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Abstract—With today’s widespread deployment of wireless
technologies, it is often the case that a single communication
device can select from a variety of access networks. At the
same time, there is an ongoing trend towards integration of
multiple network interfaces into end-hosts, such as cell phones
with HSDPA, Bluetooth and WLAN. By using multiple Internet
connections concurrently, network applications can benefit from
aggregated bandwidth and increased fault tolerance. However,
the heterogeneity of wireless environments introduce challenges
with respect to implementation, deployment, and protocol com-
patibility. Variable link characteristics cause reordering when
sending IP packets of the same flow over multiple paths.

This paper introduces a multilink proxy that is able to trans-
parently stripe traffic destined for multihomed clients. Operating
on the network layer, the proxy uses path monitoring statistics
to adapt to changes in throughput and latency. Experimental
results obtained from a proof-of-concept implementation verify
that our approach is able to fully aggregate the throughput of
heterogeneous downlink streams, even if the path characteristics
change over time. In addition, our novel method of equalizing
delays by buffering packets on the proxy significantly reduces IP
packet reordering and the buffer requirements of clients.

Index Terms—Wireless networks, heterogeneous systems, traf-
fic analysis, network protocols, scheduling, measurements.

I. INTRODUCTION

The growing deployment of wireless infrastructure and tech-

nologies, such as WLAN, HSDPA, Bluetooth, and WiMAX,

often places a single user device within coverage range of

multiple access networks. At the same time, there is an ongo-

ing trend towards integration of heterogeneous radio interfaces

into single end devices. An example scenario of a laptop that

communicates over both a WLAN and an HSDPA access

network is shown in Figure 1.

Despite the rise of wireless connectivity, from a user’s point

of view, Internet access is usually provided using a single link

at each point in time. Although multiple networks may be

accessible simultaneously, users are today still unable to freely

combine available connections and are required to choose a

default link over which all traffic will flow.

Using multiple concurrent network connections has several

potential benefits. Increased throughput by aggregation of

bandwidth is the most intuitive advantage. For applications

that open many transport sessions at once, this can be achieved

on most operating systems by proper configuration of routing

tables. Other benefits include increased service reliability,

latency reduction, fault tolerance by sending redundant data

over different paths, and enhanced mobility when combining

coverage areas of independent access networks.

The final target of our work is a multilink solution that al-

lows easy deployment and installation. The main requirement

is that any third-party server application, operating system,

and infrastructure should remain unchanged. Additionally, the

client-side operating systems should not have to be modified.

For enabling the concurrent use of multiple access networks at

the multihomed clients, a quick and user-friendly configuration

of network interfaces, routing tables, traffic rules, etc., would

be desirable. A solution is needed that is robust in severely

heterogeneous environments, compatible with all end-to-end

applications and transparent to any transport protocols.
For meeting the requirements and reaching the goal of

transparently striping packets to multiple addresses at a single

receiver, many challenges exist. The major difficulties are

caused by the heterogeneity of wireless links. As shown

in [1], when IP packets that belong to the same flow are

sent over highly variable wireless links, it is possible to

achieve increased throughput, but at the cost of high packet

reordering at the receiver. Packet reordering is crucial for the

buffer requirements at the clients, and it has negative effects

on the performance of transport protocols that make certain

assumptions (such as interpreting reordered packets as lost).

Fig. 1. A multilink proxy is used to schedule traffic from a server to all
available interfaces on a client, which is simultaneously connected to a WLAN
and an HSDPA access network.

Previously, contributions to multilink transfer (more gener-

ally referred to as inverse multiplexing [2]) have been proposed

on many layers of the protocol stack (see Section II). However,

there has not yet been a breakthrough in allowing a user-

friendly and simultaneous utilization of multiple available

interfaces. Although there is increased interest in this topic,

in practice, it is usually the operating system that selects a

default network interface to be used for communication, while

any other interface remains idle. The reasons for the lack of a



commercial and technological breakthrough lie in the current

Internet architecture and payment models. Even though it is

possible to implement the above mentioned benefits on any

layer of the protocol stack, no solution has yet been found

that is not hindered by deployment issues and that is free of

negative effects to mechanisms on other layers.

