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Reuse of Standard Preconditioners for Higher—Order Time
Discretizations of Parabolic PDEs
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Abstract — In this work we study a preconditioned iterative method for some higher—order time dis-
cretizations of linear parabolic partial differential equations. We use thé &groximations of the
exponential function to discretize in time and show that standard solution algorithms for lower—order
time discretization schemes, such as Crank—Nicolson and implicit Euler, can be reused as precondi-
tioners for the arising linear system. The proposed preconditioner is order optimal with respect to the
discretization parameters.
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1. INTRODUCTION

In this paper we study preconditioners for higher—order time discretizations of linear
parabolic partial differential equations. Optimal solution algorithms for lower—order
discretizations such as the backward Euler or the Crank—Nicolson schemes are well
known, see e.g., [1,11,13], and the main point here is that these algorithms can be
reused as preconditioners for higher—order time discretizations.

The "same” reasoning has been used with success for higher—order spatial dis-
cretizations. Already in 1985, preconditioners based on lower—order finite difference
or finite element discretizations were reused for the spectral element discretization
of the same equation, [3,5]. There are many later works on this subject. Although
higher—order time discretizations have been extensively studied cf. [13], precon-
ditioning methods for the arising linear systems have not been investigated much.
Only BDF and DIRK methods provide higher—order accuracy in time by solving a
linear system with the same matrix as in lower—order methods. The problem with
BDF methods is that they can not handle temporal adaptivity which is crusial in
many applications. DIRK methods are not stable enough for large time stepping in
parabolic equations. To our knowledge only a few authors have adressed solution
algorithms for other higher—order time discretizations [2,7,9,10].

The outline of the paper is as follows. The main idea is introduced in Section 2.
Then the needed properties of Bapproximation and preconditioning are briefly
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reviewed in Section 3 and Section 4, respectively. Section 5 describes the proposed
preconditioner in detail, and proves order optimality with respect to the discretiza-
tion parameters. In Section 6 we give a more precise bound on the condition number
of the preconditioned system.

2. PRELIMINARIES

In this paper we consider a solution algorithm for discretizations of linear parabolic
partial differential equations. For simplicity, but without loss of generality, we start
with the homogenous model problem

3::1 = AU, inQvt€<O?T)7

u = 0, ondQte(0,T),
u = u, InQt=0.

This equation is discretized in space, resulting in the following ODE system to be
solved,

du,
dt7p - Ah,puh,p7 te (OvT)7 (21)
Up = Uy, t=0, (2.2)

whereAy, p is the discrete Laplacian (a matrixl, p is the unknown (a vector) arid
is characteristic for the mesh size apds the polynomial degree. In the following
we will drop the subscripth and p.

It is known that the linear ODE system (2.1)-(2.2) can be solved with any order
of accuracy with the following time stepping scheme

Quj(DtAU" = R (AtAU", (2.3)

whereAt is the time stepping parameter and the two polynon@lsandP; are
the (k, j)— Pack approximation to the exponential function.

We will come back to the specific structure@f; andR; later, but remark that
systems on the following form has to be solved at each time step,

(I — uALA+ AtPAZ — ... (~1)Ig;at AU = b.

Herej is the order of the polynomial. Instead of considering a preconditioner based
on the polynomialQx; we want to reuse standard solution algorithms for lower—
order time discretizations of the equation,

(I — AtAYu= b, (2.4)

Such algorithms have been studied extensively and order optimal algorithms have
been found for most spatial discretization methods. Hence, we do not assume any-
thing on the spatial discretization. LBj; be defined as

Bat = (1 —AtA) 1,
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and we assume that the evaluationBaf on a vector is an order optimal process.
Then we will demonstrate that _
B:
is a good preconditioner for
(I — DtquA+ QAPAZ — .. (—1) ;AU A)),

wheret = ,i/gjAt andg; are the coefficients in the Padpproximation described in
the next section.

The proposed preconditioner works just as well for the inhomogeneous parabolic
equations. In fact, c.f. [13], only the right—hand side of (2.3) needs to be altered to
account for the inhomogeneous case.

3. PADE APPROXIMATION

Here we briefly review the basics of the Rampproximation c.f. [13]. The polyno-
mials are given by:

) N
) - 3 () e
Quj(AtA) = Pi(—AtA).

