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Abstract—Multi-dimensional video scalability as defined in
H.264/SVC is a promising concept to efficiently adapt encoded
streams to individual device capabilities and network conditions.
However, we still lack a thorough understanding of how to
automate scaling procedure in order to achieve an optimal quality
of experience (QoE) for end uses.

In this paper we present and discuss the results of a sub-
jective quality assessment we performed on mobile devices to
investigate the effects of multi-dimensional scalability on human
quality perception. Our study reveals that QoE degrades non-
monotonically with bitrate and that scaling order preferences
are content-dependent. We confirm previous studies which found
common objective metrics to fail for scalable content, but we
also show that even scalability-aware models perform poor. Our
results are supposed to help improving the design of quality
metrics and adaptive network services for scalable streaming
applications.

I. INTRODUCTION

H.264 Scalable Video Coding (SVC) is the first interna-
tional video coding standard that defines multi-dimensional
scalability [1]. SVC supports several enhancement layers to
vary temporal resolution, spatial resolution and quality of a
video sequence independently or in combination. This enables
efficient adaptation of a compressed bitstream to individual
device capabilities and allows to fine-tune the bitrate to meet
dynamic network conditions without transcoding. Scaling even
works at media aware network elements (MANE) in the
delivery path. Hence, SVC is an ideal choice for large-
scale video broadcasting like IPTV and content distribution
to mobile devices.

SVC was designed for efficient and network-friendly op-
eration [2], but the actual delivery over unreliable networks
requires additional methods to protect data and avoid conges-
tion. Such techniques inherently rely on objective video quality
metrics (VQM) [3] for optimal performance. QoE, however,
is a subjective measure, and current objective models fail to
estimate human perception at low frame rates or in mobile
environments [4], [5]. An objective metric that considers
combined scalability in multiple dimensions and helps content
producers or distributors to pick the right combination of
layers when encoding, protecting or adapting a scalable video
stream is missing so far.

In order to understand human quality perception of
H.264/SVC scalability, we performed a subjective field study
with a special focus on mobile devices. Our goals are to (1)
identify when quality degradations become noticeable, (2) find

optimal adaptation paths along multiple scaling dimensions
and (3) examine whether objective VQMs can predict subjec-
tive observations with reasonable accuracy. To our knowledge,
this is the first study that investigates the subjective perfor-
mance of multi-dimensional scalability features in H.264/SVC.

In this study, we restrict ourselves to on-demand and
broadcast delivery of pre-encoded content at bitrates offered by
existing wireless networks. Because we are interested in QoE
perception on real mobile devices in natural environments,
we conduct a field study rather than a synthetic laboratory
experiment. Due to lack of space, we focus on static relations
between SVC scaling dimensions only. Dynamic aspects like
SVC’s loss resilience or the impact of layer switching and
timing issues on quality perception are not investigated here.

Our results reveal that adaptation decisions for SVC bit-
streams should not only be based on bitrate and layer depen-
dency information alone. We found that quality degradation
may be non-monotonic to bitrate reduction and that preferred
adaptation paths depend on content and user expectations.
Confirming previous studies, we also found that common
objective VQM like Peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) index fail for scalable content and
even scalability-aware models perform poor.

Our results are supposed to help improving the design
of objective quality models towards multi-dimensional video
scalability. Enhanced objective models will be useful for sev-
eral applications and network-level mechanisms, such as band-
width allocation for wireless broadcasting networks, streaming
servers, packet scheduling, unequal error protection and packet
classification schemes and quality monitoring.

The paper is organised as follows. Section II briefly sum-
marises related work. Section III presents the design of our
field study. Section IV analyses several bitstream properties
and Section V reports and discusses our quality assessment
results. Finally, Section VI concludes the paper.

II. RELATED WORK

The mean squared error based PSNR metric is widely
used due to its simplicity, but it does not reflect well the
video quality perceived by human observers [3]. To mimic the
overall reaction of the human visual system (HVS), Wang et
al. proposed the SSIM metric [6] that compares local patches
of pixel intensities that have been normalised for luminance
and contrast. In [7], the National Telecommunications and



Information Administration General Model (NTIA GM) was
introduced for combining measures of the perceptual effects
of different types of impairments such as blurring, blocking,
jerk, etc. Despite of some reported superiority of the two latter
objective models over PSNR, the evaluations performed in [5],
[4] indicates that the SSIM and NTIA GM do not work well
on multimedia video with low bitrates, various frame rates,
and small frames size.

