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ABSTRACT
The scalability of BGP routing is a major concern for the
Internet community. Scalability is an issue in two different
aspects: increasing routing table size, and increasing rate of
BGP updates. In this paper, we focus on the latter. Our
objective is to characterize the churn increase experienced
by ASes in different levels of the Internet hierarchy as the
network grows. We look at several “what-if” growth sce-
narios that are either plausible directions in the evolution of
the Internet or educational corner cases, and investigate their
scalability implications. In addition, we examine the effect
of the BGP update rate-limiting timer (MRAI), considering
both major variations with which it has been deployed. Our
findings explain the dramatically different impact of multi-
homing and peering on BGP scalability, identify which topo-
logical growth scenarios will lead to faster churn increase,
and emphasize the importance of not rate-limiting explicit
withdrawals (despite what RFC-4271 recently required).

1. INTRODUCTION
Recently, there is a significant concern among both

Internet operators and researchers about the scalabil-
ity of interdomain routing with BGP. A workshop or-
ganized by the Internet Architecture Board concluded
that “routing scalability is the most important problem
facing the Internet today” [24]. The concern is that we
are soon approaching the point where the global rout-
ing system, and the core routers in particular, will no
longer be able to keep up with routing dynamics. BGP
scalability is an issue in two different aspects: increas-
ing routing table size, and increasing rate of BGP up-
dates (churn). Note that, in general, an increase in the
routing table size (number of routable prefixes) also in-
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Figure 1: Growth in churn from a monitor in
France Telecom’s network.

creases churn, since the number of networks that can
fail or trigger a route change increases. In this paper,
we focus on the issue of increasing churn.

A recent measurement study [16] showed that BGP
churn increases at a much faster pace than the routing
table size. During 2005, the daily rate of update mes-
sages almost doubled, while the size of the routing table
grew by only 18%. Projections of this growth trend in-
dicate that the processing load on core routers demands
expensive router upgrades. This problem is exacerbated
by the burstiness of BGP update traffic: routers should
be able to process peak update rates that are up to 1000
times higher than the daily averages [15]. To illustrate
the growth and variability in churn, we plot the rate
of BGP updates received from a RIPE routing moni-
tor located in France Telecom’s backbone network [29].
Figure 1 shows how the number of updates sent each
day increased through 2005-2007. Due to the high vari-
ability, we used the Mann-Kendall test to estimate the
trend in churn growth. Using this estimation technique,
the number of updates received from this monitor grew
approximately by a total of 200% over these three years.

The goal of this study is to improve our understand-
ing of the underlying reasons for the experienced growth
in churn. Churn is a result of a complex interplay of
1) the routing protocol, including policy annotations
and various BGP mechanisms like update rate limit-
ing, route flap dampening etc. 2) events like prefix an-
nouncements, link failures, session resets, traffic engi-
neering operations that generate routing updates, and



3) the characteristics of the Internet topology. The last
factor, in particular, is the primary focus of this paper.
We aim to understand how topological characteristics
of the AS-level graph influence the scalability of BGP
churn.

Describing the AS-level Internet topology and how
it evolves has been the subject of much research (and
heated debate) in the last decade. We refer the reader
to the following representative references [7, 21, 23, 31,
34]. In this paper, we do not use an existing topology
generation model because we want to explore a wide
range of “what-if” possibilities that none of the existing
models captures in a parsimonious and intuitive man-
ner. For the same reasons, we do not base our investiga-
tions on inferred historical internet topologies. Instead,
we first identify four basic but fundamental character-
istics of the Internet graph that have persisted over the
last decade. Then, we design a simple and controllable
topology generator that satisfies the previous proper-
ties, and at the same time allows us to easily navigate
the topological space. The “knobs” of this generator
are parameters with operational relevance in practice,
such as the multihoming degree (MHD) of stubs versus
transit providers, instead of abstract measures such as
betweenness or assortativity.

Using our topology generator, we establish the fac-
tors that determine churn at different locations in the
Internet hierarchy, and investigate the importance of
each factor in a growth model that resembles the evo-
lution of the Internet over the last decade. We then ex-
amine several deviations from this growth model, and
investigate how the number of routing updates gener-
ated by a specific routing event grows with the size of
the topology in each case. We ask questions such as:
“What if the MHD of stub ASes increases with the net-
work size instead of staying constant?” “What if the
Internet becomes denser mostly due to peering links?”
“What if tier-1 providers dominate the transit market,
reducing the number of tier-2 providers?” Beyond the
topological characteristics, however, we cannot ignore
the importance of the BGP update rate-limiting timer
MRAI (Minimum Route Advertisement Interval). A
recent change in the BGP specification (RFC-4271) re-
quired that explicit withdrawals are subject to MRAI
rate-limiting, just as any other update. We consider
the dramatic impact of this specification change on the
scalability of BGP churn.

The rest of the paper is organized as follows. In the
next section, we explain our overall approach and de-
scribe the model that we base our investigation on. In
Sec. 3, we describe our topology generator and present
our Baseline growth model. In Sec. 4, we present a
model for the churn experienced at different locations
in the Internet, and discuss the importance of different
factors as the network grows. In Sec. 5, we examine
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Figure 2: Model for a node representing an AS.

several topology growth scenarios and investigate how
they affect BGP churn. In Sec. 6, we show how differ-
ent implementations of the MRAI timer have a major
impact on the resulting churn. We review related work
in Sec. 7, and draw our conclusions in Sec. 8.

