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Abstract. The relationships between coupling and external quality factors of object-oriented
software have been studied extensively for the past few years. For example, several studies have
identified clear empirical relationships between class-level coupling and class fault-proneness. A
common way to define and measure coupling is through structural properties and static code
analysis. However, because of polymorphism, dynamic binding, and the common presence of
unused (“dead”) code in commercial software, the resulting coupling measures are imprecise as
they do not perfectly reflect the actual coupling taking place among classes at run-time. For
example, when using static analysis to measure coupling, it is difficult and sometimes impossible
to determine what actual methods can be invoked from a client class if those methods are
overridden in the subclasses of the server classes. Coupling measurement has traditionally been
performed using static code analysis, because most of the existing work was done on non-object
oriented code and because dynamic code analysis is more expensive and complex to perform. For
modern software systems, however, this focus on static analysis can be problematic, because
although dynamic binding existed before the advent of object-orientation, its usage has increased
significantly in the last decade.

This paper describes how coupling can be defined and precisely measured based on dynamic
analysis of systems. We refer to this type of coupling as dynamic coupling. An empirical

evaluation of the proposed dynamic coupling measures is reported in which we study the
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relationship of these measures with the change proneness of classes. Data from maintenance
releases of a large Java system are used for this purpose. Preliminary results suggest that some
dynamic coupling measures are significant indicators of change proneness and that they

complement existing coupling measures based on static analysis.

1. Introduction

In the context of object-oriented systems, research related to quality models has focused mainly
on defining structural metrics (e.g., capturing class coupling) and investigating their relationships
with external quality attributes (e.g., class fault-proneness) [6]. The ultimate goal is to develop
predictive models that may be used to support decision making, e.g., decide which classes should
undergo more intensive verification and validation. Regardless of the structural attribute
considered, most metrics have been so far defined and collected based on a static analysis of the
design or code [6, 10, 12, 13, 16, 17]. They have, on a number of occasions, proven to be
accurate predictors of external quality attributes, such as fault-proneness [6], ripple effects after
changes [11, 14], and changeability [1, 14]. However, many of the systems that have been studied
showed little inheritance and, as a result, limited use of polymorphism and dynamic binding [19].

As the use of object-oriented design and programming matures in industry, we observe that
inheritance and polymorphism are used more frequently to improve internal reuse in a system and
facilitate maintenance. Though no formal survey exists on this matter, this is visible when
analyzing the increasing number of open source projects, application frameworks, and libraries.
The problem is that the static, coupling measures that represent the core indicators of most
reported quality models [6] lose precision as more intensive use of inheritance and dynamic
binding occurs. This is expected to result in poorer predictive accuracy of the quality models that

utilize static coupling measurement.
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Let us take an example, as illustrated in Figure 1, to clarify the issue at hand. Due to
inheritance, the class of the object sending or receiving a message may be different from the class
implementing the corresponding method. For example, let object a be an instance of class 2,
which is inherited from ancestor A'. Let 2' implement the method mA'. Let object b be an
instance of class B, which is inherited from ancestor B'. Let B' implement the method mB'. If
object a sends the message mB' to object b, the message may have been sent from the method
source mA' implemented in class A' and processed by a method target mB' implemented in
class B'. Thus, in this example, message passing caused two types of coupling: (1) object-level
coupling between class A and class B (i.e., coupling between instances of A and B), and (2)
class-level coupling between class A' and B'. The code may very well show statements where
an object of type A invokes from maA ' method mB' on an object of type B. However, to assume,
through static code analysis, that there is class-level coupling between A and B as a result, is
simply inaccurate. Both types of coupling, at the class and object levels, need to be captured

accurately to address certain applications and must be investigated.

class-level coupling
a:A b:B
1: mB'() T T
object-level coupling

Sequence and Class Diagrams

N
>
@

Figure 1 Class-level versus Object-level coupling
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We propose a set of coupling measures (referred to as dynamic coupling measures) that is
defined on an analysis of run-time object interactions. They can be collected through a dynamic
analysis of the code, that is, by executing the code and saving information regarding the messages
that are being sent among objects at run-time. It is also, a priori, conceivable that dynamic design
models (e.g., interaction diagrams in the Unified Modeling Language (UML) [4]) could be used
to collect such measures.

Existing evidence suggests that dynamic coupling could be of strong interest. A preliminary
empirical study on a SmallTalk system suggests that there is a significant relationship between
change proneness and dynamic coupling [2]. Furthermore, according to the results of a controlled
experiment [3], static coupling measures may sometimes be inadequate when attempting to
explain differences in changeability (e.g., change effort) for object-oriented designs. A follow-up
study indicates that the actual flow of messages taking place between objects at run-time is often
traced systematically by professional developers when attempting to understand object-oriented
software [5]. The results thus suggest that dynamic coupling measures could be of interest as
predictors of the cognitive complexity of object-oriented software. Finally, dynamic coupling is
more precise than static coupling for systems with dead (unused) code, which is uninteresting in
most situations and can seriously bias analysis.

This paper has two main objectives. First, it formally defines a set of dynamic coupling
measures. Some of them can be measured in the context of object-oriented designs whereas
others require the dynamic analysis of code. Second, it validates the measures in two distinct
ways: (1) Their mathematical properties are systematically analyzed, and (2) The statistical and
practical significance of using dynamic coupling measures is empirically assessed in the context

of models predicting the change proneness of Java components.
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The remainder of this paper is organized as follows. Section 2 describes 12 dynamic coupling
measures and highlights the ways in which they differ from static measures. These dynamic
coupling measures differ in terms of the entities they measure and their scope and granularity,
and are classified accordingly. They are defined in an informal, intuitive manner but also using a
formal framework based on set theory and first-order logic. The main reason for the latter is to
ensure that the definitions are precise and unambiguous to allow precise discussions of the
measurement properties and the replication of empirical studies. Section 3 describes how the
dynamic coupling measures can be collected. Section 4 presents a case study as a first empirical
evaluation of the proposed dynamic coupling measures. Section 5 describes related research.

Section 6 concludes and outlines future research.

2. Dynamic Coupling Measurement

We first distinguish different types of dynamic coupling measures. Then, based on this
classification, we provide both informal and formal definitions, using a working example to
illustrate the fundamental principles. Using a published axiomatic framework [10], we then
discuss the mathematical properties of the measures we propose. Our measures were designed to
fulfill five properties that we deem very important for any coupling measure to be well formed. In
order to define measures in a way that is programming language independent, we refer to a

generic data model defined with a UML class diagram.

2.1. Classifying Coupling Measures

There are different ways to define dynamic coupling, all of which can be justified, depending on
the application context where such measures are to be used. Three decision criteria are used to

define and classify dynamic coupling measures.
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1. Entity of measurement

Since dynamic coupling is based on dynamic code analysis, coupling may be measured for a
class or one of its instances. The entity of measurement may therefore be a class or an object.

2. Granularity

Orthogonal to the entity of measurement, dynamic coupling measurement can be aggregated at
different levels of granularity. With respect to dynamic object coupling, measurement can be
performed at the object level, but can also be aggregated at the class level, i.e., the dynamic
coupling of all instances of a class is aggregated. In practice, even when measuring object
coupling, the lowest level of granularity is likely to be the class, as it is difficult to imagine how
the coupling measurement of objects could be used. Alternatively, all the dynamic coupling of
objects involved in an execution scenario can be aggregated. We can also measure the dynamic
object coupling in entire use cases (i.e., sets of scenarios), sets of use cases, or even an entire
system (all objects of all use cases). In the case where the entity of measurement is a class, the
aggregation scale is different as we can aggregate dynamic class coupling across an inheritance
hierarchy, a subsystem, a set of subsystems, or an entire system. The relationships between
various levels of granularity are formally described in Section 2.2.

3. Scope

Another important source of variation in the way we can measure dynamic coupling is the scope
of measurement. This determines which objects or classes, depending on the entity of
measurement, are to be accounted for when measuring dynamic coupling. For example, we may

want, depending on the application context, to exclude library and framework classes.
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Table 1 Dynamic Coupling Classification

Entity Granularity Scope
(Aggregation Level) (Include/Exclude)
Object Object Library objects
Class Framework objects
(set of) Scenario(s) Exceptional use cases
(set of) Use case(s)
System
Class Class Library classes
Inheritance Hierarchy Framework classes
(set of) Subsystem(s)
System

At the object level, we may want to exclude certain use cases modeling exceptional situations
(e.g., error conditions, usually modeled as extended use cases [4]) or objects that are instances of
library or framework classes. At the very least, we may want to distinguish the different types of
coupling taking place in these different categories.

The choices we make regarding the entity, granularity, and scope of measurement depend on
how we intend to apply dynamic coupling. Such choices form a classification of dynamic

coupling measures that is summarized in Table 1.

2.2. Definitions

Before defining dynamic coupling measures, we introduce below the formal framework that will
allow us to provide precise and unambiguous definitions. Not only do such definitions ensure that
the reader understands the measures precisely, but they are also easily amenable to the analysis of
their properties and facilitate the development of a dynamic analyzer by providing precise
specifications. We provide a set of generic definitions that are based on the data model in Figure
2, which models the type of information to be collected. Each class and association in the class
diagram corresponds to a set and a mathematical relation, respectively. The inheritance
relationship corresponds to a set partition. Based on this, we define the measures using set theory

and first order logic.
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Attribute
‘hame 1 -Descendent
-caller 1 * .
Class Object
name 1 * l-id
-callee 1
1 1 1.*% 1 1
Methinvocation "
-sender -receiver
1.* 1..*
1.x 1.* 1.
-source , -source g x
Method Message
name -loc
-target 1 1 -target 1.x
1.*
InputParam {ordered}
Message.allinstances
->forAll(mel, me2 | mel.target = me2.target
Parameter and mel.source=me2.source
OutputParam implies mel.loc <> me2.loc)
-type
-name

In/OutParam

Figure 2 Class Diagram Capturing a Data Model of the Dynamic Analysis

A few details of the class diagram in Figure 2 need to be discussed. Most role names are not
shown, to avoid unnecessary cluttering of the class diagram. When no role name is provided, the
meaning of associations is quite clear from the source and target classes. For example, methods
are defined in a class, method invocations consist of a caller method in a source class and a callee
method in a target class. Some of the key attributes are shown. One notable detail is that the line
number where the target method is invoked is an attribute of a message that serves to uniquely
identify it, as specified by the OCL* constraint shown in the class diagram. This is necessary,
because the same target method may be invoked in different statements and control flow paths in
the same source method. Messages bearing those different invocations are considered distinct,
because they are considered to provide different contexts of invocation for the method.

