Cross-layer Self-adaptation of Service-oriented

Frank Eliassen
University of Oslo

Architectures
Eli Gjgrven Romain Rouvoy
Simula Research Laboratory University of Oslo
P.O.Box 134 Department of Informatics

1325 Lysaker, Norway
eligi@simula.no

ABSTRACT

Service-Oriented ArchitecturdSOA) are built as compositions of
inter-organizational services. These services are deployed and pu
lished by providers who are responsible for provisioning the ser-

vices with sufficient resources. However, even though services are

implemented by technologies providing a wide range of adaptation

related features, such as configurable component models and com-
munication infrastructures, state-of-the-art approaches to adaptive

SOA systems do not provide principled solutions to exploit appli-
cation layer adaptation mechanisms.

Our technology-agnostic adaptation middleware has been desig-

ned for integrating and exploiting technology-specific adaptation

technologies and mechanisms. In this paper, we describe how this
middleware can support a cross-layer adaptation of SOA systems.

P.O.Box 1080 Blindern
0316 Oslo, Norway

rouvoy@ifi.uio.no

Department of Informatics
P.O.Box 1080 Blindern
0316 Oslo, Norway

frank@ifi.uio.no

platform and language technologié}.[In this domain, interoper-
ability issues are now achieved by open standards. However, other

bcross-cutting concerns, including adaptation, still lack solutions en-

suring the coordinated reconfiguration of services developed with
heterogeneous technologies. As self-adaptive systems relies on
adaptation mechanisms, technology integration in this context also
requires theexploitation of adaptation featuresneaning that the
system is able to exploit adaptation mechanisms provided by the
platforms and languages available in the system. The definition of
principled solutions to adaptation feature exploitation has not re-
ceived much attention yet.

As a matter of exampleService-Oriented ArchitecturdSOA)
has been identified as a principled approach to build systems from
compositions of inter-organizational services. These services, gen-

In particular, we focus on the server-side perspective of SOA, and erally developed using different technologies, are configured and

we show that our middleware is able to exploit both service inter-
face and application layers technologies for supporting a coordi-
nated adaptation of both layers.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Software configuration manage-
ment; D.2.13 $oftware Engineering]: Reusable Software

General Terms
Design

Keywords

Service-Oriented Architectures, Planning-based Adaptation Frame-

work

1. INTRODUCTION

published by providers who are responsible for provisioning the
services with sufficient resources. As described by Brldppli-
cation logic in the context of SOA, can be split into two layers: the
service interface layewhere loosely coupled services, hiding their
implementation and technology platform, communicate via open
protocols, and thapplication layer in which service application
logic is developed and deployed on different technology platforms.
In order to be able to adapt efficiently to run-time contextual
changes, SOA-based systems must be able to adapt at the layer,
or layers, that provides the best system improvement. This re-
quires an adaptation framework that is able to integrate and con-
trol adaptation mechanisms in the two layers, without extensive
re-factoring and re-implementation. However, current approaches
to self-adaptation in the SOA community mostly focus on adapt-
ing the service interface layer, by exploiting the loose coupling be-
tween clients and servers in order to provide adaptation through ser-
vice specification, selection, composition, and coordination mech-
anisms §, 10, 13, 15, 16, 17]. They do not provide principled so-
lutions for integrating state-of-the-art research in application layer
self-adaptation, which has provided a wide range of mechanisms

One of the current challenges for building self-adaptive systems ¢,, adapting also the application layer. For example component

is to cope with the increasing heterogeneity of applications and ser-

vices, thus integrating multiple systems implemented in different

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

MW4S0OC08, December 1, 2008, Leuven, Belgium

Copyright 2008 ACM 978-1-60558-368-6/08/12 ...$5.00.

models, such as HACTAL [3] and OPENCOM [4], support dy-
namic configuration and reconfiguration of component-based ap-
plications, and middleware mechanisms supporting self-adaptation
have been built from these component mod&|<$]. Thus, bridg-
ing SOA self-adaptation with application layer mechanisms, while
preserving SOA principles as loose coupling, autonomy, and imple-
mentation and platform encapsulation, becomes a key challenge.
In our earlier research, we have developed an adaptation frame-
work, QUA, which is technology-agnostic and able to integrate and
exploit different technologies providing adaptation related mecha-
nisms P]. In this paper we show how this adaptation framework

