Simula Research Laboratory Technical Report 2003-6

A Controlled Experiment with Professionals to Evaluate the Effect of a
Delegated versus Centralized Control Style on the Maintainability of Object-

Oriented Software

Erik Arisholm and Dag LK. Sjeberg
{erika,dagsj} @simula.no
Simula Research Laboratory
P.O. Box 134

N-1325 Lysaker
NORWAY

Abstract. One fundamental question in object-oriented design is how to design
maintainable software. According to expert opinion, a delegated control style, typically a
result of responsibility-driven design, represents object-oriented design at its best, whereas
a centralized control style is reminiscent of a procedural solution, or a “bad” object-
oriented design. This paper presents a controlled experiment that investigates these claims
empirically. A total of 99 junior, intermediate and senior professional consultants from
several international consultancy companies were hired for one day to take part in the
experiment. To compare differences between (categories of) professionals and students, 59
students also participated. The subjects used professional Java tools to perform several
change tasks on two alternative Java designs having a centralized and delegated control
style, respectively.

The results show that the most skilled developers, in particular the senior consultants,
require less time to maintain software with a delegated control style than with a centralized
control style. However, more novice developers, in particular the undergraduate students
and junior consultants, have serious problems understanding a delegated control style, and

perform far better with a centralized control style.

Simula Research Laboratory Technical Report 2003-6

Thus, the maintainability of object-oriented software depends to a large extent on the
skill of the developers who are going to maintain it. The results may have serious
implications for object-oriented development in an industrial context: having senior
consultants design object-oriented systems that eventually will be maintained by juniors
may be unwise, since the cognitive complexity of such “expert” designs might be

unmanageable for less skilled maintainers.

1. Introduction
A fundamental problem in software engineering is to construct software that is easy to change.
Supporting change is one of the claimed benefits of object-oriented software development.

The principal mechanism used to design object-oriented software is the class, enabling the
encapsulation of attributes and methods into logically cohesive abstractions of the world.
Assigning responsibilities and collaborations among classes can be performed in many ways. In
a delegated control style, a well defined set of responsibilities are distributed among a number of
classes [29]. The classes play specific roles and occupy well-known positions in the application
architecture [30, 31]. Alternatively, in a centralized control style, a few, large “control classes”
co-ordinate a set of simple classes [29]. According to object-oriented design experts, a delegated
control style is easier to understand and change than is a centralized control style [3, 13, 29-31].

One of the major goals of a responsibility-driven design method is to support the development
of a delegated control style [29-31], that is, the design of a delegated control style is one of its
prescribed principles. The empirical study in [23] confirms that a responsibility-driven design
process may result in a delegated control style. That study also suggests that a data-driven design

approach (adapted from structured design to the object-oriented paradigm) results in a

Simula Research Laboratory Technical Report 2003-6

centralized control style because one controller class is assigned the responsibility of
implementing the business logic of the application, using data from simple “data objects”.

In a use-case driven design method, as advocated in most recent UML textbooks, one of the
commonly prescribed principles is to assign one (central) control class to coordinate the
sequence of events described by each use-case [15, 16]. However, a question not explicitly
discussed in the UML textbooks is how much responsibility the control class should have to
design maintainable software. At one extreme, the control class might only be responsible for
initiating the use-case and communicating with boundary (interface) classes, while the real work
is delegated to entity (business) classes, which in turn collaborate to implement the business
logic and flow of events of the use-case. In this case, use-case driven design would resemble
responsibility-driven design, with a delegated control style. At the other extreme, the control
class might implement the actual business logic and flow of events of a use-case, in which case
the entity classes function only as simple data structures with “get” and “set” methods. In this
case, use-case driven design would resemble data-driven design, with a centralized control style.

To compare the maintainability of the two control styles, the authors of this paper previously
conducted a controlled experiment [1]. For the given sample of 36 undergraduate students, the
delegated control style design required significantly more effort to implement the given set of
changes than did the alternative centralized control style design. This difference in change effort
was primarily due to the difference in effort required to understand how to perform the change
tasks.

Consequently, there is a contradiction between the expert recommendations and the results of
our previous experiment. It might be that a delegated control style provides better software

maintainability for an expert, while a centralized control style might be better for novices.

Simula Research Laboratory Technical Report 2003-6

Novices may struggle to understand how the objects in a delegated control style actually
collaborate to fulfil the larger goals of an application. Differences in “complexity” of object-
oriented designs may be explained by the cognitive models of the developers [24]. Thus,
software maintainability is not only an attribute of the software artefact; it is also an attribute of
the actual developer changing the software. This factor seems to be underestimated by the
object-oriented experts, neither is it investigated in most controlled experiments evaluating
object-oriented technologies. Consequently, the main research question we attempt to answer in
this paper is the following: For the target population of junior, intermediate and senior software
consultants with different levels of education and work experience, which of the two
aforementioned control styles is easier to maintain?

We conducted an experiment with a sample of 99 Java consultants from eight consultancy
companies, including the major, partly international, companies Cap Gemini Ernst & Young,
Ementor, Accenture, TietoEnator and Software Innovation. To compare differences between
(categories of) professionals and students, 59 students also participated. The treatments were the
same two alternative designs given in the previous pen-and-paper student experiment [1]. The
experimental subjects were assigned to the two treatments using a between-subjects randomized
block design.

To increase the realism of the experiment [14, 22, 27], the subjects used their usual Java
development tool instead of pen and paper. The professionals were located in their usual work
offices during the experiment, the students in their usual computer lab. The subjects used the
Simula Experiment Support Environment [2] to receive the experimental materials, answer

questionnaires and upload task solutions. Each subject spent about one work day on the

Simula Research Laboratory Technical Report 2003-6

experiment. As in ordinary programming projects, the companies of the consultants were paid to
participate.

The remainder of this paper is organized as follows. Section 2 outlines fundamental design
principles of object-oriented software. Section 3 describes existing empirical research evaluating
object-oriented design principles. Section 4 describes the design of the controlled experiment.

Section 5 presents the results. Section 6 discusses threats to validity. Section 7 concludes.

2. Delegated versus Centralized Control in Object-Oriented Designs
This section describes the concepts underlying the object of study, that is, the two control styles
evaluated in the experiment. Two example designs illustrate the two control styles, respectively.

These examples are also the design alternatives used as treatments in our experiment.

2.1. Relationships between Design Properties, Principles and Methods

To clarify the concepts studied in this paper, we distinguish between design properties, design
principles and design methods. Object-oriented design properties characterize the resulting
design. Examples are coupling [7] and cohesion [6]. Object-oriented design principles prescribe
“good” values of the design properties. Examples are low coupling and high cohesion, as
advocated in [12, 20]. Object-oriented design methods prescribe a sequence of activities for
creating design models of object-oriented software systems.! Examples are responsibility-driven
design [30], data-driven design [23, 25, 28] and use-case driven design [15, 16]. Ideally, design

methods should support a set of (empirically validated) design principles.

! The existing literature provides no clear distinction between object-oriented analysis and object-oriented design. Consequently,
the process we define as object-oriented design may include activities that also might be referred to as object-oriented analysis.
However, in this paper, such a distinction is not important.

Simula Research Laboratory Technical Report 2003-6

2.2. Delegated versus Centralized Control Style

The control styles studied in this paper are depicted in Figure 1. According to the terminology
defined in [29], delegated and centralized control styles embody two radically different
principles for assigning responsibilities and collaborations among classes. A delegated control
style is described as follows:

A delegated control style ideally has clusters of well defined responsibilities distributed among a
number of objects. Objects in a delegated control architecture tend to coordinate rather than
dominate. Tasks may be initiated by a coordinator, but the real work is performed by others. These
worker objects tend to both 'know' and 'do' things. They may even be smart enough to determine
what they need to know, rather than being plugged with values via external control. To me, a
delegated control architecture feels like object design at its best...

Wirfs-Brock [29]
In contrast, a centralized control style typically consists of a central object (Figure 1), which is
responsible for the initiation and coordination of all tasks:

A centralized control style is characterized by single points of control interacting with many simple
objects. The intelligent object typically serves as the main point of control, while others it uses

behave much like traditional data structures. To me, centralized control feels like a "procedural

solution" cloaked in objects...

Wirfs-Brock [29]

Delegated Control Style Centralized Control Style

Figure 1. Delegated versus Centralized Control Style

Simula Research Laboratory Technical Report 2003-6

2.3. Example — The Coffee-Machine Design Problem

This section illustrates the two control styles using two alternative example designs of the coffee-
machine design problem. These designs were discussed at a workshop on object-oriented design
quality at OOPSLA'97 [17] and are described in two articles in C/C++ User's Journal [13]:

This two-article series presents a problem I use both to teach and test OO design. It is a simple but
rich problem, strong on "design," minimizing language, tool, and even inheritance concerns. The
problem represents a realistic work situation, where circumstances change regularly. It provides a
good touch point for discussions of even fairly subtle designs in even very large systems...

