Key Features for a Successful Model-Driven Development Tool

Beatriz Marin', Andrés Salinas', Juan Morandé', Giovanni Giachetti® and Jose de la Vara®
"Facultad de Ingenieria, Universidad Diego Portales, Av. Ejército 441, Santiago, Chile
’Facultad de Ingenieria, Universidad Andres Bello, Sazié 2325, Santiago, Chile
3Certus Centre for Software V&V, Simula Research Laboratory, P.O.Box 134, 1325 Lysaker, Norway
{beatriz.marin,andres.salinas,juan.morande}@mail.udp.cl, giovanni.giachetti@unab.cl, jdelavara@simula.no

Keywords:

Abstract:

Model-Driven Development (MDD), Tools, MDA, Features.

The main focus of Software Engineering discipline is to establishing methods and processes for the effective

and efficient development of software projects. One of the most relevant paradigms for achieving this goal
is Model-Driven Development (MDD). MDD uses models at different abstraction levels to automatically
generate software products by means of model-transformations. However, one of the main issues related to
the development of MDD technologies is the lack of standardization in terms of the features that need to be
considered to support the current industry needs. This difficults the comparison of existing technologies
since there are not a reference point for the creation of new MDD approaches with their corresponding
supporting tools. This paper analyses these industry needs through an exploratory study. From the results
obtained, it states the main features that must be supported by MDD tools. In addition, this paper presents an
analysis about the presence or absence of these features in a set of industrial MDD tools.

1 INTRODUCTION

The goal of Software Engineering is to establishing
methods and processes for the effective and efficient
development of software projects (Kitchenham and
Pfleeger, 1996). The Model-Driven Development
paradigm (Selic, 2003) has become into a relevant
mean for achieving this purpose at both, industry
and academic domains.

MDD approaches use models at different
abstraction levels that are independent of technical
platforms to generate different kinds of software
products by means of model transformations (such
as code, documentation, new modeling artifacts,
etc.). Thus, a correct model specification is essential
to automatically generate a complete software
solution without programming a single line of code.

In this context, the MDD paradigm is moving the
software development processes to a different
dimension, from the solution space (software
product) to the problem space (conceptual models).
In this journey, the success of adopting MDD
solutions is in direct relation with the capability of
the available tools to satisfying the needs of the
different development projects.

However, even though there exists an important
amount of MDD tools in the software industry
(Marin et al., 2013), there is a lack of references that

state the key aspects that need to be considered for
selecting (or developing) a MDD tool properly
aligned with industrial MDD processes.

In this context, this paper presents a twofold
contribution: (1) this paper presents and analyses a
set of key features that an MDD tool must have to be
successfully adopted in industry software
developments; and (2) the paper also presents which
of these key features are currently taken into account
by considering a set of existing MDD tools.

The rest of the paper is organized as follows:
Section 2 presents some relevant related work.
Section 3 presents an exploratory study. Section 4
presents the key features. Section 4 presents an
analysis of these features in relation to a set of MDD
tools that are currently available. Finally, Section 5
presents some conclusions and further work.

2 RELATED WORK

Bran Selic in (Selic, 2003) proposes the following
success criteria for the development MDD tools by
considering his experience in the development of the
IBM Rational Software.

Standards. The use of standards is essential to
spread the adoption of new technologies and reduce

the learning curve related to the application of MDD
software production processes. In this context, the
Model-Driven Architecture (MDA) proposed by
OMG is probably the most referenced
implementation schema for MDD tools.

Observability and executability of the model. The
observability refers to the integration of comparing
tools that helps in the identification of model’s
versions. The executability refers to the capacity to
execute the models in early stages of software
development, providing a learning ability though
experimentation.

Efficiency of the generated code. The efficiency of
the generated code can be decomposed in
performance and use of memory. In addition, it is
also important taking into account the size of the
generated system and the compilation time of the
models.

Furthermore, Richard Paige and Daniel Varré in
(Paige and Varr6, 2012) presents the knowledge
obtained during the development of two tools:
Epsilon (Epsilon, 2010) and VIATRA2 (Balogh and
Varro, 2006), which is briefly analysed below.

