

Ω̂

Λmin(Qw)TQw dΩ̂. (3.47)

Since Q consists of the orthonormal eigenvectors, the last expression is equivalent to
∫

Ω̂
Λminw

Tw dΩ̂, and we
end up with

a(v,v) ≥

∫

Ω̂

Λmin∇̂(v ◦ Φ) · ∇̂(v ◦ Φ) dΩ̂. (3.48)

This is just (3.31) with g(Φ) = Λmin(Φ), and thus (3.43) is satisfied.
If we replace Λmin(Φ) by Λmin(Φ) = min

x̂∈Ω̂ Λmin(Φ), we may put g(Φ) outside the integral and apply the
theory of [16]. This will produce a more conservative upper bound, but the calculation of (3.35) can then be
split in an off-line/on-line procedure.

We remark that it is important to obtain computable upper and lower bounds with spectral accuracy, and it
is imperative that the bound gap s+N − s−N goes to zero very fast as N → ∞. It is a result of (3.37) and (3.41)

that the latter is indeed the case since s+N − s−N behaves like ||u− uN ||2H1 .

3.8. Numerical results for the output bounds

To compute the output bounds numerically, we will use the domain Ω = Φ(Ω̂) defined in Figure 2. The basis
functions for XN and MN are computed according to Section 3.6, which gives us 15 basis functions for X0

N ,
Xe

N and MN .

The upper bound for g(Φ) = Λmin(Φ) is denoted s+, while the upper bound for the constant g(Φ) = Λmin(Φ)
is denoted s+2 . The results for the previously defined deformed geometry are presented in Table 2. In Figure 5
we present the same results graphically, and in addition we compare the results with a(uN − uN ,uN − uN ).
As we should expect from (3.37), Figure 5 confirms that s(uN )− s−(uN) ≈ a(uN −uN ,uN −uN ). The slight
deviation that can be seen for some N is on the order of 10−10, which is smaller than the stopping criterion
in the iterative method used to find the basis functions; see Section 2.3. From Figure 5 we also see that s+2
is very close to s+. Thus the approximation of Λmin(Φ) by a constant does not deteriorate the upper bound
considerably in the case we have tested so far.

From both Table 2 and Figure 5 we see that the upper bound gap is relatively large compared to the lower
bound gap. In the future, a different method to find an improved estimate of g(Φ) is desirable to reduce the
upper bound gap.

4. A reduced basis element method

We will in this section extend the tools developed for a single domain to multiple domains. This is done to
provide enough geometrical flexibility in the solvers, and we get either a spectral element method or a reduced
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N s(uN ) − s−(uN ) s+(uN) − s(uN ) s+2 (uN ) − s(uN )
1 2.82 · 10−4 5.28 · 10−2 1.01 · 10−1

2 1.87 · 10−4 9.86 · 10−2 1.85 · 10−1

3 1.35 · 10−4 9.74 · 10−2 1.90 · 10−1

4 1.32 · 10−4 9.70 · 10−2 1.86 · 10−1

5 7.67 · 10−5 3.02 · 10−2 4.52 · 10−2

6 7.44 · 10−5 6.86 · 10−3 1.20 · 10−2

7 1.04 · 10−5 1.56 · 10−3 2.60 · 10−3

8 7.03 · 10−6 2.62 · 10−3 4.32 · 10−3

9 7.02 · 10−6 1.61 · 10−3 2.39 · 10−3

10 4.24 · 10−6 6.10 · 10−4 1.02 · 10−3

11 4.16 · 10−6 6.21 · 10−4 1.05 · 10−3

12 3.15 · 10−6 6.16 · 10−4 9.68 · 10−4

13 2.82 · 10−6 4.63 · 10−4 7.50 · 10−4

14 1.94 · 10−6 4.32 · 10−4 6.97 · 10−4

15 1.94 · 10−6 3.82 · 10−4 6.71 · 10−4

Table 2. Convergence of the lower and the upper bound gaps. Here, s+ corresponds to the
variable g(Φ) = Λmin(Φ), while s+2 corresponds to the constant g(Φ) = Λmin(Φ).
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basis element method. By dividing the domain into separate subdomains, we may also exploit parallel processing
techniques. For K subdomains the decomposition is performed in a non-overlapping way such that Ω = ∪K