2. APPROACH AND MODEL
We can only study the problems described above us-

ing simulations. Since our goal is to look at scalability
under different hypothetical topology growth models,
our investigation cannot be performed by doing mea-
surements in the current Internet. Also, the complex-
ity of BGP and large Internet-like topologies makes it
difficult to create a tractable and useful mathematical
model. Such modeling has been attempted before, but
only for regular topologies, and without taking the ef-
fects of MRAI into account [33]. Simulations of any sys-
tem of the size and complexity of interdomain routing
requires to make several simplifying assumptions in our
model. In this section we describe the choices and as-
sumptions we make, and argue why the resulting model
captures the effects we want to investigate in our study.

We study different growth models of the AS-level
topology of the Internet, using our topology generator
described in Sec. 3. In order to do this in a scalable
way, we model each AS as a single node, and connec-
tions between two neighboring ASes as a single logical
link. This implies that we do not capture routing ef-
fects within an AS, introduced by iBGP or interactions
with IGP routing protocols (e.g., hot-potato routing).
However, while such effects do have an impact on how
routing updates are generated, they are orthogonal to
the effects we want to study.

We focus on events where individual destination pre-
fixes are withdrawn and then re-announced by the owner.
This is the most basic routing event that can take place
in the Internet, and at the same time the most radical;
these changes must be communicated all over the net-
work. For different topology growth scenarios, we mea-
sure the number of routing updates received by nodes at
different locations in the network.

Figure 2 shows the structure of a node in our simu-
lation model. A node exchanges routing messages with



its neighbors. Incoming messages are placed in a FIFO
queue and processed sequentially by a single processor.
The time it takes to process an update message is uni-
formly distributed between 0 and 100 ms. Each node
maintains a table with the routes learned from each
neighbor. Upon receiving an update from a neighbor, a
node will update this table, and re-run its decision pro-
cess to select a new best route. The new preferred route
is then installed in the forwarding table and announced
to its neighbors. For each neighbor, we maintain an ex-
port filter that blocks the propagation of some updates
according to the policies installed in the network. Out-
going messages are stored in an output queue until the
MRAI timer for that queue expires. If a queued update
becomes invalid by a new update, the former is removed
from the output queue.

For our study, we need a simulator that is capable
of capturing the exchange of routing updates described
above, and that scales to network sizes of thousands of
nodes. Existing interdomain routing simulators fall into
two broad categories. Either they only calculate steady
state routes, and do not capture routing dynamics [26],
or they include a detailed model of each eBGP session,
and hence do not scale to network sizes in the order
of today’s AS-level Internet topology of about 27000
nodes [2, 10]. Because of this, we have chosen to develop
a new simulation model that suits our requirements1.
Using this simulator, we are able to efficiently simulate
networks up to about 10000 nodes.

We consider policy-based routing, with the use of
MRAI timers to limit the frequency with which a node
sends updates to a neighbor. By “policies”, we refer to a
configuration where relationships between neighboring
ASes are either peer-to-peer or customer-provider. We
use normal “no-valley” and “prefer-customer” policies.
Routes learned from customers are announced to all
neighbors, while routes learned from peers or providers
are only announced to customers. A node prefers a
route learned from a customer over a route learned from
a peer, over a route learned from a provider. Ties among
routes with the same local preference are broken by se-
lecting the route with the shortest AS path, then based
on a hashed value of the node IDs.

By “MRAI” or “rate-limiting”, we refer to a config-
uration where two route announcements from an AS to
the same neighbor must be separated in time by at least
one MRAI timer interval. We use a default MRAI timer
value of 30 seconds. To avoid synchronization, we jitter
the timer as specified in the BGP-4 standard. Accord-
ing to the BGP-4 standard [28], the MRAI timer should
be implemented on a per-prefix basis. However, for ef-
ficiency reasons, router vendors typically implement it

1The simulator code and the scripts used to gen-
erate the results in this paper is available at
http://simula.no/research/networks/software

on a per-interface basis. We adopt this approach in our
model.

We look at two different implementation choices for
the MRAI timer, with respect to whether explicit route
withdrawals are subject to rate limiting. According
to an outdated BGP specification (RFC1771) [27], ex-
plicit withdrawals are not subject to the MRAI timer.
This approach is still used by some router implementa-
tions, including the open-source software router project
Quagga [1]. In the most recent RFC (RFC4271) [28]
however, it is stated that explicit withdrawals should
be rate-limited just like other updates. The reasons
for making this important change are not clear to us.
Discussions on the IDR mailing list (see [30] and the re-
lated thread) indicate that some people opposed treat-
ing withdrawals differently than other updates, since
there is no general way to distinguish “good news” from
“bad news” based on the update type. While this might
be true for some corner cases, we do not think this ar-
gument is a sufficient reason for a change that as we will
show has a major impact on routing scalability. We let
WRATE denote an implementation where explicit with-
drawals are rate limited just like other updates, while
NO-WRATE denotes an implementation where explicit
withdrawals are sent immediately when they are gener-
ated.

3. CONTROLLABLE TOPOLOGIES
In this section, we first describe some key properties

that characterize the AS-level Internet topology. We
believe that these properties will remain valid in the fu-
ture. We then describe a model that allows us to con-
struct topologies with different configurable properties
while still capturing these key properties.

Most existing topology generators are not capable of
producing topologies annotated with business relations,
which are essential in our study. Those who are [9, 14],
do not have the flexibility we need for controlling differ-
ent topological characteristics. It is possible to infer his-
torical Internet topologies from routing update traces
[12], but it is well known that such inference tends to
underestimate the number of peering links, and it is
difficult to infer topologies of a tractable size that are
representative of todays Internet. We therefore imple-
ment our own topology generator.

