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Dynamic Coupling Measurement for Object-Oriented Software 

Erik Arisholm1, Lionel C. Briand1,2 and Audun Føyen1 

Abstract. The relationships between coupling and external quality factors of object-oriented 

software have been studied extensively for the past few years. For example, several studies have 

identified clear empirical relationships between class-level coupling and class fault-proneness. A 

common way to define and measure coupling is through structural properties and static code 

analysis. However, because of polymorphism, dynamic binding, and the common presence of 

unused (“dead”) code in commercial software, the resulting coupling measures are imprecise as 

they do not perfectly reflect the actual coupling taking place among classes at run-time. For 

example, when using static analysis to measure coupling, it is difficult and sometimes impossible 

to determine what actual methods can be invoked from a client class if those methods are 

overridden in the subclasses of the server classes. Coupling measurement has traditionally been 

performed using static code analysis, because most of the existing work was done on non-object 

oriented code and because dynamic code analysis is more expensive and complex to perform. For 

modern software systems, however, this focus on static analysis can be problematic, because 

although dynamic binding existed before the advent of object-orientation, its usage has increased 

significantly in the last decade.  

This paper describes how coupling can be defined and precisely measured based on dynamic 

analysis of systems. We refer to this type of coupling as dynamic coupling. An empirical 

evaluation of the proposed dynamic coupling measures is reported in which we study the 

1 Department of Software Engineering 
Simula Research Laboratory 

Lysaker, Norway 
erika@simula.no; audunf@ifi.uio.no 

2 Software Quality Engineering Laboratory 
Computer and Systems Engineering 

Carleton University, Ottawa, Canada 
briand@sce.carleton.ca 



Simula TR 2003-5 and Carleton TR SCE-03-18 

2 

relationship of these measures with the change proneness of classes. Data from maintenance 

releases of a large Java system are used for this purpose. Preliminary results suggest that some 

dynamic coupling measures are significant indicators of change proneness and that they 

complement existing coupling measures based on static analysis.  

1. Introduction 

In the context of object-oriented systems, research related to quality models has focused mainly 

on defining structural metrics (e.g., capturing class coupling) and investigating their relationships 

with external quality attributes (e.g., class fault-proneness) [6]. The ultimate goal is to develop 

predictive models that may be used to support decision making, e.g., decide which classes should 

undergo more intensive verification and validation. Regardless of the structural attribute 

considered, most metrics have been so far defined and collected based on a static analysis of the 

design or code [6, 10, 12, 13, 16, 17]. They have, on a number of occasions, proven to be 

accurate predictors of external quality attributes, such as fault-proneness [6], ripple effects after 

changes [11, 14], and changeability [1, 14]. However, many of the systems that have been studied 

showed little inheritance and, as a result, limited use of polymorphism and dynamic binding [19].  

As the use of object-oriented design and programming matures in industry, we observe that 

inheritance and polymorphism are used more frequently to improve internal reuse in a system and 

facilitate maintenance. Though no formal survey exists on this matter, this is visible when 

analyzing the increasing number of open source projects, application frameworks, and libraries. 

The problem is that the static, coupling measures that represent the core indicators of most 

reported quality models [6] lose precision as more intensive use of inheritance and dynamic 

binding occurs. This is expected to result in poorer predictive accuracy of the quality models that 

utilize static coupling measurement.  
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Let us take an example, as illustrated in Figure 1, to clarify the issue at hand. Due to 

inheritance, the class of the object sending or receiving a message may be different from the class 

implementing the corresponding method. For example, let object a be an instance of class A, 

which is inherited from ancestor A'. Let A' implement the method mA'. Let object b be an 

instance of class B, which is inherited from ancestor B'. Let B' implement the method mB'. If 

object a sends the message mB' to object b, the message may have been sent from the method 

source mA' implemented in class A' and processed by a method target mB' implemented in 

class B'. Thus, in this example, message passing caused two types of coupling: (1) object-level 

coupling between class A and class B (i.e., coupling between instances of A and B), and (2) 

class-level coupling between class A' and B'. The code may very well show statements where 

an object of type A invokes from mA' method mB' on an object of type B. However, to assume, 

through static code analysis, that there is class-level coupling between A and B as a result, is 

simply inaccurate. Both types of coupling, at the class and object levels, need to be captured 

accurately to address certain applications and must be investigated.  

a : A b : B

1: mB'()

+mA'()

A'

+mB'()

B'

A B

object-level coupling

class-level coupling

 

Sequence and Class Diagrams 

Figure 1 Class-level versus Object-level coupling 
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We propose a set of coupling measures (referred to as dynamic coupling measures) that is 

defined on an analysis of run-time object interactions. They can be collected through a dynamic 

analysis of the code, that is, by executing the code and saving information regarding the messages 

that are being sent among objects at run-time. It is also, a priori, conceivable that dynamic design 

models (e.g., interaction diagrams in the Unified Modeling Language (UML) [4]) could be used 

to collect such measures.  

Existing evidence suggests that dynamic coupling could be of strong interest. A preliminary 

empirical study on a SmallTalk system suggests that there is a significant relationship between 

change proneness and dynamic coupling [2]. Furthermore, according to the results of a controlled 

experiment [3], static coupling measures may sometimes be inadequate when attempting to 

explain differences in changeability (e.g., change effort) for object-oriented designs. A follow-up 

study indicates that the actual flow of messages taking place between objects at run-time is often 

traced systematically by professional developers when attempting to understand object-oriented 

software [5]. The results thus suggest that dynamic coupling measures could be of interest as 

predictors of the cognitive complexity of object-oriented software. Finally, dynamic coupling is 

more precise than static coupling for systems with dead (unused) code, which is uninteresting in 

most situations and can seriously bias analysis. 

This paper has two main objectives. First, it formally defines a set of dynamic coupling 

measures. Some of them can be measured in the context of object-oriented designs whereas 

others require the dynamic analysis of code. Second, it validates the measures in two distinct 

ways: (1) Their mathematical properties are systematically analyzed, and (2) The statistical and 

practical significance of using dynamic coupling measures is empirically assessed in the context 

of models predicting the change proneness of Java components.  
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The remainder of this paper is organized as follows. Section 2 describes 12 dynamic coupling 

measures and highlights the ways in which they differ from static measures. These dynamic 

coupling measures differ in terms of the entities they measure and their scope and granularity, 

and are classified accordingly. They are defined in an informal, intuitive manner but also using a 

formal framework based on set theory and first-order logic. The main reason for the latter is to 

ensure that the definitions are precise and unambiguous to allow precise discussions of the 

measurement properties and the replication of empirical studies. Section 3 describes how the 

dynamic coupling measures can be collected. Section 4 presents a case study as a first empirical 

evaluation of the proposed dynamic coupling measures. Section 5 describes related research. 

Section 6 concludes and outlines future research.  

2. Dynamic Coupling Measurement 

We first distinguish different types of dynamic coupling measures. Then, based on this 

classification, we provide both informal and formal definitions, using a working example to 

illustrate the fundamental principles. Using a published axiomatic framework [10], we then 

discuss the mathematical properties of the measures we propose. Our measures were designed to 

fulfill five properties that we deem very important for any coupling measure to be well formed. In 

order to define measures in a way that is programming language independent, we refer to a 

generic data model defined with a UML class diagram. 

2.1. Classifying Coupling Measures 

There are different ways to define dynamic coupling, all of which can be justified, depending on 

the application context where such measures are to be used. Three decision criteria are used to 

define and classify dynamic coupling measures.  
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1. Entity of measurement 

Since dynamic coupling is based on dynamic code analysis, coupling may be measured for a 

class or one of its instances. The entity of measurement may therefore be a class or an object.  

2. Granularity 

Orthogonal to the entity of measurement, dynamic coupling measurement can be aggregated at 

different levels of granularity. With respect to dynamic object coupling, measurement can be 

performed at the object level, but can also be aggregated at the class level, i.e., the dynamic 

coupling of all instances of a class is aggregated. In practice, even when measuring object 

coupling, the lowest level of granularity is likely to be the class, as it is difficult to imagine how 

the coupling measurement of objects could be used. Alternatively, all the dynamic coupling of 

objects involved in an execution scenario can be aggregated. We can also measure the dynamic 

object coupling in entire use cases (i.e., sets of scenarios), sets of use cases, or even an entire 

system (all objects of all use cases). In the case where the entity of measurement is a class, the 

aggregation scale is different as we can aggregate dynamic class coupling across an inheritance 

hierarchy, a subsystem, a set of subsystems, or an entire system. The relationships between 

various levels of granularity are formally described in Section 2.2. 

3. Scope 

Another important source of variation in the way we can measure dynamic coupling is the scope 

of measurement. This determines which objects or classes, depending on the entity of 

measurement, are to be accounted for when measuring dynamic coupling. For example, we may 

want, depending on the application context, to exclude library and framework classes.  
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At the object level, we may want to exclude certain use cases modeling exceptional situations 

(e.g., error conditions, usually modeled as extended use cases [4]) or objects that are instances of 

library or framework classes. At the very least, we may want to distinguish the different types of 

coupling taking place in these different categories.  

The choices we make regarding the entity, granularity, and scope of measurement depend on 

how we intend to apply dynamic coupling. Such choices form a classification of dynamic 

coupling measures that is summarized in Table 1.  

2.2. Definitions 

Before defining dynamic coupling measures, we introduce below the formal framework that will 

allow us to provide precise and unambiguous definitions. Not only do such definitions ensure that 

the reader understands the measures precisely, but they are also easily amenable to the analysis of 

their properties and facilitate the development of a dynamic analyzer by providing precise 

specifications. We provide a set of generic definitions that are based on the data model in Figure 

2, which models the type of information to be collected. Each class and association in the class 

diagram corresponds to a set and a mathematical relation, respectively. The inheritance 

relationship corresponds to a set partition. Based on this, we define the measures using set theory 

and first order logic. 