can be applied to SOA-based systems to perfoioss-layer adap- software, middleware infrastructure.¢, communication, trans-
tation. By cross-layer adaptation, we generally mean adaptation of action, persistence), lower level operating system moddeas (
a system consisting of several layers, where the technologies andscheduler, driver), or device resourcegy(screen resolution, net-
mechanisms of each layer are integrated and controlled by the samavork interface). However, as discussed 8}, [these adaptation
adaptation framework. Particularly in the context of SOA it means frameworks are often tightly coupled to a fixed set of adaptation
coherent adaptation across the service interface and application lay-mechanisms and adaptation target technologies, and does not facil-
ers of a SOA system while preserving the loose coupling and au- itate technology integration. For example, adaptation frameworks
tonomy of the services. @A can also be applied to these two designed for component based systehs5] provide adaptation
layers separately. This approach enables the extension of existingorimitives that operate on component implementations, like instan-
SOA-based self-adaptive mechanisms with a principled approachtiation, configuration, and binding. This type of primitives does
to adaptation management and control. Being technology-agnostic,not suit the above-mentioned characteristics of loose coupling and
QUA can also integrate legacy systems into a SOA system. autonomy of SOA-based systems.

In this paper, we focus on howua can be applied to the server-
side perspective in order to facilitate SOA implementation technol- 3 THE QUA MIDDLEWARE
ogy integration and exploitation, including:theintegrationof dif-
ferent types of service and work-flow specification languages, and

. L o A " Adaptati :
ii) the exp|0|tat|ono_f service |mplem¢_antat|on technology—speuflc Fraﬁ:"e“"m':r'l‘(by Adaptation -—
features when available. The resulting system is able to perform Uses Framework
. - uses
cross-layer adaptation exploiting mechanisms both in the service N $ uses N
interface Iaye(, and the application Ia_yer in a coordinated fashion. <interface» <interface» <interface»
In the remaining of the paper, we first survey some related work Planning Service Platform
in section 2 In section 3 we describe the design of a technology Framework Meta-Object Protocol Framework
agnostic adaptation middlewarep@, and insection 4wve demon- o _LF _uses~ "* _LP _ FN\uses _4|5_ o
strate how the QUA middleware can integrate and exploit adapta- implemesnts __x P imTD/emetnts = implements
H H : ervice aptation large! ervice
tion r_nechamsms of SOA systems. $ection 5we eval_uate our Planner | | Service Mirror | Platform
solution by an example, and we conclude the papsettion 6 T= "
ses
Adaptation I !
2. RELATED WORK Mechanisms

As SOA applications are built from composing loosely coupled,
potentially autonomous, services into work-flows, current approa- — - -~ —" -~~~ ——
ches to self-adaptive SOA-based systems focus on the service in- Adaptation
terface layer. First, there are several standardization efforts that ~Taroets
propose to extend the expressiveness ofWeb Service Defini-
tion LanguaggWSDL) with support for defining extra-functional . . .
properties. For example, the WS-Policy standdi@ fan be used Figure 1: The QUA adaptation middleware.
to specify policies expressing non-functional requirementsviety
servicefWS), while [L6] proposes a language, WS-QoS, for spec- The QUA adaptation middleware has been designed with the
ifying provided and required web services QoS. Second, in the areagoal of being technology-agnostic, providing a clean separation be-
of service composition, several projecss 17] attempt to improve tween the adaptation framework, the adaptation mechanisms, and
the dependability of SOA systems by applying adaptation frame- the adaptation target. As can be seen in figur€UA provides
works that support dynamic web service selection and composi- a clean separation between the adaptation framework layer, the
tion, based on web service process execution languages, such aadaptation mechanisms layer, and the adaptation target layer. As
the Business Process Execution LangudB®EL) [13]. Finally, can be seen, theW adaptation framework consists opéanning
these solutions can be combined, such as describetShyfhere framework which is responsible for selecting service implementa-
coordinated web service processes is composed from service comiions and configurations,@atform frameworkwhich encapsulates
position, coordination, and policies. While these solutions provide mechanisms for managing and adapting services, and a supporting
a rich set of adaptation mechanisms for the service interface layer, Service Meta-Object Protoc¢Eervice MOP). As we discussed in
we are not aware of solutions that provide principled approaches for [9], the separation between the adaptation framework layer and the
integrating existing solutions to application layer adaptation into mechanisms layer facilitates building powerful adaptation middle-
the service interface layer adaptation framework. ware by integrating and exploiting different adaptation technolo-

