
Cross-layer Self-adaptation of Service-oriented
Architectures

Eli Gjørven
Simula Research Laboratory

P.O.Box 134
1325 Lysaker, Norway
eligj@simula.no

Romain Rouvoy
University of Oslo

Department of Informatics
P.O.Box 1080 Blindern

0316 Oslo, Norway
rouvoy@ifi.uio.no

Frank Eliassen
University of Oslo

Department of Informatics
P.O.Box 1080 Blindern

0316 Oslo, Norway
frank@ifi.uio.no

ABSTRACT
Service-Oriented Architectures(SOA) are built as compositions of
inter-organizational services. These services are deployed and pub-
lished by providers who are responsible for provisioning the ser-
vices with sufficient resources. However, even though services are
implemented by technologies providing a wide range of adaptation
related features, such as configurable component models and com-
munication infrastructures, state-of-the-art approaches to adaptive
SOA systems do not provide principled solutions to exploit appli-
cation layer adaptation mechanisms.

Our technology-agnostic adaptation middleware has been desig-
ned for integrating and exploiting technology-specific adaptation
technologies and mechanisms. In this paper, we describe how this
middleware can support a cross-layer adaptation of SOA systems.
In particular, we focus on the server-side perspective of SOA, and
we show that our middleware is able to exploit both service inter-
face and application layers technologies for supporting a coordi-
nated adaptation of both layers.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Software configuration manage-
ment; D.2.13 [Software Engineering]: Reusable Software

General Terms
Design

Keywords
Service-Oriented Architectures, Planning-based Adaptation Frame-
work

1. INTRODUCTION
One of the current challenges for building self-adaptive systems

is to cope with the increasing heterogeneity of applications and ser-
vices, thus integrating multiple systems implemented in different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC’08, December 1, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-368-6/08/12 ...$5.00.

platform and language technologies [9]. In this domain, interoper-
ability issues are now achieved by open standards. However, other
cross-cutting concerns, including adaptation, still lack solutions en-
suring the coordinated reconfiguration of services developed with
heterogeneous technologies. As self-adaptive systems relies on
adaptation mechanisms, technology integration in this context also
requires theexploitation of adaptation features, meaning that the
system is able to exploit adaptation mechanisms provided by the
platforms and languages available in the system. The definition of
principled solutions to adaptation feature exploitation has not re-
ceived much attention yet.

As a matter of example,Service-Oriented Architectures(SOA)
has been identified as a principled approach to build systems from
compositions of inter-organizational services. These services, gen-
erally developed using different technologies, are configured and
published by providers who are responsible for provisioning the
services with sufficient resources. As described by Erl [7], appli-
cation logic in the context of SOA, can be split into two layers: the
service interface layer, where loosely coupled services, hiding their
implementation and technology platform, communicate via open
protocols, and theapplication layer, in which service application
logic is developed and deployed on different technology platforms.

In order to be able to adapt efficiently to run-time contextual
changes, SOA-based systems must be able to adapt at the layer,
or layers, that provides the best system improvement. This re-
quires an adaptation framework that is able to integrate and con-
trol adaptation mechanisms in the two layers, without extensive
re-factoring and re-implementation. However, current approaches
to self-adaptation in the SOA community mostly focus on adapt-
ing the service interface layer, by exploiting the loose coupling be-
tween clients and servers in order to provide adaptation through ser-
vice specification, selection, composition, and coordination mech-
anisms [8, 10, 13, 15, 16, 17]. They do not provide principled so-
lutions for integrating state-of-the-art research in application layer
self-adaptation, which has provided a wide range of mechanisms
for adapting also the application layer. For example component
models, such as FRACTAL [3] and OPENCOM [4], support dy-
namic configuration and reconfiguration of component-based ap-
plications, and middleware mechanisms supporting self-adaptation
have been built from these component models [1, 5]. Thus, bridg-
ing SOA self-adaptation with application layer mechanisms, while
preserving SOA principles as loose coupling, autonomy, and imple-
mentation and platform encapsulation, becomes a key challenge.

