
 1

Generalization and Theory-Building in Software Engineering Research

Magne Jørgensen, Dag Sjøberg
Simula Research Laboratory

{magne.jorgensen, dagsj}@simula.no

Abstract

The main purpose of this paper is to generate discussions
which may improve how we conduct empirical software
engineering studies. Our position is that statistical
hypothesis testing plays a too large role in empirical
software engineering studies. The problems of applying
statistical hypothesis testing in empirical software
engineering studies is illustrated by the finding: Only 3
out of the 47 studies in Journal of Empirical Software
Engineering which applied statistical hypothesis testing,
were able to base their statistical testing on well-defined
populations and random samples from those populations.
The frequent use of statistical hypothesis testing may also
have had unwanted consequences on the study designs,
e.g., it may have contributed to a too low focus on theory
building. We outline several steps we believe are useful
for a change in focus from “generalizing from a random
sample to a larger population” to “generalizing across
populations through theory-building”.

1. Introduction

There are several methods of generalization in science
and generalization based on statistical hypothesis testing,
i.e., generalization from a randomly drawn sample to a
larger population, is only one of them. In fact, it is only
the last 50 years that generalization through hypothesis
testing has become in common use. Before that, other
types of generalization of scientific results were
dominating. In [1, p269] it is reported that statistical
hypothesis testing was practically nonexistent in
psychology studies before 1940. However, already in
1955 more than 80% of the empirical articles in four
leading psychology journals used statistical hypothesis
testing. The proportion of empirical software engineering
studies applying statistical hypothesis testing is high, as
well. An examination of empirical studies1 (N=72) in the

1 We excluded case-studies of only one project or system from the set of
empirical studies, because it is obvious that studies of single cases do not
enable use of statistical hypothesis testing. There were, however, not

1996-2003 volumes of Journal of Empirical Software
Engineering gave that about 65% of the studies applied
statistical hypothesis testing of some type, e.g., test of
significance of difference in mean values of alternative
models or test of significance of a variable included in a
regression model. There is consequently empirical
evidence supporting the claim that statistical hypothesis
testing is a frequently used ingredient in empirical
software engineering studies.

In this paper we claim that typical software
engineering contexts may not enable meaningful use of
statistical hypothesis testing and that the frequent use of
statistical hypothesis testing may have had unwanted
impacts on how software engineering researchers design
their studies. We argue, amongst others, that the
application of statistical hypothesis testing easily leads to
formulation of non-optimal research questions and study
designs.

The theory behind statistical hypothesis testing is quite
complex and there is no unified interpretation of all
important concepts. There are, for example, different
opinions on how to interpret the basic concept of
probability [2-4]. In addition, there are many deep
philosophical discussions on important assumptions, e.g.,
the problem of induction [2, 3]. The authors of this paper
are software engineering researchers, i.e., users of
statistics, rather than researchers on statistics. This means
that there may be inaccurate formulations, biases, and,
even incorrect claims in this paper. We believe,
nevertheless, that the main claims of this paper are correct
and that the topics discussed are worth discussing.

The paper can be read as a criticism of most empirical
software engineering studies, including studies conducted
by the authors of this paper. To some extent it is meant to
be exactly that. It is, however, important to notice that
what we criticize is mainly one element of the studies,
i.e., the use of statistical hypothesis testing without
having a well-defined population, and not the usefulness

many studies of single cases. Which studies to include and exclude in an
examination of frequency of use of statistical hypothesis testing may be
subject to discussions. The main point in this study is that statistical
hypothesis testing is frequently applied, not whether this proportion is
65% or 50%.

 2

of the studies themselves. We found, for example, in our
review of papers in Journal of Empirical Software
Engineering several empirical software engineering
papers that, in addition to statistical hypothesis testing
(based on generalization from sample to population),
argued convincingly that their results could be
generalized across the studied population/sample, e.g.,
from computer science students to software professionals.
These arguments were based on generalization by
similarity (representativeness) of their sample to samples
of other populations, rather than on generalization from
randomly drawn samples to larger populations.