Table 1 Dynamic Coupling Classification 

Entity Granularity 
(Aggregation Level) 

Scope 
(Include/Exclude) 

Object Object 
Class 

(set of) Scenario(s) 
(set of) Use case(s) 

System 

Library objects 
Framework objects 

Exceptional use cases 
 

Class Class 
Inheritance Hierarchy 
(set of) Subsystem(s) 

System 

Library classes 
Framework classes 
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A few details of the class diagram in Figure 2 need to be discussed. Most role names are not 

shown, to avoid unnecessary cluttering of the class diagram. When no role name is provided, the 

meaning of associations is quite clear from the source and target classes. For example, methods 

are defined in a class, method invocations consist of a caller method in a source class and a callee 

method in a target class. Some of the key attributes are shown. One notable detail is that the line 

number where the target method is invoked is an attribute of a message that serves to uniquely 

identify it, as specified by the OCL1 constraint shown in the class diagram. This is necessary, 

because the same target method may be invoked in different statements and control flow paths in 

the same source method. Messages bearing those different invocations are considered distinct, 

because they are considered to provide different contexts of invocation for the method.  

Furthermore, associations with role names caller, source and sender should show an 

{exclusive or} constraint dependency to associations with role names callee, target, and 

                                                 

1 The Object Constraint Language (OCL) [32] is mostly used to specify constraints on class diagrams, operation pre/post 
conditions, and class invariants.  
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Figure 2 Class Diagram Capturing a Data Model of the Dynamic Analysis 



Simula TR 2003-5 and Carleton TR SCE-03-18 

9 

receiver, respectively. These constraints are not shown to avoid cluttering the diagram but are 

important as in our context, distinct methods, classes and objects must be involved in the links 

corresponding to those associations. In other words, in the context of our coupling measurement, 

method invocations are linked to two distinct class instances and two distinct method instances 

and messages involve two distinct objects. As expected, method invocations between classes are 

differentiated from messages between objects. A method name and signature uniquely identifies a 

method in the context of a specific class and a method invocation must be clearly linked to a 

method. This is why MethInvocation has associations with both Class and Method. 

Sets 

The first step is to define the basic sets on which to build our definitions. These sets are derived 

from the data model in Figure 2.  

• C: Set of classes in the system. C can be partitioned into the subsets of application classes 

(AC), library classes (LC), and framework classes (FC). Some of these subsets may be empty, 

C=AC ∪ LC ∪ FC and AC ∩ LC ∩ FC = ∅. Distinguishing such subsets may be important 

for defining the scope of measurement, as discussed above.  

• O: Set of objects instantiated by the system while executing all scenarios of all use cases 

(including exceptional use cases, e.g., treating error conditions, which are usually modeled as 

use cases extending base use cases).  

• M: Set of methods in the system (as identified by their signature).  

• Lines of code are defined on the set of natural numbers (N) 
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Relations 

We now introduce mathematical relations on the sets that are fundamental to the definitions of 

our measures.  

• D and A are relations onto C (⊆ C×C). D is the set of descendent classes of a class and A is 

the set of ancestors of a class.  

• ME is the set of possible messages in the system: ME ⊆ O×M×N×O×M. Indicated by the 

domain of ME, a message is described by a source object and method sending the message, a 

line of code (N), and a target object and method. Note that the sending of a message may not 

only correspond to a method invocation, but also to the sending of a signal [4]. The message 

is then asynchronous and on receipt of the signal, the target object triggers the execution of 

the target method. In Java, an active object (with its own thread of control) would typically 

have a run() method reading from a queue of signal objects and invoke the appropriate 

method after reading the next signal in the queue. 

• IV is the set of possible method invocations in the system: IV ⊆ M×C×M×C. An invocation 

is characterized by the invoking class and method and the class and method being invoked.  

• Other binary relations will be used in the text and their semantics can be easily derived from 

their domain and are denoted RDomain. For example, RMC ⊆ M×C refers to methods being 

defined in classes, a binary relation from the set of methods to the set of classes.  

Consistency Rule 

The relations IV and ME play a fundamental role in all our measures. In practice, an analysis of 

sequence diagrams or a dynamic analysis of the code allows us to construct ME. From that 

information, IV must be derived, but this is not trivial as polymorphism and dynamic binding 
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tend to complicate the mapping. The consistency rule below specifies the dependencies between 

the two relations and can be used to develop algorithms that derive IV from ME.  

(∃ (o1, c1), (o2, c2) ∈ ROC) (∃ l ∈ N) (o1, m1, l, o2, m2) ∈ ME ⇒  

(∃ c3 ∈ A(c1) ∪ { c1}, c4 ∈ A(c2) ∪ { c2})  

((m1, c3) ∈ RMC ∧ ((∀c5 ∈ A(c1) - {c3}) (m1, c5) ∈ RMC ⇒ c5 ∈ A(c3))) ∧ 

((m2, c4) ∈ RMC) ∧ ((∀c6 ∈ A(c2) - {c4}) (m2, c6) ∈ RMC ⇒ c6 ∈ A(c4))) ∧ 

(m1, c3, m2, c4) ∈ IV 

Working Example 

We now use a small working example, as shown in Figure 3, to illustrate the definitions above. 

Though it is assumed that our measures are collected through static and dynamic analysis of 

code, we use UML to describe a fictitious example, because it is more legible than pseudocode. 

This example is designed to illustrate the subtleties arising from polymorphism and dynamic 

binding. Other aspects, such as method signatures, have been intentionally kept simple to focus 

on polymorphism and dynamic binding. 

+m3()

c3
+m1()

c1

c4

+m2()

c2

c5

 

Figure 3 Working Class Diagram Example (UML notation) 
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The following sets can be derived from Figure 3: 

C = {c1, c2, c3, c4, c5} 

M = {m1, m2, m3} 

RMC = {(m1, c1), (m2, c2), (m3, c3)}  

In order to derive other relevant sets and relations, let us introduce the sequence diagrams in 

Figure 4, where each message is numbered. As our fictitious example is represented with UML 

diagrams, objects are referred to by using the sequence diagram number where they appear and 

their own identification number (i.e., SD
i
:object id). Similarly, we denote the line of code of 

the method invocation in message tuples as l(SDi:message id). In the example, we assume 

that the line of code of the method invocations m3() in messages SD1:1.1, SD1:1.2 and 

SD1:1.3 are different. Furthermore, since the sequence diagrams do not specify the sender 

object, source class and source method of the method invocations m1()in messages SD
1
:1 and 

SD
2
:1, the example sets derived below account for only the four (completely specified) messages 

SD
1
:1.1, SD

1
:1.2, SD

1
:1.3 and SD

2
:1.1:  

SD1

1.1: m3()

2 : c4

1: m1()

1 : c1

1.3: m3()

1.2: m3()

3 : c5

1.1: m2()

2 : c2

1: m1()

1 : c1

SD2

 

Figure 4 Two hypothetical sequence diagrams related to Figure 3 
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O = {SD1:1, SD1:2, SD1:3, SD2:1, SD2:2} 

ROC = {(SD1:1, c1), (SD1:2, c4), (SD1:3, c5), (SD2:1, c1), (SD2:2, c2)} 

ME = {(SD1:1, m1, l(SD1:1.1), SD1:2, m3), (SD1:1, m1, l(SD1:1.2), SD1:3, m3),  

(SD1:1, m1, l(SD1:1.3), SD1:3, m3), (SD2:1, m1, l(SD2:1.1), SD2:2, m2)} 

IV = {(m1, c1, m3, c3), (m1, c1, m2, c2)} 

Definitions of Measures 

The measures are all defined as cardinalities of specific sets. They are therefore defined on an 

absolute scale and are amenable, as far as measurement theory is concerned, to the type of 

regression analysis performed in Section 4. Those sets are defined below and are given self-

explanatory names, following the notation summarized in Table 2. First, as mentioned above, we 

differentiate the cases where the entity of measurement is the object or the class. Second, as in 

previous static coupling frameworks [10], we differentiate import from export coupling, that is 

the direction of coupling for a class or object. For example, we differentiate whether a method 

executed on an object calls (imports) or is called by (exports) another object’s method. 

Furthermore, orthogonal to the entity of measurement and direction of coupling considered, there 

are at least three different ways in which the strength of coupling can be measured. First, we 

provide definitions for import and export coupling when the entity of measurement is the object 

and the granularity level is the class. Phrases outside and between parentheses capture the 

situations for import and export coupling, respectively. 

• Dynamic messages. Within a run-time session, it is possible to count the total number of 

distinct messages sent from (received by) one object to (from) other objects, within the scope 

considered. That information is then aggregated for all the objects of each class. Two 
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messages are considered to be the same if their source and target classes, the method invoked 

in the target class, and the statement from which it is invoked in the source class are the same. 

The latter condition reflects the fact that a different context of invocation is considered to 

imply a different message. In a UML sequence diagram, this would be represented as distinct 

messages with identical method invocations but different guard conditions.  

• Distinct method invocations. A simpler alternative is to count the number of distinct methods 

invoked by each method in each object (that invoke methods in each object). Note that this is 

different from simply counting method invocations as we count each distinct method only 

once. That information is then aggregated for all the objects of each class. 

• Distinct classes. It is also possible to count only the number of distinct server (client) classes 

that a method in a given object uses (is used by). That information is then aggregated for all 

the objects of each class.  

If we now look at where the calling and called methods are defined and implemented, the entity 

of measurement is the class and we can provide similar definitions. We then count the number of 

distinct messages originating from (triggering the executions of) methods in the class, the number 

of distinct methods invoked by (that invoke) the class methods, and the number of distinct classes 

from which the class is using methods (that uses its methods). 

Table 2 shows the formal set definitions of the measures when the granularity is the class, and 

the scope is the system. We provide an intuitive textual explanation only for the first set: 

IC_OM(c). Other sets can be interpreted in a similar manner. 

IC_OM(c): A set containing all tuples (source method, source class, target method, target class) 

such that there exists an object o instantiating c (whose coupling is being measured) that 

sends a message to at least one instance of the target class in order to trigger the execution 
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of the target method. The corresponding metric is simply the cardinality of this set. Note 

that the source class must be different from the target class (c1 ≠ c2), because we are 

focusing on dependencies that contribute to coupling between classes, not their cohesion 

(as further discussed in [9, 10]). Reflexive method invocations are therefore excluded. 

