SESE - an Experiment Support Environment for
Evaluating Software Engineering Technologies

Erik Arisholm®, Dag LK. Sjgberg”, Gunnar J. Carelius* and Yngve Lindsjgrn’

* Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway
{erika;dagsj;carelius } @simula.no

) KompetanseWeb AS, Tullinsgate 6, NO-0166 Oslo, Norway
yngve @kompetanseweb.no

Abstract. The software engineering communities frequently propose new
software engineering technologies, such as new development techniques,
programming languages and tools, without rigorous scientific evaluation. One
way to evaluate software engineering technologies is through controlled
experiments where the effects of the technology can be isolated from
confounding factors, i.e., establishing cause-effect relationships. For practical
and financial reasons, however, such experiments are often quite unrealistic,
typically involving students in a class-room environment solving small pen-
and-paper tasks. A common criticism of the results of the experiments is their
lack of external validity, i.e., that the results are not valid outside the
experimental conditions. To increase the external validity of the experimental
results, the experiments need to be more realistic. The realism can be increased
using professional developers as subjects who conduct larger experimental
tasks in their normal work environment. However, the logistics involved in
running such experiments are tremendous. More specifically, the experimental
materials (e.g., questionnaires, task descriptions, code and tools) must be
distributed to each programmer, the progress of the experiment needs to be
controlled and monitored, and the results of the experiment need to be collected
and analyzed. To support this logistics for large-scale, controlled experiments,
we have developed a web-based experiment support environment called SESE.
This paper describes SESE, its development and the experiences from using it
to conduct a large controlled experiment in industry.

1. Introduction

There is an increasing understanding in the software engineering community that
empirical studies are needed to develop or improve processes, methods and tools for
software development and maintenance (Basili er al. 1986, Basili et al. 1993,
Rombach er al. 1993, Basili 1996, Tichy 1998, Zelkowitz & Wallace 1998). The
classical method for identifying cause-effect relationships is to conduct controlled
experiments where only a few variables vary. Controlled experiments in software
engineering often involve students solving small pen and paper tasks in a classroom
setting. A major criticism of such experiments is their lack of realism (Potts 1993,
Glass 1994), which may deter technology transfer from the research community to

industry. The experiments would be more realistic if it is run on real tasks, on real
systems, with software professionals representative of the target population of the
technology, using their usual development technology in their usual working
environment (Sjgberg et al. 2002).

For example, in an object-oriented design experiment conducted by some of the
authors, a total of 190 subjects participated. Among the subjects, 130 were
professional Java developers from nine different consultancy companies; 60 subjects
were students. The experiment took place during a two-month period and was
organized as 12 separate one-day sessions (each individual participated in only one of
the sessions). During the one-day session, each subject had to solve six Java
programming tasks on their computer using their usual Java development tool. While
this experiment was of larger scale and in many ways more realistic than most
software engineering experiments, it posed new challenges:

e The experimental material (e.g., questionnaires, task descriptions, code and
tools) had to be distributed to each subject in a timely fashion.

e The experimental design was such that not all the material could be distributed at
once. Furthermore, once a subject had solved a task, the solution had to be
collected immediately.

e Because each (professional) developer was sitting at his or her usual office
location while participating in the experiment, it was crucial to monitor the
progress of each individual.

e The results (e.g., answers to questionnaires and Java program solutions) had to
be stored for future analyses.

The logistics involved in running experiments such as the one exemplified above
motivated the need for a tool that could automate some of that logistics.
Consequently, we developed the web-based Simula Experiment Support Environment
(SESE) in collaboration with an external development company. SESE allows us to
define experiments, including all the detailed questionnaires, task descriptions and
necessary code, assign subjects to a given experiment session, run and monitor each
experiment session and collect the results from each subject for analyses.

The remainder of this paper is organized as follows. Section 2 gives an overview of
the activities and logistical challenges of conducting realistic experiments. Section 3
motivates and describes the SESE development project. Section 4 presents the
functionality and architecture of SESE. Section 5 describes the experiences from
using SESE. Section 6 concludes and describes ongoing and future work.