The scaling options of H.264/SVC increase the perceptual
uncertainty dramatically. Due to the lack of encoders capable
of full scalability, previous studies could not investigate the
influence of three-dimensional scaling on quality perception.
Additionally, many existing subjective tests like [8]–[10] were
conducted on desktop monitors in a controlled laboratory
environment. This differs from our testing scenario defined
for mobile video applications.

In [8], a set of experiments were carried out to discover the
Optimal Adaptation Trajectory (OAT) that maximizes the user
perceived quality in the adaptation space defined by frame rate
and spatial resolution. Meanwhile, an objective VQM multi-
plicatively combining the quantization distortion and frame
loss was proposed in [11]. The effects of fidelity degradation
and frame rate downscaling were also evaluated by subjective
tests in [9]. Evaluations like [10] have been performed to
investigate the relationship between quality impairment and
layer switching at both temporal and quality dimensions. Fur-
ther, other factors affecting video quality such as performance
of codecs, picture ratio and synthetical audiovisual effects
etc, were examined in [12]. Although codec performance is
critical for decoded video quality, none of the above mentioned
evaluations were performed for SVC encoded video, and SVC
performance was only measured using PSNR metric in [13].
Recently, Kim et al. proposed a scalability-aware VQM [14]
which incorporated the spatial resolution together with frame
rate and quality distortion into a single quality metric. We
examine this model’s performance together with other VQMs
in Section V-C.

III. FIELD STUDY DESIGN

Our research method is based on ITU-R recommendations
for subjective quality assessment BT.500-11 [15], we con-
ducted a field study using iPods as mobile display device and
television content that contains an audio track. This research
method allows us to study natural user experience under
familiar viewing conditions rather than quality perception in
a single synthetic environment.

A. Content Selection and Encoding

We selected six sequences from popular genres which are
potential candidates for mobile broadcasting (see table I). All
sequences were downscaled and eventually cropped from their
original resolution to QVGA (320x240). From each sequence,
we extracted an 8 second clip (200 frames) without scene
cuts. We encoded the SVC bitstreams with version 9.12.2 of

Genre Content Detail Motion Audio

Animation BigBuckBunny HD 3.65 1.83 sound
Cartoon South Park HD 2.75 0.90 speech
Documentary Earth HD 3.64 1.61 sound
Short Movie Dunkler See 1.85 0.58 sound
News BBC Newsnight 2.92 0.69 speech
Sports Free Ride 3.32 1.90 music

Table I
SELECTED SEQUENCES AND THEIR PROPERTIES. DETAIL IS THE AVERAGE

OF MPEG-7 EDGE HISTOGRAM VALUES OVER ALL FRAMES [16] AND
MOTION IS THE MPEG-7 MOTION ACTIVITY [17], I.E. THE STANDARD

DEVIATION OF ALL MOTION VECTOR MAGNITUDES.

the JSVM reference software1. The encoder was configured to
generate streams in the scalable baseline profile with a GOP-
size of 4 frames, one I-picture at the beginning of the sequence,
one reference frame, inter-layer prediction and CABAC encod-
ing. Due to the lack of rate-control for enhancement layers in
JSVM, we determined optimal quantisation parameters (QP)
for each layer with the JSVM Fixed-QP encoder.

Since we are interested in quality perception along and
between different scaling dimensions, we defined a full scal-
ability cube with 2 spatial resolutions at QQVGA (160x120)
and QVGA (320x240), 3 temporal layers of 25, 12.5 and 6.25
fps, and 4 quality layers with lowest/highest target rate points
at 128/256 Kbit for QQVGA/25fps and 1024/1536 Kbit for
QVGA/25fps. The target bitrates were chosen according to
standard bitrates of radio access bearers in current wireless net-
working technologies such as HSDPA and DVB-H. For quality
scalability, we used SVC’s mid-grain scalability (MGS) due
to its improved adaptation flexibility that supports discarding
enhancement layer data almost at the packet level [1].

B. Scalable Operation Points

From the scalable bitstreams, we extracted six scalable
operation points (OP) which cover almost the total bitrate
operation range (see table II). Our selection lets us separately
assess (a) the QoE drop for temporal scaling at the highest
spatial layer (OP1, OP3, OP4), (b) the QoE drop of spatial
scalability at two extreme quality points with highest frame
rate (OP1 vs. OP5 and OP2 vs. OP6), and (c) the QoE drop
of quality scalability at two resolutions with highest frame rate
(OP1 vs. OP2 and OP5 vs. OP6).