Cockburn [13]
The initial problem statement was as follows:

You and I are contractors who just won a bid to design a custom coffee vending machine for the
employees of Acme Fijet Works to use. Arnold, the owner of Acme Fijet Works, like the common
software designer, eschews standard solutions. He wants his own, custom design. He is, however, a
cheapskate. Arnold tells us he wants a simple machine. All he wants is a machine that serves coffee
for 35 cents, with or without sugar and creamer. That's all. He expects us to be able to put this little
machine together quickly and for little cost. We get together and decide there will be a coin slot and
coin return, coin return button, and four other buttons: black, white, black with sugar, and white

with sugar.

Cockburn [13]
The two alternative designs discussed in [13] are, we believe, good examples of a centralized and
a delegated control style, respectively. Table 1 shows the classes and their assigned
responsibilities for the two alternative designs. The first design, referred to as the Centralized
Control (CC) design in this paper (denoted “Mainframe design” in [13]), consists of seven
classes. The second design, referred to as the Delegated Control (DC) design in this paper

(denoted "Responsibility-Driven Design" in [13]), consists of twelve classes.

Simula Research Laboratory Technical Report 2003-6

Table 1. Overview of the two design alternatives

cC

DC

CoffeeMachine

Initiates the machine; knows how the
machine is put together; handles input

Initiates the machine; knows how the machine
is put together; handles input

CashBox Knows amount of money put in; gives Knows amount of money put in; gives change;
change; answers whether a given amount answers whether a given amount of credit is
of credit is available. available.

FrontPanel Knows selection; knows price of Knows selection; coordinates payment;
selections, and materials needed for each; delegates drink making to the Product.
coordinates payment; knows what
products are available; knows how each
product is made; knows how to talk to the
dispensers.

Product Knows its recipe and price.

ProductRegister

Knows what products are available.

Recipe

Knows the ingredients of a given product.; tells
dispensers to dispense ingredients in
sequence.

Dispensers

Controls dispensing; tracks amount it has
left.

Knows which ingredient it contains; controls
dispensing; tracks amount it has left.

DispenserRegister

Knows what dispensers are available

Ingredient. Knows its name only.

Output Knows how to display text to the user. Knows how to display text to the user.

Input Knows how to receive command-line input Knows how to receive command-line input from
from the user the user

Main Initializes the program Initializes the program

In both designs, the FrontPanel class acts as a “control class” for the use-case “Make Drink™.

However, the number and type of responsibilities assigned to the FrontPanel class are different

in the two designs. In the CC design, the FrontPanel is responsible for most tasks: it knows the

user selection, the price of each type of coffee and how each type of coffee is made. To make a

specific type of coffee, the FrontPanel calls the dispense method of various Dispenser objects in

an if-then-else structure. In the DC design, the FrontPanel just initiates the use case, and

delegates the control of how a given type of coffee is made to a Product, which knows its price

and Recipe. In turn, the Recipe is responsible for knowing the Ingredients of which a product

consists, but has no knowledge about pricing.

Simula Research Laboratory Technical Report 2003-6

Cockburn [13] assessed the CC design as follows:

Although the trajectory of change in the mainframe approach involves only one object,
people soon become terrified of touching it. Any oversight in the mainframe object (even a
typo!) means potential damage to many modules, with endless testing and unpredictable
bugs. Those readers who have done system maintenance or legacy system replacement will
recognize that almost every large system ends up with such a module. They will affirm what

sort of a nightmare it becomes.
Furthermore, Cockburn [13] assessed the DC design as follows:

The design we come up with at this point bears no resemblance to our original design. It is,
1 am happy to see, robust with respect to change, and it is a much more reasonable "model
of the world." For the first time, we see the term "product” show up in the design, as well
as 'recipe" and 'ingredient." The responsibilities are quite evenly distributed. Each
component has a single primary purpose in life; we have avoided piling responsibilities

together. The names of the components match the responsibilities.
Thus, the DC design has a distinctly delegated control style, whereas the CC design has a
distinctly centralized control style. According to Cockburn [13], most novices (students) come
up with the CC type of design. However, most experts would probably agree that the DC design

is, as Cockburn argues, a more maintainable solution to the coffee-machine design problem.

3. Related Empirical Studies

In one of the few field experiments comparing alternative object-oriented technologies, a data-
driven and a responsibility-driven design method were compared [23]. Two systems were
developed based on the same requirements specification; using the data-driven and the
responsibility-driven design method, respectively. The results suggest that the responsibility-
driven design method results in a delegated control style, whereas the data-driven design method

results in a centralized control style. Structural attribute measures (defined in [10]) of the two

Simula Research Laboratory Technical Report 2003-6

systems were also collected and compared. Based on the measured values, the authors suggested
that use of the responsibility-driven design method produced higher quality software than did use
of the data-driven design method, because the responsibility-driven software system had less
coupling and higher cohesion than did the data-driven software system. We believe it may be
premature to draw such conclusions. Whether the design measures used in the experiment
actually measured “quality”, was not empirically validated by direct measurement of external
quality attributes.

Nevertheless, there is a growing body of results indicating that class-level measures of
structural attributes such as coupling and cohesion can be reasonably good predictors of product
quality (see survey in [4]), hence supporting the conclusions in [23]. Most of these metrics
validation studies have been case studies. Thus, there is a lack of control that limits our ability to
draw conclusions regarding cause-effect relationships [18, 19]. One notable exception was a
controlled experiment that investigated whether a "good" design (adhering to Coad and
Yourdon's design principles [12]) was easier to maintain than was a "bad" design [5, 8]. The
results suggest that reducing coupling and increasing cohesion (as suggested in Coad and
Yourdon's design principles) improve the maintainability of object-oriented design documents.
However, as pointed out by the authors, the results should be considered preliminary, primarily
because the subjects were students with little programming experience.

A controlled experiment to assess the changeability (i.e., change effort and correctness) of the
example coffee-machine designs described in Section 2.3 is reported in [1]. Thirty-seven
undergraduate students were divided into two groups in which the individuals designed, coded
and tested several identical changes to one of the two design alternatives. The subjects solved the

change tasks using pen and paper. Given the argumentation described in Section 2, the results

10

Simula Research Laboratory Technical Report 2003-6

were surprising in that they clearly indicated that the delegated control design requires
significantly more change effort for the given set of changes than does the alternative centralized
control design. This difference in change effort was primarily due to the difference in effort
required to understand how to perform the change tasks. Consequently, designs with a delegated
control style may have higher cognitive complexity than have designs using a centralized control
style. With regards to correctness, no significant differences between the two designs were
found.

In summary, more empirical studies are needed to evaluate principles of design quality in
object-oriented software development. The control style of object-oriented design represents one
such fundamental design principle that needs to be studied empirically. Related empirical studies
provide no convincing answers as to how the control style of object-oriented design affects
maintainability. The field experiment reported in [23] lacks validation against external quality
indicators. The results of the experiments in [1, 5] contain apparent contradictions. Furthermore,
both experiments used students as subjects solving pen-and-paper exercises. A major criticism of
such experiments is their lack of realism [14, 22], which potentially limits our ability to
generalize the findings to the population about which we wish to make claims, that is,
professional programmers solving real programming tasks using professional tools in a realistic
development environment. An empirical study reported in [24] reveals substantial differences in
how novices, intermediates and experts perceive the difficulties of object-oriented development.
These results are confirmed by a controlled experiment in which, amongst others, a strong
interaction between the expertise of the subjects and type of task were identified during object-
oriented program comprehension [9]. Consequently, the results of the existing empirical studies

are difficult to generalize to the target population of professional developers.

11

Simula Research Laboratory Technical Report 2003-6

4. Design of Experiment

The conducted experiment was a replication of the initial pen-and-paper student experiment
reported in [1]. The motivation for replicating a study is to establish an increasing range of
conditions under which the findings hold, and predictable exceptions [21]. A series of
replications might enable the exploratory and evolutionary creation of a theory to explain the
observed effects on the object of study. In this experiment, the following three controlled factors

were modified compared with the initial experiment:

More representative sample of the population — The target population of this experiment was
professional Java consultants. To obtain a more representative sample of this population, we
hired 99 junior, intermediate and senior Java consultants from eight software consultancy
companies. To compare differences between (categories of) professionals and students, 59
undergraduate and graduate students also participated. Descriptive statistics of the sample

population are given in Appendix A.

