
Key Features for a Successful Model-Driven Development Tool 

Beatriz Marín1, Andrés Salinas1, Juan Morandé1, Giovanni Giachetti2 and Jose de la Vara3 
1Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago, Chile 

2Facultad de Ingeniería, Universidad Andres Bello, Sazié 2325, Santiago, Chile 
3Certus Centre for Software V&V, Simula Research Laboratory, P.O.Box 134, 1325 Lysaker, Norway 

{beatriz.marin,andres.salinas,juan.morande}@mail.udp.cl, giovanni.giachetti@unab.cl, jdelavara@simula.no 

Keywords: Model-Driven Development (MDD), Tools, MDA, Features. 

Abstract: The main focus of Software Engineering discipline is to establishing methods and processes for the effective 
and efficient development of software projects. One of the most relevant paradigms for achieving this goal 
is Model-Driven Development (MDD). MDD uses models at different abstraction levels to automatically 
generate software products by means of model-transformations. However, one of the main issues related to 
the development of MDD technologies is the lack of standardization in terms of the features that need to be 
considered to support the current industry needs. This difficults the comparison of existing technologies 
since there are not a reference point for the creation of new MDD approaches with their corresponding 
supporting tools. This paper analyses these industry needs through an exploratory study. From the results 
obtained, it states the main features that must be supported by MDD tools. In addition, this paper presents an 
analysis about the presence or absence of these features in a set of industrial MDD tools. 

1 INTRODUCTION 

The goal of Software Engineering is to establishing 
methods and processes for the effective and efficient 
development of software projects (Kitchenham and 
Pfleeger, 1996). The Model-Driven Development 
paradigm (Selic, 2003) has become into a relevant 
mean for achieving this purpose at both, industry 
and academic domains. 

MDD approaches use models at different 
abstraction levels that are independent of technical 
platforms to generate different kinds of software 
products by means of model transformations (such 
as code, documentation, new modeling artifacts, 
etc.). Thus, a correct model specification is essential 
to automatically generate a complete software 
solution without programming a single line of code.  

In this context, the MDD paradigm is moving the 
software development processes to a different 
dimension, from the solution space (software 
product) to the problem space (conceptual models). 
In this journey, the success of adopting MDD 
solutions is in direct relation with the capability of 
the available tools to satisfying the needs of the 
different development projects.  

However, even though there exists an important 
amount of MDD tools in the software industry 
(Marín et al., 2013), there is a lack of references that 

state the key aspects that need to be considered for 
selecting (or developing) a MDD tool properly 
aligned with industrial MDD processes.  

In this context, this paper presents a twofold 
contribution: (1) this paper presents and analyses a 
set of key features that an MDD tool must have to be 
successfully adopted in industry software 
developments; and (2) the paper also presents which 
of these key features are currently taken into account 
by considering a set of existing MDD tools. 

The rest of the paper is organized as follows: 
Section 2 presents some relevant related work. 
Section 3 presents an exploratory study. Section 4 
presents the key features. Section 4 presents an 
analysis of these features in relation to a set of MDD 
tools that are currently available. Finally, Section 5 
presents some conclusions and further work. 

2 RELATED WORK 

Bran Selic in (Selic, 2003) proposes the following 
success criteria for the development MDD tools by 
considering his experience in the development of the 
IBM Rational Software.  
 
Standards. The use of standards is essential to 
spread the adoption of new technologies and reduce 



 

the learning curve related to the application of MDD 
software production processes.  In this context, the 
Model-Driven Architecture (MDA) proposed by 
OMG is probably the most referenced 
implementation schema for MDD tools.  
 
Observability and executability of the model. The 
observability refers to the integration of comparing 
tools that helps in the identification of model’s 
versions. The executability refers to the capacity to 
execute the models in early stages of software 
development, providing a learning ability though 
experimentation. 
 