k=1Ωk.
For simplicity, the domain is only decomposed in the flow direction. In this way the inlet boundary will be
entirely in one subdomain, the outflow boundary in another, and all other subdomains will have only two
neighbouring subdomains. On the interface Γ̄kl = Ω̄k ∩ Ω̄l between two neighbouring subdomains, the pressure
may be discontinuous since it is only required to be in L2. We use a conforming spectral element method to
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generate the reference solution (uN , pN ) on multiple domains. The velocity uN is then in H1 and the reduced
basis element solution uN should thus be continuous in all of Ω. This continuity is generally not possible to
achieve exactly across the interfaces, and we get a nonconforming method with consistency error

∑

k,l

∫

Γkl

(ν
∂uN

∂n
− pNn) · (uN |Ω

k

− uN |Ω
l

)ds. (4.1)

In the spirit of the mortar element method, we will minimize the jump across the interfaces through Lagrange
multipliers; see [3] and [4].

4.1. Precomputing the basis functions

In the single domain case we constructed precomputed velocity basis functions with zero tangential velocity
on the inlet and outflow boundaries, and precomputed pressure basis functions which all were close to one on
the inlet boundary and zero on the outflow boundary. In the case of multiple subdomains, we need reduced
basis functions with good approximation properties along the internal interfaces. To achieve this, we use two
alternative approaches.

In the first approach we solve the steady Stokes problem on the eight predefined geometries using two
subdomains. The restriction of these solutions to the subdomain associated with the outflow boundary comprise
our initial basis functions. On the reference domain these functions are flipped across the horizontal axis (η = 0)
to produce their symmetric variants. The solution on the undeformed square is not flipped, since it is symmetric
already, and we thus get N = 15 basis functions for both the pressure and the velocity. To represent the solution
on the inlet subdomain and on central subdomains, the functions are reflected across the vertical axis (ξ = 0) on
the reference domain. Thus we get a total of 2N = 30 available basis functions from the first approach. All the
2N basis functions will be used on interior subdomains, while only half of these will be used on the subdomains
corresponding to the inlet and outflow subdomains. In addition, one pressure basis function with a constant
value equal to one will be used on the inlet subdomain in order to raise the level of the pressure solution on
this subdomain. Since we use the restriction of the precomputed solutions to the outflow subdomain, all the
pressure basis functions have values close to zero on the outflow edge. Without the additional constant function,
this approximation is insufficient on the inlet domain. Alternatively, the reflected basis functions may be added
for the inlet subdomain, but then more than one additional basis function is needed.

In the second approach we solve the steady Stokes problem on the eight predefined geometries using three
subdomains instead of two. Now we use the restriction of the solutions to each of the subdomains as basis
functions in similar subdomains in the generic problem. The idea is that the solution restricted to the inlet
subdomain better represents what happens on the inlet subdomain in the generic problem, and similarly for
the other subdomains. After flipping on the reference domain this approach produces a total of 3N = 45 basis
functions for both the pressure and the velocity. In the second approach there is no need to reflect the basis
functions across the vertical axis. There is also no need to use an additional constant pressure function on the
inlet subdomain, since the restrictions of the pressure solutions to the inlet subdomain are clearly non-zero on
all edges. Following this approach we will thus use N basis functions to approximate the pressure on the inlet
subdomain, and N basis functions on any interior subdomain, and N basis functions on the outflow subdomain.
A similar procedure is used to approximate the velocity.

To ensure stability of the reduced basis element solution, all basis functions are orthogonalized, but we
keep the basis functions representing different subdomains separated. For the pressure basis functions the
orthogonalization is done with respect to the discrete L2 inner product on the reference domain. The velocity
basis functions are orthogonalized with respect to aN (·, ·) on the reference domain, while imposing the boundary
conditions corresponding to the subdomain the given velocity basis function represents.