2. Logistics of Conducting Software Engineering Experiments

Our research group aims to make software engineering experiments resemble real
world situations and thus possibly generalize the results to industrial practice. An
experiment is realistic if the situation presented to the subjects is realistic and the
subjects react to the situation in the same way as they would do in their usual work
environment. In particular, it is a challenge to achieve realism regarding experimental
tasks, subjects and environment (Harrison 2000):

e Realistic tasks. This challenge is concerned with the size, complexity and
duration of the involved tasks. Most experiments in software engineering seem
simplified and short-term in which “the experimental variable must yield an
observable effect in a matter of hours rather than six months or a year” (Harrison
2000). This is hardly realistic given the tasks of building and maintaining real,
industrial software, particularly since many of the factors we wish to study
require a significant time period before we can obtain meaningful results.

e Realistic subjects. This challenge is concerned with the selection of subjects to
perform the experimental tasks, that is, to what extent do the selected subjects
represent the population that we wish to make claims about? Even though there
are some preliminary indications that students can be used for certain tasks
instead of professionals under certain conditions (Host et al. 2000), it is still
unclear how well results from student-based experiments generalize to
professional software engineers (Harrison 2000). It is worrying, therefore, that
most of these studies attempt to generalize their results to an industrial
environment.

e Realistic environment. Even when realistic subjects perform realistic tasks, they
may be carried out in an unrealistic manner. The challenge is to configure the
experimental environment with an infrastructure of supporting technology
(processes, methods, tools, etc.) that resembles an industrial development
environment. Traditional pen and paper based exercises used in a classroom
setting are hardly realistic for dealing with relevant problems of the size and
complexity of most contemporary software systems.

Conducting realistic experiments requires good management of the necessary
activities. A typical experimental procedure is as follows.

Step 1: Define experiment: Design a new experiment with the required

e questionnaires to collect background information (name, affiliation,
address, email address, bank account if the subjects are paid
individually, education, work experience, etc.),

e PC and tool environment,

e task descriptions, and

e files to be down-loaded, etc.

Step 2: Define, gather and assign subjects: Define the kind and number of subjects
that should take part in the experiment, and recruit them. Typically, a
controlled experiment consists of two or more alternative experimental
treatments. The appropriate treatment should be assigned to the respective
groups.

Step 3: Each subject runs the experiment: Distribute the questionnaires and other
relevant documents defined under step 1 to the subjects and ensure that they
start the experiment. In many experiments, we need timestamps of when a
subject starts read a task description and when the task solution is finished.

Step 4: Monitor experiment: To ensure that the subjects perform correctly and that
the appropriate data is collected, the researcher will monitor the progress of
each subject.

Step 5: Collect results: When a subject has finished the tasks, his or her results are
collected and stored in a safe place. When all the subjects have finished, the
researcher can start the analysis.

3. Developing an Experiment Support Environment

The experience from the controlled experiments within our research group, which
have involved a total of about 750 students and 300 professionals as subjects,! is that
all the logistics around the experiments are work intensive and error prone. General
information and specific task documents must be printed and distributed, personal
information (bank account, etc.) and background information must be collected, all
solution documents must be collected and then punched into an electronic form, etc.
This may in turn lead to typing errors, lost data (Briand et al. 2001), etc.

3.1. Related Tools

We realized that if we were to scale up our experiments and particularly run
experiments with professionals in industry using professional development tools, that
is, make our experiments more realistic, we would need a tool that could provide the
following functionality:

real-time monitoring of the experiment

flexibility of defining new kinds of questions and measurement scales

automatic recovery of experiment sessions

automatic backup of experimental data

multi-platform support for download and upload of experimental materials and
task solutions

We searched for suitable tools and found several web tools developed to support
surveys, most of them designed by psychologists (e-Experiment?, PsychExperiments?,
Survey Pro 34, S-Ware WWW Survey Assistant’>, Wextor®). Those tools basically
distribute questionnaires to the respondents who fill them in online. Then the results
are stored in a local database or are sent via emails to the researchers.

I Information about most of these experiments can be found at
www.ifi.uio.no/forskning/grupper/isu/forskerbasen.

2 http://www-personal.umich.edu/~ederosia/e-exp/

3 http://www.olemiss.edu/PsychExps/

4 http://apian.com/survey/spspec.htm

5 http://or.psychology.dal.ca/~wcs/hidden/home.html
6 http://www.genpsylab.unizh.ch/wextor/index.html

Table 1. Overview of how existing tools support our most important requirements.

