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Abstract. One fundamental question in object-oriented design is how to design 

maintainable software. According to expert opinion, a delegated control style, typically a 

result of responsibility-driven design, represents object-oriented design at its best, whereas 

a centralized control style is reminiscent of a procedural solution, or a “bad” object-

oriented design. This paper presents a controlled experiment that investigates these claims 

empirically. A total of 99 junior, intermediate and senior professional consultants from 

several international consultancy companies were hired for one day to take part in the 

experiment. To compare differences between (categories of) professionals and students, 59 

students also participated. The subjects used professional Java tools to perform several 

change tasks on two alternative Java designs having a centralized and delegated control 

style, respectively.  

The results show that the most skilled developers, in particular the senior consultants, 

require less time to maintain software with a delegated control style than with a centralized 

control style. However, more novice developers, in particular the undergraduate students 

and junior consultants, have serious problems understanding a delegated control style, and 

perform far better with a centralized control style.  
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Thus, the maintainability of object-oriented software depends to a large extent on the 

skill of the developers who are going to maintain it. The results may have serious 

implications for object-oriented development in an industrial context: having senior 

consultants design object-oriented systems that eventually will be maintained by juniors 

may be unwise, since the cognitive complexity of such “expert” designs might be 

unmanageable for less skilled maintainers. 

1. Introduction 

A fundamental problem in software engineering is to construct software that is easy to change. 

Supporting change is one of the claimed benefits of object-oriented software development.  

The principal mechanism used to design object-oriented software is the class, enabling the 

encapsulation of attributes and methods into logically cohesive abstractions of the world. 

Assigning responsibilities and collaborations among classes can be performed in many ways. In 

a delegated control style, a well defined set of responsibilities are distributed among a number of 

classes [29]. The classes play specific roles and occupy well-known positions in the application 

architecture [30, 31]. Alternatively, in a centralized control style, a few, large “control classes” 

co-ordinate a set of simple classes [29]. According to object-oriented design experts, a delegated 

control style is easier to understand and change than is a centralized control style [3, 13, 29-31].  

One of the major goals of a responsibility-driven design method is to support the development 

of a delegated control style [29-31], that is, the design of a delegated control style is one of its 

prescribed principles. The empirical study in [23] confirms that a responsibility-driven design 

process may result in a delegated control style. That study also suggests that a data-driven design 

approach (adapted from structured design to the object-oriented paradigm) results in a 
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centralized control style because one controller class is assigned the responsibility of 

implementing the business logic of the application, using data from simple “data objects”.  

In a use-case driven design method, as advocated in most recent UML textbooks, one of the 

commonly prescribed principles is to assign one (central) control class to coordinate the 

sequence of events described by each use-case [15, 16]. However, a question not explicitly 

discussed in the UML textbooks is how much responsibility the control class should have to 

design maintainable software. At one extreme, the control class might only be responsible for 

initiating the use-case and communicating with boundary (interface) classes, while the real work 

is delegated to entity (business) classes, which in turn collaborate to implement the business 

logic and flow of events of the use-case. In this case, use-case driven design would resemble 

responsibility-driven design, with a delegated control style. At the other extreme, the control 

class might implement the actual business logic and flow of events of a use-case, in which case 

the entity classes function only as simple data structures with “get” and “set” methods. In this 

case, use-case driven design would resemble data-driven design, with a centralized control style. 

To compare the maintainability of the two control styles, the authors of this paper previously 

conducted a controlled experiment [1]. For the given sample of 36 undergraduate students, the 

delegated control style design required significantly more effort to implement the given set of 

changes than did the alternative centralized control style design. This difference in change effort 

was primarily due to the difference in effort required to understand how to perform the change 

tasks.  

Consequently, there is a contradiction between the expert recommendations and the results of 

our previous experiment. It might be that a delegated control style provides better software 

maintainability for an expert, while a centralized control style might be better for novices. 
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Novices may struggle to understand how the objects in a delegated control style actually 

collaborate to fulfil the larger goals of an application. Differences in “complexity” of object-

oriented designs may be explained by the cognitive models of the developers [24]. Thus, 

software maintainability is not only an attribute of the software artefact; it is also an attribute of 

the actual developer changing the software. This factor seems to be underestimated by the 

object-oriented experts, neither is it investigated in most controlled experiments evaluating 

object-oriented technologies. Consequently, the main research question we attempt to answer in 

this paper is the following: For the target population of junior, intermediate and senior software 

consultants with different levels of education and work experience, which of the two 

aforementioned control styles is easier to maintain?  

We conducted an experiment with a sample of 99 Java consultants from eight consultancy 

companies, including the major, partly international, companies Cap Gemini Ernst & Young, 

Ementor, Accenture, TietoEnator and Software Innovation. To compare differences between 

(categories of) professionals and students, 59 students also participated. The treatments were the 

same two alternative designs given in the previous pen-and-paper student experiment [1]. The 

experimental subjects were assigned to the two treatments using a between-subjects randomized 

block design.  

To increase the realism of the experiment [14, 22, 27], the subjects used their usual Java 

development tool instead of pen and paper. The professionals were located in their usual work 

offices during the experiment, the students in their usual computer lab. The subjects used the 

Simula Experiment Support Environment [2] to receive the experimental materials, answer 

questionnaires and upload task solutions. Each subject spent about one work day on the 
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experiment. As in ordinary programming projects, the companies of the consultants were paid to 

participate.  

The remainder of this paper is organized as follows. Section 2 outlines fundamental design 

principles of object-oriented software. Section 3 describes existing empirical research evaluating 

object-oriented design principles. Section 4 describes the design of the controlled experiment. 

Section 5 presents the results. Section 6 discusses threats to validity. Section 7 concludes. 

2. Delegated versus Centralized Control in Object-Oriented Designs 

This section describes the concepts underlying the object of study, that is, the two control styles 

evaluated in the experiment. Two example designs illustrate the two control styles, respectively. 

These examples are also the design alternatives used as treatments in our experiment. 

2.1. Relationships between Design Properties, Principles and Methods  

To clarify the concepts studied in this paper, we distinguish between design properties, design 

principles and design methods. Object-oriented design properties characterize the resulting 

design. Examples are coupling [7] and cohesion [6]. Object-oriented design principles prescribe 

“good” values of the design properties. Examples are low coupling and high cohesion, as 

advocated in [12, 20]. Object-oriented design methods prescribe a sequence of activities for 

creating design models of object-oriented software systems.1 Examples are responsibility-driven 

design [30], data-driven design [23, 25, 28] and use-case driven design [15, 16]. Ideally, design 

methods should support a set of (empirically validated) design principles.  