The input parameters to our generator have “opera-
tional” semantics. Instead of specifying abstract graph
properties like the clustering coefficient, the between-
ness or the assortativity of the topology, we define our
topology in a more hands-on, real-world related man-
ner by specifying parameters like how many providers
an AS has, how likely it is to peer with other types of
ASes etc.

Stable topological properties The AS-level Inter-
net topology is far from a random graph. Over the past



decade it has experienced tremendous growth, but the
following key characteristics have remained constant:

Hierarchical structure. On a large scale, the nodes
in the Internet graph form a hierarchical structure. By
hierarchical we mean that customer-provider relation-
ships are formed so that there are normally no provider
loops, where A is the provider of B who is the provider
of C who again is the provider of A.

Power-law degree distribution. The degree distribu-
tion in the Internet topology has been shown to follow
a truncated power-law, with few very well-connected
nodes, while the majority of nodes have only few con-
nections [11]. The well connected nodes typically reside
at the top of the hierarchy.

Strong clustering. The nodes in the Internet are grouped
together in clusters, with nodes in the same cluster more
likely to be connected to each other. One reason for
this clustering is that networks operate in different ge-
ographical areas.

Constant average path length. Recent measurements
show that in spite of a tremendous growth in the num-
ber of nodes, the AS-level path length has stayed vir-
tually constant at about 4 hops for the last 10 years
[8].

Topology generator Next, we describe a flexible
model for generating topologies that captures the above
properties about the AS-level graph. Several design
choices and parameters in our topology generator were
guided by a recent measurement study [8].

We use four types of nodes in our model. At the top
of the hierarchy are the tier-1 (T) nodes. T nodes do
not have any providers, and all T nodes are connected
in a clique using peering links. Below the T nodes,
we have the mid-level (M) nodes. All M nodes have
one or more providers, which can be either T nodes or
other M nodes. In addition, M nodes can have peering
links with other M nodes. At the bottom of the hier-
archy, we have two different types of stub nodes. We
distinguish between customer networks (C) and content
providers (CP). In this context, CP nodes would include
content provider networks, but also networks providing
Internet access or hosting services to non-BGP speak-
ing customers. In our model, the difference between C
and CP nodes is that only CP nodes can enter peering
agreements with M nodes or CP nodes, while C nodes
do not have peering links.

To capture clustering in our model, we introduce the
notion of regions. The purpose of regions is to model
geographical constraints; networks that are only present
in one region are not allowed to connect with networks
that are not present in the same region. In our model
T nodes are present in all regions. 20% of M nodes and
5% of CP nodes are present in two regions, the rest are
present in only one region. C nodes are only present in
one region.

Meaning Baseline value

n Total number of nodes 1000 − 10000
nT Number of T nodes 4 − 6
nM Number of M nodes 0.15n
nCP Number of CP nodes 0.05n
nC Number of C nodes 0.80n
dM Avg M node MHD 2 + 2.5n/10000
dCP Avg CP node MHD 2 + 1.5n/10000
dC Avg C node MHD 1 + 5n/100000
pM Avg M-M peering degree 1 + 2n/10000

pCP−M Avg CP-M peering degree 0.2 + 2n/10000
pCP−CP Avg CP-CP peering degree 0.05 + 5n/100000

tM Prob. that M’s provider is T 0.375
tCP Prob. that CP’s provider is T 0.375
tC Prob. that C’s provider is T 0.125

Table 1: Topology parameters

We generate topologies top-down in two steps. First
we add nodes and transit links, then we add peering
links. The input parameters nT , nM , nCP and nC de-
cide how many of the n nodes belong to each node type,
respectively. First, we create the clique of T nodes.
Next, we add M nodes one at a time. Each M node
connects to an average of dM providers, uniformly dis-
tributed between one and twice the specified average. M
nodes can have providers among both T and M nodes,
and we use a parameter tM to decide the fraction T
node providers. M nodes can only select providers that
are present in the same region. M nodes select their
providers using preferential attachment, which gives a
power-law degree distribution [4].

We then add the CP and C nodes, which have an
average number of providers dCP or dC , respectively.
CP and C nodes can select T nodes as providers with
a probability tCP and tC , respectively. Just like the
M nodes, C and CP nodes select their providers using
preferential attachment.

When all nodes have been added to the topology, we
add peering links. We start by adding pM peering links
to each M node. As for the provider links, pM is uni-
formly distributed between zero and twice the speci-
fied average. M nodes select their peers using preferen-
tial attachment, considering only the peering degree of
each potential peer. Each CP node adds pCP−M peer-
ing links terminating at M nodes, and pCP−CP peering
links terminating at other CP nodes. CP nodes select
their peers among nodes in the same region with uni-
form probability. Importantly, we enforce the invariant
that a node not peer with another node in its customer
tree. Such peering would prey on the revenue the node
gets from its customer traffic, and hence such peering
agreements are not likely in practice.

Baseline growth scenario Next, we define a Base-
line growth model that is similar to the growth seen
in the Internet over the last decade [8]. The Baseline
growth model is characterized by a slow increase in the
MHD of stub nodes, and a faster growth in the MHD of
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Figure 3: Illustration of network based on our
topology model.

middle nodes and the number of peering links. In the
Baseline topology we use 5 regions, containing one fifth
of all nodes each. Table 1 gives the parameter values
for the Baseline growth model.