This paper introduces the design of a multilink proxy,

which is able to transparently stripe traffic from servers to

multihomed clients, as shown in Fig. 1. We operate on the

network layer to achieve transport protocol transparency, and

our focus has been on downlink streaming of UDP traffic. Our

architecture includes the following functional components:

1) Support for network-layer striping

2) Bandwidth aggregation of multiple client interfaces

3) IP packet queuing for equalizing heterogeneous delays

4) Monitoring of path characteristics

The first component, network-layer multilink support, rep-

resents the base functionality, which all other components

build on. It is solved with network address translation (NAT).

The second component, the scheduler, assigns packets to links

according to experienced throughput. The third component,

the delay equalizer, is used to delay packets in the proxy in

order to reduce packet reordering at the client. The fourth

component, the path monitor, measures the different link

characteristics and uses them to optimize the scheduler and

the delay equalizer.

We demonstrate that network-layer packet striping is able to

fully aggregate the bandwidths from a proxy to multiple client

interfaces. In order to optimize for the common case of data

downloads, the current focus of our analysis is on pure UDP

streams. Experimental results obtained in a proof-of-concept

implementation show that the proxy manages to dynamically

adapt to changes in throughput and latency. In contrast to

related research efforts, the presented solution is able to avoid

tunneling overhead and actively reduces the workload at the

client by buffering packets on the proxy.

This paper continues with a comprehensive description of

related work in Section II. The following Section III introduces

the details of our suggested proxy architecture and its imple-

mentation in Linux version 2.6.28. After presenting results in

Section IV, the final conclusions are drawn in Section V.

II. RELATED WORK

For several years, a lot of contributions to inverse multiplex-

ing, multilink transfer, and bandwidth aggregation have been

published. The most distinct way of categorizing the existing

work is by the layer in the network protocol stack a solution

is positioned. Different approaches require different changes

to servers, clients, proxies, or a combination of these. What

all approaches have in common, no matter on which layer, is

a method to schedule data over different links and a method

to later combine the diverted bytes again.

A. Application-Layer Striping

Bandwidth aggregation on the application layer has been

proposed in various forms. For instance, the method presented

in [3] modifies the FTP protocol to establish several connec-

tions when a transfer is initiated. The data to be transferred is

divided into fixed-size segments and sent on the first connec-

tion that is able to transfer data (i.e., when the socket is not

blocking). In [4], a purely client-based method is described,

which assigns newly established transport-layer connections to

one of the available interfaces and exploits traffic patterns of

individual subscribers for optimal flow scheduling.

However, traffic scheduling at the flow level has the dis-

advantage that concurrent flows must exist for bandwidth

aggregation to be exploitable. If only a single flow exists,

or if the throughput of one connection dominates all others,

the performance increase will be negligible. If both the server

and client are controllable, a single flow can be divided into

several flows and striped across all the links. This approach is

suggested in [5] for dynamic, packet-wise scheduling of TCP

streams over multiple paths.

Other research efforts in the highest layers of the protocol

stack focus on decoupling striping decisions from the appli-

cation by providing specialized middleware or a single virtual

network socket. For instance, an architecture for session-layer

striping is proposed in [6], while a networking middleware

for providing network striping capabilities to applications with

high demands on uplink throughput is presented in [7].

The drawback of all these network-layer approaches is that

they imply software modifications at both endpoints to allow

the full potential of bandwidth aggregation. In most cases,

the server belongs to a third party, which poses a barrier to

immediate deployment.

B. Transport-Layer Striping

Transport protocols build on the unreliable network layer

functionality to transparently provide end-to-end connections.

Current standardized transport protocols do not support net-

work striping and may experience severe performance degra-

dation from IP packet reordering. Nevertheless, numerous

attempts have been made to tune existing transport protocols

for multipath capability.

For instance, the work presented in [8] significantly modifies

TCP to use multiple paths using mechanisms for handling

packet reordering and bottleneck detection. Multiple paths are

provided by an overlay network, which guarantees interoper-

ability with arbitrary IP networks. In [9], a transport protocol

extension to RTP is described, which is specialized for real-

time multimedia transfer over ad hoc networks. It assumes

an underlying multipath routing topology and a complemen-

tary TCP-variant for session/flow control. In [10], exploiting

SCTP’s multihoming feature to simultaneously transfer data

across multiple end-to-end paths has been suggested. The

proposed concurrent multipath modifications to SCTP enable

a congestion window evolution very similar to having two

separate SCTP connections. A comprehensive overview of

recent solutions targeting transport-layer support of multilink

striping is provided in [11].