More realistic tools — Professional developers use professional programming environments.
Hence, traditional pen-and-paper based exercises are hardly realistic. In this experiment, each
subject used a Java development tool of their own choice, e.g., JBuilder, Forte, Visual Age,

Visual J++ and Visual Café.

More realistic experiment environment — The classroom environment of the previous experiment
was replaced by the offices in which each developer would normally work. Thus, they had
access to printers, libraries, coffee, etc. as in any other project they might be working on. The

students were located in one of their usual computer labs.

12

Simula Research Laboratory Technical Report 2003-6

4.1. Hypotheses

This section informally describes the hypotheses of the experiment. They reflect the expectation
that there is an interaction between the programming experience and the control style of an
object-oriented design. We expect experienced developers to have the necessary skills to benefit
from “pure” object-oriented design principles, as reflected in a delegated control style. Based on
the results of the previous experiment [1], we expect novice developers to have difficulties
understanding a delegated control style, and to thus perform better on a centralized control style.

There are two levels of hypothesis: One comparing the control styles for all subjects; the other

comparing the relative differences between the developer categories. The null-hypotheses of the

experiment are:

HO0, — The Effect of Control Style on Change Effort: The time spent on performing change
tasks on the DC design and CC design is equal.

HO0, - The Effect of Control Style on Change Effort for Different Developer Categories: The
difference between the time spent on performing change tasks on the DC design and CC
design is equal for the five categories of developer.

HO; — The Effect of Control Style on Correctness: The number of correct solutions for change
tasks on the DC design and CC design is equal.

HO04 — The Effect of Control Style on Correctness for Different Developer Categories: The
difference between the number of correct solutions for change tasks on the DC design and
CC design is equal for the five categories of developer.

In Section 4.5, the variables of the study are explained in more detail. Furthermore, HO, and HO,

are reformulated in terms of a GLM model and HO; and HO4 in terms of a logistic regression

model.

13

Simula Research Laboratory Technical Report 2003-6

4.2. Design Alternatives Implemented in Java

The coffee-machine design alternatives explained in Section 2.3 were used as treatments in the
experiment. The two designs were coded using similar coding styles, naming conventions and
amount of comments. Names of identifiers (e.g., variables and methods) were long and
reasonably descriptive. UML sequence diagrams of the main scenario for the two designs were

given to help clarify the designs (Appendix E).

4.3. Programming Tasks

The programming tasks of the experiment consisted of six change tasks: a training task, a pre-test

task and four (incremental) coffee machine tasks (c/—c4). To support the logistics of the

experiment, the subjects used the web-based Simula Experiment Support Environment (SESE)

[2] to answer an experience questionnaire, download code and documents, upload task solutions

and answer task questionnaires. Each task consisted of the following steps:

1. Download and unpack a compressed directory containing the Java code to be modified. This
step was performed only prior to task ¢/ for the coffee-machine design change tasks (c/—c4)
since these change tasks were based on the task solution of the previous task.

2. Download task descriptions (Appendix F). Each task description contained a test case that
each subject used to test the solution.

3. Solve the programming task using their chosen development tool.

4. Pack the modified Java code and upload it to SESE.

5. Complete a task questionnaire (Appendix G).

14

Simula Research Laboratory Technical Report 2003-6

Training Task

For the training task, all the subjects were asked to change a small program so that it could read
numbers from the keyboard and print them out in a reverse order. The purpose of this task was to

familiarize the subjects with the steps outlined above.

Pre-test Task

For the pre-test task, all the subjects implemented the same change on the same design: it
consisted of adding transaction log functionality in a bank teller machine, and was not related to
the coffee-machine designs. The purpose of this task was to provide a common baseline for
comparing the programming skill level of the subjects. The pre-test task had almost the same size

and complexity as the subsequent change tasks c/, c2 and ¢3 combined.

Coffee-Machine Tasks

The change tasks consisted of four incremental changes to the coffee-machine:
cl. Implement a coin return-button.

c2. Make bouillon as a new type of drink.

c3. Check whether all ingredients are available for the selected drink.

c4. Make your own drink by selecting among the available ingredients.

Special Last Task

In our experience, the final change task in an experiment needs special attention as a result of
potential “ceiling effects”: if the last task is included in the analyses, it is difficult to discriminate
between the performance of the subjects regarding effort and correctness. Subjects who work fast

may spend more time on the last task than they would otherwise. Similarly, subjects who work

15

Simula Research Laboratory Technical Report 2003-6

slowly may have insufficient time to perform the last task correctly. Consequently, the final

change task in this experiment (c4) was not included in the analysis.

4.4. Group Assignment

A randomized block experimental design was used; each subject was assigned to one of two
groups by means of randomization and blocking. The two groups were CC (in which the subjects
were assigned to the CC design) and DC (in which the subjects were assigned to the DC design).
The blocks were “undergraduate student”, “graduate student”, “junior consultant”, “intermediate

consultant” and “senior consultant”. The descriptive statistics of the subjects are given in

Appendix A. Table 2 shows the distribution of the categories of subject in the different groups.

Table 2. Subject Assignment to Treatments using a Randomized Block Design

cC DC Total
Undergraduate 13 14 27
Graduate 15 17 32
Junior 16 15 31
Intermediate 17 15 32
Senior 17 19 36
Total 78 80 158

4.5. Execution and Practical Considerations

The companies were paid normal consultancy fees for the time spent on the experiment by the
consultants (five to eight hours each). A project manager in each company selected the subjects
from the company’s pool of consultants.

We wanted the subjects to perform the tasks with satisfactory quality in as short a time as
possible, as most software engineering jobs put a relatively high pressure on tasks to be
performed. However, if the time pressure put on the participatory subjects is too high, then the
quality of the task solution may be reduced to the point where it becomes meaningless to use the

corresponding task times in subsequent statistical analyses. The challenge is therefore to put

16

Simula Research Laboratory Technical Report 2003-6

realistic time pressure on the subjects. The best way to deal with this challenge depends to some

extent on the size, duration and location of an experiment [26]. In this experiment, we used the

following strategy:

e Instead of offering an hourly rate, we offered a “fixed” honorarium based on an estimation
that the work would take five hours to complete. We told the subjects that they would be paid
for those five hours independently of the time they would actually need. Hence, those
subjects who finished early (e.g., in two hours) were still paid for five hours. We employed
this strategy to encourage the subjects to finish as quickly as possible and to discourage them
from working slowly in order to receive higher payment. However, in practice, once the five
hours had passed, we told those subjects who had not finished that they would be paid for
additional hours if they completed their tasks.

e The subjects were allowed to leave when they finished.

e The subjects were informed that they were not all given the same tasks to reduce the chances
that they would, for competitive reasons, prioritize speed over quality.

e The last task was not included in the analysis.

4.6. Analysis Model

To test the hypotheses, a regression-based approach was used on the unbalanced experiment

design. The variables in the models are described below.

Dependent Variables

Log(Effort) — the total effort in Log(minutes) to complete the change tasks. Before starting on a
task, the subjects wrote down the current time. When the subjects had completed the task, they
reported the total effort (in minutes). The first author of this paper double-checked the reported

times using time stamps reported by the SESE tool. The variable Effort was the combined total

17

Simula Research Laboratory Technical Report 2003-6

effort to complete the change tasks. A log-transformation of the effort data gave a nearly perfect

normal distribution.

Correctness — a binary correctness score with value 1 if all the change tasks were correctly
implemented and 0 if at least one of these tasks contained serious logical errors.

Each change task solution was reviewed by an independent consultant with a PhD in computer
science who lectures on testing at the University of Oslo. He was not informed about the
hypotheses of the experiment. To perform the correctness analysis, he first developed a tool that
automatically unpacked and built the source code corresponding to each task solution (uploaded
to SESE by the subjects). In total, this corresponds to almost 1000 different Java programs.
Then, each solution was tested using a regression test script. For each test run, the difference
between the expected output of the test case (this test output was given to the subjects as part of
the task specifications) and the actual output generated by each program was computed. The tool
also showed the complete source code as well as the source code differences between each
version of the program delivered by each subject, to identify exactly how they had changed the
program to solve the change task. To perform the final grading of the task solutions, a web-based
grading tool was developed that enabled the consultant to view the source code, the source code
difference, the test case output and the test case difference. He gave the score correct if there
were no or only cosmetic differences in the test case output, and no serious logical errors were
revealed by manual inspection of the source code; otherwise he gave the score incorrect. The
consultant performed this analysis twice to avoid inconsistencies in the way he had graded the

task solutions. Completing this work took approximately 200 hours.

18

Simula Research Laboratory Technical Report 2003-6

Controlled Factors

Design — the main treatments of the experiment; that is, the factors DC and CC.