Furthermore, associations with role names caller, source and sender should show an

{exclusive or} constraint dependency to associations with role names callee, target, and

1 The Object Constraint Language (OCL) [32] is mostly used to specify constraints on class diagrams, operation pre/post
conditions, and class invariants.



Simula TR 2003-5 and Carleton TR SCE-03-18

receiver, respectively. These constraints are not shown to avoid cluttering the diagram but are
important as in our context, distinct methods, classes and objects must be involved in the links
corresponding to those associations. In other words, in the context of our coupling measurement,
method invocations are linked to two distinct class instances and two distinct method instances
and messages involve two distinct objects. As expected, method invocations between classes are
differentiated from messages between objects. A method name and signature uniquely identifies a
method in the context of a specific class and a method invocation must be clearly linked to a

method. This is why MethInvocation has associations with both c1ass and Method.

Sets
The first step is to define the basic sets on which to build our definitions. These sets are derived

from the data model in Figure 2.

e C: Set of classes in the system. C can be partitioned into the subsets of application classes
(AC), library classes (LC), and framework classes (FC). Some of these subsets may be empty,
C=AC u LC U FC and AC n LC n FC = . Distinguishing such subsets may be important
for defining the scope of measurement, as discussed above.

e O: Set of objects instantiated by the system while executing all scenarios of all use cases
(including exceptional use cases, e.g., treating error conditions, which are usually modeled as
use cases extending base use cases).

e M: Set of methods in the system (as identified by their signature).

e Lines of code are defined on the set of natural numbers (N)
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Relations

We now introduce mathematical relations on the sets that are fundamental to the definitions of

our measures.

D and A are relations onto C (< CxC). D is the set of descendent classes of a class and A is
the set of ancestors of a class.

ME is the set of possible messages in the system: ME ¢ OxMxNxOxM. Indicated by the
domain of ME, a message is described by a source object and method sending the message, a
line of code (N), and a target object and method. Note that the sending of a message may not
only correspond to a method invocation, but also to the sending of a signal [4]. The message
is then asynchronous and on receipt of the signal, the target object triggers the execution of
the target method. In Java, an active object (with its own thread of control) would typically
have a run () method reading from a queue of signal objects and invoke the appropriate
method after reading the next signal in the queue.

IV is the set of possible method invocations in the system: IV < MxCxMxC. An invocation
is characterized by the invoking class and method and the class and method being invoked.
Other binary relations will be used in the text and their semantics can be easily derived from
their domain and are denoted Rpomain. FOr example, Ryc < MxC refers to methods being

defined in classes, a binary relation from the set of methods to the set of classes.

Consistency Rule

The relations IV and ME play a fundamental role in all our measures. In practice, an analysis of

sequence diagrams or a dynamic analysis of the code allows us to construct ME. From that

information, 1V must be derived, but this is not trivial as polymorphism and dynamic binding

10
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tend to complicate the mapping. The consistency rule below specifies the dependencies between
the two relations and can be used to develop algorithms that derive 1V from ME.

(3 (01, Cl), (02, Cz) S Roc) (E| l e N) (01, my, |, 0o, mz) e ME =

(Fcse A(cr) u{ci}, cae Alc)) w{c})

((ml, C3) € Rmc A ((VC5 € A(Cl) - {C3}) (ml, C5) e Ruc=>ch e A(C3))) A

((m2, ¢4) € Rmc) A ((VCs € A(C2) - {Ca}) (M2, C6) € Rmc = Cs € A(C4))) A
(Mg, C3, My, Cg) € IV

Working Example

We now use a small working example, as shown in Figure 3, to illustrate the definitions above.
Though it is assumed that our measures are collected through static and dynamic analysis of
code, we use UML to describe a fictitious example, because it is more legible than pseudocode.
This example is designed to illustrate the subtleties arising from polymorphism and dynamic
binding. Other aspects, such as method signatures, have been intentionally kept simple to focus

on polymorphism and dynamic binding.

c2

+m2()

cl

+m1()

c3

+m3()

c4d c5

Figure 3 Working Class Diagram Example (UML notation)

11
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The following sets can be derived from Figure 3:

C ={cl, c2,c3, c4, c5}

M ={m1, m2, m3}

Rmc = {(m1, cl), (m2, c2), (m3, c3)}

In order to derive other relevant sets and relations, let us introduce the sequence diagrams in
Figure 4, where each message is numbered. As our fictitious example is represented with UML
diagrams, objects are referred to by using the sequence diagram number where they appear and
their own identification number (i.e., SD,:object id). Similarly, we denote the line of code of
the method invocation in message tuples as 1 (SD; :message id). In the example, we assume
that the line of code of the method invocations m3 () in messages sp,:1.1, SD;:1.2 and
sD,:1.3 are different. Furthermore, since the sequence diagrams do not specify the sender
object, source class and source method of the method invocations m1 () in messages sD, : 1 and

SD, : 1, the example sets derived below account for only the four (completely specified) messages

SD,:1.1,8D,:1.2,SD,:1.3and SD,:1.1:

l1:cl 2:c4 3:c5
| | |
| | | _ _
1: m1() : : : l:c1 2:¢c2

— | I I 7

: 1.1: m3() : : : :

| I ! Lm1) | '

' : l — :

i 1.2:m3() i ! 1.1: m2() !

T T > ! >

| i | | |

! 1.3: m3() I

; ; > SD2

| | |

SD1

Figure 4 Two hypothetical sequence diagrams related to Figure 3

12
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O ={SDs:1, SD1:2, SD;:3, SD>:1, SD,:2}

Roc = {(SD::1, cl), (SD1:2, c4), (SD;:3, c5), (SD»:1, c1), (SD2:2, c2)}

ME = {(SD;:1, m1, I(SD;:1.1), SD;:2, m3), (SD;:1, m1, I(SD;:1.2), SD;:3, m3),
(SD1:1, m1, I(SD;:1.3), SD;:3, m3), (SD:1, m1, I(SD:1.1), SD>:2, m2)}

IV ={(m1, c1, m3, c3), (M1, c1, m2, c2)}

Definitions of Measures

The measures are all defined as cardinalities of specific sets. They are therefore defined on an
absolute scale and are amenable, as far as measurement theory is concerned, to the type of
regression analysis performed in Section 4. Those sets are defined below and are given self-
explanatory names, following the notation summarized in Table 2. First, as mentioned above, we
differentiate the cases where the entity of measurement is the object or the class. Second, as in
previous static coupling frameworks [10], we differentiate import from export coupling, that is
the direction of coupling for a class or object. For example, we differentiate whether a method
executed on an object calls (imports) or is called by (exports) another object’s method.
Furthermore, orthogonal to the entity of measurement and direction of coupling considered, there
are at least three different ways in which the strength of coupling can be measured. First, we
provide definitions for import and export coupling when the entity of measurement is the object
and the granularity level is the class. Phrases outside and between parentheses capture the

situations for import and export coupling, respectively.

e Dynamic messages. Within a run-time session, it is possible to count the total number of
distinct messages sent from (received by) one object to (from) other objects, within the scope

considered. That information is then aggregated for all the objects of each class. Two

13
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messages are considered to be the same if their source and target classes, the method invoked
in the target class, and the statement from which it is invoked in the source class are the same.
The latter condition reflects the fact that a different context of invocation is considered to
imply a different message. In a UML sequence diagram, this would be represented as distinct

messages with identical method invocations but different guard conditions.

Distinct method invocations. A simpler alternative is to count the number of distinct methods
invoked by each method in each object (that invoke methods in each object). Note that this is
different from simply counting method invocations as we count each distinct method only

once. That information is then aggregated for all the objects of each class.

Distinct classes. It is also possible to count only the number of distinct server (client) classes
that a method in a given object uses (is used by). That information is then aggregated for all
the objects of each class.

If we now look at where the calling and called methods are defined and implemented, the entity
of measurement is the class and we can provide similar definitions. We then count the number of
distinct messages originating from (triggering the executions of) methods in the class, the number

of distinct methods invoked by (that invoke) the class methods, and the number of distinct classes

from which the class is using methods (that uses its methods).

Table 2 shows the formal set definitions of the measures when the granularity is the class, and
the scope is the system. We provide an intuitive textual explanation only for the first set:
IC_OM(c). Other sets can be interpreted in a similar manner.

