
Simula TR 2003-5 and Carleton TR SCE-03-18

1

Dynamic Coupling Measurement for Object-Oriented Software

Erik Arisholm1, Lionel C. Briand1,2 and Audun Føyen1

Abstract. The relationships between coupling and external quality factors of object-oriented

software have been studied extensively for the past few years. For example, several studies have

identified clear empirical relationships between class-level coupling and class fault-proneness. A

common way to define and measure coupling is through structural properties and static code

analysis. However, because of polymorphism, dynamic binding, and the common presence of

unused (“dead”) code in commercial software, the resulting coupling measures are imprecise as

they do not perfectly reflect the actual coupling taking place among classes at run-time. For

example, when using static analysis to measure coupling, it is difficult and sometimes impossible

to determine what actual methods can be invoked from a client class if those methods are

overridden in the subclasses of the server classes. Coupling measurement has traditionally been

performed using static code analysis, because most of the existing work was done on non-object

oriented code and because dynamic code analysis is more expensive and complex to perform. For

modern software systems, however, this focus on static analysis can be problematic, because

although dynamic binding existed before the advent of object-orientation, its usage has increased

significantly in the last decade.

This paper describes how coupling can be defined and precisely measured based on dynamic

analysis of systems. We refer to this type of coupling as dynamic coupling. An empirical

evaluation of the proposed dynamic coupling measures is reported in which we study the

1 Department of Software Engineering
Simula Research Laboratory

Lysaker, Norway
erika@simula.no; audunf@ifi.uio.no

2 Software Quality Engineering Laboratory
Computer and Systems Engineering

Carleton University, Ottawa, Canada
briand@sce.carleton.ca

Simula TR 2003-5 and Carleton TR SCE-03-18

2

relationship of these measures with the change proneness of classes. Data from maintenance

releases of a large Java system are used for this purpose. Preliminary results suggest that some

dynamic coupling measures are significant indicators of change proneness and that they

complement existing coupling measures based on static analysis.

1. Introduction

In the context of object-oriented systems, research related to quality models has focused mainly

on defining structural metrics (e.g., capturing class coupling) and investigating their relationships

with external quality attributes (e.g., class fault-proneness) [6]. The ultimate goal is to develop

predictive models that may be used to support decision making, e.g., decide which classes should

undergo more intensive verification and validation. Regardless of the structural attribute

considered, most metrics have been so far defined and collected based on a static analysis of the

design or code [6, 10, 12, 13, 16, 17]. They have, on a number of occasions, proven to be

accurate predictors of external quality attributes, such as fault-proneness [6], ripple effects after

changes [11, 14], and changeability [1, 14]. However, many of the systems that have been studied

showed little inheritance and, as a result, limited use of polymorphism and dynamic binding [19].

As the use of object-oriented design and programming matures in industry, we observe that

inheritance and polymorphism are used more frequently to improve internal reuse in a system and

facilitate maintenance. Though no formal survey exists on this matter, this is visible when

analyzing the increasing number of open source projects, application frameworks, and libraries.

The problem is that the static, coupling measures that represent the core indicators of most

reported quality models [6] lose precision as more intensive use of inheritance and dynamic

binding occurs. This is expected to result in poorer predictive accuracy of the quality models that

utilize static coupling measurement.

Simula TR 2003-5 and Carleton TR SCE-03-18

3

Let us take an example, as illustrated in Figure 1, to clarify the issue at hand. Due to

inheritance, the class of the object sending or receiving a message may be different from the class

implementing the corresponding method. For example, let object a be an instance of class A,

which is inherited from ancestor A'. Let A' implement the method mA'. Let object b be an

instance of class B, which is inherited from ancestor B'. Let B' implement the method mB'. If

object a sends the message mB' to object b, the message may have been sent from the method

source mA' implemented in class A' and processed by a method target mB' implemented in

class B'. Thus, in this example, message passing caused two types of coupling: (1) object-level

coupling between class A and class B (i.e., coupling between instances of A and B), and (2)

class-level coupling between class A' and B'. The code may very well show statements where

an object of type A invokes from mA' method mB' on an object of type B. However, to assume,

through static code analysis, that there is class-level coupling between A and B as a result, is

simply inaccurate. Both types of coupling, at the class and object levels, need to be captured

accurately to address certain applications and must be investigated.

a : A b : B

1: mB'()

+mA'()

A'

+mB'()

B'

A B

object-level coupling

class-level coupling

Sequence and Class Diagrams

Figure 1 Class-level versus Object-level coupling

Simula TR 2003-5 and Carleton TR SCE-03-18

4

We propose a set of coupling measures (referred to as dynamic coupling measures) that is

defined on an analysis of run-time object interactions. They can be collected through a dynamic

analysis of the code, that is, by executing the code and saving information regarding the messages

that are being sent among objects at run-time. It is also, a priori, conceivable that dynamic design

models (e.g., interaction diagrams in the Unified Modeling Language (UML) [4]) could be used

to collect such measures.

Existing evidence suggests that dynamic coupling could be of strong interest. A preliminary

empirical study on a SmallTalk system suggests that there is a significant relationship between

change proneness and dynamic coupling [2]. Furthermore, according to the results of a controlled

experiment [3], static coupling measures may sometimes be inadequate when attempting to

explain differences in changeability (e.g., change effort) for object-oriented designs. A follow-up

study indicates that the actual flow of messages taking place between objects at run-time is often

traced systematically by professional developers when attempting to understand object-oriented

software [5]. The results thus suggest that dynamic coupling measures could be of interest as

predictors of the cognitive complexity of object-oriented software. Finally, dynamic coupling is

more precise than static coupling for systems with dead (unused) code, which is uninteresting in

most situations and can seriously bias analysis.

This paper has two main objectives. First, it formally defines a set of dynamic coupling

measures. Some of them can be measured in the context of object-oriented designs whereas

others require the dynamic analysis of code. Second, it validates the measures in two distinct

ways: (1) Their mathematical properties are systematically analyzed, and (2) The statistical and

practical significance of using dynamic coupling measures is empirically assessed in the context

of models predicting the change proneness of Java components.

Simula TR 2003-5 and Carleton TR SCE-03-18

5

The remainder of this paper is organized as follows. Section 2 describes 12 dynamic coupling

measures and highlights the ways in which they differ from static measures. These dynamic

coupling measures differ in terms of the entities they measure and their scope and granularity,

and are classified accordingly. They are defined in an informal, intuitive manner but also using a

formal framework based on set theory and first-order logic. The main reason for the latter is to

ensure that the definitions are precise and unambiguous to allow precise discussions of the

measurement properties and the replication of empirical studies. Section 3 describes how the

dynamic coupling measures can be collected. Section 4 presents a case study as a first empirical

evaluation of the proposed dynamic coupling measures. Section 5 describes related research.

Section 6 concludes and outlines future research.

2. Dynamic Coupling Measurement

We first distinguish different types of dynamic coupling measures. Then, based on this

classification, we provide both informal and formal definitions, using a working example to

illustrate the fundamental principles. Using a published axiomatic framework [10], we then

discuss the mathematical properties of the measures we propose. Our measures were designed to

fulfill five properties that we deem very important for any coupling measure to be well formed. In

order to define measures in a way that is programming language independent, we refer to a

generic data model defined with a UML class diagram.

2.1. Classifying Coupling Measures

There are different ways to define dynamic coupling, all of which can be justified, depending on

the application context where such measures are to be used. Three decision criteria are used to

define and classify dynamic coupling measures.

Simula TR 2003-5 and Carleton TR SCE-03-18

6

1. Entity of measurement

Since dynamic coupling is based on dynamic code analysis, coupling may be measured for a

class or one of its instances. The entity of measurement may therefore be a class or an object.

2. Granularity

Orthogonal to the entity of measurement, dynamic coupling measurement can be aggregated at

different levels of granularity. With respect to dynamic object coupling, measurement can be

performed at the object level, but can also be aggregated at the class level, i.e., the dynamic

coupling of all instances of a class is aggregated. In practice, even when measuring object

coupling, the lowest level of granularity is likely to be the class, as it is difficult to imagine how

the coupling measurement of objects could be used. Alternatively, all the dynamic coupling of

objects involved in an execution scenario can be aggregated. We can also measure the dynamic

object coupling in entire use cases (i.e., sets of scenarios), sets of use cases, or even an entire

system (all objects of all use cases). In the case where the entity of measurement is a class, the

aggregation scale is different as we can aggregate dynamic class coupling across an inheritance

hierarchy, a subsystem, a set of subsystems, or an entire system. The relationships between

various levels of granularity are formally described in Section 2.2.

3. Scope

Another important source of variation in the way we can measure dynamic coupling is the scope

of measurement. This determines which objects or classes, depending on the entity of

measurement, are to be accounted for when measuring dynamic coupling. For example, we may

want, depending on the application context, to exclude library and framework classes.

Simula TR 2003-5 and Carleton TR SCE-03-18

7

At the object level, we may want to exclude certain use cases modeling exceptional situations

(e.g., error conditions, usually modeled as extended use cases [4]) or objects that are instances of

library or framework classes. At the very least, we may want to distinguish the different types of

coupling taking place in these different categories.

The choices we make regarding the entity, granularity, and scope of measurement depend on

how we intend to apply dynamic coupling. Such choices form a classification of dynamic

coupling measures that is summarized in Table 1.

2.2. Definitions

Before defining dynamic coupling measures, we introduce below the formal framework that will

allow us to provide precise and unambiguous definitions. Not only do such definitions ensure that

the reader understands the measures precisely, but they are also easily amenable to the analysis of

their properties and facilitate the development of a dynamic analyzer by providing precise

specifications. We provide a set of generic definitions that are based on the data model in Figure

2, which models the type of information to be collected. Each class and association in the class

diagram corresponds to a set and a mathematical relation, respectively. The inheritance

relationship corresponds to a set partition. Based on this, we define the measures using set theory

and first order logic.

Table 1 Dynamic Coupling Classification

Entity Granularity
(Aggregation Level)

Scope
(Include/Exclude)

Object Object
Class

(set of) Scenario(s)
(set of) Use case(s)

System

Library objects
Framework objects

Exceptional use cases

Class Class
Inheritance Hierarchy
(set of) Subsystem(s)

System

Library classes
Framework classes

Simula TR 2003-5 and Carleton TR SCE-03-18

8

A few details of the class diagram in Figure 2 need to be discussed. Most role names are not

shown, to avoid unnecessary cluttering of the class diagram. When no role name is provided, the

meaning of associations is quite clear from the source and target classes. For example, methods

are defined in a class, method invocations consist of a caller method in a source class and a callee

method in a target class. Some of the key attributes are shown. One notable detail is that the line

number where the target method is invoked is an attribute of a message that serves to uniquely

identify it, as specified by the OCL1 constraint shown in the class diagram. This is necessary,

because the same target method may be invoked in different statements and control flow paths in

the same source method. Messages bearing those different invocations are considered distinct,

because they are considered to provide different contexts of invocation for the method.

Furthermore, associations with role names caller, source and sender should show an

{exclusive or} constraint dependency to associations with role names callee, target, and

1 The Object Constraint Language (OCL) [32] is mostly used to specify constraints on class diagrams, operation pre/post
conditions, and class invariants.