The topologies generated using this growth model
capture the four mentioned properties of the AS-level
Internet graph. The hierarchical structure is trivially
fulfilled through the way we construct the topologies.
The use of preferential attachment when selecting which
nodes to connect to gives a power-law degree distribu-
tion [3]. We have measured the clustering coefficient
of our Baseline topologies to about 0.15, which is sig-
nificantly higher than for random graphs of the same
size. Finally, the average path lengths in our Baseline
topologies is constant at around 4 hops as the network
grows.

4. EXPLAINING CHURN IN A GROWING
NETWORK

In this section, we first present our analytical model
describing the number of updates received at a node.
Then we use the Baseline growth model to show how
this model can be simplified for the different node types,
and to determine the most important factors driving the
churn growth.

Our main metric is the number of updates received at
a node after withdrawing a prefix from a C-type node,
letting the network converge, and then re-announcing
the prefix again. The experiment is repeated for 100 dif-
ferent C nodes (increasing this number does not change
the results), and the number of received updates is mea-
sured at every node in the network. We then average
over all nodes of a given type, and report this aver-
age. In the following, we refer to this procedure as a
“C-event”. Note that due to the heavy-tailed node de-
gree distribution, we expect a significant variation in
the churn experienced across nodes of the same type.

4.1 A framework for update analysis
We give a formulation for the number of updates re-

ceived at a node, and discuss how the different churn
increase factors depend on the use of policies, the topo-
logical properties of the network, and the convergence
properties of the routing protocol used.

Figure 3 shows a generic network of the type de-

scribed in Sec. 3. Transit links are represented as solid
lines, while peer-to-peer links are dotted. For each node,
we have indicated the preferred path to the event origi-
nator Z, which is the node announcing the active prefix.
The routing updates that establish these paths flow in
the opposite direction. We observe that due to the use
of policies, updates (and the resulting paths) will fol-
low a particular pattern: a node N will only announce
a route to its providers and peers after an event at node
Z if N has Z in its customer tree. On the other hand,
N will always send an update to its customers, unless
its preferred path to Z goes through the customer itself.

Let U(X) denote the number of updates a node of
type X receives after a C-event. X can be either of the
four node types in our model; T, M, CP or C. We dis-
tinguish between the number of updates received from
customers Uc(X), peers Up(X) and providers Ud(X) re-
spectively. The total number of updates will be the sum
of these: U(X) = Uc(X) + Up(X) + Ud(X). Each of
these values will depend on three factors - the number
my,X of direct neighbors of a given business relation y,
the fraction qy,X of these neighbors that sends updates
during convergence, and the number of updates ey,X

each of these neighbors contribute. The expected num-
ber of updates from a certain class of neighbors will be
the product of these three factors, and we can write

U(X) = mc,Xqc,Xec,X+mp,Xqp,Xep,X+md,Xqd,Xed,X

(1)
Note that for some node types, some of these terms
will be 0, e.g., T nodes have no providers, and stub
nodes have no customers. In the sequel, we will discuss
how each of these factors depend on various topological
characteristics and their interactions with properties of
the routing protocol.

In this section, we will assume the NO-WRATE im-
plementation of the rate-limiting MRAI timer. When
explicit withdrawals are not rate limited, their propa-
gation through the network will only be delayed by the
queuing and processing delay at each node. This delay
is short (in the order of 100 ms in our model) compared
to the MRAI timer interval (order of 30 s). Hence, the
explicit withdrawals will reach all nodes in the network
fast, usually before any announcements about alterna-
tive paths (which are subject to rate limiting) are sent
out. This way, almost no path exploration [18] takes
place with NO-WRATE. We return to the WRATE case
in Sec. 6.

4.2 Churn at different node types
We focus our discussion on the churn experienced by

transit providers (T and M nodes), and content providers
(CP nodes). These are the AS types that are most likely
to be affected by increasing churn rates, since they must
maintain larger routing tables with few or no default
routes. Also, as seen in Fig. 4, these are the nodes
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Figure 5: Number of updates received from
peers and customers for T nodes (top), and from
providers, peers and customers for M nodes
(bottom).

that experience the stronger growth in the number of
updates received after a C-event.

We have calculated 95% confidence intervals for the
values shown in Fig. 4, and they are too narrow to be
shown in the graph. This tells us that increasing the
number of event originators beyond the 100 used in this
experiment will not reduce the observed variance. This
variance is a result of the often significant differences
between topology instances of different size, caused by
the heavy-tailed node degree distribution.

T nodes have no providers, so we have U(T ) = Up(T )+
Uc(T ) = mp,T qp,T ep,T + mc,T pc,T ec,T . The top panel
in Fig. 5 shows Uc(T ) and Up(T ), for topologies of in-
creasing size created with our Baseline topology model.
We observe that both Uc(T ) and Up(T ) increase with
network size, and that both these factors contribute sig-
nificantly to the total number of updates. As the net-
work grows, the increased multihoming increases the
number of routes that a T node learns from both its
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customers and peers. Up(T ) is the larger factor for
small network sizes, and it grows approximately linearly
with network size, with a coefficient of determination
R2 = 0.95. The strongest growth is seen in Uc(T ),
which dominates for larger network sizes. Regression
analysis shows that the growth of Uc(T ) is quadratic,
with a coefficient of determination R2 = 0.92.