Consequently, approaches targeting the transport layer are

very difficult to deploy, because severe changes to operating



systems and already standardized protocols are necessary, with

little chance of being widely accepted in the near future.

C. Network-Layer Striping

Several research efforts on network-layer striping exist, as

well. The general network-layer approach, as followed in [12]–

[14], is to use tunneling mechanisms for transparently redi-

recting packets from the server or a proxy to all IP addresses

at the client. However, the reported solutions are often based

on assumptions and numbers that are unavailable in real-life

deployments. For example, the solution presented in [13] relies

on link-layer feedback from base stations, such as the time

the wireless channel requires until it is available for the next

transmission. The fact that most approaches have only been

tested in simulations, often based on very simple assumptions

about heterogeneity, adds to our skepticism on deployability.

Both the round-trip time and the throughput of a wireless

link are highly dependent on time. Our field measurement

results, described in [1] and [15], contradict frequently made

assumptions about the characteristics of heterogeneous links,

which are often modeled too evenly and not very realistically.

For example, the 30ms delay for both WLAN and UMTS

reported in [16] does not coincide with the field measurements

we have obtained. The delay characteristics of heterogeneous

network technologies may exhibit much larger differences and

the used packet size additionally affects the delay disparity. For

two endpoints that are 8 IP hops apart, Figure 2 depicts the

average round-trip times of WLAN and HSDPA.

Fig. 2. The heterogeneity of round-trip times is one of the most dominant
challenges when aggregating wireless links, such as HSDPA and WLAN. In
truly heterogeneous environments, varying the packet size has negligible effect
on equalizing the latency of multiple links.

Another indication of the general underestimation of net-

work heterogeneity can be detected in [14]. In this work by

Phatak et al., the conclusion is drawn that packet sizes can be

adjusted to equalize round-trip times. While this is true to a

certain degree, for truly heterogeneous links it can easily be

verified that using different packet sizes per link may have no

significant effects on equalizing the RTTs. Figure 2 illustrates

that the round-trip times over WLAN and HSDPA may always

experience a significant delay difference, no matter how the

packet sizes are chosen.

D. Link-Layer Striping

Multiple interfaces of the same technology can also be

striped for better performance at the link layer, which is

referred to as bonding or trunking. The main idea of bandwidth

aggregation on the link layer is to stripe data across a bundle

of physical channels, as done in [17] and [18]. A method

for channel aggregation in cellular networks is described in

[19]. In order to improve resilience, parity codes are applied

across channels rather than across packets. Another interesting

approach is followed in [20], where it is proposed that users

of WLANs should be able to multihome and split their

traffic among all available access points, based on obtained

throughput and a charged price.

However, a link-layer solution of striping data through

heterogeneous networks and to different IP addresses is not

feasible because the link layer has no notion of IP. This leaves

us with the network layer as the most promising candidate for

tackling multilink transfer.

III. MULTILINK ARCHITECTURE

This chapter describes the implementation of our multi-

link proxy and the involved architectural elements used for

enabling network-layer packet striping. The final solution is

anticipated to consist of a cross-platform software package that

users can easily download and install on their end devices. This

software creates a connection to the nearest available proxy

(most likely over multiple IP hops) and communicates the IP

addresses of the various available interfaces. The proxy is also

informed when interfaces are added or removed.

A. Using a Proxy

The advantage of a proxy solution is that it is fully

controllable and allows servers to remain unchanged. Some

modifications on the multilinked clients are still necessary,

but they can be reduced to configuration issues. Figure 3

depicts the network-layer striping functionality of the proxy. A

transport-layer connection originating at the server is transpar-

ently divided at the proxy and recombined at the client, with

the transport layer being completely unaware of the fact that IP

packets traveled over multiple independent access networks.