                                                           
1 The existing literature provides no clear distinction between object-oriented analysis and object-oriented design. Consequently, 

the process we define as object-oriented design may include activities that also might be referred to as object-oriented analysis. 
However, in this paper, such a distinction is not important. 
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2.2. Delegated versus Centralized Control Style 

The control styles studied in this paper are depicted in Figure 1. According to the terminology 

defined in [29], delegated and centralized control styles embody two radically different 

principles for assigning responsibilities and collaborations among classes. A delegated control 

style is described as follows: 

A delegated control style ideally has clusters of well defined responsibilities distributed among a 

number of objects. Objects in a delegated control architecture tend to coordinate rather than 

dominate. Tasks may be initiated by a coordinator, but the real work is performed by others. These 

worker objects tend to both 'know' and 'do' things. They may even be smart enough to determine 

what they need to know, rather than being plugged with values via external control. To me, a 

delegated control architecture feels like object design at its best… 

       Wirfs-Brock [29] 

In contrast, a centralized control style typically consists of a central object (Figure 1), which is 

responsible for the initiation and coordination of all tasks:  

A centralized control style is characterized by single points of control interacting with many simple 

objects. The intelligent object typically serves as the main point of control, while others it uses 

behave much like traditional data structures. To me, centralized control feels like a "procedural 

solution" cloaked in objects… 

Wirfs-Brock [29] 

 

Figure 1. Delegated versus Centralized Control Style 
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2.3. Example – The Coffee-Machine Design Problem 

This section illustrates the two control styles using two alternative example designs of the coffee-

machine design problem. These designs were discussed at a workshop on object-oriented design 

quality at OOPSLA'97 [17] and are described in two articles in C/C++ User's Journal [13]:  

This two-article series presents a problem I use both to teach and test OO design. It is a simple but 

rich problem, strong on ''design,'' minimizing language, tool, and even inheritance concerns. The 

problem represents a realistic work situation, where circumstances change regularly. It provides a 

good touch point for discussions of even fairly subtle designs in even very large systems…  

Cockburn [13] 

The initial problem statement was as follows: 

You and I are contractors who just won a bid to design a custom coffee vending machine for the 

employees of Acme Fijet Works to use. Arnold, the owner of Acme Fijet Works, like the common 

software designer, eschews standard solutions. He wants his own, custom design. He is, however, a 

cheapskate. Arnold tells us he wants a simple machine. All he wants is a machine that serves coffee 

for 35 cents, with or without sugar and creamer. That's all. He expects us to be able to put this little 

machine together quickly and for little cost. We get together and decide there will be a coin slot and 

coin return, coin return button, and four other buttons: black, white, black with sugar, and white 

with sugar. 

Cockburn [13] 

The two alternative designs discussed in [13] are, we believe, good examples of a centralized and 

a delegated control style, respectively. Table 1 shows the classes and their assigned 

responsibilities for the two alternative designs. The first design, referred to as the Centralized 

Control (CC) design in this paper (denoted “Mainframe design” in [13]), consists of seven 

classes. The second design, referred to as the Delegated Control (DC) design in this paper 

(denoted "Responsibility-Driven Design" in [13]), consists of twelve classes. 
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Table 1. Overview of the two design alternatives 

 CC DC 
CoffeeMachine Initiates the machine; knows how the 

machine is put together; handles input 
Initiates the machine; knows how the machine 
is put together; handles input 

CashBox Knows amount of money put in; gives 
change; answers whether a given amount 
of credit is available. 

Knows amount of money put in; gives change; 
answers whether a given amount of credit is 
available. 

FrontPanel Knows selection; knows price of 
selections, and materials needed for each; 
coordinates payment; knows what 
products are available; knows how each 
product is made; knows how to talk to the 
dispensers.  

Knows selection; coordinates payment; 
delegates drink making to the Product. 

Product  Knows its recipe and price. 
ProductRegister  Knows what products are available. 
Recipe  Knows the ingredients of a given product.; tells 

dispensers to dispense ingredients in 
sequence. 

Dispensers Controls dispensing; tracks amount it has 
left.  

Knows which ingredient it contains; controls 
dispensing; tracks amount it has left. 

DispenserRegister  Knows what dispensers are available 
Ingredient.   Knows its name only. 
Output Knows how to display text to the user. Knows how to display text to the user. 
Input Knows how to receive command-line input 

from the user 
Knows how to receive command-line input from 
the user 

Main Initializes the program Initializes the program 
 

In both designs, the FrontPanel class acts as a “control class” for the use-case “Make Drink”. 

However, the number and type of responsibilities assigned to the FrontPanel class are different 

in the two designs. In the CC design, the FrontPanel is responsible for most tasks: it knows the 

user selection, the price of each type of coffee and how each type of coffee is made. To make a 

specific type of coffee, the FrontPanel calls the dispense method of various Dispenser objects in 

an if-then-else structure. In the DC design, the FrontPanel just initiates the use case, and 

delegates the control of how a given type of coffee is made to a Product, which knows its price 

and Recipe. In turn, the Recipe is responsible for knowing the Ingredients of which a product 

consists, but has no knowledge about pricing.  
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Cockburn [13] assessed the CC design as follows: 

Although the trajectory of change in the mainframe approach involves only one object, 

people soon become terrified of touching it. Any oversight in the mainframe object (even a 

typo!) means potential damage to many modules, with endless testing and unpredictable 

bugs. Those readers who have done system maintenance or legacy system replacement will 

recognize that almost every large system ends up with such a module. They will affirm what 

sort of a nightmare it becomes.  

Furthermore, Cockburn [13] assessed the DC design as follows: 

The design we come up with at this point bears no resemblance to our original design. It is, 

I am happy to see, robust with respect to change, and it is a much more reasonable ''model 

of the world.'' For the first time, we see the term ''product'' show up in the design, as well 

as ''recipe'' and ''ingredient.'' The responsibilities are quite evenly distributed. Each 

component has a single primary purpose in life; we have avoided piling responsibilities 

together. The names of the components match the responsibilities.  

Thus, the DC design has a distinctly delegated control style, whereas the CC design has a 

distinctly centralized control style. According to Cockburn [13], most novices (students) come 

up with the CC type of design. However, most experts would probably agree that the DC design 

is, as Cockburn argues, a more maintainable solution to the coffee-machine design problem. 

3. Related Empirical Studies 

In one of the few field experiments comparing alternative object-oriented technologies, a data-

driven and a responsibility-driven design method were compared [23]. Two systems were 

developed based on the same requirements specification; using the data-driven and the 

responsibility-driven design method, respectively. The results suggest that the responsibility-

driven design method results in a delegated control style, whereas the data-driven design method 

results in a centralized control style. Structural attribute measures (defined in [10]) of the two 
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systems were also collected and compared. Based on the measured values, the authors suggested 

that use of the responsibility-driven design method produced higher quality software than did use 

of the data-driven design method, because the responsibility-driven software system had less 

coupling and higher cohesion than did the data-driven software system. We believe it may be 

premature to draw such conclusions. Whether the design measures used in the experiment 

actually measured “quality”, was not empirically validated by direct measurement of external 

quality attributes.  

Nevertheless, there is a growing body of results indicating that class-level measures of 

structural attributes such as coupling and cohesion can be reasonably good predictors of product 

quality (see survey in [4]), hence supporting the conclusions in [23]. Most of these metrics 

validation studies have been case studies. Thus, there is a lack of control that limits our ability to 

draw conclusions regarding cause-effect relationships [18, 19]. One notable exception was a 

controlled experiment that investigated whether a "good" design (adhering to Coad and 

Yourdon's design principles [12]) was easier to maintain than was a "bad" design [5, 8]. The 

results suggest that reducing coupling and increasing cohesion (as suggested in Coad and 

Yourdon's design principles) improve the maintainability of object-oriented design documents. 

However, as pointed out by the authors, the results should be considered preliminary, primarily 

because the subjects were students with little programming experience. 

A controlled experiment to assess the changeability (i.e., change effort and correctness) of the 

example coffee-machine designs described in Section 2.3 is reported in [1]. Thirty-seven 

undergraduate students were divided into two groups in which the individuals designed, coded 

and tested several identical changes to one of the two design alternatives. The subjects solved the 

change tasks using pen and paper. Given the argumentation described in Section 2, the results 



Simula Research Laboratory Technical Report 2003-6 

 11

were surprising in that they clearly indicated that the delegated control design requires 

significantly more change effort for the given set of changes than does the alternative centralized 

control design. This difference in change effort was primarily due to the difference in effort 

required to understand how to perform the change tasks. Consequently, designs with a delegated 

control style may have higher cognitive complexity than have designs using a centralized control 

style. With regards to correctness, no significant differences between the two designs were 

found.  

