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Abstract

Networked multi-player games constitute a demanding dbsgeractive distributed multime-
dia applications with very high commercial relevance. Ashsuihey attract a growing number
of researchers in multimedia networking. Most games uséateserver architecture, mainly
to prevent cheating. By analyzing the traffic of such gamescanfirm that individual client-
server flows consume relatively little bandwidth. Thusate rather than bandwidth, is the
critical parameter when provisioning this class of appiaas. In order for commercial game
services to ensure low-latency operation, resource raservmust be explored. In this paper,
we investigate options for a DiffServ-style reservatiorpart of the path between a game server
and sets of clients. We show how a token bucket shaper carrampterized based on a target
end-to-end latency, and discuss the implications for a otmnfrastructure. We use the shaper
to quantify the burstiness of game traffic and the correfaietween individual flows, with a
view to the limitations this imposes on resource reserudoo aggregate (multiplexed) flows.

Keywords

Networked games, packet traces, resource requirements

1 Introduction

Networking researchers have recently demonstrated a gganterest in networked multiplayer
games as a demanding example of distributed interactivéimadia applications. The com-
puter games industry is large and has been a more importaat fa home computer develop-
ment than other multimedia applications including confiereg, Internet telephony and media
streaming. In the context of networking research, gamesaggly interesting because the kind
of traffic that they create highlights possible developreentfuture, highly interactive appli-
cations. The topic was made popular by Gautier et al.’s worlvidVlaze (Gautier and Diot,
1998) and has led to the NetGames workshops (Wolf, 2002hisnplaper, we investigate the
considerations that are necessary to use reservationdoegafe game flows.

The public Internet offers no service guarantees to engu3éius, neither available bandwidth
nor limits to end-to-end latency are guaranteed. Congsran both are mainly due to router
gueues that grow until packets must be dropped. Usually, isaividual data stream backs off
in order to alleviate congestion. This is impossible in thengs domain due to the interactive
nature of the communication. In Anarchy Online (AO) for exde) every single client-server
stream is so thin that it is an exceptional occurrence whenpackets of the same stream are
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Figure 1: Packets per average RTT and standard deviation in Aarchy Online

sent within the same round-trip time (RTT) (figure 1), sucht ttongestion control is not per-
formed and packet loss can only be recovered by timeout. thesefore necessary to look
differently at gaming traffic. Games have several concuiftews that might contribute to con-
gestion in the vicinity of the server. When competing for limtleneck bandwidth, these flows
may experience considerable packet loss. For large-saaieg) network resources reservation,
for example under a DiffServ regime, could alleviate thebypems by separating games traffic
from other traffic. To do this, we must better understand hames traffic behaves in order to
recommend a reservation style to achieve the requireddiggn

2 Relevant Game Types

Improving the performance of interactive games requiragwerstanding of games traffic. The
networking requirements of most multiplayer games fit ime of the following categories, and
more recent games may include elements from more than ong:gro

First Person Shooters (FPSs)nvolve a high percentage of combat that requires low respon
times. The number of messages (update events such as plagsiton and actions)
is high. Player satisfaction is disturbed mainly by expsrea latency, which may be
due to network latency or the need to retransmit. Pantel aalil {2002) have shown
that this latency becomes detectable at about 100 ms andsngakee play impossible
at approximately 200 ms. This game type is the most demandingrms of latency
requirements.

Role Playing Games (RPGs)are visually similar to FPSs games, but the pace of player in-
teractions in RPGs is usually less intense. The kind of usiores is more varied and
can have a large influence on the game state. Online RPGs afteat supporting a
large number of players, making scalability an importasties This game type is most
demanding in terms of the number of concurrent flows.

Real-Time Strategy (RTS) games are not particularly sensitive to network latency jétet.
Sheldon et al. (2003) and Bettner and Terrano (2001) stutieh in more detail and
showed that they have no particular latency or bandwidthirements. Thus, we do not
consider them in this paper.