In both Method 1 and Method 2 we have to enrich the velocity basis in order to find both the pressure and
the velocity solution in the reduced basis element context. In Method 1 it is crucial that the inf-sup condition
is fulfilled, and we use the same technique as for the single-domain case to produce one additional velocity basis
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function for each pressure basis function. Again, the correct boundary conditions have to be used, according to
which subdomain the velocity basis function represents. In Method 2 these additional velocity basis functions
are used in the computation of the pressure solution only.

Using the first approach to construct the precomputed basis functions we define

X̂N = XN(Ω̂) =







span{ûi, i = 2N+1, ..., 4N+1}, k = 1
span{ûi, i = 1, ..., 4N}, k = 2, ...,K−1
span{ûi, i = 1, ..., 2N}, k = K

M̂N = MN (Ω̂) =







span{p̂i, i = N, ..., 2N+1}, k = 1
span{p̂i, i = 1, ..., 2N}, k = 2, ...,K−1
span{p̂i, i = 1, ..., N}, k = K.

(4.2)

For the second approach we define

X̂N = XN (Ω̂) =







span{ûin
i , i = 1, ..., 2N}, k = 1

span{ûc
i , i = 1, ..., 2N}, k = 2, ...,K−1

span{ûo
i , i = 1, ..., 2N}, k = K

M̂N = MN (Ω̂) =







span{p̂in
i , i = 1, ..., N}, k = 1

span{p̂c
i , i = 1, ..., N}, k = 2, ...,K−1

span{p̂o
i , i = 1, ..., N}, k = K,

(4.3)

where superscripts in, c and o indicates whether a basis function represents the inlet subdomain, a central
subdomain, or the outflow subdomain. We also recall that the index k refers to the subdomain Ωk. The velocity
basis functions are ordered such that the original N = 15 have the indices i = 1, ..., 15, and the enriched basis
functions corresponding to the originalN = 15 pressure basis functions have the indices i = N+1, ..., 2N . The
reflected original and the reflected enriched basis functions then follow. We remark that the constant pressure
basis function added on the inlet domain (k = 1) corresponds to the index i = 2N + 1, and the associated
enriched velocity basis function corresponds to the index i = 4N + 1.

On a generic deformed geometry we can then define the reduced basis pressure space as

MN = MN(Ω) = {q ∈M, q|Ω
k

◦ Φk ∈ M̂N , k = 1, ...,K}, (4.4)

where Φk is the mapping associated with the deformation of the k’th subdomain. We also define a preliminary
reduced basis velocity space on the deformed geometry as

YN = YN (Ω) ={v ∈ X, ∀ k ∃ v̂ ∈ X̂N , v|Ω
k

= IN (|Jk|(J k)−1(v̂ ◦ (Φk)−1) ◦ Φk) ◦ (Φk)−1 }. (4.5)

This space is preliminary since we have not yet imposed any continuity conditions across the subdomain inter-
faces.

4.2. Matching conditions

As mentioned earlier, we use a mortar element method to glue the velocities together. In practice we try to
minimize the jump across internal interfaces by introducing the constraints

∫

Γkl

(v|Ω
k

− v|Ω
l

) · nψds = 0, ∀ ψ ∈Wn
k,l, ∀ k, l (4.6)

and
∫

Γkl

(v|Ω
k

− v|Ω
l

) · tψds = 0, ∀ ψ ∈W t
k,l, ∀ k, l, (4.7)
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where Γ̄kl = Ω̄k ∩ Ω̄l, n is the unit normal vector of Γkl, t is the unit tangential vector, and Wn
k,l and W t

k,l are

spaces of low order polynomials defined on Γkl. Depending on the order of the polynomials in Wn
k,l and W t

k,l,

the jump across the interfaces can be controlled; see [14] for results of different polynomial degrees used on a
thermal fin problem. Our reduced basis velocity space for Method 1 is then defined as

XN = {v ∈ YN , (4.6) and (4.7) hold }. (4.8)

For Method 2 we define the reduced basis velocity space as

X0
N = {v ∈ XN ,

K
∑

k=1

∫

Ωk

q∇ · v dΩ = 0, ∀ q ∈MN}, (4.9)

which is just XN without the enriched velocity basis functions.
To evaluate the integrals in (4.6) and (4.7), the x- and y-components of v are rotated to find the corresponding

normal and tangential components.