IC_OM(c): A set containing all tuples (source method, source class, target method, target class)
such that there exists an object o instantiating ¢ (whose coupling is being measured) that

sends a message to at least one instance of the target class in order to trigger the execution

14
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Table 2 Summary of Dynamic Coupling Measures (granularity=class, scope=system)

Direction Entity of Strength Set Definition
Measurement
Import Object Dynamic IC_OD(cy) = {(my, 1, I, M3, €3) | (V(01, €1) € Roc) (3 (02, C2) € Roc, | € N)
Coupling messages C1 # Ca A (01, My, |, 02, My) € ME}
Distinct IC_OM(cy) = {(my, €1, My, C5) | (¥(01, €1) € Roc) (3 (02, C2) € Roc, | € N)
Methods c1#C2 A (01, Mg, |, 02, m2) € ME}
Distinct IC_OC(cy) = {(my, ¢1, C2) | (V(01, €1) € Roc) (3 (02, C2) € Roc, | € N)
Classes C1 # C A (01, My, |, 02, My) € ME}
Class Dynamic IC_CD(cy) = {(my, C1, I, Mz, €2) | (3 (03, C3), (04, C4) € Roc) (31 € N)
messages C1 #Ca A (03, My, |, 04, M) € ME A

(3 c1 € Aca) U {csh, €2 € A(ca) L {ca))

((my, €1) € Rue A ((Wes € A(cy) - {c1}) (Mmy, Cs) € Ruc =
Cs € A(C1))) A ((M2, C2) € Ruc) A (Vs € A(Ca) - {C2})
(m;, C6) € Ruc = Cs € A(C2))) A(My, €1, My, C,) € IV}

Distinct IC_CM(cy) = {(my, €1, My, C2) | (3 (My, €41), (M2, C2) € Ruc)
Methods C1# Ca A (My, Cy, My, Cy) € IV}
Distinct IC_CC(c1) = {(my, c1, ¢2) | (3 (M4, €1), (M2, C2) € Ruc)
Classes C1 # C2 A (My, C1, My, C5) € IV}

Export Object Dynamic EC_OD(c,) = {(m2, C2, I, my, ¢1)] (¥(01, ¢1) € Roc) (3 (02, C3) € Roc, | € N)

Coupling messages C1# Ca A (02, My, |, 05, My) € ME}
Distinct EC_OM(cy) = {(my, c2, My, ¢1) | (V(01, €1) € Roc) (3 (02, C2) € Roc, | € N)
Methods C1 # C2 A (02, My, |, 01, M) € ME}
Distinct EC_OC(c4) = {(my, C, €1) (V(01, €1) € Roc) (3 (02, €2) € Roc, | € N)
Classes C1 # Ca A (02, My, |, 01, My) € ME}

Class Dynamic EC_CD(cy) = {(m2, C, I, m, ¢) | (3 (03, C3), (04, C4) € Roc) (3 | € N)

messages C1 # C2 A (04, My, |, 03, M) € ME A

(3 c1 € A(cs) U {cs}, €2 € A(Cs) U {C4})

((my, €1) € Rue A ((Wes € A(cs) - {c}) (M4, Cs) € Ruc=>
Cs € A(C1))) A

((mz, ¢2) € Rue) A ((Ves € A(Ca) - {C2}) (M2, Cs) € Ruc=
Cs € A(C2))) A

(my, €2, My, Cy) € IV}

Distinct EC_CM(cy) = {(my, €2, my, €1) | (3 (M4, c1), (M2, C2) € Ruc)
Methods C1# C2 A (Mg, C2, My, C1) € IV}

Distinct EC_CC(c1) = {(my, Cz, ¢1) | (3 (M4, C1), (M2, C2) € Ruc)
Classes C1 # C2 A (My, C2, My, C1) € IV}

of the target method. The corresponding metric is simply the cardinality of this set. Note
that the source class must be different from the target class (c. # ¢.), because we are
focusing on dependencies that contribute to coupling between classes, not their cohesion

(as further discussed in [9, 10]). Reflexive method invocations are therefore excluded.

15
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Higher Granularities
If we want to measure dynamic coupling at higher levels of granularity, this can be easily defined
by performing the union of the coupling sets of a set of classes or objects, depending on the entity
of measurement. For example, if the entity of measurement is the class and the level of
granularity is the subsystem, then for each subsystem SS there corresponds a subset of classes
that it contains, SC e 2%, and we can define:

IC_CM(SS) = U ¢ e sc) IC_CM(c)

Similarly, when the entity of measurement is the object: For each use case UC there
corresponds a set of participating objects SOe2° (that are involved in the UC’s sequence
diagram(s)), and we can define:

IC_CM(UC) = U @ioesoy IC_CM(0)

Similar definitions can be provided for all levels of granularity.

Example
Returning to our working example in Figure 3 and Figure 4, we provide below all the non-empty
coupling sets. When the entity of measurement as well as the granularity is the class, we obtain

the following import and export coupling sets:

IC_CD(cl) {(m1,c1,I(SD;:1.1),m3,c3),(m1,c1,I(SD;:1.2),m3,c3),(m1,c1,(SD;:1.3),m3,c3),(m1,c1,(SD»:1.1),m2,c2)}

IC_CM(cl) {(m1,c1,m3,c3), (ml,cl,m2,c2)}

IC_CC(cl) {(m1,c1,c3), (ml,cl,c2)}

EC_CD(c2) {(m1,c1,I(SD;:1.1),m2,c2)}

EC_CM(c2) {(m1,c1,m2,c2)}

EC_CC(c2) | {(ml1,cl,c2)}

EC_CD(c3) {(m1,c1,I(SD;:1.1),m3,c3), (m1,c1,(SD;:1.2),m3,c3), (m1,c1,(SD1:1.3),m3,c3)}

EC_CM(c3) {(m1,c1,m3,c3)}

EC_CC(c3) {(m1,c1,c3)}

When the entity of measurement is the object, and the granularity is the class, we obtain the

coupling sets below:

16
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IC_OD(c1) {(m1,c1,I(SD;:1.1),m3,c4),(m1,c1,I(SD;:1.2),m3,c5),(m1,c1,I(SD1:1.3),m3,c5),(m1,c1,I(SD2:1.1),m2,c2)}

IC_OM(cl) {(m1,c1,m3,c4), (ml,c1l,m3,c5), (ml,cl,m2,c2)}

IC_0OC(cl) {(m1,c1,c4), (ml,c1,c5), (ml,cl,c2)}

EC_0OD(c2) {(m1,c1,I(SD;:1.1),m2,c2)}

EC_OM(c2) {(m1,c1,m2,c2)}

EC_0C(c2) {(m1,c1,c2)}

EC_0OD(c4) {(m1,c1,I(SD;:1.1),m3,c4)}

EC_OM(c4) {(m1,c1,m3,c4)}

EC_OC(c4) {(m1,c1,c4)}

EC_OD(cb) {(m1,c1,I(SD;:1.2),m3,c5), (m1,c1,I(SD;:1.3),m3,c5)}

EC_OM(ch) {(m1,c1,m3,c5)}

EC_OC(cb) {(m1,c1,c5)}

The export coupling sets for c1 as well as the import coupling sets for c2, c¢3, c4 and cb5 are
empty.

To gain a better insight into the impact of polymorphism on coupling, let us change the class
diagram in Figure 3 by adding a new implementation of method m3 () in ¢5: Ryc = {(m1, cl),
(m3,c3), (M3, ¢5), (M2, c2)}, while keeping the sequence diagrams in Figure 4 unchanged. This
results in a new element in IV: IV = {(m1, c1, m3, ¢3), (m1, c1, m3, ¢5), (m1, c1, m2, c2)}. The
other sets (C, M, O, Roc and ME) remain unchanged. When the entity of measurement is the
class, the new method implementation results in significantly changed import coupling sets for

class c1 (removed elements are struck through, whereas new elements are bolded):

IC_CD(cl) {(m1,c1,I(SD1:1.1),m3,c3), (mLeHSB1:1-2),m3,€3), (mL e HSD1:1:3),m3;€3),
(m1,c1,1(SD4:1.2),m3,c5), (m1,c1,1(SD;:1.3),m3,c5), (m1,cl, I(SD,:1.1),m2,c2)}
IC_CM(cl) {(m1,c1,m3,c3), (m1,c1,m3,c5), (ml,clm2,c2)}

IC_CC(cl) {(m1,c1,c3), (m1,c1,c5), (ml,cl,c2)}

Adding a new implementation of an existing method in a subclass has resulted in increased
import coupling for class c1. This is because class c1 now imports from one additional class
(c5), one additional method (m3 () in c5), and one additional distinct method invocation.
However, object import coupling (IC_Ox(c)) remains unchanged, as at the object level, instances

of c1 were already importing from c5.
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In a similar way, the export coupling of class c3 has decreased and the export coupling of

class c5 has increased:

EC_CD(c2) {(m1,c1,/(SD2:1.1), m2,c2)}

EC_CM(c2) {(m1,c1,m2,c2)}

EC_CC(c2) {(m1,c1,c2)}

EC_CD(c3) | {(m1,c1,(SDy:1.1), m3,c3), {mie1HSD,:1.2),m3.63), (mic1HSD,:1.3),m3.63)}
EC_CM(c3) {(m1,c1,m3,c3)}

EC_CC(c3) {(m1,c1,c3)}

EC_CD(c5) {(m1,c1,1(SD;:1.2),m3,c5), (m1,c1,/(SD;:1.3),m3,c5)}

EC_CM(c5) {(m1,c1,m3,c5)}

EC_CC(c5) {(m1,c1,c5)}

2.3. Analysis of Properties

We show here that the five coupling properties presented in [10] are valid for our dynamic
coupling measures. The motivation is to perform an initial theoretical validation by
demonstrating that our measures have intuitive properties that can be justified. We use IC_OM
and IC_CM at the lowest granularity level (object, class) and system level as examples, but the
demonstrations? below can be performed in a similar way for all coupling measures, at all levels

of granularity.

Non-negativity
It is not possible for the dynamic coupling measures to be negative because they measure the

cardinality of sets, e.g., IC_OM returns a set of tuples (m, ¢, m', ¢') € MxCxMxC.

Null values
At the system level, if S is the set that includes all the objects that participate in all the use cases
of the system, IC_OM(S) is empty (and coupling equal to 0) if and only if the set of messages in S

is empty:

2 These demonstrations are admittedly rather informal. We adopted a level of formality that we deemed sufficient to convince the
reader these properties did indeed hold, without making the discussion unnecessarily terse.