In our earlier research, we have developed an adaptation frame-
work, QUA, which is technology-agnostic and able to integrate and
exploit different technologies providing adaptation related mecha-
nisms [9]. In this paper we show how this adaptation framework

can be applied to SOA-based systems to performcross-layer adap-
tation. By cross-layer adaptation, we generally mean adaptation of
a system consisting of several layers, where the technologies and
mechanisms of each layer are integrated and controlled by the same
adaptation framework. Particularly in the context of SOA it means
coherent adaptation across the service interface and application lay-
ers of a SOA system while preserving the loose coupling and au-
tonomy of the services. QUA can also be applied to these two
layers separately. This approach enables the extension of existing
SOA-based self-adaptive mechanisms with a principled approach
to adaptation management and control. Being technology-agnostic,
QUA can also integrate legacy systems into a SOA system.

In this paper, we focus on how QUA can be applied to the server-
side perspective in order to facilitate SOA implementation technol-
ogy integration and exploitation, including:i) theintegrationof dif-
ferent types of service and work-flow specification languages, and
ii) the exploitationof service implementation technology-specific
features when available. The resulting system is able to perform
cross-layer adaptation exploiting mechanisms both in the service
interface layer, and the application layer in a coordinated fashion.

In the remaining of the paper, we first survey some related work
in section 2. In section 3, we describe the design of a technology
agnostic adaptation middleware, QUA, and insection 4we demon-
strate how the QUA middleware can integrate and exploit adapta-
tion mechanisms of SOA systems. Insection 5we evaluate our
solution by an example, and we conclude the paper insection 6.

2. RELATED WORK
As SOA applications are built from composing loosely coupled,

potentially autonomous, services into work-flows, current approa-
ches to self-adaptive SOA-based systems focus on the service in-
terface layer. First, there are several standardization efforts that
propose to extend the expressiveness of theWeb Service Defini-
tion Language(WSDL) with support for defining extra-functional
properties. For example, the WS-Policy standard [10] can be used
to specify policies expressing non-functional requirements forweb
services(WS), while [16] proposes a language, WS-QoS, for spec-
ifying provided and required web services QoS. Second, in the area
of service composition, several projects [8, 17] attempt to improve
the dependability of SOA systems by applying adaptation frame-
works that support dynamic web service selection and composi-
tion, based on web service process execution languages, such as
the Business Process Execution Language(BPEL) [13]. Finally,
these solutions can be combined, such as described by [15], where
coordinated web service processes is composed from service com-
position, coordination, and policies. While these solutions provide
a rich set of adaptation mechanisms for the service interface layer,
we are not aware of solutions that provide principled approaches for
integrating existing solutions to application layer adaptation into
the service interface layer adaptation framework.

In self-adaptation middleware research, the current trend is to
isolate the adaptation concerns from the application logic using
genericadaptation frameworks[1, 5]. The adaptation framework
is responsible for controlling the ongoing adaptation processes by
constantly observing and analyzing the behavior of the target adap-
tive system, and by planning, instantiating, and executing adapta-
tions when necessary. The adaptation framework depends onadap-
tation mechanismsthat perform adaptation related tasks such as
context monitoring, component life-cycle handling and reconfigu-
ration, and adaptation of communication infrastructures [3, 4], and
on adaptation policiesused to decide which adaptation to carry
out in each situation. Current adaptation frameworks are designed
to adapt different parts of distributed systems, such as application

software, middleware infrastructure (e.g., communication, trans-
action, persistence), lower level operating system modules (e.g.,
scheduler, driver), or device resources (e.g., screen resolution, net-
work interface). However, as discussed in [9], these adaptation
frameworks are often tightly coupled to a fixed set of adaptation
mechanisms and adaptation target technologies, and does not facil-
itate technology integration. For example, adaptation frameworks
designed for component based systems [1, 5] provide adaptation
primitives that operate on component implementations, like instan-
tiation, configuration, and binding. This type of primitives does
not suit the above-mentioned characteristics of loose coupling and
autonomy of SOA-based systems.

3. THE QUA MIDDLEWARE

«interface»
Planning
Framework

«interface»
Service

Meta-Object Protocol

«interface»
Platform
Framework

Adaptation

Framework

Service
Planner

Adaptation Target
Service Mirror

Service
Platform

«interface»
Adaptation Target

Adaptation Target
Provider

implementsimplements implements

implements

*

*

uses

*

* uses
*

*

uses

Adaptation
Framework

Adaptation
Mechanisms

Adaptation
Targets

*

*
uses

*

*

uses

*

*

reflects

*

*

uses

Figure 1: The QUA adaptation middleware.

