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Abstract 
 
The main purpose of this paper is to generate discussions 
which may improve how we conduct empirical software 
engineering studies. Our position is that statistical 
hypothesis testing plays a too large role in empirical 
software engineering studies. The problems of applying 
statistical hypothesis testing in empirical software 
engineering studies is illustrated by the finding: Only 3 
out of the 47 studies in Journal of Empirical Software 
Engineering which applied statistical hypothesis testing, 
were able to base their statistical testing on well-defined 
populations and random samples from those populations. 
The frequent use of statistical hypothesis testing may also 
have had unwanted consequences on the study designs, 
e.g., it may have contributed to a too low focus on theory 
building. We outline several steps we believe are useful 
for a change in focus from “generalizing from a random 
sample to a larger population” to “generalizing across 
populations through theory-building”. 
 
 
1. Introduction 
 

There are several methods of generalization in science 
and generalization based on statistical hypothesis testing, 
i.e., generalization from a randomly drawn sample to a 
larger population, is only one of them. In fact, it is only 
the last 50 years that generalization through hypothesis 
testing has become in common use. Before that, other 
types of generalization of scientific results were 
dominating. In [1, p269] it is reported that statistical 
hypothesis testing was practically nonexistent in 
psychology studies before 1940. However, already in 
1955 more than 80% of the empirical articles in four 
leading psychology journals used statistical hypothesis 
testing. The proportion of empirical software engineering 
studies applying statistical hypothesis testing is high, as 
well. An examination of empirical studies1 (N=72) in the 

                                                 
1 We excluded case-studies of only one project or system from the set of 
empirical studies, because it is obvious that studies of single cases do not 
enable use of statistical hypothesis testing. There were, however, not 

1996-2003 volumes of Journal of Empirical Software 
Engineering gave that about 65% of the studies applied 
statistical hypothesis testing of some type, e.g., test of 
significance of difference in mean values of alternative 
models or test of significance of a variable included in a 
regression model. There is consequently empirical 
evidence supporting the claim that statistical hypothesis 
testing is a frequently used ingredient in empirical 
software engineering studies.  

In this paper we claim that typical software 
engineering contexts may not enable meaningful use of 
statistical hypothesis testing and that the frequent use of 
statistical hypothesis testing may have had unwanted 
impacts on how software engineering researchers design 
their studies. We argue, amongst others, that the 
application of statistical hypothesis testing easily leads to 
formulation of non-optimal research questions and study 
designs.  

The theory behind statistical hypothesis testing is quite 
complex and there is no unified interpretation of all 
important concepts. There are, for example, different 
opinions on how to interpret the basic concept of 
probability [2-4]. In addition, there are many deep 
philosophical discussions on important assumptions, e.g., 
the problem of induction [2, 3]. The authors of this paper 
are software engineering researchers, i.e., users of 
statistics, rather than researchers on statistics. This means 
that there may be inaccurate formulations, biases, and, 
even incorrect claims in this paper. We believe, 
nevertheless, that the main claims of this paper are correct 
and that the topics discussed are worth discussing. 

The paper can be read as a criticism of most empirical 
software engineering studies, including studies conducted 
by the authors of this paper. To some extent it is meant to 
be exactly that. It is, however, important to notice that 
what we criticize is mainly one element of the studies, 
i.e., the use of statistical hypothesis testing without 
having a well-defined population, and not the usefulness 

                                                                               
many studies of single cases. Which studies to include and exclude in an 
examination of frequency of use of statistical hypothesis testing may be 
subject to discussions. The main point in this study is that statistical 
hypothesis testing is frequently applied, not whether this proportion is 
65% or 50%. 
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of the studies themselves. We found, for example, in our 
review of papers in Journal of Empirical Software 
Engineering several empirical software engineering 
papers that, in addition to statistical hypothesis testing 
(based on generalization from sample to population), 
argued convincingly that their results could be 
generalized across the studied population/sample, e.g., 
from computer science students to software professionals. 
These arguments were based on generalization by 
similarity (representativeness) of their sample to samples 
of other populations, rather than on generalization from 
randomly drawn samples to larger populations. 