Real-time Flexibility of Automatic Automatic Multi-

monitoring defining new recovery of backup of platform
of the kinds of experiment experiment support
experiment questions and sessions data for
measurement download
scales and
upload
e-Experiment No Yes No No (Data No
sent by
Email)
PsychExperiments No Yes No Yes (Data No
collected in
SQL-
server)
Survey Pro 3 No Yes Partial Yes (Data No
(duplicate collected in
cleanup) SQL-
server)
S-Ware WWW No Yes Partial Yes (Data No
Survey Assistant (resubmit file on web
control) server)
Wextor No No Partial No No
(resubmit
control)

More specifically, an overview of how the abovementioned tools support our
requirements is given in Table 1. Note that the table does not represent a
comprehensive evaluation of these tools. Some of them have advanced features that
are not supported in SESE, for example, functionality for automated random
assignment of subjects to questionnaires and for defining hierarchical questionnaires
where the next given question depends on the answer of the previous question. The
remainder of this section describes our collaboration with a software company in
developing SESE and our strategy for its further development.

3.2. Collaboration with a Software Company

When conducting experiments where up to (so far) 130 professionals take part, the
quality of a support tool must be better than what can be expected from prototype
research tools. Implementing a tool with the needed functional and nonfunctional
requirements is obviously very time-consuming and difficult. Furthermore, a tool
needs to be maintained, backup routines need to be in place, it must be reliable, etc.
Consequently, we initiated collaboration with a software company that develops
solutions for human resource management, KompetanseWeb AS, to develop SESE.
SESE is built on top of KompetanseWeb’s standard commercial product, which is
used by several large Norwegian organizations. SESE was (and still is) developed
through close contact between Simula Research Laboratory (SRL) and

KompetanseWeb. The development of the extra functionality required in SESE
compared with the standard commercial system is paid by SRL. For the current
version of SESE (developed from July 2001 to June 2002) SRL paid approximately
400 000 NOK (35 000 USS).

Another concern is the ownership of SESE. We ended up with an agreement where
SRL is allowed unlimited use and support of SESE (including the necessary human
resource management technology). In return, KompetanseWeb is allowed to resell the
SESE-module to other companies and research institutes. That is, SRL gets the basic
human resource management technology for free; KompetanseWeb gets the SESE-
module for free. In the contract between SRL and KompetanseWeb are also
agreements to ensure that SRL still can use SESE if KompetanseWeb for various
reasons cannot support SESE, e.g., if KompetanseWeb is merged into another
company or goes bankrupt.

3.3. Experiment-Driven Development

Like any sophisticated tool that is actively used, SESE will never be “finished”. We
continuously suggest improvements and discover new possibilities. The requirements
are driven by the actual experiments where SESE is used.

The development project used the OO design experiment (Section 5) as a proof of
concept milestone: the first version of SESE had to support the functionality required
to conduct that particular experiment. Since February 2002, SESE was further
improved to support the needs of another experiment, on Design Patterns, which was
run during a three day period in May 2002 with 44 professionals. Thereafter,
experiments on use cases, estimation and other software engineering issues are
planned, which in turn will lead to other sets of requirements to SESE. For example,
we plan to include logging functionality for window operations, keystrokes, mouse
operations and movements logged with timestamps (Karahasanovic er al. 2001).
Thus, SESE is developed using an evolutionary process in which the version used in
the OO design experiment can be viewed as the first operational prototype.

4. Simula Experiment Support Environment

This section gives an overview of the functionality and technical architecture of
SESE.

4.1. Functionality
The following sections elaborate on how SESE provides (partial) support for the five

steps of a typical experimental procedure, as described in Section 2. Detailed
descriptions and screenshots are provided to illustrate how such a tool can be built.

By clicking an elemnent in the list below, you can edit, move and delete a question. To expand the list, click the plus sign.
Questions:
=]8) Task 1 - Part | | | ¥ Mew experiment
93 Task | - Part 2 + Edit/Add question

.13 Enter the time when you started on the task (hbcrorm): * add users to experiment
201 9.2) Tioe used (in rinutes) to soive the task: Elictivatelcrperiment

9213 Tirme nsed to understand how to sobe the *a_df' [Eretiee] [Print &l
9.2.2) Tirae used to raplerment the changes g':t
0.2.3) Time used to evaluate the solution (ran Preview:
. . Time used to understand how
0.3) Enter the tire when you finished the task (hhurmra): lto solve the task:
Delete
10} Task 1 - Part 3 Wove N
11) Task 1 - Part 4 Hew H 55
[Mewy paige] [Mewy guestion]

Time used to understand how to solve the task:

Question

Morsk, |Tidsforbrukx p& & forstd hvordan ”~
’ oppgaven skulle lzses: e
Time used to understand how to A
Engelsk:
solve the task: b
asien Tumker v
type
Text
|| New
labels LS

Reguired answer

Figure 1. Question registration window

4.1.1. Step 1 — Define Experiment

An experiment consists of a sequence of questions presented in a browser window. In
the Question registration window (Figure 1), each browser window is defined as a
numbered Page, for example (9). On a page, questions are numbered in a hierarchical
tree, for example (9.7) and (9.2.1). Questions on a certain level can be grouped as in
(9.2). Each page/group/question may have a Norwegian (Norsk) and English
(Engelsk) version. A question has a certain Answer type. For the types Combo Box,
Check Boxes, and Option Buttons, Text Labels are assigned to the question. For the
Date/Time type, a date/time format is selected (yy, mm, dd, hh, mm, ss). A question
can be indicated as Required. When right-clicking on a page/group/question, SESE
displays a menu related to the selected line: Edit, Cut, Copy, Move (Up or Down).
New (New Page, New Group or New Question) is selected to insert a new
page/group/question below the selected line. The left side of the window previews the
selected page/group/question.

4.1.2. Step 2 — Define, Gather and Assign Subjects

SESE only supports assigning subjects to experimental treatments. Defining and
recruiting subjects are still completely manual operations. Once the subjects have
been recruited, they are assigned to an experiment in the Add users to experiment

Add users to experiment Design Experiment

Hereyou can add users to an experiment, First you must find the users {search function}, then you add them
to the experiment.

Search for user (*=all) I:I

Select department |AII departments v|
Users that can be added to the Users selected for the experiment |+ Mew experiment
experiment (search result) start date in brackets) Edit/add question
Jenzen, Ursula Cohen, Hubertus -
' ' o
Johnson, Lars Dickens, Kirsten nd'.:l users tD.BHpBI’IITIBnt
Nicholson, Mina Dietz, Lisa X Activate experiment

Jackson, Peter (2002.04.25)

[setstatdate | [Send mai

Figure 2. Add users to experiment window

window (Figure 2). First, the subjects are found with the search function. A search is
done within a selected department or in All departments. With the arrows buttons (>>
and <<) subjects can be moved in and out of the Users selected for the experiment list
to the right. The Set start date button is used to prevent selected subjects from
accessing the experiment before a certain date. Pressing the Send mail button,
predefined e-mails are sent to the subjects, including user name and password.

4.1.3. Step 3 — Each Subject Runs the Experiment
The general procedure for running an experiment with SESE is as follows:

1. The subject opens the SESE login window with a web browser and logs onto SESE
with the username and password provided by SESE.

2. The subject registers required personal information.

3. The subject starts the experiment that he or she has been assigned to.

4. The subject answers the questions and solves the tasks presented in the browser
window.

5. If the experiment is interrupted (deliberately by the subject or due to technical

problems), the subject will automatically return to the last uncompleted window
when the experiment is restarted.

2 [Simula Research Project - Edit experiment] - Microsoft Internet Explorer

File Edit ‘Wiew Favortes Tools Help

@Back -~) - € [2] (0 S search o Favorites @ Media £ v |D| @ 3
Address @jhttp:,i,l'194‘143.23‘34,l’u\o,l’questionary,l’questmnary‘asp w | | Links * Morton Antivirus E -
simula . research laboratory | 82 8 - Edit experiment -

Register fupdate C Experiments Language Log off |

Design Experiment

If & question is marked with a red asterix it means that the question has to be answered before you go on
*++++ 8) Task 1 - Part 1

Minibank

1. Download the zip-file Miribank.zip by pressing the Download file-button below and place itin
the Experiment-directoy

2. UnZip the file in the same directory. You will then get a subdirectory named Minibank.
3. Press the ¥exd-button when you are done.

Download file

Figure 3. Question 8, Task 1 — Part 1

At present, SESE enforces the following experimental rules:

e The subject cannot go back to edit answers in a previous window
e Questions marked with red asterisks (*****) must be answered by the subject
e An experiment cannot be repeated by the subject once the experiment is completed

We will illustrate how an experiment is conducted in SESE using one change task of
the experiment described in Section 5. The change task proceeds as follows. The
subject is asked to download the zipped source code for a program and to unzip the
file (Figure 3). Then the subject must download a PDF-file containing a detailed
description of the task to be solved (Figure 4). The start time, time finished and time
used on the different activities of the task must be entered into the appropriate fields.
The subject is then asked to zip the subdirectory containing the solution files for the
solved task and to upload the zip-file (Figure 5). Finally, the subject fills in a post-
mortem questionnaire related to the change task.