Notice thatR; and Qx; are polynomials of ordek and j respectively. It can be
shown that

(=1))jIK!
(j+K!(j+k+1)!

A — QM (AtA) P (AA) = (DAY TR | o ((AtA)j+k+2> ’

which means that (2.3) is locally+ k+ 1 order accurate and globaljy+ k order
accurate. For a givekwe need to choosgsuch thak < j < k+ 2 for the method
to be A—stable. We will only consider A—stable Raapproximations in this work.
For more information about Padcapproximations of the exponential function and
stability requirements, see [8,13].

4. PRECONDITIONING

Here we briefly review the basics of preconditioning adapted to the given model
problem (2.3). The matri;(AtA) is symmetric and positive definite (SPD), be-
cause—A is. We also make a SPD preconditionBf, The method of choice for
SPD problems with SPD preconditioners is the preconditioned Conjugate Gradient
method (PCG). Given th&’' andQ;(AtA) are spectrally equivalent, that is

co(Rlu,u) < (Qxj(AtA)u,u) < ¢ (Rlu,u), W,
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then the condition number @t 1Qy;(AtA), »(R™1Qcj(AtA)) < 2. We will show
that cp and c; are independent ot and A. PCG will then converge to a fixed
convergence criterion in a number of iterations which is bounded independent of
At andA.

The number of floating point operations needed by the matrix—vector product
of a polynomial inA, P(A), is ¢(jN), whereN is the number of non zeroes in
the matrix andj is the order of the time discretization polynomial. To see this, let

P(A) =3!_,GA), then
k
P(Au= _%in‘u = (do+A(dL +A(G2 +A(---))))u.

The evaluation and storage of the preconditioRet is assumed to b&'(N), and
therefore the evaluation & ! is O(jN).

5. THE OPTIMAL PRECONDITIONER

In this section we will see that the reuse of lower—order (standard) solution algo-
rithms result in a preconditioner which is independentdbfand A. The analy-
sis, when using certain lower—order preconditioners, reduces to the consideration
of polynomials. We will prove the desired properties analytically and supply with
numerical experiments.

As mentioned earlier, we will reuse solution algorithms for

R= (I — cAtA).
In fact, the proposed preconditioner is of the form
R = (I — cAtA)),

wherec is determined such that the highest order terRightA) equals the highest
order term ofQ;(AtA). This is done by choosing

j
(A = [ af
Rej(AtA) = (I (j+k)!AtA> .

Notice also that the lowest order termsQ@f;(AtA) andRyj(AtA) are equal.
We introduce the notation

which gives

i(AtA) = Zr. —~AtA)'  and ij(AtA):ilqi(—AtA)i.
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We have dropped the subscrigtandk in bothr; andg; for notational simplicity.
The preconditioned system then reads,

R (MA) Qi (AAIL" = Ry (AtA)R (AtA"

where Rlzjl(AtA) = (R«j(AtA))~L. Our first lemma shows that the two operators

Rqj(AtA) andQy;(AtA) are spectrally equivalent independentoéindAt, but pos-
sibly dependent ok andj.

Lemma 5.1. The polynomials § and Q; are spectrally equivalent indepen-
dent of A andt,

Co(Quj(AMAWY) < (Rg(AAVY) < 1 (Qq(AMANY), W (5.1)

Moreover,
ri
g<max— and =1
i€[0,j] G

Proof. We start by using the fact thatand the polynomials oA have the same
eigenvectors. This leads to the following eigenvalueRgfandQyj,

Zlql —AtA) v, = (Zlql AtAy) )Vé Qkj(—AtAy)vy,
j

j

Rkj(AtA)Vg = le’i(—AtA> Vy = (Ile’i(Atlg) ) Vy = Rkj(—Atl@Vg,

Qk j (AtA)Vg

wherel, is the eigenvalue of A that corresponds to the eigenvectar
A straightforward calculation shows that the spectral equivalence (5.1) can be
stated in terms of the eigenvaluesRyf andQ;j