The remaining part of this paper is organized as 
follows: Section 2 points at what we believe is one of the 
most important problems when applying statistical 
hypothesis testing in a software engineering context, i.e., 
the failure of establishing a well-defined population and 
consequently the failure to provide a random sampling 
process. Section 3 discusses two biases potentially 
resulting from the frequent use of statistical hypothesis 
testing in empirical software engineering: a) A bias 
towards formulation of fruitless (shallow) research 
problems to fit the format induced by statistical 
hypothesis testing. b) A lack of focus on the use of 
structured techniques for generalization across 
population. Section 4 provides a preliminary outline of 
how the authors believe a larger proportion of empirical 
software engineering research should be conducted to 
enable theory-building and generalization across 
populations. Section 5 concludes the paper.  
 
2. Well-defined Populations? 
 

The importance of a well-defined population from 
which the sample is drawn can hardly be over-
emphasized when one applies statistical hypothesis 
testing. For example, in “Preliminary Guidelines for 
Empirical Research in Software Engineering” [5] it is 
claimed that: “If you cannot define the population from 
which your subjects/objects are drawn, it is not possible 
to draw any inference from the results of your 
experiment”2. A well-defined population is essential, 
because the statistical hypothesis testing methods are 
based on generalization from a sample to the population 
from which the sample was randomly drawn. When there 
is no well-defined population, then the measures, e.g., the 
p-values, do not have the intended probability-based 
meanings. In addition, if there is no well-defined 
population, it is impossible to design a procedure that 

                                                 
2 This claim should, as we understand it, not be interpreted outside the 
context of statistical hypothesis testing. Obviously, even a study without 
a well-defined population (but with a well-defined sample) may enable 
the researcher to infer about similar projects, e.g., based on 
argumentation by analogy or by theory. 

ensures a random selection of subjects/objects. In other 
words, statistical hypothesis testing is of little use if we 
cannot define our population. 

Unfortunately, empirical studies of software 
engineering may seldom have well-defined populations. It 
is not even clear what the elements of our population 
should be! A typical software engineering study may 
need to include the elements: Subjects (e.g., software 
developers), problems to be solved (e.g., development 
tasks), and, problem solving context (e.g., development 
tools). The importance of including subjects, problems 
and contexts means that we may have to define 
populations that include all these three elements. While 
this in principle may be possible, we have not seen a 
single study that has managed this other than for very 
narrow sub-populations, e.g., for the population of 
developers within a specific company and a specific 
development context. Now, some will argue, this is 
mainly a matter of lack of statistical skill and immaturity 
of our domain (we are a young research community 
compared with many other communities). We believe that 
this is only one reason for the problem. The main 
problem, we believe, is that the variation and dynamics of 
the software engineering domain are so large that the 
definition of a population, that meet the requirements set 
by statistical hypothesis testing, can be extremely 
difficult, and maybe not worth the effort. We, 
consequently, may have to apply other means than 
statistical hypothesis testing to generalize from 
experiments and other types of empirical software 
engineering studies. 

Some of the problems concerning well-defined 
populations may be smaller in other domains with 
frequent use of statistical hypothesis testing, e.g., 
agriculture, quality assurance of industrial manufacturing 
processes, and, medicine. In these domains the problems 
to be solved and the problem solving context may have 
less variation and less impact on the effect of treatment 
compared with software engineering (we admit, however, 
not being experts in these fields). For example, in 
medicine it may sometimes be meaningful to define the 
population to be “the people in the world with disease X”. 
For disease X there may be good reasons to believe that 
the nationality, profession and intelligence of the patient 
are of minor importance for the effect of a treatment. In 
some cases it may therefore be meaningful to claim that a 
random sample of patients from a particular hospital is a 
good substitute for a random sample of the total 
population of people with disease X. Similar 
simplifications regarding sample and population may 
frequently not be possible in software engineering 
studies. 

We do, however, not make the claim that other 
disciplines have no problems with defining the 
population. On the contrary, a review of clinical cancer 
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studies in Norway [6] report that only 43 % of the studies 
“presented inclusion and criteria which may give the 
reader an idea of the population intended to be studied”. 

The statisticians Fisher and Neyman developed 
statistical hypothesis testing for agriculture (Fisher) and 
quality control in manufacturing processes (Neyman), see 
[4]. In other words, statistical hypothesis testing was in 
the beginning not intended to be a universal tool for all 
types of domains. According to [3, p. 226], Fisher meant 
that “We have a large number of inductive techniques, 
and we should consider practical situations carefully to 
see which is appropriate”. 