Efficiency of the generated code. The efficiency of 
the generated code can be decomposed in 
performance and use of memory. In addition, it is 
also important taking into account the size of the 
generated system and the compilation time of the 
models.   
 

Furthermore, Richard Paige and Dániel Varró in 
(Paige and Varró, 2012) presents the knowledge 
obtained during the development of two tools: 
Epsilon (Epsilon, 2010) and VIATRA2 (Balogh and 
Varró, 2006), which is briefly analysed below. 

 
Use of requirement models for driving the 
development process. The use of requirement 
models in MDD processes help to motivate and 
thread the development complexity, i.e.; it drives the 
construction in terms of development iterations.  
 
Flexibility of architectures and modeling tools. At 
the beginning, it is promoted the flexibility of 
architectures instead of the selection of the correct 
architecture. Having a flexible architecture it is 
possible to adapt the generation of the final software 
products to different architectural patterns in 
accordance to the needs of the development project.  
 
Modeling technologies. Modeling technologies 
refers to the methods used to represent the models, 
for instance EMF model representation. The 
selection of the modeling technology significantly 
affects in the usability and flexibility of the 
modeling tool in terms of the implementation of 
model transformations, typing of model elements, 
etc. In addition, the final user do not necessarily 
must to know how the representation of models is 
implemented; final users just need to know the 
graphical representation of models in order to avoid 
complexity of the modeling technology. 

 

Summarizing, the works analyzed consider 
specific views of the development of MDD tools by 
introducing some desirable features. However, these 
features are not validated in industrial contexts. To 
tackle this situation, we perform an exploratory 
study in order to discover the relevant features that 
an MDD tool must have. 

3 EXPLORATORY STUDY 

The exploratory study consists in an online 
questionnaire of 19 questions. These questions have 
been defined by considering strong and weak points 
of previous works analyzed. Moreover, the model 
verification and interoperability criteria were added 
to the study. 

The model verification is a relevant feature in 
MDD tools since this assures that all the model 
information can be transformed into the 
corresponding software artifacts (syntactic 
verification) and the final software product is 
properly aligned with the users’ requirements 
(semantic verification). 

The model interoperability is a key feature to 
facilitate (and automate) the interchange of 
modeling information among tools related to a same 
domain (e.g. interoperability among different UML 
tools), as well as the interoperability among different 
modeling approaches (e.g. for bridging requirement 
and design modeling approaches). 

Table 1 shows the questions and the related 
feature of the questionnaire. Each question was 
answered by using a 5-point Likert scale. To obtain 
qualitative aspects related to each question, an open 
text box that can be filled with open answers was 
placed.  

The estimated time to response was specified in 
15 minutes. In order to present the questions in an 
attractive way, different icons that represent the 
values of the Likert scale were used (from totally 
disagree represented by 1 to totally agree 
represented by 5). The questionnaire can be seen at 
https://testmodeproject.typeform.com/to/eUhWIU. 

Four relevant tool vendors response the online 
questionnaire and automatically the answers were 
sent to the authors. Collected answers were located 
in a table to further analysis (see Table 2). In Table 
2, the column Id represents the number of the 
question, and TV1 to TV4 represents the tool 
vendors that response the questionnaire.  
 
 
 



Table 1: Questions and related features of the questionnaire. 

Id Question Feature 
Q1  The MDD tool must support the standard UML. Standarization 

Q2 The MDD tool must support MDA in terms of CIM, PIM, PSM Standarization 
Q3 The MDD tool must provide extension mechanisms for modeling languages customization to 

allow the communication with different tools? 
Interoperability 

Q4  The MDD tool must provide extension mechanisms that allow the 
communication/interoperability with different tools 

Interoperability 

Q5  It is necessary to have a graphical visualization of a model. Observability 
Q6  It is necessary to have a version manager of models. Observability 

Q7  It is necessary to have easy human interaction (such as touch screens) to work with models. Efficiency 
Q8 The MDD tool must provide verification mechanisms of the models Verification 