Co(Qkj(AtA)V,V) < (Rej(AtA)V,V) < c1(Qkj(AtA)v, V), Wy,
|}
Co(Qkj(AtAVy,vp) < (Rej(AtA)v, V) < Ca(Qxj(AtA) vy, V), VY,
(3
CoQxj(—Atd)  <Ryj(—AtA) < c1Qyj(—AtAy), VY,

whereAtA, € (0, ).
Letx € (0,), then we need to consider

g cgoecages
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Because, {r;} and{q;} are positive we can check each term separately,
Co,iQiXi <rixt < Cl,iQiXi7

and take the minimum and maximumaf; andc; ; to find the estimates faxp and

C1,

Co = mMin Cgj = Min i and ¢ = maxcyj= maxﬁ.
i€0j] 7 i€[0,j] G i€oj] —  i€f0,j] G

In the following we show tha& > 1. We have that

ﬂ ((jfk)!)}

o] (j+k=i)!

(j+k)!
(j+K(j+k=2)--(j+k—i+1)
(G +K)(j+k=1)- (k+ 1)1
(<J+I§>i<1+t;—1>1---_<j+k—i+1>i>?
(j+Ki(j+k=2)- (k+ 1)

There arel times j terms in both the numerator and denominator and these are
ordered such that they decrease towards the right. The crucial point is that when
numbered in this way, thEth term in the numerator is always larger or equal to
thel’th term in the denominator. Thereforeg > 1. Equality is obtained because
ro/do =1 (andr;/qj = 1). Hencegy = 1 andc; < max % and the proof is complete.

O

Remark 5.1. Lemma 5.1 gives that the condition number of the preconditioned
system is bounded by

-1 . i
P (Rkj (AtA)QkJ(AtA)) < irer?gﬁ o

Remark 5.2. Note that there are two bounds in Lemma 5.1:

1 )
%(Rkj (AtA)QkJ(AtA)) < maxloy (5.2)
Rej(%) ri
r)p%x QX < i?[c% o (5.3)

In (5.2) the inequality is sharp, but the inequality in (5.3) is not sharp. However, the
sharpness of (5.3) is increasing with increasing valugsawidk.
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[Nk g i-1]i-2]
| 2 [1.07] 1.10] 1.17 |
| 3 [1.16] 1.20 | 1.28 |
| 4 [ 1.26] 1.31] 1.40 |
| 5 [ 1.37] 1.43] 152
| 6 | 1.49| 1.56 | 1.66 |
| 7 | 1.62] 1.70| 1.81 |
| 8 | 1.76] 1.85| 1.97 |
| 9 [1.92] 2.02| 2.14 |
|

10 | 2.08| 2.20 | 2.34 |

Table 1. Upper bound on the condition number for various value$ ahdk, based on the bound
» <R1Zjl(AtA)Qk i (AtA)) < Ma<o gfj E)X(g

5.1. Numerical results

In this subsection we show what Lemma 5.1 means in practice, and demonstrate the
sharpnes of the bounds. In Table 1 we have shown a bound on the condition number
of the preconditioned system based on

~ Ri;j(X)
5 <Rkj1(AtA)Qk j (AtA)) < max ij,- ol

where the polynomial degrees range from 2 to 10. The condition number of the
preconditioned system seems to be increasing slightly, but even for the 10th order
polynomial the condition number seems acceptable.

To test the sharpness of the bound (5.2) we have made an 1D example with a
standard second order finite difference approximation of the Laplace operator, i.e.

1, ..
A= ﬁtrldlag(l, -2,1). (5.4)

In Table 2 we choos¢ = k = 4 and show

E44 = max Raa()

x<0 Qaa(X)

— 52 (RyH (AtA)Qua(ALA))

for various values ofi andAt. From Lemma 5.1 we know th&, is a non—negative
number. We observe thil4 seems to approach zerolaandAt approach zero.
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o [manol | | Ew |
| 1/125 | 12584 | 1.2461| 0.0123
| 1/250 | 12584 | 1.2523| 0.0061]
| 1/500 | 12584 | 1.2551| 0.0033

| 1/1000| 12584 | 1.2568| 0.0015]

Table 2. Anillustration of the sharpness of the inequality in (5.2).