-name

Attribute

-name

Class

-id

Object

-name

Method

-loc

Message

MethInvocation

-type
-name

Parameter

InputParam

OutputParam

In/OutParam

*

1..*

1 *

1..*

1..*

1..*

*

-target1 1..*

*

-Descendent
*

-source1 1..*

Message.allInstances
->forAll(me1, me2 | me1.target = me2.target

 and me1.source=me2.source
 implies me1.loc <> me2.loc)

{ordered}

1..*

-caller 1

1..*

-callee 1

1..*

-source 1

1..*

-target 1

1..*

-sender

1

1..*

-receiver

1

Figure 2 Class Diagram Capturing a Data Model of the Dynamic Analysis

Simula TR 2003-5 and Carleton TR SCE-03-18

9

receiver, respectively. These constraints are not shown to avoid cluttering the diagram but are

important as in our context, distinct methods, classes and objects must be involved in the links

corresponding to those associations. In other words, in the context of our coupling measurement,

method invocations are linked to two distinct class instances and two distinct method instances

and messages involve two distinct objects. As expected, method invocations between classes are

differentiated from messages between objects. A method name and signature uniquely identifies a

method in the context of a specific class and a method invocation must be clearly linked to a

method. This is why MethInvocation has associations with both Class and Method.

Sets

The first step is to define the basic sets on which to build our definitions. These sets are derived

from the data model in Figure 2.

• C: Set of classes in the system. C can be partitioned into the subsets of application classes

(AC), library classes (LC), and framework classes (FC). Some of these subsets may be empty,

C=AC ∪ LC ∪ FC and AC ∩ LC ∩ FC = ∅. Distinguishing such subsets may be important

for defining the scope of measurement, as discussed above.

• O: Set of objects instantiated by the system while executing all scenarios of all use cases

(including exceptional use cases, e.g., treating error conditions, which are usually modeled as

use cases extending base use cases).

• M: Set of methods in the system (as identified by their signature).

• Lines of code are defined on the set of natural numbers (N)

Simula TR 2003-5 and Carleton TR SCE-03-18

10

Relations

We now introduce mathematical relations on the sets that are fundamental to the definitions of

our measures.

• D and A are relations onto C (⊆ C×C). D is the set of descendent classes of a class and A is

the set of ancestors of a class.

• ME is the set of possible messages in the system: ME ⊆ O×M×N×O×M. Indicated by the

domain of ME, a message is described by a source object and method sending the message, a

line of code (N), and a target object and method. Note that the sending of a message may not

only correspond to a method invocation, but also to the sending of a signal [4]. The message

is then asynchronous and on receipt of the signal, the target object triggers the execution of

the target method. In Java, an active object (with its own thread of control) would typically

have a run() method reading from a queue of signal objects and invoke the appropriate

method after reading the next signal in the queue.

• IV is the set of possible method invocations in the system: IV ⊆ M×C×M×C. An invocation

is characterized by the invoking class and method and the class and method being invoked.

• Other binary relations will be used in the text and their semantics can be easily derived from

their domain and are denoted RDomain. For example, RMC ⊆ M×C refers to methods being

defined in classes, a binary relation from the set of methods to the set of classes.

Consistency Rule

The relations IV and ME play a fundamental role in all our measures. In practice, an analysis of

sequence diagrams or a dynamic analysis of the code allows us to construct ME. From that

information, IV must be derived, but this is not trivial as polymorphism and dynamic binding

Simula TR 2003-5 and Carleton TR SCE-03-18

11

tend to complicate the mapping. The consistency rule below specifies the dependencies between

the two relations and can be used to develop algorithms that derive IV from ME.

(∃ (o1, c1), (o2, c2) ∈ ROC) (∃ l ∈ N) (o1, m1, l, o2, m2) ∈ ME ⇒

(∃ c3 ∈ A(c1) ∪ { c1}, c4 ∈ A(c2) ∪ { c2})

((m1, c3) ∈ RMC ∧ ((∀c5 ∈ A(c1) - {c3}) (m1, c5) ∈ RMC ⇒ c5 ∈ A(c3))) ∧

((m2, c4) ∈ RMC) ∧ ((∀c6 ∈ A(c2) - {c4}) (m2, c6) ∈ RMC ⇒ c6 ∈ A(c4))) ∧

(m1, c3, m2, c4) ∈ IV

Working Example

We now use a small working example, as shown in Figure 3, to illustrate the definitions above.

Though it is assumed that our measures are collected through static and dynamic analysis of

code, we use UML to describe a fictitious example, because it is more legible than pseudocode.

This example is designed to illustrate the subtleties arising from polymorphism and dynamic

binding. Other aspects, such as method signatures, have been intentionally kept simple to focus

on polymorphism and dynamic binding.

+m3()

c3
+m1()

c1

c4

+m2()

c2

c5

Figure 3 Working Class Diagram Example (UML notation)

Simula TR 2003-5 and Carleton TR SCE-03-18

12

The following sets can be derived from Figure 3:

C = {c1, c2, c3, c4, c5}

M = {m1, m2, m3}

RMC = {(m1, c1), (m2, c2), (m3, c3)}

In order to derive other relevant sets and relations, let us introduce the sequence diagrams in

Figure 4, where each message is numbered. As our fictitious example is represented with UML

diagrams, objects are referred to by using the sequence diagram number where they appear and

their own identification number (i.e., SD
i
:object id). Similarly, we denote the line of code of

the method invocation in message tuples as l(SDi:message id). In the example, we assume

that the line of code of the method invocations m3() in messages SD1:1.1, SD1:1.2 and

SD1:1.3 are different. Furthermore, since the sequence diagrams do not specify the sender

object, source class and source method of the method invocations m1()in messages SD
1
:1 and

SD
2
:1, the example sets derived below account for only the four (completely specified) messages

SD
1
:1.1, SD

1
:1.2, SD

1
:1.3 and SD

2
:1.1:

SD1

1.1: m3()

2 : c4

1: m1()

1 : c1

1.3: m3()

1.2: m3()

3 : c5

1.1: m2()

2 : c2

1: m1()

1 : c1

SD2

Figure 4 Two hypothetical sequence diagrams related to Figure 3

Simula TR 2003-5 and Carleton TR SCE-03-18

13

O = {SD1:1, SD1:2, SD1:3, SD2:1, SD2:2}

ROC = {(SD1:1, c1), (SD1:2, c4), (SD1:3, c5), (SD2:1, c1), (SD2:2, c2)}

ME = {(SD1:1, m1, l(SD1:1.1), SD1:2, m3), (SD1:1, m1, l(SD1:1.2), SD1:3, m3),

(SD1:1, m1, l(SD1:1.3), SD1:3, m3), (SD2:1, m1, l(SD2:1.1), SD2:2, m2)}

IV = {(m1, c1, m3, c3), (m1, c1, m2, c2)}

Definitions of Measures

The measures are all defined as cardinalities of specific sets. They are therefore defined on an

absolute scale and are amenable, as far as measurement theory is concerned, to the type of

regression analysis performed in Section 4. Those sets are defined below and are given self-

explanatory names, following the notation summarized in Table 2. First, as mentioned above, we

differentiate the cases where the entity of measurement is the object or the class. Second, as in

previous static coupling frameworks [10], we differentiate import from export coupling, that is

the direction of coupling for a class or object. For example, we differentiate whether a method

executed on an object calls (imports) or is called by (exports) another object’s method.

Furthermore, orthogonal to the entity of measurement and direction of coupling considered, there

are at least three different ways in which the strength of coupling can be measured. First, we

provide definitions for import and export coupling when the entity of measurement is the object

and the granularity level is the class. Phrases outside and between parentheses capture the

situations for import and export coupling, respectively.

• Dynamic messages. Within a run-time session, it is possible to count the total number of

distinct messages sent from (received by) one object to (from) other objects, within the scope

considered. That information is then aggregated for all the objects of each class. Two

Simula TR 2003-5 and Carleton TR SCE-03-18

14

messages are considered to be the same if their source and target classes, the method invoked

in the target class, and the statement from which it is invoked in the source class are the same.

The latter condition reflects the fact that a different context of invocation is considered to

imply a different message. In a UML sequence diagram, this would be represented as distinct

messages with identical method invocations but different guard conditions.

• Distinct method invocations. A simpler alternative is to count the number of distinct methods

invoked by each method in each object (that invoke methods in each object). Note that this is

different from simply counting method invocations as we count each distinct method only

once. That information is then aggregated for all the objects of each class.

• Distinct classes. It is also possible to count only the number of distinct server (client) classes

that a method in a given object uses (is used by). That information is then aggregated for all

the objects of each class.

If we now look at where the calling and called methods are defined and implemented, the entity

of measurement is the class and we can provide similar definitions. We then count the number of

distinct messages originating from (triggering the executions of) methods in the class, the number

of distinct methods invoked by (that invoke) the class methods, and the number of distinct classes

from which the class is using methods (that uses its methods).

Table 2 shows the formal set definitions of the measures when the granularity is the class, and

the scope is the system. We provide an intuitive textual explanation only for the first set:

IC_OM(c). Other sets can be interpreted in a similar manner.

IC_OM(c): A set containing all tuples (source method, source class, target method, target class)

such that there exists an object o instantiating c (whose coupling is being measured) that

sends a message to at least one instance of the target class in order to trigger the execution

Simula TR 2003-5 and Carleton TR SCE-03-18

15

of the target method. The corresponding metric is simply the cardinality of this set. Note

that the source class must be different from the target class (c1 ≠ c2), because we are

focusing on dependencies that contribute to coupling between classes, not their cohesion

(as further discussed in [9, 10]). Reflexive method invocations are therefore excluded.