Q9  The MDD tool must provide automatic defect detection for the models Verification 
Q10 The MDD tool must provide automatic test case generation of the models Verification 
Q11  The MDD tool must provide simulations of the executability of the model Executability 

Q12 The MDD tool must allow redefinitions of the transformation of the models Flexibility 
Q13  The generated code of an MDD tool must have the same efficiency than the code generated 

with traditional programming 
Flexibility 

Q14 The MDD tool must allow the selection of different architectural patterns to generate code Flexibility 

Q15  The MDD tool must be able to generate code reviews Code Generation 
Q16  The MDD tool must generate at least the skeleton of the code Code Generation 

Q17  The MDD tool must generate totally executable code Code Generation 
Q18 The MDD tool must support the specification of all views of a system Requirements 

Q19 The MDD tool must save the traceability from requirements to code Requirements 

 

4 FEATURES FOR MDD TOOLS 

This section presents a set of features that any MDD 
tool designed to work in industrial projects should 
offer. At this point, it is important to note that (1) the 
main input of MDD tools is a conceptual model that 
is independent from the development platform used, 
and (2) the MDD tool must be able to generate code 
through the model specified. 

 
4.1   Standardization and 

Interoperability 

Since its inception, the Object Management Group 
(OMG) has promoted the standardization of 
different model-based and object-oriented 
approaches for software development. In this 
context, the main exponent of OMG standards is 
UML (OMG, 2010). Other standard defined by 
OMG is Model-Driven Architecture (MDA) (OMG, 

2003), which provides a standard architecture to 
support MDD developments. 

Table 2: Results of the questionnaire. 

Id TV1 TV2 TV3 TV4 Id TV1 TV2 TV3 TV4 

Q1 5 3 3 5 Q11 4 5 3 3 

Q2 4 4 2 2 Q12 5 2 1 3 

Q3 5 5 5 2 Q13 1 1 3 4 

Q4 4 3 5 4 Q14 4 4 3 5 

Q5 4 5 3 4 Q15 2 3 3 3 

Q6 2 1 5 5 Q16 5 5 4 5 

Q7 3 1 4 5 Q17 1 5 3 3 

Q8 4 5 4 5 Q18 4 3 3 2 

Q9 4 2 2 4 Q19 5 5 4 3 

Q10 4 5 1 3      

 
Standardization promotes significant progress in 

the development of a MDD tool, allowing to 
establish an agreement of good practices that 



 

facilitate the reuse and interoperability among 
different tools and modelling approaches, for 
example by using XMI (OMG, 2007b).  

Standardization also promotes specialization of 
tools in specific domains, leading the development 
of tools with more concrete and sophisticated 
features according to different application contexts. 

Results of the exploratory study shows that 50% 
of the subjects are totally agree about the MDD tool 
must support the standard UML, and the other 50% 
answers are neutral about this question. For Q2, 50% 
of subjects are not agree regarding if it is necessary 
that MDD tools support the MDA architecture in 
terms of CIM, PIM, and PSM; and the other 50% of 
the subjects are agree with this question. 

Regarding the interoperability, the exploratory 
study shows that 75% of subjects are totally agree 
with the affirmation of the MDD tool must provide 
extension mechanisms for modeling languages 
customization. Regarding Q4, 75% of the subjects 
state that MDD tool must provide extension 
mechanisms that allow the communication or 
interoperability with different tools. 

 
4.2   Visualization and Management of 

Models 

Due to the main input artifact in a MDD approach is 
a model, which specifies all the views that allow the 
complete representation of a system, it is essential 
that an MDD tool provides a suitable set of 
management and visualization features for models 
definition.  

The minimum feature to be considered is the 
possibility of visualizing the models at design time. 
In particular, it is necessary to provide a graphical 
interface that facilitates the management of multiple 
views that are normally used for a system model 
specification. The exploratory study shows that 75% 
of the subjects state that it is absolutely necessary to 
have a graphical visualization of the model. 