Nk [i-1]j-2]
| 1.15] 1.22| 1.41 |
1.23] 1.30 | 1.44 |
1.37] 1.45| 158
| 1.48| 1.57 | 1.70 |
| 1.62| 1.72] 1.85 |
| 1.76] 1.86.| 2.01 |
1.92] 2.03 | 2.18 |
2.09] 2.22 | 2.38 |
10 | 2.27| 2.41 | 2.58 |

OO N|O| OB WDN

Table 3. Upper bound on the condition number for various value$ ahdk, based on the bound
P (R;jl(AtA)ij(AtA)) < maxep &

In Table 3 we show a bound on the condition number of the preconditioned
system based on the bound

s (RHAA) Qg (AtA) ) < max”,

ai

where the polynomial degrees range from 2 to 10. These bounds are not sharp, but
the sharpness seems to increase with increased valyesdk.

The numerical experiments motivate the following lemma, which will be proved
in the next section.

Lemma 5.2. An upper bound on the condition number of the preconditioned
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system is given by

p (R,;jl(AtA)Qk,-(AtA)) <y-(1.09)], (5.5)
where

y=0.98 for j=Kk,
y=111 for j=Kk+1,
y=162 for j=k+2.

The constant 1.09 is an approximation%é%, which is the precise constant.

5.2. Numerical tests for the Paé approximation scheme

To see the benefit of using higher—order schemes we now show some numerical
experiments for the heat equation in one dimension with homogeneous Dirichlet
conditions. We solve

Ut Uy, Xe€(0,1), te(0,T) (5.6)
u0,t) = uLt)=0, te(0,T) (5.7)
ux,0) = sin(nzx), xe(0,1). (5.8)

with T = 0.2. We useM = £ temporal discretization points ard = £ spatial
discretization points.
In Table 4 we show the relative? error, i.e.

U™ —u(T) ],z
[u(T) 2

when an implicit Euler scheme is used for the time stepping, i.e.
u" = (1 —AtA) tum L,

Here A is a standard second order finite difference approximation of the Laplace
operator, see (5.4). The calculations for each time level cost abdutoating
point operations for this scheme. The total work is therefore aldivt Bultiplica-
tions/divisions.

In Table 5 we show the same as in Table 4 for the Crank—Nicolson scheme, i.e.

At \ 71 At
n—(1-= I+ —A|u Ll

The work load for one time step is here abolt &nd the total work for this method
is therefore aboutM. We mention that the fact that the Crank—Nicolson scheme
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| M\N | 40 | 80 | 160 | 320 | 640 |
| 2560 | 1.72e-3| 1.00e-3| 8.23e-4| 7.76e-4| 7.64e-4
| 5120 | 1.34e-3| 6.27e-4| 4.43e-4| 3.96e-4| 3.84e-4
| 10240 | 1.15e-3| 4.37e-4| 2.52e-4| 2.06e-4| 1.94e-4|
| 20480 | 1.06e-3| 3.42e-4| 1.56e-4| 1.10e-4| 9.90e-5
| 40960 | 1.01e-3| 2.95e-4| 1.10e-4| 6.33e-5| 5.15e-5
| 81920 | 9.89e-4| 2.71e-4| 8.64e-5| 3.95e-5| 2.77e-5
| 163 840| 9.77e-4| 2.59e-4| 7.45e-5| 2.76e-5| 1.58e-5
| 327 680| 9.72e-4| 2.53e-4| 6.85e-5| 2.17e-5| 9.89e-6|

Table 4. RelativeL? error for an implicit Euler scheme in time and second order finite difference
approximation in space.

[M\N | 160 | 320 | 640 | 1280 | 2560 | 5120 |
| 80 | 3.75e-5| 8.43e-5| 9.61e-5| 9.91e-5 9.99e-5| 1.00e-4|
| 160 | 3.75e-5| 9.28e-6| 2.10e-5| 2.40e-5| 2.47e-5| 2.49e-5
| 320 | 5.63e-5| 9.49e-6| 2.30e-6| 5.26e-6| 6.01e-6| 6.19e-6
| 640 | 6.10e-5| 1.41e-5| 2.38e-6| 5.75e-7| 1.31e-6| 1.50e-6
| 1280 6.22e-5| 1.53e-5| 3.56e-6| 5.98e-7| 1.43e-7| 3.29e-7
| 2560 6.25e-5| 1.56e-5| 3.85e-6| 8.91e-7| 1.49e-7| 3.61e-8|