Today, most commercial multiplayer games are implemenmtexddlient-server fashion, using

either a single server or a server cluster. Clients are netaannected and have an individual
connection to the server. In this way, game operators retheeehances of cheating, ensure
the anonymity of players, and simplify administration. Bason two sets of packet traces



from commercial games, we take a closer look at network megoeservation and at the in-
fluence and limits of traffic shaping in the games scenario. filde that server-to-client and
client-to-server communication must be addressed sebaratthough bandwidth and latency
requirements are similar for both directions. The distiaging factors are the following:

Server-to-client: Servers identify groups of clients to which they send theesarformation.
They could use multicast for this, but even if multicast saps lacking, they can deter-
mine the relative relevance of messages and can improvesavdrall network resource
consumption by coordinating how shaping and dropping fargvlow is performed.
It is possible to place servers strategically such that #reywell-connected to relevant
networks and close to ingress nodes of networks that supgs®tvation.

Client-to-server: Clients may generate events either on behalf of interaaiseys or cycli-
cally. They will usually share their access network with aamumber of competing
players and a much larger amount of traffic from other appboa. Usually, they will
not be close to an ingress of a network that supports resenvat

3 Related Work

Chambers et al. (2005) investigated traces of several gaorerning the question of how
predictable game workloads are. They considered mainly gd”%es, but also the massively
multiplayer online role-playing game (MMORP®Jeverwinter Nights™. Their conclusion
is that games traffic varies strongly, first with the time oy @dend then with the product life
cycle of the game. They approach the issue of multiplexing ga a long-term multiplexing
problem, where several games should be hosted togetheritindtier services. In this paper,
we consider multiplexing on the time-scale of end-to-endyle

Fitting multi-player game traffic to probability distribahs is described by Borella (2000). The
feasibility of aggregating game traffic to achieve statatimultiplexing gains has also been
previously studied. Notably, Busse et al. (2004) preseradanission control algorithm and its
suitability for a simple game whose bandwidth usage apprately follows a Poisson distri-
bution. While this traffic makes resource reservation nedht easy, it is not typical for games
traffic. In contrast to earlier resource reservation apghnea via ATM and RSVP, the currently
popular mechanisms, DiffServ and MPLS, do not leave roonbfwsty, latency-critical traffic.
However, research is appearing which may enable guarafteésiffic aggregates (Allalouf
and Shavitt, 2005). Sharing of the bottleneck capacity ireavironment without resource
reservation has been investigated, e.g. by Balakrishnah €999). However, this approach
requires that some streams give up bandwidth in favor ofrsthe

4 Experiments

Since the acceptable end-to-end delay is known only to tineegdesigner or developer, we
must use this as a variable in our investigation. It is nexrgge® take into account that there are
periods when game events are correlated on the timescabe a@icteptable end-to-end delay.
Burstiness in flows can therefore not be suppressed entirely

We propose to use resource reservation for aggregates & fiaws that connect the network
edge of autonomous systems with a large player populatitinetgames server. Such reser-
vations require the means for formulating applicationetefent traffic specifications. Aggre-
gating flows should allow for smoothing of the streams. Sthiogt streams with correlated



bursts, however, may require considerable buffering andaease in end-to-end delay for the
individual flow, which is particularly bad for games.

We analyze packet tracesqpdunp files) from two games. CounterStrike (CS) is a multiplayer
FPS using a client-server architecture to communicate 0. The upstream bandwidth per
clientisin the order of 1500 bytes/sec on average, withrast@® packets being sent per second.
More details can be found in Feng et al. (2002). Anarchy @n(&0O) is an MMORPG using a
client-server architecture that communicates using T@R. dpstream bandwidth per client is
250 bytes/sec on average, with about 3 packets being ses¢pand.

4.1 Burstiness

Burstiness is typically expressed as some measure of thvalanate distributionX, such as
the variation coefficient?(X)/E?(X). We deal with flows which may have varying packet
rates and packet sizes. Thus, in order to quantify the drigéribution, we would need to
identify a relevant time intervaht¢ over which the arrival rate is measured. Since bandwidth is
typically measured in bitger second, one second is the typical choice tt. However, games
may require sub-second delay bounds. We therefore use éasatitoken bucket filter (Wang,
2001) to characterize burstiness independently of timkesca

The peak rate is set arbitrarily high relative to the arrnadé; for instance, the line speed of a
core Internet router. The initial token rate is set to therage arrival rate\ of the traffic (in
bytes per second). The initial bucket depth is set to zereshyw/e now systematically increase
the token rate and bucket depthnd measure the resulting queuing delays. The rangesssf the
parameters are chosen so as to show an eventual convergeuesimg delay to nearly zero for
the given traffic data. In the experiment shown in figures 2 &itie token rate was increased
in 8 exponentially increasing steps, up4d bytes per second. The bucket depth was increased
in 20 steps, up to\ bytes.