Medicine may have had a strong impact on how 
software engineering researchers use statistical hypothesis 
testing. An example supporting this claim, is that 7 out of 
the 9 main sources  used as input to the “Preliminary 
guidelines for empirical research in software engineering” 
[5], were from medicine. We have argued that there may 
be important differences between medicine and software 
engineering regarding the possibilities to have well-
defined populations from which we can draw random 
samples. Maybe empirical software engineering has been 
strongly impacted by the research practice in a discipline 
where statistical hypothesis testing has been successful, 
without being sufficiently aware of important differences 
between the domains. 

To illustrate the problems of population in empirical 
software engineering, we further examined the 47 
empirical studies in Journal of Empirical Software 
Engineering that applied statistical hypothesis testing. We 
found that only three of those studies did provide a well-
defined population and conducted a random sample from 
that population3! This is not a satisfactory situation for 
empirical software engineering. 

All these three studies achieved a well-defined 
population on the cost of narrowing the population quite a 
lot, i.e., narrowing the population to software companies 
within one country or to software companies of several 
countries one particular year. These studies show, 
nevertheless, that statistical hypothesis testing may be 
meaningful in some software engineering contexts.  

Interestingly, many of the studies we examined 
described their sample reasonable well and were, when 
discussing the results, concerned about how 
representative their samples were, e.g., whether the task 
to be solved was representative of a set of realistic 
industrial tasks. There are similarities between 
“representativeness” and “generalization to a larger 
population by random sample”, but these concepts do 
                                                 
3 This evaluation may be to some extent subjective. 
However, in most studies there was no description at all 
of population or sampling process (only of the sample 
itself), i.e., it is hard to see that other researchers would 
reach substantially different evaluations. 

nevertheless require different analysis methods and 
argumentations. The need to discuss representativeness is 
no surprise, given that the researchers knew that they had 
no well-defined population, no random sample, and that 
the sample was too narrow to be of much interest of itself. 
In fact, we believe that representativeness-discussions 
should be more emphasized, but also more related to 
theory. We discuss this need for theories in more depth in 
Section 4. 

According to [5] and several text-books on statistical 
hypothesis testing, e.g., [7] the lack of well-defined 
populations and random samples means that no 
generalization, based on statistical principles, to a larger 
population is possible. In other words, although statistical 
hypothesis testing is in frequent use in empirical software 
engineering studies, basic assumptions for meaningful use 
are met in only very few of these studies! 

 
3. Biases Potentially Resulting From 
Statistical Hypothesis Testing 
 

There may be unwanted study design biases caused by 
the frequent use of statistical hypothesis testing. In this 
section we discuss the following two: 
• Bias 1: Use of statistical hypothesis testing may 

easily lead to formulation and testing of shallow, 
non-connected, co-variation based hypotheses 
instead of formulation and testing of cause-effect 
theories. A potential reason for this is that traditional 
(non-Bayesian) statistical hypothesis testing is 
developed for situations with little understanding of 
underlying processes and much data [3], i.e., it is not 
designed for the purpose of integrating previous 
knowledge in the statistical testing of hypothesis. 

• Bias 2: Reliance on statistical hypothesis testing as 
the main generalization technique may easily lead to 
lack of focus on other types of generalization 
techniques, i.e., techniques used to generalize across 
populations. As described in Section 2, we observed 
that many researchers try to generalize across 
populations applying non-statistical techniques, e.g., 
argumentation based on representativeness. These 
researchers seemed to lack method support for doing 
this applying other techniques than informal 
argumentation. 

These biases are not necessary consequences of 
statistical hypothesis testing, but we nevertheless believe 
that the frequent use of statistical hypothesis testing has 
contributed to them. This belief is mainly based on 
personal experience from our own empirical software 
engineering studies, e.g., how we had to change the 
hypotheses to fit the statistical hypothesis testing 
framework and the lack of stimuli to build theories. 
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Similar observations, regarding shallow hypotheses in 
code inspection studies, is described in [5]. 

The following example, based on several real 
empirical software engineering studies, among them some 
of our own, may illustrate the two biases described above: 

Example: The overall goal of software cost estimation 
research should be to improve cost estimation practice. It 
is obvious from previous research, see for example [8], 
that there no single best estimation method independent 
of data set and context. This means that it is important to 
know which cost estimation methods work in which 
situations, i.e., we want a theory for selection of cost 
estimation methods.  