Table 2 Summary of Dynamic Coupling Measures (granularity=class, scope=system)
Direction Entity of

Measurement
Strength Set Definition

Dynamic
messages

IC_OD(c1) = {(m1, c1, l, m2, c2) | (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)
 c1 ≠ c2 ∧ (o1, m1, l, o2, m2) ∈ ME}

Distinct
Methods

IC_OM(c1) = {(m1, c1, m2, c2) | (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)
 c1 ≠ c2 ∧ (o1, m1 , l, o2, m2) ∈ ME}

Object

Distinct
Classes

IC_OC(c1) = {(m1, c1, c2) | (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)
 c1 ≠ c2 ∧ (o1, m1, l, o2, m2) ∈ ME}

Dynamic
messages

IC_CD(c1) = {(m1, c1, l, m2, c2) | (∃ (o3, c3), (o4, c4) ∈ ROC) (∃ l ∈ N)
 c1 ≠ c2 ∧ (o3, m1, l, o4, m2) ∈ ME ∧

 (∃ c1 ∈ A(c3) ∪ {c3}, c2 ∈ A(c4) ∪ {c4})
 ((m1, c1) ∈ RMC ∧ ((∀c5 ∈ A(c1) - {c1}) (m1, c5) ∈ RMC ⇒
 c5 ∈ A(c1))) ∧ ((m2, c2) ∈ RMC) ∧ ((∀c6 ∈ A(c4) - {c2})
 (m2, c6) ∈ RMC ⇒ c6 ∈ A(c2))) ∧(m1, c1, m2, c2) ∈ IV}

Distinct
Methods

IC_CM(c1) = {(m1, c1, m2, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC)
 c1 ≠ c2 ∧ (m1, c1, m2, c2) ∈ IV}

Import
Coupling

Class

Distinct
Classes

IC_CC(c1) = {(m1, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC)
 c1 ≠ c2 ∧ (m1, c1, m2, c2) ∈ IV}

Dynamic
messages

EC_OD(c1) = {(m2, c2, l, m1, c1)| (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)
 c1 ≠ c2 ∧ (o2, m2, l, o1, m1) ∈ ME}

Distinct
Methods

EC_OM(c1) = {(m2, c2, m1, c1) | (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)
 c1 ≠ c2 ∧ (o2, m2, l, o1, m1) ∈ ME}

Object

Distinct
Classes

EC_OC(c1) = {(m2, c2, c1) (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)
 c1 ≠ c2 ∧ (o2, m2, l, o1, m1) ∈ ME}

Dynamic
messages

EC_CD(c1) = {(m2, c2, l, m, c) | (∃ (o3, c3), (o4, c4) ∈ ROC) (∃ l ∈ N)
 c1 ≠ c2 ∧ (o4, m2, l, o3, m1) ∈ ME ∧

 (∃ c1 ∈ A(c3) ∪ {c3}, c2 ∈ A(c4) ∪ {c4})
 ((m1, c1) ∈ RMC ∧ ((∀c5 ∈ A(c3) - {c}) (m1, c5) ∈ RMC ⇒
 c5 ∈ A(c1))) ∧
 ((m2, c2) ∈ RMC) ∧ ((∀c6 ∈ A(c4) - {c2}) (m2, c6) ∈ RMC ⇒
 c6 ∈ A(c2))) ∧

 (m2, c2, m1, c1) ∈ IV}
Distinct
Methods

EC_CM(c1) = {(m2, c2, m1, c1) | (∃ (m1, c1), (m2, c2) ∈ RMC)
 c1 ≠ c2 ∧ (m2, c2, m1, c1) ∈ IV}

Export
Coupling

Class

Distinct
Classes

EC_CC(c1) = {(m2, c2, c1) | (∃ (m1, c1), (m2, c2) ∈ RMC)
 c1 ≠ c2 ∧ (m2, c2, m1, c1) ∈ IV}

Simula TR 2003-5 and Carleton TR SCE-03-18

16

Higher Granularities

If we want to measure dynamic coupling at higher levels of granularity, this can be easily defined

by performing the union of the coupling sets of a set of classes or objects, depending on the entity

of measurement. For example, if the entity of measurement is the class and the level of

granularity is the subsystem, then for each subsystem SS there corresponds a subset of classes

that it contains, SC ∈ 2C, and we can define:

IC_CM(SS) = ∪ (all c ∈ SC) IC_CM(c)

Similarly, when the entity of measurement is the object: For each use case UC there

corresponds a set of participating objects SO∈2O (that are involved in the UC’s sequence

diagram(s)), and we can define:

IC_CM(UC) = ∪ (all o ∈ SO) IC_CM(o)

Similar definitions can be provided for all levels of granularity.

Example

Returning to our working example in Figure 3 and Figure 4, we provide below all the non-empty

coupling sets. When the entity of measurement as well as the granularity is the class, we obtain

the following import and export coupling sets:

IC_CD(c1) {(m1,c1,l(SD1:1.1),m3,c3),(m1,c1,l(SD1:1.2),m3,c3),(m1,c1,l(SD1:1.3),m3,c3),(m1,c1,l(SD2:1.1),m2,c2)}
IC_CM(c1) {(m1,c1,m3,c3), (m1,c1,m2,c2)}
IC_CC(c1) {(m1,c1,c3), (m1,c1,c2)}
EC_CD(c2) {(m1,c1,l(SD2:1.1),m2,c2)}
EC_CM(c2) {(m1,c1,m2,c2)}
EC_CC(c2) {(m1,c1,c2)}
EC_CD(c3) {(m1,c1,l(SD1:1.1),m3,c3), (m1,c1,l(SD1:1.2),m3,c3), (m1,c1,l(SD1:1.3),m3,c3)}
EC_CM(c3) {(m1,c1,m3,c3)}
EC_CC(c3) {(m1,c1,c3)}

When the entity of measurement is the object, and the granularity is the class, we obtain the

coupling sets below:

Simula TR 2003-5 and Carleton TR SCE-03-18

17

IC_OD(c1) {(m1,c1,l(SD1:1.1),m3,c4),(m1,c1,l(SD1:1.2),m3,c5),(m1,c1,l(SD1:1.3),m3,c5),(m1,c1,l(SD2:1.1),m2,c2)}
IC_OM(c1) {(m1,c1,m3,c4), (m1,c1,m3,c5), (m1,c1,m2,c2)}
IC_OC(c1) {(m1,c1,c4), (m1,c1,c5), (m1,c1,c2)}
EC_OD(c2) {(m1,c1,l(SD2:1.1),m2,c2)}
EC_OM(c2) {(m1,c1,m2,c2)}
EC_OC(c2) {(m1,c1,c2)}
EC_OD(c4) {(m1,c1,l(SD1:1.1),m3,c4)}
EC_OM(c4) {(m1,c1,m3,c4)}
EC_OC(c4) {(m1,c1,c4)}
EC_OD(c5) {(m1,c1,l(SD1:1.2),m3,c5), (m1,c1,l(SD1:1.3),m3,c5)}
EC_OM(c5) {(m1,c1,m3,c5)}
EC_OC(c5) {(m1,c1,c5)}

The export coupling sets for c1 as well as the import coupling sets for c2, c3, c4 and c5 are

empty.

To gain a better insight into the impact of polymorphism on coupling, let us change the class

diagram in Figure 3 by adding a new implementation of method m3() in c5: RMC = {(m1, c1),

(m3,c3), (m3, c5), (m2, c2)}, while keeping the sequence diagrams in Figure 4 unchanged. This

results in a new element in IV: IV = {(m1, c1, m3, c3), (m1, c1, m3, c5), (m1, c1, m2, c2)}. The

other sets (C, M, O, ROC and ME) remain unchanged. When the entity of measurement is the

class, the new method implementation results in significantly changed import coupling sets for

class c1 (removed elements are struck through, whereas new elements are bolded):

IC_CD(c1) {(m1,c1,l(SD1:1.1),m3,c3), (m1,c1,l(SD1:1.2),m3,c3),(m1,c1,l(SD1:1.3),m3,c3),
(m1,c1,l(SD1:1.2),m3,c5), (m1,c1,l(SD1:1.3),m3,c5), (m1,c1, l(SD2:1.1),m2,c2)}

IC_CM(c1) {(m1,c1,m3,c3), (m1,c1,m3,c5), (m1,c1,m2,c2)}
IC_CC(c1) {(m1,c1,c3), (m1,c1,c5), (m1,c1,c2)}

Adding a new implementation of an existing method in a subclass has resulted in increased

import coupling for class c1. This is because class c1 now imports from one additional class

(c5), one additional method (m3() in c5), and one additional distinct method invocation.

However, object import coupling (IC_Ox(c)) remains unchanged, as at the object level, instances

of c1 were already importing from c5.

Simula TR 2003-5 and Carleton TR SCE-03-18

18

In a similar way, the export coupling of class c3 has decreased and the export coupling of

class c5 has increased:

EC_CD(c2) {(m1,c1,l(SD2:1.1), m2,c2)}
EC_CM(c2) {(m1,c1,m2,c2)}
EC_CC(c2) {(m1,c1,c2)}
EC_CD(c3) {(m1,c1,l(SD1:1.1), m3,c3), (m1,c1,l(SD1:1.2), m3,c3), (m1,c1,l(SD1:1.3),m3,c3)}
EC_CM(c3) {(m1,c1,m3,c3)}
EC_CC(c3) {(m1,c1,c3)}
EC_CD(c5) {(m1,c1,l(SD1:1.2),m3,c5), (m1,c1,l(SD1:1.3),m3,c5)}
EC_CM(c5) {(m1,c1,m3,c5)}
EC_CC(c5) {(m1,c1,c5)}

2.3. Analysis of Properties

We show here that the five coupling properties presented in [10] are valid for our dynamic

coupling measures. The motivation is to perform an initial theoretical validation by

demonstrating that our measures have intuitive properties that can be justified. We use IC_OM

and IC_CM at the lowest granularity level (object, class) and system level as examples, but the

demonstrations2 below can be performed in a similar way for all coupling measures, at all levels

of granularity.

Non-negativity

It is not possible for the dynamic coupling measures to be negative because they measure the

cardinality of sets, e.g., IC_OM returns a set of tuples (m, c, m', c') ∈ M×C×M×C.

Null values

At the system level, if S is the set that includes all the objects that participate in all the use cases

of the system, IC_OM(S) is empty (and coupling equal to 0) if and only if the set of messages in S

is empty:

2 These demonstrations are admittedly rather informal. We adopted a level of formality that we deemed sufficient to convince the
reader these properties did indeed hold, without making the discussion unnecessarily terse.

Simula TR 2003-5 and Carleton TR SCE-03-18

19

ME = ∅ ⇔ IC_OM(S) = ∅

This is consistent with our intuition as this should be the only case where we get a null coupling

value. Since ME = ∅ ⇔ IV = ∅ (consistency rule), we also have:

ME = ∅ ⇔ IC_CM(S) = ∅

At the object level, for IC_OM(o), we have:

(∀ o ∈ O, m ∈ M, l ∈ N, o' ∈ O, m’ ∈ M) (o, m , l, o', m') ∉ ME ⇔ IC_OM(o) = ∅

Again, this is intuitive, as we should only obtain a null value if and only if object o does not

participate in any message as sender or receiver. Similarly, at the class level, we obtain:

(∀ o∈O, c∈C, (o,c) ∈ Roc) IC_OM(o) = ∅ ⇔ IC_CM(c) = ∅ (consistency rule)

Monotonicity

If a class c is modified such that at least one instance o sends/receives more messages, its

import/export coupling can only increase or stay the same, for any of the coupling measures

defined above.

If object o∈O sends an additional message (o, m , l, o', m') ∈ ME, this cannot reduce the

number of pairs (method, class) ∈ RMC that are part of the sets IC_OM(o) or IC_OM(S). The

same can be said for export coupling if object o∈O receives an additional message.

Adding a message to ME may or may not lead to a new method invocation in IV. But even if

this is the case, the sets IC_CM(c) and IC_CM(S) cannot possibly lose any elements.

Similar arguments can be provided for all coupling measures, at all levels of granularity. To

conclude, by adding messages and method invocations in a system, object and class coupling

measures cannot decrease, respectively, thus complying with the monotonicity property.

Simula TR 2003-5 and Carleton TR SCE-03-18

20

Impact of merging classes

Assuming c' is the result of merging c1 and c2, thus transforming system S into S', for any

Coupling measure, we want the following properties to hold at the class and system levels:

Coupling(c1) + Coupling(c2) ≥ Coupling(c')

Coupling(S) ≥ Coupling(S')

Taking IC_CD as an example, we can easily show this property holds: All instances of c1 and

c2 in IV’s tuples are substituted with c'. If there exist tuples of the type (m1, c1, m2, c2) in IV, then

they are transformed into tuples of the form (m1, c', m2, c'). For IC_Cx measures, since we

exclude reflexive method invocations because they do not contribute to coupling (Section 2.2),

then tuples of the form (m1, c', m2, c') disappear because of the merging. Hence:

|IC_CD(c')| ≤ |IC_CD(c1)| + |IC_CD(c2)|

Similar arguments can be made for all other coupling measures.