The remaining part of this paper is organized as
follows: Section 2 points at what we believe is one of the
most important problems when applying statistical
hypothesis testing in a software engineering context, i.e.,
the failure of establishing a well-defined population and
consequently the failure to provide a random sampling
process. Section 3 discusses two biases potentially
resulting from the frequent use of statistical hypothesis
testing in empirical software engineering: a) A bias
towards formulation of fruitless (shallow) research
problems to fit the format induced by statistical
hypothesis testing. b) A lack of focus on the use of
structured techniques for generalization across
population. Section 4 provides a preliminary outline of
how the authors believe a larger proportion of empirical
software engineering research should be conducted to
enable theory-building and generalization across
populations. Section 5 concludes the paper.

2. Well-defined Populations?

The importance of a well-defined population from
which the sample is drawn can hardly be over-
emphasized when one applies statistical hypothesis
testing. For example, in “Preliminary Guidelines for
Empirical Research in Software Engineering” [5] it is
claimed that: “If you cannot define the population from
which your subjects/objects are drawn, it is not possible
to draw any inference from the results of your
experiment”2. A well-defined population is essential,
because the statistical hypothesis testing methods are
based on generalization from a sample to the population
from which the sample was randomly drawn. When there
is no well-defined population, then the measures, e.g., the
p-values, do not have the intended probability-based
meanings. In addition, if there is no well-defined
population, it is impossible to design a procedure that

2 This claim should, as we understand it, not be interpreted outside the
context of statistical hypothesis testing. Obviously, even a study without
a well-defined population (but with a well-defined sample) may enable
the researcher to infer about similar projects, e.g., based on
argumentation by analogy or by theory.

ensures a random selection of subjects/objects. In other
words, statistical hypothesis testing is of little use if we
cannot define our population.

Unfortunately, empirical studies of software
engineering may seldom have well-defined populations. It
is not even clear what the elements of our population
should be! A typical software engineering study may
need to include the elements: Subjects (e.g., software
developers), problems to be solved (e.g., development
tasks), and, problem solving context (e.g., development
tools). The importance of including subjects, problems
and contexts means that we may have to define
populations that include all these three elements. While
this in principle may be possible, we have not seen a
single study that has managed this other than for very
narrow sub-populations, e.g., for the population of
developers within a specific company and a specific
development context. Now, some will argue, this is
mainly a matter of lack of statistical skill and immaturity
of our domain (we are a young research community
compared with many other communities). We believe that
this is only one reason for the problem. The main
problem, we believe, is that the variation and dynamics of
the software engineering domain are so large that the
definition of a population, that meet the requirements set
by statistical hypothesis testing, can be extremely
difficult, and maybe not worth the effort. We,
consequently, may have to apply other means than
statistical hypothesis testing to generalize from
experiments and other types of empirical software
engineering studies.

Some of the problems concerning well-defined
populations may be smaller in other domains with
frequent use of statistical hypothesis testing, e.g.,
agriculture, quality assurance of industrial manufacturing
processes, and, medicine. In these domains the problems
to be solved and the problem solving context may have
less variation and less impact on the effect of treatment
compared with software engineering (we admit, however,
not being experts in these fields). For example, in
medicine it may sometimes be meaningful to define the
population to be “the people in the world with disease X”.
For disease X there may be good reasons to believe that
the nationality, profession and intelligence of the patient
are of minor importance for the effect of a treatment. In
some cases it may therefore be meaningful to claim that a
random sample of patients from a particular hospital is a
good substitute for a random sample of the total
population of people with disease X. Similar
simplifications regarding sample and population may
frequently not be possible in software engineering
studies.

We do, however, not make the claim that other
disciplines have no problems with defining the
population. On the contrary, a review of clinical cancer

 3

studies in Norway [6] report that only 43 % of the studies
“presented inclusion and criteria which may give the
reader an idea of the population intended to be studied”.

The statisticians Fisher and Neyman developed
statistical hypothesis testing for agriculture (Fisher) and
quality control in manufacturing processes (Neyman), see
[4]. In other words, statistical hypothesis testing was in
the beginning not intended to be a universal tool for all
types of domains. According to [3, p. 226], Fisher meant
that “We have a large number of inductive techniques,
and we should consider practical situations carefully to
see which is appropriate”.

Medicine may have had a strong impact on how
software engineering researchers use statistical hypothesis
testing. An example supporting this claim, is that 7 out of
the 9 main sources used as input to the “Preliminary
guidelines for empirical research in software engineering”
[5], were from medicine. We have argued that there may
be important differences between medicine and software
engineering regarding the possibilities to have well-
defined populations from which we can draw random
samples. Maybe empirical software engineering has been
strongly impacted by the research practice in a discipline
where statistical hypothesis testing has been successful,
without being sufficiently aware of important differences
between the domains.