 

 

Table 2 Summary of Dynamic Coupling Measures (granularity=class, scope=system) 
Direction Entity of 

Measurement 
Strength Set Definition 

Dynamic 
messages 

IC_OD(c1) = {(m1, c1, l, m2, c2) | (∀(o1, c1) ∈ ROC)  (∃ (o2, c2) ∈ ROC, l ∈ N)   
                    c1 ≠ c2 ∧ (o1, m1, l, o2, m2) ∈ ME} 

Distinct 
Methods 

IC_OM(c1) = {(m1, c1, m2, c2) | (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)  
                    c1 ≠ c2 ∧ (o1, m1 , l, o2, m2) ∈ ME} 

Object 

Distinct 
Classes 

IC_OC(c1) = {(m1, c1, c2) | (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)  
                    c1 ≠ c2 ∧ (o1, m1, l, o2, m2) ∈ ME} 

Dynamic 
messages 

IC_CD(c1) = {(m1, c1, l, m2, c2) | (∃ (o3, c3), (o4, c4) ∈ ROC) (∃ l ∈ N)  
                    c1 ≠ c2 ∧  (o3, m1, l, o4, m2) ∈ ME ∧ 

               (∃ c1 ∈ A(c3) ∪ {c3}, c2 ∈ A(c4) ∪ {c4})  
    ((m1, c1) ∈ RMC ∧ ((∀c5 ∈ A(c1) - {c1}) (m1, c5) ∈ RMC ⇒  
    c5 ∈ A(c1))) ∧ ((m2, c2) ∈ RMC) ∧ ((∀c6 ∈ A(c4) - {c2})  
    (m2, c6) ∈ RMC ⇒ c6 ∈ A(c2))) ∧(m1, c1, m2, c2) ∈ IV} 

Distinct 
Methods 

IC_CM(c1) = {(m1, c1, m2, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC)  
                     c1 ≠ c2 ∧ (m1, c1, m2, c2) ∈ IV} 

Import 
Coupling 

Class 

Distinct 
Classes 

IC_CC(c1) = {(m1, c1, c2) | (∃ (m1, c1), (m2, c2) ∈ RMC)  
                     c1 ≠ c2 ∧ (m1, c1, m2, c2) ∈ IV} 

Dynamic 
messages 

EC_OD(c1) = {(m2, c2, l, m1, c1)| (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)  
                      c1 ≠ c2 ∧ (o2, m2, l, o1, m1) ∈ ME} 

Distinct 
Methods 

EC_OM(c1) = {(m2, c2, m1, c1) | (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)  
                      c1 ≠ c2 ∧ (o2, m2, l, o1, m1) ∈ ME} 

Object 

Distinct 
Classes 

EC_OC(c1) = {(m2, c2, c1) (∀(o1, c1) ∈ ROC) (∃ (o2, c2) ∈ ROC, l ∈ N)  
                 c1 ≠ c2 ∧ (o2, m2, l, o1, m1) ∈ ME} 

Dynamic 
messages 

EC_CD(c1) = {(m2, c2, l, m, c) | (∃ (o3, c3), (o4, c4) ∈ ROC) (∃ l ∈ N)  
                      c1 ≠ c2 ∧ (o4, m2, l, o3, m1) ∈ ME ∧ 

                 (∃ c1 ∈ A(c3) ∪ {c3}, c2 ∈ A(c4) ∪ {c4})  
       ((m1, c1) ∈ RMC ∧ ((∀c5 ∈ A(c3) - {c}) (m1, c5) ∈ RMC ⇒  
       c5 ∈ A(c1))) ∧ 
       ((m2, c2) ∈ RMC) ∧ ((∀c6 ∈ A(c4) - {c2}) (m2, c6) ∈ RMC ⇒  
       c6 ∈ A(c2))) ∧ 

                 (m2, c2, m1, c1) ∈ IV} 
Distinct 
Methods 

EC_CM(c1) = {(m2, c2, m1, c1) | (∃ (m1, c1), (m2, c2) ∈ RMC)  
                     c1 ≠ c2 ∧ (m2, c2, m1, c1) ∈ IV} 

Export 
Coupling  

Class 

Distinct 
Classes 

EC_CC(c1) = {(m2, c2, c1) | (∃ (m1, c1), (m2, c2) ∈ RMC)  
                 c1 ≠ c2 ∧ (m2, c2, m1, c1) ∈ IV} 
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Higher Granularities 

If we want to measure dynamic coupling at higher levels of granularity, this can be easily defined 

by performing the union of the coupling sets of a set of classes or objects, depending on the entity 

of measurement. For example, if the entity of measurement is the class and the level of 

granularity is the subsystem, then for each subsystem SS there corresponds a subset of classes 

that it contains, SC ∈ 2C, and we can define: 

IC_CM(SS) = ∪ (all c ∈ SC) IC_CM(c)  

Similarly, when the entity of measurement is the object: For each use case UC there 

corresponds a set of participating objects SO∈2O (that are involved in the UC’s sequence 

diagram(s)), and we can define: 

IC_CM(UC) = ∪ (all o ∈ SO) IC_CM(o)  

Similar definitions can be provided for all levels of granularity.  

Example 

Returning to our working example in Figure  3 and Figure 4, we provide below all the non-empty 

coupling sets. When the entity of measurement as well as the granularity is the class, we obtain 

the following import and export coupling sets: 

IC_CD(c1)  {(m1,c1,l(SD1:1.1),m3,c3),(m1,c1,l(SD1:1.2),m3,c3),(m1,c1,l(SD1:1.3),m3,c3),(m1,c1,l(SD2:1.1),m2,c2)} 
IC_CM(c1)  {(m1,c1,m3,c3), (m1,c1,m2,c2)} 
IC_CC(c1)  {(m1,c1,c3), (m1,c1,c2)} 
EC_CD(c2)  {(m1,c1,l(SD2:1.1),m2,c2)} 
EC_CM(c2)  {(m1,c1,m2,c2)} 
EC_CC(c2)  {(m1,c1,c2)} 
EC_CD(c3)  {(m1,c1,l(SD1:1.1),m3,c3), (m1,c1,l(SD1:1.2),m3,c3), (m1,c1,l(SD1:1.3),m3,c3)} 
EC_CM(c3)  {(m1,c1,m3,c3)} 
EC_CC(c3)  {(m1,c1,c3)} 

When the entity of measurement is the object, and the granularity is the class, we obtain the 

coupling sets below: 
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IC_OD(c1)  {(m1,c1,l(SD1:1.1),m3,c4),(m1,c1,l(SD1:1.2),m3,c5),(m1,c1,l(SD1:1.3),m3,c5),(m1,c1,l(SD2:1.1),m2,c2)} 
IC_OM(c1) {(m1,c1,m3,c4), (m1,c1,m3,c5), (m1,c1,m2,c2)} 
IC_OC(c1) {(m1,c1,c4), (m1,c1,c5), (m1,c1,c2)} 
EC_OD(c2) {(m1,c1,l(SD2:1.1),m2,c2)} 
EC_OM(c2) {(m1,c1,m2,c2)} 
EC_OC(c2) {(m1,c1,c2)} 
EC_OD(c4) {(m1,c1,l(SD1:1.1),m3,c4)} 
EC_OM(c4)   {(m1,c1,m3,c4)} 
EC_OC(c4)  {(m1,c1,c4)} 
EC_OD(c5) {(m1,c1,l(SD1:1.2),m3,c5), (m1,c1,l(SD1:1.3),m3,c5)} 
EC_OM(c5)   {(m1,c1,m3,c5)} 
EC_OC(c5) {(m1,c1,c5)} 

The export coupling sets for c1 as well as the import coupling sets for c2, c3, c4 and c5 are 

empty.  

To gain a better insight into the impact of polymorphism on coupling, let us change the class 

diagram in Figure 3 by adding a new implementation of method m3() in c5: RMC = {(m1, c1), 

(m3,c3), (m3, c5), (m2, c2)}, while keeping the sequence diagrams in Figure 4 unchanged. This 

results in a new element in IV: IV = {(m1, c1, m3, c3), (m1, c1, m3, c5), (m1, c1, m2, c2)}. The 

other sets (C, M, O, ROC and ME) remain unchanged. When the entity of measurement is the 

class, the new method implementation results in significantly changed import coupling sets for 

class c1 (removed elements are struck through, whereas new elements are bolded): 

IC_CD(c1)  {(m1,c1,l(SD1:1.1),m3,c3), (m1,c1,l(SD1:1.2),m3,c3),(m1,c1,l(SD1:1.3),m3,c3), 
(m1,c1,l(SD1:1.2),m3,c5), (m1,c1,l(SD1:1.3),m3,c5), (m1,c1, l(SD2:1.1),m2,c2)} 

IC_CM(c1)   {(m1,c1,m3,c3), (m1,c1,m3,c5), (m1,c1,m2,c2)} 
IC_CC(c1)   {(m1,c1,c3), (m1,c1,c5), (m1,c1,c2)} 

 

Adding a new implementation of an existing method in a subclass has resulted in increased 

import coupling for class c1. This is because class c1 now imports from one additional class 

(c5), one additional method (m3() in c5), and one additional distinct method invocation. 

However, object import coupling (IC_Ox(c)) remains unchanged, as at the object level, instances 

of c1 were already importing from c5.  
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In a similar way, the export coupling of class c3 has decreased and the export coupling of 

class c5 has increased: 

EC_CD(c2)  {(m1,c1,l(SD2:1.1), m2,c2)} 
EC_CM(c2) {(m1,c1,m2,c2)} 
EC_CC(c2) {(m1,c1,c2)} 
EC_CD(c3)  {(m1,c1,l(SD1:1.1), m3,c3), (m1,c1,l(SD1:1.2), m3,c3), (m1,c1,l(SD1:1.3),m3,c3)} 
EC_CM(c3)  {(m1,c1,m3,c3)} 
EC_CC(c3)  {(m1,c1,c3)} 
EC_CD(c5)  {(m1,c1,l(SD1:1.2),m3,c5), (m1,c1,l(SD1:1.3),m3,c5)} 
EC_CM(c5)  {(m1,c1,m3,c5)} 
EC_CC(c5)  {(m1,c1,c5)} 

2.3. Analysis of Properties 

We show here that the five coupling properties presented in [10] are valid for our dynamic 

coupling measures. The motivation is to perform an initial theoretical validation by 

demonstrating that our measures have intuitive properties that can be justified. We use IC_OM 

and IC_CM at the lowest granularity level (object, class) and system level as examples, but the 

demonstrations2 below can be performed in a similar way for all coupling measures, at all levels 

of granularity.  

Non-negativity 

It is not possible for the dynamic coupling measures to be negative because they measure the 

cardinality of sets, e.g., IC_OM returns a set of tuples (m, c, m', c') ∈ M×C×M×C.  

