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Abstract

Networked multi-player games constitute a demanding classof interactive distributed multime-
dia applications with very high commercial relevance. As such, they attract a growing number
of researchers in multimedia networking. Most games use a client-server architecture, mainly
to prevent cheating. By analyzing the traffic of such games, we confirm that individual client-
server flows consume relatively little bandwidth. Thus latency, rather than bandwidth, is the
critical parameter when provisioning this class of applications. In order for commercial game
services to ensure low-latency operation, resource reservation must be explored. In this paper,
we investigate options for a DiffServ-style reservation onpart of the path between a game server
and sets of clients. We show how a token bucket shaper can be parameterized based on a target
end-to-end latency, and discuss the implications for a network infrastructure. We use the shaper
to quantify the burstiness of game traffic and the correlation between individual flows, with a
view to the limitations this imposes on resource reservation for aggregate (multiplexed) flows.
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1 Introduction

Networking researchers have recently demonstrated a growing interest in networked multiplayer
games as a demanding example of distributed interactive multimedia applications. The com-
puter games industry is large and has been a more important factor in home computer develop-
ment than other multimedia applications including conferencing, Internet telephony and media
streaming. In the context of networking research, games aremostly interesting because the kind
of traffic that they create highlights possible developments in future, highly interactive appli-
cations. The topic was made popular by Gautier et al.’s work on MiMaze (Gautier and Diot,
1998) and has led to the NetGames workshops (Wolf, 2002). In this paper, we investigate the
considerations that are necessary to use reservation for aggregate game flows.

The public Internet offers no service guarantees to end users. Thus, neither available bandwidth
nor limits to end-to-end latency are guaranteed. Constraints on both are mainly due to router
queues that grow until packets must be dropped. Usually, each individual data stream backs off
in order to alleviate congestion. This is impossible in the games domain due to the interactive
nature of the communication. In Anarchy Online (AO) for example, every single client-server
stream is so thin that it is an exceptional occurrence when two packets of the same stream are
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Figure 1: Packets per average RTT and standard deviation in Anarchy Online

sent within the same round-trip time (RTT) (figure 1), such that congestion control is not per-
formed and packet loss can only be recovered by timeout. It istherefore necessary to look
differently at gaming traffic. Games have several concurrent flows that might contribute to con-
gestion in the vicinity of the server. When competing for thebottleneck bandwidth, these flows
may experience considerable packet loss. For large-scale games, network resources reservation,
for example under a DiffServ regime, could alleviate the problems by separating games traffic
from other traffic. To do this, we must better understand how games traffic behaves in order to
recommend a reservation style to achieve the required latencies.

2 Relevant Game Types

Improving the performance of interactive games requires anunderstanding of games traffic. The
networking requirements of most multiplayer games fit into one of the following categories, and
more recent games may include elements from more than one group:

First Person Shooters (FPSs)involve a high percentage of combat that requires low response
times. The number of messages (update events such as players’ position and actions)
is high. Player satisfaction is disturbed mainly by experienced latency, which may be
due to network latency or the need to retransmit. Pantel and Wolf (2002) have shown
that this latency becomes detectable at about 100 ms and makes game play impossible
at approximately 200 ms. This game type is the most demandingin terms of latency
requirements.

Role Playing Games (RPGs)are visually similar to FPSs games, but the pace of player in-
teractions in RPGs is usually less intense. The kind of user actions is more varied and
can have a large influence on the game state. Online RPGs oftenaim at supporting a
large number of players, making scalability an important issue. This game type is most
demanding in terms of the number of concurrent flows.

Real-Time Strategy (RTS) games are not particularly sensitive to network latency andjitter.
Sheldon et al. (2003) and Bettner and Terrano (2001) studiedthem in more detail and
showed that they have no particular latency or bandwidth requirements. Thus, we do not
consider them in this paper.

Today, most commercial multiplayer games are implemented in a client-server fashion, using
either a single server or a server cluster. Clients are not interconnected and have an individual
connection to the server. In this way, game operators reducethe chances of cheating, ensure
the anonymity of players, and simplify administration. Based on two sets of packet traces



from commercial games, we take a closer look at network resource reservation and at the in-
fluence and limits of traffic shaping in the games scenario. Wefind that server-to-client and
client-to-server communication must be addressed separately, although bandwidth and latency
requirements are similar for both directions. The distinguishing factors are the following:

Server-to-client: Servers identify groups of clients to which they send the same information.
They could use multicast for this, but even if multicast support is lacking, they can deter-
mine the relative relevance of messages and can improve on the overall network resource
consumption by coordinating how shaping and dropping for every flow is performed.
It is possible to place servers strategically such that theyare well-connected to relevant
networks and close to ingress nodes of networks that supportreservation.