Fig. 3. Network-layer striping – By employing network address translation
at the proxy, a downlink packet stream is transparently divided to multiple
client interfaces, where the stream is combined again.

There is a tradeoff between the amount of intelligence on

the client and on the proxy. Moving functionality to the client’s

stack, or into its application layer, might severely increase

the workload and buffer requirements of thin clients, such as



mobile phones. On the other hand, scalability issues might

arise when introducing proxies. For the proof of concept

implementation in this paper, scalability issues are not a

concern. They will be studied in the future.

The proxy is composed of four functional elements, which

have already been outlined in the introduction and will be

described more thoroughly below. Figure 4 shows the internals

of the proxy with these four elements: NAT, Packet Scheduler,

Delay Equalizer, and Path Monitor.

Fig. 4. Internals of the multilink proxy – The destination address of incoming
packets is rewritten according to a weighted round-robin schedule. Latency
differences are equalized by queuing packets destined to travel over a fast
path. Dynamic adaptation to differences in throughput and delay is facilitated
through path monitoring feedback from the client.

To the best of our knowledge, the only use of a network

proxy for bandwidth aggregation to multihomed hosts has been

mentioned by Chebrolu et al. [12], [13]. However, in contrast

to their research, we do not assume that the base stations are

placed within the same administrative system. Our proxy can

be located anywhere in the Internet, preferably close to the

clients it serves. In addition, the only feedback the proxy

receives is from the clients; it is totally independent of any

sort of feedback from base stations or other elements within

an access network. We assume the access networks to be black

boxes that induce variable path characteristics.

B. Network Address Translation

While we envision the sender to be any third-party server in

the Internet, both the client and the proxy must be configured

for transparent traffic redirection. In contrast to all previous

research efforts that rely on tunneling mechanisms (such as

[14] and [13]), our solution makes use of NAT. For scheduling

packets to arbitrary client interfaces, the proxy rewrites the

default destination IP address (and port) to the address of

a secondary interface. For packets that do not arrive at the

default interface, the client does the inverse address translation

and forwards them internally.

Even though our approach induces no additional encapsula-

tion overhead and does not suffer from packet fragmentation

problems, the main reason for following a NAT solution is

its easy configuration on both the proxy and the client. For

instance, in Linux, iptables commands are sufficient to achieve

the desired redirections.

C. Packet Scheduler

NAT alone is insufficient for sending packets over various

paths. For bandwidth aggregation, a scheduler is needed that

decides for each packet to which client interface it should

be sent. On the proxy, this function is implemented as a

dynamically loadable kernel module (see Figure 4).

Since the available interfaces at the client experience vari-

able throughput, IP packets should be forwarded at the esti-

mated throughput ratio. We propose the use of a send vector

for allowing both static and dynamic packet striping. The send

vector contains the order of client interfaces (identified by

integers) to be picked and is used to decide the forwarding

destination of incoming packets at the proxy. A pointer into

the send vector is incremented after each lookup and reset

when the end is reached or when the vector is updated.

During initialization, the send vector V is set to emulate pure

round-robin behavior, i.e., V = {0, 1, ...,m} for m client

interfaces. Once the path monitor (Section III-E) has received

new information about the throughput ratio, it updates the

send vector accordingly. For the bandwidth estimates of two

interfaces, which correspond to two weights w0 and w1, the

send vector V is constructed as described in Algorithm 1, a fair

variant of weighted round-robin scheduling.

Algorithm 1 createSendVector(n, w0, w1)

Input: Vector length n ∈ N>0 and weights w0, w1 ∈ R≥0

Output: Send vector V of length n
1: V = zeros(n); {initialize V with n zeros}
2: r = w1/(w0 + w1); {calculate weight ratio}
3: r = round(r ∗ n)/n; {adjust r such that r ∗ n is an integer}
4: for i = 1 to r ∗ n do
5: V (⌈i/r⌉) = 1;
6: end for

Send vectors for more than two client interfaces can be

created by recursively merging send vectors created for two

weights. The main idea is illustrated in Figure 5, in which

a send vector is constructed based on three weights that

correspond to throughput estimates of 2, 3, and 5Mbit/s. In

the first step, Algorithm 1 returns V0 = {0, 1, 1, 0, 1} for the

weights w0 = 2 and w1 = 3. In the second step, Algorithm 1

is again called for the combined weight of w0 + w1 = 5
and w2 = 5, which returns V1 = {0, 2, 0, 2, 0, 2, 0, 2, 0, 2}.
Overwriting the zeros in V1 with the elements of V0 will result

in the final send vector V = {0, 2, 1, 2, 1, 2, 0, 2, 1, 2}. The
same procedure can be continued for m interfaces.