While routes are only exported to peers and providers
if they are received from a customer, routes are al-
ways exported to customers. As we can see in the
bottom panel of Fig. 5, M nodes receive the large ma-
jority of their updates from their providers. Hence, a
good estimate for the number of updates at M nodes is
U(M) = Ud(M) = md,Mqd,Med,M . The intuition be-
hind this is that M nodes reach the “main part of the
Internet” through their providers, and hence also re-
ceive the majority of routing updates from them. This
is a major simplification, that makes our analysis much
simpler. The same is true for CP nodes, so we limit our
discussion to M nodes in the following.

Figure 6 shows the increase ratio in Uc(T ), Up(T ) and
Ud(M). Each term is normalized so that the number of
updates is 1 for n = 1000. To explain the observed
trends for these terms, we look at the different factors
described in Eq. 1 to find out how much of the growth
is caused by each of them.

First, we look at the increase in the number of neigh-
bors of different types. Figure 7 (top) shows the relative
increase in the mc,T , mp,T and md,M factors as the net-
work grows. mc,T grows much faster than the other fac-
tors. With our Baseline topology growth model, mc,T

grows approximately linearly with n in the range of net-
work sizes we consider. The number of peers mp,T is
given directly by nT − 1, which grows very slowly with
n. Similarly, md,M is determined by the MHD of M
nodes dM = 2 + 2.5n/10000, which also grows linearly
with n.

The middle panel in Fig. 7 shows the relative increase
in ec,T , ep,T and ed,M , representing the average number
of updates received from each neighbor of a given type
that exports a route. Note that the increase in these
factors is much smaller than for the m factors, and that
they are therefore less important for the overall increase



in churn. The increase in the e factors we see here is
caused by random timer interactions when a prefix is
announced. The increase is stronger for ed,M , since this
represents links that are further away from the event
originator, giving more cases where a secondary path
is received before the preferred one. We return to how
this changes with WRATE in Sec. 6.

The bottom panel in Fig. 7 shows the fraction of
neighbors of a given type that annouces a route after a
C-event, represented by the qc,T , qp,T and qd,M factors.
A provider will always announce a route to its customer,
unless it prefers the path through the customer itself.
Hence qd,M is almost constant, and always larger than
0.99. qc,T and qp,T are both generally increasing with
network size. This illustrates how increased multihom-
ing makes it increasingly likely that the event originator
is in the customer tree of a given customer or peer of a
T node. This probability is much higher for peers than
for customers of T nodes, since the peers, which are T
nodes themselves, have a much larger number of nodes
in their customer tree.

To sum up our discussion, we have that the churn
at M nodes is dominated by the updates received from
providers. The number of updates Ud(M) grows with
network size, since both the number of providers md,M

and the average number of updates ed,M received from
each active provider grows, while the probability that a
provider will announce a path is constant. The growth
in Ud(M) (a factor 2.6 in our range of n = 1000 to n =
10000, as seen in Fig. 6) is dominated by the (linear)
growth in the MHD (a factor 2.2), which makes the
total growth seem linear. ed,M also grows, but at a
much slower rate (factor 1.2), and does not produce a
strong super-linearity.

For T nodes, both the updates Uc(T ) received from
customers and the updates Up(T ) received from peers
are important, and both grow with network size. The
strongest growth is contributed by Uc(T ), with a factor
18.5. Much of this growth can be attributed to a strong
linear growth in the number of customers (a factor 9.5).
Combined with the generally increasing trend for qc,T

(a factor 1.85), this gives a clearly superlinear growth
in Uc(T ). The factor ec,T also shows a small increase
(a factor 1.06), but this is less important for the overall
trend.

The number of updates Up(T ) received from peers
also grows, but at a slower rate. This is mainly because
of the much slower growth in the number of peers - while
the number of customers mc,T increases with a factor
of 9.5 over our range of topology sizes, the number of
peers mp,T grows only by a factor 1.7. The factor qp,T

also contributes to the growth in Up(T ) by a factor of
1.5, while ep,T is of less importance (a factor of 1.1).

This section has shown how the T nodes experience
the highest growth in churn as the network grows with
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Figure 7: Relative increase in the factors that
determine the update growth rate.

our Baseline growth model. This increase is driven
mainly by an increased number of updates from cus-
tomers. M and CP nodes also see increased churn,
driven mainly by their increased MHD. In the next sec-
tion, we will see how changes in the topology growth
model affect the various churn factors.

5. TOPOLOGY GROWTH SCENARIOS
In this section, we look at several single-dimensional

deviations from the Baseline model presented above. By
looking at how BGP churn increases at various hypo-
thetical growth models, we are able to answer different
“what-if” questions about Internet growth. For exam-
ple, what if multihoming to several providers becomes
much more common than today for stub networks? Or
what if buying transit services from tier-1 nodes be-
comes so cheap that they drive regional providers out
of business? Our goal is not always to create realis-
tic growth scenarios, but also to highlight the effect
of altering different topological properties. Hence, we
sometimes look at the effect of large changes to a single
property at a time. We stick to the NO-WRATE im-
plementation of the MRAI timer. This minimizes the
effects of path exploration, and allows us to focus only
on the effects of topological characteristics.

As seen in Sec. 4, T nodes experience both the strongest
churn in absolute terms, and the strongest increase as
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on T nodes.

the network grows. Hence, we focus mainly on the num-
ber of updates received at T nodes.

5.1 The effect of the AS population mix
First, we look at how the mix of different node types

affects churn, by considering four different deviations
from the Baseline model with respect to the mix of T,
M, CP and C nodes. These deviations illustrate how
economic factors can create a very different fauna of
networks than what we see today. To implement these
scenarios in our model, we change the parameters nT ,
nM , nCP and nC , while keeping all other parameters
fixed.