Client-to-server: Clients may generate events either on behalf of interactingusers or cycli-
cally. They will usually share their access network with a small number of competing
players and a much larger amount of traffic from other applications. Usually, they will
not be close to an ingress of a network that supports reservation.

3 Related Work

Chambers et al. (2005) investigated traces of several gamesconcerning the question of how
predictable game workloads are. They considered mainly FPSgames, but also the massively
multiplayer online role-playing game (MMORPG)Neverwinter NightsTM. Their conclusion
is that games traffic varies strongly, first with the time of day and then with the product life
cycle of the game. They approach the issue of multiplexing gain as a long-term multiplexing
problem, where several games should be hosted together and with other services. In this paper,
we consider multiplexing on the time-scale of end-to-end delay.

Fitting multi-player game traffic to probability distributions is described by Borella (2000). The
feasibility of aggregating game traffic to achieve statistical multiplexing gains has also been
previously studied. Notably, Busse et al. (2004) present anadmission control algorithm and its
suitability for a simple game whose bandwidth usage approximately follows a Poisson distri-
bution. While this traffic makes resource reservation relatively easy, it is not typical for games
traffic. In contrast to earlier resource reservation approaches via ATM and RSVP, the currently
popular mechanisms, DiffServ and MPLS, do not leave room forbursty, latency-critical traffic.
However, research is appearing which may enable guaranteesfor traffic aggregates (Allalouf
and Shavitt, 2005). Sharing of the bottleneck capacity in anenvironment without resource
reservation has been investigated, e.g. by Balakrishnan etal. (1999). However, this approach
requires that some streams give up bandwidth in favor of others.

4 Experiments

Since the acceptable end-to-end delay is known only to the game designer or developer, we
must use this as a variable in our investigation. It is necessary to take into account that there are
periods when game events are correlated on the timescale of the acceptable end-to-end delay.
Burstiness in flows can therefore not be suppressed entirely.

We propose to use resource reservation for aggregates of game flows that connect the network
edge of autonomous systems with a large player population tothe games server. Such reser-
vations require the means for formulating application-dependent traffic specifications. Aggre-
gating flows should allow for smoothing of the streams. Smoothing streams with correlated



bursts, however, may require considerable buffering and anincrease in end-to-end delay for the
individual flow, which is particularly bad for games.

We analyze packet traces (tcpdump files) from two games. CounterStrike (CS) is a multiplayer
FPS using a client-server architecture to communicate overUDP. The upstream bandwidth per
client is in the order of 1500 bytes/sec on average, with around 20 packets being sent per second.
More details can be found in Feng et al. (2002). Anarchy Online (AO) is an MMORPG using a
client-server architecture that communicates using TCP. The upstream bandwidth per client is
250 bytes/sec on average, with about 3 packets being sent persecond.

4.1 Burstiness

Burstiness is typically expressed as some measure of the arrival rate distributionX, such as
the variation coefficientσ2(X)/E2(X). We deal with flows which may have varying packet
rates and packet sizes. Thus, in order to quantify the arrival distribution, we would need to
identify a relevant time interval∆t over which the arrival rate is measured. Since bandwidth is
typically measured in bitsper second, one second is the typical choice for∆t. However, games
may require sub-second delay bounds. We therefore use a simulated token bucket filter (Wang,
2001) to characterize burstiness independently of time scale.

The peak rate is set arbitrarily high relative to the arrivalrate; for instance, the line speed of a
core Internet router. The initial token rate is set to the average arrival rateλ of the traffic (in
bytes per second). The initial bucket depth is set to zero bytes. We now systematically increase
the token rate and bucket depth1, and measure the resulting queuing delays. The ranges of these
parameters are chosen so as to show an eventual convergence of queuing delay to nearly zero for
the given traffic data. In the experiment shown in figures 2 and3, the token rate was increased
in 8 exponentially increasing steps, up to4λ bytes per second. The bucket depth was increased
in 20 steps, up toλ bytes.