The QUA adaptation middleware has been designed with the
goal of being technology-agnostic, providing a clean separation be-
tween the adaptation framework, the adaptation mechanisms, and
the adaptation target. As can be seen in figure1, QUA provides
a clean separation between the adaptation framework layer, the
adaptation mechanisms layer, and the adaptation target layer. As
can be seen, the QUA adaptation framework consists of aplanning
framework, which is responsible for selecting service implementa-
tions and configurations, aplatform framework, which encapsulates
mechanisms for managing and adapting services, and a supporting
Service Meta-Object Protocol(Service MOP). As we discussed in
[9], the separation between the adaptation framework layer and the
mechanisms layer facilitates building powerful adaptation middle-
ware by integrating and exploiting different adaptation technolo-
gies. In particular, as we show later in this paper, this separation
facilitates the implementation of cross-layer adaptive systems.

3.1 Service Meta-object Protocol
At the core of the QUA middleware is the service MOP men-

tioned above, providing service meta-information to the planning
and platform frameworks through a reflective API. The service
MOP is based onmirror reflection, where reflection is provided by
separate meta-objects providing access to meta-information and
-operation, instead of by the reflected system [2]. Different from
reflective APIs provided by state-of-the-art adaptive middleware
like Fractal [3] and OpenCom [4], the QUA service MOP abstracts
all technology specific meta-information, such as roles and inter-

faces specific to particular component models, binding models, and
configuration mechanisms. The service meta-model defines only a
minimal set of technology agnostic concepts required by the plan-
ning and platform frameworks, as described below.

In order to hide the details of particular technology specific de-
ployment artefacts, service implementations are deployed to the
middleware asimplementation blueprints, which are binaries en-
capsulating implementation artefacts like implementation classes,
component or service descriptors, and configuration scripts. Any
such blueprint is associated with aservice platform, which encap-
sulates the run-time environment and technology-specific mecha-
nisms required to interpret the blueprint. For example, such as Java
classes depend on a Java Virtual Machine to instantiate and execute
objects, and as software components depend on component con-
tainers in order to instantiate components and execute configuration
scripts. As a service implementation may depend on other services,
for example as one component depends functionalities provided by
other components, the meta-model must identify alldependencies
of an implementation, The dependencies of an implementation can
be specified by only naming their types, thus allowing alternative
implementations for the type to exist.

In order to support adaptation reasoning algorithms and policies
that are not technology specific, in terms of system architecture,
deployment environment, or implementation classes, the service
MOP reflects service quality on two abstraction levels. On the im-
plementation level, aquality predictor function, or in shortpredic-
tor, calculates the predicted quality provided by a blueprint in a
certain execution context. A predictor function encodes technical
knowledge about the implementation, such as component model or
implementation architecture, and how its quality depends on execu-
tion context, such as resource availability and application context.
Its output prediction is expressed by implementation technology
independent quality dimensions like response time in milliseconds,
or the expected availability in percentage of time. The dimensions
used to specify the quality of a service, is defined by the type of
service. On the user level, a service client can express service qual-
ity requirements usingutility functions, mapping quality prediction
to a scalar value reflecting the usefulness of this service quality.
Thus, the QUA meta-model isolates knowledge about implemen-
tation details in the quality predictors, and allows specification of
technology agnostic adaptation policies through utility functions.

3.2 Planning Framework
The task of the planning framework, is to evaluate alternative

implementations of services, and select the alternative that best sat-
isfy the user requirements. The planning framework calculates the
predicted quality of alternative implementations, and applies the
utility function to select the alternative that provides the highest
usefulness. As the predicted quality of a service may depend on
the predicted quality of its dependencies, the service planner recur-
sively finds alternative combinations of implementations and im-
plementation dependencies, and calculates their complete quality.
Due to the combination of predictor and utility functions, the plan-
ning algorithms are completely technology independent, and can
thus be developed by algorithm experts, rather than adaptation or
application domain experts. In [6], we describe a comprehensive
application scenario demonstrating the application of the service
meta-model, including examples of quality prediction and utility
functions. The advantages of using utility functions in the context
of self-adapting systems are further discussed in [11].