Use of requirement models for driving the
development process. The use of requirement
models in MDD processes help to motivate and
thread the development complexity, i.e.; it drives the
construction in terms of development iterations.

Flexibility of architectures and modeling tools. At
the beginning, it is promoted the flexibility of
architectures instead of the selection of the correct
architecture. Having a flexible architecture it is
possible to adapt the generation of the final software
products to different architectural patterns in
accordance to the needs of the development project.

Modeling technologies. Modeling technologies
refers to the methods used to represent the models,
for instance EMF model representation. The
selection of the modeling technology significantly
affects in the usability and flexibility of the
modeling tool in terms of the implementation of
model transformations, typing of model elements,
etc. In addition, the final user do not necessarily
must to know how the representation of models is
implemented; final users just need to know the
graphical representation of models in order to avoid
complexity of the modeling technology.

Summarizing, the works analyzed consider
specific views of the development of MDD tools by
introducing some desirable features. However, these
features are not validated in industrial contexts. To
tackle this situation, we perform an exploratory
study in order to discover the relevant features that
an MDD tool must have.

3 EXPLORATORY STUDY

The exploratory study consists in an online
questionnaire of 19 questions. These questions have
been defined by considering strong and weak points
of previous works analyzed. Moreover, the model
verification and interoperability criteria were added
to the study.

The model verification is a relevant feature in
MDD tools since this assures that all the model
information can be transformed into the
corresponding software artifacts (syntactic
verification) and the final software product is
properly aligned with the users’ requirements
(semantic verification).

The model interoperability is a key feature to
facilitate (and automate) the interchange of
modeling information among tools related to a same
domain (e.g. interoperability among different UML
tools), as well as the interoperability among different
modeling approaches (e.g. for bridging requirement
and design modeling approaches).

Table 1 shows the questions and the related
feature of the questionnaire. Each question was
answered by using a 5-point Likert scale. To obtain
qualitative aspects related to each question, an open
text box that can be filled with open answers was
placed.

The estimated time to response was specified in
15 minutes. In order to present the questions in an
attractive way, different icons that represent the
values of the Likert scale were used (from totally
disagree represented by 1 to totally agree
represented by 5). The questionnaire can be seen at
https://testmodeproject.typeform.com/to/eUhWIU.

Four relevant tool vendors response the online
questionnaire and automatically the answers were
sent to the authors. Collected answers were located
in a table to further analysis (see Table 2). In Table
2, the column Id represents the number of the
question, and TV1 to TV4 represents the tool
vendors that response the questionnaire.

Table 1: Questions and related features of the questionnaire.

Id Question Feature
Ql The MDD tool must support the standard UML. Standarization
Q2 | The MDD tool must support MDA in terms of CIM, PIM, PSM Standarization
Q3 | The MDD tool must provide extension mechanisms for modeling languages customization to Interoperability
allow the communication with different tools?
Q4 The MDD tool must provide extension mechanisms that allow the Interoperability
communication/interoperability with different tools
Q5 It is necessary to have a graphical visualization of a model. Observability
Q6 It is necessary to have a version manager of models. Observability
Q7 It is necessary to have easy human interaction (such as touch screens) to work with models. Efficiency
Q8 | The MDD tool must provide verification mechanisms of the models Verification
Q9 The MDD tool must provide automatic defect detection for the models Verification
Q10 | The MDD tool must provide automatic test case generation of the models Verification
Q11 | The MDD tool must provide simulations of the executability of the model Executability
Q12 | The MDD tool must allow redefinitions of the transformation of the models Flexibility
Q13 | The generated code of an MDD tool must have the same efficiency than the code generated Flexibility
with traditional programming
Q14 | The MDD tool must allow the selection of different architectural patterns to generate code Flexibility
Q15 | The MDD tool must be able to generate code reviews Code Generation
Q16 | The MDD tool must generate at least the skeleton of the code Code Generation
Q17 | The MDD tool must generate totally executable code Code Generation
Q18 | The MDD tool must support the specification of all views of a system Requirements
Q19 | The MDD tool must save the traceability from requirements to code Requirements

4 FEATURES FOR MDD TOOLS

2003), which provides a standard architecture to

support MDD developments.

Table 2: Results of the questionnaire.