18



Simula TR 2003-5 and Carleton TR SCE-03-18

ME = @ < IC_OM(S) = &
This is consistent with our intuition as this should be the only case where we get a null coupling
value. Since ME = J < IV = J (consistency rule), we also have:

ME=J < IC_CM(S)=J
At the object level, for IC_OM(0), we have:

(VoeO,meM,leN,00eO,m €M) (o,m,I, 0, m) ¢ ME < IC_OM(0) =
Again, this is intuitive, as we should only obtain a null value if and only if object o does not
participate in any message as sender or receiver. Similarly, at the class level, we obtain:

(V 0€0, ceC, (0,c) € Rye) IC_OM(0) = D < IC_CM(c) = I (consistency rule)

Monotonicity
If a class ¢ is modified such that at least one instance o0 sends/receives more messages, its
import/export coupling can only increase or stay the same, for any of the coupling measures
defined above.

If object 0O sends an additional message (o, m, I, o', m') € ME, this cannot reduce the
number of pairs (method, class) € Rwc that are part of the sets IC_OM(0) or IC_OM(S). The
same can be said for export coupling if object 0O receives an additional message.

Adding a message to ME may or may not lead to a new method invocation in IV. But even if
this is the case, the sets IC_CM(c) and IC_CM(S) cannot possibly lose any elements.

Similar arguments can be provided for all coupling measures, at all levels of granularity. To
conclude, by adding messages and method invocations in a system, object and class coupling

measures cannot decrease, respectively, thus complying with the monotonicity property.
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Impact of merging classes
Assuming c' is the result of merging c; and cy, thus transforming system S into S', for any

Coupling measure, we want the following properties to hold at the class and system levels:

Coupling(c;) + Coupling(c,) > Coupling(c')

Coupling(S) > Coupling(S")

Taking IC_CD as an example, we can easily show this property holds: All instances of ¢; and
2 in 1V’s tuples are substituted with c'. If there exist tuples of the type (mjy, ¢1, my, C2) in 1V, then
they are transformed into tuples of the form (my, c', m,, c). For IC_Cx measures, since we
exclude reflexive method invocations because they do not contribute to coupling (Section 2.2),
then tuples of the form (my, ¢', my, ¢') disappear because of the merging. Hence:

IC_CD(c")| < |IC_CD(cy)| + |IC_CD(cy)|

Similar arguments can be made for all other coupling measures.

Merging uncoupled classes
Following reasoning similar to that above, if two classes c;, ¢, do not have any coupling, this
means there is no tuple of the type (my, c1, my, ¢2) in IV. If we merge them into one class, we
therefore cannot obtain tuples of the type (my, ¢', my, ¢'). Then, we can conclude IC_CD fulfills
the following property:

IC_CD(c")| = |IC_CD(cy)| + |IC_CD(cy)|

This property also holds for all other coupling measures.
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Symmetry between export and import coupling
By symmetry, for all class level dynamic coupling measures, we infer that the following property
holds:

Uallc e ¢) EC_CX(C) = Ugaiic e c) IC_Cx(c)

This stems from the fact that for any (m, ¢, m', ¢) € IV, there is always a leN such that
(m, c, I, m', ¢) e EC_CD(c") and (m, c, I, m', ¢') € IC_CD(c). Along the same lines, for each (m,
¢, m, ¢) € IC_CM(c) and (m,c,c’) € IC_CC(c), there is a corresponding (m, ¢, m', c') €
EC_CM(c") and (m, ¢, ¢") € EC_CC(c"), respectively.

Following a similar argument when the entity of measurement is the object, we obtain:

Ugllo e 0) EC_OX (0) = Uil o  0) IC_Ox(0)

The symmetry property is intuitive, because anything imported by a class or object has to be
exported by another class or object, respectively. This condition applies at all levels of
granularity.

Based on the property analysis above, we can see that our coupling measures seem to exhibit
intuitive properties that would be expected when measuring coupling. This constitutes a
theoretical validation of the measures. Section 4 focuses on their empirical validation, using

project data.

3. Collecting Dynamic Coupling Data

It is crucial to collect dynamic coupling data in a practical and efficient manner. This section
describes two alternative approaches. The first is based on collecting the coupling data from

executing programs, whereas the second calculates the measures based on dynamic UML models.
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3.1. Tool for Collecting Dynamic Coupling Measures at Run-Time

To collect dynamic coupling data from Java applications, we developed a tool: JDissect. An
overview of the architecture is depicted in Figure 5. The tool separates the collection and analysis
of dynamic coupling data into two phases. In the first phase, data from a running Java program is
gathered and stored. This is accomplished by having the Java Virtual Machine (JVM) load a
library of data collection routines (1ibjdissect.so) that are called whenever specified
internal events occur. The interfaces used for communication between the JVM and the library
are called JVMPI (Java VM Profiling Interface) and JVMDI (Java VM Debugging Interface).
Most of the data is collected from the profiling interface. The JVMDI is used to obtain the unique
line number from which a method call originates (to obtain the information needed to calculate
the xx_xD measures). During the data collection phase, a user may interactively tag messages
belonging to specific scenarios or use cases through a separate utility (Scalpel) that
communicates with libjdissect.so through a socket connection. These tags can
subsequently be used to limit the scope of measurement (e.g., to specific use cases) and,
potentially, to compute measures at higher levels of granularity than the class (e.g., at the use
case aggregation level). During the data collection process, the library populates a data structure

as specified in Figure 2. When the application terminates, the data is stored in a flat file structure

(Data).
Java JVMPI [—p 3
Application Java VM libjdissect.so MCalc
JVMDI |[«a—p
Scalpel Filter.conf

Figure 5 Architecture of the JDissect tool
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In the second phase, the data is analyzed. Another executable (MCalc), sharing a great deal of
code with the library, reads the flat files into a data structure identical to that used by the library.
This structure is analyzed to obtain the dynamic coupling measures. The analysis tool traverses
the data structure in Figure 2 and computes the sets specified in Table 2. A configuration file
(Filter.conf) can be used to limit the scope of measurement, e.g., excluding library or
framework classes. Each measure is then computed simply by counting the number of elements
in each set. Data from several run-time sessions can be merged by the analysis tool, such that
accumulated dynamic coupling data can be computed. This merging capability enables the
collection of coupling data for Java systems for which several concurrent instances of the JVM
are used, such as large, distributed or component-based systems.

Our coupling tool utilizes interfaces provided by the Java Virtual Machine to collect the
message traces and other information specified in Figure 2. Another possible approach could
have been to instrument the system. Instrumentation can be done either at the source code or byte
code level using tools such as the Java Compiler Compiler (JavaCC) [24] or the Byte Code
Engineering Library (BCEL) [23], respectively. However, utilizing the existing interfaces to the
Java VM provides several benefits over instrumentation. Instrumenting the code means that we
are testing the instrumented version and not the actual version, which may lead to different
outputs and system states. Since instrumentation causes a significant effort overhead, if the
system is evolving rapidly, the project manager will also be reluctant to keep instrumenting the
New versions.

Furthermore, source code instrumentation requires access to the Java application source code.
This might be a disadvantage in cases where an application uses libraries for which the source
code is not available. Finally, instrumentation might cause a significant performance overhead. In

contrast to our approach, both source code and byte code instrumentation require that parts of the

23



Simula TR 2003-5 and Carleton TR SCE-03-18

data collection software be written in Java. Subsequently, the byte code of the data collection
software is interpreted by the Java VM. Since our data collection tool is written in C++ and
dynamically linked with the JVM at run-time, there is probably less performance overhead
associated with our approach than with data collection tools employing instrumentation. As
performance overhead increases, the behavior of concurrent software is more likely to be affected
by the data collection process and it is important to minimize the chances of such a problem

occurring.

3.2. Using UML Models for Data Collection

So far, we have assumed that dynamic coupling data are collected through dynamic analysis of
the code. It was also suggested that it might be possible to collect the dynamic coupling data
through analysis of dynamic UML models, e.g., interaction diagrams. Measuring coupling on
early design artifacts would be of practical importance because one could use that information for
early decision making. For example, assuming that the necessary UML diagrams are available for
a given design, one could derive test cases [7] and compute the dynamic coupling associated with
each of the test cases (use case scenarios) based on the UML diagrams. For example, test cases
with high coupling could be exercised first, as they would be expected to uncover more faults
and, therefore, the test plan would provide an order in which to run test cases based on dynamic
coupling information.

When measuring dynamic coupling based on UML models, the main problem lies with
interaction diagrams. If we resort to UML diagrams for dynamic coupling measurement, we have
to find a substitute for the line of code where the invocation is located to distinguish messages (in
ME) and compute xx_xD measures. A natural substitute is the guard or path condition (which

must be true for a message to be sent), which corresponds to different contexts of invocations.
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An identical method on two messages with two distinct guard conditions must correspond to
different invocation statements in the code. However, one guard condition on a message does not
have to correspond to one invocation statement in the code. For example, one may have a guard
of the form [A or B] that triggers the invocation of m (), and the corresponding code may
show two distinct invocations statements for m (), each of them being in the body of an if
statement with conditions 2 and B, respectively.

What this implies is that if xx_xD measures are collected from UML interaction diagrams,
coupling will tend to be underestimated, because distinct elements of ME will not be
distinguishable using UML interaction diagrams. However, the question is whether, in practice,
this makes any significant difference. The advantages of using dynamic coupling measures on
early UML artifacts may outweigh the drawbacks that are due to their lower precision.
Furthermore, xx_xC and xx_xM measures are not affected by the use of UML interaction
diagrams. If empirical investigation finds these latter measures to be strongly correlated with

xX_xD, it is doubtful the data collection inaccuracy discussed above will have any practical effect.

4. Case Study

This section presents the results of a case study whose objectives are to provide a first empirical
validation of the dynamic coupling measures presented above. The first subsection explains in
more detail our objectives, the study settings, and the methodology we follow. In subsequent

sections quantitative results are presented and interpreted.