In summary, more empirical studies are needed to evaluate principles of design quality in 

object-oriented software development. The control style of object-oriented design represents one 

such fundamental design principle that needs to be studied empirically. Related empirical studies 

provide no convincing answers as to how the control style of object-oriented design affects 

maintainability. The field experiment reported in [23] lacks validation against external quality 

indicators. The results of the experiments in [1, 5] contain apparent contradictions. Furthermore, 

both experiments used students as subjects solving pen-and-paper exercises. A major criticism of 

such experiments is their lack of realism [14, 22], which potentially limits our ability to 

generalize the findings to the population about which we wish to make claims, that is, 

professional programmers solving real programming tasks using professional tools in a realistic 

development environment. An empirical study reported in [24] reveals substantial differences in 

how novices, intermediates and experts perceive the difficulties of object-oriented development. 

These results are confirmed by a controlled experiment in which, amongst others, a strong 

interaction between the expertise of the subjects and type of task were identified during object-

oriented program comprehension [9]. Consequently, the results of the existing empirical studies 

are difficult to generalize to the target population of professional developers.  
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4. Design of Experiment 

The conducted experiment was a replication of the initial pen-and-paper student experiment 

reported in [1]. The motivation for replicating a study is to establish an increasing range of 

conditions under which the findings hold, and predictable exceptions [21]. A series of 

replications might enable the exploratory and evolutionary creation of a theory to explain the 

observed effects on the object of study. In this experiment, the following three controlled factors 

were modified compared with the initial experiment: 

More representative sample of the population – The target population of this experiment was 

professional Java consultants. To obtain a more representative sample of this population, we 

hired 99 junior, intermediate and senior Java consultants from eight software consultancy 

companies. To compare differences between (categories of) professionals and students, 59 

undergraduate and graduate students also participated. Descriptive statistics of the sample 

population are given in Appendix A. 

More realistic tools – Professional developers use professional programming environments. 

Hence, traditional pen-and-paper based exercises are hardly realistic. In this experiment, each 

subject used a Java development tool of their own choice, e.g., JBuilder, Forte, Visual Age, 

Visual J++ and Visual Café.  

More realistic experiment environment – The classroom environment of the previous experiment 

was replaced by the offices in which each developer would normally work. Thus, they had 

access to printers, libraries, coffee, etc. as in any other project they might be working on. The 

students were located in one of their usual computer labs.   



Simula Research Laboratory Technical Report 2003-6 

 13

4.1. Hypotheses 

This section informally describes the hypotheses of the experiment. They reflect the expectation 

that there is an interaction between the programming experience and the control style of an 

object-oriented design. We expect experienced developers to have the necessary skills to benefit 

from “pure” object-oriented design principles, as reflected in a delegated control style. Based on 

the results of the previous experiment [1], we expect novice developers to have difficulties 

understanding a delegated control style, and to thus perform better on a centralized control style. 

There are two levels of hypothesis: One comparing the control styles for all subjects; the other 

comparing the relative differences between the developer categories. The null-hypotheses of the 

experiment are: 

H01 – The Effect of Control Style on Change Effort: The time spent on performing change 

tasks on the DC design and CC design is equal. 

H02 – The Effect of Control Style on Change Effort for Different Developer Categories: The 

difference between the time spent on performing change tasks on the DC design and CC 

design is equal for the five categories of developer. 

H03 – The Effect of Control Style on Correctness: The number of correct solutions for change 

tasks on the DC design and CC design is equal. 

H04 – The Effect of Control Style on Correctness for Different Developer Categories: The 

difference between the number of correct solutions for change tasks on the DC design and 

CC design is equal for the five categories of developer. 

In Section 4.5, the variables of the study are explained in more detail. Furthermore, H01 and H02 

are reformulated in terms of a GLM model and H03 and H04 in terms of a logistic regression 

model. 
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4.2. Design Alternatives Implemented in Java 

The coffee-machine design alternatives explained in Section 2.3 were used as treatments in the 

experiment. The two designs were coded using similar coding styles, naming conventions and 

amount of comments. Names of identifiers (e.g., variables and methods) were long and 

reasonably descriptive. UML sequence diagrams of the main scenario for the two designs were 

given to help clarify the designs (Appendix E). 

4.3. Programming Tasks 

The programming tasks of the experiment consisted of six change tasks: a training task, a pre-test 

task and four (incremental) coffee machine tasks (c1–c4). To support the logistics of the 

experiment, the subjects used the web-based Simula Experiment Support Environment (SESE) 

[2] to answer an experience questionnaire, download code and documents, upload task solutions 

and answer task questionnaires. Each task consisted of the following steps: 

1. Download and unpack a compressed directory containing the Java code to be modified. This 

step was performed only prior to task c1 for the coffee-machine design change tasks (c1–c4) 

since these change tasks were based on the task solution of the previous task.  

2. Download task descriptions (Appendix F). Each task description contained a test case that 

each subject used to test the solution.  

3. Solve the programming task using their chosen development tool. 

4. Pack the modified Java code and upload it to SESE. 

5. Complete a task questionnaire (Appendix G).  
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Training Task 

For the training task, all the subjects were asked to change a small program so that it could read 

numbers from the keyboard and print them out in a reverse order. The purpose of this task was to 

familiarize the subjects with the steps outlined above.  

Pre-test Task 

For the pre-test task, all the subjects implemented the same change on the same design: it 

consisted of adding transaction log functionality in a bank teller machine, and was not related to 

the coffee-machine designs. The purpose of this task was to provide a common baseline for 

comparing the programming skill level of the subjects. The pre-test task had almost the same size 

and complexity as the subsequent change tasks c1, c2 and c3 combined.  

Coffee-Machine Tasks 

The change tasks consisted of four incremental changes to the coffee-machine:  

c1. Implement a coin return-button.  

c2. Make bouillon as a new type of drink.  

c3. Check whether all ingredients are available for the selected drink.  

c4. Make your own drink by selecting among the available ingredients.  

Special Last Task 

In our experience, the final change task in an experiment needs special attention as a result of 

potential “ceiling effects”: if the last task is included in the analyses, it is difficult to discriminate 

between the performance of the subjects regarding effort and correctness. Subjects who work fast 

may spend more time on the last task than they would otherwise. Similarly, subjects who work 
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slowly may have insufficient time to perform the last task correctly. Consequently, the final 

change task in this experiment (c4) was not included in the analysis.  

4.4. Group Assignment 

A randomized block experimental design was used; each subject was assigned to one of two 

groups by means of randomization and blocking. The two groups were CC (in which the subjects 

were assigned to the CC design) and DC (in which the subjects were assigned to the DC design). 

The blocks were “undergraduate student”, “graduate student”, “junior consultant”, “intermediate 

consultant” and “senior consultant”. The descriptive statistics of the subjects are given in 

Appendix A. Table 2 shows the distribution of the categories of subject in the different groups.  

Table 2. Subject Assignment to Treatments using a Randomized Block Design 
 CC DC Total 
Undergraduate 13 14 27 
Graduate 15 17 32 
Junior 16 15 31 
Intermediate 17 15 32 
Senior 17 19 36 
Total 78 80 158 

4.5. Execution and Practical Considerations 

The companies were paid normal consultancy fees for the time spent on the experiment by the 

consultants (five to eight hours each). A project manager in each company selected the subjects 

from the company’s pool of consultants.  