In self-adaptation middleware research, the current trend is to gies. In particular, as we show later in this paper, this separation
isolate the adaptation concerns from the application logic using facilitates the implementation of cross-layer adaptive systems.
genericadaptation framework§l, 5]. The adaptation framework . .
is responsible for controlling the ongoing adaptation processes by 31 ServiceM eta'ObJ ect Protocol
constantly observing and analyzing the behavior of the target adap- At the core of the @A middleware is the service MOP men-
tive system, and by planning, instantiating, and executing adapta-tioned above, providing service meta-information to the planning
tions when necessary. The adaptation framework depenaldagp and platform frameworks through a reflective API. The service
tation mechanismghat perform adaptation related tasks such as MOP is based omirror reflection where reflection is provided by
context monitoring, component life-cycle handling and reconfigu- separate meta-objects providing access to meta-information and
ration, and adaptation of communication infrastructugd], and -operation, instead of by the reflected syst&h Different from
on adaptation policiesused to decide which adaptation to carry reflective APIs provided by state-of-the-art adaptive middleware
out in each situation. Current adaptation frameworks are designedlike Fractal B] and OpenCom4], the QUA service MOP abstracts
to adapt different parts of distributed systems, such as applicationall technology specific meta-information, such as roles and inter-

faces specific to particular component models, binding models, andnology specific mechanisms that can be applied to service imple-
configuration mechanisms. The service meta-model defines only amentations. The platform framework is invoked by the middleware
minimal set of technology agnostic concepts required by the plan- to execute a service implementation based on the blueprint selected
ning and platform frameworks, as described below. by the planning framework. For example, if the planning platform

In order to hide the details of particular technology specific de- selects a componentimplementation, the corresponding component
ployment artefacts, service implementations are deployed to the platform is invoked with the selected blueprint. This platform must
middleware asmplementation blueprintswhich are binaries en- encapsulate the component container able to execute the compo-
capsulating implementation artefacts like implementation classes, nent, including container specific mechanisms such as component
component or service descriptors, and configuration scripts. Any life-cycle, parameterization, and binding frameworks, reconfigura-
such blueprint is associated wittsarvice platformwhich encap- tion algorithms, state handling, and exception handling. The plat-
sulates the run-time environment and technology-specific mecha-form extracts component implementation classes, descriptors, and
nisms required to interpret the blueprint. For example, such as Javaother component technology specific artefacts from the blueprint,
classes depend on a Java Virtual Machine to instantiate and execut@nd invokes the container to start the component.9nye de-
objects, and as software components depend on component conscribe in detail the design and implementation of a service platform
tainers in order to instantiate components and execute configurationintegrating an advanced component model, including component
scripts. As a service implementation may depend on other services,model specific life-cycle, binding, and configuration mechanisms.
for example as one component depends functionalities provided by

other components, the meta-model must identifydalbendencies 4. DESIGNING A CROSS-LAYER ADAPTA-
of an implementation, The dependencies of an implementation can TION MIDDLEWARE EOR SOA

be specified by only naming their types, thus allowing alternative
implementations for the type to exist. In this section, we demonstrate how the&Q middleware can

In order to support adaptation reasoning algorithms and policies be applied in order to support self-adaptive SOA applications by
that are not technology specific, in terms of system architecture, integrating both interface layer and application layer mechanisms
deployment environment, or implementation classes, the service providing different degrees of adaptation.
MOP reflects service quality on two abstraction levels. On the im- .
plementation level, quqalitytgredictor functionor in shortpredic- 4.1 Self-adaptlve SOA-based SyStems
tor, calculates the predicted quality provided by a blueprint in a An adaptation framework supporting technology integration and
certain execution context. A predictor function encodes technical exploitation in SOA-based systems must be able to exploit both
knowledge about the implementation, such as component model orapplication layer and service interface layer mechanisms. Further-
implementation architecture, and how its quality depends on execu-more, to respect SOA principles such as interoperability, loose cou-
tion context, such as resource availability and application context. pling, and autonomy, it must support the following requirements:
Its output prediction is expressed by implementation technology 1. itmustnot depend on concrete adaptation actiedise., com-

independent quality dimensions like response time in milliseconds, ponent configuration, or service composition configuration—
or the expected availability in percentage of time. The dimensions but rather on their technology independent abstractions like
used to specify the quality of a service, is defined by the type of “configuration”,
service. On the user level, a service client can express service qual- 2. it must beapplicable to both loosely and tightly coupled sys-
ity requirements usingtility functions mapping quality prediction tems
to a scalar value reflecting the usefulness of this service quality. 3. it must be able tintegrate adaptation related control inter-
Thus, the @A meta-model isolates knowledge about implemen- faceswhere they are available,
tation details in the quality predictors, and allows specification of 4. it must be able tintegrate autonomous servicesen if they
technology agnostic adaptation policies through utility functions. do not provide adaptation related control interfaces.