Table 5. RelativeL? error for a Crank—Nicolson scheme in time and second order finite difference
approximation in space.
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M\N| 20 | 40 | 80 | 160 | 320 |
\ 5 \7.81e—5 6.79e-5| 6.72e-5| 6.72e-5| 6.72e-5
\ 10 \1.51e—5 4.92e-6 4.22e—6\ 4.17e-6| 4.16e-6
| 20 | 1.12e-5| 1.01e-6| 3.09e-7| 2.63e-7| 2.57e-7
| 40 | 1.09e-5| 7.71e-7| 6.58e-8| 1.94e-8| 1.63e-8
\ 80 \1.09e-5 7.56e-7| 5.06e-8| 4.22e-9| 1.24e-9

Table 6. RelativeL2 error for the (2,2)—Pds approximation in time (fourth order accurate) and a
fourth order finite difference approximation in space.

is not stiffly accurate explains why the error some places increaces with increased
N while M is fixed.
In Table 6 we do the same for the (2,2)—-Bagbproximation in time, i.e.

-1
At A2 At At?

n__ = = A2 = = a2 n—1

u_(l 2A+12A> <I+2A+12A>u .

Here A is a fourth order finite difference approximation of the Laplace operator
based on the approximation

R~ %(—u(x— 2h) 4 16u(x — h) — 30u(x) + 16u(x+ h) — u(x+2h)).

Uxx(X)
For each time level we must evaluate a 9—diagonal matrix and solve a linear sys-
tem with a 9—diagonal matrix. The workload for evaluating the 9—diagonal matrix is
about N. The linear system is solved with the preconditioned Conjugate Gradient
method, which in all our experiments used one iteration to reach discretization error.
Thus the CG method requires one evaluation of a 9—diagonal malt)x if@verting
the matrix(l — \/ATLZA) two times (22), two vector inner—products KB plus two

scalar—vector products K. Before starting the time integration we form the sys-

temsl — A+ Al—tzzA2 and! + Z£A+ Al—tzzA2 and this has a cost of &7 The total cost
of this discretization method is therefore approximatelid ¥4+ 27N.

Example 5.1
Solve (5.6)—(5.8) with the accuracy requirement
M_
Jo" —u(Dlhz _ 45
[u(T) ]2

for the three methods. Considering the Tables above we see that the Euler method
requires a resolution withl = 327 680 time levels and = 640 spatial discretiza-
tion points, which gives about@- 10° operations. Further Crank—Nicolson requires
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M = 160 andN = 320, which gives about.4- 10° operations, and the (2,2)-Fad
approximation required! = 10 andN = 40, which gives about.9- 10* operations.

Example 5.2
Solve (5.6)—(5.8) with the accuracy requirement
UM —u(T)]2
[u(T) |2

for the three methods. The Euler scheme requires too many operations, Crank—
Nicolson requires about@. 108 operations, and the (2,2)-Radpproximation re-
quires about %4 - 10° operations. This means that the (2,2)-®ag@proximation is
about 750 times faster than the Crank—Nicolson scheme.

<1077

5.3. Inexact preconditioners

In this paper, we have considered the case wikeveas inverted exactly. In this
subsection we consider an inexact preconditidRervhich commutes witiR, i.e.,
RR = RR In this case, we have the following bound on the preconditioned system

%(ﬁ_ijj) = %(ﬁ_jRj R_ijj>

= [RTTRIRIQu[[|(RTRRTIQq) ™| (5.9)
< [RTRIRIQu I (RTIRY) HI I (RTIQig) | (5.10)
< [RRPIRTQu I RHR)HI I (RTIQe) (5.11)
— 2 (RIR) 5 (R1Qy). (5.12)

Here (5.9) follows by the definition of the condition number, (5.10) follows by a
standard inequality valid for the matrix norm, (5.11) follows by the same inequality
and the commutaion & andR and (5.12) follows by the definition of the condition
number again.