Null values 

At the system level, if S is the set that includes all the objects that participate in all the use cases 

of the system, IC_OM(S) is empty (and coupling equal to 0) if and only if the set of messages in S 

is empty:  

                                                 

2 These demonstrations are admittedly rather informal. We adopted a level of formality that we deemed sufficient to convince the 
reader these properties did indeed hold, without making the discussion unnecessarily terse.  
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ME = ∅ ⇔ IC_OM(S) = ∅ 

This is consistent with our intuition as this should be the only case where we get a null coupling 

value. Since  ME = ∅ ⇔ IV = ∅ (consistency rule), we also have: 

ME = ∅ ⇔ IC_CM(S) = ∅ 

At the object level, for IC_OM(o), we have: 

(∀ o ∈ O, m ∈ M, l ∈ N, o' ∈ O, m’ ∈ M) (o, m , l, o', m') ∉ ME ⇔ IC_OM(o) = ∅ 

Again, this is intuitive, as we should only obtain a null value if and only if object o does not 

participate in any message as sender or receiver. Similarly, at the class level, we obtain: 

(∀ o∈O, c∈C, (o,c) ∈ Roc) IC_OM(o) = ∅ ⇔ IC_CM(c) = ∅ (consistency rule) 

Monotonicity 

If a class c is modified such that at least one instance o sends/receives more messages, its 

import/export coupling can only increase or stay the same, for any of the coupling measures 

defined above.  

If object o∈O sends an additional message (o, m , l, o', m') ∈ ME, this cannot reduce the 

number of pairs (method, class) ∈ RMC that are part of the sets IC_OM(o) or IC_OM(S). The 

same can be said for export coupling if object o∈O receives an additional message.  

Adding a message to ME may or may not lead to a new method invocation in IV. But even if 

this is the case, the sets IC_CM(c) and IC_CM(S) cannot possibly lose any elements.  

Similar arguments can be provided for all coupling measures, at all levels of granularity. To 

conclude, by adding messages and method invocations in a system, object and class coupling 

measures cannot decrease, respectively, thus complying with the monotonicity property. 
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Impact of merging classes 

Assuming c' is the result of merging c1 and c2, thus transforming system S into S', for any 

Coupling measure, we want the following properties to hold at the class and system levels: 

Coupling(c1) + Coupling(c2) ≥ Coupling(c') 

Coupling(S) ≥ Coupling(S') 

Taking IC_CD as an example, we can easily show this property holds: All instances of c1 and 

c2 in IV’s tuples are substituted with c'. If there exist tuples of the type (m1, c1, m2, c2) in IV, then 

they are transformed into tuples of the form (m1, c', m2, c'). For IC_Cx measures, since we 

exclude reflexive method invocations because they do not contribute to coupling (Section 2.2), 

then tuples of the form (m1, c', m2, c') disappear because of the merging. Hence: 

|IC_CD(c')| ≤ |IC_CD(c1)| + |IC_CD(c2)| 

Similar arguments can be made for all other coupling measures.  

Merging uncoupled classes 

Following reasoning similar to that above, if two classes c1, c2 do not have any coupling, this 

means there is no tuple of the type (m1, c1, m2, c2) in IV. If we merge them into one class, we 

therefore cannot obtain tuples of the type (m1, c', m2, c'). Then, we can conclude IC_CD fulfills 

the following property: 

|IC_CD(c')| = |IC_CD(c1)| + |IC_CD(c2)| 

This property also holds for all other coupling measures.  
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Symmetry between export and import coupling 

By symmetry, for all class level dynamic coupling measures, we infer that the following property 

holds: 

∪(all c ∈ C) EC_Cx(c) = ∪(all c ∈ C) IC_Cx(c) 

This stems from the fact that for any (m, c, m', c') ∈ IV, there is always a l∈N such that  

(m, c, l, m', c') ∈ EC_CD(c') and (m, c, l, m', c') ∈ IC_CD(c). Along the same lines, for each (m, 

c, m', c') ∈ IC_CM(c) and (m,c,c') ∈ IC_CC(c), there is a corresponding (m, c, m', c') ∈ 

EC_CM(c') and (m, c, c') ∈ EC_CC(c'), respectively.  

Following a similar argument when the entity of measurement is the object, we obtain: 

∪(all o ∈ O) EC_Ox (o) = ∪(all o ∈ O) IC_Ox(o) 

The symmetry property is intuitive, because anything imported by a class or object has to be 

exported by another class or object, respectively. This condition applies at all levels of 

granularity.  

Based on the property analysis above, we can see that our coupling measures seem to exhibit 

intuitive properties that would be expected when measuring coupling. This constitutes a 

theoretical validation of the measures. Section 4 focuses on their empirical validation, using 

project data.  

3. Collecting Dynamic Coupling Data 

It is crucial to collect dynamic coupling data in a practical and efficient manner. This section 

describes two alternative approaches. The first is based on collecting the coupling data from 

executing programs, whereas the second calculates the measures based on dynamic UML models. 
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3.1. Tool for Collecting Dynamic Coupling Measures at Run-Time 

To collect dynamic coupling data from Java applications, we developed a tool: JDissect. An 

overview of the architecture is depicted in Figure 5. The tool separates the collection and analysis 

of dynamic coupling data into two phases. In the first phase, data from a running Java program is 

gathered and stored. This is accomplished by having the Java Virtual Machine (JVM) load a 

library of data collection routines (libjdissect.so) that are called whenever specified 

internal events occur. The interfaces used for communication between the JVM and the library 

are called JVMPI (Java VM Profiling Interface) and JVMDI (Java VM Debugging Interface). 

Most of the data is collected from the profiling interface. The JVMDI is used to obtain the unique 

line number from which a method call originates (to obtain the information needed to calculate 

the xx_xD measures). During the data collection phase, a user may interactively tag messages 

belonging to specific scenarios or use cases through a separate utility (Scalpel) that 

communicates with libjdissect.so through a socket connection. These tags can 

subsequently be used to limit the scope of measurement (e.g., to specific use cases) and, 

potentially, to compute measures at higher levels of granularity than the class (e.g., at the use 

case aggregation level). During the data collection process, the library populates a data structure 

as specified in Figure 2. When the application terminates, the data is stored in a flat file structure 

(Data).  

Data
Java

Application Java VM
JVMPI

JVMDI
libjdissect.so

Scalpel

MCalc

Filter.conf
 

Figure 5 Architecture of the JDissect tool 
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In the second phase, the data is analyzed. Another executable (MCalc), sharing a great deal of 

code with the library, reads the flat files into a data structure identical to that used by the library. 

This structure is analyzed to obtain the dynamic coupling measures. The analysis tool traverses 

the data structure in Figure 2 and computes the sets specified in Table 2. A configuration file 

(Filter.conf) can be used to limit the scope of measurement, e.g., excluding library or 

framework classes. Each measure is then computed simply by counting the number of elements 

in each set. Data from several run-time sessions can be merged by the analysis tool, such that 

accumulated dynamic coupling data can be computed. This merging capability enables the 

collection of coupling data for Java systems for which several concurrent instances of the JVM 

are used, such as large, distributed or component-based systems.  

Our coupling tool utilizes interfaces provided by the Java Virtual Machine to collect the 

message traces and other information specified in Figure 2. Another possible approach could 

have been to instrument the system. Instrumentation can be done either at the source code or byte 

code level using tools such as the Java Compiler Compiler (JavaCC) [24] or the Byte Code 

Engineering Library (BCEL) [23], respectively. However, utilizing the existing interfaces to the 

Java VM provides several benefits over instrumentation. Instrumenting the code means that we 

are testing the instrumented version and not the actual version, which may lead to different 

outputs and system states. Since instrumentation causes a significant effort overhead, if the 

system is evolving rapidly, the project manager will also be reluctant to keep instrumenting the 

new versions. 

Furthermore, source code instrumentation requires access to the Java application source code. 

This might be a disadvantage in cases where an application uses libraries for which the source 

code is not available. Finally, instrumentation might cause a significant performance overhead. In 

contrast to our approach, both source code and byte code instrumentation require that parts of the 



Simula TR 2003-5 and Carleton TR SCE-03-18 

24 

data collection software be written in Java. Subsequently, the byte code of the data collection 

software is interpreted by the Java VM. Since our data collection tool is written in C++ and 

dynamically linked with the JVM at run-time, there is probably less performance overhead 

associated with our approach than with data collection tools employing instrumentation. As 

performance overhead increases, the behavior of concurrent software is more likely to be affected 

by the data collection process and it is important to minimize the chances of such a problem 

occurring. 

3.2. Using UML Models for Data Collection 

So far, we have assumed that dynamic coupling data are collected through dynamic analysis of 

the code. It was also suggested that it might be possible to collect the dynamic coupling data 

through analysis of dynamic UML models, e.g., interaction diagrams. Measuring coupling on 

early design artifacts would be of practical importance because one could use that information for 

early decision making. For example, assuming that the necessary UML diagrams are available for 

a given design, one could derive test cases [7] and compute the dynamic coupling associated with 

each of the test cases (use case scenarios) based on the UML diagrams. For example, test cases 

with high coupling could be exercised first, as they would be expected to uncover more faults 

and, therefore, the test plan would provide an order in which to run test cases based on dynamic 

coupling information.  

When measuring dynamic coupling based on UML models, the main problem lies with 

interaction diagrams. If we resort to UML diagrams for dynamic coupling measurement, we have 

to find a substitute for the line of code where the invocation is located to distinguish messages (in 

ME) and compute xx_xD measures. A natural substitute is the guard or path condition (which 

must be true for a message to be sent), which corresponds to different contexts of invocations.  
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An identical method on two messages with two distinct guard conditions must correspond to 

different invocation statements in the code. However, one guard condition on a message does not 

have to correspond to one invocation statement in the code. For example, one may have a guard 

of the form [A or B] that triggers the invocation of m(), and the corresponding code may 

show two distinct invocations statements for m(), each of them being in the body of an if 

statement with conditions A and B, respectively.  

What this implies is that if xx_xD measures are collected from UML interaction diagrams, 

coupling will tend to be underestimated, because distinct elements of ME will not be 

distinguishable using UML interaction diagrams. However, the question is whether, in practice, 

this makes any significant difference. The advantages of using dynamic coupling measures on 

early UML artifacts may outweigh the drawbacks that are due to their lower precision. 