3.3 Platform Framework
The platform framework provides a plug-in mechanism for tech-

nology specific mechanisms that can be applied to service imple-
mentations. The platform framework is invoked by the middleware
to execute a service implementation based on the blueprint selected
by the planning framework. For example, if the planning platform
selects a component implementation, the corresponding component
platform is invoked with the selected blueprint. This platform must
encapsulate the component container able to execute the compo-
nent, including container specific mechanisms such as component
life-cycle, parameterization, and binding frameworks, reconfigura-
tion algorithms, state handling, and exception handling. The plat-
form extracts component implementation classes, descriptors, and
other component technology specific artefacts from the blueprint,
and invokes the container to start the component. In [9], we de-
scribe in detail the design and implementation of a service platform
integrating an advanced component model, including component
model specific life-cycle, binding, and configuration mechanisms.

4. DESIGNING A CROSS-LAYER ADAPTA-
TION MIDDLEWARE FOR SOA

In this section, we demonstrate how the QUA middleware can
be applied in order to support self-adaptive SOA applications by
integrating both interface layer and application layer mechanisms
providing different degrees of adaptation.1

4.1 Self-adaptive SOA-based Systems
An adaptation framework supporting technology integration and

exploitation in SOA-based systems must be able to exploit both
application layer and service interface layer mechanisms. Further-
more, to respect SOA principles such as interoperability, loose cou-
pling, and autonomy, it must support the following requirements:

1. it mustnot depend on concrete adaptation actions—i.e., com-
ponent configuration, or service composition configuration—
but rather on their technology independent abstractions like
“configuration”,

2. it must beapplicable to both loosely and tightly coupled sys-
tems,

3. it must be able tointegrate adaptation related control inter-
faceswhere they are available,

4. it must be able tointegrate autonomous services, even if they
do not provide adaptation related control interfaces.

In the following sections, we demonstrate that the QUA middle-
ware is able satisfy these requirements.

4.2 Cross-layer Adaptation Middleware
Figure 2illustrates the design of a cross-layer middleware based

on the QUA adaptation framework. As indicated by the figure, the
adaptive target system includes both the service interface layer and
the application layer. As discussed insubsection 4.1, the adapta-
tion mechanisms available in the two layers are quite different by
nature. The integration of the two layers involves two tasks.2

First, the concepts and artefacts of the two layers must be mapped
into the common QUA meta-model. For each available service
implementation, this includes specifying its behavior, as a func-
tional type, specifying its service platform, generating blueprints
1We emphasize that the integration described below integration of
existing web services without making any modifications that com-
promise the execution of clients that are unaware of the QUA mid-
dleware.
2As indicated by the figure, the application layer may consist of
subsystems implemented in different technologies. Note that the
interoperability of the subsystems depends on the technologies. In
the case of SOA-based systems, interoperability is ensured through
satisfaction of the SOA principles.

Adaptation Framework Service Interface Layer

Application Layer

Component TechnologyLegacy Technology

BPEL Technology WS-Policy Technology

Adaptation
Target

S
e
rv
ic
e

P
la
tf
o
rm

S
e
rv
ic
e

P
la
tf
o
rm

S
e
rv
ic
e
 P
la
n
n
e
r

Service Mirror

Adaptation
Targets

Service Mirror

Application

A

W X Y Z

VU

T

Application

B

Application

Layer

Mechanisms

Service

Interface

Layer

Mechanisms

Figure 2: Design of the WS-PLANNER cross-layer adaptation
middleware.

containing implementation code, deployment descriptors, config-
uration scripts etc., specifying its dependencies to other services,
and writing quality predictions describing its qualitative behavior.
From the resulting meta-information, the planning framework can
derive the dependencies between the organization of the services in
the service interface layer, and the implementation of the services
in the application layer. Based on predictors and utility functions,
all parts of the system can be considered together during planning,
in order to select an optimal combination of service orchestration
and application implementation.

Second, the technology specific platforms must be developed,
each encapsulating the run-time environment and adaptation mech-
anisms provided by its technology. While application layer plat-
forms make application layer implementations available for remote
connection, service interface layer platforms integrate these remote
connection points as web service end-points during web service co-
ordination and orchestration. Each platform instantiates and adapts
services based on information extracted from the blueprint selected
by the planning framework. Note that even if application layer
adaptation mechanisms are supported by application technologies,
they are not always available to the QUA middleware. For exam-
ple, configuration interfaces of application components executing
in an external administration domain will normally not be avail-
able. The ability to influence service behavior would in this case
depend on the support for service specification standards and SLA
negotiations on the service interface layer.