By plotting maximum queuing delay against the token bucket parameters (see for example
Figure 2(a)), we obtain a visualization of the flow’s burstiness. For each scan line in the plot
corresponding to a constant token rate, each drop-off in delay indicates a burst. Specifically, if a
drop-off occurs at depthd, it indicates the presence ofd-byte bursts. This is because a bucket of
depthd allows bursts of up tod bytes to “pass through” at the (significantly higher) peak rate,
so that they no longer contribute to the queue length.

As the token rate is increased, queue lengths gradually converge to nearly zero. The token rate
of interest is the one at which, for some reasonable2 bucket depth, the corresponding queuing
delay meets the application-specific delay boundζ . The higher this rate is with respect to the
average arrival rate, the more bursty the flow.

Upstream traffic: Figure 2(a) shows the upstream component of a typical individual client-
server flow of our CS trace, and figure 2(b) shows the same for anAO trace. Consider that the
arrival of eachb-byte packet constitutes a burst of sizeb at a time scale corresponding to the
packet rate. The largest upstream IP packet size in the CS flowis 289 bytes. This corresponds
to the bucket depth at which the ridge in the right rear of Figure 2(a) has rolled off to height (i.e.
queuing delay) zero3. In the AO flow, the largest packet size is704 bytes.

1These two quantities are sometimes referred to as theFlowSpec.
2The definition of “reasonable” depends on what the network operator provides and what we are willing to pay.
3Actually, the delay floor is just above zero, due to the service delay resulting from a finite peak rate.
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Figure 2: Upstream token bucket filter for a single stream
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Figure 3: Downstream token bucket filter for a single stream

Downstream traffic: Figures 3(a) and 3(b) show the downstream components of typical in-
dividual client-server flows in CS and AO, respectively. Thelargest downstream IP packet size
in the CS flow is1428 bytes,1500 bytes in the AO flow. For CS, the ridge in the right rear of the
plots rolls off at bucket depth greater than the size of the largest packet, indicating bursts where
two or more packets arrive in rapid succession. For AO, the situation is less clear. The roll-off
occurs for packet sizes less than the MTU size, and increasing the token rate leads to a visible
reduction in queuing delay even for bigger token bucket sizes. This is due to the use of TCP;
packets are not the unit of event generation. If too much datais available for sending, TCP will
create a sequence of segments that all are completely filled except for the last one, and send all
of them back-to-back. The delay bound does therefore correspond to the length of actual bursts,
as soon as the accumulated tokens are consumed.

In both downstream cases, delays converge more slowly alongthe token rate axis than in the
upstream case: a relatively higher rate is required for the token bucket to take effect, indicating
higher overall burstiness with respect to the upstream traffic. However, the effect is much
less pronounced for AO than for CS. We can understand this when we consider that each CS
client requires updated information about many other clients at any given time, while an AO
client receives only updates for the player’s immediate surroundings as well as effects of other
players’ actions. Therefore there is less duplication of data sent from the server.

4.2 Correlation and Multiplexing Gain

Traffic specification in many distributed applications makes the starting assumption that users’
interactions are mutually independent and can be modeled byMarkov processes. In the case of



 1

 10

 100

 1000

 0.001  0.01  0.1  1  10  100  1000

se
rv

ic
e 

ra
te

 / 
m

ea
n 

ar
riv

al
 r

at
e

delay bound (seconds)

upstream
downstream

(a) CounterStrike

se
rv

ic
e 

ra
te

 / 
m

ea
n 

ar
riv

al
 r

at
e

delay bound (seconds)

delay bound vs. overprovisioning, single flow

upstream
downstream

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100  1000

(b) Anarchy online

Figure 4: Burstiness of a representative stream

games, however, it is natural to assume that game events are strongly correlated. Both FPSs and
RPGs lead to co-location of players in the virtual world, andactions are frequently determined
by knee-jerk reactions. However, these reaction times are short compared to client-server de-
lay, and the developer can compensate for a certain amount ofdelayζ [CHRIS: what?]. We
must therefore investigate the correlation to determine whether flow aggregation would yield a
relevant multiplexing gain at a temporal resolution that isimplicitly defined by the maximum
latency that the games developer considers acceptable. To do this, we consider a limited peak
rate that we call theminimal service rate ρ that upholdsζ . A limited ρ has two effects. First,
the bucket depth and token rate alone are no longer sufficientto stay within the delay boundζ ,
they have to be defined in such a way that packets drained from the buffer are processed early
enough. Second, if the expressive power for a resource reservation system is limited, as in the
case of DiffServ’s assured forwarding per hop behavior, thepeak rate must be reserved to meet
the delay boundζ . The ratioρ/λ gives a measure of overall burstiness. For one representative
game flow for both CS and AO, figure 4 plots this ratio over different values ofζ . Obviously,
ζ must be very large (in the order of1 to several seconds) to achieve a peak rate close to the
average data rate for individual flows.