Merging uncoupled classes

Following reasoning similar to that above, if two classes c1, c2 do not have any coupling, this

means there is no tuple of the type (m1, c1, m2, c2) in IV. If we merge them into one class, we

therefore cannot obtain tuples of the type (m1, c', m2, c'). Then, we can conclude IC_CD fulfills

the following property:

|IC_CD(c')| = |IC_CD(c1)| + |IC_CD(c2)|

This property also holds for all other coupling measures.

Simula TR 2003-5 and Carleton TR SCE-03-18

21

Symmetry between export and import coupling

By symmetry, for all class level dynamic coupling measures, we infer that the following property

holds:

∪(all c ∈ C) EC_Cx(c) = ∪(all c ∈ C) IC_Cx(c)

This stems from the fact that for any (m, c, m', c') ∈ IV, there is always a l∈N such that

(m, c, l, m', c') ∈ EC_CD(c') and (m, c, l, m', c') ∈ IC_CD(c). Along the same lines, for each (m,

c, m', c') ∈ IC_CM(c) and (m,c,c') ∈ IC_CC(c), there is a corresponding (m, c, m', c') ∈

EC_CM(c') and (m, c, c') ∈ EC_CC(c'), respectively.

Following a similar argument when the entity of measurement is the object, we obtain:

∪(all o ∈ O) EC_Ox (o) = ∪(all o ∈ O) IC_Ox(o)

The symmetry property is intuitive, because anything imported by a class or object has to be

exported by another class or object, respectively. This condition applies at all levels of

granularity.

Based on the property analysis above, we can see that our coupling measures seem to exhibit

intuitive properties that would be expected when measuring coupling. This constitutes a

theoretical validation of the measures. Section 4 focuses on their empirical validation, using

project data.

3. Collecting Dynamic Coupling Data

It is crucial to collect dynamic coupling data in a practical and efficient manner. This section

describes two alternative approaches. The first is based on collecting the coupling data from

executing programs, whereas the second calculates the measures based on dynamic UML models.

Simula TR 2003-5 and Carleton TR SCE-03-18

22

3.1. Tool for Collecting Dynamic Coupling Measures at Run-Time

To collect dynamic coupling data from Java applications, we developed a tool: JDissect. An

overview of the architecture is depicted in Figure 5. The tool separates the collection and analysis

of dynamic coupling data into two phases. In the first phase, data from a running Java program is

gathered and stored. This is accomplished by having the Java Virtual Machine (JVM) load a

library of data collection routines (libjdissect.so) that are called whenever specified

internal events occur. The interfaces used for communication between the JVM and the library

are called JVMPI (Java VM Profiling Interface) and JVMDI (Java VM Debugging Interface).

Most of the data is collected from the profiling interface. The JVMDI is used to obtain the unique

line number from which a method call originates (to obtain the information needed to calculate

the xx_xD measures). During the data collection phase, a user may interactively tag messages

belonging to specific scenarios or use cases through a separate utility (Scalpel) that

communicates with libjdissect.so through a socket connection. These tags can

subsequently be used to limit the scope of measurement (e.g., to specific use cases) and,

potentially, to compute measures at higher levels of granularity than the class (e.g., at the use

case aggregation level). During the data collection process, the library populates a data structure

as specified in Figure 2. When the application terminates, the data is stored in a flat file structure

(Data).

Data
Java

Application Java VM
JVMPI

JVMDI
libjdissect.so

Scalpel

MCalc

Filter.conf

Figure 5 Architecture of the JDissect tool

Simula TR 2003-5 and Carleton TR SCE-03-18

23

In the second phase, the data is analyzed. Another executable (MCalc), sharing a great deal of

code with the library, reads the flat files into a data structure identical to that used by the library.

This structure is analyzed to obtain the dynamic coupling measures. The analysis tool traverses

the data structure in Figure 2 and computes the sets specified in Table 2. A configuration file

(Filter.conf) can be used to limit the scope of measurement, e.g., excluding library or

framework classes. Each measure is then computed simply by counting the number of elements

in each set. Data from several run-time sessions can be merged by the analysis tool, such that

accumulated dynamic coupling data can be computed. This merging capability enables the

collection of coupling data for Java systems for which several concurrent instances of the JVM

are used, such as large, distributed or component-based systems.

Our coupling tool utilizes interfaces provided by the Java Virtual Machine to collect the

message traces and other information specified in Figure 2. Another possible approach could

have been to instrument the system. Instrumentation can be done either at the source code or byte

code level using tools such as the Java Compiler Compiler (JavaCC) [24] or the Byte Code

Engineering Library (BCEL) [23], respectively. However, utilizing the existing interfaces to the

Java VM provides several benefits over instrumentation. Instrumenting the code means that we

are testing the instrumented version and not the actual version, which may lead to different

outputs and system states. Since instrumentation causes a significant effort overhead, if the

system is evolving rapidly, the project manager will also be reluctant to keep instrumenting the

new versions.

Furthermore, source code instrumentation requires access to the Java application source code.

This might be a disadvantage in cases where an application uses libraries for which the source

code is not available. Finally, instrumentation might cause a significant performance overhead. In

contrast to our approach, both source code and byte code instrumentation require that parts of the

Simula TR 2003-5 and Carleton TR SCE-03-18

24

data collection software be written in Java. Subsequently, the byte code of the data collection

software is interpreted by the Java VM. Since our data collection tool is written in C++ and

dynamically linked with the JVM at run-time, there is probably less performance overhead

associated with our approach than with data collection tools employing instrumentation. As

performance overhead increases, the behavior of concurrent software is more likely to be affected

by the data collection process and it is important to minimize the chances of such a problem

occurring.

3.2. Using UML Models for Data Collection

So far, we have assumed that dynamic coupling data are collected through dynamic analysis of

the code. It was also suggested that it might be possible to collect the dynamic coupling data

through analysis of dynamic UML models, e.g., interaction diagrams. Measuring coupling on

early design artifacts would be of practical importance because one could use that information for

early decision making. For example, assuming that the necessary UML diagrams are available for

a given design, one could derive test cases [7] and compute the dynamic coupling associated with

each of the test cases (use case scenarios) based on the UML diagrams. For example, test cases

with high coupling could be exercised first, as they would be expected to uncover more faults

and, therefore, the test plan would provide an order in which to run test cases based on dynamic

coupling information.

When measuring dynamic coupling based on UML models, the main problem lies with

interaction diagrams. If we resort to UML diagrams for dynamic coupling measurement, we have

to find a substitute for the line of code where the invocation is located to distinguish messages (in

ME) and compute xx_xD measures. A natural substitute is the guard or path condition (which

must be true for a message to be sent), which corresponds to different contexts of invocations.

Simula TR 2003-5 and Carleton TR SCE-03-18

25

An identical method on two messages with two distinct guard conditions must correspond to

different invocation statements in the code. However, one guard condition on a message does not

have to correspond to one invocation statement in the code. For example, one may have a guard

of the form [A or B] that triggers the invocation of m(), and the corresponding code may

show two distinct invocations statements for m(), each of them being in the body of an if

statement with conditions A and B, respectively.

What this implies is that if xx_xD measures are collected from UML interaction diagrams,

coupling will tend to be underestimated, because distinct elements of ME will not be

distinguishable using UML interaction diagrams. However, the question is whether, in practice,

this makes any significant difference. The advantages of using dynamic coupling measures on

early UML artifacts may outweigh the drawbacks that are due to their lower precision.

Furthermore, xx_xC and xx_xM measures are not affected by the use of UML interaction

diagrams. If empirical investigation finds these latter measures to be strongly correlated with

xx_xD, it is doubtful the data collection inaccuracy discussed above will have any practical effect.

4. Case Study

This section presents the results of a case study whose objectives are to provide a first empirical

validation of the dynamic coupling measures presented above. The first subsection explains in

more detail our objectives, the study settings, and the methodology we follow. In subsequent

sections quantitative results are presented and interpreted.

4.1. Objectives and Methodology

We selected an open-source software system called Velocity to evaluate the dynamic coupling

measures. Velocity is part of the Apache Jakarta Project [23]. Velocity can be used to generate

Simula TR 2003-5 and Carleton TR SCE-03-18

26

web pages, SQL, PostScript and other outputs from template documents. It can be used either as a

standalone utility or as an integrated component of other systems. A total of 17 consecutive

versions (versions 1.0b1 to version 1.3.1) of Velocity were available for analysis. The versions

were released within a time span of approximately two years. The versions used in the actual

analysis were four subsequent sub-releases (called “release candidates” in Velocity) within one

major release of the Velocity system (version 1.2). The first sub-release, 1.2rc1, consists of 17210

source lines of code (SLOC) in 136 core application classes (after removing “dead” code and

classes related to test cases, as described further in Section 4.2) in addition to 408 library classes.

There were 65 inheritance relationships and 149 instances of method overriding in the first

release candidate, thus showing substantial use of polymorphism and dynamic binding. Further

descriptive statistics of the classes are provided in Appendix C.

Several types of data were collected from the system. First, change data (i.e., using a class-

level source code diff) was collected for each application class. Based on the change data, the

amount of change (in SLOC added and deleted) of each class within a given set of consecutive

versions was computed. Second, to collect the dynamic coupling measures, test cases provided

with the Velocity source code were used to exercise each version of the system. Each test case

was executed while the JDissect dynamic coupling tracer tool (Section 3.1) computed the

dynamic coupling measures. Third, size and a comprehensive set of static coupling measures (a

complete list is provided in Appendix A and B) were collected using a static code analysis tool.

The scope of measurement was the application classes (AC) of Velocity. Thus, coupling to/from

library and framework classes were not included (for further details, see Section 2.1).

A first objective of the case study was to determine whether the dynamic coupling measures

capture additional dimensions of coupling when compared with static coupling measures. A

subsequent, more ambitious objective was to investigate whether dynamic coupling measures are

Simula TR 2003-5 and Carleton TR SCE-03-18

27

significant indicators of a useful, external quality attribute and are complementary to existing

static measures in explaining its variance.

Following the methodology described in [6], we first analyzed the descriptive statistics of the

dynamic coupling measures. The motivation was to determine whether they show enough

variance and whether some of the properties we expected were visible in the data. The next step

was to perform a principal component analysis (PCA), the goal of which was to identify what

structural dimensions are captured by the dynamic coupling measures and whether these

dimensions are at least partly distinct from static coupling measures. It is usual for software

product measures to show strong correlations and for apparently different measures to capture

similar structural properties. PCA also helps to interpret what measures actually capture and

determine whether all measures are necessary for the purpose at hand. In our case, recall that we

want to determine whether all xx_xC, xx_xM, and xx_xD measures are necessary, that is, to what

extent they are redundant.