4.1. Objectives and Methodology

We selected an open-source software system called Velocity to evaluate the dynamic coupling

measures. Velocity is part of the Apache Jakarta Project [23]. Velocity can be used to generate
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web pages, SQL, PostScript and other outputs from template documents. It can be used either as a
standalone utility or as an integrated component of other systems. A total of 17 consecutive
versions (versions 1.0b1 to version 1.3.1) of Velocity were available for analysis. The versions
were released within a time span of approximately two years. The versions used in the actual
analysis were four subsequent sub-releases (called “release candidates” in Velocity) within one
major release of the Velocity system (version 1.2). The first sub-release, 1.2rc1, consists of 17210
source lines of code (SLOC) in 136 core application classes (after removing “dead” code and
classes related to test cases, as described further in Section 4.2) in addition to 408 library classes.
There were 65 inheritance relationships and 149 instances of method overriding in the first
release candidate, thus showing substantial use of polymorphism and dynamic binding. Further
descriptive statistics of the classes are provided in Appendix C.

Several types of data were collected from the system. First, change data (i.e., using a class-
level source code diff) was collected for each application class. Based on the change data, the
amount of change (in SLOC added and deleted) of each class within a given set of consecutive
versions was computed. Second, to collect the dynamic coupling measures, test cases provided
with the Velocity source code were used to exercise each version of the system. Each test case
was executed while the JDissect dynamic coupling tracer tool (Section 3.1) computed the
dynamic coupling measures. Third, size and a comprehensive set of static coupling measures (a
complete list is provided in Appendix A and B) were collected using a static code analysis tool.
The scope of measurement was the application classes (AC) of Velocity. Thus, coupling to/from
library and framework classes were not included (for further details, see Section 2.1).

A first objective of the case study was to determine whether the dynamic coupling measures
capture additional dimensions of coupling when compared with static coupling measures. A

subsequent, more ambitious objective was to investigate whether dynamic coupling measures are
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significant indicators of a useful, external quality attribute and are complementary to existing
static measures in explaining its variance.

Following the methodology described in [6], we first analyzed the descriptive statistics of the
dynamic coupling measures. The motivation was to determine whether they show enough
variance and whether some of the properties we expected were visible in the data. The next step
was to perform a principal component analysis (PCA), the goal of which was to identify what
structural dimensions are captured by the dynamic coupling measures and whether these
dimensions are at least partly distinct from static coupling measures. It is usual for software
product measures to show strong correlations and for apparently different measures to capture
similar structural properties. PCA also helps to interpret what measures actually capture and
determine whether all measures are necessary for the purpose at hand. In our case, recall that we
want to determine whether all xx_xC, xx_xM, and xx_xD measures are necessary, that is, to what
extent they are redundant.

In order to investigate their usefulness as quality indicators, we investigate whether dynamic
coupling measures are statistically related to change proneness, that is, the extent of change
across the versions of the system we used as a case study. To do so, we analyzed the changes
(lines of code added and deleted) across the four sub-releases of Velocity 1.2. Our goal was to
ensure we would only consider correction changes as requirements changes are not driven by
design characteristics but mainly by external factors. Sub-releases in a major release include only
correction changes® and we were therefore able to factor out requirements changes and obtain

more accurate analysis results regarding the impact of coupling on change proneness.

3 We checked the change records for the four sub-releases of Velocity 1.2 to ensure that this assumption was correct.
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The dependent variable (Change) in this study is the total amount of change (source lines of
code added and deleted) that has affected each of the 136 application classes participating in the
test case executions across the four sub-releases of Velocity 1.2. Since none of these classes were
added or deleted during the making of the successive releases, the variable Change is a measure
of the change proneness of these classes. In this case study context, this can be more precisely
defined as their tendency to undergo correction changes. Other possible dependent variables
could have been selected, such as the number of changes, but we wanted our dependent variable
to somehow reflect the extent of changes as well as their frequency.

The above analysis assumes that there is a cause-effect relationship between coupling and
change proneness, something which is intuitive because classes that strongly depend on or
provide services to other classes are more likely to change, through ripple effects, as a result of
changes in the system [11]. Predicting the change proneness of a class (i.e., its volatility) can be
used to aid design refactoring (e.g., removing "hot-spots™), choosing among design alternatives or
assessing changeability decay [1].

One important issue is that not only do we want our measures to relate to change proneness in
a statistically significant way, but we want the effect to be additional or complementary to that of
static coupling measures and class size [6, 21]. If some of the dynamic coupling measures remain
statistically significant covariates when the static coupling measures and size measures are
included as candidate covariates, this subset of dynamic coupling measures is deemed to
significantly contribute to change proneness. We consider this to be empirical evidence of the
causal effect between dynamic coupling and change proneness, of their practical usefulness, and
hence we consider it to provide an initial empirical validation of the dynamic coupling measures.

More details are provided in Section 4.4.
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4.2. Code Coverage

One practical drawback of using dynamic analysis is that one has to ensure that the code is
sufficiently exercised to reflect in a complete manner the interactions that can take place between
objects. To obtain accurate dynamic coupling data, the complete set of test cases provided with
Velocity were used to exercise the system. Though this test suite was supposed to be complete, as
it is used for regression test purposes, we used a code coverage tool and discovered that only
about 70 percent of the methods were covered by the test cases. A closer inspection of the code
revealed that a primary reason for this apparent low coverage was that 34 classes contained
“dead” code. In addition, there were many occurrences of alternative constructors and error
checking code that were never called. Fortunately, such code does not contribute to coupling.
After removing the dead code and filtering out alternative constructors and error checking code,
the test cases covered approximately 90 percent of the methods that might contribute to coupling
among the application classes in Velocity. Consequently, the code coverage seems to be
sufficient to obtain fairly accurate dynamic coupling measures for the 136 “live” application

classes of Velocity 1.2.

4.3. Preliminary Analysis Summary

This subsection describes the main results from a number of standard, preliminary data analyses.
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Variability

We first computed descriptive statistics for coupling and class size measures based on the first
sub-release of the studied release (1.2) of Velocity (Appendix C). One notable result is that the
mean values for dynamic import coupling measures (e.g., IC_OC) are always equal to the mean
values of their corresponding dynamic export coupling measure (e.g., EC_OC). This confirms the
symmetry property discussed in Section 2.3. For most measures, there are large differences
between the lower 25" percentile, the median, and the 75" percentile, thus showing strong
variations in import and export coupling across classes. Many of the measures show a large
standard deviation and mean values that are larger than the median values, with a distribution
skewed towards larger values. Two of the static coupling measures show (almost) no variation
and are not considered in the remainder of the analysis. These measures are related to direct
access of public attributes by methods in other classes, which is considered poor practice.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [20] was used to analyze the covariance structure of the
measures and determine the underlying dimensions they capture. PCA usually generates a large
number of Principal Components, which are usually retained or discarded based on the amount of
variance they explain+. Appendix D provides the results of PCA when accounting for dynamic
coupling measures only. The results show that coupling is divided along four dimensions: IC_Ox,
IC_Cx, EC_Ox and EC_Cx. Thus, all xx_xC, xx_xM, and xx_xD measures belong to identical
components when they have identical scope, granularity and entity of measurement, therefore
capturing similar properties. This implies that it may not be necessary to collect all of these

measures, and in particular, the xx_xD measures that cannot be collected on UML diagrams and

4 We use here a typical threshold, where PCs with eigenvalues larger than 1.0 are retained.
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require dynamic code analysis. It is interesting to note that this confirms the results in the earlier
case study on a Smalltalk system [2].

Appendix E provides the results of PCA when considering all measures. Two principal
components (PC5 and PC7) clearly capture export dynamic coupling and import dynamic
coupling, mostly at the object level (i.e., object-level show higher weights), respectively. As for
all PCA results when many measures are included, some of the principal components are difficult
to interpret. The first one, for example, captures most size measures and some import static
coupling measures, but also, to a lesser extent, import dynamic coupling at the class level. As has
been observed in past studies [6, 21], size may be to some extent related to some of the coupling
measures. With respect to dynamic coupling, results show that class-level measures are
moderately correlated with some of the size and static coupling measures, but overall, the PCA
analysis seems to indicate that our dynamic coupling measures (especially when the entity of
measurement is the object) are not redundant with existing static coupling and size measures. The
next sections go even further in this respect by providing evidence that dynamic coupling
measures are also useful quality indicators.

Dynamic coupling as an explanatory variable of change proneness
The next step was to analyze the extent to which each of the dynamic coupling measures are
related to our dependent variable, change proneness (see Section 4.1). However, since the size
(SLOC) of a class is an obvious explanatory variable of Change (SLOC added+deleted), it may
be more insightful to determine whether a coupling measure is related to change proneness

independently of class size. We therefore tested whether the dynamic coupling measures are
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significant additional explanatory variables, over and above what has already been accounted for
by size.

To achieve this, we systematically performed a multiple linear regression involving class size
(SLOC) and each of the dynamic coupling measures and then determined whether the regression
coefficient for the coupling measure was statistically significant (using a standard statistical t test
[22]). The underlying assumptions are that the larger the export coupling, the more likely a class
is to be changed, because it has to adjust to the evolving needs of many classes. Similarly, the
larger the import coupling, the more likely a class is to be changed, because it depends on many
other classes that may themselves change, thus triggering ripple effects. The analyses resulted in
12 coupling measures and one size measure being tested for significance and with that many
tests, the discovery of empirical relationships by chance becomes more likely [18]. Consequently,
the significance level (alpha-level) was set to o = 0.05/13 = 0.004, following the Bonferroni
procedure. However, the Bonferroni procedure is conservative and the reader may choose to be

less strict when interpreting the actual p-values in Table 3.