4.3. Numerical results

We define Ω to be the deformed annulus in Figure 2 divided into three subdomains in the flow direction, i.e.
K = 3. An initial choice of Lagrange multiplier spaces will be

Wn
k,l = W t

k,l = P3(Γkl). (4.10)

For Method 1 we solve the problem: Find uN ∈ XN and pN ∈MN such that

aN (uN ,w) + bN (w, pN ) = lN (w) ∀ w ∈ XN

bN (uN , q) = 0 ∀ q ∈MN .
(4.11)

In Table 3 we compare the results for the different choices of spaces X̂N and M̂N in (4.2) and (4.3).

If we use (4.2) to define X̂N and M̂N , the dimension of XN ×MN is 12N + 2− 2L, where L = dim(Wn
k,l) +

dim(W t
k,l) is the total dimension of the Lagrange multiplier spaces. If we instead use (4.3) to define X̂N and

M̂N the dimension is only 9N − 2L, but we still see from Table 3 that the approximation abilities, measured
as the norm of the error, are better than the first choice when the dimension of the spaces is comparable. In
Figures 6(a) and 6(b), we see that for both choices of reduced basis spaces the error of the pressure is more
noticeable close to the internal interfaces relative to the rest of the domain. The velocity error for the first choice
of basis spaces, which is shown in Figures 7(a) and 7(b), indicates that the error along the internal interfaces is
no larger than in the rest of the domain. The velocity error for the second choice of basis spaces exhibit similar
behaviour, which confirms the effect of the weak continuity imposed by the Lagrange multipliers.

In Method 2 we find the reduced basis velocity solution by solving: Find uN ∈ X0
N such that

aN (uN ,v) = lN (v) ∀ v ∈ X0
N . (4.12)

X̂N , M̂N N dim(XN ×MN ) |uN − uN |H1(Ω) ||pN − pN ||L2(Ω)

(4.2) 11 118 1.8 · 10−3 9.8 · 10−3

(4.3) 15 119 8.4 · 10−4 3.6 · 10−3

Table 3. Comparison of the error for different choices of reduced basis spaces in Method 1.
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(a) X̂N and M̂N defined by (4.2)
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(b) X̂N and M̂N defined by (4.3)

Figure 6. Contour of the pressure error for X̂N and M̂N defined as in (4.2) and (4.3).
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(a) x-velocity
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(b) y-velocity

Figure 7. Contour of the velocity error for X̂N and M̂N defined as in (4.2).

If we use (4.3) to define X̂N , the dimension of X0
N is 3N − 2L, about one third of the corresponding dimension

for Method 1. Having obtained the velocity from (4.12), the pressure is then found by solving the problem:
Find pN ∈MN such that

bN (v, pN ) = −aN (uN ,v) + lN (v) ∀ v ∈ Xe
N , (4.13)

where Xe
N = {v ∈ XN ,v /∈ X0

N} contains the enriched velocity basis functions found earlier. On three
subdomains we can find the pressure by solving three decoupled systems, each system being of dimension N .

To further study the convergence properties of Method 1 and 2, we use (4.3) for different choices of N to solve
(4.11) and (4.12) respectively. In Table 4 we see that the error of the velocity converges well for both methods.
As in the single domain case, Method 2 is just as accurate as Method 1. The pressure found in Method 1 also
converges well, and if we use (4.13) to find the pressure in Method 2, it will exhibit similar properties.
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Method 1 Method 2
N d(XN ) d(MN ) |uN − uN |

H1 ||pN − pN ||
L2 d(X0

N ) |uN − uN |
H1

6 20 18 2.1 · 10−2 6.9 · 105 2 2.5 · 10−2

7 26 21 3.7 · 10−3 2.2 · 104 5 5.8 · 10−3

8 32 24 2.7 · 10−3 5.5 · 10−1 8 2.7 · 10−3

9 38 27 2.3 · 10−3 3.6 · 10−1 11 2.3 · 10−3

10 44 30 1.3 · 10−3 1.3 · 10−1 14 1.3 · 10−3

11 50 33 1.2 · 10−3 5.8 · 10−2 17 1.2 · 10−3

12 56 36 9.8 · 10−4 6.2 · 10−3 20 9.8 · 10−4

13 62 39 9.7 · 10−4 4.4 · 10−3 23 9.7 · 10−4

14 68 42 8.7 · 10−4 4.6 · 10−3 26 8.7 · 10−4

15 74 45 8.4 · 10−4 3.6 · 10−3 29 8.4 · 10−4

Table 4. The error convergence of Method 1 and Method 2 in the multi domain case, d(·) is
the dimension of the space in question.