In order to investigate their usefulness as quality indicators, we investigate whether dynamic

coupling measures are statistically related to change proneness, that is, the extent of change

across the versions of the system we used as a case study. To do so, we analyzed the changes

(lines of code added and deleted) across the four sub-releases of Velocity 1.2. Our goal was to

ensure we would only consider correction changes as requirements changes are not driven by

design characteristics but mainly by external factors. Sub-releases in a major release include only

correction changes3 and we were therefore able to factor out requirements changes and obtain

more accurate analysis results regarding the impact of coupling on change proneness.

3 We checked the change records for the four sub-releases of Velocity 1.2 to ensure that this assumption was correct.

Simula TR 2003-5 and Carleton TR SCE-03-18

28

The dependent variable (Change) in this study is the total amount of change (source lines of

code added and deleted) that has affected each of the 136 application classes participating in the

test case executions across the four sub-releases of Velocity 1.2. Since none of these classes were

added or deleted during the making of the successive releases, the variable Change is a measure

of the change proneness of these classes. In this case study context, this can be more precisely

defined as their tendency to undergo correction changes. Other possible dependent variables

could have been selected, such as the number of changes, but we wanted our dependent variable

to somehow reflect the extent of changes as well as their frequency.

The above analysis assumes that there is a cause-effect relationship between coupling and

change proneness, something which is intuitive because classes that strongly depend on or

provide services to other classes are more likely to change, through ripple effects, as a result of

changes in the system [11]. Predicting the change proneness of a class (i.e., its volatility) can be

used to aid design refactoring (e.g., removing "hot-spots"), choosing among design alternatives or

assessing changeability decay [1].

One important issue is that not only do we want our measures to relate to change proneness in

a statistically significant way, but we want the effect to be additional or complementary to that of

static coupling measures and class size [6, 21]. If some of the dynamic coupling measures remain

statistically significant covariates when the static coupling measures and size measures are

included as candidate covariates, this subset of dynamic coupling measures is deemed to

significantly contribute to change proneness. We consider this to be empirical evidence of the

causal effect between dynamic coupling and change proneness, of their practical usefulness, and

hence we consider it to provide an initial empirical validation of the dynamic coupling measures.

More details are provided in Section 4.4.

Simula TR 2003-5 and Carleton TR SCE-03-18

29

4.2. Code Coverage

One practical drawback of using dynamic analysis is that one has to ensure that the code is

sufficiently exercised to reflect in a complete manner the interactions that can take place between

objects. To obtain accurate dynamic coupling data, the complete set of test cases provided with

Velocity were used to exercise the system. Though this test suite was supposed to be complete, as

it is used for regression test purposes, we used a code coverage tool and discovered that only

about 70 percent of the methods were covered by the test cases. A closer inspection of the code

revealed that a primary reason for this apparent low coverage was that 34 classes contained

“dead” code. In addition, there were many occurrences of alternative constructors and error

checking code that were never called. Fortunately, such code does not contribute to coupling.

After removing the dead code and filtering out alternative constructors and error checking code,

the test cases covered approximately 90 percent of the methods that might contribute to coupling

among the application classes in Velocity. Consequently, the code coverage seems to be

sufficient to obtain fairly accurate dynamic coupling measures for the 136 “live” application

classes of Velocity 1.2.

4.3. Preliminary Analysis Summary

This subsection describes the main results from a number of standard, preliminary data analyses.

Simula TR 2003-5 and Carleton TR SCE-03-18

30

Variability

We first computed descriptive statistics for coupling and class size measures based on the first

sub-release of the studied release (1.2) of Velocity (Appendix C). One notable result is that the

mean values for dynamic import coupling measures (e.g., IC_OC) are always equal to the mean

values of their corresponding dynamic export coupling measure (e.g., EC_OC). This confirms the

symmetry property discussed in Section 2.3. For most measures, there are large differences

between the lower 25th percentile, the median, and the 75th percentile, thus showing strong

variations in import and export coupling across classes. Many of the measures show a large

standard deviation and mean values that are larger than the median values, with a distribution

skewed towards larger values. Two of the static coupling measures show (almost) no variation

and are not considered in the remainder of the analysis. These measures are related to direct

access of public attributes by methods in other classes, which is considered poor practice.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [20] was used to analyze the covariance structure of the

measures and determine the underlying dimensions they capture. PCA usually generates a large

number of Principal Components, which are usually retained or discarded based on the amount of

variance they explain4. Appendix D provides the results of PCA when accounting for dynamic

coupling measures only. The results show that coupling is divided along four dimensions: IC_Ox,

IC_Cx, EC_Ox and EC_Cx. Thus, all xx_xC, xx_xM, and xx_xD measures belong to identical

components when they have identical scope, granularity and entity of measurement, therefore

capturing similar properties. This implies that it may not be necessary to collect all of these

measures, and in particular, the xx_xD measures that cannot be collected on UML diagrams and

4 We use here a typical threshold, where PCs with eigenvalues larger than 1.0 are retained.

Simula TR 2003-5 and Carleton TR SCE-03-18

31

require dynamic code analysis. It is interesting to note that this confirms the results in the earlier

case study on a Smalltalk system [2].

Appendix E provides the results of PCA when considering all measures. Two principal

components (PC5 and PC7) clearly capture export dynamic coupling and import dynamic

coupling, mostly at the object level (i.e., object-level show higher weights), respectively. As for

all PCA results when many measures are included, some of the principal components are difficult

to interpret. The first one, for example, captures most size measures and some import static

coupling measures, but also, to a lesser extent, import dynamic coupling at the class level. As has

been observed in past studies [6, 21], size may be to some extent related to some of the coupling

measures. With respect to dynamic coupling, results show that class-level measures are

moderately correlated with some of the size and static coupling measures, but overall, the PCA

analysis seems to indicate that our dynamic coupling measures (especially when the entity of

measurement is the object) are not redundant with existing static coupling and size measures. The

next sections go even further in this respect by providing evidence that dynamic coupling

measures are also useful quality indicators.

Dynamic coupling as an explanatory variable of change proneness

The next step was to analyze the extent to which each of the dynamic coupling measures are

related to our dependent variable, change proneness (see Section 4.1). However, since the size

(SLOC) of a class is an obvious explanatory variable of Change (SLOC added+deleted), it may

be more insightful to determine whether a coupling measure is related to change proneness

independently of class size. We therefore tested whether the dynamic coupling measures are

Simula TR 2003-5 and Carleton TR SCE-03-18

32

significant additional explanatory variables, over and above what has already been accounted for

by size.

To achieve this, we systematically performed a multiple linear regression involving class size

(SLOC) and each of the dynamic coupling measures and then determined whether the regression

coefficient for the coupling measure was statistically significant (using a standard statistical t test

[22]). The underlying assumptions are that the larger the export coupling, the more likely a class

is to be changed, because it has to adjust to the evolving needs of many classes. Similarly, the

larger the import coupling, the more likely a class is to be changed, because it depends on many

other classes that may themselves change, thus triggering ripple effects. The analyses resulted in

12 coupling measures and one size measure being tested for significance and with that many

tests, the discovery of empirical relationships by chance becomes more likely [18]. Consequently,

the significance level (alpha-level) was set to α = 0.05/13 = 0.004, following the Bonferroni

procedure. However, the Bonferroni procedure is conservative and the reader may choose to be

less strict when interpreting the actual p-values in Table 3.

Table 3 Relationships between Change Proneness and Dynamic Coupling

Regression
Covariates

Coefficient
Size

p-value
Size

Coefficient
Coupling

p-value
Coupling

R-Sq R-Sq (adj)

CS1 0.068 0.000 N/A N/A 12.8% 12.1%
CS1, IC_OC 0.067 0.000 0.123 0.778 12.8% 11.5%
CS1, IC_OM 0.067 0.000 0.085 0.769 12.8% 11.5%
CS1, IC_OD 0.068 0.000 0.010 0.971 12.8% 11.5%
CS1, IC_CC 0.059 0.001 1.038 0.151 14.1% 12.8%
CS1, IC_CM 0.059 0.001 0.748 0.165 14.0% 12.7%
CS1, IC_CD 0.063 0.000 0.314 0.473 13.1% 11.8%
CS1, EC_OC 0.064 0.000 1.656 0.001 20.1% 18.9%
CS1, EC_OM 0.065 0.000 0.899 0.009 17.2% 16.0%
CS1, EC_OD 0.065 0.000 0.830 0.002 19.0% 17.7%
CS1, EC_CC 0.061 0.000 1.758 0.000 20.6% 19.4%
CS1, EC_CM 0.064 0.000 0.736 0.017 16.5% 15.2%
CS1, EC_CD 0.065 0.000 0.469 0.024 16.1% 14.8%

Simula TR 2003-5 and Carleton TR SCE-03-18

33

The results (Table 3) show strong support for the hypotheses that three of the dynamic export

coupling measures are clearly related to change proneness, in addition to what can be explained

by size in SLOC (CS1). On the other hand, dynamic import coupling measures do not seem to

explain additional variation in change proneness, compared to size alone. Once again, this

confirms the results obtained in an earlier case study on a Smalltalk system [2].

The coefficients of determination (R-Sq) are not high, but that is to be expected, because we

only include size and one coupling measure at a time and, as a result, a large portion of the

variance is still not accounted for. A few observations had very large residuals that contributed to

the low coefficients of determination and, thus, the underlying regression model assumption of

normally distributed residuals is violated due to these outliers. Removing them significantly

improved the model fit while still confirming the results of the models in Table 3. This indicates

that the model violations are of little practical consequence with regards to the results of the

hypotheses tests. The following section evaluates the extent to which the dynamic coupling

measures are useful predictors when building the best possible models by using size, static

coupling, and dynamic coupling measures as possible model covariates.

Simula TR 2003-5 and Carleton TR SCE-03-18

34

4.4. Prediction Model of Change Proneness

Model variables

Throughout this section, the dependent variable is change proneness (see Section 4.1). The

independent variables include the size and static coupling measures and our proposed 12 dynamic

coupling measures. A complete list of candidate measures is available in Appendixes A and B.

Ordinary Least-Squares regression (including outlier analysis) was used to analyze and model the

relationship between the independent and dependent variables, that is, between the size/coupling

measures of the first sub-release and the amount of changes in the subsequent sub-releases. In

order to select covariates in our regression model, we use a mixed selection heuristic [22] so as to

allow variables to enter, but also to leave, the model when below/above a significance threshold.

Though other procedures have been tried (e.g., backward procedure based on variables with

highest loadings in principal components), the one we report here yielded models with

significantly higher fit.

Rationale for model building

Recall that the objective of this regression analysis is to determine whether dynamic coupling

measures help to explain additional variation in change proneness, compared to class size (CS)

and static coupling alone (see Section 4.1). In other words, we want to determine whether these

measures help to obtain a better model fit and, therefore, an improved predictive model. To

achieve this objective we proceeded in two steps. First we analyzed the relationship between

Change and CS + Static coupling measures in order to generate a multivariate regression model

that would serve as a baseline of comparison. We then continued by performing multivariate

regression, using as candidate covariates all size, static coupling, and dynamic coupling

measures. If the goodness of fit of the latter model turns out to be significantly better than the

Simula TR 2003-5 and Carleton TR SCE-03-18

35

former model we would then be able to conclude that dynamic coupling measures are useful,

additional explanatory variables of change proneness.