In the following sections, we demonstrate that theAQmiddle-
3.2 Planning Framework ware is able satisfy these requirements.

The task of the planning framework, is to evaluate alternative 4.2 Cross—layer Adaptation Middleware
implementations of services, and select the alternative that best sat- "~) ")
Figure 2illustrates the design of a cross-layer middleware based

isfy the user requirements. The planning framework calculates the - i '
predicted quality of alternative implementations, and applies the ©n the Q/A adaptation framework. As indicated by the figure, the

utility function to select the alternative that provides the highest 2daptive target system includes both the service interface layer and
usefulness. As the predicted quality of a service may depend onthe application layer. As discussedsabsection 4.1the adapta-

the predicted quality of its dependencies, the service planner recur-tion mechanisms available in the two layers are quite different by
sively finds alternative combinations of implementations and im- nature. The integration of the two layers involves two tadks.
plementation dependencies, and calculates their complete quality. FirSt the concepts and artefacts of the two layers must be mapped
Due to the combination of predictor and utility functions, the plan- N0 the common QA meta-model. 'For each available service
ning algorithms are completely technology independent, and canMPlémentation, this includes specifying its behavior, as a func-
thus be developed by algorithm experts, rather than adaptation ortiona! type, specifying its service platform, generating blueprints
application domain experts. I16]; we describe a comprehensive le emphasize that the integration described below integration of
application scenario demonstrating the application of the service existing web services without making any modifications that com-
meta-model, including examples of quality prediction and utility promise the execution of clients that are unaware of tbé @id-
functions. The advantages of using utility functions in the context dleware.

of self-adapting systems are further discussed i [2As indicated by the figure, the application layer may consist of
subsystems implemented in different technologies. Note that the
interoperability of the subsystems depends on the technologies. In
3.3 Platform Framework the case of SOA-based systems, interoperability is ensured through
The platform framework provides a plug-in mechanism for tech- satisfaction of the SOA principles.

Adaptation Framework Service Interface Layer web service technologies, nor any kind of adaptation.
[] [Service Mirror || BPEL Technology | | WS-Policy Technology | In order to enable the QA adaptation framework to evaluate
: = § o ’ the quality provided by a web servid&/S quality predictorsan be
—/ IService developed and added manually using theAQreflective API.
g el | "loyer . . .
| | £ $[7Lechanisms 4.3.2 Supporting Web Services Policies
“g’ Pr| ™ Adaptaion) In the second approach, we extend the first approach with sup-
S o femes port for specification of web services policies using the policy lan-
8\ [| [“daptation "} guage WS-Policy10]. A service policy can be used to express
S | Target i A s . .
A g/—ﬁ-'— requirements, or capabilities, of a required, or provided, web ser-
» H %\ Aopication Application vice. From the server perspective, by supporting WS-policies, a
Sa Layer A service provider allows a service client to specify requirements
L__I\| Mechanisms | - for non-functional behaviors. WS-Policy defines three operators
N - . S o —— that all operate on a list of non-functional behavidss, .., z,,).
| Service Mirror | | Legacy Technology | {Component Technology EzactlyOne(z1, .., zn) means that exactly one ¢f1, .., z,)
- [Application Layer must be supportedOneOrMore(z1, .., z,) Mmeans that one or
more of (z1, ..,) must be supporteddil(z1, .., x,) means that
all of (z1, .., z») must be supported.
Figure 2: Design of the WS-PLANNER cross-layer adaptation WS-policies are suitable to specify behaviors that are closely re-
middleware. lated to implementation variants, as demonstrated by the algorithm

selection policy in the example given below. Thus, we extend the

solution presented isubsubsection 4.3.8s follows. As the WS
containing implementation code, deployment descriptors, config- piatform described above \&S-Policy platfornis able to connect
uration scripts etc., specifying its dependencies to other services,to a web service end-point identified by a WSDL document, and
and writing quality predictions describing its qualitative behavior. - return a proxy to the resulting end-point. However, the WS-Policy
From the resulting meta-information, the planning framework can platform also intercepts calls made to the proxy, and attaches policy
derive the dependencies betWeen the Organization Of the SerVices i%peciﬁcations to the messages. A WS_Pohcy p|atform interprets
the service interface layer, and the implementation of the servicesaws_poncy blueprintontaining WSDL specifications and WS-
in the application layer. Based on predictors and utility functions, po|icy specificationswS-Policy quality predictorthat reflects the
all parts of the system can be considered together during planning,qualitative properties of each valid policy alternative, can be de-
in order to select an optimal combination of service orchestration fined in order to enable the planning middleware to select which
and application implementation. policy to apply based on utility functions.