A frequently applied hypothesis testing-based design 
of empirical studies with the goal of comparing 
estimation methods is similar to this: 

1. Decide which cost estimation methods to 
compare, e.g., estimation methods A and B. 

2. Decide on the hypotheses to test. Typically, a 
hypothesis is of the type “The mean estimation 
accuracy of A is better than that of B” or “There 
are no difference in mean estimation accuracy 
between A and B”. (Notice that on this stage we 
have already rewritten the goal of the research, 
i.e., instead of formulating research questions of 
great relevance, such as when are A better than B, 
we have adjusted our hypotheses to fit the usual 
mean or median value comparison format of 
statistical hypothesis testing.) 

3. Collect a set of projects with known actual effort 
and other important project variable values. 
(Typically, this set of projects is far from 
randomly drawn and the total population of 
projects from which the sample is drawn is not 
defined.) 

4. Calibrate/tailor the estimation methods to the 
project context based on a training set, i.e., a sub-
set of the data set collected in Step 3. 

5. Compare the mean estimation accuracy of the 
estimation methods on the evaluation set of 
projects, i.e., the total set of projects subtracted 
the learning set. 

6. Apply a statistical test, e.g., a t-test, to find the p-
value potentially rejecting the hypothesis, i.e., 
calculate the probability that the sample value 
would be as large as the value actually observed if 
the hypothesis was true. (Notice that there 
typically is no natural level of p-value that should 
lead to rejection of the hypothesis. This value is, 
in nearly all cases we have observed, arbitrarily 
set. Historically, significance levels of 0.05 and 
0.1 have been applied because the statistical 
values related to them could be found in tables, 
and applying other values would require time-
consuming calculations. Significance levels of 

0.05 and 0.1 are nevertheless still in common use 
when testing statistical hypotheses. In some 
situations, e.g., situations where we have to 
choose between two alternatives and have no 
other information than the collected data, it is our 
opinion that we should accept p-values much 
higher than 0.1 sufficient to reject a hypothesis of 
no difference between the two alternatives.) 

Assume that we found that the observed data is highly 
unlikely given the correctness of the hypothesis “The 
mean estimation accuracy of A is better than B”, with a p-
value of 0.03. Based on this we therefore reject the 
hypothesis.  

What does this rejection of hypothesis and the p-value 
mean? Are we able to apply the rejected hypothesis result 
to some relevant population? Unfortunately, this is not the 
case. The lack of a well-defined population from which 
we randomly selected the projects means that we cannot 
use statistical methods to generalize to relevant 
populations, e.g., we cannot use the statistical hypothesis 
testing as a means to generalize to future projects in other 
companies. The lack of a definition of a larger population 
means that we can only make statistical claims about the 
sample we studied. To make claims about the studied 
sample, however, we do not need sophisticated inference 
techniques, such as the statistical t-test of difference in 
mean values. We could simply look at the mean or 
median accuracy values of A and B together with the 
variance. 
 
4. Are There Better Approaches? 
 

As always, it is easier to see problems with existing 
empirical studies than to devise better approaches. The 
topic of design for empirical research is a very complex 
topic with many practical and principal challenges. In 
spite of this complexity, we will try to outline a general 
approach for empirical studies on software engineering 
where statistical hypothesis testing is only one out of 
many techniques that may be used.  

The approach we propose is based on the following 
beliefs: 
• Statistical hypothesis testing is mainly designed for 

situations were we do not understand much about 
what is happening, and, were we mainly are 
interested in co-variation, i.e., it is a research method 
mainly developed to see “if something work” rather 
than “why something works”. A support of this belief 
is provided in [3]. 

• Generalization across populations, e.g., to future 
software projects and contexts, is what we typically 
need in the domain of software engineering. 

• Generalization from one software engineering study 
context to other contexts, i.e., across populations, 
happens only through theory. It is the interplay 
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between theory and study design that determines our 
ability to generalize, i.e., there is no best study design 
independent of the aspect of theory we want to test or 
improve.  