NO-MIDDLE In the first deviation, we look at a
network without M nodes, by setting nM = 0. This
illustrates a scenario where the price for transit services
from the globally present tier-1 nodes is so low that they
have driven regional transit providers out of business.

RICH-MIDDLE In the second deviation, we focus
on the opposite scenario, where the ISP market is boom-
ing and there is room for a plethora of M nodes. We
implement this by multiplying nM by 3 (nM = 0.45n),
and reducing nCP and nC accordingly (while keeping
their ratio constant).

STATIC-MIDDLE In the third deviation, we look
at a situation where all network growth happens at the
edges of the network. The number of transit providers
(T and M nodes) is kept fixed, and the network grows
only by adding P and C nodes. This could be a plausible
scenario for the future, if the ISP population becomes
stable.

TRANSIT-CLIQUE In the fourth and final devi-
ation, we let all transit nodes be part of the top-level
clique. This scenario may seem far-fetched, but it is im-
portant because it shows what would happen if the tran-
sit provider hierarchy collapses to a clique of “equals”
connected by peering links. We implement this by set-
ting nT = 0.15n and nM = 0.

Figure 8 shows the increase in the number of updates
seen after a C-event at T nodes for each deviation as
the network grows. The increase is normalized with the
number of updates in the Baseline model at n = 1000.

A first observation from the graphs is that the node

mix has a substantial influence on churn. In partic-
ular,the comparison of RICH-MIDDLE, Baseline, and
STATIC-MIDDLE shows that the number of M nodes is
crucial. There are two ways in which M nodes increase
churn at T nodes. First, an increasing number of M
nodes increases the customers mc,T of T nodes. For in-
stance, in the RICH-MIDDLE deviation mc,T increases
by a factor of 10.2 when n increases from 1000 to 10000.
On the other hand, mc,T increases only by a factor of
5.3 in the STATIC-MIDDLE deviation. Second, an in-
creasing number of M nodes, when they are multihomed
to other providers (M or T nodes), tends to also increase
the factor qc,T . The reason is that M nodes create addi-
tional valid paths from the source of a C-event (at stub
networks) to T nodes, and so it becomes more likely
that a T node will receive updates from its peers and
customers after a C-event. Regression analysis shows
that the growth of U(T ) in the RICH-MIDDLE, Base-
line and STATIC-MIDDLE deviations can be modeled
as quadratic, with different scaling factors.

We also observe that the number of T nodes in the
network does not have any impact on the number of
updates by itself. The only difference between devia-
tions NO-MIDDLE and TRANSIT-CLIQUE is in the
number of T nodes, and we see that the number of up-
dates is the same in these two scenarios. In the absence
of M nodes, T nodes will receive one update for each
provider the event originator has - either directly from
the event originator, or from a peer. This number only
increases as a function of the multihoming degree of the
event originator, and is not influenced by the network
size per se.

An important conclusion from the above observations
is that the increased number of updates does not primar-
ily come from an increased number of transit nodes, but
from the hierarchical structure in which they are orga-
nized. An Internet with several tiers of providers buying
transit services from other providers gives a much higher
update rate than a more flat topology where most stub
networks connect directly to tier-1 providers. Whether
the Internet will move towards a more hierarchical or
flat topology in the future is hard to tell. We do know
however, that the average path length, measured in AS-
level hops, has remained roughly constant, at around 4
hops, during the last ten years [8]. This implies that the
Internet retains some hierarchical structure, and that
the depth of that structure does not seem to vary with
the size of the network.

5.2 The effect of the multihoming degree
Next, we look at the effect of varying the number

of transit links each node brings to the network. Both
stub and mid-tier nodes have an incentive to connect to
several providers to increase their reliability and load
balancing capability. We implement these scenarios by



 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

R
el

at
iv

e 
In

cr
ea

se

Nodes

DENSE-CORE
DENSE-EDGE

BASELINE
TREE

 CONSTANT-MHD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

m
c,

T

Nodes

DENSE-CORE
DENSE-EDGE

BASELINE
TREE

 CONSTANT-MHD

Figure 9: The effect of the multihoming degree
at T nodes.

varying the dM , dCP and dC parameters, while keeping
all other parameters fixed.

DENSE-CORE We look at the effect of much stronger
multihoming in the core of the network (M nodes). We
implement this deviation by multiplying dM by 3.

DENSE-EDGE We look at the effect of densifica-
tion at the edges of the network. In this deviation, stub
nodes increase their multihoming degree. We imple-
ment this by multiplying dC and dCP by 3.

TREE We look at a tree-like graph, where all nodes
have only a single provider. Here, dM , dCP and dC are
all set to 1. This is clearly not a realistic scenario, but
helps us explore the extreme version of a trend.

CONSTANT-MHD Finally, we look at a scenario
where the multihoming degree of all nodes stays con-
stant. We implement this by removing the component
of dM , dCP and dC that depends on n.

Figure 9 shows the number of received updates (top)
and the number of customers mc (bottom) for T nodes
in the different scenarios. First, note that there is a
clear connection between the MHD and the number of
updates seen at a T node - for the same network size, a
higher MHD causes larger churn. Second, even though
the number of customers mc,T is about the same in
DENSE-CORE and DENSE-EDGE, the churn is signifi-
cantly higher in the former. This fact illustrates how the
meshed connectivity of multihomed M nodes increases
the likelihood that a T node will receive updates from a
peer or customer. In other words, increased multihom-
ing at the core of the network causes a larger growth in
the factor qc,T than increased multihoming at the edges
of the network. Specifically, we measured that qc,T in-
creased by a factor of 1.6 in DENSE-CORE, while it
increased by a factor of 1.3 in DENSE-EDGE.