This secFion presents a s.et f)f featgres thgt any MDD i |vilova lova | tval 1a | Tvi | Tv2 | Tv3 | Tva
tool designed to work in industrial projects should
offer. At this point, it is important to note that (1) the Qi s 3 3 3 jQltl 4 > 3 3
main input of MDD tools is a conceptual model that Q| 4 | 4 2 2 |QI2] 5 2 1 3
is independent from the development platform used, Q| s 5 5 > o3| 1 1 3 4
and (2) the MDD tool must be able to generate code
through the model specified. Q4 L 4 3 3 4 Q4] 4 4 3 >
Q5 4 5 3 4 [Ql15| 2 3 3 3
4.1 Standardization and Q| 2 | 1|5 |5 |Q6l 5 |5 |4]s5s
Interoperability Q7| 3 1| 4| 5 Q7] 1 5 13| 3
. o . . 8 4 S 4 5 18] 4 3 3 2
Since its inception, the Object Management Group v 2
(OMG) has promoted the standardization of Q| 4 2 2 4 Q19| 5 5 4 3
different model-based and object-oriented Qlo| 4 5 1 3

approaches for software development. In this
context, the main exponent of OMG standards is
UML (OMG, 2010). Other standard defined by
OMG is Model-Driven Architecture (MDA) (OMG,

Standardization promotes significant progress in
the development of a MDD tool, allowing to
establish an agreement of good practices that

facilitate the reuse and interoperability among
different tools and modelling approaches, for
example by using XMI (OMG, 2007b).

Standardization also promotes specialization of
tools in specific domains, leading the development
of tools with more concrete and sophisticated
features according to different application contexts.

Results of the exploratory study shows that 50%
of the subjects are totally agree about the MDD tool
must support the standard UML, and the other 50%
answers are neutral about this question. For Q2, 50%
of subjects are not agree regarding if it is necessary
that MDD tools support the MDA architecture in
terms of CIM, PIM, and PSM; and the other 50% of
the subjects are agree with this question.

Regarding the interoperability, the exploratory
study shows that 75% of subjects are totally agree
with the affirmation of the MDD tool must provide
extension mechanisms for modeling languages
customization. Regarding Q4, 75% of the subjects
state that MDD tool must provide extension
mechanisms that allow the communication or
interoperability with different tools.

4.2 Visualization and Management of
Models

Due to the main input artifact in a MDD approach is
a model, which specifies all the views that allow the
complete representation of a system, it is essential
that an MDD tool provides a suitable set of
management and visualization features for models
definition.

The minimum feature to be considered is the
possibility of visualizing the models at design time.
In particular, it is necessary to provide a graphical
interface that facilitates the management of multiple
views that are normally used for a system model
specification. The exploratory study shows that 75%
of the subjects state that it is absolutely necessary to
have a graphical visualization of the model.

However, to appreciate graphically the model is
not the only concern related to visualization that
should taking into account when an MDD tool is
built. Nowadays, more than ever, it is necessary to
provide user interfaces that take into account quality
characteristics such as usability (ISO/IEC, 2001);
and new characteristics of hardware devices, such as
touch panels in desktop and laptop computers
(Garber, 2012). In the exploratory study we found
that 50% of subjects agree to have an easy human
interaction to work with models, and the other 50%
answer that it is not necessary.

Regarding versioning of the models, the
exploratory study shows that 50% of the subjects
state that it is absolutely necessary to manage the

versioning of the models. This is the only way to
work in collaborative industrial projects, where
different members of a development team can work
over the same models. However, the remaining 50%
of subjects response that it is not mandatory to have
a version manager, but it is a desirable feature.

4.3 Verification

In MDD, the modeling language assumes the role of
an implementation language due to it achieves a
complete and automatic code generation; i.e., the
model becomes the new programming code. In this
context, the generated code becomes into a black
box, rarely reviewed, as is rarely reviewed the
machine code generated by a programming language
compiler, because this generation is performed using
widely accepted standards in the industry.

Thus, the verification of the model should be a
mandatory feature of an industrial MDD tool. 100%
of subjects response in the exploratory study that the
MDD tools must provide verification mechanisms.
This means using the MDD tool to find the presence
of desirable characteristics and the absence of
undesirable characteristics.