Block — the developer categories used as blocking factors in the experiment; that is, the factors
Undergraduate, Graduate, Junior, Intermediate and Senior. For the professional consultants, a
project manager from each company chose consultants from the categories “junior”,
“intermediate” and “senior” according to how they usually would categorize (and price) their

consultants. Potential threats caused by this categorization are discussed further in Section 6.1.

Covariates

Log(Pre Dur) — the (log-transformed) effort in minutes to complete the pre-test task. The
individual results of the pre-test can be used as a covariate in the models to reduce the error

variance caused by individual skill differences.

Model Specifications

For the hypotheses regarding effort, a generalized linear model (GLM) approach was used to
perform a combination of analysis of variance (ANOVA), analysis of covariance (ACOVA) and
regression analysis [11]. For the hypotheses regarding correctness, a logistic regression model
was fitted using the same (GLM) model terms as for effort, that is, including dummy (or
indicator) variables for each factor level and combinations of factor levels [11].

The models are specified in Table 3. Given that the underlying assumptions of the model are
not violated, the presence of a significant model term corresponds to rejecting the related null-
hypothesis. Model (1) was used to test hypotheses H0; and H0,. Model (2) was used to test
hypotheses H0; and H0,. In addition, model (3) was included to test the hypothesis on effort

restricted to those subjects with correct solutions. Thus, model (3) represents an alternative way

19

Simula Research Laboratory Technical Report 2003-6

to assess the effect of the design alternatives on change effort. Since the subjects with correct
solutions no longer represent a random sample, the covariate Log(Pre Dur) was included to
adjust for skill differences between the groups. Furthermore, since the covariate is confounded
with Block, it is no longer meaningful to include Block in model (3).

The final specification of the models must take place after the actual analyses because the
validity of the underlying model assumptions has to be checked on the basis of the actual data.
For example, we determined that a log-transformation of effort was necessary to obtain models
with normally distributed residuals, which is an important assumption of GLM. Furthermore, the
inclusion of insignificant interaction terms may affect the p-values (and interpretation) of other
model terms and should therefore be considered removed. Whether insignificant model terms
should be removed depends on whether the reduced model fits the data better than the complete

model. This is explained further in Section 5.

Table 3. Model Specifications

Model |Response |Model Term Primary use of model term

(1) Log(Effort) |Design Test HO4 (Effort Main Effect)
Block Assess the effect of different developer categories on effort
Design* Block Test HO, (Effort Interaction)

(2) Correct Design Test HO3 (Correctness Main Effect)
Block Assess the effect of different developer categories on correctness
Design* Block Test HO4 (Correctness Interaction)

(3) Log(Effort) | Design Alternative Test of HO4 for subjects with correct solutions
Log(Pre_Effort) Covariate to adjust for programming skill differences
Log(Pre_Effort)*Design | Test on homogeneity of slopes

5. Results
This section describes the results of the experiment. In Section 5.1, descriptive statistics of the
data are provided to illustrate the size and direction of the effects of the experimental conditions.

In Section 5.2, the hypotheses outlined in Section 4.1 are tested formally using the statistical

20

Simula Research Laboratory Technical Report 2003-6

models described in Section 4.6. Finally, in Section 5.3, we draw some overall conclusions by

interpreting both the descriptive statistics and the results from the formal hypothesis tests.

5.1. Descriptive Statistics

Table 4 shows the descriptive statistics related to the main hypotheses of the experiment. Two of
the 158 subjects in the experiment did not complete all the tasks, as indicated by the column N*
The columns Mean to Max show the descriptive statistics of the change effort (in minutes to
solve change tasks cl+c2+c3). The column Correct shows the percentage of the subjects that
delivered correct solutions for all three tasks. The Total row shows that the mean time required
to perform the tasks is 91 minutes for both the CC and DC design. Furthermore, 69 percent of the
subjects delivered correct solutions on the CC design, but only 50 percent did on the DC design.
However, there are quite large differences between the different categories of developer,
especially when comparing undergraduate and junior developers with graduate students and
senior professionals. The apparent interaction between developer category and design alternative
is illustrated in Figure 2. For example, the undergraduate students spent on average about 30
percent less time on the CC design than on the DC design (79 minutes versus 108 minutes). They
were also much more likely to produce correct solutions on the CC design than on the DC design
(62 percent versus 29 percent). This indicates that, for undergraduate students, the CC design is
easier to change than is the DC design. This picture is reversed when considering the seniors:
they spent on average about 30 percent more time on the CC design than on the DC design (103
minutes versus 71 minutes). For the seniors, there is no difference in correctness for the two
design alternatives (76 percent for the CC design versus 74 percent for the DC design). This

indicates that, for senior developers, the DC design is easier to change than is the CC design.

21

Simula Research Laboratory Technical Report 2003-6

Table 4. Descriptive statistics of change effort (in minutes) and correctness (in percent)

Block Design N N* | Mean Std Min Q1 Median Q3 Max Correct
Undergraduate cC 13 0 79 30 45 56 81 87 161 62%
DC 14 0 108 63 23 73 88 151 267 29%
27 0 94 51 23 60 84 99 267 44%
Graduate cC 15 0 65 23 23 49 60 85 105 80%
DC 17 0 73 37 23 52 63 85 173 65%
32 0 69 31 23 51 63 85 173 72%
Junior CC 16 0 95 32 39 76 95 114 170 63%
DC 15 0 110 46 60 71 102 127 217 33%
31 0 102 39 39 72 100 122 217 48%
Intermediate CcC 17 0 107 49 51 72 91 133 215 65%
DC 14 1 101 46 54 63 92 127 202 40%
31 1 104 47 51 69 91 126 215 53%
Senior CcC 16 1 103 62 35 64 75 135 253 76%
DC 19 0 71 38 31 40 61 95 169 74%
35 1 86 52 31 51 67 111 253 75%
Total CcC 77 1 91 44 23 60 83 101 253 69%
DC 79 1 91 48 23 60 77 120 267 50%
156 2 91 46 23 60 82 105 267 59%
Design Design
110 + DC 100 | ¢ DC
= CC = CC
8 100 o 2
2 S
€]
£ 9 & s0 |
o k3]
i a £
% 80 8
2 ®
70 —
[0 J—

T T T T T T T T T T
Undergraduate Graduate Junior Intermediate Senior Undergraduate Graduate Junior Intermediate Senior

Figure 2. Interaction plots of mean effort and correctness

5.2. Hypothesis Tests

The results of testing the hypotheses on change effort are shown in Table 5. There is insufficient
evidence to reject the null-hypothesis HO,, that is, we cannot conclude that there is a difference
in change effort between the two design alternatives (Design, p = 0.964). By contrast, the results

identify significant differences in change effort for the five developer categories (Block, p =

22

Simula Research Laboratory Technical Report 2003-6

Table 5. GLM model (model 1) for Log(effort) (hypotheses HO; and HO,)

Factor Type Levels Values
Design fixed 2 DC CC
Block fixed 5 Undergraduate Graduate Junior Intermediate Senior
Analysis of Variance for Log(Effort), using Adjusted SS for Tests
Source DF Seq SS Adj SS Adj MS F P
Design 1 0.0310 0.0004 0.0004 0.00 0.964
Block 4 4.0454 3.9932 0.9983 4.84 0.001
Design*Block 4 1.4788 1.4788 0.3697 1.79 0.133
Error 146 30.1090 30.1090 0.2062
Total 155 35.6642
Term Coef SE Coef T P
Constant 4.39952 0.03657 120.31 0.000
Design
DC 0.00166 0.03657 0.05 0.964
Block
Graduate -0.25945 0.07224 -3.59 0.000
Junior 0.16559 0.07303 2.27 0.025
Intermediate 0.15855 0.07326 2.16 0.032
Senior -0.08006 0.06999 -1.14 0.255
Design*Block
DC*Graduate 0.03012 0.07224 0.42 0.677
DC*Junior 0.05869 0.07303 0.80 0.423
DC*Intermediate -0.02752 0.07326 -0.38 0.708
DC*Senior -0.17024 0.06999 -2.43 0.016

0.001). Regarding the hypotheses on the interaction between design and developer category, HO,,
there is weak support for rejecting the null-hypothesis (Design*Block, p = 0.133). However,
looking at the individual coefficients for the interaction term, we may conclude that seniors are
not faster than undergraduate students when considering the combined results of both the DC and
CC designs (Senior, p = 0.255), but that the seniors spend significantly less time on the DC
design than on the CC design compared with undergraduate students (DC*Senior, p = 0.016).
The size of this interaction effect can be seen from the graphic representation of the descriptive
statistics in Figure 2. Appendix C shows the residual analysis of the model, indicating that the
assumptions of the GLM model are not violated.