Furthermore, xx_xC and xx_xM measures are not affected by the use of UML interaction 

diagrams. If empirical investigation finds these latter measures to be strongly correlated with 

xx_xD, it is doubtful the data collection inaccuracy discussed above will have any practical effect.  

4. Case Study 

This section presents the results of a case study whose objectives are to provide a first empirical 

validation of the dynamic coupling measures presented above. The first subsection explains in 

more detail our objectives, the study settings, and the methodology we follow. In subsequent 

sections quantitative results are presented and interpreted.  

4.1. Objectives and Methodology 

We selected an open-source software system called Velocity to evaluate the dynamic coupling 

measures. Velocity is part of the Apache Jakarta Project [23]. Velocity can be used to generate 
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web pages, SQL, PostScript and other outputs from template documents. It can be used either as a 

standalone utility or as an integrated component of other systems. A total of 17 consecutive 

versions (versions 1.0b1 to version 1.3.1) of Velocity were available for analysis. The versions 

were released within a time span of approximately two years. The versions used in the actual 

analysis were four subsequent sub-releases (called “release candidates” in Velocity) within one 

major release of the Velocity system (version 1.2). The first sub-release, 1.2rc1, consists of 17210 

source lines of code (SLOC) in 136 core application classes (after removing “dead” code and 

classes related to test cases, as described further in Section 4.2) in addition to 408 library classes. 

There were 65 inheritance relationships and 149 instances of method overriding in the first 

release candidate, thus showing substantial use of polymorphism and dynamic binding. Further 

descriptive statistics of the classes are provided in Appendix C. 

Several types of data were collected from the system. First, change data (i.e., using a class-

level source code diff) was collected for each application class. Based on the change data, the 

amount of change (in SLOC added and deleted) of each class within a given set of consecutive 

versions was computed. Second, to collect the dynamic coupling measures, test cases provided 

with the Velocity source code were used to exercise each version of the system. Each test case 

was executed while the JDissect dynamic coupling tracer tool (Section 3.1) computed the 

dynamic coupling measures. Third, size and a comprehensive set of static coupling measures (a 

complete list is provided in Appendix A and B) were collected using a static code analysis tool. 

The scope of measurement was the application classes (AC) of Velocity. Thus, coupling to/from 

library and framework classes were not included (for further details, see Section 2.1). 

A first objective of the case study was to determine whether the dynamic coupling measures 

capture additional dimensions of coupling when compared with static coupling measures. A 

subsequent, more ambitious objective was to investigate whether dynamic coupling measures are 
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significant indicators of a useful, external quality attribute and are complementary to existing 

static measures in explaining its variance.  

Following the methodology described in [6], we first analyzed the descriptive statistics of the 

dynamic coupling measures. The motivation was to determine whether they show enough 

variance and whether some of the properties we expected were visible in the data. The next step 

was to perform a principal component analysis (PCA), the goal of which was to identify what 

structural dimensions are captured by the dynamic coupling measures and whether these 

dimensions are at least partly distinct from static coupling measures. It is usual for software 

product measures to show strong correlations and for apparently different measures to capture 

similar structural properties. PCA also helps to interpret what measures actually capture and 

determine whether all measures are necessary for the purpose at hand. In our case, recall that we 

want to determine whether all xx_xC, xx_xM, and xx_xD measures are necessary, that is, to what 

extent they are redundant. 

In order to investigate their usefulness as quality indicators, we investigate whether dynamic 

coupling measures are statistically related to change proneness, that is, the extent of change 

across the versions of the system we used as a case study. To do so, we analyzed the changes 

(lines of code added and deleted) across the four sub-releases of Velocity 1.2. Our goal was to 

ensure we would only consider correction changes as requirements changes are not driven by 

design characteristics but mainly by external factors. Sub-releases in a major release include only 

correction changes3 and we were therefore able to factor out requirements changes and obtain 

more accurate analysis results regarding the impact of coupling on change proneness.  

                                                 

3 We checked the change records for the four sub-releases of Velocity 1.2 to ensure that this assumption was correct. 
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The dependent variable (Change) in this study is the total amount of change (source lines of 

code added and deleted) that has affected each of the 136 application classes participating in the 

test case executions across the four sub-releases of Velocity 1.2. Since none of these classes were 

added or deleted during the making of the successive releases, the variable Change is a measure 

of the change proneness of these classes. In this case study context, this can be more precisely 

defined as their tendency to undergo correction changes. Other possible dependent variables 

could have been selected, such as the number of changes, but we wanted our dependent variable 

to somehow reflect the extent of changes as well as their frequency.  

The above analysis assumes that there is a cause-effect relationship between coupling and 

change proneness, something which is intuitive because classes that strongly depend on or 

provide services to other classes are more likely to change, through ripple effects, as a result of 

changes in the system [11]. Predicting the change proneness of a class (i.e., its volatility) can be 

used to aid design refactoring (e.g., removing "hot-spots"), choosing among design alternatives or 

assessing changeability decay [1].  

One important issue is that not only do we want our measures to relate to change proneness in 

a statistically significant way, but we want the effect to be additional or complementary to that of 

static coupling measures and class size [6, 21]. If some of the dynamic coupling measures remain 

statistically significant covariates when the static coupling measures and size measures are 

included as candidate covariates, this subset of dynamic coupling measures is deemed to 

significantly contribute to change proneness. We consider this to be empirical evidence of the 

causal effect between dynamic coupling and change proneness, of their practical usefulness, and 

hence we consider it to provide an initial empirical validation of the dynamic coupling measures. 

More details are provided in Section 4.4. 
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4.2. Code Coverage 

One practical drawback of using dynamic analysis is that one has to ensure that the code is 

sufficiently exercised to reflect in a complete manner the interactions that can take place between 

objects. To obtain accurate dynamic coupling data, the complete set of test cases provided with 

Velocity were used to exercise the system. Though this test suite was supposed to be complete, as 

it is used for regression test purposes, we used a code coverage tool and discovered that only 

about 70 percent of the methods were covered by the test cases. A closer inspection of the code 

revealed that a primary reason for this apparent low coverage was that 34 classes contained 

“dead” code. In addition, there were many occurrences of alternative constructors and error 

checking code that were never called. Fortunately, such code does not contribute to coupling. 

After removing the dead code and filtering out alternative constructors and error checking code, 

the test cases covered approximately 90 percent of the methods that might contribute to coupling 

among the application classes in Velocity. Consequently, the code coverage seems to be 

sufficient to obtain fairly accurate dynamic coupling measures for the 136 “live” application 

classes of Velocity 1.2. 

4.3. Preliminary Analysis Summary 

This subsection describes the main results from a number of standard, preliminary data analyses. 
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Variability 

We first computed descriptive statistics for coupling and class size measures based on the first 

sub-release of the studied release (1.2) of Velocity (Appendix C). One notable result is that the 

mean values for dynamic import coupling measures (e.g., IC_OC) are always equal to the mean 

values of their corresponding dynamic export coupling measure (e.g., EC_OC). This confirms the 

symmetry property discussed in Section 2.3. For most measures, there are large differences 

between the lower 25th percentile, the median, and the 75th percentile, thus showing strong 

variations in import and export coupling across classes. Many of the measures show a large 

standard deviation and mean values that are larger than the median values, with a distribution 

skewed towards larger values. Two of the static coupling measures show (almost) no variation 

and are not considered in the remainder of the analysis. These measures are related to direct 

access of public attributes by methods in other classes, which is considered poor practice.  

Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) [20] was used to analyze the covariance structure of the 

measures and determine the underlying dimensions they capture. PCA usually generates a large 

number of Principal Components, which are usually retained or discarded based on the amount of 

variance they explain4. Appendix D provides the results of PCA when accounting for dynamic 

coupling measures only. The results show that coupling is divided along four dimensions: IC_Ox,  

IC_Cx, EC_Ox and EC_Cx. Thus, all xx_xC, xx_xM, and xx_xD measures belong to identical 

components when they have identical scope, granularity and entity of measurement, therefore 

capturing similar properties. This implies that it may not be necessary to collect all of these 

measures, and in particular, the xx_xD measures that cannot be collected on UML diagrams and 

                                                 

4 We use here a typical threshold, where PCs with eigenvalues larger than 1.0 are retained. 
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require dynamic code analysis. It is interesting to note that this confirms the results in the earlier 

case study on a Smalltalk system [2]. 

Appendix E provides the results of PCA when considering all measures. Two principal 

components (PC5 and PC7) clearly capture export dynamic coupling and import dynamic 

coupling, mostly at the object level (i.e., object-level show higher weights), respectively. As for 

all PCA results when many measures are included, some of the principal components are difficult 

to interpret. The first one, for example, captures most size measures and some import static 

coupling measures, but also, to a lesser extent, import dynamic coupling at the class level. As has 

been observed in past studies [6, 21], size may be to some extent related to some of the coupling 

measures. With respect to dynamic coupling, results show that class-level measures are 

moderately correlated with some of the size and static coupling measures, but overall, the PCA 

analysis seems to indicate that our dynamic coupling measures (especially when the entity of 

measurement is the object) are not redundant with existing static coupling and size measures. The 

next sections go even further in this respect by providing evidence that dynamic coupling 

measures are also useful quality indicators. 

Dynamic coupling as an explanatory variable of change proneness 

The next step was to analyze the extent to which each of the dynamic coupling measures are 

related to our dependent variable, change proneness (see Section 4.1). However, since the size 

(SLOC) of a class is an obvious explanatory variable of Change (SLOC added+deleted), it may 

be more insightful to determine whether a coupling measure is related to change proneness 

independently of class size. We therefore tested whether the dynamic coupling measures are 
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significant additional explanatory variables, over and above what has already been accounted for 

by size.  

To achieve this, we systematically performed a multiple linear regression involving class size 

(SLOC) and each of the dynamic coupling measures and then determined whether the regression 

coefficient for the coupling measure was statistically significant (using a standard statistical t test 

[22]). The underlying assumptions are that the larger the export coupling, the more likely a class 

is to be changed, because it has to adjust to the evolving needs of many classes. Similarly, the 

larger the import coupling, the more likely a class is to be changed, because it depends on many 

other classes that may themselves change, thus triggering ripple effects. The analyses resulted in 

12 coupling measures and one size measure being tested for significance and with that many 

tests, the discovery of empirical relationships by chance becomes more likely [18]. Consequently, 

the significance level (alpha-level) was set to α = 0.05/13 = 0.004, following the Bonferroni 

procedure. However, the Bonferroni procedure is conservative and the reader may choose to be 

less strict when interpreting the actual p-values in Table 3.  