Table 3 Relationships between Change Proneness and Dynamic Coupling

Regression Coefficient p-value Coefficient p-value R-Sq R-Sq (ad))
Covariates Size Size Coupling Coupling

CS1 0.068 0.000 N/A N/A 12.8% 12.1%
CSs1,IC_OoC 0.067 0.000 0.123 0.778 12.8% 11.5%
CS1,IC_OM 0.067 0.000 0.085 0.769 12.8% 11.5%
CS1,IC_OD 0.068 0.000 0.010 0.971 12.8% 11.5%
CSi,IC_CC 0.059 0.001 1.038 0.151 14.1% 12.8%
CS1,IC_CM 0.059 0.001 0.748 0.165 14.0% 12.7%
CS1,IC_CD 0.063 0.000 0.314 0.473 13.1% 11.8%
CS1,EC_OC 0.064 0.000 1.656 0.001 20.1% 18.9%
CS1,EC_OM 0.065 0.000 0.899 0.009 17.2% 16.0%
CS1,EC_OD 0.065 0.000 0.830 0.002 19.0% 17.7%
CS1,EC_CC 0.061 0.000 1.758 0.000 20.6% 19.4%
CS1,EC_CM 0.064 0.000 0.736 0.017 16.5% 15.2%
CS1,EC_CD 0.065 0.000 0.469 0.024 16.1% 14.8%
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The results (Table 3) show strong support for the hypotheses that three of the dynamic export
coupling measures are clearly related to change proneness, in addition to what can be explained
by size in SLOC (CS1). On the other hand, dynamic import coupling measures do not seem to
explain additional variation in change proneness, compared to size alone. Once again, this
confirms the results obtained in an earlier case study on a Smalltalk system [2].

The coefficients of determination (R-Sq) are not high, but that is to be expected, because we
only include size and one coupling measure at a time and, as a result, a large portion of the
variance is still not accounted for. A few observations had very large residuals that contributed to
the low coefficients of determination and, thus, the underlying regression model assumption of
normally distributed residuals is violated due to these outliers. Removing them significantly
improved the model fit while still confirming the results of the models in Table 3. This indicates
that the model violations are of little practical consequence with regards to the results of the
hypotheses tests. The following section evaluates the extent to which the dynamic coupling
measures are useful predictors when building the best possible models by using size, static

coupling, and dynamic coupling measures as possible model covariates.
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4.4. Prediction Model of Change Proneness

Model variables
Throughout this section, the dependent variable is change proneness (see Section 4.1). The
independent variables include the size and static coupling measures and our proposed 12 dynamic
coupling measures. A complete list of candidate measures is available in Appendixes A and B.
Ordinary Least-Squares regression (including outlier analysis) was used to analyze and model the
relationship between the independent and dependent variables, that is, between the size/coupling
measures of the first sub-release and the amount of changes in the subsequent sub-releases. In
order to select covariates in our regression model, we use a mixed selection heuristic [22] so as to
allow variables to enter, but also to leave, the model when below/above a significance threshold.
Though other procedures have been tried (e.g., backward procedure based on variables with
highest loadings in principal components), the one we report here yielded models with
significantly higher fit.

Rationale for model building

Recall that the objective of this regression analysis is to determine whether dynamic coupling
measures help to explain additional variation in change proneness, compared to class size (CS)
and static coupling alone (see Section 4.1). In other words, we want to determine whether these
measures help to obtain a better model fit and, therefore, an improved predictive model. To
achieve this objective we proceeded in two steps. First we analyzed the relationship between
Change and CS + Static coupling measures in order to generate a multivariate regression model
that would serve as a baseline of comparison. We then continued by performing multivariate
regression, using as candidate covariates all size, static coupling, and dynamic coupling

measures. If the goodness of fit of the latter model turns out to be significantly better than the
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former model we would then be able to conclude that dynamic coupling measures are useful,
additional explanatory variables of change proneness.

Discussion of modeling results

The first multivariate model we obtained when using size and static coupling measures as
candidate covariates is presented in Table 4. After removing one outlier that is clearly over-
influential on the regression results (with an extremely large Change value), we obtained a model
with three size measures and nine static coupling measures for covariatess (for 135 observations).
Around 79% of the variance in the data set is explained by size and static coupling measures and
we obtained an adjusted R? of 0.77 (i.e., adjusted for the number of covariates [22]). We do not
attempt to discuss the regression coefficients, because such models are inherently difficult to
interpret since it is common to see some degree of correlation and interaction between covariates
[6]. Smaller, less accurate models (e.g., where covariates are selected based on principal
components) would have been easier to interpret but recall that our goal was to demonstrate the
usefulness of dynamic coupling measures as predictors of change proneness. Furthermore,
analysis results provided in Table 3 show that, when significant, the relationships are in the

expected direction for our dynamic coupling measures.

6 Each category of measure is separated by a line in the table, starting with the intercept, static coupling and then class size.
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Table 4 Regression Model using Size and Static Coupling as Candidate Covariates

Covariate Coefficient Std Error t Ratio Prob>|t|
Intercept 14.24 4.08 3.49 0.0007
CBO 2.80 0.78 3.57 0.0005
PIM_EC 1.45 0.22 6.58 <.0001
DAC’ 18.87 4.37 4.31 <.0001
OCAEC -5.36 2.45 -2.18 0.0310
ACMIC -26.64 6.44 -4.14 <.0001
OCMIC -12.65 1.01 -12.44 <.0001
OMMIC 4.21 0.50 8.31 <.0001
DMMEC -2.99 0.58 -5.14 <.0001
OMMEC -1.41 0.34 -4.12 <.0001
NMD -1.06 0.28 -3.69 0.0003
NumPara 4.23 0.38 10.87 <.0001
CS2 (semi) -0.37 0.037 -9.85 <.0001

When including, in the set of candidate covariates, the dynamic coupling measures, we obtain
a very different model (Table 5). Four dynamic coupling measures (highlighted in italics), as well
as nine static coupling measures and four size measures, were included as covariates in the model
(we retained, as for the other model, all covariates with p-values below 0.1). The model explains
87% of the variance in the data set and shows an adjusted R? of 0.85. Therefore, even when
accounting for the difference in number of covariates, the coefficient of determination (R?)
increased by 8% or 35% of the unexplained variance (from 0.77 to 0.85) when using dynamic
coupling measures as candidate covariates. This is an indication that some of the dynamic
coupling measures are complementary indicators to static coupling and size measures as far as

change proneness is concerned.
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Table 5 Regression Model using all Measures as Candidate Covariates

Covariate Coefficient Std Error t Ratio Prob>|t|
Intercept 8.12 3.62 2.24 0.0270
EC_OC 4.32 1.08 4.00 0.0001
EC_OM -7.70 1.59 -4.81 <.0001
EC_OD 5.02 0.99 5.03 <.0001
IC_CC -1.14 0.52 -2.19 0.0306
CBO 2.84 0.70 4.02 0.0001
RFC_1 0.67 0.18 3.66 0.0004
RFC -0.05 0.01 -3.37 0.0010
OCAIC 19.39 4.23 4.58 <.0001
OCMIC -10.37 0.95 -10.90 <.0001
OMMIC 4.37 0.55 7.90 <.0001
DMMEC -1.17 0.42 -2.75 0.0069
OMMEC -1.46 0.25 -5.74 <.0001
AMAIC 6.06 1.98 3.05 0.0028
NMI 4.38 0.98 4.47 <.0001
NMpub -1.86 0.58 -3.17 0.0019
NumPara 2.60 0.73 3.53 0.0006
CS1 (SLOC) -0.22 0.02 -9.82 <.0001

It is also interesting to note that three out of the four dynamic coupling measures capture
export coupling. One import coupling measure is nevertheless selected, but is clearly less
significant. One explanation is that, from the detailed PCA results reported in Section 4.3, we can
see that class-level dynamic coupling measure tend to be more correlated to size and static
coupling and, similarly, dynamic export coupling measures tend to be less correlated to size
measures than their import counterpart. A likely reason is that it is easy to imagine small classes
providing services to many other methods and therefore having a large export coupling. Large
import coupling classes though, are more likely to be large, because they use many features from
other classes.

Results in our earlier study on a Smalltalk system [2] also showed that dynamic export

coupling is a stronger indicator of change proneness. Though the context, programming language,
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and application domain were different, the result obtained in the two studies are consistent, thus

suggesting our results can be generalized to a large proportion of systems.

5. Related Work

A large body of work exists on the static measurement of cohesion and coupling, both for
procedural [29] and object-oriented systems [16, 26]. In particular, a number of people have used
static coupling measurement to assess the maintainability of object-oriented systems [25, 31].

In a number of occasions, those measures have shown to be useful predictors of certain quality
attributes such as fault-proneness or change (see survey of empirical results in [6]). For further
details on the measures themselves, we refer the reader to surveys that have been published in
[10] and [9]where most existing measures and their properties are discussed in detail.

The general idea of using dynamic analysis of programs to assess software quality is not new.
For example, Sneed and Merey [30] have shown how it could be used to check assertions and
monitor the behavior of modules in procedural software. More specifically, dynamic object-
oriented coupling measures were first proposed in [33]. The authors proposed two object-level
dynamic coupling measures, Export Object Coupling (EOC) and Import Object Coupling (10C),
based on executable Real-Time Object Oriented Modeling (ROOM) design models. The design
model used to collect the coupling measures is a special kind of sequence diagram that allows
execution simulation.

IOC and EOC count the number of messages sent between two distinct objects o; and o; in a
given ROOM sequence diagram x, divided by the total number of messages in x. Thus, the result
is a percentage that reflects the “intensity” of the interaction of two objects related to the total
amount of object interaction in x. For example, in a simple scenario x1 where 0; sends two

messages (m1 and m2) to 0, and 0, sends one message (m3) to 04, then 10Cy4(04, 0,) = 100*2/3 =
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66% and 10Cy;(02, 01) = 100*1/3 = 33%. Based on these basic measures, the authors also derive

measures at the system level using the probability of executing each sequence diagram as a

weighting factor. In a different paper, a methodology for architecture-level risk assessment based

on the dynamic measures is proposed [34].