Second, the technology specific platforms must be developed, e demonstrate this mapping by the following example. A mes-
each encapsulating the run-time environment and adaptation mechsage protocol supports two security extensions; digital signature
anisms provided by its technology. While application layer plat- (s;gn) and shared key encryptioar{crypt). A security policy can
forms make application |aye|’ imp|ementati0ns available for remote be app“ed to the protoco| to decide which mechanisms should be
connection, service interface layer platforms integrate these remoteysed. We can deploy this protocol as a WS-Policy platform ser-
connection points as web service end-points during web service co-yjce. Each valid protocol alternative is represented by a WS-Policy
ordination and orchestration. Each platform instantiates and adaptsblueprint encapsu|ating the service WSDL, and a |ega| Security p0|_
services based on information extracted from the blueprint selectedicy to be read and invoked by the WS-Policy platform.
by the planning framework. Note that even if application layer e define a quality model for this message protocol with four
adaptation mechanisms are supported by application technologies quality dimensions: Authentication{, integrity (), non-repudiat-
they are not always available to theJ@ middleware. For exam- jon (R), and confidentiality ¢¢). Predictor functions) can be
ple, configuration interfaces of application components executing ysed to map between the security policies that can be applied to the
in an external administration domain will normally not be avail- protocol, and these dimensions:
able. The ability to influence service behavior would in this case o P(All(sign,encrypt)) = {A, I, R,C}
depend on the support for service specification standards and SLA 4 P(EzactlyOne(sign)) = {A, I, R}

negotiations on the service interface layer. e P(EzactlyOne(encrypt)) = {C, I}
. . Policies applying th©neOr M ore operator is not included here.
4.3 Integration of Service Interface L ayer Asking for OneOr More(sign, encrypt) gives a random security
Adaptatlons level, which does not make sense. When specifying service re-
_ _ quirements for this service, a utility function must be provided, that
4.3.1 Supporting Web Services Interfaces reflects the security requirements of the user by weighting the di-
The first approach is a simple integration inspired 14| [where mensions towards each other.

the middleware connects to web service end-points identified by

WSDL documents, and returns proxies to these end-points. The 4.3.3 Supporting Web Services Compositions

WS platform interpret8VS blueprintsencapsulating a WSDL doc- In the third approach, we integrate support for web services com-
ument containing service address and protocol information. The position, using a language for business process orchestration, called
WSDL document is extracted from the blueprint, and the web ser- Business Process Execution Langu88PEL) [13]. A BPEL pro-

vice programming API is invoked in order to connect to the web cess defines a sequence of activities and constraints for their exe-
service end-point as a client, using any web service programming cution. The process also defines relationships to external partners,
interface. The WS platform is able to connect to any web service also callecbartner links that provide or require services that are in-
satisfying the WSDL specification, but it does not support advanced voked during the execution of the process. A BPEL process itself,

ultimately provides a service. Thus, we consider a BPEL process Fractal quality predictorsdescribing their service level. An ex-
description as a potential service implementation that can be func- haustive description of this experiment can be found9in [This
tionally and qualitatively described, planned and instantiated by a technology can be extended to support adaptation of applications,
QUA platform. Furthermore, we may represent BPEL partner links such as the Travel Exploration service provided by the travel agency.
explicitly as service dependencies, which can be planned, instanti- . .
ated and adapted independently by theAQmiddleware. 4.4.2 Supporting Legacy Applications