Table 3 Relationships between Change Proneness and Dynamic Coupling 

Regression 
Covariates 

Coefficient 
Size 

p-value 
Size 

Coefficient 
Coupling 

p-value 
Coupling 

R-Sq R-Sq (adj) 

CS1 0.068 0.000 N/A N/A 12.8% 12.1% 
CS1, IC_OC 0.067 0.000 0.123 0.778 12.8% 11.5% 
CS1, IC_OM 0.067 0.000 0.085 0.769 12.8% 11.5% 
CS1, IC_OD 0.068 0.000 0.010 0.971 12.8% 11.5% 
CS1, IC_CC 0.059 0.001 1.038 0.151 14.1% 12.8% 
CS1, IC_CM 0.059 0.001 0.748 0.165 14.0% 12.7% 
CS1, IC_CD 0.063 0.000 0.314 0.473 13.1% 11.8% 
CS1, EC_OC 0.064 0.000 1.656 0.001 20.1% 18.9% 
CS1, EC_OM 0.065 0.000 0.899 0.009 17.2% 16.0% 
CS1, EC_OD 0.065 0.000 0.830 0.002 19.0% 17.7% 
CS1, EC_CC 0.061 0.000 1.758 0.000 20.6% 19.4% 
CS1, EC_CM 0.064 0.000 0.736 0.017 16.5% 15.2% 
CS1, EC_CD 0.065 0.000 0.469 0.024 16.1% 14.8% 
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The results (Table 3) show strong support for the hypotheses that three of the dynamic export 

coupling measures are clearly related to change proneness, in addition to what can be explained 

by size in SLOC (CS1). On the other hand, dynamic import coupling measures do not seem to 

explain additional variation in change proneness, compared to size alone. Once again, this 

confirms the results obtained in an earlier case study on a Smalltalk system [2]. 

The coefficients of determination (R-Sq) are not high, but that is to be expected, because we 

only include size and one coupling measure at a time and, as a result, a large portion of the 

variance is still not accounted for. A few observations had very large residuals that contributed to 

the low coefficients of determination and, thus, the underlying regression model assumption of 

normally distributed residuals is violated due to these outliers. Removing them significantly 

improved the model fit while still confirming the results of the models in Table 3. This indicates 

that the model violations are of little practical consequence with regards to the results of the 

hypotheses tests. The following section evaluates the extent to which the dynamic coupling 

measures are useful predictors when building the best possible models by using size, static 

coupling, and dynamic coupling measures as possible model covariates. 
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4.4. Prediction Model of Change Proneness 

Model variables 

Throughout this section, the dependent variable is change proneness (see Section 4.1). The 

independent variables include the size and static coupling measures and our proposed 12 dynamic 

coupling measures. A complete list of candidate measures is available in Appendixes A and B. 

Ordinary Least-Squares regression (including outlier analysis) was used to analyze and model the 

relationship between the independent and dependent variables, that is, between the size/coupling 

measures of the first sub-release and the amount of changes in the subsequent sub-releases. In 

order to select covariates in our regression model, we use a mixed selection heuristic [22] so as to 

allow variables to enter, but also to leave, the model when below/above a significance threshold. 

Though other procedures have been tried (e.g., backward procedure based on variables with 

highest loadings in principal components), the one we report here yielded models with 

significantly higher fit. 

Rationale for model building 

Recall that the objective of this regression analysis is to determine whether dynamic coupling 

measures help to explain additional variation in change proneness, compared to class size (CS) 

and static coupling alone (see Section 4.1). In other words, we want to determine whether these 

measures help to obtain a better model fit and, therefore, an improved predictive model. To 

achieve this objective we proceeded in two steps. First we analyzed the relationship between 

Change and CS + Static coupling measures in order to generate a multivariate regression model 

that would serve as a baseline of comparison. We then continued by performing multivariate 

regression, using as candidate covariates all size, static coupling, and dynamic coupling 

measures. If the goodness of fit of the latter model turns out to be significantly better than the 
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former model we would then be able to conclude that dynamic coupling measures are useful, 

additional explanatory variables of change proneness.  

Discussion of modeling results 

The first multivariate model we obtained when using size and static coupling measures as 

candidate covariates is presented in Table 4. After removing one outlier that is clearly over-

influential on the regression results (with an extremely large Change value), we obtained a model 

with three size measures and nine static coupling measures for covariates6 (for 135 observations). 

Around 79% of the variance in the data set is explained by size and static coupling measures and 

we obtained an adjusted R2 of 0.77 (i.e., adjusted for the number of covariates [22]). We do not 

attempt to discuss the regression coefficients, because such models are inherently difficult to 

interpret since it is common to see some degree of correlation and interaction between covariates 

[6]. Smaller, less accurate models (e.g., where covariates are selected based on principal 

components) would have been easier to interpret but recall that our goal was to demonstrate the 

usefulness of dynamic coupling measures as predictors of change proneness. Furthermore, 

analysis results provided in Table 3 show that, when significant, the relationships are in the 

expected direction for our dynamic coupling measures.  

                                                 

6 Each category of measure is separated by a line in the table, starting with the intercept, static coupling and then class size. 
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When including, in the set of candidate covariates, the dynamic coupling measures, we obtain 

a very different model (Table 5). Four dynamic coupling measures (highlighted in italics), as well 

as nine static coupling measures and four size measures, were included as covariates in the model 

(we retained, as for the other model, all covariates with p-values below 0.1). The model explains 

87% of the variance in the data set and shows an adjusted R2 of 0.85. Therefore, even when 

accounting for the difference in number of covariates, the coefficient of determination (R2) 

increased by 8% or 35% of the unexplained variance (from 0.77 to 0.85) when using dynamic 

coupling measures as candidate covariates. This is an indication that some of the dynamic 

coupling measures are complementary indicators to static coupling and size measures as far as 

change proneness is concerned. 

Table 4 Regression Model using Size and Static Coupling as Candidate Covariates 

Covariate Coefficient Std Error t Ratio Prob>|t| 

Intercept 14.24 4.08 3.49 0.0007 

CBO 2.80 0.78 3.57 0.0005 

PIM_EC 1.45 0.22 6.58 <.0001 

DAC’ 18.87 4.37 4.31 <.0001 

OCAEC -5.36 2.45 -2.18 0.0310 

ACMIC -26.64 6.44 -4.14 <.0001 

OCMIC -12.65 1.01 -12.44 <.0001 

OMMIC 4.21 0.50 8.31 <.0001 

DMMEC -2.99 0.58 -5.14 <.0001 

OMMEC -1.41 0.34 -4.12 <.0001 

NMD -1.06 0.28 -3.69 0.0003 

NumPara 4.23 0.38 10.87 <.0001 

CS2 (semi) -0.37 0.037 -9.85 <.0001 
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It is also interesting to note that three out of the four dynamic coupling measures capture 

export coupling. One import coupling measure is nevertheless selected, but is clearly less 

significant. One explanation is that, from the detailed PCA results reported in Section 4.3, we can 

see that class-level dynamic coupling measure tend to be more correlated to size and static 

coupling and, similarly, dynamic export coupling measures tend to be less correlated to size 

measures than their import counterpart. A likely reason is that it is easy to imagine small classes 

providing services to many other methods and therefore having a large export coupling. Large 

import coupling classes though, are more likely to be large, because they use many features from 

other classes. 

Results in our earlier study on a Smalltalk system [2] also showed that dynamic export 

coupling is a stronger indicator of change proneness. Though the context, programming language, 

Table 5 Regression Model using all Measures as Candidate Covariates 

Covariate Coefficient Std Error t Ratio Prob>|t| 

Intercept 8.12 3.62 2.24 0.0270 

EC_OC 4.32 1.08 4.00 0.0001 

EC_OM -7.70 1.59 -4.81 <.0001 

EC_OD 5.02 0.99 5.03 <.0001 

IC_CC -1.14 0.52 -2.19 0.0306 

CBO 2.84 0.70 4.02 0.0001 

RFC_1 0.67 0.18 3.66 0.0004 

RFC -0.05 0.01 -3.37 0.0010 

OCAIC 19.39 4.23 4.58 <.0001 

OCMIC -10.37 0.95 -10.90 <.0001 

OMMIC 4.37 0.55 7.90 <.0001 

DMMEC -1.17 0.42 -2.75 0.0069 

OMMEC -1.46 0.25 -5.74 <.0001 

AMAIC 6.06 1.98 3.05 0.0028 

NMI 4.38 0.98 4.47 <.0001 

NMpub -1.86 0.58 -3.17 0.0019 

NumPara 2.60 0.73 3.53 0.0006 

CS1 (SLOC) -0.22 0.02 -9.82 <.0001 
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and application domain were different, the result obtained in the two studies are consistent, thus 

suggesting our results can be generalized to a large proportion of systems.  

5. Related Work 

A large body of work exists on the static measurement of cohesion and coupling, both for 

procedural [29] and object-oriented systems [16, 26]. In particular, a number of people have used 

static coupling measurement to assess the maintainability of object-oriented systems [25, 31]. 

In a number of occasions, those measures have shown to be useful predictors of certain quality 

attributes such as fault-proneness or change (see survey of empirical results in [6]). For further 

details on the measures themselves, we refer the reader to surveys that have been published in 

[10] and [9]where most existing measures and their properties are discussed in detail.  

The general idea of using dynamic analysis of programs to assess software quality is not new. 

For example, Sneed and Merey [30] have shown how it could be used to check assertions and 

monitor the behavior of modules in procedural software. More specifically, dynamic object-

oriented coupling measures were first proposed in [33]. The authors proposed two object-level 

dynamic coupling measures, Export Object Coupling (EOC) and Import Object Coupling (IOC), 

based on executable Real-Time Object Oriented Modeling (ROOM) design models. The design 

model used to collect the coupling measures is a special kind of sequence diagram that allows 

execution simulation.  

IOC and EOC count the number of messages sent between two distinct objects oi and oj in a 

given ROOM sequence diagram x, divided by the total number of messages in x. Thus, the result 

is a percentage that reflects the “intensity” of the interaction of two objects related to the total 

amount of object interaction in x. For example, in a simple scenario x1 where o1 sends two 

messages (m1 and m2) to o2 and o2 sends one message (m3) to o1, then IOCx1(o1, o2) = 100*2/3 = 
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66% and IOCx1(o2, o1) = 100*1/3 = 33%. Based on these basic measures, the authors also derive 

measures at the system level using the probability of executing each sequence diagram as a 

weighting factor. In a different paper, a methodology for architecture-level risk assessment based 

on the dynamic measures is proposed [34].  