C. Subjective Assessment Procedures

We performed subjective tests with the Double Stimulus
Continuous Quality Scale (DSCQS) method as defined by the
ITU [15]. Although this method was designed for television-
grade systems, it is widely used as the standard method for
several kinds of video quality assessment. DSCQS is a hidden
reference method where the original and a distorted sequence
(one of the operation points) are displayed twice in A-B-A-
B order without disclosing the randomised position of the
original. The assessors are asked to score the quality of both

1Available at http://ip.hhi.de/imagecom G1/savce/downloads/
SVC-Reference-Software.htm.



Operation Spatial Frame Layer Target
Point Resolution Rate Quality ID Bitrate

OP1 320x240 25.00 highest 23 1536 kbit
OP2 320x240 25.00 lowest 14 1024 kbit
OP3 320x240 12.50 highest 20 –
OP4 320x240 6.25 highest 17 –
OP5 160x120 25.00 highest 11 256 kbit
OP6 160x120 25.00 lowest 2 128 kbit

Table II
SELECTED OPERATION POINTS.

sequences on a continuous five-grade scale. We interspaced the
A-B clips with 4 second breaks, displaying a mid-grey image
with black text that announced the following clip or called for
voting. We randomised the order of operation points as well
as the order of sequences to avoid ordering effects.

Currently, there is no mobile device capable of decoding
and displaying SVC bitstreams. Hence, we re-encoded the test
sequences into H.264/AVC2 and displayed them in fullscreen
on an iPod classic (80GB model, generation 5.5) as a typical
mobile video player. The average distortion introduced by
re-encoding was 0.09 dB. Our iPod models contain a 2.5-
inch display with 163 ppi and a QVGA resolution. The iPod
further supports a low-complexity version of the H.264/AVC
Baseline Profile at 1.5 Mbps bitrate. Low spatial resolutions
were upscaled to QVGA using JSVM normative upsampling
and low frame rates were upscaled by frame copy to the
original 25 fps. The audio track was encoded into AAC-LC
48 KHz 120 KBit after the volume was normalised.

Thirty non-expert assessors (33% female) in age classes
between 18 and 59 with different education participated in
the test. At the beginning, an introduction was held and a
training sequence covering the upper and lower quality anchors
was shown. The test session lasted for half an hour. We
calculated the differential mean opinion scores (DMOS) per
operation point after quantising the raw scores obtained from
each assessor. We then screened the scores for outliers and in-
consistencies as defined in [15] and checked the reliability with
Cronbach’s alpha coefficient [18]. As normality assumptions
for DMOS scores were violated, we used conservative non-
parametric statistics for further processing. We also specify
Cohen’s statistical effect size and power [19] to provide further
confidence in our observations. Effect size helps to diagnose
validity and discern consistent from unreliable results, e.g. a
small effect size reflects a weak effect caused by small
difference between scores. Power is the probability of not
making a type-II error, that is, with low power we might find
a real existing effect as not significant.

D. Limitations

Field studies generally suffer from less controlled presenta-
tion conditions. We therefore designed our study carefully by
selecting more participants than required by ITU-R BT.500-11

2AVC re-encoding was done with x264 version 2245 available at http:
//www.videolan.org/developers/x264.html.

and strictly removed outliers (6 in total among 30). To alleviate
effects of an audio track which can influence video quality
perception [12], we used undistorted, perfectly synchronised
and normalised signals for all sequences. Although we are
likely to miss effects that might have been observed in a
laboratory, we still found significant results at significance
level p < 0.01 of high statistical power and effect size in
all tests. According to the power the number of participants
was also sufficient for obtaining all results presented here.

DSCQS is sensitive to small differences in quality and used
as quasi-standard in many subjective studies. For scalable
content, however, it has two drawbacks. First, DSCQS is im-
practical to assess large numbers of operation points at several
scaling dimension due to the limited amount of time before
assessors become exhausted. Hence, we selected representative
operation points only. Second, the scale used by DSCQS is
ambiguous because QoE perception is not necessarily linear
for people and individual participants may interpret scores
differently [20]. Hence, assuming DMOS scores obtained
by DSCQS are interval-scaled is statistically incorrect. We
address this by lowering our assumptions to ordinal data and
non-parametric statistics. Despite these facts, we still found
significant results and regard unnoticed effects as insignificant
for mobile system design.

IV. BITSTREAM ANALYSIS

Compared to non-scalable video streams, a scalable video
stream is more complex. In this section, we analyse a scalable
bitstream to detect some of its structural properties.