• A theory based on cause-effect is in most cases a 
better theory than a theory based on co-variation. 
(Philosophically, one may argue that it is not 
meaningful to talk about cause-effect relationships, 
only different levels of co-variation. However, for 
practical purposes most people may agree that there 
is a meaningful difference and that we should strive 
for cause-effect theories for better predictions and 
understanding of behavior in other contexts than the 
one examined in a particular software engineering 
study.) 

• There is nearly always some relevant knowledge 
available from the previous software engineering 
research or from research in other domains that 
enables meaningful theories to be developed. There 
are consequently few good excuses for conducting 
purely exploratory studies and isolated studies 
applying statistical hypothesis testing. Most studies 
should start with a thorough review of relevant 
knowledge. (The only good reason we can think of to 
conduct more exploratory studies and isolated 
hypothesis testing is for educational purposes, e.g., 
Ph.D. students learning how to conduct 
experiments.) 

• A theory should have a defined scope and try to 
predict and understand behavior in relevant 
situations. 

• A theory should reflect best knowledge, i.e., even 
relationships based on weak evidence may be 
included if there are reasons to believe that the 
relationship is more likely than other relationships. 
The strength of the theory, or its components, should 
be described. A weak theory may frequently be better 
than no theory. 

• Testing theories means to create predictions applying 
the theory and then examine the validity of these 
predictions through empirical studies. A theory that 
escapes many falisification trials increases its 
validity. Tests of theories may be conducted applying 
experiments with non-random sampling, 
observational studies applying statistical hypothesis 
testing with randomly drawn samples, or, any other 
meaningful study design. Falsification of a theory 
may lead to modification of the theory or to stronger 
belief in alternative theories. 

Based on these beliefs we propose the following 
general phases for empirical software engineering studies: 
1. Collect and synthesize relevant studies: In our 

experience, most software engineering studies are 
based on few, if any, references to studies made 
outside the software community. We believe, 

however, that we should accept and take the 
consequences of that software engineering is a multi-
disciplinary field with strong links to, e.g., 
psychology, social science, project management, 
organizational theory, and, construction engineering. 
The claim that we need more exploratory studies 
before we establish theories are, we believe, very 
much based on an ignorance of the usefulness of 
results achieved in other, strongly related, disciplines. 
Skills in “review” and “research synthesis” are 
important to be able to this step properly. In our 
opinion, there are much too few review papers in 
software engineering trying to summarize relevant 
research, including that from other disciplines. 

2. Establish a theory: In many cases there are no 
established theories relevant for answering important 
software engineering research questions. In this case, 
we should try to establish best knowledge 
relationships based on all available studies in our 
field and, not least, in related fields, as outlined in 
Step 1. Without a much stronger focus on this theory-
development step, we probably will continue to 
produce isolated, exploratory studies with limited 
ability to aggregate knowledge.  

3. Test and/or refine the theory: Empirical software 
engineering studies should test and refine the theory. 
The tests should be able to falsify relevant or 
uncertain parts of the theory, or to improve the 
theory. The tests may be based on statistical 
hypothesis testing, but also on other testing 
techniques. All good argumentations should be 
accepted, not only those based on generalization 
from sample to population. 

4. When needed, change or replace the theory: If a test 
falsifies the theory, we may have to change or 
replace it. 

There is nothing revolutionary with this approach, i.e., 
it is well within the framework of the hypothetical-
deductive method of science. These steps are not meant to 
be “silver bullets” to better research results. As with 
statistical hypothesis testing, there are many ways of 
misusing the approach. Instead of a, in many ways, 
mechanical process imposing rigid structures on the 
researchers (statistical hypothesis testing), we now have a 
process requiring maybe even more reflection and skill 
regarding study design and argumentation. If there is no 
good quality assurance of the studies and argumentations, 
we may easily fall into the trap of the research method of 
“anything goes”, i.e., all study designs and generalization 
techniques are equally good. In addition, the building of 
theories easily lead into “schools”, i.e., some research 
communities believes in one theory (and do their best to 
support it) and other communities in other theories (and 
do their best to validate their theories).  
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The following example of research study, which is 
based on the same research question as in Section 2, 
illustrates what the proposed theory-based research study 
approach may mean in practice. 

Example: As in Section 2, we want to know which cost 
estimation methods that work in which situations, i.e., we 
want a theory for selection of cost estimation methods. 
We now start with the collection of relevant studies and 
the development of a theory.  