There are several important differences between the measures presented in [33] and the 

coupling measures described in this paper:  

• The dynamic coupling measures in [33] do not adhere to the coupling properties described 

in the axiomatic framework described in [10]. This is not necessarily a problem in the 

application context of that particular piece of work, but it would very likely be a problem 

in many other situations (see [10] for a detailed discussion).  

• The measures described in this paper differentiate between many different dimensions of 

coupling, in addition to import and export coupling. Most importantly, we account for 

inheritance and polymorphism by distinguishing between dynamic class-level and object-

level measures. In our opinion, the ability to measure coupling precisely for systems with 

inheritance and dynamic binding represents one of the primary advantages of dynamic 

coupling over static coupling. This is supported by the results presented in the previous 

section.  

• Our measures are collected from analyzing message traces from system executions 

(Section 3.1) or from UML diagrams (Section 3.2).  The dynamic coupling measures in 

[33] are collected from ROOM models.  

Another important addition over [33] is that we perform an empirical validation of our dynamic 

coupling measures by showing they are complementary to simple size measures and static 
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coupling measures. Furthermore, the relationship of all these measures to an external quality 

indicator (change proneness) is investigated. 

The measures proposed and validated in this paper are based on an initial study described in 

[2]. Initially the dynamic coupling measures were described informally, and an initial validation 

was performed on a SmallTalk system. In this paper, this research has been extended in several 

important ways. The dynamic coupling measures have been defined formally and precisely, in an 

operational form. As part of this process, we discovered that some of the measures proposed in 

[2] did not fully adhere to the coupling properties described in [10]. The measures proposed in 

this paper are shown to be theoretically valid, at least based on a widely referenced axiomatic 

framework. The empirical validation in this paper is also considerably more comprehensive than 

in [2]. Furthermore, the dynamic coupling measures are compared with size and static coupling 

measures. Such a comparison was not possible for the SmallTalk system investigated in [2] 

because static measures could not be collected. This paper clearly confirms the initial empirical 

evaluation described in [2]; both in terms of Principal Component Analysis and evaluation of the 

dynamic coupling measures as predictors of change proneness. Thus, the two studies provide a 

strong body of evidence that the proposed dynamic coupling measures (especially export 

coupling) are useful indicators of change proneness and capture different properties than do static 

coupling measures. Results were found to be very similar (despite some differences in 

measurement) across two separate application domains (commercial CASE tool and open-source 

web software, respectively) and programming languages (SmallTalk and Java, respectively). 

6. Conclusions 

The contribution of this paper can be summarized as follows. First, we provide formal, 

operational definitions of dynamic coupling measures for object-oriented systems. The 
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motivation for those measures is to complement existing measures that are based on static 

analysis by actually measuring coupling at run-time in the hope of obtaining better decision and 

prediction models, because we account precisely for inheritance, polymorphism and dynamic 

binding. Second, we describe a tool whose objective is to show how to collect such measures for 

Java systems effectively and, finally yet importantly, we perform a thorough empirical 

investigation using open source software. The objective was three-fold: (1) Demonstrate that 

dynamic coupling measures are not redundant with static coupling measures, (2) Show that 

dynamic coupling measures capture different properties than simple size effects, and (3) 

Investigate whether dynamic coupling measures are useful predictors of change proneness. 

Admittedly, many other applications of dynamic coupling measures can be envisaged. However, 

investigating change proneness was used here to gather initial but tangible evidence of the 

practical interest of such measures.  

Our results show that dynamic coupling measures indeed capture different properties than 

static coupling measures, though some degree of correlation is visible, as expected. Dynamic 

export coupling measures were shown to be significantly related to change proneness, in addition 

to that which can be explained by size effects alone. Last, some of the dynamic coupling 

measures, especially the export coupling measures (EC_OC, EC_OM, EC_OD), appear to be 

significant (p-value = 0.0001), complementary indicators of change proneness when combined 

with both size and static coupling measures. The model including dynamic coupling measures 

yields a R2 of 0.85, suggesting that a large percentage of variance in code change can be 

explained by the model. Some of these results confirm those obtained on an earlier study [2] of a 

SmallTalk system. Though no comparison with static coupling and size measures could be 

performed in this earlier study, those combined results constitute evidence that dynamic export 

coupling measures are significant indicators of change proneness.  
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The results above should be qualified in a number of ways. With respect to external validity, 

the system we used as a case study may use much more polymorphism and dynamic binding than 

most systems, thus making dynamic coupling of particular importance. In terms of internal 

validity, it is clear coupling is only one of the factors affecting change proneness. This is 

particularly true for requirements changes and recall that our study only considered correction 

changes. To build complete change proneness models, many other factors would have to be 

considered. But this is out of the scope of this paper as the purpose of analyzing change 

proneness was only to provide an empirical validation of our dynamic coupling measures. 

Another practical limitation is that using dynamic coupling requires extensive test suites to 

exercise the system. Such test suites may not be readily available.  

Future work will include investigating other applications of dynamic coupling measures (e.g., 

test case prioritization), and the cost-benefit analysis of using change proneness models such as 

the ones presented in the current work. These models may be used for various purposes, such as 

focusing supporting documentation on those parts of a system that are more likely to undergo 

change, or making use of design patterns to better anticipate change. Note that such applications 

may also be relevant in procedural software making use of dynamic binding.  

Furthermore, a number of other applications of dynamic coupling measurement should be 

investigated. A side effect of the work presented in this paper is that the JDissect tool can be used 

to discover dead code, assuming that test data representative of the operational profile of the 

system is available. Similarly, the tool can be used to determine exactly which objects, classes 

and methods are involved in a given functional component (e.g., a use case) of a system. Such 

functionality could be useful for maintainers to achieve an initial understanding of (complex parts 

of) a system.  
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Appendix A – Definition of the Size Measures 

Some of the size measures in the text are frequently used in publications and available tools, and 

no definite source or author can be given for them. 

Name Definition 
NAI The number of non-inherited attributes in a class  
NAD The number of inherited attributes in a class 
NA The total number of attributes in a class. NA = NAI + NAD 
NMI The number of methods implemented in a class (non-inherited or overriding methods) 
NMD The number of inherited methods in a class, not overridden 
NM  The number of all methods (inherited, overriding, and non-inherited) methods of a class. NM = NMI + 

NMD 
NMpub  The number of public methods implemented in a class. 
NMnpub  The number of non-public (i.e., protected or private) methods implemented in a class. 
NumPara  Number of parameters. The sum of the number of parameters of the methods implemented in a class. 
CS1 The number of source lines of code in a class 
CS2  The number of declarations and statements (semicolons) in a class 

Appendix B – Informal Definitions of the Static Coupling Measures 

Name Definition Source 
CBO  Coupling between object classes. According to the definition of this measure, a class is coupled to 

another, if methods of one class use methods or attributes of the other, or vice versa. CBO is then 
defined as the number of other classes to which a class is coupled. This includes inheritance-
based coupling (coupling between classes related via inheritance). 

[16] 

CBO’ Same as CBO, except that inheritance-based coupling is not counted. [15] 
RFC Response set for class. The response set of a class consists of the set M of methods of the class, 

and the set of methods directly or indirectly invoked by methods in M. In other words, the response 
set is the set of methods that can potentially be executed in response to a message received by an 
object of that class. RFC is the number of methods in the response set of the class. 

[15] 

RFC_1 Same as RFC, except that methods indirectly invoked by methods in M are not included in the 
response set. 

[16] 

MPC  Message passing coupling. The number of method invocations in a class. [28] 
DAC  Data abstraction coupling. The number of attributes in a class that have another class as their 

type. 
[28] 

DAC’ The number of different classes that are used as types of attributes in a class. [28] 
ICP  Information-flow-based coupling. The number of method invocations in a class, weighted by the 

number of parameters of the invoked methods. 
[27] 

IH-ICP  As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance- based 
coupling) only. 

[27] 

NIH-ICP As ICP, but counts invocations to classes not related through inheritance. [27] 
PIM Polymorphically invoked methods. The number of invocations of methods of a class c by other 

classes 
(regardless of the relationship between classes). Same as ICP, except that no weighting by the 
number of parameters is performed. 

 

PIM_EC Export coupling version of PIM. The number of invocations of methods of a class c by other 
classes 
(regardless of the relationship between classes).  
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Name Definition Source 
CBO  Coupling between object classes. According to the definition of this measure, a class is coupled to 

another, if methods of one class use methods or attributes of the other, or vice versa. CBO is then 
defined as the number of other classes to which a class is coupled. This includes inheritance-
based coupling (coupling between classes related via inheritance). 

[16] 

ACAIC 
OCAIC 
DCAEC 
OCAEC 
ACMIC 
OCMIC 
DCMEC 
OCMEC 
AMAIC 
DMAIC 
AMMIC 
OMMIC 
DMMEC 
OMMEC 

These coupling measures are counts of interactions between classes. The measures distinguish 
the relationship between classes (friendship, inheritance, none), different types of interactions, and 
the locus of impact of the interaction. 
The acronyms for the measures indicates what interactions are counted: 
The first or first two letters indicate the relationship (A: coupling to ancestor classes, D: 
Descendents, O: Others, i.e., none of the other relationships). 
The next two letters indicate the type of interaction: 
CA: There is a Class-Attribute interaction between classes c and d, if c has an attribute of type d. 
CM: There is a Class-Method interaction between classes c and d, if class c has a method with a 
parameter of type class d. 
MM: There is a Method-Method interaction between classes c and d, if c invokes a method of d, or 
if a method of class d is passed as parameter (function pointer) to a method of class c. 
The last two letters indicate the locus of impact: 
IC: Import coupling, the measure counts for a class c all interactions where c uses another class. 
EC: Export coupling: count interactions where class d is the used class. 