We wanted the subjects to perform the tasks with satisfactory quality in as short a time as 

possible, as most software engineering jobs put a relatively high pressure on tasks to be 

performed. However, if the time pressure put on the participatory subjects is too high, then the 

quality of the task solution may be reduced to the point where it becomes meaningless to use the 

corresponding task times in subsequent statistical analyses. The challenge is therefore to put 
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realistic time pressure on the subjects. The best way to deal with this challenge depends to some 

extent on the size, duration and location of an experiment [26]. In this experiment, we used the 

following strategy:  

• Instead of offering an hourly rate, we offered a “fixed” honorarium based on an estimation 

that the work would take five hours to complete. We told the subjects that they would be paid 

for those five hours independently of the time they would actually need. Hence, those 

subjects who finished early (e.g., in two hours) were still paid for five hours. We employed 

this strategy to encourage the subjects to finish as quickly as possible and to discourage them 

from working slowly in order to receive higher payment. However, in practice, once the five 

hours had passed, we told those subjects who had not finished that they would be paid for 

additional hours if they completed their tasks. 

• The subjects were allowed to leave when they finished.  

• The subjects were informed that they were not all given the same tasks to reduce the chances 

that they would, for competitive reasons, prioritize speed over quality. 

• The last task was not included in the analysis. 

4.6. Analysis Model 

To test the hypotheses, a regression-based approach was used on the unbalanced experiment 

design. The variables in the models are described below.  

Dependent Variables 

Log(Effort) – the total effort in Log(minutes) to complete the change tasks. Before starting on a 

task, the subjects wrote down the current time. When the subjects had completed the task, they 

reported the total effort (in minutes). The first author of this paper double-checked the reported 

times using time stamps reported by the SESE tool. The variable Effort was the combined total 
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effort to complete the change tasks. A log-transformation of the effort data gave a nearly perfect 

normal distribution.  

 

Correctness – a binary correctness score with value 1 if all the change tasks were correctly 

implemented and 0 if at least one of these tasks contained serious logical errors. 

Each change task solution was reviewed by an independent consultant with a PhD in computer 

science who lectures on testing at the University of Oslo. He was not informed about the 

hypotheses of the experiment. To perform the correctness analysis, he first developed a tool that 

automatically unpacked and built the source code corresponding to each task solution (uploaded 

to SESE by the subjects). In total, this corresponds to almost 1000 different Java programs. 

Then, each solution was tested using a regression test script. For each test run, the difference 

between the expected output of the test case (this test output was given to the subjects as part of 

the task specifications) and the actual output generated by each program was computed. The tool 

also showed the complete source code as well as the source code differences between each 

version of the program delivered by each subject, to identify exactly how they had changed the 

program to solve the change task. To perform the final grading of the task solutions, a web-based 

grading tool was developed that enabled the consultant to view the source code, the source code 

difference, the test case output and the test case difference. He gave the score correct if there 

were no or only cosmetic differences in the test case output, and no serious logical errors were 

revealed by manual inspection of the source code; otherwise he gave the score incorrect. The 

consultant performed this analysis twice to avoid inconsistencies in the way he had graded the 

task solutions. Completing this work took approximately 200 hours.  
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Controlled Factors 

Design – the main treatments of the experiment; that is, the factors DC and CC. 

Block – the developer categories used as blocking factors in the experiment; that is, the factors 

Undergraduate, Graduate, Junior, Intermediate and Senior. For the professional consultants, a 

project manager from each company chose consultants from the categories “junior”, 

“intermediate” and “senior” according to how they usually would categorize (and price) their 

consultants. Potential threats caused by this categorization are discussed further in Section 6.1.  

Covariates 

Log(Pre_Dur) – the (log-transformed) effort in minutes to complete the pre-test task. The 

individual results of the pre-test can be used as a covariate in the models to reduce the error 

variance caused by individual skill differences. 

 

Model Specifications 

For the hypotheses regarding effort, a generalized linear model (GLM) approach was used to 

perform a combination of analysis of variance (ANOVA), analysis of covariance (ACOVA) and 

regression analysis [11]. For the hypotheses regarding correctness, a logistic regression model 

was fitted using the same (GLM) model terms as for effort, that is, including dummy (or 

indicator) variables for each factor level and combinations of factor levels [11].  

The models are specified in Table 3. Given that the underlying assumptions of the model are 

not violated, the presence of a significant model term corresponds to rejecting the related null-

hypothesis. Model (1) was used to test hypotheses H01 and H02. Model (2) was used to test 

hypotheses H03 and H04. In addition, model (3) was included to test the hypothesis on effort 

restricted to those subjects with correct solutions. Thus, model (3) represents an alternative way 



Simula Research Laboratory Technical Report 2003-6 

 20

to assess the effect of the design alternatives on change effort. Since the subjects with correct 

solutions no longer represent a random sample, the covariate Log(Pre_Dur) was included to 

adjust for skill differences between the groups. Furthermore, since the covariate is confounded 

with Block, it is no longer meaningful to include Block in model (3). 

The final specification of the models must take place after the actual analyses because the 

validity of the underlying model assumptions has to be checked on the basis of the actual data. 

For example, we determined that a log-transformation of effort was necessary to obtain models 

with normally distributed residuals, which is an important assumption of GLM. Furthermore, the 

inclusion of insignificant interaction terms may affect the p-values (and interpretation) of other 

model terms and should therefore be considered removed. Whether insignificant model terms 

should be removed depends on whether the reduced model fits the data better than the complete 

model. This is explained further in Section 5.  

Table 3. Model Specifications 
Model Response Model Term Primary use of model term 

Design  Test H01 (Effort Main Effect ) 
Block  Assess the effect of different developer categories on effort  

(1) 
 

Log(Effort) 

Design* Block Test H02 (Effort Interaction) 
Design  Test H03 (Correctness Main Effect) 
Block  Assess the effect of different developer categories on correctness 

(2) Correct 

Design* Block Test H04 (Correctness Interaction) 
Design Alternative Test of H01 for subjects with correct solutions 
Log(Pre_Effort) Covariate to adjust for programming skill differences 

(3) Log(Effort) 

Log(Pre_Effort)*Design Test on homogeneity of slopes 

5. Results 

This section describes the results of the experiment. In Section 5.1, descriptive statistics of the 

data are provided to illustrate the size and direction of the effects of the experimental conditions. 

In Section 5.2, the hypotheses outlined in Section 4.1 are tested formally using the statistical 
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models described in Section 4.6. Finally, in Section 5.3, we draw some overall conclusions by 

interpreting both the descriptive statistics and the results from the formal hypothesis tests. 

5.1. Descriptive Statistics 

Table 4 shows the descriptive statistics related to the main hypotheses of the experiment. Two of  

the 158 subjects in the experiment did not complete all the tasks, as indicated by the column N*. 

The columns Mean to Max show the descriptive statistics of the change effort (in minutes to 

solve change tasks c1+c2+c3). The column Correct shows the percentage of the subjects that 

delivered correct solutions for all three tasks. The Total row shows that the mean time required 

to perform the tasks is 91 minutes for both the CC and DC design. Furthermore, 69 percent of the 

subjects delivered correct solutions on the CC design, but only 50 percent did on the DC design.  