To illustrate the problems of population in empirical
software engineering, we further examined the 47
empirical studies in Journal of Empirical Software
Engineering that applied statistical hypothesis testing. We
found that only three of those studies did provide a well-
defined population and conducted a random sample from
that population3! This is not a satisfactory situation for
empirical software engineering.

All these three studies achieved a well-defined
population on the cost of narrowing the population quite a
lot, i.e., narrowing the population to software companies
within one country or to software companies of several
countries one particular year. These studies show,
nevertheless, that statistical hypothesis testing may be
meaningful in some software engineering contexts.

Interestingly, many of the studies we examined
described their sample reasonable well and were, when
discussing the results, concerned about how
representative their samples were, e.g., whether the task
to be solved was representative of a set of realistic
industrial tasks. There are similarities between
“representativeness” and “generalization to a larger
population by random sample”, but these concepts do

3 This evaluation may be to some extent subjective.
However, in most studies there was no description at all
of population or sampling process (only of the sample
itself), i.e., it is hard to see that other researchers would
reach substantially different evaluations.

nevertheless require different analysis methods and
argumentations. The need to discuss representativeness is
no surprise, given that the researchers knew that they had
no well-defined population, no random sample, and that
the sample was too narrow to be of much interest of itself.
In fact, we believe that representativeness-discussions
should be more emphasized, but also more related to
theory. We discuss this need for theories in more depth in
Section 4.

According to [5] and several text-books on statistical
hypothesis testing, e.g., [7] the lack of well-defined
populations and random samples means that no
generalization, based on statistical principles, to a larger
population is possible. In other words, although statistical
hypothesis testing is in frequent use in empirical software
engineering studies, basic assumptions for meaningful use
are met in only very few of these studies!

3. Biases Potentially Resulting From
Statistical Hypothesis Testing

There may be unwanted study design biases caused by
the frequent use of statistical hypothesis testing. In this
section we discuss the following two:
• Bias 1: Use of statistical hypothesis testing may

easily lead to formulation and testing of shallow,
non-connected, co-variation based hypotheses
instead of formulation and testing of cause-effect
theories. A potential reason for this is that traditional
(non-Bayesian) statistical hypothesis testing is
developed for situations with little understanding of
underlying processes and much data [3], i.e., it is not
designed for the purpose of integrating previous
knowledge in the statistical testing of hypothesis.

• Bias 2: Reliance on statistical hypothesis testing as
the main generalization technique may easily lead to
lack of focus on other types of generalization
techniques, i.e., techniques used to generalize across
populations. As described in Section 2, we observed
that many researchers try to generalize across
populations applying non-statistical techniques, e.g.,
argumentation based on representativeness. These
researchers seemed to lack method support for doing
this applying other techniques than informal
argumentation.

These biases are not necessary consequences of
statistical hypothesis testing, but we nevertheless believe
that the frequent use of statistical hypothesis testing has
contributed to them. This belief is mainly based on
personal experience from our own empirical software
engineering studies, e.g., how we had to change the
hypotheses to fit the statistical hypothesis testing
framework and the lack of stimuli to build theories.

 4

Similar observations, regarding shallow hypotheses in
code inspection studies, is described in [5].

The following example, based on several real
empirical software engineering studies, among them some
of our own, may illustrate the two biases described above:

Example: The overall goal of software cost estimation
research should be to improve cost estimation practice. It
is obvious from previous research, see for example [8],
that there no single best estimation method independent
of data set and context. This means that it is important to
know which cost estimation methods work in which
situations, i.e., we want a theory for selection of cost
estimation methods.

A frequently applied hypothesis testing-based design
of empirical studies with the goal of comparing
estimation methods is similar to this:

1. Decide which cost estimation methods to
compare, e.g., estimation methods A and B.

2. Decide on the hypotheses to test. Typically, a
hypothesis is of the type “The mean estimation
accuracy of A is better than that of B” or “There
are no difference in mean estimation accuracy
between A and B”. (Notice that on this stage we
have already rewritten the goal of the research,
i.e., instead of formulating research questions of
great relevance, such as when are A better than B,
we have adjusted our hypotheses to fit the usual
mean or median value comparison format of
statistical hypothesis testing.)