4.3 Integration of Service Interface Layer
Adaptations

4.3.1 Supporting Web Services Interfaces
The first approach is a simple integration inspired by [14], where

the middleware connects to web service end-points identified by
WSDL documents, and returns proxies to these end-points. The
WS platform interpretsWS blueprints, encapsulating a WSDL doc-
ument containing service address and protocol information. The
WSDL document is extracted from the blueprint, and the web ser-
vice programming API is invoked in order to connect to the web
service end-point as a client, using any web service programming
interface. The WS platform is able to connect to any web service
satisfying the WSDL specification, but it does not support advanced

web service technologies, nor any kind of adaptation.
In order to enable the QUA adaptation framework to evaluate

the quality provided by a web service,WS quality predictorscan be
developed and added manually using the QUA reflective API.

4.3.2 Supporting Web Services Policies
In the second approach, we extend the first approach with sup-

port for specification of web services policies using the policy lan-
guage WS-Policy [10]. A service policy can be used to express
requirements, or capabilities, of a required, or provided, web ser-
vice. From the server perspective, by supporting WS-policies, a
service provider allows a service client to specify requirements
for non-functional behaviors. WS-Policy defines three operators
that all operate on a list of non-functional behaviors(x1, .., xn).
ExactlyOne(x1, .., xn) means that exactly one of(x1, .., xn)
must be supported.OneOrMore(x1, .., xn) means that one or
more of(x1, .., xn) must be supported.All(x1, .., xn) means that
all of (x1, .., xn) must be supported.

WS-policies are suitable to specify behaviors that are closely re-
lated to implementation variants, as demonstrated by the algorithm
selection policy in the example given below. Thus, we extend the
solution presented insubsubsection 4.3.1as follows. As the WS
platform described above, aWS-Policy platformis able to connect
to a web service end-point identified by a WSDL document, and
return a proxy to the resulting end-point. However, the WS-Policy
platform also intercepts calls made to the proxy, and attaches policy
specifications to the messages. A WS-Policy platform interprets
a WS-Policy blueprintcontaining WSDL specifications and WS-
Policy specifications.WS-Policy quality predictorsthat reflects the
qualitative properties of each valid policy alternative, can be de-
fined in order to enable the planning middleware to select which
policy to apply based on utility functions.

We demonstrate this mapping by the following example. A mes-
sage protocol supports two security extensions; digital signature
(sign) and shared key encryption (encrypt). A security policy can
be applied to the protocol to decide which mechanisms should be
used. We can deploy this protocol as a WS-Policy platform ser-
vice. Each valid protocol alternative is represented by a WS-Policy
blueprint encapsulating the service WSDL, and a legal security pol-
icy to be read and invoked by the WS-Policy platform.

We define a quality model for this message protocol with four
quality dimensions: Authentication (A), integrity (I), non-repudiat-
ion (R), and confidentiality (C). Predictor functions (P) can be
used to map between the security policies that can be applied to the
protocol, and these dimensions:

• P (All(sign, encrypt)) = {A, I, R, C}
• P (ExactlyOne(sign)) = {A, I, R}
• P (ExactlyOne(encrypt)) = {C, I}

Policies applying theOneOrMore operator is not included here.
Asking forOneOrMore(sign, encrypt) gives a random security
level, which does not make sense. When specifying service re-
quirements for this service, a utility function must be provided, that
reflects the security requirements of the user by weighting the di-
mensions towards each other.

4.3.3 Supporting Web Services Compositions
In the third approach, we integrate support for web services com-

position, using a language for business process orchestration, called
Business Process Execution Language(BPEL) [13]. A BPEL pro-
cess defines a sequence of activities and constraints for their exe-
cution. The process also defines relationships to external partners,
also calledpartner links, that provide or require services that are in-
voked during the execution of the process. A BPEL process itself,

ultimately provides a service. Thus, we consider a BPEL process
description as a potential service implementation that can be func-
tionally and qualitatively described, planned and instantiated by a
QUA platform. Furthermore, we may represent BPEL partner links
explicitly as service dependencies, which can be planned, instanti-
ated and adapted independently by the QUA middleware.