The results of testing the hypotheses on correctness are shown in Table 6. The results clearly
show that the subjects are much less likely to produce correct solutions on the DC design than on

the CC design (Design, odds-ratio = 0.40, p = 0.009), all other conditions being equal. The null-

23

Simula Research Laboratory Technical Report 2003-6

Table 6. Logistic regression model (model 2) for correctness (hypotheses HO3 and HO4)

Response Information

Variable Value Count

Correct 1 94 (Event)
0 64
Total 158

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.2403 0.4330 0.55 0.579

Design

DC -0.9154 0.3483 -2.63 0.009 0.40 0.20 0.79
Block

Graduate 1.2307 0.5667 2.17 0.030 3.42 1.13 10.39
Junior 0.1342 0.5422 0.25 0.805 1.14 0.40 3.31

Intermediate 0.3196 0.5386 0.59 0.553 1.38 0.48 3.96
Senior 1.3941 0.5606 2.49 0.013 4.03 1.34 12.10
Log-Likelihood = -97.814

Test that all slopes are zero: G = 17.675, DF = 5, P-Value = 0.003

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 1.526 4 0.822
Deviance 1.486 4 0.829
Hosmer-Lemeshow 1.500 6 0.959

hypothesis HOs is rejected. Furthermore, graduate students and seniors are much more likely to
produce correct solutions (odds-ratios 3.42 and 4.03, respectively) than are the other developer
categories. The interaction term Design*Block was removed from the logistic regression model
because the coefficients were far from significant and reduced the goodness of fit. Hence, there
is insufficient statistical evidence to reject HO4: we cannot conclude that the CC design improves
correctness for only some categories of developers; it improves correctness for all the categories.
The goodness-of-fit tests for the model in Table 6 show a high correlation between the
observations and the model estimates. Thus, the underlying model assumptions of logistic
regression are not violated.

Finally, Table 7 shows the results of the analysis of covariance model on Log(Effort) for the
subjects who managed to produce correct solutions. The results show that the change effort is

much less for the DC design than for the CC design. Thus, those subjects who actually manage

24

Simula Research Laboratory Technical Report 2003-6

Table 7. Change Effort for Subjects with Correct Solutions

Factor Type Levels Values
Design fixed 2 DC CC
Analysis of Variance for Log(Effort), using Adjusted SS for Tests
Source DF Seqg SS Adj SS Adj MS F P
Log(pre Effort) 1 3.2835 3.1802 3.1802 24.06 0.000
Design 1 1.2421 1.2421 1.2421 9.40 0.003
Error 91 12.0275 12.0275 0.1322
Total 93 16.5531
Term Coef SE Coef T P
Constant 2.9912 0.2622 11.41 0.000
Log (pre Effort) 0.32893 0.06706 4.91 0.000
Design

DC -0.11628 0.03793 -3.07 0.003

to understand the DC design sufficiently well to produce correct solutions also use less time than
those who produce correct solutions on the CC design. As can be seen from the descriptive
statistics (Table 4) and from the logistic regression model of correctness (Table 6), these subjects
are overrepresented by senior consultants and graduate students. Appendix D shows the residual

analysis of the model, indicating that the assumptions of the GLM model are not violated.

5.3. Summary of Results

Based on the formal hypothesis tests, the results suggest that there is no difference in change
effort between the two designs when considering all subjects, regardless of whether they
produced correct solutions or not. However, there is an interaction between the design
alternatives and the developer categories with regards to effort, particularly when comparing
senior consultants with undergraduate students. Furthermore, the interaction effect size is
considerable, as illustrated by the descriptive statistics: undergraduate students (and juniors) use
on average 30 percent less time on the CC design, whereas seniors use on average 30 percent

more time on the CC design.

25

Simula Research Laboratory Technical Report 2003-6

All developer categories are more likely to produce correct solutions on the CC design than on
the DC design. There is no support for an interaction effect between design alternatives and the
developer category with regards to correctness. However, the effect size of design on correctness
is very large for the undergraduate students and junior developers, who clearly have serious
difficulty in producing correct solutions on the DC design, whereas the effect size of design is
negligible for the seniors.

When only considering the subjects who managed to produce correct solutions (probably the
most skilled subjects because the subjects with correct solutions also on average used
considerably /ess time than did subjects with incorrect solutions), the DC design seems to require
less effort than does the CC design. However, since those subjects are over-represented by the
seniors, this model confirms the following overall conclusion: the DC design favors the most
highly skilled developers, over-represented by senior developers, whereas the CC design favors
the less skilled developers, over-represented by undergraduate students and junior developers.
There are no clear indications in either direction when considering both effort and correctness for

the intermediate developers or the graduate students.

6. Threats to Validity

This paper reports an experiment with a high degree of realism compared with previously
reported controlled experiments within software engineering. Our goal was to obtain results that
could be generalized to the target population of professional Java consultants solving real
programming tasks with professional development tools in a realistic work setting. This is an
ambitious goal, however. For example, there is a trade-off between ensuring realism (to reduce

threats to external validity) and ensuring control (to reduce threats to internal validity). This

26

Simula Research Laboratory Technical Report 2003-6

section discusses what we consider to be the most important threats to the validity of this

experiment.

6.1. Construct Validity

The construct validity concerns whether the independent and dependent variables accurately

measure the concepts we intend to study.

Classification of the Control Styles

An important threat to the construct validity in this experiment is the extent to which the actual
design alternatives that were used as treatments (“delegated” versus “centralized” control styles)
are representatives of the concept studied. There is no operational definition to classify precisely
the control style of object-oriented software; a certain degree of subjective interpretation is
required. Furthermore, when considering the extremes, the abstract concepts of a centralized and
delegated control style might not even be representative of realistic software designs. Still, some
software systems might be “more centralized than” or “more delegated than” others.

Based on expert opinions in [13] and our own assessment of the designs, it is quite obvious
that the DC design has a more delegated control style than the CC design. However, it is
certainly possible to design a coffee-machine with an even more centralized control style than
the CC design (e.g., a design consisting of only one control class and no entity classes
whatsoever), or a more delegated control style than the DC design. We chose to use as treatments
example designs developed by others [13]. We believe these treatments constitute a reasonable
trade-off between being clear representatives of the two control styles, and being realistic and

unbiased software design alternatives.

27

Simula Research Laboratory Technical Report 2003-6

Classification of Developers

It is likely that someone who would be considered as (say) an intermediate consultant in one
company would be considered (say) a senior in another company. Thus, the categories are not
necessarily representative of the categories used in every consultancy company. A replication in
other companies might therefore produce different results with regards to how the variable Block
affects change effort and correctness. However, as seen from the results, the Block factor
representing the categories is a significant explanatory variable of change effort and correctness,
and, as expected, senior consultants provided better solutions in shorter time than did juniors and
undergraduate students. Thus, for the purpose of discriminating between the programming skill

and experience of the developers, the classification was sufficiently accurate.

Measuring Change Effort

The effort measure was affected by noise and disturbances. Some subjects (in particular the
professionals) might have been more disturbed or have taken longer breaks than did others. For
example, senior consultants are likely to receive more phone calls because they typically have a
central role in the projects they would normally participate in. To address this possible threat, we
instructed the consultants not to answer phone calls or talk to colleagues during the experiment.
The subjects were also instructed to take the lunch break only between two change tasks. At least
one of the authors of this paper was present at the company site during all experiment sessions
and thus observed that these requests were followed to a large extent. The monitoring
functionality of SESE [2] also enabled us to monitor the progress of each subject at all times, and

follow up if we observed little activity.

28

Simula Research Laboratory Technical Report 2003-6

Measuring Correctness

The dependent variable Correct was binary, and indicated whether the subjects produced
functionally correct solutions on all the change tasks, thus producing a working final program.
As described in Section 4.6, a significant amount of effort was spent on ensuring that the
correctness scores were valid. More complex measures discriminating the number of
programming faults or the severity of programming faults were also considered. However, such
measures would necessarily be more subjective, and hence more difficult to use in future

replications than the adopted “correct”/”’not correct” score.

6.2. Internal Validity

The internal validity of an experiment is the degree to which conclusions can be drawn about the

causal effect of the controlled factors on the experimental outcome.

Instrumentation Differences between Developer Categories

The students in this experiment were situated in a computer lab, but the professional consultants
were situated in a normal work environment while participating in the experiment. We cannot
rule out that this difference in setting between the students and professionals introduced a threat
with regards to the validity of the comparison between students and professionals. For example,
one might argue that the professionals would feel less time pressure than would the students.
Based on our observations, we believe this is not the case; both students and professionals

apparently worked very hard.