A. Scaling Granularity and Diversity

Figure 1 displays the bitrate distribution in the Sports
bitstream at different operation points. Each OP extracted from
a SVC bitstream is identified by an unique combination of its
spatial, temporal and quality layers tagged as [Sm, Tn, Qi]. To
further describe a scalable bitstream, we introduce two prop-
erties: scaling granularity and scaling diversity. Granularity is
the difference between bitrates of two close-by scaling options.
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Figure 1. Bitrate allocation for scalable OPs [Sm, Tn] in Sports sequence,
where Sm represents m-th spatial resolution, Tn represents n-th temporal
resolution. Each bar column can be additionally truncated into 4 quality layers
identified by Qi.
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Figure 2. Cumulative distribution function (CDF) of NALU packet sizes for
selected operation points of the Sports sequence.

Smaller bitrate differences give higher granularity. Obviously,
video streams with higher granularity can be more robust
and adaptive to bandwidth variations. Scaling diversity, on
the other hand, reflects the number of distinct scaling options
for efficient utilisation of a given bandwidth. Higher diversity
provides more adaptation paths to choose.

Scaling granularity and scaling diversity in figure 1 are
higher in the range of lower bitrates and OPs with low spatial
resolution. I.e., at the bitrate of approximately 192 Kbps, the
scaling diversity becomes as high as 3 where [S0, T0, Q3],
[S0, T1, Q2] and [S0, T2, Q1] overlap. On the other hand, in the
range of high bitrates the granularity is coarser and diversity
is reduced. I.e., at a bitrate of 600 Kbps no alternative scaling
option exists besides dropping to [S0, T2, Q3] which wastes a
considerable amount of bandwidth.

B. Packet Statistics

To further understand bitstream properties, we investi-
gate size and distribution of Network Abstract Layer Units
(NALU). This is of interest for protocol designer who need to
fragment or aggregate NALUs into network packets.

In figure 2, OP1 is actually the global SVC bitstream
which comprises all NALUs. OP4 has the same spatial and
quality resolution as OP1, but the lowest temporal resolution.
It contains a subset of the NALUs in OP1 only and according
to figure 2 the maximum packet size in both OP1 and OP4
is 15235 bits. However, it appears that OP4 contains a larger
percentage of NALUs compared to OP1. For example, about
6% of the NALUs in OP1 are larger than 2000 bits, while
OP4 contains 14% of such NALUs. This reflects the fact that
anchor/key frames in lower temporal layers require more bits
than frames in higher layers. Meanwhile, OP5 at the lower
spatial layer has a maximum packet size of 2935 bits. This
reveals that low spatial layers usually contain small packets
only, while the larger packets are contained in higher spatial
layers.

V. SVC QUALITY ASSESSMENT

This section reports on our results of three statistical analy-
sis we performed to gain initial insights into human perception
of multi-dimensional scalability of SVC encoded video.

Dim T T T S S Q Q
from 25 fps 12 fps 25 fps 320H 320L 320H 160H

Sequence to 12 fps 6 fps 6 fps 160H 160L 320L 160L

Animation +++ +++ +++ +++ +++ +++ +
Cartoon ◦ ◦ ◦ +++ +++ ++ ◦

Documentary ++ +++ +++ +++ +++ ◦ ◦
Short Movie +++ +++ +++ +++ +++ +++ ◦

News +++ +++ +++ +++ +++ ◦ ◦
Sports +++ +++ +++ +++ +++ +++ ◦

All ++ +++ +++ +++ +++ ++ ◦

Table III
NOTICEABLE EFFECT OF QOE DROP WITHIN DIMENSIONS.

LEGEND: ◦ NOT SIGNIFICANT, + SMALL EFFECT, ++ MEDIUM EFFECT,
+++ LARGE EFFECT.
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Figure 3. Subjective DMOS scores for selected sequences as means with 95%
confidence intervals. QoE gradients for within-dimension scaling are shown
as lines. Note that higher DMOS scores mean lower QoE and that the bitrate
drops from 1.5 Mbit for OP1 to 128 Kbit for OP6.

A. Noticeable QoE Degradations

The objective of this analysis is to find out whether a
degradation in a particular scaling dimension is visible, and
if this depends on content or on another dimension that was
previously downscaled. We assume at least for some sequences
that if QoE is already poor, an additional reduction in another
dimension is perceived as less severe.