By plotting maximum queuing delay against the token bucleameters (see for example
Figure 2(a)), we obtain a visualization of the flow’s buresn. For each scan line in the plot
corresponding to a constant token rate, each drop-off mydaticates a burst. Specifically, if a
drop-off occurs at deptfd, it indicates the presence @fbyte bursts. This is because a bucket of
depthd allows bursts of up ta@ bytes to “pass through” at the (significantly higher) pedk ra
so that they no longer contribute to the queue length.

As the token rate is increased, queue lengths graduallyecgevto nearly zero. The token rate
of interest is the one at which, for some reasorfablecket depth, the corresponding queuing
delay meets the application-specific delay bognd he higher this rate is with respect to the
average arrival rate, the more bursty the flow.

Upstream traffic: Figure 2(a) shows the upstream component of a typical iddadiclient-
server flow of our CS trace, and figure 2(b) shows the same féCatrace. Consider that the
arrival of eachh-byte packet constitutes a burst of sizat a time scale corresponding to the
packet rate. The largest upstream IP packet size in the C341280 bytes. This corresponds
to the bucket depth at which the ridge in the right rear of Feg2(a) has rolled off to height (i.e.
queuing delay) zerd. In the AO flow, the largest packet size7i®4 bytes.

1These two quantities are sometimes referred to aEliveSpec.
2The definition of “reasonable” depends on what the netwoekator provides and what we are willing to pay.
3Actually, the delay floor is just above zero, due to the serdielay resulting from a finite peak rate.
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Figure 2. Upstream token bucket filter for a single stream
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Figure 3. Downstream token bucket filter for a single stream

Downstream traffic: Figures 3(a) and 3(b) show the downstream components afalyini-
dividual client-server flows in CS and AO, respectively. Témgest downstream IP packet size
in the CS flow isl428 bytes,1500 bytes in the AO flow. For CS, the ridge in the right rear of the
plots rolls off at bucket depth greater than the size of thgelst packet, indicating bursts where
two or more packets arrive in rapid succession. For AO, thmson is less clear. The roll-off
occurs for packet sizes less than the MTU size, and incrgdlsentoken rate leads to a visible
reduction in queuing delay even for bigger token bucketssiZéhis is due to the use of TCP;
packets are not the unit of event generation. If too muchidat@ailable for sending, TCP will
create a sequence of segments that all are completely fklmpefor the last one, and send all
of them back-to-back. The delay bound does therefore quorekto the length of actual bursts,
as soon as the accumulated tokens are consumed.

In both downstream cases, delays converge more slowly dlengpken rate axis than in the
upstream case: a relatively higher rate is required fordkert bucket to take effect, indicating
higher overall burstiness with respect to the upstreanficraHowever, the effect is much

less pronounced for AO than for CS. We can understand thiswigeconsider that each CS
client requires updated information about many other tdiext any given time, while an AO

client receives only updates for the player's immediateaurdings as well as effects of other
players’ actions. Therefore there is less duplication ¢ dant from the server.

4.2 Correlation and Multiplexing Gain

Traffic specification in many distributed applications makee starting assumption that users’
interactions are mutually independent and can be modelédidokov processes. In the case of
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games, however, it is natural to assume that game eventsamgly correlated. Both FPSs and
RPGs lead to co-location of players in the virtual world, actions are frequently determined
by knee-jerk reactions. However, these reaction timeslawg sompared to client-server de-
lay, and the developer can compensate for a certain amouwtdelay( [CHRIS: what?]. We
must therefore investigate the correlation to determinetiér flow aggregation would yield a
relevant multiplexing gain at a temporal resolution thamslicitly defined by the maximum
latency that the games developer considers acceptableo fus] we consider a limited peak
rate that we call theninimal service rate p that upholds,. A limited p has two effects. First,
the bucket depth and token rate alone are no longer suffimestay within the delay boungl
they have to be defined in such a way that packets drained frierhuffer are processed early
enough. Second, if the expressive power for a resourcevedger system is limited, as in the
case of DiffServ’s assured forwarding per hop behaviorpiek rate must be reserved to meet
the delay bound. The ratiop/\ gives a measure of overall burstiness. For one represeantati
game flow for both CS and AO, figure 4 plots this ratio over défe values of.. Obviously,

¢ must be very large (in the order ofto several seconds) to achieve a peak rate close to the
average data rate for individual flows.