Regarding to the absence of undesirable
characteristics, different researchers have applied
reading techniques or heuristics to identify defects in
UML models, such as (Travassos et al., 1999),
(Conradi et al., 2003), (Lange and Chaudron, 2004),
(Egyed, 2006). Reading the question if it is
necessary that the MDD tool provides automatic
defect detection of the models, the exploratory study
reveals that it is desirable, but with a desactivation
possibility because some defects depends on the
methodology selected in the project; i.e. it should be
good to plug custom defect detection mechanisms to
supporting architects’ needs.

4.4 Testing

Even though there exist several defect detection
techniques proposed by the academia, the most
important and most frequently used quality
assurance technique applied in industry is testing.
Usually, testing of software systems take up to more
than 50% of development cost and time (Vos et al.,
2010). For this reason, it is very important to
perform the testing as early as possible in order to
diminish this high cost. Despite there are several
tools and methods for testing planning and control,
and test case execution and monitoring, there still
are a limited amount of approaches for test case
design, selection of test data, and test evaluation.

To perform testing of models, there are several
researchers who have applied model-based testing to
generate test cases (Dias Neto et al., 2007). These
approaches usually create a state transition model to
represent the current state of a system and the next
state, specifying the events that occur to change the
state. In these models, test designs are focused on
paths of the execution of the events. However, state
transition models only provide a partial view of the
final software system (behavioural view). Thus, after
the application of test cases generated from these
models, it is necessary to manually testing the
remaining functionality of the system. In order to
reduce the human effort doing testing, MDD tools
must provide model-based testing approaches that
will be focus in holistic models.

Regarding testing, the exploratory study shows
that 50% of the subjects answer that the MDD tool
must provide automatic test case generation from
models, and the other 50% answer that it could be
good, but it is not essential.

4.5 Code Generation and Simulation

The MDD tool must generate at least the skeleton of
the code. The exploratory study supports this
asseveration with 75% of full agreement and 25% of
agreement.

Supporting technologies for automating the
model-based operations, such as, model
transformations, model validation and verification,
generation of software products (model
compilation), are essential to achieve the benefits of
MDD. In this context, level of generation facilities
that a MDD tool provides is of paramount
importance. Depending of the tools, the code
generation can go from the skeleton or code
fragments to the generation of the complete software
products. Nevertheless, the exploratory study shows
that only 25% of the subjects agreed with the fact
that an MDD tool must generate totally executable
code. 50% of subjects state that in some cases the
total code generation is adequate, arguing that the
model that generates the complete executable code
has the same complexity than the code generated.

Regarding simulation, MDD tools should allow
the execution of models even though they are
incomplete (but valid). The main idea is not to wait
until the model is finished to see how it looks like
the software obtained from the part of the model that
is already specified. This allows the correction of the
model specification as early as possible. The
exploratory study shows that 50% of the subjects
agree in that the MDD tools must generate
simulations of the models defined.

4.6 Transformation

The transformation of a model corresponds to a set
of rules and activities such as refactoring, reverse
engineering, application of patterns, among others.
Transformations take one or more models as input,
and by applying the rules specified, generate one or
more output models, including the code of the final
software product (implementation model).

A suitable MDD tool must offer a number of
predefined transformations for assuring a complete
model transformation. However, features oriented to
define or customize the transformation rules
implemented by an MDD tool are supported by 25%
of the subjects in the exploratory study.

4.7 Efficiency and Scalability

MDD tools should significantly reduce time and
efforts, and simplify the development of final
software products. The productivity gained by using
MDD tools can be significant when the code
generated is quite equivalent in terms of efficiency
and scalability to the code manually generated.

Various attempts have been performed in this
direction. One prominent effort was computer-aided
software engineering (CASE) in the beginning of
80s, which focused on developing software methods
and tools that enabled developers to express their
designs in terms of general-purpose graphical
programming representations, such as state
machines, structure diagrams, and dataflow
diagrams (Schmidt, 2006). However, CASE tools
were not successful in industry due to its inability to
handle complex, production-scale systems in a broad
range of application domains (Schmidt, 2006).