Development Tools

To increase the realism (and external validity), we decided that each developer could use a Java

development environment of their own choice. Most of the students used Emacs and Javac,

29

Simula Research Laboratory Technical Report 2003-6

whereas the professionals used a variety of professional Integrated Development Environments.
As a result of the randomized block design, the distribution of tools was quite even across the
two design alternatives. Furthermore, we checked the extent to which the chosen development
tool affected the performance of the subjects, by including DevelopmentTool as a covariate in the
models described in Section 4.5. The term was not a significant explanatory variable for effort (p
=0.437) or correctness (p = 0.347). Thus, it is unlikely that the chosen tools introduced a bias for

one of the designs.

6.3. External Validity

The external validity of the experiment concerns whether the results can be generalized to a

realistic development context [26, 27].

Size and Complexity of Tasks

Clearly, the two alternative designs in this experiment were very small compared with “typical”
object-oriented software systems. Furthermore, the change tasks were also relatively small in
size and duration. However, the questionnaires received from the participants after they had
completed the change tasks (Appendix G) indicate that the complexity of the tasks was quite
high. Still, we cannot rule out that the effects we observed when comparing the control styles

would be different if the systems and tasks had been larger.

Representativeness of Sample

An important question for this experiment is whether the professional subjects were
representative of “professional Java consultants”. Our sample included consultants from major
international software consultancy companies. A project manager was hired from each company

to, among others things, select consultants for the categories “junior”, “intermediate” and

30

Simula Research Laboratory Technical Report 2003-6

“senior”. The selection process corresponded to how the companies would usually categorize
and price consultants. Hence, in addition to experience and competence, availability was also one
of the selection criteria. Thus, it could be the case that the “best” professionals were
underrepresented in our sample, since there is a likelihood that they had already been hired by
other companies. To address this threat, our agreement with the companies stated that the project
manager should select a representative sample from their consultants. Fortunately, we observed

that the project managers were quite eager to also include “busy” Java consultants.

7. Conclusions

The degree of maintainability of a software application depends not only on attributes of the
software itself, but also on certain cognitive attributes of the particular developer whose task it is
to maintain it. This aspect seems to be underestimated by expert designers. Most experienced
software designers would probably agree that a delegated control style is more “elegant”, and a
better object-oriented representation of the problem to be solved, than is a centralized control
style. However, care should be taken to ensure that future maintainers of the software are able to
understand this (apparently) elegant design. If the cognitive complexity of a design is beyond the
skills of future maintainers, they will spend more time and probably introduce more faults than
they would with a (for them) simpler but less “elegant” object-oriented design.

Assuming that it is not only highly skilled experts who are going to maintain an object-
oriented system, a viable conclusion from the controlled experiment reported in this paper is that
a design with a centralized control style may be more maintainable than is a design with a
delegated control style. These results are also relevant with regards to a use-case driven design
method, which may support both control styles: it is mainly a question of how much

responsibility is assigned to the control class of each use case.

31

Simula Research Laboratory Technical Report 2003-6

Although an important goal of this experiment was to ensure realism, by using a large sample
of professional developers as subjects who are instructed to solve programming tasks with
professional development tools in a normal office environment, there are several threats to the
validity of the results that should be addressed in future replications. Increasing the realism (and
thereby external validity) reduced the amount of control, which introduced threats to internal
validity. For example, we allowed the developers to use a development tool of their own choice,
thereby adding a confounding factor. However, we believe that this reduction in control is a
small price to pay considering that the improved realism of this experiment allows us to
generalize the results beyond what would be possible in a more controlled laboratory setting with
students solving pen-and-paper tasks. Still, whether the results of this experiment generalize to
realistically sized systems and tasks is still an open question. Consequently, the most important
means to improve the external validity of the experiment is to increase the size of the systems

and the tasks.

Acknowledgements

We thank Lionel Briand, Magne Jorgensen, Vigdis By Kampenes, Ray Welland and Chris
Wright for their valuable contributions to this paper. We thank KompetanseWeb for their
excellent support on the SESE tool. Gunnar Carelius provided valuable support during the
preparation and quality assurance of the experimental materials in SESE. Are Magnus Bruaset
did an outstanding job on the testing and qualitative assessment of the Java solutions delivered
by the subjects. We thank the students at Univ. of Oslo for their participation, and the staff at
Dept. of Informatics for their technical support. Finally, this paper would not have been possible

without the consultants and project managers who participated from the following companies:

32

Simula Research Laboratory Technical Report 2003-6

Accenture, Genera, Cap Gemini Ernst & Young, Ementa, Ementor, Software Innovation,

Software Innovation Technology (Sweden), Objectnet and TietoEnator.

References

(1]

(2]
(3]
(4]
(3]

(6]
(7]
(8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]
[20]
(21]

[22]
(23]

E. Arisholm, D. I. K. Sjeberg, and M. Jergensen, "Assessing the Changeability of two Object-Oriented
Design Alternatives — a Controlled Experiment," Empirical Software Engineering, vol. 6, no. 3, pp. 231-
277,2001.

E. Arisholm, D. I. K. Sjaberg, G. J. Carelius, and Y. Lindsjern, "A Web-based Support Environment for
Software Engineering Experiments,," Nordic Journal of Computing, vol. 9, no. 4, pp. 231-247, 2002.

K. Beck and W. Cunningham, "A Laboratory for Teaching Object-Oriented Thinking," SIGPLAN Notices,
vol. 24, no. 10, pp. 1-6, 1989.

L. Briand and J. Wuest, "Empirical Studies of Quality Models in Object-Oriented Systems," Advances in
Computers, vol. 59, pp. 97-166, 2002.

L. Briand, C. Bunse, and J. W. Daly, "A Controlled Experiment for Evaluating Quality Guidelines on the
Maintainability of Object-Oriented Designs," IEEE Transactions on Software Engineering, vol. 27, no. 6,
pp- 513-530, 2001.

L. C. Briand, J. Daly, and J. Wust, "A Unified Framework for Cohesion Measurement in Object-Oriented
Systems," Empirical Software Engineering, vol. 3, no. 1, pp. 65-117, 1998.

L. C. Briand, J. W. Daly, and J. Wust, "A Unified Framework for Coupling Measurement in Object-
Oriented Systems," IEEE Transactions on Software Engineering, vol. 25, no. 1, pp. 91-121, 1999.

L. C. Briand, C. Bunse, J. W. Daly, and C. Differding, "An Experimental Comparison of the
Maintainability of Object-Oriented and Structured Design Documents," Empirical Software Engineering,
vol. 2, no. 3, pp. 291-312, 1997.

J.-M. Burkhardt, F. Detienne, and S. Wiedenbeck, "Object-Oriented Program Comprehension: Effect of
Expertice, Task and Phase," Empirical Sofiware Engineering, vol. 7, no. 2, pp. 115-156, 2002.

S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object-Oriented Design," IEEE Transactions on
Software Engineering, vol. 20, no. 6, pp. 476-493, 1994.

R. Christensen, Analysis of Variance, Design and Regression: Chapman &Hall/CRC Press, 1998.

P. Coad and E. Yourdon, Object-Oriented Design, First ed: Prentice-Hall, 1991.

A. Cockburn, "The Coffee Machine Design Problem: Part 1 & 2," C/C++ User's Journal, May/June, 1998.
R. L. Glass, "The Software Research Crisis," IEEE Software, vol. 11, no. 6, pp. 42-47, 1994.

L. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process: Addison-Wesley,
1999.

L. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented Software Engineering:
Addison-Wesley, 1992.

R. K. Keller, A. Cockburn, and R. Schauer, "Object-Oriented Design Quality: Report on OOPSLA'97
Workshop #12," proc. OOPSLA'97 Workshop on Object-Oriented Design Quality,
hitp://www.iro.umontreal.ca/~keller/Workshops/OOPSLA97, 1997.

B. Kitchenham, L. Pickard, and S. L. Pfleeger, "Case Studies for Method and Tool Evaluation," IEEE
Software, vol. 12, no. 4, pp. 52-62, 1995.

B. A. Kitchenham, "Evaluating Software Engineering Methods and Tools. Part 1: The Evaluation Context
and Evaluation Methods," ACM Software Engineering Notes, vol. 21, no. 1, pp. 11-15, 1996.

K. J. Lieberherr and I. M. Holland, "Assuring Good Style for Object-Oriented Programs," IEEE Software,
vol. 6, no. 5, pp. 38-48., 1989.

R. M. Lindsay and A. S. C. Ehrenberg, "The Design of Replicated Studies," The American Statistician, vol.
47, no. 3, pp. 217-228, 1993.