When the MHD degree stays constant (in TREE and
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CONSTANT-MHD), the churn at T nodes is much less.
In the extreme case of the TREE model, the churn at
T nodes remains constant at two updates per C-event,
because the T node learns about the event from ex-
actly one peer or customer (once for the DOWN event
and once for the UP event). In the CONSTANT-MHD
model, the number of updates is also roughly constant
because the increase in the number of customers mc,T

as the network grows is offset by a corresponding de-
crease in the probability qc,T that any given customer
of the T node will have the source of that C-event in its
customer tree.

According to a recent measurement study [8], the av-
erage MHD of both stub nodes and providers has been
increasing during the last decade (from 1.4 to 1.8 for
stub nodes and from 1.8 to 3.2 for providers). The
fact that the MHD has been increasing more rapidly
in the core of the network implies that the Internet is
closer to the DENSE-CORE model than to the DENSE-
EDGE or the CONSTANT-MHD deviations. This can
be viewed as bad news, at least in terms of BGP churn.

5.3 The effect of peering relations
In this subsection, we look at the impact of vary-

ing the peering degree between different types of nodes.
The fraction of peering links in the Internet has in-
creased over the last decade [8]. However, various diffi-
culties in detecting such links do not allow us to know
which peering model is most realistic.

NO-PEERING There are no peering interconnec-
tions, except in the clique of T nodes. This is clearly
not realistic, but it serves as a reference point.

STRONG-CORE-PEERING We look at densifi-
cation through more peering links in the core of the
network. We model this deviation by doubling pM .

STRONG-EDGE-PEERING Another possibility
is densification through more peering links at the net-
work edges. We model this deviation by multiplying
pP−M and pP−C by 3.

Since the peering degree is only changed at M and CP
nodes, we show the number of updates received at M
nodes rather than T nodes. Figure 10 shows the num-
ber of updates received at M nodes as a function of net-
work size for the Baseline and each deviation. The main



conclusion is that the peering degree does not cause a
significant change in the generated churn. Adding or re-
moving a significant number of peering links at the edge
or at the core of the network does not give major dif-
ferences in the number of updates. This conclusion also
holds for other node types. To explain this observation
recall that updates are propagated over peering links
only for customer routes. Hence, the fraction of peering
links that are active during a C-event is low. Moreover,
such updates have limited export-scope (only to cus-
tomers), compared to routes received from customers.

5.4 The effect of provider preference
Next, we look at the effect of provider preferences,

i.e., the probability that a node chooses to buy transit
services from a T or an M node. This choice has implica-
tions for how the network will grow; a higher preference
for T nodes gives a more “flat” structure, while a higher
preference for M nodes diverts more paths through sev-
eral layers of hierarchy. We define two deviations of the
Baseline model:

PREFER-MIDDLE In the first deviation, nodes
prefer to buy transit services from M nodes rather than
T nodes. We implement this by setting tP = tC = 0,
and limiting the number of T providers for M nodes to
one at most.

PREFER-TOP In this deviation, nodes prefer to
buy transit services directly from T nodes. We imple-
ment this by limiting the number of M providers for M,
CP and C nodes to be at most one.

The top panel in figure 11 shows that a scenario where
most nodes buy transit from M nodes results in a higher
churn at T nodes, while more direct connections to T
nodes decreases churn. If we are moving towards an
Internet in which customers and content providers at
the edges prefer to connect to mid-tier ISPs, the number
of BGP updates at T nodes will be much higher than if
they prefer to connect to tier-1 ISPs. Looking at the
different factors that determine U(T ), we observe that
the PREFER-TOP deviation gives a much higher mc,T

than PREFER-MIDDLE, but that this is more than
offset by a strong decrease in qc,T , as shown in the
middle, and bottom panels in figure 11. An M node is
more likely to notify its provider about a C-event than
a stub node, because an M node has several potential
event sources in its customer tree.

A recent study [8] observed that content providers
and regional transit providers tend to buy transit ser-
vice from either tier-1 or tier-2 providers with almost
equal probability. The equivalent of C nodes (“Enter-
prise Customers”) however, show a preference for tier-2
providers during the last 3-4 years, justifying the selec-
tion of the corresponding probabilities in the Baseline
model.
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6. THE EFFECT OF WRATE
We have seen how topological properties like the MHD

affect the number of neighbors and the probability that
a neighbor will be active (send BGP updates). The
topology, however, has little effect on the number of up-
dates received from a single neighbor after a C-event.
As explained in Sec. 4, the NO-WRATE implementa-
tion gives virtually no path exploration after the with-
drawal of a prefix, and the u factors stay close to the
minimum 2 updates (one after the withdrawal and one
after the re-announcement). In this section, we inves-
tigate the effect of implementing the MRAI timer with
the WRATE option, so that explicit withdrawals are
rate limited like any other update. With WRATE, it
takes more time for the route withdrawals to reach all
nodes. During that time a node will announce other
alternate paths, and hence we expect increased churn.