We are therefore interested in determining whether themahservice rate for a flow aggre-
gate is closer to the average rate of the aggregate. We dbythaoking at the multiplexing
gain. Consider a sef of concurrent flows. Comparing(.S), the minimal service rate for the
aggregate, with the sum of the minimal service ratg$ for each individual flowi € S gives

us the multiplexing gaimg,0 < mg < 1: mg =1 — Zpi(f()i)'

One would expect that a set of flows with mutually independraisson packet arrival distri-
butions would tend to yield high multiplexing gain. Conways highly correlated flows would
offer little multiplexing gain, because their peaks arelykto coincide. As an example, we look
at the 10 largest flows that overlap for at least 5 minutes th tiee CS and AO traces, and con-
sider a queuing delay bourdd= 25ms. We consider all combinations of these flows. Figure 5
shows the multiplexing gain as several flows are aggreg&eih graphs show that significant
multiplexing gain is possible, suggesting that peaks iividdal flows are not strictly correlated
in the aggregate. It does not seem possible to achieve hexitig gains beyond.5 in either
game, while aggregation of upstream flows yields an impbgam. Especially, the upstream
flows in AO are nearly perfectly uncorrelated at this timalsc
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5 Discussion

For the upstream traffic in games, we would have expectedfisgnt burstiness at timescales
of one second or more, due to their interactive nature. Ilsemte implies that games, by
design, prevent upstream traffic from increasing conshdgria highly active situations. At
sub-second resolution, their burstiness results prigndm packetization of the data. Also any
correlation between bursts in several streams is so lowtteaéms to be a random occurrence.
We attribute this to the observation that expected corozlas hidden because the differences in
RTTs between clients and servers are on the same timesdaileras) reaction time, meaning
that game state updates are presented to players with highoRlly when those with short
RTTs have already reacted to them. Thus, correlation betvlee upstream components of
concurrent flows is sufficiently limited to allow significastitistical multiplexing gains.

Downstream traffic, on the other hand, was more bursty thamantieipated. Although the
packet rate of this traffic is fairly constant, the packeesizan vary betweest — 1500 bytes.
The downstream traffic is similar between flows, presumablyalnse the game state updates
sent out by the server are largely the same for all clientssTtihe downstream components of
concurrent flows are less suitable for aggregation.

If a games provider intends to exploit multiplexing to ptgames traffic from cross-traffic,
a trace of the game traffic can provide the relevant token dtupkrameters for a DiffServ
service specification. For upstream traffic, aggregatiorksmell, so reservations can be made
for the aggregate flow. For downstream, a game provider cestlablish proxy servers at the
egress of a reservation. It would then become possible tarusgcast between the server
and the proxies, where traffic could be converted to unidasass for the individual client.
However, the alternative would be not to perform upstreagreggtion at all because the traffic
is reasonably smooth, and only use reservation for dowarstiteaffic. In the latter case, no
proxy would be required, only DiffServ marking or MPLS lainej.

6 Conclusion and Future Work

We have presented a method for characterizing burstinessarelation of concurrent game
flows at different time resolutions. We applied this methodhe FPS game CounterStrike
and the MMORPG Anarchy Online, which use the UDP and TCP pai$o respectively. The
approach can determine the multiplexing gain and minimalise rate for aggregate game
flows at these resolutions. We find that upstream flows are wabkly correlated, allowing
resource reservation with little overhead. Downstreamdlawe highly correlated. However,



since no correlation is visible on the timescale of humantrea, smoothing on that timescale
can also be applied. Through this, a relevant but limitedtipleking gain can be achieved.

In future work, we intend to take a closer look at the issuatedging very thin TCP streams.
For the game flows that we observed, neither congestionalardr fast retransmission work
because of the very low data rates of individual streamsremedies must be investigated. We
will also look at kernel enhancements and off-loading eegithat make fast packet aggregation
and filtering on servers and proxy servers possible.
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