Discussion of modeling results

The first multivariate model we obtained when using size and static coupling measures as

candidate covariates is presented in Table 4. After removing one outlier that is clearly over-

influential on the regression results (with an extremely large Change value), we obtained a model

with three size measures and nine static coupling measures for covariates6 (for 135 observations).

Around 79% of the variance in the data set is explained by size and static coupling measures and

we obtained an adjusted R2 of 0.77 (i.e., adjusted for the number of covariates [22]). We do not

attempt to discuss the regression coefficients, because such models are inherently difficult to

interpret since it is common to see some degree of correlation and interaction between covariates

[6]. Smaller, less accurate models (e.g., where covariates are selected based on principal

components) would have been easier to interpret but recall that our goal was to demonstrate the

usefulness of dynamic coupling measures as predictors of change proneness. Furthermore,

analysis results provided in Table 3 show that, when significant, the relationships are in the

expected direction for our dynamic coupling measures.

6 Each category of measure is separated by a line in the table, starting with the intercept, static coupling and then class size.

Simula TR 2003-5 and Carleton TR SCE-03-18

36

When including, in the set of candidate covariates, the dynamic coupling measures, we obtain

a very different model (Table 5). Four dynamic coupling measures (highlighted in italics), as well

as nine static coupling measures and four size measures, were included as covariates in the model

(we retained, as for the other model, all covariates with p-values below 0.1). The model explains

87% of the variance in the data set and shows an adjusted R2 of 0.85. Therefore, even when

accounting for the difference in number of covariates, the coefficient of determination (R2)

increased by 8% or 35% of the unexplained variance (from 0.77 to 0.85) when using dynamic

coupling measures as candidate covariates. This is an indication that some of the dynamic

coupling measures are complementary indicators to static coupling and size measures as far as

change proneness is concerned.

Table 4 Regression Model using Size and Static Coupling as Candidate Covariates

Covariate Coefficient Std Error t Ratio Prob>|t|

Intercept 14.24 4.08 3.49 0.0007

CBO 2.80 0.78 3.57 0.0005

PIM_EC 1.45 0.22 6.58 <.0001

DAC’ 18.87 4.37 4.31 <.0001

OCAEC -5.36 2.45 -2.18 0.0310

ACMIC -26.64 6.44 -4.14 <.0001

OCMIC -12.65 1.01 -12.44 <.0001

OMMIC 4.21 0.50 8.31 <.0001

DMMEC -2.99 0.58 -5.14 <.0001

OMMEC -1.41 0.34 -4.12 <.0001

NMD -1.06 0.28 -3.69 0.0003

NumPara 4.23 0.38 10.87 <.0001

CS2 (semi) -0.37 0.037 -9.85 <.0001

Simula TR 2003-5 and Carleton TR SCE-03-18

37

It is also interesting to note that three out of the four dynamic coupling measures capture

export coupling. One import coupling measure is nevertheless selected, but is clearly less

significant. One explanation is that, from the detailed PCA results reported in Section 4.3, we can

see that class-level dynamic coupling measure tend to be more correlated to size and static

coupling and, similarly, dynamic export coupling measures tend to be less correlated to size

measures than their import counterpart. A likely reason is that it is easy to imagine small classes

providing services to many other methods and therefore having a large export coupling. Large

import coupling classes though, are more likely to be large, because they use many features from

other classes.

Results in our earlier study on a Smalltalk system [2] also showed that dynamic export

coupling is a stronger indicator of change proneness. Though the context, programming language,

Table 5 Regression Model using all Measures as Candidate Covariates

Covariate Coefficient Std Error t Ratio Prob>|t|

Intercept 8.12 3.62 2.24 0.0270

EC_OC 4.32 1.08 4.00 0.0001

EC_OM -7.70 1.59 -4.81 <.0001

EC_OD 5.02 0.99 5.03 <.0001

IC_CC -1.14 0.52 -2.19 0.0306

CBO 2.84 0.70 4.02 0.0001

RFC_1 0.67 0.18 3.66 0.0004

RFC -0.05 0.01 -3.37 0.0010

OCAIC 19.39 4.23 4.58 <.0001

OCMIC -10.37 0.95 -10.90 <.0001

OMMIC 4.37 0.55 7.90 <.0001

DMMEC -1.17 0.42 -2.75 0.0069

OMMEC -1.46 0.25 -5.74 <.0001

AMAIC 6.06 1.98 3.05 0.0028

NMI 4.38 0.98 4.47 <.0001

NMpub -1.86 0.58 -3.17 0.0019

NumPara 2.60 0.73 3.53 0.0006

CS1 (SLOC) -0.22 0.02 -9.82 <.0001

Simula TR 2003-5 and Carleton TR SCE-03-18

38

and application domain were different, the result obtained in the two studies are consistent, thus

suggesting our results can be generalized to a large proportion of systems.

5. Related Work

A large body of work exists on the static measurement of cohesion and coupling, both for

procedural [29] and object-oriented systems [16, 26]. In particular, a number of people have used

static coupling measurement to assess the maintainability of object-oriented systems [25, 31].

In a number of occasions, those measures have shown to be useful predictors of certain quality

attributes such as fault-proneness or change (see survey of empirical results in [6]). For further

details on the measures themselves, we refer the reader to surveys that have been published in

[10] and [9]where most existing measures and their properties are discussed in detail.

The general idea of using dynamic analysis of programs to assess software quality is not new.

For example, Sneed and Merey [30] have shown how it could be used to check assertions and

monitor the behavior of modules in procedural software. More specifically, dynamic object-

oriented coupling measures were first proposed in [33]. The authors proposed two object-level

dynamic coupling measures, Export Object Coupling (EOC) and Import Object Coupling (IOC),

based on executable Real-Time Object Oriented Modeling (ROOM) design models. The design

model used to collect the coupling measures is a special kind of sequence diagram that allows

execution simulation.

IOC and EOC count the number of messages sent between two distinct objects oi and oj in a

given ROOM sequence diagram x, divided by the total number of messages in x. Thus, the result

is a percentage that reflects the “intensity” of the interaction of two objects related to the total

amount of object interaction in x. For example, in a simple scenario x1 where o1 sends two

messages (m1 and m2) to o2 and o2 sends one message (m3) to o1, then IOCx1(o1, o2) = 100*2/3 =

Simula TR 2003-5 and Carleton TR SCE-03-18

39

66% and IOCx1(o2, o1) = 100*1/3 = 33%. Based on these basic measures, the authors also derive

measures at the system level using the probability of executing each sequence diagram as a

weighting factor. In a different paper, a methodology for architecture-level risk assessment based

on the dynamic measures is proposed [34].

There are several important differences between the measures presented in [33] and the

coupling measures described in this paper:

• The dynamic coupling measures in [33] do not adhere to the coupling properties described

in the axiomatic framework described in [10]. This is not necessarily a problem in the

application context of that particular piece of work, but it would very likely be a problem

in many other situations (see [10] for a detailed discussion).

• The measures described in this paper differentiate between many different dimensions of

coupling, in addition to import and export coupling. Most importantly, we account for

inheritance and polymorphism by distinguishing between dynamic class-level and object-

level measures. In our opinion, the ability to measure coupling precisely for systems with

inheritance and dynamic binding represents one of the primary advantages of dynamic

coupling over static coupling. This is supported by the results presented in the previous

section.

• Our measures are collected from analyzing message traces from system executions

(Section 3.1) or from UML diagrams (Section 3.2). The dynamic coupling measures in

[33] are collected from ROOM models.

Another important addition over [33] is that we perform an empirical validation of our dynamic

coupling measures by showing they are complementary to simple size measures and static

Simula TR 2003-5 and Carleton TR SCE-03-18

40

coupling measures. Furthermore, the relationship of all these measures to an external quality

indicator (change proneness) is investigated.

The measures proposed and validated in this paper are based on an initial study described in

[2]. Initially the dynamic coupling measures were described informally, and an initial validation

was performed on a SmallTalk system. In this paper, this research has been extended in several

important ways. The dynamic coupling measures have been defined formally and precisely, in an

operational form. As part of this process, we discovered that some of the measures proposed in

[2] did not fully adhere to the coupling properties described in [10]. The measures proposed in

this paper are shown to be theoretically valid, at least based on a widely referenced axiomatic

framework. The empirical validation in this paper is also considerably more comprehensive than

in [2]. Furthermore, the dynamic coupling measures are compared with size and static coupling

measures. Such a comparison was not possible for the SmallTalk system investigated in [2]

because static measures could not be collected. This paper clearly confirms the initial empirical

evaluation described in [2]; both in terms of Principal Component Analysis and evaluation of the

dynamic coupling measures as predictors of change proneness. Thus, the two studies provide a

strong body of evidence that the proposed dynamic coupling measures (especially export

coupling) are useful indicators of change proneness and capture different properties than do static

coupling measures. Results were found to be very similar (despite some differences in

measurement) across two separate application domains (commercial CASE tool and open-source

web software, respectively) and programming languages (SmallTalk and Java, respectively).

6. Conclusions

The contribution of this paper can be summarized as follows. First, we provide formal,

operational definitions of dynamic coupling measures for object-oriented systems. The

Simula TR 2003-5 and Carleton TR SCE-03-18

41

motivation for those measures is to complement existing measures that are based on static

analysis by actually measuring coupling at run-time in the hope of obtaining better decision and

prediction models, because we account precisely for inheritance, polymorphism and dynamic

binding. Second, we describe a tool whose objective is to show how to collect such measures for

Java systems effectively and, finally yet importantly, we perform a thorough empirical

investigation using open source software. The objective was three-fold: (1) Demonstrate that

dynamic coupling measures are not redundant with static coupling measures, (2) Show that

dynamic coupling measures capture different properties than simple size effects, and (3)

Investigate whether dynamic coupling measures are useful predictors of change proneness.

Admittedly, many other applications of dynamic coupling measures can be envisaged. However,

investigating change proneness was used here to gather initial but tangible evidence of the

practical interest of such measures.

Our results show that dynamic coupling measures indeed capture different properties than

static coupling measures, though some degree of correlation is visible, as expected. Dynamic

export coupling measures were shown to be significantly related to change proneness, in addition

to that which can be explained by size effects alone. Last, some of the dynamic coupling

measures, especially the export coupling measures (EC_OC, EC_OM, EC_OD), appear to be

significant (p-value = 0.0001), complementary indicators of change proneness when combined

with both size and static coupling measures. The model including dynamic coupling measures

yields a R2 of 0.85, suggesting that a large percentage of variance in code change can be

explained by the model. Some of these results confirm those obtained on an earlier study [2] of a

SmallTalk system. Though no comparison with static coupling and size measures could be

performed in this earlier study, those combined results constitute evidence that dynamic export

coupling measures are significant indicators of change proneness.

Simula TR 2003-5 and Carleton TR SCE-03-18

42

The results above should be qualified in a number of ways. With respect to external validity,

the system we used as a case study may use much more polymorphism and dynamic binding than

most systems, thus making dynamic coupling of particular importance. In terms of internal

validity, it is clear coupling is only one of the factors affecting change proneness. This is

particularly true for requirements changes and recall that our study only considered correction

changes. To build complete change proneness models, many other factors would have to be

considered. But this is out of the scope of this paper as the purpose of analyzing change

proneness was only to provide an empirical validation of our dynamic coupling measures.