C. Potts, "Software Engineering Research Revisited," IEEE Software, vol. 10, no. 5, pp. 19-28, 1993.

R. C. Sharble and S. S. Cohen, "The Object-Oriented Brewery: A Comparison of two Object-Oriented
Development Methods," Software Engineering Notes, vol. 18, no. 2, pp. 60-73, 1993.

33

[24]
[25]

[26]

(27]

(28]
[29]
[30]

(31]

34

Simula Research Laboratory Technical Report 2003-6

S. D. Sheetz, "Identifying the Difficulties of Object-Oriented Development," Journal of Systems and
Software, vol. 64, no. 1, pp. 23-36, 2002.

S. Shlaer and S. Mellor, Object-Oriented Systems Analysis: Modeling the World in Data: Y ourdon Press,
1988.

D. I. K. Sjeberg, B. Anda, E. Arisholm, T. Dyb4, M. Jergensen, A. Karahasanovic, and M. Vokac,
"Challenges and Recommendations when Increasing the Realism of Controlled Software Engineering
Experiments," In Reidar Conradi and Alf Inge Wang (Eds.): "Empirical Methods and Studies in Software
Engineering — Experiences from the ESERNET project”, Forthcoming as a Springer Verlag LNCS, July
2003.

D. I. K. Sjeberg, B. Anda, E. Arisholm, T. Dybé, M. Jergensen, A. Karahasanovic, E. Koren, and M.
Vokac, "Conducting Realistic Experiments in Software Engineering," proc. ISESE 2002 (First
International Symposium on Empirical Sofiware Engineering), October 3-4, 2002, pp. 17-26, 2002.

S. Tockey, B. Hoza, and S. Cohen, "Object-Oriented Analysis: Building on the Structured Techniques,"
proc. Proc. Software Improvement Conference, 1990.

R. J. Wirfs-Brock, "Characterizing your Application's Control Style," Report on Object Analysis and
Design, vol. 1, no. 3, 1994.

R. J. Wirfs-Brock and B. Wilkerson, "Object-Oriented Design: A Responsibility Driven Approach,"
SIGPLAN Notices, vol. 24, no. 10, pp. 71-75, 1989.

R. J. Wirfs-Brock, B. Wilkerson, and R. Wiener, Designing Object-Oriented Software: Prentice-Hall, 1990.

Simula Research Laboratory Technical Report 2003-6

Appendix A. Descriptive Statistics of the Subjects

Variable Block N Mean Median StDev Min Max Q1 Q3
Age (years) Undergrad 27 25.074 24 4.009 22 38 23 26
Graduate 32 25813 25 3.167 23 37 24 27
Junior 31 27.548 27 5.403 22 54 25 28
Intermed 32 30.61 28 8.28 22 62 26 31
Senior 36 32 30 6.05 24 54 28.25 34.5
Work Exp (years) Undergrad 27 2.593 1 4.06 0 15 0 4
Graduate 32 2.625 2 3.452 0 18 0 3.75
Junior 31 2.871 1 4.808 0 27 1 4
Intermed 32 5.75 3 7.73 0 35 2 5
Senior 36 7.611 6.5 5.463 0 27 4 10
Programming Exp (years) Undergrad 27 1.074 0 2129 0 10 0 2
Graduate 32 1.219 0 3.19 0 18 0 1
Junior 31 1.533 1 4.1 0 23 0 1
Intermed 32 45 2 6.67 0 26 1 4
Senior 36 6.278 5 5.38 0 27 3.25 8.75
Education (years) Undergrad 27 3.154 3.15 1.11 1.25 5.5 2.3 3.65
Graduate 32 4.378 3.95 1.035 3.25 7.85 3.8 40975
Junior 31 4.065 4 1.184 0.25 6.25 3.4 5
Intermed 32 4.153 41 1.687 0 10 3.063 5
Senior 36 4.011 4 2.422 0 14 3 5
CS Education (years) Undergrad 27 1.2556 1.25 0.3881 0.5 2.2 1 15
Graduate 32 1.616 1.5 0.593 0.55 3 1.25 2
Junior 31 1.334 1 0.958 0.05 4 0.5 2
Intermed 32 1.478 1.375 1.008 0 3.5 0.6 2
Senior 36 1.749 1.5 1.145 0 4 1 25
Java (LOC) Undergrad 27 20400 10000 26942 10 100000 5000 20000
Graduate 32 54484 8000 177812 500 1000000 3000 20000
Junior 31 4478 2000 9029 0 50000 500 5000
Intermed 32 6819 4000 10374 1 55000 1000 10000
Senior 36 28497 5000 83964 0 500000 625 23750
C++ (LOC) Undergrad 27 1553 25 4286 0 20000 0 500
Graduate 32 9415 1000 35272 0 200000 50 4750
Junior 31 1935 500 2962 0 10000 100 2000
Intermed 32 1169 550 2079 0 10000 0 1000
Senior 36 36299 1000 166132 0 1000000 425 9000
Total LOC Undergrad 27 43185 19500 50914 3275 200001 11000 67500
Graduate 32 129093 19925 401407 6500 2260000 10888 65625
Junior 31 48643 12500 127894 300 556300 4000 22850
Intermed 32 40360 19400 45517 5 160500 10400 53550
Senior 36 141850 45500 415313 0 2410000 11500 78875
UML Exp (1-5) Undergrad 27 3.074 3 0.781 1 4 3 4
Graduate 32 25 25 0.95 1 4 2 3
Junior 31 2.516 3 0.926 1 4 2 3
Intermed 32 2.563 25 0.982 1 5 2 3
Senior 36 2.944 3 0.893 1 5 2 4

35

Simula Research Laboratory Technical Report 2003-6

Appendix B. Experience Questionnaire

(Translated from Norwegian. The actual questionnaire was implemented in the SESE tool)

Date of birth:
Java development

WORK EXPERIENCE

environment you will use in this experiment:

Years programming work experience:

Years total work

EDUCATION

experience:

Number of credits in computer science courses:
Number of total university credits:

PROGRAMMING SKILL AND EXPERIENCE

Please rate your

Please rate your

general programming skills (1: Novice - 5: Expert):

Java programming skills (1l: Novice - 5: Expert):

Approximately how many lines of Java code you have written:

Please rate your
Give an estimate

Please rate your
Give an estimate

Please rate your
Give an estimate

Please rate your
Give an estimate

Please rate your
Give an estimate

Please rate your
Give an estimate

Please rate your
Give an estimate

C++ programming skills (1: Novice - 5: Expert):
of how many lines of C++ code you have written:

Simula programming skills (1: Novice - 5: Expert):
of how many lines of C++ code you have written:

SmallTalk programming skills (1: Novice - 5: Expert):
of how many lines of SmallTalk code you have written:

C programming skills (1l: Novice - 5: Expert):
of how many lines of C code you have written:

Pascal programming skills (1: Novice - 5: Expert):
of how many lines of Pascal code you have written:

[] programming skills (1l: Novice - 5: Expert):
of how many lines of code you have written in this language:

[] programming skills (1l: Novice - 5: Expert):
of how many lines of code you have written in this language:

DESIGN METHOD KNOWLEDGE :

UML/Rose (1: Novice - 5: Expert):

OMT (1: Novice -

5: Expert):

Responsibility-Driven Design (1l: Novice - 5: Expert):

CRC (1: Novice -

5: Expert):

Role modelling (1: Novice - 5: Expert):
Structured Analysis and/or Structured Design (l: Novice - 5: Expert):
Data Driven/Relational Database Design (1: Novice - 5: Expert):

Other method [
Other method [

36

] (1: Novice - 5: Expert):
] (1: Novice - 5: Expert):

Residual

Frequency

Simula Research Laboratory Technical Report 2003-6

Appendix C. Residual Analysis of Model (1)

Residual Model Diagnostics

Normal Plot of Residuals | Chart of Residuals
3 o 4
> 3 - ucL=3173
2 n 4
g] T 1 ‘
=3 3
S 0 4 S 04 ' Mean=50E-16
2 g I | | !
o -1 - Q -1 — 4
@ 4
2 - 2
3 - -3 LCL=3.73
T T T T T T T 4 T T
3 2 4 0o 1 2 3 0 50 100 150
Normal Score Observation Number
Histogram of Residuals Residuals vs. Fits
40 3
2
30 o
) s '
§ 20 o g0
g & 14
T 10 24
0 3
— T T T T T T T T T T T
3 2 41 0 1 2 3 41 42 43 44 45 46
Residual Fit

Appendix D. Residual Analysis of Model (3)

Residual Model Diagnostics

Normal Plot of Residuals | Chart of Residuals
3 3 Uot=2ser
2 2
'] 3 1_IAALIAAL“ Anll\ .
S 0 .8 1 Mean=6.2£.04
0 ' L|
1 LA
4 4 o
2 - 3 Lot-299
—T T —T T T T T T T T T T T T T
3 2 4 0o 1 2 3 0 10 20 30 40 50 60 70 80 90 100
Normal Score Observation Number
Histogram of Residuals Residuals vs. Fits
3
20 5
T 1
3
10 — w0
Q
x 4
0 — 2]
T — T T —T T T T
3 2 4 0 1 2 3 3.6 4.1 4.6
Residual Fit

37

Simula Research Laboratory Technical Report 2003-6

Appendix E. Sequence Diagrams of the Design Alternatives

CoffeeMachine FrontPanel CashBox Product Product Recipe Dispenser Dispenser(s)
Register Register

1: “user inserts money" ‘ ‘ ‘

2: deposit(int amount)

3: "user selects a drink" ‘ ‘
s

4: select(int choice, . [etumsleelectad

> ‘ product object ‘
5; productFm‘%dex(lnt choice) retums price of the
i ‘ /F selected product
6:price() | — T
9: makeDrink(..)