2} [Simula Research Project - Edit experiment] - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

QBack A > lﬂ &'] » D search f Favortes @ Media & T g o) 3

Address @jhttp:.l’,l’194.143.23.34,|’uio;’questmnary,iquestinnary.asp w | | Links * Morton Antivirus E -

simula . research laboratory | 8% 36 - Edit experiment -
Register f update CY Experiments Language Log off |

Design Experiment

If & question is marked with a red asterix it means that the question has to be answered before you go on
*=+2+ 0y Task 1- Part 2

Minibank

1. Download the task description Task!.pdf and place it in the Experiment directory.
2. Enter the time when you start to read the task description in the field below.
3. Complete the task as described in the document and enter how much time you used on the

different activities {to understand the task, to implement the changes and to evaluate the
solution) in the fields below.

4. You also enter the time when you finished the task in the field below.

[+ 9.1) Enter the time when you started on the task (hh:mrm):
10:40

9.2) Time used (in minutes) fo solve the task:
#0313 Time used to understand how to solve the task:
20

g 2 2 Time used to implement the changes:
50

w0 3 3 Time used to evaluate the solution (run the test-case):
10

=" 9.3) Enter tha time when you finished the task (hh:mrm):
12:00

e

Figure 4. Question 9, Task 1 — Part 2

4.1.4. Step 4 — Monitor Experiment
The researcher can monitor experiments in real time in the User status window
(Figure 6). The Sratus column displays the experiment status of each subject
(Unanswered, Started or Finished). The start time for Finished and Started
experiments is found in the Start time column. The total time used on Finished
experiments is displayed in the Time used column.

For a Started experiment, the number and name of the last page that was answered
by the subject are shown in the Last page answered column. The researcher can view

the answers given by a subject by clicking on the name of the subject in the Name
column.

2N [Simula Research Project - Edit experiment] - Microsoft Internet Explorer
File Edit ‘iew Favortes Tools Help

@Back -~) - D [2) (» S search o Favorites @ Media £ [0+ (L |D| 3

Address ‘@ htkp:ff194,143, 23, 34 fuiofquestionaryfquastionary asp V| Links * | Markon Antivirus g -
simula . research laboratory | 8% & - Edit experiment -
Register fupdste C Experiments Language Log off |

Design Experiment

If a question is marked with a red asterix it means that the question has to be answered before you go an
#*:+ 10) Task 1 - Part 3

Minibank

1. Zip the subdirectory rinibank, call the Zip-file Taskfsof.zip and save it in the directory
Experiment.

2. Upload the file Taskisol.zip hy pressing the Upload file-button below.

Upload file

Figure 5. Question 10, Task 1 — Part 3

4.1.5. Step 5 - Collect Results
The results of an experiment can be presented graphically. More importantly, all the

raw data for a certain experiment may also be downloaded as a Microsoft Access
2000 database table and then be copied into a statistical analysis tool, for example.

4.2. Technical Architecture

SESE is deployed on an n-tier client/server architecture, built on Microsoft COM
technology (Figure 7). The SESE application layer runs on one computer and the
database on another. Users communicate with the application through a standard web-
browser (e.g., Netscape and Internet Explorer).

User status in Design Experiment

Here you can see if a user has completed an experiment

Name __[Status __Jstart time Time used|Last page answered
Coben, Hubertys Finished 2002.04.24 09:10:59 6:17:26
Dickens Kirsta jStarted Z002.04,24 09;29:55) Task 1 - Part 2

Dietz, Lisa Unanswered
Jackson, Peter Unanswered

Figure 6. Monitoring the experiment

Web pages with CSS
and JavaScript M

E— YWeb server running ISIASP and
JavascriptiJava/COM+

@gﬁ Firewall

Figure 7. The SESE client/server architecture

The web pages are built using HTML, CSS (Cascading Style Sheets) and Javascript,
and are presented with Microsoft ASP (Active Server Pages). The
application/business layer is implemented in Java and contains an object model with
methods supporting the operations of the software. The Data Access layer contains
classes and methods supporting O/R mapping (Object Read/Write in a standard
relational database). The interface with the business layer supports COM+. This layer
uses Microsoft’s data access technology ADO (ActiveX Data Object). The persistent
layer uses an MS SQL-server. The communication with the database is managed by a
COM+ component where transactions are initiated by MTS (Microsoft Transaction
Server). Scalability in the application layer is configured in COM+ using Load
balancing and Object pooling.