The upper panel in Fig. 12 shows the increase in up-
dates received at T, M, CP and C nodes when WRATE
is applied. We use the Baseline topology growth model.
The plot shows the number of updates U(X) received
with WRATE, divided by U(X) in the NO-WRATE
case. We observe that WRATE causes a significant in-
crease relative to NO-WRATE for all node types. Fur-
ther, this increase factor grows with network size. For
T nodes, the churn doubles when n = 10000. The rela-
tive increase is larger for nodes at the periphery of the
network, since they generally have longer paths to the
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Figure 12: Number of updates (top) and e-
factors for the WRATE case.

event originator, and hence a larger potential for path
exploration. However, the absolute number of updates
is much smaller at those nodes (see Fig. 4).2

The lower panel in Fig. 12 shows ed,C , ep,T and ec,T

with WRATE. This graph confirms that the difference
between the two MRAI implementations is caused by an
increase in these factors. We also see that the increase
in the number of received updates is stronger for neigh-
bors with a larger number of policy-compliant paths
that can be explored. In the Baseline growth model,
the number of valid paths from a T node to an event
originator increases superlinearly, which causes a su-
perlinear growth in ep,T . On the other hand, the slower
growth in the number of paths exported by customers
also gives a slower growth in ec,T .

We have also explored the effect of WRATE in the
topological deviations described in Sec. 5. Those results
show that the churn increase with WRATE is stronger
in a more well-connected network, especially at its core,
where there are more potential paths that can be ex-
plored after a prefix withdrawal. In the DENSE-CORE
deviation, the number of updates received at T nodes
when n = 10000 increases by a factor 3.6 with WRATE,
compared to 2.0 in the Baseline model.

The results presented here show how the use of WRATE
exacerbates path exploration, and hence increases churn.
This effect gets stronger as the network grows, and even
more so in a network that is densely connected at its
core. In summary, the previous observations make us
question the wisdom of requiring WRATE in the most
recent specification of the BGP protocol [28].

2Again, the large variance in this graph is due to the natural
heterogeneity in the underlying topologies. The confidence
interval at each network size is too narrow to show.

7. RELATED WORK
Interdomain routing dynamics and scalability has been

a topic in the literature for the last decade or so, after it
first was shown that BGP suffers from excessive churn
caused by pathological protocol behavior [20]. The phe-
nomenon of path exploration was discussed in [18], and
upper and lower bounds for the number of updates ex-
changed during convergence were given. In a follow-
up work, it was shown that the duration of path ex-
ploration depends on the length of the longest possi-
ble backup path to the affected destination [19]. The
impact of MRAI timers to limit path exploration was
discussed in [13]. In a more recent measurement study,
it was shown that path exploration is less severe in the
core of the network than on the edges [25], which is in
accordance with the results presented in Sec. 6. An-
other study [5] showed that a small fraction of ASes is
responsible for most of the churn seen in the Internet. It
has also been shown that events at the edge of the net-
work affect a larger number of nodes than those in the
core [33]. A recent measurement study concluded that
the state of BGP routing is now “healthier” than it was
a decade ago, with less update traffic caused by con-
figuration mistakes or protocol pathologies [22]. While
all previous papers deal with measuring and explain-
ing BGP routing dynamics, our work differs in that it
focuses on the relation of topology growth and BGP dy-
namics. Increased churn is also a main motivation for
completely new routing architectures, like [32]. Other
work has focused on BGP scalability in the context of
increasing routing table size. One study finds that ad-
dress fragmentation is the largest contributor to routing
table growth [6]. As a response to the increased routing
table sizes, a radically different routing strategy called
compact routing has been proposed [17]. This approach
can give routing table sizes that scale logarithmically
with the number of routable addresses, but performs
poorly under dynamic conditions.

8. CONCLUSIONS
We have examined the roles of topology growth and

MRAI timer implementation on the scalability of BGP,
by looking at the number of updates received at nodes
at different locations in the AS hierarchy after a C-
event. For different node types, we have identified the
most significant sources of churn, and described how
different factors contribute to increased churn as the
network grows. We have shown that nodes at the top
of the AS hierarchy experience both the highest churn
in absolute terms, and the strongest increase as the net-
work grows.

Using our flexible topology model, we have explored
scalability in several plausible and educational “what-
if” scenarios for the growth of the AS-level topology.
We have shown that the most important topological fac-



tor deciding the number of updates generated is con-
nectivity in the core of the network. In particular, the
number mid-tier transit providers and the multihoming
degree of these nodes plays a crucial role, since transit
nodes in the mid-level of the Internet hierarchy have a
special role in multiplying update messages. Measure-
ments have shown that the update rate in the Internet
increases at a faster rate than the number of prefixes
in the routing table [16]. Our study shows that a main
explanation for the reported churn growth can be the in-
creasing connectivity in the core. Another important
finding from this study is that peering links play a very
different role than transit links with respect to scalabil-
ity. The peering degree in the Internet does not influ-
ence churn. Finally, we have shown that the depth of
the hierarchical structure in the Internet plays a signif-
icant role. A relatively flat Internet core is much more
scalable than a vertically deep core.

In the last section of this paper, we investigated the
role of a particular aspect of the rate-limiting mecha-
nism - whether explicit route withdrawals are subject
to the MRAI timer. We showed that rate-limiting ex-
plicit withdrawals leads to a significant increase in churn
under our event model, because of the effect of path ex-
ploration. This difference grows with network size, and
is stronger in well-connected networks.

In our future work we plan to look at more complex
events than the C-event, more elaborate topologies that
include intradomain protocols and iBGP configurations,
and other BGP mechanisms and configurations, such as
Route Flap Dampening and BGP multipath extensions.
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