In this respect, &/S-BPEL platforminterpretsWS-BPEL blue- As the QUA middleware does not require integrated services to
prints, encapsulating BPEL scripts, and invokes a BPEL engine to be implemented by any particular technology. Integration of legacy
execute the scripts. In the case of explicitly defined dependenciesapplications may have to be designed using application-specific
for partner link, these services are specified as abstract services immdaptation mechanisms. 16][we applied the QA middleware
the BPEL script. When the middleware has obtained referencesto a state-of-the-art adaptive video streaming application that was
to concrete services implementing the partner link dependencies,not based on an advanced component technology, but rather im-
they are presented to the WS-BPEL platform as service end-points.plemented using so-called POJOBIain Old Java Objects The
Based on meta-data enclosed in the blueprint, the WS-BPEL plat- application was ported to the middleware with rather small efforts.
form injects into the abstract references in the BPEL script, the Thus, we expect that such legacy applications also can be integrated
concrete references to corresponding service end-points, identify-with the SOA-based approaches presented above.
ing their protocol and address information. The resulting script is a
complete script that can be directly executed by the BPEL engine. 5. EVVALUATION

As a simple illustration, we describe the problem of travel plan-
ning as a BPEL process. A travel agency provides travel planning tr
as a process consists of three activities; Throlighvel Explo-
ration, the customer can view different types of material (pictures,
videos, etc.) describing alternative places to travel. Then, the cus-
tomer proceeds thotel and flights bookingand finally, everything

is payed in one transactionEach of these activities refers to a 5§51 Example: Travel Planning Scenario

ggrtgﬁég:(l: S?xgawg;gzlg@grgecgﬁlneeg as":dn rgﬁlriri]\:zrtﬁtrllon The travel planning scenario is an example of a system where
p Y- pp Y cross-layer adaptation can be applied in order to better exploit the

orde.r to plan, instantiate, and adapt thg composed trayel plann!ng’Jadaptation potential provided by application and service interface
service, implemented by the aforementioned BPEL script, and its layer technologies. We now take a closer look at how the middle-

partner link services. ware proceeds to plan, instantiate and adapt the composed travel
As the quality of a BPEL process depends on the quality of its planning service.

pariner link services, avS-BPEL quality predictopredicts the Initially, when the QA middleware is invoked in order to start

gg?\/l:%sozn? Fezqil;lt?rzocitesssa?t?lseer(jlir?l?szrr?lﬁzlgtslor']rshl?; tgsriionclg? the travel planning application, the planning framework locates the
P gisp : ' gp BPEL script we described isubsubsection 4.3.3Three depen-

ning, the quality of the BPEL process is calculated based on com- dencies are identifiedi) the travel explorationservice,ii) hotel

binations of alternative partner link implementations. In the case and flight reservatiomservices, andi) paymentservice. The plan-

e e s o e 10 ing ramenor st aeraive lemenatons o each ser-
vation services. The quality predictor functions must reflect these vice, ce_llculates the predicted quahty_ fortl_qe altern_atlve depc_endency
AR . . resolutions, and selects the alternative with the highest utility.
dependencies, and the user level security requirements can be re-) S .
flected by utility functions in similar terms as described in subsub- In this example, partner service _|mp_lementat|ons are sele_cted as
sectiond.3.2 In section 5we discuss this example in detail follows. Thetravel exploratlonserwc_e is a local server provided
e ' by the travel agency. It has been implemented using theck
4.4 |ntegration of Application Layer Adapta- TAL component model as o_lescribedsjnbsectic_)n 4.4Hence, the
tions actugl service implementation can be dyna_lmlcally adapted to con-
text information, such as the number of clients, and the data they
. . . are downloading. Thiotel and flight reservatioeervices are web
4.4.1 Supporting Component-based Reconfigurationseryices as described subsubsection 4.3and4.3.2 provided by
The Travel Exploration service described above, can be imple- third party service providers. Such reservation services may pro-
mented by software supporting different types of adaptation, such vide the possibility of applying web service policies, but a part
as configurable component models and adaptive middleware. Infrom that, the services are not configurable. Tgsymentser-
[9], we demonstrated how such an adaptive middleware can be in-vice is a web service provided by the financial department of the
tegrated into the QA middleware. In order to integrate therkc- travel agency. Considering the strict security requirements of fi-
TAL component model3], and adaptation mechanisms based on nancial transactions, these services typically have fixed functional
this technology, we developedraactal platformthat was able to and non-functional requirements-e., security policies—that can
instantiate and adapt application lay&rA€ TAL components to the not be altered.