However, to appreciate graphically the model is 
not the only concern related to visualization that 
should taking into account when an MDD tool is 
built. Nowadays, more than ever, it is necessary to 
provide user interfaces that take into account quality 
characteristics such as usability (ISO/IEC, 2001); 
and new characteristics of hardware devices, such as 
touch panels in desktop and laptop computers 
(Garber, 2012). In the exploratory study we found 
that 50% of subjects agree to have an easy human 
interaction to work with models, and the other 50% 
answer that it is not necessary. 

Regarding versioning of the models, the 
exploratory study shows that 50% of the subjects 
state that it is absolutely necessary to manage the 

versioning of the models. This is the only way to 
work in collaborative industrial projects, where 
different members of a development team can work 
over the same models. However, the remaining 50% 
of subjects response that it is not mandatory to have 
a version manager, but it is a desirable feature. 

 
4.3   Verification  

In MDD, the modeling language assumes the role of 
an implementation language due to it achieves a 
complete and automatic code generation; i.e., the 
model becomes the new programming code. In this 
context, the generated code becomes into a black 
box, rarely reviewed, as is rarely reviewed the 
machine code generated by a programming language 
compiler, because this generation is performed using 
widely accepted standards in the industry. 

Thus, the verification of the model should be a 
mandatory feature of an industrial MDD tool. 100% 
of subjects response in the exploratory study that the 
MDD tools must provide verification mechanisms. 
This means using the MDD tool to find the presence 
of desirable characteristics and the absence of 
undesirable characteristics.  

Regarding to the absence of undesirable 
characteristics, different researchers have applied 
reading techniques or heuristics to identify defects in 
UML models, such as (Travassos et al., 1999), 
(Conradi et al., 2003), (Lange and Chaudron, 2004), 
(Egyed, 2006). Reading the question if it is 
necessary that the MDD tool provides automatic 
defect detection of the models, the exploratory study 
reveals that it is desirable, but with a desactivation 
possibility because some defects depends on the 
methodology selected in the project; i.e. it should be 
good to plug custom defect detection mechanisms to 
supporting architects’ needs. 

 
4.4   Testing  

Even though there exist several defect detection 
techniques proposed by the academia, the most 
important and most frequently used quality 
assurance technique applied in industry is testing. 
Usually, testing of software systems take up to more 
than 50% of development cost and time (Vos et al., 
2010). For this reason, it is very important to 
perform the testing as early as possible in order to 
diminish this high cost. Despite there are several 
tools and methods for testing planning and control, 
and test case execution and monitoring, there still 
are a limited amount of approaches for test case 
design, selection of test data, and test evaluation.  



 

To perform testing of models, there are several 
researchers who have applied model-based testing to 
generate test cases (Dias Neto et al., 2007). These 
approaches usually create a state transition model to 
represent the current state of a system and the next 
state, specifying the events that occur to change the 
state. In these models, test designs are focused on 
paths of the execution of the events. However, state 
transition models only provide a partial view of the 
final software system (behavioural view). Thus, after 
the application of test cases generated from these 
models, it is necessary to manually testing the 
remaining functionality of the system. In order to 
reduce the human effort doing testing, MDD tools 
must provide model-based testing approaches that 
will be focus in holistic models. 

Regarding testing, the exploratory study shows 
that 50% of the subjects answer that the MDD tool 
must provide automatic test case generation from 
models, and the other 50% answer that it could be 
good, but it is not essential. 

 
4.5   Code Generation and Simulation  

The MDD tool must generate at least the skeleton of 
the code. The exploratory study supports this 
asseveration with 75% of full agreement and 25% of 
agreement.  