Assume that we want to compare expert estimation (A) 
with linear regression based estimation models (B), i.e., 
we want to know when we can expect expert estimation 
to provide more accurate estimates than do linear 
regression based estimation models. In several domains, 
particularly in psychology, there have been numerous 
such studies, see [9] for an overview. Based on these 
studies we formulate an element of a theory of selection 
of estimation methods (only outlined here), e.g.: 

T1: Expert estimates are on average more accurate 
than linear regression-based estimates when the variance 
in project types is low. 

A good theory should, as stated earlier, preferably 
include cause-effect relationship, and, have a well-
defined scope. T1, which is only an element of a theory, 
is therefore not optimal (although it nevertheless may 
represent the best knowledge about the relationship). 

The wish for better understanding of the scope and 
validity of T1 leads us to design an experiment. In this 
experiment we try to distinguish between two different 
types of project type variance, i.e., project type variance 
which is a) included, and, b) not included in the training 
set used to derive the regression models. We would 
expect the expert estimators to be more flexible about 
estimating the cost of new types of projects, i.e., projects 
different from those in the learning set of projects. We 
therefore propose that:  

Expert estimators are on average better than linear 
regression-based models in situations with high variance 
of project types, i.e., in situations where there are new 
types of projects to be estimated that are different from 
the one in the regression models’ and experts’ learning 
sets. 

To test this proposal we conduct a series of experiment 
where the experts and the linear models learn from the 
same sets of project data and try to estimate the cost of 
projects different from those in the learning set. Instead of 
trying to sample from a large population of subjects, 
models, projects and contexts, which probably would not 
be practically possible, we now design a series of 
experiments that test the proposed relationship in 
different contexts with similarity to important industrial 
contexts and with the purpose of understanding when 
projects different from those in the learning set make 
differences between how well “formulas” and “experts” 
are performing. 

Assume that we, amongst others, find evidence 
suggesting that most experts were clearly better than most 
linear regression models in predicting project costs when 
the projects were unusual regarding productivity 
(size/effort). (The scope of this finding should, of course, 
be described, e.g., for what type of models and what type 
of experts is this relationship valid). We now may choose 
to replace/refine the theory T1 with T1-new: 

T1-new: Expert estimates are on average more 
accurate than linear regression-based estimates when the 
variance in project types is low, or, when the variance is 
high and the productivity of the projects is unusual 
regarding productivity (size/effort). 

Whether we chose to refine the theory or not, will in 
this case not depend on an arbitrarily set significance 
level with no link to results in previous studies.  Instead 
the change depends on our ability to provide a robust 
argumentation, including use of results from other 
studies, and maybe the resolving of previous 
contradictory observations. Our main concern is now 
whether T1-new reflects best knowledge better than T1 or 
any alternative theory. 

An interesting consequence of this approach is that the 
discussions about use of artificial experiments vs. realistic 
observational studies, and, student participants vs. 
software professionals can be reduced to a question of fit 
between the test of a theory and the chosen study design. 
It may, for example, be that an implication from a theory 
more easily can be tested using an artificial environment 
and homogenous participants, i.e., pen-and-paper based 
programming and computer science students. It is the 
theory-related argumentation that counts, not the type of 
study design. This said, we strongly believe that there is a 
need for more realism in empirical software engineering 
studies today. There are, regardless of type of 
generalization argumentation, frequently difficult to 
generalize from inexperienced students solving very small 
programming tasks to relevant industrial programming 
contexts. 
 
5. Conclusions 
 

This paper describes an attempt to formulate how we 
should conduct empirical software engineering studies. 
An important purpose of the paper is to get responses on 
the meaningfulness and practicality of our suggestions. 
What we suggest is, in short, that there is a need for more 
focus on research questions derived from theory and 
generalization across populations, as opposed to isolated 
hypotheses and generalizations from sample to population 
through statistical hypothesis testing. Our suggestions are, 
amongst others, based on the observation that basic 
assumptions of population and random sampling are 
violated in many empirical software engineering studies, 
and, that the focus on statistical hypothesis testing seems 
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to hinder the aggregation of empirical knowledge. In 
cases where statistical hypothesis testing is appropriate, 
e.g., as means to test implications from a theory, 
empirical software engineering studies should base the 
tests on well-defined populations and randomly drawn 
samples. 
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