3. Collect a set of projects with known actual effort
and other important project variable values.
(Typically, this set of projects is far from
randomly drawn and the total population of
projects from which the sample is drawn is not
defined.)

4. Calibrate/tailor the estimation methods to the
project context based on a training set, i.e., a sub-
set of the data set collected in Step 3.

5. Compare the mean estimation accuracy of the
estimation methods on the evaluation set of
projects, i.e., the total set of projects subtracted
the learning set.

6. Apply a statistical test, e.g., a t-test, to find the p-
value potentially rejecting the hypothesis, i.e.,
calculate the probability that the sample value
would be as large as the value actually observed if
the hypothesis was true. (Notice that there
typically is no natural level of p-value that should
lead to rejection of the hypothesis. This value is,
in nearly all cases we have observed, arbitrarily
set. Historically, significance levels of 0.05 and
0.1 have been applied because the statistical
values related to them could be found in tables,
and applying other values would require time-
consuming calculations. Significance levels of

0.05 and 0.1 are nevertheless still in common use
when testing statistical hypotheses. In some
situations, e.g., situations where we have to
choose between two alternatives and have no
other information than the collected data, it is our
opinion that we should accept p-values much
higher than 0.1 sufficient to reject a hypothesis of
no difference between the two alternatives.)

Assume that we found that the observed data is highly
unlikely given the correctness of the hypothesis “The
mean estimation accuracy of A is better than B”, with a p-
value of 0.03. Based on this we therefore reject the
hypothesis.

What does this rejection of hypothesis and the p-value
mean? Are we able to apply the rejected hypothesis result
to some relevant population? Unfortunately, this is not the
case. The lack of a well-defined population from which
we randomly selected the projects means that we cannot
use statistical methods to generalize to relevant
populations, e.g., we cannot use the statistical hypothesis
testing as a means to generalize to future projects in other
companies. The lack of a definition of a larger population
means that we can only make statistical claims about the
sample we studied. To make claims about the studied
sample, however, we do not need sophisticated inference
techniques, such as the statistical t-test of difference in
mean values. We could simply look at the mean or
median accuracy values of A and B together with the
variance.

4. Are There Better Approaches?

As always, it is easier to see problems with existing
empirical studies than to devise better approaches. The
topic of design for empirical research is a very complex
topic with many practical and principal challenges. In
spite of this complexity, we will try to outline a general
approach for empirical studies on software engineering
where statistical hypothesis testing is only one out of
many techniques that may be used.

The approach we propose is based on the following
beliefs:
• Statistical hypothesis testing is mainly designed for

situations were we do not understand much about
what is happening, and, were we mainly are
interested in co-variation, i.e., it is a research method
mainly developed to see “if something work” rather
than “why something works”. A support of this belief
is provided in [3].

• Generalization across populations, e.g., to future
software projects and contexts, is what we typically
need in the domain of software engineering.

• Generalization from one software engineering study
context to other contexts, i.e., across populations,
happens only through theory. It is the interplay

 5

between theory and study design that determines our
ability to generalize, i.e., there is no best study design
independent of the aspect of theory we want to test or
improve.

• A theory based on cause-effect is in most cases a
better theory than a theory based on co-variation.
(Philosophically, one may argue that it is not
meaningful to talk about cause-effect relationships,
only different levels of co-variation. However, for
practical purposes most people may agree that there
is a meaningful difference and that we should strive
for cause-effect theories for better predictions and
understanding of behavior in other contexts than the
one examined in a particular software engineering
study.)

• There is nearly always some relevant knowledge
available from the previous software engineering
research or from research in other domains that
enables meaningful theories to be developed. There
are consequently few good excuses for conducting
purely exploratory studies and isolated studies
applying statistical hypothesis testing. Most studies
should start with a thorough review of relevant
knowledge. (The only good reason we can think of to
conduct more exploratory studies and isolated
hypothesis testing is for educational purposes, e.g.,
Ph.D. students learning how to conduct
experiments.)

• A theory should have a defined scope and try to
predict and understand behavior in relevant
situations.