We are therefore interested in determining whether the minimal service rate for a flow aggre-
gate is closer to the average rate of the aggregate. We do thisby looking at the multiplexing
gain. Consider a setS of concurrent flows. Comparingρ(S), the minimal service rate for the
aggregate, with the sum of the minimal service ratesρ(i) for each individual flowi ∈ S gives
us the multiplexing gainmg, 0 ≤ mg < 1: mg = 1 − ρ(S)∑

ρ(i)
.

One would expect that a set of flows with mutually independentPoisson packet arrival distri-
butions would tend to yield high multiplexing gain. Conversely, highly correlated flows would
offer little multiplexing gain, because their peaks are likely to coincide. As an example, we look
at the 10 largest flows that overlap for at least 5 minutes in both the CS and AO traces, and con-
sider a queuing delay boundζ = 25ms. We consider all combinations of these flows. Figure 5
shows the multiplexing gain as several flows are aggregated.Both graphs show that significant
multiplexing gain is possible, suggesting that peaks in individual flows are not strictly correlated
in the aggregate. It does not seem possible to achieve multiplexing gains beyond0.5 in either
game, while aggregation of upstream flows yields an important gain. Especially, the upstream
flows in AO are nearly perfectly uncorrelated at this time-scale.
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Figure 5: Multiplexing gain vs. number of concurrent flows

5 Discussion

For the upstream traffic in games, we would have expected significant burstiness at timescales
of one second or more, due to their interactive nature. Its absence implies that games, by
design, prevent upstream traffic from increasing considerably in highly active situations. At
sub-second resolution, their burstiness results primarily from packetization of the data. Also any
correlation between bursts in several streams is so low thatit seems to be a random occurrence.
We attribute this to the observation that expected correlation is hidden because the differences in
RTTs between clients and servers are on the same timescale ashuman reaction time, meaning
that game state updates are presented to players with high RTT only when those with short
RTTs have already reacted to them. Thus, correlation between the upstream components of
concurrent flows is sufficiently limited to allow significantstatistical multiplexing gains.

Downstream traffic, on the other hand, was more bursty than weanticipated. Although the
packet rate of this traffic is fairly constant, the packet sizes can vary between50 − 1500 bytes.
The downstream traffic is similar between flows, presumably because the game state updates
sent out by the server are largely the same for all clients. Thus, the downstream components of
concurrent flows are less suitable for aggregation.

If a games provider intends to exploit multiplexing to protect games traffic from cross-traffic,
a trace of the game traffic can provide the relevant token bucket parameters for a DiffServ
service specification. For upstream traffic, aggregation works well, so reservations can be made
for the aggregate flow. For downstream, a game provider couldestablish proxy servers at the
egress of a reservation. It would then become possible to usemulticast between the server
and the proxies, where traffic could be converted to unicast streams for the individual client.
However, the alternative would be not to perform upstream aggregation at all because the traffic
is reasonably smooth, and only use reservation for downstream traffic. In the latter case, no
proxy would be required, only DiffServ marking or MPLS labeling.

6 Conclusion and Future Work

We have presented a method for characterizing burstiness and correlation of concurrent game
flows at different time resolutions. We applied this method to the FPS game CounterStrike
and the MMORPG Anarchy Online, which use the UDP and TCP protocols, respectively. The
approach can determine the multiplexing gain and minimal service rate for aggregate game
flows at these resolutions. We find that upstream flows are onlyweakly correlated, allowing
resource reservation with little overhead. Downstream flows are highly correlated. However,



since no correlation is visible on the timescale of human reaction, smoothing on that timescale
can also be applied. Through this, a relevant but limited multiplexing gain can be achieved.

In future work, we intend to take a closer look at the issues underlying very thin TCP streams.
For the game flows that we observed, neither congestion control nor fast retransmission work
because of the very low data rates of individual streams, andremedies must be investigated. We
will also look at kernel enhancements and off-loading engines that make fast packet aggregation
and filtering on servers and proxy servers possible.
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