In order to evaluate the solution described in this paper, we illus-
ate in more details how cross-layer adaptation is achieved by ap-
plying the QUA middleware to the example technologies described
in section 4 Finally, we evaluate the solution by applying the re-
quirements presented subsection 4.1

currently available resources. When the complete implementation has been selected, the mid-
The Fractal platform depends on an implementation of the Frac- dleware starts instantiating the composed service in a bottom-up

tal component runtime, afsrchitecture Description Language fashion, starting with the partner link services. Each partner link

(ADL) called FRACTALADL [12], used to deploy RACTAL ap- service platform is invoked to instantiate the implementation en-

plications, and a component reconfiguration script language and capsulated by the selected blueprint. The way the partner link ser-
interpreter called FSRIPT[5]. Implementation classes, ADL de- vices are instantiated and configured, depends on the level of con-
scriptors and reconfiguration scripts were deployed to thed~ trol facilitated by the partner link service provider. Thetel and

TAL platform asFractal blueprints and they were accompanied by flight reservatiorservice partner link services are existing web ser-

vices residing in external administration domains. Thus, their im- applied to achieve cross-layer adaptation that performs adaptation
plementation cannot be inspected and manipulated in any way, theyon the service interface layer and the application layer in an inte-
can only be accessed through their specified web service end-pointgrated fashion, while preserving the loose coupling and autonomy
In such cases, instantiation does not include the actual creation ofogrstefgvr'csees};/ilcnefﬁglrgl VAVOII:léé\I’I]V’l%(%aLlR)t?’] :Xé?ig(tji éﬂ's work with sup-
instances, but rather connecting to the external service instan(:es,p g 9 ’
and return proxy references to it. On the other hand, the tomag|

; : ; : 7. REFERENCES
explorationservice provides RACTAL control interfaces that can [i] T. V. Batista, A. Joolia, and G. Coulson. Managing Dynamic

be exploited for component instantiation and configuration by the Reconfiguration in Component-Based System&rid European
FRACTAL platform. Workshop on Software Architecture (EWS#&lume 3527 o NCS
Finally, the middleware can initiate adaptation of the application pages 1-17. Springer, June 2005.

during the execution of the services. If new implementations are [2] G.Brachaand D. Ungar. Mirrors: Design Principles fortikevel
selected, reconfiguration is performed by the service platforms. For Facilities of Object-Oriented Programming Language<.9th

: ; Annual Conference on Object-Oriented Programming, System
example, web services that becomes unavailable can be replaced, Languages, and Applications (OOPSLAages 331-344. ACM,

and FRACTAL components that are not performing good enough, 2004.
can be re-planned by the planning framework, and reconfigured by [3] E.Bruneton, T. Coupaye, M. Leclercg, V. Quéma, and J.tBfai.
the FRACTAL platform. The FRRACTAL component model and its support in JaSaftware
. Practice and Experience (SPE6(11/12):1257-1284, Aug. 2006.
5.2 Assessment of the Requirements [4] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, Kel e
In subsection 4,1we presented four requirements that cross- J. Ueyama, and T. Sivaharan. A Generic Component Model for

Building Systems SoftwarddCM Transactions on Computer Systems
(TOCS) 26(1):1-42, 2008.

[5] P.-C. David and T. Ledoux. An Aspect-Oriented Approach f
Developing Self-Adaptive RACTAL Components. I5th

layer adaptation should discuss. When applying these requirements
to the proposed solution, we conclude that:
1. It does not depend on concrete adaptation acticastions

are encapsulated by the platform framework and technology- International Symposium on Software Composition (Saljime
specific information in the blueprints (cf. subsect®g); 4089 ofLNCS pages 82-97. Springer, Mar. 2006.

2. Itis applicable to both loosely and tightly coupled systems [6] F. Eliassen, E. Gjgrven, V. S. W. Eide, and J. A. Michaelse
i.e, both loose coupling to web services end-points (cf. sub- Evolving self-adaptive services using planning-baseecétie
subsectiont.3.3 and tightly coupled components (cf. sub- middleware. InProceedings of the 5th International Middleware

Workshop on Adaptive and Reflective Middleware (ARMme

Se_Ct'Otr;lA'A); . d . lated i f 190, pages 1-6, Nov. 2006.
3. Itis able to |ntegre.1te a .aptatlon related control Intertaces [7] T. Erl. Service-Oriented Architecture: Concepts, Technologg, an
where they are availableie., FRACTAL controllers (cf. sub- Design Prentice Hall PTR, 2005.
sectiond.4); [8] A. Erradi, P. Maheshwari, and V. Tosic. Policy-Drivenddieware
4. It is able to integrate autonomous servieese., web ser- for Self-adaptation of Web Services Compositionsztim
vices end-points as in subsubsectib8.1 International Middleware Conferenceolume 4290 oL NCS pages
Through the planning and platform framework, and the common 62-80. Springer, Nov. 2006.