For this analysis, we check if DMOS values of two oper-
ation points on the same scaling axes differ significantly. We
perform directional Wilcoxon tests pair-wise for all operation
points by expecting higher means for DMOS of lower-layer
operation points, meaning they represent a lower QoE.

Table III shows that a QoE drop was noticed with a large
effect size and sufficient power in almost all dimensions for
almost all sequences. One exception is the Cartoon sequence,
where no significant evidence for a noticeable QoE degrada-
tion for temporal scaling was found. Even at a very low frame
rate our assessors seemed to regard the QoE as sufficient.
The reason is that the content already is non-naturally jerky.
We also observed that quality scalability seems to have a
less noticeable effect, especially when applied to spatially
downscaled content. At low spatial resolution we found no



significant degradation in most sequences and even at high
spatial resolution the effects were small.

Figure 3 further clarifies the observed effects on three
examples. Displayed are DMOS scores and QoE gradients
for single-dimension scaling. We avoid speculations about
absolute differences here, because scores are non-linear and
ordinal only. However, some conclusions can still be drawn:
First, detectability and severity of QoE degradations depend
on scaling dimension and content. Second, QoE degradations
may be non-monotonic to bitrate reduction.

Cartoon is almost unaffected by frame rate reduction due
to its non-natural motion as demonstrated by the overlapping
confidence intervals of OP1, OP3 and OP4. Our assessors were
also less sensitive to further QoE reductions when the quality
was already poor, such as shown for SNR scaling at low spatial
resolution (OP5 – OP6). In the Sports sequence, initial spatial
or quality scaling is perceived worse than temporal scaling.
This is in line with results found in [9]. However, below a
certain bitrate limit, further downscaling had no effect on QoE
regardless of the scaling dimension.

While the News sequence shows a logistic relation between
QoE and bitrate which was also found by [9], Cartoon and
Sports display non-monotonic characteristics. At least the first
temporal scaling stage got a better QoE score than quality scal-
ing although the operation point has a lower bitrate. Moreover,
despite the huge bitrate drop in the Sports sequence from 800
Kbit (OP4) to 128 Kbit (OP6) a further quality reduction was
not found significant. Hence, monotony assumptions about the
relation between bitrate and QoE should be reconsidered for
multi-dimensional scaling.

B. Scaling Order Preferences

This analysis is supposed to identify quality-optimal order-
ing relations for SVC bitstream scaling. In particular, we want
to find out (1) whether there exists a scaling dimension that is
generally preferred to be scaled first and (2) whether optimal
scaling paths depend on content.

We define a dominates relation Di � Dj , which expresses
that scaling in one dimension Di has a larger impact on QoE
perception than scaling in another dimension Dj . Note that
this is still possible for ordinal data. In order to determine
domination from our data set, we select all operation point
pairs (OPk, OPl) that differ in exactly two scaling dimensions,
whereas OPk contains more layers in dimension Di and less in
Dj and vice versa for OPl. If OPl has a significantly higher
DMOS score than OPk, an increase of layers in dimension
Dj can obviously not compensate for a decrease of layers in
dimension Di. We then say that Di dominates Dj or Di � Dj .

With the dominates relation we identify whether there is a
positive effect Di � Dj or a negative effect Dj � Di between
any two dimensions. Table IV displays the results for the five
dimension pairs we covered with our OP selection. Spatial
scaling is generally regarded worse compared to temporal and
quality scaling, although it yields the largest bitrate variability.
An adaptation scheme should therefore drop quality layers
and some temporal layers first. The preferences are, however,

Dim T12 � S T6 � S T12 � Q T6 � Q S � Q
OPk OP3 OP4 OP1 OP2 OP5 Pref.

Sequence OPl OP5 OP5 OP3 OP4 OP2 Order

Animation - - - + ◦ +++ +++ 1
Cartoon - - - - - - - - +++ 2

Documentary - - - - ◦ +++ +++ 3
Short Movie - - - - - - ◦ +++ +++ 3

News - - - - - - ++ +++ +++ 2
Sports - - - ◦ - - +++ ++ 4

All - - - - - ◦ +++ +++ -

Table IV
SCALING ORDER PREFERENCES BETWEEN DIMENSIONS.