However, there are quite large differences between the different categories of developer, 

especially when comparing undergraduate and junior developers with graduate students and 

senior professionals. The apparent interaction between developer category and design alternative 

is illustrated in Figure 2. For example, the undergraduate students spent on average about 30 

percent less time on the CC design than on the DC design (79 minutes versus 108 minutes). They 

were also much more likely to produce correct solutions on the CC design than on the DC design 

(62 percent versus 29 percent). This indicates that, for undergraduate students, the CC design is 

easier to change than is the DC design. This picture is reversed when considering the seniors: 

they spent on average about 30 percent more time on the CC design than on the DC design (103 

minutes versus 71 minutes). For the seniors, there is no difference in correctness for the two 

design alternatives (76 percent for the CC design versus 74 percent for the DC design). This 

indicates that, for senior developers, the DC design is easier to change than is the CC design.  
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Table 4. Descriptive statistics of change effort (in minutes) and correctness (in percent) 

Block Design N N* Mean Std Min Q1 Median Q3 Max Correct 
Undergraduate CC 13 0 79 30 45 56 81 87 161 62% 
 DC 14 0 108 63 23 73 88 151 267 29% 
  27 0 94 51 23 60 84 99 267 44% 
Graduate CC 15 0 65 23 23 49 60 85 105 80% 
 DC 17 0 73 37 23 52 63 85 173 65% 
  32 0 69 31 23 51 63 85 173 72% 
Junior CC 16 0 95 32 39 76 95 114 170 63% 
 DC 15 0 110 46 60 71 102 127 217 33% 
  31 0 102 39 39 72 100 122 217 48% 
Intermediate CC 17 0 107 49 51 72 91 133 215 65% 
 DC 14 1 101 46 54 63 92 127 202 40% 
  31 1 104 47 51 69 91 126 215 53% 

CC 16 1 103 62 35 64 75 135 253 76% 
DC 19 0 71 38 31 40 61 95 169 74% 

Senior 

 35 1 86 52 31 51 67 111 253 75% 
CC 77 1 91 44 23 60 83 101 253 69% 
DC 79 1 91 48 23 60 77 120 267 50% 

Total 

 156 2 91 46 23 60 82 105 267 59% 

Figure 2. Interaction plots of mean effort and correctness 

5.2. Hypothesis Tests 

The results of testing the hypotheses on change effort are shown in Table 5. There is insufficient 

evidence to reject the null-hypothesis H01, that is, we cannot conclude that there is a difference 

in change effort between the two design alternatives (Design, p = 0.964). By contrast, the results 

identify significant differences in change effort for the five developer categories (Block, p = 
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0.001). Regarding the hypotheses on the interaction between design and developer category, H02, 

there is weak support for rejecting the null-hypothesis (Design*Block, p = 0.133). However, 

looking at the individual coefficients for the interaction term, we may conclude that seniors are 

not faster than undergraduate students when considering the combined results of both the DC and 

CC designs (Senior, p = 0.255), but that the seniors spend significantly less time on the DC 

design than on the CC design compared with undergraduate students (DC*Senior, p = 0.016). 

The size of this interaction effect can be seen from the graphic representation of the descriptive 

statistics in Figure 2. Appendix C shows the residual analysis of the model, indicating that the 

assumptions of the GLM model are not violated. 

The results of testing the hypotheses on correctness are shown in Table 6. The results clearly 

show that the subjects are much less likely to produce correct solutions on the DC design than on 

the CC design (Design, odds-ratio = 0.40, p = 0.009), all other conditions being equal. The null-

Table 5. GLM model (model 1) for Log(effort) (hypotheses H01 and H02) 
Factor  Type Levels Values  
Design  fixed     2 DC CC 
Block   fixed     5 Undergraduate Graduate Junior Intermediate Senior  
                        
Analysis of Variance for Log(Effort), using Adjusted SS for Tests 
 
Source         DF     Seq SS     Adj SS     Adj MS       F      P 
Design          1     0.0310     0.0004     0.0004    0.00  0.964 
Block           4     4.0454     3.9932     0.9983    4.84  0.001 
Design*Block    4     1.4788     1.4788     0.3697    1.79  0.133 
Error         146    30.1090    30.1090     0.2062 
Total         155    35.6642   
 
Term                      Coef   SE Coef        T      P 
Constant               4.39952   0.03657   120.31  0.000 
Design 
    DC                 0.00166   0.03657     0.05  0.964 
Block 
    Graduate          -0.25945   0.07224    -3.59  0.000 
    Junior             0.16559   0.07303     2.27  0.025 
    Intermediate       0.15855   0.07326     2.16  0.032 
    Senior            -0.08006   0.06999    -1.14  0.255 
Design*Block 
    DC*Graduate        0.03012   0.07224     0.42  0.677 
    DC*Junior          0.05869   0.07303     0.80  0.423 
    DC*Intermediate   -0.02752   0.07326    -0.38  0.708 
    DC*Senior         -0.17024   0.06999    -2.43  0.016 
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hypothesis H03 is rejected. Furthermore, graduate students and seniors are much more likely to 

produce correct solutions (odds-ratios 3.42 and 4.03, respectively) than are the other developer 

categories. The interaction term Design*Block was removed from the logistic regression model 

because the coefficients were far from significant and reduced the goodness of fit. Hence, there 

is insufficient statistical evidence to reject H04: we cannot conclude that the CC design improves 

correctness for only some categories of developers; it improves correctness for all the categories.  

The goodness-of-fit tests for the model in Table 6 show a high correlation between the 

observations and the model estimates. Thus, the underlying model assumptions of logistic 

regression are not violated. 

Finally, Table 7 shows the results of the analysis of covariance model on Log(Effort) for the 

subjects who managed to produce correct solutions. The results show that the change effort is 

much less for the DC design than for the CC design. Thus, those subjects who actually manage 

Table 6. Logistic regression model (model 2) for correctness (hypotheses H03 and H04) 
 

Response Information 
 
Variable  Value       Count 
Correct   1              94  (Event) 
          0              64 
          Total         158 
 
Logistic Regression Table 
                                                        Odds        95% CI 
Predictor            Coef    SE Coef        Z     P    Ratio    Lower    Upper 
Constant           0.2403     0.4330     0.55 0.579 
Design          
 DC               -0.9154     0.3483    -2.63 0.009     0.40     0.20     0.79 
Block           
 Graduate          1.2307     0.5667     2.17 0.030     3.42     1.13    10.39 
 Junior            0.1342     0.5422     0.25 0.805     1.14     0.40     3.31 
 Intermediate      0.3196     0.5386     0.59 0.553     1.38     0.48     3.96 
 Senior            1.3941     0.5606     2.49 0.013     4.03     1.34    12.10 
 
Log-Likelihood = -97.814 
Test that all slopes are zero: G = 17.675, DF = 5, P-Value = 0.003 
 
Goodness-of-Fit Tests 
 
Method                Chi-Square    DF      P 
Pearson                    1.526     4  0.822 
Deviance                   1.486     4  0.829 
Hosmer-Lemeshow            1.500     6  0.959 
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to understand the DC design sufficiently well to produce correct solutions also use less time than 

those who produce correct solutions on the CC design. As can be seen from the descriptive 

statistics (Table 4) and from the logistic regression model of correctness (Table 6), these subjects 

are overrepresented by senior consultants and graduate students. Appendix D shows the residual 

analysis of the model, indicating that the assumptions of the GLM model are not violated. 

5.3. Summary of Results 

Based on the formal hypothesis tests, the results suggest that there is no difference in change 

effort between the two designs when considering all subjects, regardless of whether they 

produced correct solutions or not. However, there is an interaction between the design 

alternatives and the developer categories with regards to effort, particularly when comparing 

senior consultants with undergraduate students. Furthermore, the interaction effect size is 

considerable, as illustrated by the descriptive statistics: undergraduate students (and juniors) use 

on average 30 percent less time on the CC design, whereas seniors use on average 30 percent 

more time on the CC design.  

Table 7. Change Effort for Subjects with Correct Solutions 
Factor     Type Levels Values  
Design    fixed      2 DC CC 
 
Analysis of Variance for Log(Effort), using Adjusted SS for Tests 
 
Source          DF     Seq SS     Adj SS     Adj MS       F      P 
Log(pre_Effort)  1     3.2835     3.1802     3.1802   24.06  0.000 
Design           1     1.2421     1.2421     1.2421    9.40  0.003 
Error           91    12.0275    12.0275     0.1322 
Total           93    16.5531   
 
Term            Coef      SE Coef        T      P 
Constant        2.9912    0.2622     11.41  0.000 
Log(pre_Effort) 0.32893   0.06706     4.91  0.000 
Design 

DC           -0.11628   0.03793    -3.07  0.003 
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All developer categories are more likely to produce correct solutions on the CC design than on 

the DC design. There is no support for an interaction effect between design alternatives and the 

developer category with regards to correctness. However, the effect size of design on correctness 

is very large for the undergraduate students and junior developers, who clearly have serious 

difficulty in producing correct solutions on the DC design, whereas the effect size of design is 

negligible for the seniors.  