[8] 

Appendix C – Descriptive Statistics 

Variable N Mean Median Minimum Maximum Q1 Q3 
IC_OC 136 6.95 1 0 108 0 6 
IC_OM 136 9.59 2 0 144 0 7 
IC_OD 136 10.93 2 0 182 0 9 
EC_OC 136 6.95 3 0 79 0 7 
EC_OM 136 9.59 4 0 101 0 11 
EC_OD 136 10.93 4 0 117 0 12 
IC_CC 136 5.21 1 0 108 0 5 
IC_CM 136 6.93 1 0 144 0 7 
IC_CD 136 8.69 1 0 182 0 9 
EC_CC 136 5.21 2 0 64 0 5 
EC_CM 136 6.93 3 0 138 0 5 
EC_CD 136 8.69 3 0 221 0 6 
CBO 136 4.13 2 0 43 1 5 
CBO’ 136 3.62 2 0 43 1 4 
RFC_1 136 45.29 23 0 186 4 98 
RFC_oo 136 290.90 31 0 792 4 718 
MPC 136 6.26 2 0 116 0 8 
PIM 136 14.90 3 0 126 0 28 
PIM_EC 136 14.90 4 0 211 1 19 
ICP 136 30.65 6 0 256 0 53 
IH-ICP 136 3.84 0 0 174 0 2 
NIH-ICP 136 26.81 6 0 256 0 43 
DAC 136 0.47 0 0 9 0 1 
DAC_ 136 0.43 0 0 6 0 1 
ACAIC 136 0.10 0 0 3 0 0 
OCAIC 136 0.38 0 0 9 0 0 
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Variable N Mean Median Minimum Maximum Q1 Q3 
DCAEC 136 0.10 0 0 3 0 0 
OCAEC 136 0.38 0 0 14 0 0 
ACMIC 136 0.13 0 0 4 0 0 
OCMIC 136 3.18 2 0 36 0 4 
DCMEC 136 0.13 0 0 6 0 0 
OCMEC 136 3.18 0 0 88 0 2 
AMMIC 136 1.24 0 0 15 0 1 
OMMIC 136 5.03 1 0 116 0 3 
DMMEC 136 1.24 0 0 80 0 0 
OMMEC 136 5.03 0 0 98 0 2 
AMAIC 136 0.91 0 0 40 0 1 
OMAIC 136 0.01 0 0 1 0 0 
DMAEC 136 0.91 0 0 40 0 0 
OMAEC 136 0.01 0 0 1 0 0 
NA 136 9.65 6 0 133 1 10 
NAI 136 3.59 1 0 68 0 4 
NAD 136 6.06 0 0 107 0 10 
NM 136 16.90 12 0 161 3 29 
NMImp 136 9.12 4 0 161 2 8 
NMD 136 7.78 0 0 36 0 24 
NMpub 136 14.96 10 0 50 2 29 
NMnpub 136 1.94 0 0 113 0 0 
NumPara 136 10.31 6 0 146 2 9 
CS1 (SLOC) 136 126.50 46 1 3766 25 98 
CS2 (#semicolon) 136 56 15 0 1747 9 46 

Appendix D – Principal Component Analysis for the Dynamic Coupling Measures 

Variable PC1 PC2 PC3 PC4 
IC_OC 0.311 0.275 0.892 0.121 
IC_OM 0.236 0.290 0.918 0.110 
IC_OD 0.209 0.374 0.897 0.078 
IC_CC 0.169 0.909 0.235 0.258 
IC_CM 0.144 0.912 0.318 0.203 
IC_CD 0.126 0.912 0.346 0.115 
EC_OC 0.911 0.180 0.196 0.286 
EC_OM 0.884 0.167 0.301 0.302 
EC_OD 0.855 0.097 0.338 0.359 
EC_CC 0.507 0.271 0.065 0.804 
EC_CM 0.305 0.200 0.108 0.923 
EC_CD 0.215 0.146 0.117 0.956 
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Appendix E – Principal Component Analyses for All Measures 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 
IC_OC 0.381 -0.007 -0.144 -0.034 0.370 -0.071 -0.786 -0.021 -0.055 -0.034 -0.005 
IC_OM 0.335 0.001 -0.097 -0.041 0.333 -0.079 -0.829 -0.014 -0.025 -0.047 0.033 
IC_OD 0.428 -0.007 -0.097 -0.031 0.284 -0.064 -0.819 -0.002 -0.037 -0.037 0.030 
EC_OC 0.315 -0.031 -0.310 -0.010 0.778 0.012 -0.319 0.002 -0.205 0.036 -0.031 
EC_OM 0.215 -0.013 -0.287 -0.026 0.827 0.003 -0.364 -0.005 -0.083 0.107 0.004 
EC_OD 0.163 0.010 -0.205 -0.038 0.883 -0.023 -0.335 -0.006 -0.033 0.114 0.017 
IC_CC 0.610 0.112 -0.179 0.026 0.170 -0.014 -0.551 0.032 -0.337 0.092 0.185 
IC_CM 0.592 0.091 -0.173 0.025 0.142 -0.013 -0.613 0.043 -0.313 0.078 0.179 
IC_CD 0.628 0.061 -0.181 0.024 0.108 -0.001 -0.621 0.048 -0.257 0.072 0.152 
EC_CC 0.054 0.533 -0.081 -0.075 0.751 -0.106 -0.049 0.061 -0.111 0.168 0.161 
EC_CM 0.034 0.682 -0.019 -0.060 0.615 -0.155 -0.090 0.084 -0.102 0.245 0.114 
EC_CD 0.017 0.737 0.009 -0.056 0.552 -0.174 -0.082 0.087 -0.092 0.232 0.077 
CBO 0.069 0.378 -0.141 0.262 -0.057 -0.766 -0.030 -0.031 -0.079 0.101 0.228 
CBO’ 0.080 0.376 -0.060 0.270 -0.073 -0.780 -0.018 -0.028 -0.092 0.025 0.216 
RFC_1 0.277 0.082 -0.886 -0.057 0.129 0.023 -0.204 -0.016 0.003 0.076 0.157 
RFC -0.001 0.112 -0.819 -0.117 0.111 0.103 -0.179 -0.006 -0.001 0.168 0.297 
MPC 0.781 -0.041 -0.125 -0.014 0.089 0.028 -0.363 0.030 -0.232 0.085 0.342 
PIM 0.574 0.168 -0.310 -0.067 0.027 0.041 -0.426 0.093 -0.036 0.244 0.484 
PIM_EC 0.002 0.602 -0.091 0.086 0.480 -0.496 0.043 0.008 -0.105 0.137 0.149 
ICP 0.436 0.244 -0.323 -0.063 0.010 0.021 -0.451 0.092 -0.176 0.200 0.557 
IH-ICP -0.020 0.849 -0.212 -0.011 0.005 -0.131 -0.029 0.101 -0.110 0.360 0.011 
NIH-ICP 0.481 -0.044 -0.275 -0.064 0.009 0.070 -0.480 0.063 -0.152 0.087 0.601 
DAC 0.451 0.286 0.070 -0.014 0.176 -0.113 -0.182 0.065 -0.720 0.269 0.075 
DAC’ 0.390 0.223 0.107 -0.046 0.216 -0.107 -0.114 0.061 -0.723 0.271 0.133 
ACAIC -0.013 0.250 0.024 -0.004 0.148 -0.070 0.041 -0.016 -0.140 0.885 0.006 
OCAIC 0.507 0.212 0.068 -0.014 0.133 -0.095 -0.219 0.079 -0.741 -0.079 0.081 
DCAEC -0.049 0.250 0.097 0.896 -0.067 -0.090 0.037 -0.047 0.052 -0.031 -0.003 
OCAEC 0.031 -0.065 0.073 -0.033 0.000 -0.801 -0.006 0.110 -0.036 0.084 -0.147 
ACMIC -0.004 0.491 0.007 -0.016 0.090 -0.088 0.055 0.004 -0.146 0.793 -0.018 
OCMIC 0.272 0.099 -0.145 0.038 0.164 -0.371 0.031 -0.120 -0.101 -0.024 0.665 
DCMEC -0.038 0.015 0.079 0.913 -0.007 -0.027 0.038 -0.025 0.080 -0.033 0.024 
OCMEC 0.177 -0.120 -0.093 0.663 -0.021 -0.416 -0.054 0.044 -0.211 0.055 -0.093 
AMMIC -0.077 0.037 -0.475 -0.019 0.270 0.055 -0.135 0.015 0.115 0.684 0.179 
OMMIC 0.810 -0.049 -0.029 -0.010 0.034 0.017 -0.341 0.028 -0.259 -0.055 0.310 
DMMEC -0.007 0.866 0.005 0.352 -0.105 -0.215 0.030 0.041 -0.089 0.059 0.006 
OMMEC 0.006 0.254 0.172 0.047 0.278 -0.789 -0.123 -0.028 0.036 -0.098 0.057 
AMAIC 0.553 -0.112 -0.117 0.086 0.063 0.000 -0.527 0.009 -0.474 -0.061 -0.032 
DMAEC -0.062 0.452 0.039 -0.025 -0.101 -0.099 0.070 0.691 -0.149 -0.005 -0.093 
NA 0.778 -0.055 -0.143 -0.030 0.156 0.029 -0.149 0.438 -0.155 -0.079 0.117 
NAI 0.346 -0.017 0.177 -0.029 0.116 0.005 -0.055 0.838 0.017 0.017 0.029 
NAD 0.783 -0.061 -0.300 -0.021 0.127 0.034 -0.157 0.024 -0.211 -0.113 0.132 
NM 0.751 0.023 -0.543 0.043 0.200 -0.145 -0.167 -0.067 -0.144 -0.025 -0.007 
NMI 0.885 0.050 -0.003 0.054 0.146 -0.234 -0.126 -0.034 -0.247 0.001 0.084 
NMD -0.111 -0.040 -0.921 -0.012 0.111 0.120 -0.087 -0.060 0.143 -0.043 -0.143 
NMpub 0.264 0.073 -0.826 0.023 0.263 -0.217 0.010 -0.135 -0.058 -0.027 0.092 
NMnpub 0.912 -0.044 0.033 0.043 0.033 0.004 -0.278 0.041 -0.167 -0.010 -0.111 
NumPara 0.737 0.084 0.008 -0.071 0.104 -0.302 0.257 -0.063 0.229 -0.015 0.367 
CS1  0.967 0.027 0.055 -0.014 0.047 -0.010 -0.150 0.071 0.050 0.026 -0.021 
CS2  0.961 0.007 0.055 0.007 0.041 -0.021 -0.194 0.076 0.003 0.013 -0.041 
 