LEGEND: T - TEMPORAL, S - SPATIAL, Q - QUALITY (SNR) DIMENSION,
- - - LARGE NEGATIVE EFFECT, - - MEDIUM NEGATIVE EFFECT, - SMALL
NEGATIVE EFFECT, ◦ NOT SIGNIFICANT, + SMALL POSITIVE EFFECT,

++ MEDIUM POSITIVE EFFECT, +++ LARGE POSITIVE EFFECT. PREFERRED
SCALING ORDERS: 1 (Q – T12 – S – T6), 2 (T12 – T6 – Q – S),

3 (Q – T12 – T6 – S), 4 (T12 – Q – T6 – S).

content dependent as revealed by figure 3. Quality and tem-
poral dimensions yield smaller bitrate variability, especially in
OPs with higher spatial resolution. Fine granularity adaptation
with a minimal QoE drop is possible here, but scaling options
are rare due to a low scaling diversity. In contrast, the high
scaling diversity at low spatial resolution is useless because
QoE is already too bad to notice a significant difference there.
Hence, reasonable relations between scaling paths and bitrate
variability should already be considered during encoding.

We also determined the preferred scaling order for each
sequence which is easy because the dominates relation creates
a partial order over dimensions. We found four different
preferential orders for the six sequences in our test (see the
last column of table IV). This clearly justifies that human
perception of multi-dimensional QoE degradation is content-
specific. An optimal SVC adaptation scheme should consider
content characteristics.

We further observed that QoE perception is influenced
by assessor expectations, rather than by technical content
characteristics alone. Comparing the preferences of temporal
and quality scaling for News and Sports in figure 3 it becomes
clear that even for the low motion News sequence a lower
frame rate was more annoying than a lower quality. The oppo-
site happened to high-motion Sports sequence. Our assessors
obviously expected less detail for News and more detail for
Sports. Common metrics for textural detail and motion activity
like the ones used in table I cannot model such situations well.
We found no significant correlation to subjective preferences.

C. Objective Model Performance

In this section, we analyse the performance of some existing
objective video quality assessment models. Among many
existing models, we selected three popular ones: Y-PSNR,
SSIM [6] and the NTIA General Model [7]. In addition, we
implemented a recently proposed model which is specifically
designed for video streams with multi-dimensional scalability
[14]. For simplicity, we call this model SVQM.



Metric CC SROCC

Y-PSNR (copy) -0.532 -0.562
Y-PSNR (skip) -0.534 -0.555
SSIM (copy) -0.271 -0.390
SSIM (skip) -0.443 -0.451
NTIA GM 0.288 0.365
SVQM -0.661 -0.684

Table V
CORRELATION RESULTS FOR OBJECTIVE QUALITY MODELS.

CC - PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENT,
SROCC - SPEARMAN RANK-ORDER CORRELATION COEFFICIENT.

For each test sequence we compared the quality of all the
extracted and decoded OPs with the original video sequence
using the four objective models. We omitted temporal and
spatial registration because all decoded OPs are perfectly
aligned with the reference video. For those OPs with lower
frame rate, the missing video frames were either skipped or
the available frames were duplicated to replace the dropped
frames. We performed skipping only for PSNR and SSIM
to understand the influence of frame repetition and temporal
scalability on those models. Finally, the video quality of each
OP was quantified into a single value by averaging the quality
values of each single or pair of frames. We measured the
objective model performance using Pearson’s and Spearman’s
correlation coefficients. Correlation was found to be significant
with p < 0.01 at high power.

As table V reveals, SSIM and NTIA GM perform bad for
scalable content on mobile screens. Although other studies
reported good performance at television resolutions, both
models are not tailored to multi-dimensional scalability and
small screen sizes. PSNR performs only slightly better. SVQM
achieved the best results of all examined models, but it is
still far from being ideal. Although our version of SVQM is
trained for the sequences used in [14] it still creates reasonable
results for our content. This indicates that the general idea of
considering motion, frame rate and spatial resolution in an
objective model can yield some benefits. In contrast, a simple
extension to traditional metrics like PSNR or SSIM which
skips missing frames at low temporal resolutions does not
create considerably better results.

VI. CONCLUSIONS

We performed a subjective field study to investigate the ef-
fects of multi-dimensional scalability supported by H.264/SVC
on human quality perception. Our results reveal that visual
effects of QoE degradations differ between scaling dimensions
and scaling preferences are content dependent. None of the
existing objective models works well on multi-dimensional
scalable video, but the objective model with scalability-
awareness performed slightly better than the others.

For optimal QoE and increased chances of adaptation tools
to follow preferred scaling orders, video encoders should max-
imise the scaling diversity and granularity of bitstreams. MGS
is generally recommended for increased scaling granularity

and advanced signalling mechanisms are required to inform
adaptation tools about content genre, recommended scaling
paths, diversity and granularity of bitstreams.
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