In this respect, aWS-BPEL platforminterpretsWS-BPEL blue-
prints, encapsulating BPEL scripts, and invokes a BPEL engine to
execute the scripts. In the case of explicitly defined dependencies
for partner link, these services are specified as abstract services in
the BPEL script. When the middleware has obtained references
to concrete services implementing the partner link dependencies,
they are presented to the WS-BPEL platform as service end-points.
Based on meta-data enclosed in the blueprint, the WS-BPEL plat-
form injects into the abstract references in the BPEL script, the
concrete references to corresponding service end-points, identify-
ing their protocol and address information. The resulting script is a
complete script that can be directly executed by the BPEL engine.

As a simple illustration, we describe the problem of travel plan-
ning as a BPEL process. A travel agency provides travel planning
as a process consists of three activities; ThroughTravel Explo-
ration, the customer can view different types of material (pictures,
videos, etc.) describing alternative places to travel. Then, the cus-
tomer proceeds tohotel and flights booking, and finally, everything
is payed in one transaction. Each of these activities refers to a
partner link service, which can be defined as an implementation
dependency. The QUA middleware can be applied recursively, in
order to plan, instantiate, and adapt the composed travel planning
service, implemented by the aforementioned BPEL script, and its
partner link services.

As the quality of a BPEL process depends on the quality of its
partner link services, aWS-BPEL quality predictorpredicts the
quality of a BPEL process based on predictions of the concrete
services implementing its partner link services. Thus, during plan-
ning, the quality of the BPEL process is calculated based on com-
binations of alternative partner link implementations. In the case
of travel planning, the security level of the entire process depends
on the security level provided by the payment service and the reser-
vation services. The quality predictor functions must reflect these
dependencies, and the user level security requirements can be re-
flected by utility functions in similar terms as described in subsub-
section4.3.2. In section 5, we discuss this example in detail.

4.4 Integration of Application Layer Adapta-
tions

4.4.1 Supporting Component-based Reconfiguration
The Travel Exploration service described above, can be imple-

mented by software supporting different types of adaptation, such
as configurable component models and adaptive middleware. In
[9], we demonstrated how such an adaptive middleware can be in-
tegrated into the QUA middleware. In order to integrate the FRAC-
TAL component model [3], and adaptation mechanisms based on
this technology, we developed aFractal platformthat was able to
instantiate and adapt application layer FRACTAL components to the
currently available resources.

The Fractal platform depends on an implementation of the Frac-
tal component runtime, anArchitecture Description Language
(ADL) called FRACTALADL [12], used to deploy FRACTAL ap-
plications, and a component reconfiguration script language and
interpreter called FSCRIPT [5]. Implementation classes, ADL de-
scriptors and reconfiguration scripts were deployed to the FRAC-
TAL platform asFractal blueprints, and they were accompanied by

Fractal quality predictorsdescribing their service level. An ex-
haustive description of this experiment can be found in [9]. This
technology can be extended to support adaptation of applications,
such as the Travel Exploration service provided by the travel agency.

4.4.2 Supporting Legacy Applications
As the QUA middleware does not require integrated services to

be implemented by any particular technology. Integration of legacy
applications may have to be designed using application-specific
adaptation mechanisms. In [6], we applied the QUA middleware
to a state-of-the-art adaptive video streaming application that was
not based on an advanced component technology, but rather im-
plemented using so-called POJOs -Plain Old Java Objects. The
application was ported to the middleware with rather small efforts.
Thus, we expect that such legacy applications also can be integrated
with the SOA-based approaches presented above.

5. EVALUATION
In order to evaluate the solution described in this paper, we illus-

trate in more details how cross-layer adaptation is achieved by ap-
plying the QUA middleware to the example technologies described
in section 4. Finally, we evaluate the solution by applying the re-
quirements presented insubsection 4.1.

5.1 Example: Travel Planning Scenario
The travel planning scenario is an example of a system where

cross-layer adaptation can be applied in order to better exploit the
adaptation potential provided by application and service interface
layer technologies. We now take a closer look at how the middle-
ware proceeds to plan, instantiate and adapt the composed travel
planning service.

Initially, when the QUA middleware is invoked in order to start
the travel planning application, the planning framework locates the
BPEL script we described insubsubsection 4.3.3. Three depen-
dencies are identified:i) the travel explorationservice,ii) hotel
and flight reservationservices, andiii) paymentservice. The plan-
ning framework locates alternative implementations for each ser-
vice, calculates the predicted quality for the alternative dependency
resolutions, and selects the alternative with the highest utility.