Supporting technologies for automating the 
model-based operations, such as, model 
transformations, model validation and verification, 
generation of software products (model 
compilation), are essential to achieve the benefits of 
MDD. In this context, level of generation facilities 
that a MDD tool provides is of paramount 
importance. Depending of the tools, the code 
generation can go from the skeleton or code 
fragments to the generation of the complete software 
products. Nevertheless, the exploratory study shows 
that only 25% of the subjects agreed with the fact 
that an MDD tool must generate totally executable 
code. 50% of subjects state that in some cases the 
total code generation is adequate, arguing that the 
model that generates the complete executable code 
has the same complexity than the code generated. 

Regarding simulation, MDD tools should allow 
the execution of models even though they are 
incomplete (but valid). The main idea is not to wait 
until the model is finished to see how it looks like 
the software obtained from the part of the model that 
is already specified. This allows the correction of the 
model specification as early as possible. The 
exploratory study shows that 50% of the subjects 
agree in that the MDD tools must generate 
simulations of the models defined. 

 

4.6   Transformation  

The transformation of a model corresponds to a set 
of rules and activities such as refactoring, reverse 
engineering, application of patterns, among others. 
Transformations take one or more models as input, 
and by applying the rules specified, generate one or 
more output models, including the code of the final 
software product (implementation model).  

A suitable MDD tool must offer a number of 
predefined transformations for assuring a complete 
model transformation. However, features oriented to 
define or customize the transformation rules 
implemented by an MDD tool are supported by 25% 
of the subjects in the exploratory study. 

 
4.7   Efficiency and Scalability  

MDD tools should significantly reduce time and 
efforts, and simplify the development of final 
software products. The productivity gained by using 
MDD tools can be significant when the code 
generated is quite equivalent in terms of efficiency 
and scalability to the code manually generated. 

Various attempts have been performed in this 
direction. One prominent effort was computer-aided 
software engineering (CASE) in the beginning of 
80s, which focused on developing software methods 
and tools that enabled developers to express their 
designs in terms of general-purpose graphical 
programming representations, such as state 
machines, structure diagrams, and dataflow 
diagrams (Schmidt, 2006). However, CASE tools 
were not successful in industry due to its inability to 
handle complex, production-scale systems in a broad 
range of application domains (Schmidt, 2006). 

A relevant efficiency measure that can be 
considered when evaluating a MDD tool is related to 
the performance in terms of the volume of 
information handled, and the amount of memory 
used. Is expected that the automatically generated 
code efficiency has a deviation not greater than 10% 
compared to manually created code (Selic, 2003). 
One way of evaluating this would be comparing the 
amount of generated code lines between tools and 
their equivalent constructed by hand. A more 
appropriate way to evaluate this would be comparing 
the functional size measurement of both 
applications. For measuring the functional size of 
conceptual models it is possible to apply IFPUG 
measurement standards (ISO/IEC, 2003) and 
COSMIC (ISO/IEC, 2011), by applying, for 
example, the procedure presented in (Marín et al., 
2010). 

Results of the exploratory study reveals that 
efficiency in the generated code is not a relevant 



 

feature taking into account the increase in the 
productivity of MDD projects. 

 
4.8   Architectures and Maintenance  

Since, MDD tools work with platform independent 
models; the tool must support the transformation to 
executable code not only to a variety of languages, 
but also to different architecture design patterns. For 
example, if you want to generate in a particular 
programming language, the MDD tool may allow 
the selection between a client-server architecture 
(Berson, 1996) or model view controller (MVC) 
architecture (Reenskaug, 2003). The exploratory 
study reveals that 75% of the subjects agree that the 
MDD tool must allow the selection of different 
architectural patterns to generate code. 

Regarding the generation of code reviews, 75% 
of the subjects are neutral about the ability of MDD 
tools to perform partial generation of code from 
model changes; i.e., it is not necessary to recompile 
the whole model if a small change is performed. We 
state that this would facilitate the maintenance of the 
system to small changes or corrections that may 
exist during the lifetime of the software created. 