There are several important differences between the measures presented in [33] and the

coupling measures described in this paper:

The dynamic coupling measures in [33] do not adhere to the coupling properties described
in the axiomatic framework described in [10]. This is not necessarily a problem in the
application context of that particular piece of work, but it would very likely be a problem
in many other situations (see [10] for a detailed discussion).

The measures described in this paper differentiate between many different dimensions of
coupling, in addition to import and export coupling. Most importantly, we account for
inheritance and polymorphism by distinguishing between dynamic class-level and object-
level measures. In our opinion, the ability to measure coupling precisely for systems with
inheritance and dynamic binding represents one of the primary advantages of dynamic
coupling over static coupling. This is supported by the results presented in the previous
section.

Our measures are collected from analyzing message traces from system executions
(Section 3.1) or from UML diagrams (Section 3.2). The dynamic coupling measures in

[33] are collected from ROOM models.

Another important addition over [33] is that we perform an empirical validation of our dynamic

coupling measures by showing they are complementary to simple size measures and static
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coupling measures. Furthermore, the relationship of all these measures to an external quality
indicator (change proneness) is investigated.

The measures proposed and validated in this paper are based on an initial study described in
[2]. Initially the dynamic coupling measures were described informally, and an initial validation
was performed on a SmallTalk system. In this paper, this research has been extended in several
important ways. The dynamic coupling measures have been defined formally and precisely, in an
operational form. As part of this process, we discovered that some of the measures proposed in
[2] did not fully adhere to the coupling properties described in [10]. The measures proposed in
this paper are shown to be theoretically valid, at least based on a widely referenced axiomatic
framework. The empirical validation in this paper is also considerably more comprehensive than
in [2]. Furthermore, the dynamic coupling measures are compared with size and static coupling
measures. Such a comparison was not possible for the SmallTalk system investigated in [2]
because static measures could not be collected. This paper clearly confirms the initial empirical
evaluation described in [2]; both in terms of Principal Component Analysis and evaluation of the
dynamic coupling measures as predictors of change proneness. Thus, the two studies provide a
strong body of evidence that the proposed dynamic coupling measures (especially export
coupling) are useful indicators of change proneness and capture different properties than do static
coupling measures. Results were found to be very similar (despite some differences in
measurement) across two separate application domains (commercial CASE tool and open-source

web software, respectively) and programming languages (SmallTalk and Java, respectively).

6. Conclusions

The contribution of this paper can be summarized as follows. First, we provide formal,

operational definitions of dynamic coupling measures for object-oriented systems. The
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motivation for those measures is to complement existing measures that are based on static
analysis by actually measuring coupling at run-time in the hope of obtaining better decision and
prediction models, because we account precisely for inheritance, polymorphism and dynamic
binding. Second, we describe a tool whose objective is to show how to collect such measures for
Java systems effectively and, finally yet importantly, we perform a thorough empirical
investigation using open source software. The objective was three-fold: (1) Demonstrate that
dynamic coupling measures are not redundant with static coupling measures, (2) Show that
dynamic coupling measures capture different properties than simple size effects, and (3)
Investigate whether dynamic coupling measures are useful predictors of change proneness.
Admittedly, many other applications of dynamic coupling measures can be envisaged. However,
investigating change proneness was used here to gather initial but tangible evidence of the
practical interest of such measures.

Our results show that dynamic coupling measures indeed capture different properties than
static coupling measures, though some degree of correlation is visible, as expected. Dynamic
export coupling measures were shown to be significantly related to change proneness, in addition
to that which can be explained by size effects alone. Last, some of the dynamic coupling
measures, especially the export coupling measures (EC_OC, EC_OM, EC_OD), appear to be
significant (p-value = 0.0001), complementary indicators of change proneness when combined
with both size and static coupling measures. The model including dynamic coupling measures
yields a R? of 0.85, suggesting that a large percentage of variance in code change can be
explained by the model. Some of these results confirm those obtained on an earlier study [2] of a
SmallTalk system. Though no comparison with static coupling and size measures could be
performed in this earlier study, those combined results constitute evidence that dynamic export

coupling measures are significant indicators of change proneness.
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The results above should be qualified in a number of ways. With respect to external validity,
the system we used as a case study may use much more polymorphism and dynamic binding than
most systems, thus making dynamic coupling of particular importance. In terms of internal
validity, it is clear coupling is only one of the factors affecting change proneness. This is
particularly true for requirements changes and recall that our study only considered correction
changes. To build complete change proneness models, many other factors would have to be
considered. But this is out of the scope of this paper as the purpose of analyzing change
proneness was only to provide an empirical validation of our dynamic coupling measures.
Another practical limitation is that using dynamic coupling requires extensive test suites to
exercise the system. Such test suites may not be readily available.

Future work will include investigating other applications of dynamic coupling measures (e.g.,
test case prioritization), and the cost-benefit analysis of using change proneness models such as
the ones presented in the current work. These models may be used for various purposes, such as
focusing supporting documentation on those parts of a system that are more likely to undergo
change, or making use of design patterns to better anticipate change. Note that such applications
may also be relevant in procedural software making use of dynamic binding.

Furthermore, a number of other applications of dynamic coupling measurement should be
investigated. A side effect of the work presented in this paper is that the JDissect tool can be used
to discover dead code, assuming that test data representative of the operational profile of the
system is available. Similarly, the tool can be used to determine exactly which objects, classes
and methods are involved in a given functional component (e.g., a use case) of a system. Such
functionality could be useful for maintainers to achieve an initial understanding of (complex parts

of) a system.
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Appendix A — Definition of the Size Measures

Some of the size measures in the text are frequently used in publications and available tools, and

no definite source or author can be given for them.

Name Definition
NAI The number of non-inherited attributes in a class
NAD The number of inherited attributes in a class
NA The total number of attributes in a class. NA = NAI + NAD
NMI The number of methods implemented in a class (non-inherited or overriding methods)
NMD The number of inherited methods in a class, not overridden
NM The number of all methods (inherited, overriding, and non-inherited) methods of a class. NM = NMI +
NMD
NMpub The number of public methods implemented in a class.
NMnpub The number of non-public (i.e., protected or private) methods implemented in a class.
NumPara Number of parameters. The sum of the number of parameters of the methods implemented in a class.
CS1 The number of source lines of code in a class
CS2 The number of declarations and statements (semicolons) in a class
Appendix B — Informal Definitions of the Static Coupling Measures
Name [Definition Source
CBO Coupling between object classes. According to the definition of this measure, a class is coupled to [16]
another, if methods of one class use methods or attributes of the other, or vice versa. CBO is then
defined as the number of other classes to which a class is coupled. This includes inheritance-
based coupling (coupling between classes related via inheritance).
CBO’ [Same as CBO, except that inheritance-based coupling is not counted. [15]
RFC Response set for class. The response set of a class consists of the set M of methods of the class, |[15]
and the set of methods directly or indirectly invoked by methods in M. In other words, the response
set is the set of methods that can potentially be executed in response to a message received by an
object of that class. RFC is the number of methods in the response set of the class.
RFC_1 |Same as RFC, except that methods indirectly invoked by methods in M are not included in the [16]
response set.
MPC  |Message passing coupling. The number of method invocations in a class. [28]
DAC Data abstraction coupling. The number of attributes in a class that have another class as their [28]
type.
DAC’ [The number of different classes that are used as types of attributes in a class. [28]
ICP Information-flow-based coupling. The number of method invocations in a class, weighted by the  |[27]
number of parameters of the invoked methods.
IH-ICP |As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance- based [27]
coupling) only.
NIH-ICP|As ICP, but counts invocations to classes not related through inheritance. [27]
PIM Polymorphically invoked methods. The number of invocations of methods of a class ¢ by other
classes
(regardless of the relationship between classes). Same as ICP, except that no weighting by the
number of parameters is performed.
PIM_EC [Export coupling version of PIM. The number of invocations of methods of a class ¢ by other
classes
(regardless of the relationship between classes).
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Name

CBO

another, if methods of one class use methods or attributes of the other, or vice versa. CBO is then
defined as the number of other classes to which a class is coupled. This includes inheritance-
based coupling (coupling between classes related via inheritance).

IACAIC
OCAIC
DCAEC
OCAEC
IACMIC
OCMIC
DCMEC
OCMEC
IAMAIC
DMAIC
AMMIC
OMMIC
DMMEC
OMMEC

These coupling measures are counts of interactions between classes. The measures distinguish  [[8]
the relationship between classes (friendship, inheritance, none), different types of interactions, and
the locus of impact of the interaction.

The acronyms for the measures indicates what interactions are counted:

The first or first two letters indicate the relationship (A: coupling to ancestor classes, D:
Descendents, O: Others, i.e., none of the other relationships).

The next two letters indicate the type of interaction:

CA: There is a Class-Attribute interaction between classes ¢ and d, if ¢ has an attribute of type d.
CM: There is a Class-Method interaction between classes ¢ and d, if class ¢ has a method with a
parameter of type class d.

MM: There is a Method-Method interaction between classes ¢ and d, if ¢c invokes a method of d, or
if a method of class d is passed as parameter (function pointer) to a method of class c.

The last two letters indicate the locus of impact:

IC: Import coupling, the measure counts for a class c all interactions where ¢ uses another class.

EC: Export coupling: count interactions where class d is the used class.