In this example, partner service implementations are selected as
follows. Thetravel explorationservice is a local server provided
by the travel agency. It has been implemented using the FRAC-
TAL component model as described insubsection 4.4. Hence, the
actual service implementation can be dynamically adapted to con-
text information, such as the number of clients, and the data they
are downloading. Thehotel and flight reservationservices are web
services as described insubsubsection 4.3.1and4.3.2, provided by
third party service providers. Such reservation services may pro-
vide the possibility of applying web service policies, but a part
from that, the services are not configurable. Thepaymentser-
vice is a web service provided by the financial department of the
travel agency. Considering the strict security requirements of fi-
nancial transactions, these services typically have fixed functional
and non-functional requirements—i.e., security policies—that can
not be altered.

When the complete implementation has been selected, the mid-
dleware starts instantiating the composed service in a bottom-up
fashion, starting with the partner link services. Each partner link
service platform is invoked to instantiate the implementation en-
capsulated by the selected blueprint. The way the partner link ser-
vices are instantiated and configured, depends on the level of con-
trol facilitated by the partner link service provider. Thehotel and
flight reservationservice partner link services are existing web ser-

vices residing in external administration domains. Thus, their im-
plementation cannot be inspected and manipulated in any way, they
can only be accessed through their specified web service end-point.
In such cases, instantiation does not include the actual creation of
instances, but rather connecting to the external service instances,
and return proxy references to it. On the other hand, the localtravel
explorationservice provides FRACTAL control interfaces that can
be exploited for component instantiation and configuration by the
FRACTAL platform.

Finally, the middleware can initiate adaptation of the application
during the execution of the services. If new implementations are
selected, reconfiguration is performed by the service platforms. For
example, web services that becomes unavailable can be replaced,
and FRACTAL components that are not performing good enough,
can be re-planned by the planning framework, and reconfigured by
the FRACTAL platform.

5.2 Assessment of the Requirements
In subsection 4.1, we presented four requirements that cross-

layer adaptation should discuss. When applying these requirements
to the proposed solution, we conclude that:

1. It does not depend on concrete adaptation actions: actions
are encapsulated by the platform framework and technology-
specific information in the blueprints (cf. subsection4.2);

2. It is applicable to both loosely and tightly coupled systems—
i.e., both loose coupling to web services end-points (cf. sub-
subsection4.3.3) and tightly coupled components (cf. sub-
section4.4);

3. It is able to integrate adaptation related control interfaces
where they are available—i.e., FRACTAL controllers (cf. sub-
section4.4);

4. It is able to integrate autonomous services—i.e., web ser-
vices end-points as in subsubsection4.3.1.

Through the planning and platform framework, and the common
service meta-model, mechanisms from the service interface layer
and the application layer can be integrated, in order to bridge the
two layers, while preserving the SOA principles. Thus, we ensure
that web services managed by the QUA middleware can still be
accessed by any web service client, also clients that are unaware of
the QUA middleware.

Even though WS-Policy, BPEL, and similar languages have been
used by several projects to provide adaptive web service coordina-
tion and orchestration [8, 15, 18], we are not aware of any projects
that has been able to provide principled solution to combine such
languages with application level adaptation mechanisms. The mid-
dleware is able not only to integrate services with different degrees
of available adaptation support, but also to exploit the adaptation
mechanisms when available. As demonstrated by the examples, the
technology-agnostic planning and platform frameworks and meta-
model, enables the WS-PLANNER middleware to recursively ex-
ploit technology specific adaptation mechanisms to both the service
interface layer and the application layer, without compromising the
principles of loose coupling, autonomy, and implementation and
platform encapsulation.

6. CONCLUSIONS AND FUTURE WORK
In this paper we described an adaptation middleware that is able

to support the integration and exploitation of various adaptation
technologies, including SOA-based adaptation mechanisms such
as service selection and composition. This middleware separates
between the adaptation framework, providing technology indepen-
dent adaptation reasoning and adaptation strategies, and adaptation
mechanisms, which are technology specific. In the context of SOA-
based applications, we demonstrated that the middleware can be

applied to achieve cross-layer adaptation that performs adaptation
on the service interface layer and the application layer in an inte-
grated fashion, while preserving the loose coupling and autonomy
of services. In future work, we plan to extend this work with sup-
port forService Level Agreement(SLA) negotiation.