 
4.9   Requirements  

Even though there exist standards for requirements 
documentation (such as IEEE 830 (IEEE, 1984)), the 
requirements elicitation phase is the less technical by 
nature. However, it is desirable that the MDD tool 
supports the traceability from requirement 
specification to the other views of the system.  

The exploratory study shows a 75% of subjects 
agreed regarding traceability of MDD tools. The 
remaining 25% answer that it depends on the usage 
of the tool. 

5 GENERAL ANALYSIS 

This section presents a general analysis of the 
features that existing tools have. To do this analysis, 
a list of products that are compliant with the MDA 
approach were considered (OMG).  

There are 48 MDA tools recognized by OMG 
(OMG). However, many of these tools are not 
longer available are not updated for more than one 
year. From the 48 MDA tools, only 10 
(corresponding to 21%) are currently in use and 
have active support. The remaining 79% were 
deprecated or acquired by a larger company.  

The 10 available tools provide support for 
different domains, such as real-time or management 
information systems (MIS). We focus the analysis in 
MDD tools of the management information systems 
since it is broadly used in industry. Thus, just three 
tools were taking into account in the analysis.  

In order to make a more representative analysis, 
open-source tools that are not included in the OMG 
site were also included. Therefore, to complement 
the analysis, five open-source tools were added. 
Thus, eight MDD tools were finally analyzed. 

First, a characterization of the selected tools was 
performed regarding the modeling language used, 
the system views covered by the tool, the language 
for the specification of the functional view, and the 
software product generated (see Table 3). 

 

Table 3: Characterization of MDD tools analyzed. 

MDD tool Modeling 
Language System Views Functional 

View Language Products Generated 

AndroMD
A 

UML by using 
MagicDraw Structural and Dynamic Views - Structure of the system 

OpenMDX UML  - POJO - 

Acceleo UML2 by using 
EMF 

Structura, Dynamic, and 
Functional Views OCL Code Skeleton. 

TopCased UML2 by using 
EMF 

Structura, Dynamic, and 
Functional Views OCL Code Skeleton. Documentation. Allows complete 

code generation by using plugins. 

StarUML UML 2.0 Structura, Dynamic, and 
Functional Views - Code Skeleton and requirements and 

implementation documents 
Integranov

a OO-Method Structural, Dynamic, Functional, 
and Presentation Views OASIS Complete fully  working generation code. 

Documentation. Fucntional size Measurement. 
IBM 

Rational 
Rose 

UML2.1 Structural and Dynamic Views OCL Complete fully  working generation code 

Blu Age UML 2.1 Structural, Dynamic, Functional, 
and Presentation Views OCL Complete fully  working generation code 

 As Table 3 shows, seven tools support UML 
(OMG, 2007a) (OMG, 2010) and one tool support 



 

OO-Method (Pastor et al., 2001) as modeling 
language. UML is the standard the facto to be used 
in industry, and OO-Method starts from the UML 
class diagram and adds semantic information to 
allow the generation of fully-executable code. Using 
UML or UML-based modeling languages reduces 
the learning curve of the tool and facilitates the 
integration with different project management tools. 

In order to avoid or diminish defects and faults 
of the generated applications, it is very important 
that the MDD tool provides support to the holistic 
representation of a system in a conceptual manner, 
which includes the static, dynamic, functional, and 
presentation views. More details of these views can 
be found in (Marín et al., 2013). From the eight tools 
analyzed: one tools does not detail the different 
views supported; two tools support the structural and 
the dynamic views; four tools support the structural, 
dynamic and functional views; and only two tools 
supports structural, dynamic, functional, and 
presentation views. 

Regarding the language for the specification of 
system functionality, four tools uses OCL (OMG, 
2006), one tool uses OASIS (Pastor et al., 1992), and 
one tool uses Plain Old Java Objects (POJO). 