When only considering the subjects who managed to produce correct solutions (probably the 

most skilled subjects because the subjects with correct solutions also on average used 

considerably less time than did subjects with incorrect solutions), the DC design seems to require 

less effort than does the CC design. However, since those subjects are over-represented by the 

seniors, this model confirms the following overall conclusion: the DC design favors the most 

highly skilled developers, over-represented by senior developers, whereas the CC design favors 

the less skilled developers, over-represented by undergraduate students and junior developers. 

There are no clear indications in either direction when considering both effort and correctness for 

the intermediate developers or the graduate students. 

6. Threats to Validity 

This paper reports an experiment with a high degree of realism compared with previously 

reported controlled experiments within software engineering. Our goal was to obtain results that 

could be generalized to the target population of professional Java consultants solving real 

programming tasks with professional development tools in a realistic work setting. This is an 

ambitious goal, however. For example, there is a trade-off between ensuring realism (to reduce 

threats to external validity) and ensuring control (to reduce threats to internal validity). This 
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section discusses what we consider to be the most important threats to the validity of this 

experiment.  

6.1. Construct Validity 

The construct validity concerns whether the independent and dependent variables accurately 

measure the concepts we intend to study. 

Classification of the Control Styles 

An important threat to the construct validity in this experiment is the extent to which the actual 

design alternatives that were used as treatments (“delegated” versus “centralized” control styles) 

are representatives of the concept studied. There is no operational definition to classify precisely 

the control style of object-oriented software; a certain degree of subjective interpretation is 

required. Furthermore, when considering the extremes, the abstract concepts of a centralized and 

delegated control style might not even be representative of realistic software designs. Still, some 

software systems might be “more centralized than” or “more delegated than” others.  

Based on expert opinions in [13] and our own assessment of the designs, it is quite obvious 

that the DC design has a more delegated control style than the CC design. However, it is 

certainly possible to design a coffee-machine with an even more centralized control style than 

the CC design (e.g., a design consisting of only one control class and no entity classes 

whatsoever), or a more delegated control style than the DC design. We chose to use as treatments 

example designs developed by others [13]. We believe these treatments constitute a reasonable 

trade-off between being clear representatives of the two control styles, and being realistic and 

unbiased software design alternatives. 
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Classification of Developers 

It is likely that someone who would be considered as (say) an intermediate consultant in one 

company would be considered (say) a senior in another company. Thus, the categories are not 

necessarily representative of the categories used in every consultancy company. A replication in 

other companies might therefore produce different results with regards to how the variable Block 

affects change effort and correctness. However, as seen from the results, the Block factor 

representing the categories is a significant explanatory variable of change effort and correctness, 

and, as expected, senior consultants provided better solutions in shorter time than did juniors and 

undergraduate students. Thus, for the purpose of discriminating between the programming skill 

and experience of the developers, the classification was sufficiently accurate. 

Measuring Change Effort  

The effort measure was affected by noise and disturbances. Some subjects (in particular the 

professionals) might have been more disturbed or have taken longer breaks than did others. For 

example, senior consultants are likely to receive more phone calls because they typically have a 

central role in the projects they would normally participate in. To address this possible threat, we 

instructed the consultants not to answer phone calls or talk to colleagues during the experiment. 

The subjects were also instructed to take the lunch break only between two change tasks. At least 

one of the authors of this paper was present at the company site during all experiment sessions 

and thus observed that these requests were followed to a large extent. The monitoring 

functionality of SESE [2] also enabled us to monitor the progress of each subject at all times, and 

follow up if we observed little activity. 
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Measuring Correctness 

The dependent variable Correct was binary, and indicated whether the subjects produced 

functionally correct solutions on all the change tasks, thus producing a working final program. 

As described in Section 4.6, a significant amount of effort was spent on ensuring that the 

correctness scores were valid. More complex measures discriminating the number of 

programming faults or the severity of programming faults were also considered. However, such 

measures would necessarily be more subjective, and hence more difficult to use in future 

replications than the adopted “correct”/”not correct” score.  

6.2. Internal Validity 

The internal validity of an experiment is the degree to which conclusions can be drawn about the 

causal effect of the controlled factors on the experimental outcome.  

Instrumentation Differences between Developer Categories 

The students in this experiment were situated in a computer lab, but the professional consultants 

were situated in a normal work environment while participating in the experiment. We cannot 

rule out that this difference in setting between the students and professionals introduced a threat 

with regards to the validity of the comparison between students and professionals. For example, 

one might argue that the professionals would feel less time pressure than would the students. 

Based on our observations, we believe this is not the case; both students and professionals 

apparently worked very hard.  

Development Tools 

To increase the realism (and external validity), we decided that each developer could use a Java 

development environment of their own choice. Most of the students used Emacs and Javac, 
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whereas the professionals used a variety of professional Integrated Development Environments. 

As a result of the randomized block design, the distribution of tools was quite even across the 

two design alternatives. Furthermore, we checked the extent to which the chosen development 

tool affected the performance of the subjects, by including DevelopmentTool as a covariate in the 

models described in Section 4.5. The term was not a significant explanatory variable for effort (p 

= 0.437) or correctness (p = 0.347). Thus, it is unlikely that the chosen tools introduced a bias for 

one of the designs. 

6.3. External Validity 

The external validity of the experiment concerns whether the results can be generalized to a 

realistic development context [26, 27].  

Size and Complexity of Tasks 

Clearly, the two alternative designs in this experiment were very small compared with “typical” 

object-oriented software systems. Furthermore, the change tasks were also relatively small in 

size and duration. However, the questionnaires received from the participants after they had 

completed the change tasks (Appendix G) indicate that the complexity of the tasks was quite 

high. Still, we cannot rule out that the effects we observed when comparing the control styles 

would be different if the systems and tasks had been larger.  

Representativeness of Sample 

An important question for this experiment is whether the professional subjects were 

representative of “professional Java consultants”. Our sample included consultants from major 

international software consultancy companies. A project manager was hired from each company 

to, among others things, select consultants for the categories “junior”, “intermediate” and 
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“senior”. The selection process corresponded to how the companies would usually categorize 

and price consultants. Hence, in addition to experience and competence, availability was also one 

of the selection criteria. Thus, it could be the case that the “best” professionals were 

underrepresented in our sample, since there is a likelihood that they had already been hired by 

other companies. To address this threat, our agreement with the companies stated that the project 

manager should select a representative sample from their consultants. Fortunately, we observed 

that the project managers were quite eager to also include “busy” Java consultants.  

7. Conclusions 

The degree of maintainability of a software application depends not only on attributes of the 

software itself, but also on certain cognitive attributes of the particular developer whose task it is 

to maintain it. This aspect seems to be underestimated by expert designers. Most experienced 

software designers would probably agree that a delegated control style is more “elegant”, and a 

better object-oriented representation of the problem to be solved, than is a centralized control 

style. However, care should be taken to ensure that future maintainers of the software are able to 

understand this (apparently) elegant design. If the cognitive complexity of a design is beyond the 

skills of future maintainers, they will spend more time and probably introduce more faults than 

they would with a (for them) simpler but less “elegant” object-oriented design.  