Appendix C — Descriptive Statistics

Variable N Mean Median Minimum Maximum Q1 Q3
IC_OC 136 6.95 1 0 108 0 6
IC_OM 136 9.59 2 0 144 0 7
IC_OD 136 10.93 2 0 182 0 9
EC_OC 136 6.95 3 0 79 0 7
EC_OM 136 9.59 4 0 101 0 11
EC_OD 136 10.93 4 0 117 0 12
IC_CC 136 5.21 1 0 108 0 5
IC_CM 136 6.93 1 0 144 0 7
IC_CD 136 8.69 1 0 182 0 9
EC_CC 136 5.21 2 0 64 0 5
EC_CM 136 6.93 3 0 138 0 5
EC_CD 136 8.69 3 0 221 0 6
CBO 136 4.13 2 0 43 1 5
CBO’ 136 3.62 2 0 43 1 4
RFC_1 136 45.29 23 0 186 4 98
RFC_oo 136 290.90 31 0 792 4 718
MPC 136 6.26 2 0 116 0 8
PIM 136 14.90 3 0 126 0 28
PIM_EC 136 14.90 4 0 211 1 19
ICP 136 30.65 6 0 256 0 53
IH-ICP 136 3.84 0 0 174 0 2
NIH-ICP 136 26.81 6 0 256 0 43
DAC 136 0.47 0 0 9 0 1
DAC_ 136 0.43 0 0 6 0 1
ACAIC 136 0.10 0 0 3 0 0
OCAIC 136 0.38 0 0 9 0 0
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Variable N Mean Median Minimum Maximum Q1 Q3
DCAEC 136 0.10 0 0 3 0 0
OCAEC 136 0.38 0 0 14 0 0
ACMIC 136 0.13 0 0 4 0 0
OoCMIC 136 3.18 2 0 36 0 4
DCMEC 136 0.13 0 0 6 0 0
OCMEC 136 3.18 0 0 88 0 2
AMMIC 136 1.24 0 0 15 0 1
OMMIC 136 5.03 1 0 116 0 3
DMMEC 136 1.24 0 0 80 0 0
OMMEC 136 5.03 0 0 98 0 2
AMAIC 136 0.91 0 0 40 0 1
OMAIC 136 0.01 0 0 1 0 0
DMAEC 136 0.91 0 0 40 0 0
OMAEC 136 0.01 0 0 1 0 0
NA 136 9.65 6 0 133 1 10
NAI 136 3.59 1 0 68 0 4
NAD 136 6.06 0 0 107 0 10
NM 136 16.90 12 0 161 3 29
NMImp 136 9.12 4 0 161 2 8
NMD 136 7.78 0 0 36 0 24
NMpub 136 14.96 10 0 50 2 29
NMnpub 136 1.94 0 0 113 0 0
NumPara 136 10.31 6 0 146 2 9
CS1 (SLOC) 136 126.50 46 1 3766 25 98
CS2 (#semicolon) 136 56 15 0 1747 9 46

Appendix D — Principal Component Analysis for the Dynamic Coupling Measures

Variable PC1 PC2 PC3 PC4
IC_OC 0.311 0.275 0.892 0.121
IC_OM 0.236 0.290 0.918 0.110
IC_OD 0.209 0.374 0.897 0.078
IC_CC 0.169 0.909 0.235 0.258
IC_CM 0.144 0.912 0.318 0.203
IC_CD 0.126 0.912 0.346 0.115
EC_OC 0.911 0.180 0.196 0.286
EC_OM 0.884 0.167 0.301 0.302
EC_OD 0.855 0.097 0.338 0.359
EC_CC 0.507 0.271 0.065 0.804
EC_CM 0.305 0.200 0.108 0.923
EC_CD 0.215 0.146 0.117 0.956
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Appendix E - Principal Component Analyses for All Measures

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
IC_OC 0.381 -0.007 -0.144 -0.034 0370 -0.071 -0.786 -0.021 -0.055 -0.034 -0.005
IC_OM 0.335 0.001 -0.097 -0.041 0.333 -0.079 -0.829 -0.014 -0.025 -0.047 0.033
IC_OD 0.428 -0.007 -0.097 -0.031 0.284 -0.064 -0.819 -0.002 -0.037 -0.037 0.030

EC_OC 0.315 -0.031 -0.310 -0.010 0.778 0.012 -0.319 0.002 -0.205 0.036 -0.031
EC_OM 0.215 -0.013 -0.287 -0.026 0.827 0.003 -0.364 -0.005 -0.083 0.107 0.004
EC_OD 0.163 0.010 -0.205 -0.038 0.883 -0.023 -0.335 -0.006 -0.033 0.114 0.017

IC_CC 0.610 0.112 -0.179 0.026 0.170 -0.014 -0.551 0.032 -0.337 0.092 0.185
IC_CM 0.592 0.091 -0.173 0.025 0.142 -0.013 -0.613 0.043 -0.313 0.078 0.179
IC_CD 0.628 0.061 -0.181 0.024 0.108 -0.001 -0.621 0.048 -0.257 0.072 0.152

EC_CC 0.054 0.533 -0.081 -0.075 0.751 -0.106 -0.049 0.061 -0.111 0.168 0.161
EC_CM 0.034 0.682 -0.019 -0.060 0.615 -0.155 -0.090 0.084 -0.102 0.245 0.114
EC_CD 0.017 0.737 0.009 -0.056 0.552 -0.174 -0.082 0.087 -0.092 0.232 0.077

CBO 0.069 0.378 -0.141 0.262 -0.057 -0.766 -0.030 -0.031 -0.079 0.101 0.228
CBO’ 0.080 0.376  -0.060 0.270 -0.073 -0.780 -0.018 -0.028 -0.092 0.025 0.216
RFC_1 0.277 0.082 -0.886 -0.057 0.129 0.023 -0.204 -0.016 0.003 0.076 0.157
RFC -0.001 0.112 -0.819 -0.117 0.111 0.103 -0.179 -0.006 -0.001 0.168 0.297
MPC 0.781 -0.041 -0.125 -0.014 0.089 0.028 -0.363 0.030 -0.232 0.085 0.342
PIM 0.574 0.168 -0.310 -0.067 0.027 0.041 -0.426 0.093 -0.036 0.244 0.484
PIM_EC 0.002 0.602 -0.091 0.086 0.480 -0.496 0.043 0.008 -0.105 0.137 0.149
ICP 0.436 0.244 -0.323 -0.063 0.010 0.021 -0.451 0.092 -0.176 0.200 0.557
IH-ICP -0.020 0.849 -0.212 -0.011 0.005 -0.131 -0.029 0.101 -0.110 0.360 0.011
NIH-ICP 0.481 -0.044 -0.275 -0.064 0.009 0.070 -0.480 0.063 -0.152 0.087 0.601
DAC 0.451 0.286 0.070 -0.014 0.176 -0.113 -0.182 0.065 -0.720 0.269 0.075
DAC 0.390 0.223 0.107 -0.046 0.216 -0.107 -0.114 0.061 -0.723 0.271 0.133
ACAIC -0.013 0.250 0.024 -0.004 0.148 -0.070 0.041 -0.016 -0.140 0.885 0.006
OCAIC 0.507 0.212 0.068 -0.014 0.133 -0.095 -0.219 0.079 -0.741 -0.079 0.081

DCAEC -0.049 0.250 0.097 0.896 -0.067 -0.090 0.037 -0.047 0.052 -0.031 -0.003
OCAEC 0.031 -0.065 0.073 -0.033 0.000 -0.801 -0.006 0.110 -0.036 0.084 -0.147
ACMIC -0.004 0.491 0.007 -0.016 0.090 -0.088 0.055 0.004 -0.146 0.793 -0.018
OCMIC 0.272 0.099 -0.145 0.038 0.164 -0.371 0.031 -0.120 -0.101 -0.024 0.665
DCMEC -0.038 0.015 0.079 0.913 -0.007 -0.027 0.038 -0.025 0.080 -0.033 0.024
OCMEC 0.177 -0.120 -0.093 0.663 -0.021 -0.416 -0.054 0.044 -0.211 0.055 -0.093
AMMIC -0.077 0.087 -0.475 -0.019 0.270 0.055 -0.135 0.015 0.115 0.684 0.179
OMMIC 0.810 -0.049 -0.029 -0.010 0.034 0.017 -0.341 0.028 -0.259 -0.055 0.310
DMMEC -0.007 0.866 0.005 0.352 -0.105 -0.215 0.030 0.041 -0.089 0.059 0.006
OMMEC 0.006 0.254 0.172 0.047 0.278 -0.789 -0.123 -0.028 0.036  -0.098 0.057

AMAIC 0.553 -0.112 -0.117 0.086 0.063 0.000 -0.527 0.009 -0.474 -0.061 -0.032
DMAEC -0.062 0.452 0.039 -0.025 -0.101 -0.099 0.070 0.691 -0.149 -0.005 -0.093
NA 0.778 -0.055 -0.143 -0.030 0.156 0.029 -0.149 0.438 -0.155 -0.079 0.117
NAI 0.346 -0.017 0.177 -0.029 0.116 0.005 -0.055 0.838 0.017 0.017 0.029
NAD 0.783 -0.061 -0.300 -0.021 0.127 0.034 -0.157 0.024 -0.211 -0.113 0.132
NM 0.751 0.023 -0.543 0.043 0.200 -0.145 -0.167 -0.067 -0.144 -0.025 -0.007
NMI 0.885 0.050 -0.003 0.054 0.146 -0.234 -0.126 -0.034 -0.247 0.001 0.084
NMD -0.111  -0.040 -0.921 -0.012 0.111 0.120 -0.087 -0.060 0.143 -0.043 -0.143
NMpub 0.264 0.073 -0.826 0.023 0.263 -0.217 0.010 -0.135 -0.058 -0.027 0.092

NMnpub 0.912 -0.044 0.033 0.043 0.033 0.004 -0.278 0.041 -0.167 -0.010 -0.111
NumPara 0.737 0.084 0.008 -0.071 0.104 -0.302 0.257 -0.063 0.229 -0.015 0.367
Cs1 0.967 0.027 0.055 -0.014 0.047 -0.010 -0.150 0.071 0.050 0.026 -0.021
CS2 0.961 0.007 0.055 0.007 0.041 -0.021 -0.194 0.076 0.003 0.013 -0.041
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