A relevant efficiency measure that can be
considered when evaluating a MDD tool is related to
the performance in terms of the volume of
information handled, and the amount of memory
used. Is expected that the automatically generated
code efficiency has a deviation not greater than 10%
compared to manually created code (Selic, 2003).
One way of evaluating this would be comparing the
amount of generated code lines between tools and
their equivalent constructed by hand. A more
appropriate way to evaluate this would be comparing
the functional size measurement of both
applications. For measuring the functional size of
conceptual models it is possible to apply IFPUG
measurement standards (ISO/IEC, 2003) and
COSMIC (ISO/IEC, 2011), by applying, for
example, the procedure presented in (Marin et al.,
2010).

Results of the exploratory study reveals that
efficiency in the generated code is not a relevant

feature taking into account the increase in the
productivity of MDD projects.

4.8 Architectures and Maintenance

Since, MDD tools work with platform independent
models; the tool must support the transformation to
executable code not only to a variety of languages,
but also to different architecture design patterns. For
example, if you want to generate in a particular
programming language, the MDD tool may allow
the selection between a client-server architecture
(Berson, 1996) or model view controller (MVC)
architecture (Reenskaug, 2003). The exploratory
study reveals that 75% of the subjects agree that the
MDD tool must allow the selection of different
architectural patterns to generate code.

Regarding the generation of code reviews, 75%
of the subjects are neutral about the ability of MDD
tools to perform partial generation of code from
model changes; i.e., it is not necessary to recompile
the whole model if a small change is performed. We
state that this would facilitate the maintenance of the
system to small changes or corrections that may
exist during the lifetime of the software created.

4.9 Requirements

Even though there exist standards for requirements
documentation (such as IEEE 830 (IEEE, 1984)), the
requirements elicitation phase is the less technical by
nature. However, it is desirable that the MDD tool
supports the traceability from requirement
specification to the other views of the system.

The exploratory study shows a 75% of subjects
agreed regarding traceability of MDD tools. The
remaining 25% answer that it depends on the usage
of the tool.

5 GENERAL ANALYSIS

This section presents a general analysis of the
features that existing tools have. To do this analysis,
a list of products that are compliant with the MDA
approach were considered (OMG).

There are 48 MDA tools recognized by OMG
(OMGQG). However, many of these tools are not
longer available are not updated for more than one
year. From the 48 MDA tools, only 10
(corresponding to 21%) are currently in use and
have active support. The remaining 79% were
deprecated or acquired by a larger company.

The 10 available tools provide support for
different domains, such as real-time or management
information systems (MIS). We focus the analysis in
MDD tools of the management information systems
since it is broadly used in industry. Thus, just three
tools were taking into account in the analysis.

In order to make a more representative analysis,
open-source tools that are not included in the OMG
site were also included. Therefore, to complement
the analysis, five open-source tools were added.
Thus, eight MDD tools were finally analyzed.

First, a characterization of the selected tools was
performed regarding the modeling language used,
the system views covered by the tool, the language
for the specification of the functional view, and the
software product generated (see Table 3).

Table 3: Characterization of MDD tools analyzed.

MDD tool Modeling System Views .Functlonal Products Generated
Language View Language
AndroMD | UML b Y USINE | Stryctural and Dynamic Views - Structure of the system
A MagicDraw
OpenMDX UML - POJO -
UML2 by using Structura, Dynamic, and
Acceleo EMF Functional Views OCL Code Skeleton.
TopCased UML2 by using Structura', Dynarplc, and oCL Code Skeleton. Docqmentaﬂ({n. Allou{s complete
EMF Functional Views code generation by using plugins.
StarUML UML 2.0 Structura., Dynarplc, and) Codg Skeleton anpl requirements and
Functional Views implementation documents
Integranov 00-Method Structural, Dynam'lc, Fqnctlonal, OASIS Complete'fully wor.kmg generation code.
a and Presentation Views Documentation. Fucntional size Measurement.
IBM
Rational UML2.1 Structural and Dynamic Views OCL Complete fully working generation code
Rose
Structural, Dynamic, Functional, . .
Blu Age UML 2.1 and Presentation Views OCL Complete fully working generation code

As Table 3 shows, seven tools support UML
(OMG, 2007a) (OMG, 2010) and one tool support

OO-Method (Pastor et al., 2001) as modeling
language. UML is the standard the facto to be used
in industry, and OO-Method starts from the UML
class diagram and adds semantic information to
allow the generation of fully-executable code. Using
UML or UML-based modeling languages reduces
the learning curve of the tool and facilitates the
integration with different project management tools.