• A theory should reflect best knowledge, i.e., even
relationships based on weak evidence may be
included if there are reasons to believe that the
relationship is more likely than other relationships.
The strength of the theory, or its components, should
be described. A weak theory may frequently be better
than no theory.

• Testing theories means to create predictions applying
the theory and then examine the validity of these
predictions through empirical studies. A theory that
escapes many falisification trials increases its
validity. Tests of theories may be conducted applying
experiments with non-random sampling,
observational studies applying statistical hypothesis
testing with randomly drawn samples, or, any other
meaningful study design. Falsification of a theory
may lead to modification of the theory or to stronger
belief in alternative theories.

Based on these beliefs we propose the following
general phases for empirical software engineering studies:
1. Collect and synthesize relevant studies: In our

experience, most software engineering studies are
based on few, if any, references to studies made
outside the software community. We believe,

however, that we should accept and take the
consequences of that software engineering is a multi-
disciplinary field with strong links to, e.g.,
psychology, social science, project management,
organizational theory, and, construction engineering.
The claim that we need more exploratory studies
before we establish theories are, we believe, very
much based on an ignorance of the usefulness of
results achieved in other, strongly related, disciplines.
Skills in “review” and “research synthesis” are
important to be able to this step properly. In our
opinion, there are much too few review papers in
software engineering trying to summarize relevant
research, including that from other disciplines.

2. Establish a theory: In many cases there are no
established theories relevant for answering important
software engineering research questions. In this case,
we should try to establish best knowledge
relationships based on all available studies in our
field and, not least, in related fields, as outlined in
Step 1. Without a much stronger focus on this theory-
development step, we probably will continue to
produce isolated, exploratory studies with limited
ability to aggregate knowledge.

3. Test and/or refine the theory: Empirical software
engineering studies should test and refine the theory.
The tests should be able to falsify relevant or
uncertain parts of the theory, or to improve the
theory. The tests may be based on statistical
hypothesis testing, but also on other testing
techniques. All good argumentations should be
accepted, not only those based on generalization
from sample to population.

4. When needed, change or replace the theory: If a test
falsifies the theory, we may have to change or
replace it.

There is nothing revolutionary with this approach, i.e.,
it is well within the framework of the hypothetical-
deductive method of science. These steps are not meant to
be “silver bullets” to better research results. As with
statistical hypothesis testing, there are many ways of
misusing the approach. Instead of a, in many ways,
mechanical process imposing rigid structures on the
researchers (statistical hypothesis testing), we now have a
process requiring maybe even more reflection and skill
regarding study design and argumentation. If there is no
good quality assurance of the studies and argumentations,
we may easily fall into the trap of the research method of
“anything goes”, i.e., all study designs and generalization
techniques are equally good. In addition, the building of
theories easily lead into “schools”, i.e., some research
communities believes in one theory (and do their best to
support it) and other communities in other theories (and
do their best to validate their theories).

 6

The following example of research study, which is
based on the same research question as in Section 2,
illustrates what the proposed theory-based research study
approach may mean in practice.

Example: As in Section 2, we want to know which cost
estimation methods that work in which situations, i.e., we
want a theory for selection of cost estimation methods.
We now start with the collection of relevant studies and
the development of a theory.

Assume that we want to compare expert estimation (A)
with linear regression based estimation models (B), i.e.,
we want to know when we can expect expert estimation
to provide more accurate estimates than do linear
regression based estimation models. In several domains,
particularly in psychology, there have been numerous
such studies, see [9] for an overview. Based on these
studies we formulate an element of a theory of selection
of estimation methods (only outlined here), e.g.:

T1: Expert estimates are on average more accurate
than linear regression-based estimates when the variance
in project types is low.

A good theory should, as stated earlier, preferably
include cause-effect relationship, and, have a well-
defined scope. T1, which is only an element of a theory,
is therefore not optimal (although it nevertheless may
represent the best knowledge about the relationship).

The wish for better understanding of the scope and
validity of T1 leads us to design an experiment. In this
experiment we try to distinguish between two different
types of project type variance, i.e., project type variance
which is a) included, and, b) not included in the training
set used to derive the regression models. We would
expect the expert estimators to be more flexible about
estimating the cost of new types of projects, i.e., projects
different from those in the learning set of projects. We
therefore propose that:

Expert estimators are on average better than linear
regression-based models in situations with high variance
of project types, i.e., in situations where there are new
types of projects to be estimated that are different from
the one in the regression models’ and experts’ learning
sets.