This formula shows that the condition number of the preconditioned system
is bounded, independent of the spatial discretization methodAands seen in
the previous subsections the last factor of (5.12) is relatively small, even for large
values ofj. Further, ifRis a good preconditionep;(RR) will be close to one, and
the condition number for the preconditioned system remains relatively small for
increasingj values.

6. PROOF OF LEMMA 5.2

This section deals with the proof of Lemma 5.2. The proof is rather long and tech-
nical. We have that "
» (R;jl(AtA)Qk j(AtA)> < max-..
S
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It is therefore enough to show that
— <y-109, i€lo,j,

with
y=0.98 for j=Kk,
y=12111 for j=k+1,
y=162 for j=k+2

This bound clearly apply for the values pfandk in Table 3. Therefore it is
enough to prove Lemma 5.2 for valuesjadndk larger than in Table 3.

6.1. Bounding% with Stirling’s approximation

We have that

Stirling’s approximation of the factorial function is given by
n" n"
E\/Znneﬁ <nl < & Znneﬁ, vn> 1

see [6,12], which enables us to bound

V2rketx ! (j;'?kﬁk 27‘[(j+k)e412(|}+1)
J:mw _|_k)e12(k+j % 27;(j+k_i)elz<Tl—i>+1
jrk+3i-i K %Tli o : L L
— ( ) < k> eIk @2k+)+1j " 12k+])  I2k+]-)+1 (6_1)
i+
j—k—3 k %Tli i i 1 1
— (1 k) < —|-k> eI ~ @2k N D] T 12ki]) 12kl
j+ j
= F(i,],kG(,].k),
where
ey
FG,j,k) = 1- — , 6.2
o - o)) e
G(i,j,k) = e12kj (12(k+])+1)]+12(k+1) 12(k+jl—i)+1

(6.1) follows by reduction and collecting factors on the foﬂgi%, Jik ande.

Itis straightforward to show th&(i, j,k) < 1.0011 fork > 8, and that lim k.. G(i, j, k) =
1,Vi € [0, j]. The rest of this proof aims at boundifdi, j, k). For notational sim-
plicity we write F = F (i, j, k).
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6.2. Maximizing F
In order to maximize this function ovék [0, j]|, we calculate

ok _ m(li)+1+ 1 +|n<k)2k+1 F
d j+k 2+ (1 ) j+k) 2

It can be seen from later calculations that the first factor has only one zero. Observ-
ing that %~ (i = 0) > 0 andF > 0, fori € [0, j], we get thaf is maximized when
9F — 0. Thus we have to find the zero of the first term

di
|n<1—.'k>+1+ -~ +|n<.kk> 2k2+.1:o.
i+ 2(J+k)(1_j'Tk) i+ i

Make the substitution

which means that

. 1
I—j+k—5(. (6.3)

Note thati € [0, j] = x € (0,1).
With this substitution we have to solve

1 o (iKY 2k+1
In (2(] +k)x) +1+x=1In <k > 721_ ,
which implies
et 1
X TR 64
where
2k+1
e k \ 2
h(j,k) = — [ —— . 6.5
(1K 2(J+k)<l+k> (5.5)

Note that (6.4) has only one solution foe (0, 1), since% is monotone. Notice also

thath(j,k) > 0 andh(j,k) — O whenj,k — o. In the following we writeh = h(j, k)
for notational simplicity.
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6.3. Lambert W—function

To solve (6.4) we introduce the Lambert W—function, see e.g. [4], because the so-
lution of a nonlinear equation on the for% = % h e £, can generally not be
expressed with standard elementary functions. The Lambert W—fuhction

W: [_%700) - [_1700)

is defined to be the inverse function of the function
W — eVW.

The series expansion @ (x) is given by (see [4])

1
XX < =, (6.6)
n=1 e

The solution of% = % can in fact be written
x=-W(=h). (6.7)
To see this, notice tha(x) is the inverse function a&@"W. Therefore,
eVOWix)=x = W(x)=xe WX,

Using this property together with (6.7), we get

& e W(-h)
X —W(=h)
e W(-h)
T (—h)eWeh
1
- =

which proves that (6.7) is the solution of (6.4).
In the following we show two properties &% which will be useful later. The
first property is

1

(_W(h—h>> 4 6.8)