In order to avoid or diminish defects and faults
of the generated applications, it is very important
that the MDD tool provides support to the holistic
representation of a system in a conceptual manner,
which includes the static, dynamic, functional, and
presentation views. More details of these views can
be found in (Marin et al., 2013). From the eight tools
analyzed: one tools does not detail the different
views supported; two tools support the structural and
the dynamic views; four tools support the structural,
dynamic and functional views; and only two tools
supports structural, dynamic, functional, and
presentation views.

Regarding the language for the specification of
system functionality, four tools uses OCL (OMG,
2006), one tool uses OASIS (Pastor et al., 1992), and
one tool uses Plain Old Java Objects (POJO).

Regarding the product generated, one tool does
not specify the final product generated, four tools
generate the skeleton of code, and just three tools
generate the code completely.

An analysis performed to the features established
in Section 3 shows that regarding to standardization,
most of the tools use the UML modeling language.
Only one tool does not support UML, but it supports
an extension of UML called OO-Method. However,
not all the tools support the same version of UML,
which will alleviates the exportation of the models
to other supported formats and promotes the
interoperability of tools.

Regarding the visualization of the models, the
analyzed tools provide graphical visualization or
connections with graphical tools (such as
MagicDraw or Eclipse EMF). However, there not
exist tools that take advantage of new interaction
features that could increase the productivity of
software engineers.

Regarding the verification of the model, some
tools offer verification of syntactical defects in the
models and verification of the consistency of the
different views supported. Nevertheless, it is also
necessary that MDD tools offer verification of
semantic defects in order to prevent faults when the
generated system is executed.

Regarding testing and simulation of the models,
analyzed MDD tools do not offer options to generate
tests or simulation artifacts in order to properly

validate the models, rather than testing the code once
the system is generated.

Regarding the transformation, even though the
tools analyzed offer refactoring and reverse
engineering features, they do not provide facilities to
customize transformations in particular situations.

With respect to efficiency and architecture,
commercial tools such as Rational or Integranova
can export to a number of different architectures, but
at open-source tools this option is available. In
addition, none of the eight tools provides support to
code optimization.

Finally, with respect to requirements traceability,
the tools analyzed do no provide mechanisms to
keep the traceability from requirements to code.

6 CONCLUSIONS

This paper presents a set of features that an MDD
tool should have for successful application and
adoption of the Model-Driven Development
paradigm in industry. An exploratory study was
performed to validate this set of key features for
MDD tools.

In addition, an analysis of available MDD tools
has been presented to evaluate the adoption of
existing tools regarding the features proposed. To
perform this analysis, the current OMG catalogue of
tools was considered. However, almost the 80% of
these tools are deprecated, which dramatically
reduce the set of MDD tool that met with the
features proposed and are aligned with the needs of
software development projects.

The remaining tools in the OMGs list have
reached a level of maturity in which it is possible to
generate solutions from a model, however, none of
these tools support all the features presented in this
paper. Thus, an interesting challenge is to
collaborate with the existing MDD tool providers to
analyze in deep the features proposed and to develop
a tool (or a suite of tools) that be aligned with all
these features.

This work is part of a research agenda that aims
to develop MDD tool for systems in the domain of
information systems management. In addition, this
agenda also include the development of techniques
to semantically verify the models and generate test
cases automatically from conceptual models, and
empirical studies that validate these techniques.

Acknowledgments. This work was funded by
FONDECYT project TESTMODE (Ref. 11121395,
2012-2015).

REFERENCES

Balogh, A. & Varr6, D. 2006. Advanced Model
Transformation Language Constructs in the
VIATRA2 Framework. ACM Symposium on
Applied Computing — Model Transformation Track
(SAC 2006). Dijon: ACM Press.

Berson, A. 1996. Client/server architecture, McGraw-Hill.