Proposition: A binary send vector V of finite length n
will often be unable to accurately represent the ratio of two

measured bandwidths b0 and b1. Errors in approximating the

true ratio translate directly into a less efficient aggregation of

bandwidth. The error is bounded and never exceeds 1

2n
.

Proof: The approximation error is the difference between

the actual bandwidth ratio rBWs = b0/(b0 + b1) and the

send vector’s approximated ratio rV = m/n, where m is the



Fig. 5. Example – the recursive creation of a send vector for a client with
three interfaces. The weights correspond to measured bandwidth estimates of
2 Mbit/s (w0), 3 Mbit/s (w2), and 5 Mbit/s (w2).

number of zeros in the vector and n−m the number of ones

(n ≥ m,m ∈ N). The approximation error Err is defined as:

Err = |rBWs − rV | (1)

In the worst case, m will differ from its ideal value rBWs∗n
by ± 1

2
. Thus, we can write m = rBWs ∗ n ± 1

2
and replace

it into Equation 1:

Err =
∣

∣

∣
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m

n
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∣

∣
=

∣

∣

∣

∣

rBWs −
rBWs ∗ n ± 1

2

n

∣

∣

∣

∣

(2)

For an upper limit on the error, this simplifies to:

Err ≤
1

2n
(3)

A generalization of this worst-case analysis to more than

two links is beyond the scope of this paper.

D. Delay Equalizer

In practical wireless environments, IP packet reordering

depends mostly on variances in delay [1], not bandwidth. If

all available paths were of constant and equal delay, packets

would always arrive in order, no matter which destination

interface the scheduler picks. Therefore, for mitigating IP

packet reordering, a dynamic scheduler is needed that adapts

to both throughput and delay estimates.

While the previously described packet scheduler handles

bandwidth aggregation, the delay equalizer is implemented as

an independent user space module, where packets are delayed

for a short while if they are destined to travel over a low-

delay path pi (with i ∈ {1, ...,m}). Thus, the delays di

of m paths are equalized so that packets should experience

similar latencies over all paths. In order to always use up-to-

date estimates on the path delays di, feedback from the path

monitor (Section III-E) is used.

If a packet is destined to travel over a path pi, the total

time Ttoti
that it should be held in the buffer is the difference

between the estimated path delay di and the highest measured

delay of all paths dmax = max(di), i ∈ {1, ...,m}:

Ttoti
= dmax − di (4)

Since packets should be guaranteed to travel in-order over

individual links, the buffer for each path is implemented as a

FIFO queue. Every packet that enters the queue is released a

given time offset Tδi
after the previous packet in the queue.

This time offset is dominated by the interarrival time TIATi
,

which is measured for each packet coming into the proxy.

Additionally, the time offset Tδi
depends on measurement

updates from the path monitor. Given the current delay es-

timate dicur
and a new measurement dinew

of path pi, the

wait time offset Tδi
is defined as:

Tδi
= TIATi

+ (dinew
− dicur

) (5)

For illustrative purposes, assume that there are two paths

p0 and p1 from the proxy to the client with estimated delays

d0 = 30ms and d1 = 10ms, implying that the packets

destined for p1 will be delayed by 20ms. The throughput of

p0 is estimated to 3.8Mbit/s and p1 to 2.2Mbit/s. Follow-

ing Algorithm 1, this results in an 11-element send vector

V = {0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1}. The stream from the server

is offered in packets of 1500 bytes at 6Mbit/s, which ideally

translates to a time of 2ms between incoming packets at the

proxy. Table I lists all the values needed in the procedure

of equalizing the heterogeneous path delays. Looking at the

values for the arrival times at the client makes it clear that in

an ideal scenario with predictable delays, the delay equalizer

is able to perfectly avoid packet reordering.