10: for all Ingredients:/getDispenserOf(Ingredient)

7 haveYou(int pnce)

‘ 8: makeDrink(.)‘

dispenses
cup, coffee,
water, etc

‘ 11: disl};ense() ‘
12: "user receives drink" ‘

14: "user receives change" |
| | | | | | | |

f f
13: deduct(int price)
R

Sequence Diagram for the DC Design

‘ CoffeeMachine

‘ FrontPanel H CashBox ‘ ‘ Dispenser(s)‘

1: "user inserts money" ‘ ‘

2: deposit(int amount) ‘
5: haweYou(int price) ‘
|
|

3: "user selects a drink"

I I
4: select(int choice, ..)

B

6: d|sPense()

dispenses
cup, coffee,
water, etc

‘ ‘ 7: dispense()
I

‘ 8: "user receives drink" ‘

I

|
T T
9: deduct(int price)

10: "user receives change"

Sequence Diagram for the CC Design

Simula Research Laboratory Technical Report 2003-6

Appendix F. Change Task Descriptions
(Some details are omitted. Translated from Norwegian)

TRAINING TASK

Complete the code you just downloaded so that it can read an arbitrary number of lines of text from INPUT and stores each string
in a Vector. When the user presses <CR>, the program should write the number of lines of text, and thereafter print out the text in
the reverse order (that is, the last string should be printet first).

Test case:

Enter a string. Finish with <CR>
abc

Enter next string. Finish with <CR>
def

Enter next string. Finish with <CR>
ghi

Enter next string. Finish with <CR>

You entered 3 strings.

The strings in reverse order are:
ghi

def

abc

39

Simula Research Laboratory Technical Report 2003-6

PRE-TEST TASK

The code you just downloaded contains a simple automated teller machine (ATM). At present, the ATM has the following
functionality:

e New account: ... (detailed description omitted in this report)

e Withdraw: ...(detailed description omitted in this report)

e Deposit: ... (detailed description omitted in this report)

Add the following functionality to the ATM:

e Account Statement: Gives an account statement for a customer (menu choice = “Statement”). For every withdrawal a given
customer has made, the statement should contain a line “Withdrew <amount>. Similarly, for every deposit the statement
should contain a line ”Deposited <amount>. Then the current account balance is printed. For details, refer to the following
test case.

Test case:

Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit
N

Enter a new account number:

per hansen

Please enter a personal pin code:

1234

New account has been created.

Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit
D

Enter your account number:

per hansen

Enter your pin code:

1234

Insert money:

200

Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit
w

Enter your account number:

per hansen

Enter your pin code:

1234

Enter amount:

100

Dispensing 100

Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit
w

Enter your account number:

per hansen

Enter your pin code:

1234

Enter amount:

50

Dispensing 50

Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit
S

Enter your account number:

per hansen

Enter your pin code:

1234

Deposited 200

Withdrew 100

Withdrew 50

Account balance 50
Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit

40

Simula Research Laboratory Technical Report 2003-6

CHANGE TASK c1

In this task, you shall extend the coffee machine with a "return button" functionality that returns the deposited funds. The menu
choice is called "Return".

Test Case:

Menu: I=insert S=select R=return Q=quit
I
Amount>
4
CashBox: Depositing 4
You now have 4 credits.

Menu: I=insert S=select R=return Q=quit
R
CashBox: Returning 4

Menu: I=insert S=select R=return Q=quit

CHANGE TASK c2

In this task, you shall extend the machine to make bouillon. Bouillon costs more than coffee. While coffee costs 5 credits,
bouillon costs 6 credits.

Test Case:

Menu: I=insert S=select R=Return Q=quit
I
Amount>
6
CashBox: Depositing 6
You now have 6 credits.

Menu: I=insert S=select R=Return Q=quit
S
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream, 5=Bouillon)>
5
Dispensing cup
Dispensing bouillon
Dispensing water
CashBox: Returning 0

Menu: I=insert S=select R=Return Q=quit

41

Simula Research Laboratory Technical Report 2003-6

CHANGE TASK ¢3

Unfortunately, there is a quite serious problem with the coffee machine at present. If the user chooses for example "coffee with
cream", and the cream dispenser is empty, the machine gives a small error message, after which it dispenses black coffee
(without cream). If the machine does not contain any more cups, the machine dispenses the drink right into the drain... The user
will of course get quite irritated over having to pay for this!

The simplest solution to this problem is that the user receives a message if the machine is out of a required ingredient of the
selected drink. Then, the user is given the option to choose another drink. The following test case illustrates what should happen
when the machine runs out of cream:

Test Case:

Menu: I=insert S=select R=Return Q=quit
I
Amount>
5
CashBox: Depositing 5
You now have 5 credits.

Menu: I=insert S=select R=Return Q=quit
S
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream, 5=Bouillon)>
2
Dispensing cup
Dispensing coffee
Dispensing water
Dispensing cream <after this the machine is out of cream>
CashBox: Returning 0

Menu: I=insert S=select R=Return Q=quit
I
Amount>
5
CashBox: Depositing 5
You now have 5 credits.

Menu: I=insert S=select R=Return Q=quit
S
Select Drink (1 = Black Coftee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream, 5=Bouillon)>
2
Sorry, no more cream! Select another.

Menu: I=insert S=select R=Return Q=quit

42

Simula Research Laboratory Technical Report 2003-6

CHANGE TASK c4

You are going to make a new menu choice “Make your own drink”, which allows the customer to choose among any
combination of available ingredients to make a custom drink (see test-case). Note! There is no checking on whether the
combination of ingredients “makes sense”. However, if the machine is (or becomes) empty of a given ingredient, the customer
should receive an error message and can then choose an alternative ingredient. Each shot of an ingredient costs 2 credits. If the
customer has put on insufficient amounts of money for the chosen set of ingredients, the customer receives the message

"Insufficient funds" and thereafter the menu choice “Menu: I=insert S=select R=Return Q=quit”.

Test Case:

Menu: I=insert S=select R=Return Q=quit

1

Amount

10
CashBox: Depositing 10
You now have 10 credits.

Menu: I=insert S=select R=Return Q=quit

S

Select Drink (1 = Black Coftee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream 5= Bouillon, 6=Make your

own drink)>
6

Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0=Make Drink)

1
You have selected cup
This drink costs 2 credits

Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink)

2
You have selected cup, coffee
This drink costs 4 credits

Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink)

2

You have selected cup, coffee, coffee

This drink costs 6 credits

Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink)

4

You have selected cup, coffee, coffee, water

This drink costs 8 credits

Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink)

5
Sorry, no more cream!

You have selected cup, coffee, coffee, water

This drink costs 8 credits

Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink)

0
Dispensing cup
Dispensing coffee
Dispensing coffee
Dispensing water
CashBox: Returning 2

Menu: I=insert S=select R=Return Q=quit

43

Simula Research Laboratory Technical Report 2003-6

Appendix G. Change Task Questionnaire

Time (hh:mm) when starting of the change task:

Time (hh:mm) when completing the change task:

Effort (in minutes) to solve the change task:
A. Effort to understand how to solve the change task:
B. Effort to code the change task:

C. Effort to evaluate/test the solution (run test-case):

How would you characterize your strategy to solve the task?
Very explorative (1) - Very systematic (5):

What is your subjective assessment of the quality of your solution?
Very poor (1) - Very good (5):

How confident are you that the solution does not contain serious faults?
Very unsure (1) - Very confident (5):

How difficult did you think the change task was?
Very easy (1) - Very difficult (5):

Other comments:

44