Assuming that it is not only highly skilled experts who are going to maintain an object-

oriented system, a viable conclusion from the controlled experiment reported in this paper is that 

a design with a centralized control style may be more maintainable than is a design with a 

delegated control style. These results are also relevant with regards to a use-case driven design 

method, which may support both control styles: it is mainly a question of how much 

responsibility is assigned to the control class of each use case. 
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Although an important goal of this experiment was to ensure realism, by using a large sample 

of professional developers as subjects who are instructed to solve programming tasks with 

professional development tools in a normal office environment, there are several threats to the 

validity of the results that should be addressed in future replications. Increasing the realism (and 

thereby external validity) reduced the amount of control, which introduced threats to internal 

validity. For example, we allowed the developers to use a development tool of their own choice, 

thereby adding a confounding factor. However, we believe that this reduction in control is a 

small price to pay considering that the improved realism of this experiment allows us to 

generalize the results beyond what would be possible in a more controlled laboratory setting with 

students solving pen-and-paper tasks. Still, whether the results of this experiment generalize to 

realistically sized systems and tasks is still an open question. Consequently, the most important 

means to improve the external validity of the experiment is to increase the size of the systems 

and the tasks.  
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Appendix A. Descriptive Statistics of the Subjects 
Variable Block N Mean Median StDev Min Max Q1 Q3 
Age (years) Undergrad 27 25.074 24 4.009 22 38 23 26 
 Graduate 32 25.813 25 3.167 23 37 24 27 
 Junior 31 27.548 27 5.403 22 54 25 28 
 Intermed 32 30.61 28 8.28 22 62 26 31 
 Senior 36 32 30 6.05 24 54 28.25 34.5 
Work Exp  (years) Undergrad 27 2.593 1 4.06 0 15 0 4 
 Graduate 32 2.625 2 3.452 0 18 0 3.75 
 Junior 31 2.871 1 4.808 0 27 1 4 
 Intermed 32 5.75 3 7.73 0 35 2 5 
 Senior 36 7.611 6.5 5.463 0 27 4 10 
Programming Exp (years) Undergrad 27 1.074 0 2.129 0 10 0 2 
 Graduate 32 1.219 0 3.19 0 18 0 1 
 Junior 31 1.533 1 4.1 0 23 0 1 
 Intermed 32 4.5 2 6.67 0 26 1 4 
 Senior 36 6.278 5 5.38 0 27 3.25 8.75 
Education (years) Undergrad 27 3.154 3.15 1.11 1.25 5.5 2.3 3.65 
 Graduate 32 4.378 3.95 1.035 3.25 7.85 3.8 4.975 
 Junior 31 4.065 4 1.184 0.25 6.25 3.4 5 
 Intermed 32 4.153 4.1 1.687 0 10 3.063 5 
 Senior 36 4.011 4 2.422 0 14 3 5 
CS Education (years) Undergrad 27 1.2556 1.25 0.3881 0.5 2.2 1 1.5 
 Graduate 32 1.616 1.5 0.593 0.55 3 1.25 2 
 Junior 31 1.334 1 0.958 0.05 4 0.5 2 
 Intermed 32 1.478 1.375 1.008 0 3.5 0.6 2 
 Senior 36 1.749 1.5 1.145 0 4 1 2.5 
Java (LOC) Undergrad 27 20400 10000 26942 10 100000 5000 20000 
 Graduate 32 54484 8000 177812 500 1000000 3000 20000 
 Junior 31 4478 2000 9029 0 50000 500 5000 
 Intermed 32 6819 4000 10374 1 55000 1000 10000 
 Senior 36 28497 5000 83964 0 500000 625 23750 
C++ (LOC) Undergrad 27 1553 25 4286 0 20000 0 500 
 Graduate 32 9415 1000 35272 0 200000 50 4750 
 Junior 31 1935 500 2962 0 10000 100 2000 
 Intermed 32 1169 550 2079 0 10000 0 1000 
 Senior 36 36299 1000 166132 0 1000000 425 9000 
Total LOC Undergrad 27 43185 19500 50914 3275 200001 11000 67500 
 Graduate 32 129093 19925 401407 6500 2260000 10888 65625 
 Junior 31 48643 12500 127894 300 556300 4000 22850 
 Intermed 32 40360 19400 45517 5 160500 10400 53550 
 Senior 36 141850 45500 415313 0 2410000 11500 78875 
UML Exp (1-5) Undergrad 27 3.074 3 0.781 1 4 3 4 
 Graduate 32 2.5 2.5 0.95 1 4 2 3 
 Junior 31 2.516 3 0.926 1 4 2 3 
 Intermed 32 2.563 2.5 0.982 1 5 2 3 
 Senior 36 2.944 3 0.893 1 5 2 4 
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Appendix B. Experience Questionnaire 
(Translated from Norwegian. The actual questionnaire was implemented in the SESE tool) 

 
Date of birth: 
Java development environment you will use in this experiment: 
 
WORK EXPERIENCE 
Years programming work experience: 
Years total work experience: 
 
EDUCATION 
Number of credits in computer science courses: 
Number of total university credits: 
 
PROGRAMMING SKILL AND EXPERIENCE 
Please rate your general programming skills (1: Novice – 5: Expert): 
 
Please rate your Java programming skills (1: Novice – 5: Expert): 
Approximately how many lines of Java code you have written: 
 
Please rate your C++ programming skills (1: Novice – 5: Expert): 
Give an estimate of how many lines of C++ code you have written: 
 
Please rate your Simula programming skills (1: Novice – 5: Expert): 
Give an estimate of how many lines of C++ code you have written: 
 
Please rate your SmallTalk programming skills (1: Novice – 5: Expert): 
Give an estimate of how many lines of SmallTalk code you have written: 
 
Please rate your C programming skills (1: Novice – 5: Expert): 
Give an estimate of how many lines of C code you have written: 
 
Please rate your Pascal programming skills (1: Novice – 5: Expert): 
Give an estimate of how many lines of Pascal code you have written: 
 
Please rate your [           ] programming skills (1: Novice – 5: Expert): 
Give an estimate of how many lines of code you have written in this language: 
 
Please rate your [           ] programming skills (1: Novice – 5: Expert): 
Give an estimate of how many lines of code you have written in this language: 
 
DESIGN METHOD KNOWLEDGE: 
UML/Rose (1: Novice – 5: Expert): 
OMT (1: Novice – 5: Expert): 
Responsibility-Driven Design (1: Novice – 5: Expert): 
CRC (1: Novice – 5: Expert): 
Role modelling (1: Novice – 5: Expert): 
Structured Analysis and/or Structured Design (1: Novice – 5: Expert): 
Data Driven/Relational Database Design (1: Novice – 5: Expert): 
Other method [                 ] (1: Novice – 5: Expert): 
Other method [                 ] (1: Novice – 5: Expert): 
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Appendix C. Residual Analysis of Model (1) 

 

Appendix D. Residual Analysis of Model (3) 
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Appendix E. Sequence Diagrams of the Design Alternatives 
 

 

Sequence Diagram for the CC Design 

Product
Register

CoffeeMachine CashBox Dispenser(s)Product Recipe Dispenser
Register

FrontPanel

 : User

dispenses 
cup, coffee, 
water, etc

2: deposit(int amount)

4: select(int choice, ..)

1: "user inserts money"

3: "user selects a drink"

14: "user receives change"

12: "user receives drink"

5: productFromIndex(int choice)

8: makeDrink(..)

9: makeDrink(..)

10: for all Ingredients: getDispenserOf(Ingredient)

11: dispense()

6: price() 

returns price of the 
selected product

returns selected 
product object

7: haveYou(int price)

13: deduct(int price)

Sequence Diagram for the DC Design 

CoffeeMachine CashBox Dispenser(s)FrontPanel : User

2: deposit(int amount)

4: select(int choice, ..)