Another practical limitation is that using dynamic coupling requires extensive test suites to

exercise the system. Such test suites may not be readily available.

Future work will include investigating other applications of dynamic coupling measures (e.g.,

test case prioritization), and the cost-benefit analysis of using change proneness models such as

the ones presented in the current work. These models may be used for various purposes, such as

focusing supporting documentation on those parts of a system that are more likely to undergo

change, or making use of design patterns to better anticipate change. Note that such applications

may also be relevant in procedural software making use of dynamic binding.

Furthermore, a number of other applications of dynamic coupling measurement should be

investigated. A side effect of the work presented in this paper is that the JDissect tool can be used

to discover dead code, assuming that test data representative of the operational profile of the

system is available. Similarly, the tool can be used to determine exactly which objects, classes

and methods are involved in a given functional component (e.g., a use case) of a system. Such

functionality could be useful for maintainers to achieve an initial understanding of (complex parts

of) a system.

Simula TR 2003-5 and Carleton TR SCE-03-18

43

Acknowledgements

Many thanks to Magne Jørgensen, Vigdis By Kampenes, Amela Karahasanovic, Dag Sjøberg,

Kristin Skoglund, Ray Welland, Jürgen Wüst and the anonymous reviewers for valuable

contributions to the research presented in this paper. Lionel Briand was partly funded by an

NSERC operational grant and a Canada Research Chair.

References

[1] E. Arisholm, "Empirical Assessment of Changeability in Object-Oriented Software," PhD
Thesis, Dept. of Informatics, University of Oslo, ISSN 1510-7710, 2001.

[2] E. Arisholm, "Dynamic Coupling Measures for Object-Oriented Software," proc. 8th
IEEE Symposium on Software Metrics (METRICS'02), pp. 33-42, 2002.

[3] E. Arisholm, D. I. K. Sjøberg, and M. Jørgensen, "Assessing the Changeability of two
Object-Oriented Design Alternatives – a Controlled Experiment," Empirical Software
Engineering, vol. 6, no. 3, pp. 231-277, 2001.

[4] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language Users Guide:
Addison-Wesley, 1998.

[5] L. Bratthall, E. Arisholm, and M. Jørgensen, "Program Understanding Behaviour During
Estimation of Enhancement Effort on Small Java Programs," proc. PROFES 2001 (3rd
International Conference on Product Focused Software Process Improvement), 2001.

[6] L. C. Briand and J. Wuest, "Empirical Studies of Quality Models in Object-Oriented
Systems," Advances in Computers, vol. 59, pp. 97-166, 2002.

[7] L. C. Briand and Y. Labiche, "A UML-Based Approach to System Testing," Software and
Systems Modeling, vol. 1, no. 1, pp. 10-42, 2002.

[8] L. C. Briand, P. Devanbu, and W. L. Melo, "An Investigation into Coupling Measures for
C++," proc. 19th International Conference on Software Engineering (ICSE'97), pp. 412-
421, 1997.

[9] L. C. Briand, J. Daly, and J. Wust, "A Unified Framework for Cohesion Measurement in
Object-Oriented Systems," Empirical Software Engineering, vol. 3, no. 1, pp. 65-117,
1998.

[10] L. C. Briand, J. W. Daly, and J. Wust, "A Unified Framework for Coupling Measurement
in Object-Oriented Systems," IEEE Transactions on Software Engineering, vol. 25, no. 1,
pp. 91-121, 1999.

[11] L. C. Briand, J. Wust, and H. Lounis, "Using Coupling Measurement for Impact Analysis
in Object-Oriented Systems," proc. International Conference on Software Maintenance
(ICSM'99), pp. 475-482, 1999.

[12] F. Brito e Abreu, "The MOOD Metrics Set," proc. ECOOP'95 Workshop on Metrics,
1995.

[13] M. Cartwright and M. Shepperd, "An Empirical Investigation of an Object-Oriented
Software System," IEEE Transactions on Software Systems, vol. 26, no. 8, pp. 786-796,
2000.

Simula TR 2003-5 and Carleton TR SCE-03-18

44

[14] M. A. Chaumun, H. Kabaili, R. K. Keller, F. Lustman, and G. Saint-Denis, "Design
Properties and Object-Oriented Software Changeability," proc. Fourth Euromicro
Working Conference on Software Maintenance and Reengineering, pp. 45-54, 2000.

[15] S. R. Chidamber and C. F. Kemerer, ""Towards a Metrics Suite for Object Oriented
design"," proc. Conference on Object-Oriented Programming: Systems, Languages and
Applications (OOPSLA'91), October 1991. Published in SIGPLAN Notices, 26 (11), 197-
211, 1991, 1991.

[16] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object-Oriented Design," IEEE
Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493, 1994.

[17] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, "Managerial Use of Metrics for Object-
Oriented Software: An Exploratory Analysis," IEEE Transactions on Software
Engineering, vol. 24, no. 8, pp. 629-637, 1998.

[18] R. E. Courtney and D. A. Gustafson, "Shotgun correlations in software measures,"
Software Engineering Journal, vol. 8, no. 1, pp. 5-13, 1993.

[19] I. S. Deligiannis, M. Shepperd, S. Webster, and M. Roumeliotis, "A Review of
Experimental Investigations into Object-Oriented Technology," Empirical Software
Engineering, vol. 7, no. 3, pp. 193-232, 2002.

[20] G. Dunteman, Principal Component Analysis: SAGE publications, 1989.
[21] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, "The Confounding Effect of Class Size

on the Validity of Object-Oriented Metrics," IEEE Transactions on Software Engineering,
vol. 27, no. 7, pp. 630-650, 2001.

[22] R. J. Freund and W. J. Wilson, Regression Analysis: statistical modeling of a response
variable: Academic Press, 1998.

[23] Jakarta, "The Apache Jakarta Project," vol. 2003: http://jakarta.apache.org/, 2003.
[24] Java.net, "Java Compiler Compiler (JavaCC)," https://javacc.dev.java.net/, 2003.
[25] H. Kabaili, R. Keller, and F. Lustman, "Cohesion as Changeability Indicator in Object-

Oriented Systems," proc. IEEE CSRM (Conference on Software Maintenance and
Reengineering), pp. 39-46, 2001.

[26] A. Lakhotia and J.-C. Deprez, "Restructuring Functions with Low Cohesion," proc. IEEE
Working Conference on Reverse Engineering (WCRE), pp. 36-46, 1999.

[27] Y.-S. Lee, B.-S. Liang, S.-F. Wu, and F.-J. Wang, "Measuring the Coupling and Cohesion
of an Object-Oriented Program Based on Information Flow," proc. International
Conference on Software Quality, 1995.

[28] W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability," Journal of
Systems and Software, vol. 23, no. 2, pp. 111-122, 1993.

[29] G. Myers, Software Reliability: Principles and Practices: Wiley, 1976.
[30] H. Sneed and A. Merey, "Automated Software Quality Assurance," IEEE Transactions on

Software Engineering, vol. 11, no. 9, pp. 909-916, 1985.
[31] M. M. T. Thwin and T.-S. Quah, "Application of Neural Networks for Software Quality

Prediction Using Object-Oriented Metrics," proc. IEEE International Conference on
Software Maintenance (ICSM), 2003.

[32] J. Warmer and A. Kleppe, The Object Constraint Language: Addison-Wesley, 1999.
[33] S. Yacoub, H. Ammar, and T. Robinson, "Dynamic Metrics for Object-Oriented

Designs," proc. IEEE 6th International Symposium on Software Metrics (Metrics'99), pp.
50-61, 1999.

Simula TR 2003-5 and Carleton TR SCE-03-18

45

[34] S. Yacoub, H. Ammar, and T. Robinson, "A Methodology for Architectural-Level Risk
Assessment using Dynamic Metrics," proc. 11th International Symposium on Software
Reliability Engineering, pp. 210-221, 2000.

Simula TR 2003-5 and Carleton TR SCE-03-18

46

Appendix A – Definition of the Size Measures

Some of the size measures in the text are frequently used in publications and available tools, and

no definite source or author can be given for them.

Name Definition
NAI The number of non-inherited attributes in a class
NAD The number of inherited attributes in a class
NA The total number of attributes in a class. NA = NAI + NAD
NMI The number of methods implemented in a class (non-inherited or overriding methods)
NMD The number of inherited methods in a class, not overridden
NM The number of all methods (inherited, overriding, and non-inherited) methods of a class. NM = NMI +

NMD
NMpub The number of public methods implemented in a class.
NMnpub The number of non-public (i.e., protected or private) methods implemented in a class.
NumPara Number of parameters. The sum of the number of parameters of the methods implemented in a class.
CS1 The number of source lines of code in a class
CS2 The number of declarations and statements (semicolons) in a class

Appendix B – Informal Definitions of the Static Coupling Measures

Name Definition Source
CBO Coupling between object classes. According to the definition of this measure, a class is coupled to

another, if methods of one class use methods or attributes of the other, or vice versa. CBO is then
defined as the number of other classes to which a class is coupled. This includes inheritance-
based coupling (coupling between classes related via inheritance).

[16]

CBO’ Same as CBO, except that inheritance-based coupling is not counted. [15]
RFC Response set for class. The response set of a class consists of the set M of methods of the class,

and the set of methods directly or indirectly invoked by methods in M. In other words, the response
set is the set of methods that can potentially be executed in response to a message received by an
object of that class. RFC is the number of methods in the response set of the class.

[15]

RFC_1 Same as RFC, except that methods indirectly invoked by methods in M are not included in the
response set.

[16]

MPC Message passing coupling. The number of method invocations in a class. [28]
DAC Data abstraction coupling. The number of attributes in a class that have another class as their

type.
[28]

DAC’ The number of different classes that are used as types of attributes in a class. [28]
ICP Information-flow-based coupling. The number of method invocations in a class, weighted by the

number of parameters of the invoked methods.
[27]

IH-ICP As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance- based
coupling) only.

[27]

NIH-ICP As ICP, but counts invocations to classes not related through inheritance. [27]
PIM Polymorphically invoked methods. The number of invocations of methods of a class c by other

classes
(regardless of the relationship between classes). Same as ICP, except that no weighting by the
number of parameters is performed.

PIM_EC Export coupling version of PIM. The number of invocations of methods of a class c by other
classes
(regardless of the relationship between classes).

Simula TR 2003-5 and Carleton TR SCE-03-18

47

Name Definition Source
CBO Coupling between object classes. According to the definition of this measure, a class is coupled to

another, if methods of one class use methods or attributes of the other, or vice versa. CBO is then
defined as the number of other classes to which a class is coupled. This includes inheritance-
based coupling (coupling between classes related via inheritance).