4.2.1. Security

SESE is generally accessible on the Internet. The user ID is verified when the user
logs onto the system. Access rights depend on the role of the user. All traffic between
the web server and the client may be encrypted using standard SSL with HTTPS.
Hence, the data is protected by a firewall, i.e., no other services apart from HTTP
(HTTPS) may be accessed from outside.

SESE uses ”form-based” authentication. The user fills in username and password
in a HTML Form, which is sent to the server with “HTTP Post”. If HTTPS is used,
the data is encrypted. The user name and password are verified against separate
tables.

4.2.2. Sessions
The Internet Information Server (IIS) assigns each user a session object. The session
object is deleted either when the user logs off, or after five hours of inactivity. This

timeout length is relatively long to support large tasks. The session object stores
information such as the user ID and experiment status of each subject in a cache.

4.2.3. Roles

The application applies the notion of roles. All users are assigned one or more roles.
All links into the system are assigned a list of roles, stating which users have access to
the link. The menus are a collection of links, and will therefore vary according to role
of the user who is logged onto the system.

5. Evaluation of SESE

This section describes the experiences of using SESE to conduct a large controlled
experiment evaluating how object-oriented design principles may affect
changeability. The experiment was a replication of an earlier pen-and-paper
experiment using 40 students as subjects (Arisholm et al., 2001). A common critique
of pen-and-paper experiments with students is that the results are not valid outside the
rather unrealistic experimental conditions; in real development projects, the
programmers are professionals, using real development tools in a more familiar
environment. In the replicated experiment with SESE, the goal was to assess whether
the external validity of the results would be affected by using

e professional developers instead of (in addition to) students,

e professional development tools and real Java code instead of pen-and-paper
exercises, and

e normal work environments (offices or office landscapes) instead of class-room
settings.

The remainder of this section focuses on how SESE supported the logistics of
conducting the replicated experiment.

5.1. Conducting the Replicated Experiment using SESE

The experimental materials (e.g., skill level questionnaires, task descriptions, post-
mortem questionnaires and Java code) were defined in SESE. In total, 190 subjects
participated. Among the subjects, 130 were professional Java developers from nine
different consultancy companies (Accenture, Cap Gemini Ernst & Young, Ementa,
Ementor, Genera, Objectnet, Software Innovation, Software Innovation Technology
and TietoEnator). The remaining 60 subjects were students from the University of
Oslo. All subjects were paid to participate. The students were given an honorarium of
1000 NOK each, whereas the consultancy companies were paid slightly less than
normal consultancy fees (from 500 to 700 NOK per hour per developer depending on
the seniority level of each developer).

The experiment took place during a two-month period and was organized as 12
separate one-day sessions. The 60 students participated in one common experiment
session at a computer terminal facility at the University of Oslo. For the experiment

sessions involving professional developers, a local project manager (in each
company) was assigned to the “experiment project”. He or she ensured that the
subjects assigned to a given experiment session actually attended, that PCs and office
spaces were available, that meeting rooms had been booked, etc. The project manager
also prepared a list of the names and email addresses of each subject that was
assigned to a given experiment session. When we received the list from the project
manager, the subjects were given a user-id and password in SESE and assigned to one
of the two design alternatives. Randomization and blocking were used to avoid
uneven group assignments. Then, SESE sent an email to the subjects informing them
about their user name, password, how to log on to SESE, and the time of the
experiment. Each experiment session started with a short introduction meeting, where
the procedure of the experiment was explained to the subjects by the first author.
After the meeting, the developers proceeded to their usual office or workstation,
logged on to SESE and started the experiment. For all of the experiment sessions, at
least one researcher was present.

During the one-day session, each subject had to solve six Java programming tasks
on their computer using their usual Java development tool. Most subjects spent
somewhere between 5 to 8 hours to complete the experiment. Further details of the
tasks and the design alternatives are explained in (Arisholm et al. 2001, Arisholm &
Sjsberg 2002).

5.2. Lessons Learned

This section summarizes what we perceive as the most important experiences and the
consequential guidelines for conducting large-scale, controlled experiments with
SESE.