4.4. The effect of different Lagrange multipliers

We have already seen that the approximation properties are affected by the choice of basis functions in the
reduced basis velocity and pressure spaces. In this section we will try different choices of Lagrange multiplier
spaces used in the mortar element method. Previously we used Wn

k,l = W t
k,l = P3(Γkl) to get the results in

Tables 3 and 4. However, it is not necessary to use the same space in the normal and tangential direction.
Considering the incompressibility condition, the normal derivative is more important than the tangential con-
dition since a good matching of the normal derivative along an interface is directly related to a good mass
conservation (or continuity of the volume flow rate across an interface). It would also be advantageous to lower
the dimension on the space in the tangential direction compared to the space in the normal direction in order
to decrease the number of constraints imposed on the reduced basis system. In the three dimensional case there
are two tangential directions and only one normal direction on each interface, and lowering the dimension of the
tangential spaces becomes more important. The velocity components are connected through the divergence free
property, but a minimization of the jump in the normal velocity component alone across an interface does not
guarantee that the tangential velocity component points in the same direction along an interface. To illustrate
this we first define

Wn
k,l = P3(Γkl)

W t
k,l = ∅,

(4.14)

where we have no constraint in the tangential direction, and then

Wn
k,l = P3(Γkl)

W t
k,l = P1(Γkl),

(4.15)

where we use linear functions in the tangential direction. The results are presented in Table 5 together with
the results from the previous choice of Wn

k,l and W t
k,l.

If we increase the polynomial degree in the Lagrange multiplier spaces, the discontinuities across the interfaces
will decrease, but the number of degrees of freedom in the global reduced basis element problem will also decrease
and hence the global error may increase. We keep the linear functions in the tangential direction, and calculate
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Wk,l = Wn
k,l ×W t

k,l |uN − uN |H1 ||pN − pN ||L2

P3 × P3 8.4 · 10−4 3.6 · 10−3

P3 × ∅ 6.6 · 10−2 1.4 · 10−1

P3 × P1 7.2 · 10−4 2.1 · 10−3

{ψ̃i
kl} from (4.18), i = 1, 2, 3 1.5 · 10−3 6.7 · 10−3

{ψ̃i
kl} from (4.18), i = 2, 4, 6 6.8 · 10−4 1.3 · 10−3

{ψkl} from (4.17) 6.0 · 10−4 1.1 · 10−3

Table 5. The norm of the error for different choices of Wn
k,l and W t

k,l.

the error for different polynomial degrees in the normal direction, i.e.

Wn
k,l = Pm(Γkl)

W t
k,l = P1(Γkl).

(4.16)

From Table 6 we see that the error has a minimum when the polynomial degree m in the normal direction is
between two and seven. This is consistent with the results presented in [14] for a scalar heat transfer problem
with only one Lagrange multiplier space.

From the consistency error defined in (4.1), we see that the best Lagrange multipliers should be ones that
are close to the exact stress vector

ψkl = (ν
∂uN

∂n
− pNn)|Γ

kl

, (4.17)

on each interface Γkl. We therefore calculate

ψi
kl = (ν

∂ui

∂ni

− pini)|
Γi

kl

, (4.18)

for all Ωi. Similar to the velocity basis functions, ui, the stress vectors are mapped to a reference interface Γ̂

through the Piola transformation, ψ̂i
kl = Ψi(ψ

i
kl). On the generic domain Ω we first map each ψ̂i

kl to corre-

sponding interfaces Γkl, again using the Piola transformation ψ̃i
kl = Ψ−1(ψ̂i

kl), and then rotate the coordinates
to find the normal and tangential components. The space Wn