Conradi, R., Mohagheghi, P., Arif, T., Hegde, L. C.,,
Bunde, G. A. & Pedersen, A. 2003. Object-
Oriented Reading Techniques for Inspection of
UML Models — An Industrial Experiment. [7th
ECOOP. Springer.

Dias Neto, A. C., Subramanyan, R., Vieira, M. &
Travassos, G. H. 2007. A survey on model-based
testing approaches: a systematic review. /st ACM
international workshop on Empirical assessment
of software engineering languages and
technologies (WEASELTech '07). NY, USA:
ACM.

Egyed, A. 2006. Instant Consistency Checking for the
UML. 28th ICSE. Shangai, China: ACM.

Epsilon. 2010.
[Online].

Garber, L. 2012. Tangible User Interfaces: Technology
You Can Touch. IEEE Computer, 45, 15-18.

IEEE 1984. IEEE 830 Guide to Software Requirements
Specifications.

ISO/IEC 2001. ISO/IEC 9126-1, Software Eng. — Product
Quality — Part 1: Quality model.

ISO/IEC 2003. ISO/IEC 20926, Software Engineering —

http://www.eclipse.org/gmt/epsilon

IFPUG 4.1 Unadjusted Functional Size
Measurement Method — Counting Practices
Manual.

ISO/IEC 2011. ISO/IEC 19761, Software Engineering —
COSMIC - A Functional Size Measurement
Method.

Kitchenham, B. & Pfleeger, S. 1996. Software Quality:
The Elusive Target. IEEE Sofiware, 13, 12-21.

Lange, C. & Chaudron, M. 2004. An Empirical
Assessment of Completeness in UML Designs. 8th
Conf. on Empirical Assessment in Software Eng.
(EASE). IEEE.

Marin, B., Pastor, O. & Abran, A. 2010. Towards an
accurate functional size measurement procedure
for conceptual models in an MDA environment.
Data & Knowledge Engineering, 69, 472—490.

Marin, B., Pereira, J., Giachetti, G., Hermosilla, F. &
Serral, E. 2013. A General Framework for the
Development of MDD Projects. Ist International
Conference on Model-Driven Engineering and

Software Development - MODELSWARD 2013.
Barcelona - Spain: SciTePress.

OMG. MDA Products and Companies [Online]. Available:
http://www.omg.org/mda/committed-
products.htm.

OMG 2003. MDA Guide Version 1.0.1. In: JOAQUIN
MILLER & MUKERIJL, J. (eds.).

OMG 2006. Object Constraint Language 2.0 Specification.

OMG 2007a. UML 2.1.2 Infrastructure Specification.

OMG 2007b. XMI 2.1.1 Specification.

OMG 2010. UML 2.3 Superstructure Specification.

Paige, R. F. & Varro, D. 2012. Lessons learned from
building model-driven development tools.
Software & Systems Modeling, 11, 527-539.

Pastor, O., Gémez, J., Insfran, E. & Pelechano, V. 2001.
The OO-Method Approach for Information

Modelling: From Object-Oriented
Conceptual Modeling to Automated Programming.
Information Systems, 26, 507-534.

Pastor, O., Hayes, F. & Bear, S. 1992. OASIS: An Object-
Oriented Specification Language. Int. Conference
on Advanced Information Systems Engineering
(CAiSE). Manchester, UK.

Reenskaug, T. 2003. The Model-View-Controller (MVC),
Its Past and Present. University of Oslo.

Schmidt, D. 2006. Model Driven Engineering. /EEE
Computer, 39, 25-31.

Selic, B. 2003. The Pragmatics of Model-Driven
Development. /[EEE Software, 20, 19-25.

Travassos, G., Shull, F., Fredericks, M. & Basili, V. 1999.
Detecting Defects in Object-Oriented Designs:
Using Reading Techniques to Increase Software
Quality. OOPSLA' 99. Denver, CO, USA.

Vos, T. E., Baars, A. 1., Lindlar, F., Kruse, P. M.,
Windisch, A. & Weneger, J. 2010. Industrial
Scaled Automated Structural Testing with the
Evolutionary Testing Tool. Third International

Systems

Conference on Software Testing, Verification and
Validation (ICST). IEEE Computer Society.