Regarding the product generated, one tool does 
not specify the final product generated, four tools 
generate the skeleton of code, and just three tools 
generate the code completely.  

An analysis performed to the features established 
in Section 3 shows that regarding to standardization, 
most of the tools use the UML modeling language. 
Only one tool does not support UML, but it supports 
an extension of UML called OO-Method. However, 
not all the tools support the same version of UML, 
which will alleviates the exportation of the models 
to other supported formats and promotes the 
interoperability of tools. 

Regarding the visualization of the models, the 
analyzed tools provide graphical visualization or 
connections with graphical tools (such as 
MagicDraw or Eclipse EMF). However, there not 
exist tools that take advantage of new interaction 
features that could increase the productivity of 
software engineers. 

Regarding the verification of the model, some 
tools offer verification of syntactical defects in the 
models and verification of the consistency of the 
different views supported. Nevertheless, it is also 
necessary that MDD tools offer verification of 
semantic defects in order to prevent faults when the 
generated system is executed. 

Regarding testing and simulation of the models, 
analyzed MDD tools do not offer options to generate 
tests or simulation artifacts in order to properly 

validate the models, rather than testing the code once 
the system is generated. 

Regarding the transformation, even though the 
tools analyzed offer refactoring and reverse 
engineering features, they do not provide facilities to 
customize transformations in particular situations. 

With respect to efficiency and architecture, 
commercial tools such as Rational or Integranova 
can export to a number of different architectures, but 
at open-source tools this option is available. In 
addition, none of the eight tools provides support to 
code optimization. 

Finally, with respect to requirements traceability, 
the tools analyzed do no provide mechanisms to 
keep the traceability from requirements to code. 

6 CONCLUSIONS 

This paper presents a set of features that an MDD 
tool should have for successful application and 
adoption of the Model-Driven Development 
paradigm in industry. An exploratory study was 
performed to validate this set of key features for 
MDD tools. 

In addition, an analysis of available MDD tools 
has been presented to evaluate the adoption of 
existing tools regarding the features proposed. To 
perform this analysis, the current OMG catalogue of 
tools was considered. However, almost the 80% of 
these tools are deprecated, which dramatically 
reduce the set of MDD tool that met with the 
features proposed and are aligned with the needs of 
software development projects.   

The remaining tools in the OMGs list have 
reached a level of maturity in which it is possible to 
generate solutions from a model, however, none of 
these tools support all the features presented in this 
paper. Thus, an interesting challenge is to 
collaborate with the existing MDD tool providers to 
analyze in deep the features proposed and to develop 
a tool (or a suite of tools) that be aligned with all 
these features.   

This work is part of a research agenda that aims 
to develop MDD tool for systems in the domain of 
information systems management. In addition, this 
agenda also include the development of techniques 
to semantically verify the models and generate test 
cases automatically from conceptual models, and 
empirical studies that validate these techniques. 

 
Acknowledgments. This work was funded by 
FONDECYT project TESTMODE (Ref. 11121395, 
2012-2015). 



 

REFERENCES 

Balogh, A. & Varró, D. 2006. Advanced Model 
Transformation Language Constructs in the 
VIATRA2 Framework. ACM Symposium on 
Applied Computing – Model Transformation Track 
(SAC 2006). Dijon: ACM Press. 

Berson, A. 1996. Client/server architecture, McGraw-Hill. 
Conradi, R., Mohagheghi, P., Arif, T., Hegde, L. C., 

Bunde, G. A. & Pedersen, A. 2003. Object-
Oriented Reading Techniques for Inspection of 
UML Models – An Industrial Experiment. 17th 
ECOOP. Springer. 

Dias Neto, A. C., Subramanyan, R., Vieira, M. & 
Travassos, G. H. 2007. A survey on model-based 
testing approaches: a systematic review. 1st ACM 
international workshop on Empirical assessment 
of software engineering languages and 
technologies (WEASELTech '07). NY, USA: 
ACM. 