k,l will thus consist of the normal components of

m |uN − uN |H1 ||pN − pN ||L2

1 4.94 · 10−3 4.66 · 10−3

2 8.22 · 10−4 2.24 · 10−3

3 7.17 · 10−4 2.06 · 10−3

4 7.17 · 10−4 2.07 · 10−3

5 6.91 · 10−4 2.00 · 10−3

6 6.93 · 10−4 2.00 · 10−3

7 7.00 · 10−4 2.17 · 10−3

8 7.15 · 10−4 2.24 · 10−3

9 8.25 · 10−4 2.74 · 10−3

Table 6. The norm of the error when W t
k,l and Wn

k,l are defined as in (4.16).
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the ψ̃i
kl, and W t

k,l of the tangential components. We impose (4.6) and (4.7), which in turn ensures that the
vectorial jump

∑

k,l

∫

Γkl

(uN |Ω
k

− uN |Ω
l

) · ψ̃i
klds = 0, ∀ i. (4.19)

In order to balance the number of constraints against the number of degrees of freedom, we choose the same
number of constraints as for the P3 × P1 case, but now with dim(Wn

k,l) = dim(W t
k,l) = 3; the total number of

constraints is thus six. Depending on which three multipliers are used, we get different results. The worst result
is achieved for i = 1, 2 and 3, while the best result is achieved for i = 2, 4 and 6; see Table 5. Compared to the
Lagrange multiplier spaces defined as low order polynomials, we see that the stress vectors (4.18) give better
results, however, care has to be taken as to which three stress vectors are used. As a final test, we use the
exact stress vector (4.17) to produce a single constraint in each of the spatial directions. This should give zero
consistency error and result in a pure approximation error in the reduced basis element solution. As expected,
the numerical result is also better than for all other Lagrange multipliers; see Table 5.

5. Conclusions

In this paper, we have proposed a reduced basis element method for the steady Stokes problem. The compu-
tational method is based on a domain decomposition into geometrically similar parts (denoted as “elements”),
and local approximations based on precomputed steady Stokes solutions corresponding to different geomet-
ric shapes (denoted as geometric “snapshots”). The proposed method represents an extension of earlier work
associated with solving the Laplace equation.

The precomputed velocity fields are (weakly) incompressible on the preselected geometries. We have used
Piola’s transformation to ensure that this property is also satisfied on the reference domain associated with the
computational parts, and also when mapped to a new and unknown geometric shape. The issue of satisfying
the inf-sup condition has been addressed in two different ways.

One alternative, called Method 1, is based on enriching the reduced velocity basis in order to obtain a stable,
coupled system for the velocity and the pressure. A second alternative, called Method 2, directly exploits the
fact that the precomputed velocity fields are almost incompressible. Following this latter method, the Stokes
system is reduced to solving a Poisson-like equation for the velocity. The pressure can then be computed in a
postprocessing step. The advantages of this alternative are the facts that the velocity and the pressure can be
computed separately, and very small systems need to be solved.

We have demonstrated the approximation and convergence properties of Method 1 and Method 2 on se-
lected two-dimensional problems. The numerical results are almost identical, suggesting that Method 2 is very
attractive due to the lower computational cost.

The methods have been tested both in the single-domain context and using multiple subdomains. In the
latter case, the local velocity approximations are glued together using the mortar element method. Proper
treatment of the continuity conditions for the normal and tangential velocity components is discussed. It has
been found that it is sufficient to use a very low dimension of the Lagrange multiplier space associated with the
tangential component.

In the single-domain context we have also developed a posteriori error estimators for the steady Stokes
problem and the theoretical results have been confirmed by numerical experiments in the compliant case. For
the particular test problem used, the lower bound gap appears to be very good, while the upper bound gap is
somewhat conservative.

Future extensions will include the simulation of geometrically more complex systems involving several types
of computational parts (e.g., pipes and bifurcations). In addition, it will be interesting to exploit the properties
of Method 2 to solve unsteady problems, including problems modeled by the incompressible Navier-Stokes
equations. Finally, the a posteriori error estimators developed here need to be extended to the general non-
compliant multiple element case, as was done in [14].
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