7. REFERENCES
[1] T. V. Batista, A. Joolia, and G. Coulson. Managing Dynamic

Reconfiguration in Component-Based Systems. In2nd European
Workshop on Software Architecture (EWSA), volume 3527 ofLNCS,
pages 1–17. Springer, June 2005.

[2] G. Bracha and D. Ungar. Mirrors: Design Principles for Meta-level
Facilities of Object-Oriented Programming Languages. In19th
Annual Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 331–344. ACM,
2004.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The FRACTAL component model and its support in Java.Software
Practice and Experience (SPE), 36(11/12):1257–1284, Aug. 2006.

[4] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee,
J. Ueyama, and T. Sivaharan. A Generic Component Model for
Building Systems Software.ACM Transactions on Computer Systems
(TOCS), 26(1):1–42, 2008.

[5] P.-C. David and T. Ledoux. An Aspect-Oriented Approach for
Developing Self-Adaptive FRACTAL Components. In5th
International Symposium on Software Composition (SC), volume
4089 ofLNCS, pages 82–97. Springer, Mar. 2006.

[6] F. Eliassen, E. Gjørven, V. S. W. Eide, and J. A. Michaelsen.
Evolving self-adaptive services using planning-based reflective
middleware. InProceedings of the 5th International Middleware
Workshop on Adaptive and Reflective Middleware (ARM), volume
190, pages 1–6, Nov. 2006.

[7] T. Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, 2005.

[8] A. Erradi, P. Maheshwari, and V. Tosic. Policy-Driven Middleware
for Self-adaptation of Web Services Compositions. In7th
International Middleware Conference, volume 4290 ofLNCS, pages
62–80. Springer, Nov. 2006.

[9] E. Gjørven, F. Eliassen, and R. Rouvoy. Experiences from
Developing a Component Technology Agnostic Adaptation
Framework. In11th International Conference on Component-Based
Software Engineering (CBSE), volume 5282 ofLNCS. Springer, Oct.
2008.

[10] IBM. Web Services Policy Framework, Mar. 2006.
[11] J. O. Kephart and R. Das. Achieving Self-Management via Utility

Functions.IEEE Internet Computing, 11(1):40–48, 2007.
[12] M. Leclercq, A. E. Özcan, V. Quéma, and J.-B. Stefani. Supporting

Heterogeneous Architecture Descriptions in an ExtensibleToolset. In
29th International Conference on Software Engineering (ICSE),
pages 209–219. IEEE, May 2007.

[13] OASIS. Web Services Business Process Execution Language, Apr.
2007.

[14] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, and E. Stav.
Composing Components and Services using a Planning-based
Adaptation Middleware. In7th International Symposium on Software
Composition (SC), volume 4954 ofLNCS, pages 52–67. Springer,
Mar. 2008.

[15] S. Tai, R. Khalaf, and T. A. Mikalsen. Composition of Coordinated
Web Services. In5th International Conference on Middleware,
volume 3231 ofLNCS, pages 294–310. Springer, Oct. 2004.

[16] M. Tian, A. Gramm, H. Ritter, and J. H. Schiller. Efficient Selection
and Monitoring of QoS-Aware Web Services with the WS-QoS
Framework. InInternational Conference on Web Intelligence (WI),
pages 152–158. IEEE, Sept. 2004.

[17] T. Yu and K.-J. Lin. Adaptive algorithms for Finding Replacement
Services in Autonomic Distributed Business Processes. In7th
International Symposium on Autonomous Decentralized Systems
(ISADS), pages 427–433. IEEE, Apr. 2005.

[18] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam,and
H. Chang. QoS-Aware Middleware for Web Services Composition.
IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

	Introduction
	Related work
	The QuA Middleware
	Service Meta-object Protocol
	Planning Framework
	Platform Framework

	Designing a Cross-layer Adaptation Middleware for SOA
	Self-adaptive SOA-based Systems
	Cross-layer Adaptation Middleware
	Integration of Service Interface Layer Adaptations
	Supporting Web Services Interfaces
	Supporting Web Services Policies
	Supporting Web Services Compositions

	Integration of Application Layer Adaptations
	Supporting Component-based Reconfiguration
	Supporting Legacy Applications

	Evaluation
	Example: Travel Planning Scenario
	Assessment of the Requirements

	Conclusions and Future Work
	References