This is proved by using the fact that

1

The Lambert W—function is available to any accuracy in Maple and Mathematica.
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which follows from the definition of W.
The second property is

< -1 (6.9)

A Taylor series expansion @f(x) is

a(x) = a(0)+ o' (0)x+ %a”(é)xz, & € (x0). (6.10)

Using (6.6) we see that(0) = éV(® = 1. Further the first order derivative of
o(X) is

o (x) = YW/ (x),
and we getr’(0) = eV(OW'(0) = 1. The second order derivative afx) is

OC//(X) _ eW(x) [(W/(X))Z—I—W”(Xﬂ
W0 (W(x))? -0

- EATIER , for x<O.
where we have used thel¥’(x) = (lmz‘))())x and thatwW(x) > —1 ande’® > 0.

Inserting into (6.10) we get
a(x) <1+x, x<0,
and the second property (6.9) follows by setting —h.

6.4. Maximizing F (continued)

With these properties of the Lambert function we continue to maxifi2&/e sub-
stitute back by inserting (6.7) into (6.3), and find that the extreme valu€ figr
obtained when

=kt

2WN(—h)’
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Therefore
. . 1
< -
1
_ 2 _ — T 2W(-h)
_ (2( +k)h(W(_hh)>> (2(j +K)h) 2w (W(_hh)> &
kK \ 5\ Bt 611
<J+k) J+k) (6.11)
& : 1 2L R
_ e( k ] <W(—h> eZ\N(h)( k ) ] (—)e%
j+ —h j+k
k O\ EOH kN B 612
<J+k) <J+k) (6.12)
1
2k+1 2 2k+1 i k)
k \ 2 /W(-h) L1/ k) U
< el —— —_— exn 2| ——- ez 6.13
<<J+k) ( —h )) (J+k> (643

1
2k+1 2 %1 (1K)
k \ 2 (W(—h) L (ko) Ut
= _— —FI
<e<j+k) ( —h )) e <j+k) ’ (6.14)

where (6.11) follows by simplifying and expandifg (6.12) follows by the defini-
tion of h, (6.5), and the first property &%, (6.8), and (6.13) follows by reduction
and the second property @f, (6.9).

We have that“’(_—]f') is bounded becaus¥ is bounded for negative arguments

1
2k+1 2
andW’(0) = 1. Thus we see that the first factor of (6. 16}3(Hk) & (W(_hh)>> ,

is bounded independent pandk.
B+
In the following we shall see that the last two factors of (6. Eﬁi) TiK “ ,
are bounded by exponential functions jifor equivalently ink). First we define
d=j—k Thisleadsto

. . 2k+1
itk itky T2

1
ez = ee T)
2d—-1

(2k+d)2( K )‘k—dz 5
= @ e (%

o @ (ke VB
= egle%ie ok <(2k+d) i 1), (6.16)
where (6.15) follows fromzﬂ — 2L and (6.16) follows by the trick®Y =
ee“y-1 and the fact thaii +&
Remember that, because of stablllty requirements, we are only interested in the

three caseg =k, j =k+ 1 andj = k+ 2, which means that=0,d=1andd =2
respectively.

(6.15)
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Now we study the last factor of (6.16). Note that

(2k+d)? (( K )zzﬂ;zld _1>
ek 2k+d

lim e — p&(1-20), (6.17)

k—co

Consider the sign of the last factor of the exponent, i.e.

K\ ez
+
<2k+d) -1

This is positive ford = 0 and negative fod = 1,2. By this observation we can see
that the last factor of (6.16) is a decreasing functiok fufr d = 0 and an increasing
function ofk for d = 1,2. Thus the limit (6.17) is an upper bound for (6.16) when
d=1,2.

For the last factor of (6.14) we bound

2k+d+d?

2K+1 (i 2k—d+
k S (4K 1 Zk+2d
_ - 6.18
<J+k> 2+1 (6489

1 2k—d+1
6.19
<2+ﬁ> (6.19)

1) 2i-3d+1 g\ ~2i+3d-1
ST e

where (6.18) follows by expanding the exponent and the base, (6.19) follows by

2cdid® - 1, which is valid for all integersl and (6.20) is an expansion.