TABLE I
EXAMPLE DELAY EQUALIZING PROCEDURE

Packet sequence number 1 2 3 4 5 6 7 8 9 10 11
Send vector 0 0 1 0 0 1 0 1 0 0 1

Arrival time at proxy (ms) 0 2 4 6 8 10 12 14 16 18 20
Wait time offset Tδi

(ms) 0 0 20 0 0 6 0 4 0 0 6
Total wait time Ttoti

(ms) 0 0 20 0 0 20 0 20 0 0 20
Departure time from proxy (ms) 0 2 24 6 8 30 12 34 16 18 40

Arrival time at client 30 32 34 36 38 40 42 44 46 48 50

This method allows the reduction of IP packet reordering

without any changes to the operating system at the client. A

packet buffer at the proxy can also be useful in case the offered

load from the server exceeds the aggregated bandwidth of all

client interfaces.

E. Path Monitor

The path monitor is a user space tool implemented at the

proxy. It collects estimates of path throughput and latency

used for optimizing the packet scheduler and delay equalizer.

For simplifications in our testbed setup, delay estimates are

derived from sending TCP probe packets every 200ms and

measuring the time until an ACK returns, while throughput

estimates are obtained by measuring the client’s incoming data

rate. In order to compensate for high variances in reported

feedback, the path monitor reports the average of the 10

most recent measurements. A disadvantage of this approach is

that inaccuracies can be caused during congestion and when

retransmissions delay later measurements. Thus, for our results

we made sure that the network had close to no loss and enough

bandwidth to support control traffic.

Packet pairing, a method less affected by congestion, has

been described in [21]. The idea is to send consecutive packet



pairs over the same path and to derive the bandwidth from the

time difference of arrival. We use packet pairs to check for

available bandwidth when the send vector locks to unwanted

patterns, such as V = {0, 0, 0, 0, ...}, and plan to utilize it for

all throughput monitoring in the future.

There exists a tradeoff between the monitoring overhead and

the accuracy of the send vector. Frequent monitoring updates

allow the send vector to become accurate more quickly, but it

also introduces more traffic and calculation overhead.

IV. RESULTS

This section addresses the two conflicting main goals of the

multilink proxy through experimental verification. Is it possi-

ble to aggregate the bandwidth of multiple client interfaces, no

matter how heterogeneous the links are? At the same time, is

the delay equalizer able to mitigate IP packet reordering and

to reduce the buffer requirements at the client?

A. Testbed Setup

For measuring the performance of the multilink proxy, an

experimental, basic testbed was set up as shown in Figure 6.

This test network contains a client machine with two network

interfaces, a server machine that streams packets at a constant

bitrate, and the proxy machine that transparently schedules

the packets to different client interfaces. All machines are

connected with 100Mbit/s Ethernet links. For varying the test

parameters, the netem network emulator was used to throttle

the bandwidths to the client and to introduce additional latency.

Fig. 6. Multilink test network – The netem tool is used to emulate link
heterogeneity (bandwidth and latency) in a controlled manner.

While the performance of bandwidth aggregation can be ex-

pressed in Mbit/s, getting a notion of the amount of reordering

in a packet sequence is less straightforward. Various metrics

for IP packet reordering have been defined in the literature

(e.g., [22]) and by standardization efforts in the IETF. Where

appropriate, we report the number of packets that arrived

with an out-of-order sequence number, as defined in RFC

4737 [23]. However, counting the number reordered packets

is often insufficient to express the magnitude of disorder and

its implications, such as buffering requirements.

On the client, packet reordering can be reduced through

the use of a buffer, where every incoming packet is stored if

its sequence number is greater than the currently expected. If

more out-of-order packets arrive than the buffer can hold, they

must be discarded. The intuitive measure of a buffer’s load,

the average buffer occupancy, has been defined in RFC 5236

[24]. However, the average buffer occupancy does not give

much insight on the number of packets that were discarded

due to overflows. In addition to the share of reordered packets,

we report the 95th (or 99th) percentile values of the buffer

occupancy to express the buffer size needed to guarantee at

most 5% (or 1%) packet discards.