5.2.1. Administrative Tasks
Important infrastructure needs to be in place to conduct administrative tasks:

e The researcher must be physically present during the whole experiment session,
to assist in problems or answer questions and, in general, to monitor and control
the experiment. While SESE’s monitoring functionality is an important and
useful tool, it is insufficient to ensure that the experiment runs smoothly.

e The company should use a technical support person to ensure that the PCs have
been configured with the required tools and network connections. This is
particularly important for those cases where the programmers did not use their
“own” PC for running the experiment.

5.2.2. Importance of Including a Training Task

In our experience, professional developers constitute a more heterogeneous group
than students. Our results suggest that the variation in skills amongst professionals is
considerably larger than within a group of second or third-year students. Furthermore,
conducting experiments with real development tools instead of pen-and-paper poses
additional technical challenges. Consequently, our experiences suggest that, when
using SESE to conduct experiments with professionals using realistic development

environments, it is crucial to have a training task as a first exercise before initiating
the “real” experimental tasks.

During the training task, the subjects familiarized themselves with the
experimental procedure (e.g., answering questionnaires, downloading task
descriptions and code from SESE, uploading task solutions to SESE, using Acrobat
Reader to read task descriptions, using Pkzip to uncompress and compress Java code,
and coding and compiling the source code). Furthermore, most technical or user-
related problems (e.g., having the wrong version of JDK, having an expired license of
JBuilder, having an outdated version of Acrobat Reader or incorrect use of PkZip)
were resolved before they could have a negative impact on the reliability of the results
of the experiment. Most of the technical and user-related problems occurred during
the training exercise. In the rare cases where technical or user-related problems
occurred after the training task was completed, they were mostly of simple nature and
resolved quickly.

5.2.3. Personal Interruptions

The professional developers were located in their usual work offices while running
the experiment. Consequently, using SESE to support the logistics of such
geographically distributed experiments enabled us to increase the realism. However,
this increase in realism means that each subject potentially can be interrupted (phone
calls, lunch break, etc.). Such interruptions should of course be kept to a minimum to
ensure reliable results. To reduce the negative impact of such interruptions, we
requested the subjects to limit interruptions to times between each change task and
explained to them that such interruptions otherwise could threaten the validity of the
results of the experiment. We observed that the vast majority of the subjects respected
this request as far as practically possible. In cases where interruptions were
unavoidable, the subjects used a special “comment” field in SESE to inform us about
the nature and time span of the interruption. In summary, based on our experiences
from this experiment, we believe that it is possible to ensure that personal
interruptions will be kept below the level in which the results of the experiment would
be threatened.

5.2.4. Firewalls and Virus Scanners

Before the experiment, we were worried about whether network security software
such as firewalls and virus scanning software would prevent the subjects from
downloading and uploading tasks and questionnaires. This turned out to be no
problem except for one case, in which a company had a firewall that refused to accept
zip-files from external web-sites. However, this issue was resolved during the training
exercise so it did not impact the results of the experiment.

5.2.5. Response Times, Network Traffic and Server Load

Clearly, slow response times or interruptions caused by too high network traffic or

SESE server load could threaten the results of the experiment. In particular, it could

make the subjects frustrated, which in turn could affect their performance.
Fortunately, with one notable exception discussed below, we did not experience

problems related to increased network traffic or SESE server load during the

experiment sessions. For the OO design experiment, the change tasks and code were
quite small (resulting in a total of approximately IMB to be downloaded and
uploaded per subject). For the sessions in industry, this load caused no problems
regarding the response times of SESE. To reduce the risks of network and server-
related problems at the SESE server site, we had a technical administrator from
KompetanseWeb on call during all the experiment sessions.

For the student experiment session, consisting of 60 students starting the
experiment at the same time, we did experience a serious server problem: As the 60
students logged onto SESE and started the experiment, the server crashed.
Fortunately, the administrator at KompetanseWeb managed to get the server up-and-
running after a few minutes. No data was lost (SESE remembers the state of the
experiment for each subject), and the remainder of the experiment was conducted as
planned. This incidence points out that SESE introduces new risks of a technical
nature. Consequently, it may be necessary to have a technical administrator on call at
all times to deal with such issues.

6. Conclusions and Future Work

This paper motivated the need for tool support to run realistic controlled experiments
to empirically evaluate software engineering technologies. Realism can, for example,
be increased using professionals in addition to students, real development tools
instead of pen-and-paper, larger tasks and a typical work environment instead of a
classroom. The logistics of running realistic experiments are much more complex
than for simple pen-and-paper student experiments.