5: haveYou(int price)

6: dispense()

9: deduct(int price)

1: "user inserts money"

3: "user selects a drink"

10: "user receives change"

8: "user receives drink"

7: dispense()

dispenses 
cup, coffee, 
water, etc
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Appendix F. Change Task Descriptions  
(Some details are omitted. Translated from Norwegian) 

TRAINING TASK 
Complete the code you just downloaded so that it can read an arbitrary number of lines of text from INPUT and stores each string 
in a Vector. When the user presses <CR>, the program should write the number of lines of text, and thereafter print out the text in 
the reverse order (that is, the last string should be printet first).  
    
Test case: 
Enter a string. Finish with <CR> 
abc 
Enter next string. Finish with <CR> 
def 
Enter next string. Finish with <CR> 
ghi 
Enter next string. Finish with <CR> 
 
You entered 3 strings. 
The strings in reverse order are: 
ghi 
def 
abc 
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PRE-TEST TASK 
The code you just downloaded contains a simple automated teller machine (ATM). At present, the ATM has the following 
functionality: 
• New account: … (detailed description omitted in this report) 
• Withdraw: …(detailed description omitted in this report) 
• Deposit: … (detailed description omitted in this report) 
 
Add the following functionality to the ATM: 
• Account Statement: Gives an account statement for a customer (menu choice = “Statement”). For every withdrawal a given 

customer has made, the statement should contain a line “Withdrew <amount>. Similarly, for every deposit the statement 
should contain a line ”Deposited <amount>.   Then the current account balance is printed. For details, refer to the following 
test case. 

 
Test case: 
Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit 
N 
Enter a new account number: 
per hansen 
Please enter a personal pin code: 
1234 
New account has been created. 
Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit 
D 
Enter your account number: 
per hansen 
Enter your pin code: 
1234 
Insert money: 
200 
Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit 
W 
Enter your account number: 
per hansen 
Enter your pin code: 
1234 
Enter amount: 
100 
Dispensing 100 
Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit 
W 
Enter your account number: 
per hansen 
Enter your pin code: 
1234 
Enter amount: 
50 
Dispensing 50 
Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit 
S 
Enter your account number: 
per hansen 
Enter your pin code: 
1234 
Deposited 200 
Withdrew 100 
Withdrew 50 
------------------------------- 
Account balance 50 
Menu: N = New account W=Withdraw. D=Deposit. S=Statement Q=Quit 
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CHANGE TASK c1 
In this task, you shall extend the coffee machine with a "return button" functionality that returns the deposited funds. The menu 
choice is called "Return".  
 
Test Case: 
 
Menu: I=insert S=select R=return Q=quit 
I 
Amount> 
4 
        CashBox: Depositing 4 
        You now have 4 credits. 
 
Menu: I=insert S=select R=return Q=quit 
R 
        CashBox: Returning 4 
 
Menu: I=insert S=select R=return Q=quit 

CHANGE TASK c2 

In this task, you shall extend the machine to make bouillon. Bouillon costs more than coffee. While coffee costs 5 credits, 
bouillon costs 6 credits.  
 
Test Case: 
 
Menu: I=insert S=select R=Return Q=quit 
I 
Amount> 
6 
        CashBox: Depositing 6 
        You now have 6 credits. 
 
Menu: I=insert S=select R=Return Q=quit 
S 
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream, 5=Bouillon)> 
5 
        Dispensing cup 
        Dispensing bouillon 
        Dispensing water 
        CashBox: Returning 0 
 
Menu: I=insert S=select R=Return Q=quit 
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CHANGE TASK c3 
 
Unfortunately, there is a quite serious problem with the coffee machine at present. If the user chooses for example "coffee with 
cream", and the cream dispenser is empty, the machine gives a small error message, after which it dispenses black coffee 
(without cream). If the machine does not contain any more cups, the machine dispenses the drink right into the drain… The user 
will of course get quite irritated over having to pay for this!  
 
The simplest solution to this problem is that the user receives a message if the machine is out of a required ingredient of the 
selected drink. Then, the user is given the option to choose another drink. The following test case illustrates what should happen 
when the machine runs out of cream:  
 
Test Case: 
 
Menu: I=insert S=select R=Return Q=quit 
I 
Amount> 
5 
        CashBox: Depositing 5 
        You now have 5 credits. 
 
Menu: I=insert S=select R=Return Q=quit 
S 
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream, 5=Bouillon)> 
2 
        Dispensing cup 
        Dispensing coffee 
        Dispensing water 
        Dispensing cream <after this the machine is out of cream> 
        CashBox: Returning 0 
 
Menu: I=insert S=select R=Return Q=quit 
I 
Amount> 
5 
        CashBox: Depositing 5 
        You now have 5 credits. 
 
Menu: I=insert S=select R=Return Q=quit 
S 
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream, 5=Bouillon)> 
2 
 Sorry, no more cream! Select another. 
 
Menu: I=insert S=select R=Return Q=quit 
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CHANGE TASK c4 
 
You are going to make a new menu choice “Make your own drink”, which allows the customer to choose among any 
combination of available ingredients to make a custom drink (see test-case). Note! There is no checking on whether the 
combination of ingredients “makes sense”. However, if the machine is (or becomes) empty of a given ingredient, the customer 
should receive an error message and can then choose an alternative ingredient. Each shot of an ingredient costs 2 credits. If the 
customer has put on insufficient amounts of money for the chosen set of ingredients, the customer receives the message 
"Insufficient funds" and thereafter the menu choice “Menu: I=insert S=select R=Return Q=quit”.  
 

Test Case: 
Menu: I=insert S=select R=Return Q=quit 
I 
Amount 
10 
        CashBox: Depositing 10 
        You now have 10 credits. 
 
Menu: I=insert S=select R=Return Q=quit 
S 
Select Drink (1 = Black Coffee, 2=Coffee w/Cream, 3=Coffee w/Sugar, 4=Coffee w/Sugar & Cream 5= Bouillon, 6=Make your 
own drink)> 
6 
Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0=Make Drink) 
1 
         You have selected cup 
         This drink costs 2 credits 
Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink) 
2 
         You have selected cup, coffee 
         This drink costs 4 credits 
Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink) 
2 
         You have selected cup, coffee, coffee 
         This drink costs 6 credits 
Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink) 
4 
         You have selected cup, coffee, coffee, water 
         This drink costs 8 credits 
Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink) 
5 
         Sorry, no more cream! 
         You have selected cup, coffee, coffee, water 
         This drink costs 8 credits 
Select Ingredient (1=Cup, 2=Coffee, 3=Sugar, 4=Water, 5=Cream, 6=Bouillon, 0= Make Drink) 
0         
         Dispensing cup 
         Dispensing coffee 
         Dispensing coffee        
         Dispensing water 
         CashBox: Returning 2 
 
Menu: I=insert S=select R=Return Q=quit 
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Appendix G. Change Task Questionnaire 

 
 
Time (hh:mm) when starting of the change task: 

 
Time (hh:mm) when completing the change task: 

  
Effort (in minutes) to solve the change task: 

A. Effort to understand how to solve the change task: 
B. Effort to code the change task: 
C. Effort to evaluate/test the solution (run test-case): 
 

How would you characterize your strategy to solve the task? 
Very explorative (1) – Very systematic (5): 

 
What is your subjective assessment of the quality of your solution? 

Very poor (1) - Very good (5): 
 

How confident are you that the solution does not contain serious faults?  
Very unsure (1) - Very confident (5): 
 

How difficult did you think the change task was? 
  Very easy (1) - Very difficult (5): 

 
Other comments: 
 