B. Bandwidth Aggregation

In a first experiment, it is shown that a send vector-based

approach is able to fully aggregate two links, regardless of

their bandwidth ratio. For this, the incoming bitrate was set

to a constant 6Mbit/s, while the two links from the proxy

to the client were throttled so that their bandwidths summed

up exactly to the offered load of 6Mbit/s. The send vector

was limited to 64 elements and no additional latency was

introduced. Table II shows that for all chosen bandwidth

ratios, the aggregated throughput at the client was measured as

5.99Mbit/s and at most 0.12% traffic was lost. These results

are statistics of 5 experiment batches, each lasting 10min.

TABLE II
THROUGHPUT AGGREGATION FOR VARIOUS BANDWIDTH RATIOS

Bandwidth ratio 1:11 2:10 3:9 4:8 5:7 6:6

Avg. aggregated throughput (Mbit/s) 5.99 5.99 5.99 5.99 5.99 5.99
Out-of-order packets (%) 1.56 1.98 1.68 1.29 2.03 0.09
95th percentile buffer occupancy (packets) 0 0 0 0 0 0
99th percentile buffer occupancy (packets) 1 1 1 1 1 0
Lost packets (%) 0.10 0.12 0.11 0.05 0.04 0.01

For the stable links used in this experiment, the observed

packet reordering is comparable to the 0.01 - 1.65% [25]

and 1 - 1.5% [26] reported for wired, high-speed networks.

Additionally, our low buffer occupancy values show that in

99% of the time a buffer with capacity for only 1 packet is

able to avoid packet discards.
Small amounts of packet loss are caused during an experi-

ment’s initialization phase, when the round-robin send vector

V = {0, 1, 0, 1...} is unable to correctly represent the actual

bandwidth ratio. Therefore, one link becomes congested for

a short time until the first feedback messages from the path

monitor are able to stabilize the send vector to a pattern that

is able to represent the true ratio.
Even when the bandwidth characteristics are unstable and

change over time, the multilink proxy is able to adapt dy-

namically. Figure 7 depicts this behavior with results obtained

from an experiment in which the emulated links were abruptly

changed at constant intervals of 30 seconds. Systems without

support for packet striping can only achieve the throughput

of either Path 1 or Path 2, while our approach is able to

aggregate the throughput of both paths. The visible spikes

in the curve of the aggregated throughput are caused by the

path monitor’s needed time to adjust the send vector to a

new pattern. Therefore, the bandwidth estimates are briefly

imprecise, which leads to short spikes in throughput.

C. Reduction of Packet Reordering at the Client

In a second experiment, we investigated how proxy-based

packet buffering affects the client workload. We used the



Fig. 7. Adaptive bandwidth aggregation – A send vector based on path
monitoring feedback is able to adapt to arbitrary bandwidth changes. In this
example, the bandwidths of Link 1 and Link 2 always sum up to 6 Mbit/s.

testbed described in Section IV-A and the server streamed

packets at 6Mbit/s. However, in this experiment, the two links

between the proxy and the client had no bandwidth limitations,

so that a static send vector V = {0, 1} was used.

Figure 8 shows that a packet buffer on the proxy is able to

significantly reduce the number of reordered packets. When

the delay equalizer module is disabled, the buffer occupancy

grows as the delays become increasingly heterogeneous. When

the delay equalizer is enabled, the buffer occupancy at the

client is decreased. Under stable network conditions, a buffer

with the capacity of a single packet would be enough to

guarantee less than 1% packets to be lost due to overflows.

Fig. 8. Reducing IP packet reordering – At the proxy, a buffer is used to
delay packets over the low-latency link by putting them into a buffer. This is
useful to compensate for latency differences and to reduce the client workload.

A conventional packet striping solution, without the func-

tionality of a delay equalizer, requires buffering at the client

that increases with the degree of delay heterogeneity. In con-

trast, multihomed clients connected to our proxy can benefit

significantly from the reduction in IP packet reordering.

Even when the links are unstable and exhibit variances in

delay, our multilink proxy is able to compensate for part of

the heterogeneity. For illustrating this by means of an arbitrary

scenario, we have modeled the two paths from the client

to the proxy to roughly resemble the heterogeneity between

WLAN and HSDPA. The delay of the first path was set to an

average of 10ms with ±5ms jitter (normally distributed) and

the delay characteristics of the second path were set to 50ms

and ±15ms jitter (uniformly distributed).