This paper gave an overview of the functionality and technical architecture of an
experiment support tool, SESE. This tool was developed and evaluated in conjunction
with a large OO design experiment. Running such large experiments introduces new
organizational and technical challenges and risks. If these issues are dealt with
properly, our experiences suggest that SESE is an invaluable tool. In fact, without
SESE, we believe it would have been infeasible to conduct the OO design experiment.

Several new software engineering experiments are underway in which researchers
in our group will use SESE as a backbone experiment support environment. SESE is
continually being improved based on the experiences from the OO design experiment
and on the requirements of new planned experiments. For example, future extensions
of SESE will include detailed logging of the way a task is performed or a technology
is used.

Acknowledgements

We are grateful to the students at University of Oslo and the developers from
Accenture, Cap Gemini Ernst & Young, Ementa, Ementor, Genera, Software
Innovation, Software Innovation Technology and Tietoenator who participated in the
design experiment. We thank the anonymous referees for their very constructive
comments. We also thank Dag M. Solvoll, Wiggo Bowitz and Kirsten Ribu for their

contributions to this paper. This research is partially funded by The Research Council
of Norway through the research project INCO (Incremental and component-based
software development, project number 140398/431).

References

Arisholm, E. & Sjgberg, D.LK., Assessing the Changeability of two Object-Oriented Design
Alternatives — a Controlled Experiment with Professionals in Realistic Environments,
2002 (in preparation).

Arisholm, E., Sjgberg, D.1.LK. & Jgrgensen, M. Assessing the Changeability of two Object-
Oriented Design Alternatives — a Controlled Experiment. Empirical Software
Engineering, (6):231-277, Sep. 2001.

Basili, V.R. The Role of Experimentation in Software Engineering: Past, Current, and Future,
Proceedings of the 18th International Conference on Software Engineering, Berlin,
Germany, March 25-29, pp. 442449, 1996.

Basili, Victor R., Rombach, Dieter & Selby, Richard. The Experimental Paradigm in Software
Engineering. Experimental Engineering Issues: Critical Assessment and Future
Directions, International Workshop, Dagstuhl, Germany, 1992, Springer Verlag, LNCS,
No. 706, 1993.

Basili, Victor R., Selby, Richard & Hutchens, David. Experimentation in Software
Engineering. IEEE Transactions on Software Engineering (invited paper), July 1986.

Briand, L.C., Bunse, C. & Daly, J.W., A Controlled Experiment for Evaluating Quality
Guidelines on the Maintainability of Object-Oriented Designs, IEEE Transactions on
Software Engineering, Vol. 27, No. 6, pp. 513-530, 2001.

Glass, R.L. The Software-Research Crisis, IEEE Software, vol. 11, no. 6, pp. 42-47, 1994.

Harrison, W. N = 1: An Alternative for Software Engineering Research?, Beg, Borrow, or
Steal: Using Multidisciplinary Approaches in Empirical Software Engineering Research,
Workshop, 5 June, 2000 at 22nd International Conference on Software Engineering
(ICSE), Limerick, Ireland, 2000.

Karahasanovic, A., Sjgberg, D. & Jgrgensen, M. Data Collection in Software Engineering
Experiments, IRMA2001, Toronto, Canada, May 20-23, 2001, pp. 1027-1028.

Potts, C. Software-Engineering Research Revisited, IEEE Software, vol. 10, no. 5, pp. 19-28,
1993.

Rombach et al. Experimental Software Engineering Issues: Critical Assessment and Future
Directions, Dagstuhl Workshop, Germany, September, 1992, LNCS 706, Springer
Verlag, 1993.

Sjgberg, D.LK., Anda, B., Arisholm, E., Dyba, T., Jgrgensen, M., Karahasanovic, A., Koren,
E.F., and Vokac M. Conducting Realistic Experiments in Software Engineering. To
appear at ISESE’2002, Nara, Japan, 3—4 October 2002.

Tichy, W.F., Should Computer Scientists Experiment More? 16 Reasons to Avoid
Experimentation, IEEE Computer Vol. 31, No. 5, pp. 3240, May 1998.

Zelkowitz, M.V. & Wallace, D.R., Experimental Models for Validating Technology”, IEEE
Computer, Vol. 31, No. 5; pp. 23-31, May 1998.