To summarize, we now get an upper boundrohy inserting (6.16) and (6.20)
into (6.14)

< () (%) (*5)

(2k+d)2 <(L)72kd+;2]a_l> 1 —3d+1 d —2j+3d-1
ek 2k+d
= 1+ — 6.21

where all factors except the first is bounded independently frohime above result
shows thafF is bounded by a function on the form

N

|
F<7<ié>, (6.22)

where? is a constant independent phnd%eg ~ 1.088960317. Sinc&(i, j,k) is
bounded independent ¢pfandk, the first part of Lemma 5.1, (5.5), is proved. In the
the following we determine the constanfor the three caseg=k, j = k+ 1 and

j =k+2.
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6.5. Determining the constants
In order to determine the smallest possible valueyfave split up into the three

interesting cases, i.§.=k, j = k+1 or j = k+ 2. We utilize that the lemma is
already proved fok < 8, and that all factors are decreasing iandk.

For j =k (d = 0) we get

< F(i,kK)G(i, k k)

Qi
14\ | 1/W(-h(11,11)) (o3 1)
< (&) \/2<—h<1111>)

%m_axG(i,ll,ll)
|

< 0.98-(1.09),

2k+1
where we have used that* is increasing function df with the limit 3, w

a (g% 1
ande® ( ) are decreasing functions kfand that the inequality is checked for
j,k<10.

Forj=k+1 (d =1) we get

T« F(i,k+1,KG(i,k+1,K)

Qi
< () (")

L /1) 1\ %
e() 22<1+-> maxG(i, 11, 10)
|

fuct

2 20
< 1.11-(1.09),
- @12 ([ k. Q‘klizil
where we have used th@i%”iz ande <(2k“) ) are increasing func-

tions of k with limits % and 2 respectively,%, eeik, (1+i and

max G(i,k+ 1,k) are decreasing functions kfind that the inequality is valid up to
j=10andk=09.

)—2k
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Forj=k+2 (d = 2) we get

T o F(ik+2,K)G(i, k+2,K)

Gi
< () @) (")

4, 6,5 2\ Y ,
e®2 2 1+E3 maxG(i,11,9)
1

< 1.62-(1.09),

@922 () 301
where we have used that ° " is an increasing function d€ with
limit 2% k5 W(hkilk) L4

R T RkgTh &k (1 2%)72“1 and maxG(i,k + 2,k) are de-
creasing functions df and that the inequality is valid up o= 10 andk = 8.

6.6. The bound whenj,k — o

Above we have used thkt> 8. In this subsection we determine the constants when
j,k — oo, First we calculate the limits of the factors of (6.21)

i !
ko (j +k> T2

lim h(j,k) =0,

j,k—o0
_ W(—h)
rlmano —h

=~

=1,

. a
lim eek =1,

j koo
g\ —2d-1

lim (1+ = =ed

j,k—>oo< Jr2k>

Together with (6.17) we obtain from (6.21)

j
F - (jé) e -dp3d-3+3(1-20) (6.23)
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whenj,k — . Since lim k.. G(i, j, k) = 1, we get

Qi
. j j
;‘_ < (e‘é) g2 %_ez1.0302<1ei>, when j=k+1— oo,
|

ﬂ
g

Finally, we mention that the upper bound Brgiven in (6.23) probably can be
extended to be valid for the condition number of the preconditioned system, i.e.

i 14\ 14\ .
i < <4e3> e52§‘3m0.9709<4e3>, when j=Kk— oo,

14\ 14\ .
< <4eg> egzée%1.0933<4e3>, when j=Kk+2— oo.

i
%(Rﬁ%AtA)ij(AtA)) < <2eg> e%+kfj23j73k7%+%(1+2k72j)7

for all j € [k,k+ 2]. This inequality is valid for the numbers in Table 1, and can be
chekced to be valid for larger values pandk by using the bound (5.2).

7. CONCLUDING REMARKS

In this paper we have proposed a preconditioner for the system arising when using
Pack approximation to obtain higher—order time discretization for the heat equation.
The method is applicable to linear inhomogeneous parabolic equations. We have
shown that our preconditioner will give a preconditioned system with a condition
number independent of the discretization parameters. Finally, we have proved that
the condition number will remain reasonably low even when the order of the time
discretization is very high.
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