service meta-model, mechanisms from the service interface layer [9] E- Gierven, F. Eliassen, and R. Rouvoy. Experiences from

- - : . Developing a Component Technology Agnostic Adaptation
and the application layer can be integrated, in order to bridge the Framework. InL1th International Conference on Component-Based

two layers, while preserving the SOA principles. Thus, we ensure Software Engineering (CBSBJolume 5282 oL NCS Springer, Oct.

that web services managed by th&&Q middleware can still be 2008.
accessed by any web service client, also clients that are unaware 0f10] IBM. Web Services Policy Framework, Mar. 2006.
the QUA middleware. [11] J. O. Kephart and R. Das. Achieving Self-Management \tiity)

Even though WS-Policy, BPEL, and similar languages have been Functions|EEE Internet Computingl 1(1):40-48, 2007.
used by several projects to provide adaptive web service coordina-[12] M. Leclercq, A. E. Ozcan, V. Quéma, and J.-B. Stefani.(&ufing
tion and orchestratior8[15, 18], we are not aware of any projects Heterogeneo_us Architecture Descriptions in an_Exte_nQTbtéset. In
that has been able to provide principled solution to combine such 29th International Conference on Software Engineering}

. L . . . pages 209-219. IEEE, May 2007.

Ianguag(_es with appllcatlon_level adaptatl_on me_char_usms. The mid- 13] OASIS. Web Services Business Process Execution Layguspr.
dleware is able not only to integrate services with different degrees 2007.
of available adaptation support, but also to exploit the adaptation [14] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, anBit&v.
mechanisms when available. As demonstrated by the examples, the ~ Composing Components and Services using a Planning-based
technology-agnostic planning and platform frameworks and meta- Adaptation Middleware. I7th International Symposium on Software
model, enables the WSERNNER middleware to recursively ex- Composition (SC)volume 4954 oL NCS pages 52-67. Springer,
ploit technology specific adaptation mechanisms to both the service Mar. 2008.

: o . .. [15] S. Tai, R. Khalaf, and T. A. Mikalsen. Composition of Cdmrated
interface layer and the application layer, without compromising the Web Services. Ifth International Conference on Middleware

principles of loose coupling, autonomy, and implementation and volume 3231 oLNCS pages 294-310. Springer, Oct. 2004.

platform encapsulation. [16] M. Tian, A. Gramm, H. Ritter, and J. H. Schiller. EfficiengI8ction
and Monitoring of QoS-Aware Web Services with the WS-QoS

6. CONCLUSIONSAND FUTURE WORK Framework. Innternational Conference on Web Intelligence (WI)

pages 152-158. IEEE, Sept. 2004.

In this paper we described an adaptation middleware that is able[17] T, vy and K.-J. Lin. Adaptive algorithms for Finding Repkement

to support the. integration and exploitation (.)f various adaptation Services in Autonomic Distributed Business Processegthn
technolpgles, lnc_ludlng SOA'baS.e.d adapt_atlor_l mechanisms such International Symposium on Autonomous DecentralizeceSysst

as service selection and composition. This middleware separates saps) pages 427-433. IEEE, Apr. 2005

between the adaptation framework, providing technology indepen- \ T)

dent adaptation reasoning and adaptation strategies, and adaptatioHB] :j' iehnfﬁng:gi\?Jﬁg’,\';?iagl'e'vv%fé'\fﬁerWug:)aéé}]\}isslsaggf‘nn;oﬁtion
mechanisms, which are technology specific. In the context of SOA- : et ; : 311

based applications, we demonstrated that the middleware can be IEEE Transactions on Software EngineeriBg(5):311-327, 2004.

	Introduction
	Related work
	The QuA Middleware
	Service Meta-object Protocol
	Planning Framework
	Platform Framework

	Designing a Cross-layer Adaptation Middleware for SOA
	Self-adaptive SOA-based Systems
	Cross-layer Adaptation Middleware
	Integration of Service Interface Layer Adaptations
	Supporting Web Services Interfaces
	Supporting Web Services Policies
	Supporting Web Services Compositions

	Integration of Application Layer Adaptations
	Supporting Component-based Reconfiguration
	Supporting Legacy Applications

	Evaluation
	Example: Travel Planning Scenario
	Assessment of the Requirements

	Conclusions and Future Work
	References