To test this proposal we conduct a series of experiment
where the experts and the linear models learn from the
same sets of project data and try to estimate the cost of
projects different from those in the learning set. Instead of
trying to sample from a large population of subjects,
models, projects and contexts, which probably would not
be practically possible, we now design a series of
experiments that test the proposed relationship in
different contexts with similarity to important industrial
contexts and with the purpose of understanding when
projects different from those in the learning set make
differences between how well “formulas” and “experts”
are performing.

Assume that we, amongst others, find evidence
suggesting that most experts were clearly better than most
linear regression models in predicting project costs when
the projects were unusual regarding productivity
(size/effort). (The scope of this finding should, of course,
be described, e.g., for what type of models and what type
of experts is this relationship valid). We now may choose
to replace/refine the theory T1 with T1-new:

T1-new: Expert estimates are on average more
accurate than linear regression-based estimates when the
variance in project types is low, or, when the variance is
high and the productivity of the projects is unusual
regarding productivity (size/effort).

Whether we chose to refine the theory or not, will in
this case not depend on an arbitrarily set significance
level with no link to results in previous studies. Instead
the change depends on our ability to provide a robust
argumentation, including use of results from other
studies, and maybe the resolving of previous
contradictory observations. Our main concern is now
whether T1-new reflects best knowledge better than T1 or
any alternative theory.

An interesting consequence of this approach is that the
discussions about use of artificial experiments vs. realistic
observational studies, and, student participants vs.
software professionals can be reduced to a question of fit
between the test of a theory and the chosen study design.
It may, for example, be that an implication from a theory
more easily can be tested using an artificial environment
and homogenous participants, i.e., pen-and-paper based
programming and computer science students. It is the
theory-related argumentation that counts, not the type of
study design. This said, we strongly believe that there is a
need for more realism in empirical software engineering
studies today. There are, regardless of type of
generalization argumentation, frequently difficult to
generalize from inexperienced students solving very small
programming tasks to relevant industrial programming
contexts.

5. Conclusions

This paper describes an attempt to formulate how we
should conduct empirical software engineering studies.
An important purpose of the paper is to get responses on
the meaningfulness and practicality of our suggestions.
What we suggest is, in short, that there is a need for more
focus on research questions derived from theory and
generalization across populations, as opposed to isolated
hypotheses and generalizations from sample to population
through statistical hypothesis testing. Our suggestions are,
amongst others, based on the observation that basic
assumptions of population and random sampling are
violated in many empirical software engineering studies,
and, that the focus on statistical hypothesis testing seems

 7

to hinder the aggregation of empirical knowledge. In
cases where statistical hypothesis testing is appropriate,
e.g., as means to test implications from a theory,
empirical software engineering studies should base the
tests on well-defined populations and randomly drawn
samples.

Acknowledgement: Thanks to Vigdis By Kampenes, Tore
Dybå, Erik Arisholm and other researchers at Simula
Research Laboratory for interesting discussions on the
topic of generalizations.

References

1. Gigerenzer, G., Adaptive thinking: Rationality in
the real world. 2000, Oxford: Oxford University
Press.

2. Hacking, I., The emergence of probability. 1975,
Cambridge: Cambridge University Press.

3. Hacking, I., An introduction to probability and
inductive logic. 2001, Cambridge: Cambridge
University Press.

4. Salsburg, D., The lady tasting tea: How statistics
revolutionized the twentieth century. 2001, New
York: First Owl.

5. Kitchenham, B., et al., Preliminary guidelines
for empirical research in software engineering.
IEEE Transactions on Engineering Management,
2002. 28(8): p. 721-734.

6. Skovlund, E., A critical review of papers from
clinical cancer research. Acta Oncologica, 1998.
37(4): p. 339-346.

7. Wonnacott, T.H. and R.J. Wonnacott,
Introductory Statistics. 1990, New York: John
Wiley & Sons.

8. Shepperd, M. and G. Kadoda, Comparing
software prediction techniques using simulation.
IEEE Transactions on Software Engineering,
2001. 27(11): p. 1014-1022.

9. Jørgensen, M., A Review of Studies on Expert
Estimation of Software Development Effort.
Journal of Systems and Software, 2004. 70(1-2):
p. 37-60.