Figure 9 illustrates the influence of the delay equalizer on

packet reordering. When the delay equalizer was disabled,

almost all packets experienced reordering with peak displace-

ments of −10 and +10 sequence numbers. However, with

the delay equalizer enabled, these peaks were merged into a

single peak at 0, implying that the largest share of the packets

exhibited no reordering at all. This shift results in a reduction

of the 99th percentile value of the buffer occupancy from

18 packets to 9 packets; in other words, a 50% decrease in

buffer requirements.

Fig. 9. Buffering packets at the proxy is able to considerably reduce IP
packet reordering even if the used links exhibit variable delays.

D. Coping with Dynamic Bandwidth and Delay

In a last experiment, we compared the performance of the

multilink proxy to pure round-robin packet striping, while both

the throughput and delay characteristics were dynamic. The

parameters used were a combination of the two previously

conducted experiments. The incoming bitrate at the proxy was

set to 6Mbit/s, while the bandwidth of the two paths from the

proxy to the client were given random values that add up to

6Mbit/s (as in Fig. 7). The paths to the client were modeled

with the approximate latency characteristics of WLAN and

HSDPA, analogous to the values used in Section IV-C.

TABLE III
COPING WITH COMBINED BANDWIDTH AND DELAY VARIATION

Round-robin striping Multilink proxy

Average aggregated throughput 4.49 Mbit/s 5.86 Mbit/s
99th percentile buffer occupancy 26 packets 9 packets
Packet loss 25% 2.2%

The results of this experiment are summarized in Table III.

They clearly show the combined benefits of the packet sched-

uler and the delay equalizer modules. The multilink proxy



outperforms pure round-robin packet striping in all aspects:

it achieves higher aggregated throughput, a lower packet loss

ratio, and it requires less buffer capacity at the client.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a modular architecture

of a multilink proxy that is capable of striping IP packets

to multiple network interfaces at a client. The proof-of-

concept implementation presented in this paper operates on

the network layer and utilizes NAT rules for transparent traffic

redirection, a packet scheduler for bandwidth aggregation, a

delay equalizer to reduce packet reordering, and a path monitor

that enables adaptation to changing network characteristics.

The experiments conducted in our network testbed have

shown that packet scheduling based on a send vector, which

is dynamically updated according to throughput estimates, is

able to adapt to variations in bandwidth, i.e., the proxy is able

to fully aggregate the throughput of multiple client interfaces,

regardless of their bandwidth ratio.

In addition, we have experimentally verified that it is

possible to reduce the buffer requirements at the client by

introducing a delay equalizing buffer at the proxy. The work-

load can therefore be shifted from the client to the proxy,

which is useful for low-performance end devices. A packet

buffer at the proxy will become even more interesting when

placed into an application-specific scenario. For instance, it is

conceivable to improve the quality of video streams by making

the scheduling decision dependent on the number of packets

in the buffer, their type and content.

The currently implemented testbed has shown very promis-

ing results in a controlled environment. However, several tech-

nical challenges have slowed down the process of deploying

our multilink proxy for field measurements into real wireless

access networks. In the near future, we will tackle these

challenges and enhance the system to also support uplink

streams. Our main short-term goal is to evolve the current

code so that it can be installed onto a handheld system, such

as a Linux-enabled cellphone, that can be taken out of the lab

and demonstrated in public. In addition, our current results

were obtained for a client with two interfaces; thus, it would

be of high interest to expand our experiments to three and

more access networks.

A very important analysis that we will carry out in the

future is the impact of transparent packet striping on the

performance of transport- and application-layer protocols. Will

the compensation of delay heterogeneity at the proxy be

sufficient for keeping a transport connection intact? How can

control messages, such as acknowledgements, be exploited to

optimize the path monitoring and the scheduling decisions?

Furthermore, in the future, we plan to enhance our system

with support for mobile clients and allowing the use of

multiple interfaces for optimizing seamless handover across

heterogeneous wireless technologies. In an environment with

many mobile clients, scalability issues will become apparent

and will have to be studied.
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