Egyed, A. 2006. Instant Consistency Checking for the 
UML. 28th ICSE. Shangai, China: ACM. 

Epsilon. 2010. http://www.eclipse.org/gmt/epsilon 
[Online]. 

Garber, L. 2012. Tangible User Interfaces: Technology 
You Can Touch. IEEE Computer, 45, 15-18. 

IEEE 1984. IEEE 830 Guide to Software Requirements 
Specifications. 

ISO/IEC 2001. ISO/IEC 9126-1, Software Eng. – Product 
Quality – Part 1: Quality model. 

ISO/IEC 2003. ISO/IEC 20926, Software Engineering – 
IFPUG 4.1 Unadjusted Functional Size 
Measurement Method – Counting Practices 
Manual. 

ISO/IEC 2011. ISO/IEC 19761, Software Engineering – 
COSMIC – A Functional Size Measurement 
Method. 

Kitchenham, B. & Pfleeger, S. 1996. Software Quality: 
The Elusive Target. IEEE Software, 13, 12-21. 

Lange, C. & Chaudron, M. 2004. An Empirical 
Assessment of Completeness in UML Designs. 8th 
Conf. on Empirical Assessment in Software Eng. 
(EASE). IEEE. 

Marín, B., Pastor, O. & Abran, A. 2010. Towards an 
accurate functional size measurement procedure 
for conceptual models in an MDA environment. 
Data & Knowledge Engineering, 69, 472–490. 

Marín, B., Pereira, J., Giachetti, G., Hermosilla, F. & 
Serral, E. 2013. A General Framework for the 
Development of MDD Projects. 1st International 
Conference on Model-Driven Engineering and 

Software Development - MODELSWARD 2013. 
Barcelona - Spain: SciTePress. 

OMG. MDA Products and Companies [Online]. Available: 
http://www.omg.org/mda/committed-
products.htm. 

OMG 2003. MDA Guide Version 1.0.1. In: JOAQUIN 
MILLER & MUKERJI, J. (eds.). 

OMG 2006. Object Constraint Language 2.0 Specification. 
OMG 2007a. UML 2.1.2 Infrastructure Specification. 
OMG 2007b. XMI 2.1.1 Specification. 
OMG 2010. UML 2.3 Superstructure Specification. 
Paige, R. F. & Varró, D. 2012. Lessons learned from 

building model-driven development tools. 
Software & Systems Modeling, 11, 527-539. 

Pastor, O., Gómez, J., Insfrán, E. & Pelechano, V. 2001. 
The OO-Method Approach for Information 
Systems Modelling: From Object-Oriented 
Conceptual Modeling to Automated Programming. 
Information Systems, 26, 507–534. 

Pastor, O., Hayes, F. & Bear, S. 1992. OASIS: An Object-
Oriented Specification Language. Int. Conference 
on Advanced Information Systems Engineering 
(CAiSE). Manchester, UK. 

Reenskaug, T. 2003. The Model-View-Controller (MVC), 
Its Past and Present. University of Oslo. 

Schmidt, D. 2006. Model Driven Engineering. IEEE 
Computer, 39, 25-31. 

Selic, B. 2003. The Pragmatics of Model-Driven 
Development. IEEE Software, 20, 19–25. 

Travassos, G., Shull, F., Fredericks, M. & Basili, V. 1999. 
Detecting Defects in Object-Oriented Designs: 
Using Reading Techniques to Increase Software 
Quality. OOPSLA' 99. Denver, CO, USA. 

Vos, T. E., Baars, A. I., Lindlar, F., Kruse, P. M., 
Windisch, A. & Weneger, J. 2010. Industrial 
Scaled Automated Structural Testing with the 
Evolutionary Testing Tool. Third International 
Conference on Software Testing, Verification and 
Validation (ICST). IEEE Computer Society. 

 

 