[16]

ACAIC
OCAIC
DCAEC
OCAEC
ACMIC
OCMIC
DCMEC
OCMEC
AMAIC
DMAIC
AMMIC
OMMIC
DMMEC
OMMEC

These coupling measures are counts of interactions between classes. The measures distinguish
the relationship between classes (friendship, inheritance, none), different types of interactions, and
the locus of impact of the interaction.
The acronyms for the measures indicates what interactions are counted:
The first or first two letters indicate the relationship (A: coupling to ancestor classes, D:
Descendents, O: Others, i.e., none of the other relationships).
The next two letters indicate the type of interaction:
CA: There is a Class-Attribute interaction between classes c and d, if c has an attribute of type d.
CM: There is a Class-Method interaction between classes c and d, if class c has a method with a
parameter of type class d.
MM: There is a Method-Method interaction between classes c and d, if c invokes a method of d, or
if a method of class d is passed as parameter (function pointer) to a method of class c.
The last two letters indicate the locus of impact:
IC: Import coupling, the measure counts for a class c all interactions where c uses another class.
EC: Export coupling: count interactions where class d is the used class.

[8]

Appendix C – Descriptive Statistics

Variable N Mean Median Minimum Maximum Q1 Q3
IC_OC 136 6.95 1 0 108 0 6
IC_OM 136 9.59 2 0 144 0 7
IC_OD 136 10.93 2 0 182 0 9
EC_OC 136 6.95 3 0 79 0 7
EC_OM 136 9.59 4 0 101 0 11
EC_OD 136 10.93 4 0 117 0 12
IC_CC 136 5.21 1 0 108 0 5
IC_CM 136 6.93 1 0 144 0 7
IC_CD 136 8.69 1 0 182 0 9
EC_CC 136 5.21 2 0 64 0 5
EC_CM 136 6.93 3 0 138 0 5
EC_CD 136 8.69 3 0 221 0 6
CBO 136 4.13 2 0 43 1 5
CBO’ 136 3.62 2 0 43 1 4
RFC_1 136 45.29 23 0 186 4 98
RFC_oo 136 290.90 31 0 792 4 718
MPC 136 6.26 2 0 116 0 8
PIM 136 14.90 3 0 126 0 28
PIM_EC 136 14.90 4 0 211 1 19
ICP 136 30.65 6 0 256 0 53
IH-ICP 136 3.84 0 0 174 0 2
NIH-ICP 136 26.81 6 0 256 0 43
DAC 136 0.47 0 0 9 0 1
DAC_ 136 0.43 0 0 6 0 1
ACAIC 136 0.10 0 0 3 0 0
OCAIC 136 0.38 0 0 9 0 0

Simula TR 2003-5 and Carleton TR SCE-03-18

48

Variable N Mean Median Minimum Maximum Q1 Q3
DCAEC 136 0.10 0 0 3 0 0
OCAEC 136 0.38 0 0 14 0 0
ACMIC 136 0.13 0 0 4 0 0
OCMIC 136 3.18 2 0 36 0 4
DCMEC 136 0.13 0 0 6 0 0
OCMEC 136 3.18 0 0 88 0 2
AMMIC 136 1.24 0 0 15 0 1
OMMIC 136 5.03 1 0 116 0 3
DMMEC 136 1.24 0 0 80 0 0
OMMEC 136 5.03 0 0 98 0 2
AMAIC 136 0.91 0 0 40 0 1
OMAIC 136 0.01 0 0 1 0 0
DMAEC 136 0.91 0 0 40 0 0
OMAEC 136 0.01 0 0 1 0 0
NA 136 9.65 6 0 133 1 10
NAI 136 3.59 1 0 68 0 4
NAD 136 6.06 0 0 107 0 10
NM 136 16.90 12 0 161 3 29
NMImp 136 9.12 4 0 161 2 8
NMD 136 7.78 0 0 36 0 24
NMpub 136 14.96 10 0 50 2 29
NMnpub 136 1.94 0 0 113 0 0
NumPara 136 10.31 6 0 146 2 9
CS1 (SLOC) 136 126.50 46 1 3766 25 98
CS2 (#semicolon) 136 56 15 0 1747 9 46

Appendix D – Principal Component Analysis for the Dynamic Coupling Measures

Variable PC1 PC2 PC3 PC4
IC_OC 0.311 0.275 0.892 0.121
IC_OM 0.236 0.290 0.918 0.110
IC_OD 0.209 0.374 0.897 0.078
IC_CC 0.169 0.909 0.235 0.258
IC_CM 0.144 0.912 0.318 0.203
IC_CD 0.126 0.912 0.346 0.115
EC_OC 0.911 0.180 0.196 0.286
EC_OM 0.884 0.167 0.301 0.302
EC_OD 0.855 0.097 0.338 0.359
EC_CC 0.507 0.271 0.065 0.804
EC_CM 0.305 0.200 0.108 0.923
EC_CD 0.215 0.146 0.117 0.956

Simula TR 2003-5 and Carleton TR SCE-03-18

49

Appendix E – Principal Component Analyses for All Measures

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
IC_OC 0.381 -0.007 -0.144 -0.034 0.370 -0.071 -0.786 -0.021 -0.055 -0.034 -0.005
IC_OM 0.335 0.001 -0.097 -0.041 0.333 -0.079 -0.829 -0.014 -0.025 -0.047 0.033
IC_OD 0.428 -0.007 -0.097 -0.031 0.284 -0.064 -0.819 -0.002 -0.037 -0.037 0.030
EC_OC 0.315 -0.031 -0.310 -0.010 0.778 0.012 -0.319 0.002 -0.205 0.036 -0.031
EC_OM 0.215 -0.013 -0.287 -0.026 0.827 0.003 -0.364 -0.005 -0.083 0.107 0.004
EC_OD 0.163 0.010 -0.205 -0.038 0.883 -0.023 -0.335 -0.006 -0.033 0.114 0.017
IC_CC 0.610 0.112 -0.179 0.026 0.170 -0.014 -0.551 0.032 -0.337 0.092 0.185
IC_CM 0.592 0.091 -0.173 0.025 0.142 -0.013 -0.613 0.043 -0.313 0.078 0.179
IC_CD 0.628 0.061 -0.181 0.024 0.108 -0.001 -0.621 0.048 -0.257 0.072 0.152
EC_CC 0.054 0.533 -0.081 -0.075 0.751 -0.106 -0.049 0.061 -0.111 0.168 0.161
EC_CM 0.034 0.682 -0.019 -0.060 0.615 -0.155 -0.090 0.084 -0.102 0.245 0.114
EC_CD 0.017 0.737 0.009 -0.056 0.552 -0.174 -0.082 0.087 -0.092 0.232 0.077
CBO 0.069 0.378 -0.141 0.262 -0.057 -0.766 -0.030 -0.031 -0.079 0.101 0.228
CBO’ 0.080 0.376 -0.060 0.270 -0.073 -0.780 -0.018 -0.028 -0.092 0.025 0.216
RFC_1 0.277 0.082 -0.886 -0.057 0.129 0.023 -0.204 -0.016 0.003 0.076 0.157
RFC -0.001 0.112 -0.819 -0.117 0.111 0.103 -0.179 -0.006 -0.001 0.168 0.297
MPC 0.781 -0.041 -0.125 -0.014 0.089 0.028 -0.363 0.030 -0.232 0.085 0.342
PIM 0.574 0.168 -0.310 -0.067 0.027 0.041 -0.426 0.093 -0.036 0.244 0.484
PIM_EC 0.002 0.602 -0.091 0.086 0.480 -0.496 0.043 0.008 -0.105 0.137 0.149
ICP 0.436 0.244 -0.323 -0.063 0.010 0.021 -0.451 0.092 -0.176 0.200 0.557
IH-ICP -0.020 0.849 -0.212 -0.011 0.005 -0.131 -0.029 0.101 -0.110 0.360 0.011
NIH-ICP 0.481 -0.044 -0.275 -0.064 0.009 0.070 -0.480 0.063 -0.152 0.087 0.601
DAC 0.451 0.286 0.070 -0.014 0.176 -0.113 -0.182 0.065 -0.720 0.269 0.075
DAC’ 0.390 0.223 0.107 -0.046 0.216 -0.107 -0.114 0.061 -0.723 0.271 0.133
ACAIC -0.013 0.250 0.024 -0.004 0.148 -0.070 0.041 -0.016 -0.140 0.885 0.006
OCAIC 0.507 0.212 0.068 -0.014 0.133 -0.095 -0.219 0.079 -0.741 -0.079 0.081
DCAEC -0.049 0.250 0.097 0.896 -0.067 -0.090 0.037 -0.047 0.052 -0.031 -0.003
OCAEC 0.031 -0.065 0.073 -0.033 0.000 -0.801 -0.006 0.110 -0.036 0.084 -0.147
ACMIC -0.004 0.491 0.007 -0.016 0.090 -0.088 0.055 0.004 -0.146 0.793 -0.018
OCMIC 0.272 0.099 -0.145 0.038 0.164 -0.371 0.031 -0.120 -0.101 -0.024 0.665
DCMEC -0.038 0.015 0.079 0.913 -0.007 -0.027 0.038 -0.025 0.080 -0.033 0.024
OCMEC 0.177 -0.120 -0.093 0.663 -0.021 -0.416 -0.054 0.044 -0.211 0.055 -0.093
AMMIC -0.077 0.037 -0.475 -0.019 0.270 0.055 -0.135 0.015 0.115 0.684 0.179
OMMIC 0.810 -0.049 -0.029 -0.010 0.034 0.017 -0.341 0.028 -0.259 -0.055 0.310
DMMEC -0.007 0.866 0.005 0.352 -0.105 -0.215 0.030 0.041 -0.089 0.059 0.006
OMMEC 0.006 0.254 0.172 0.047 0.278 -0.789 -0.123 -0.028 0.036 -0.098 0.057
AMAIC 0.553 -0.112 -0.117 0.086 0.063 0.000 -0.527 0.009 -0.474 -0.061 -0.032
DMAEC -0.062 0.452 0.039 -0.025 -0.101 -0.099 0.070 0.691 -0.149 -0.005 -0.093
NA 0.778 -0.055 -0.143 -0.030 0.156 0.029 -0.149 0.438 -0.155 -0.079 0.117
NAI 0.346 -0.017 0.177 -0.029 0.116 0.005 -0.055 0.838 0.017 0.017 0.029
NAD 0.783 -0.061 -0.300 -0.021 0.127 0.034 -0.157 0.024 -0.211 -0.113 0.132
NM 0.751 0.023 -0.543 0.043 0.200 -0.145 -0.167 -0.067 -0.144 -0.025 -0.007
NMI 0.885 0.050 -0.003 0.054 0.146 -0.234 -0.126 -0.034 -0.247 0.001 0.084
NMD -0.111 -0.040 -0.921 -0.012 0.111 0.120 -0.087 -0.060 0.143 -0.043 -0.143
NMpub 0.264 0.073 -0.826 0.023 0.263 -0.217 0.010 -0.135 -0.058 -0.027 0.092
NMnpub 0.912 -0.044 0.033 0.043 0.033 0.004 -0.278 0.041 -0.167 -0.010 -0.111
NumPara 0.737 0.084 0.008 -0.071 0.104 -0.302 0.257 -0.063 0.229 -0.015 0.367
CS1 0.967 0.027 0.055 -0.014 0.047 -0.010 -0.150 0.071 0.050 0.026 -0.021
CS2 0.961 0.007 0.055 0.007 0.041 -0.021 -0.194 0.076 0.003 0.013 -0.041

