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Abstract—With today’s widespread deployment of wireless
technologies, it is often the case that a single communication
device can select from a variety of access networks. At the
same time, there is an ongoing trend towards integration of
multiple network interfaces into end-hosts, such as cell phones
with HSDPA, Bluetooth and WLAN. By using multiple Internet
connections concurrently, network applications can benefit from
aggregated bandwidth and increased fault tolerance. However,
the heterogeneity of wireless environments introduce challenges
with respect to implementation, deployment, and protocol com-
patibility. Variable link characteristics cause reordering when
sending IP packets of the same flow over multiple paths.

This paper introduces a multilink proxy that is able to trans-
parently stripe traffic destined for multihomed clients. Operating
on the network layer, the proxy uses path monitoring statistics
to adapt to changes in throughput and latency. Experimental
results obtained from a proof-of-concept implementation verify
that our approach is able to fully aggregate the throughput of
heterogeneous downlink streams, even if the path characteristics
change over time. In addition, our novel method of equalizing
delays by buffering packets on the proxy significantly reduces IP
packet reordering and the buffer requirements of clients.

Index Terms—Wireless networks, heterogeneous systems, traf-
fic analysis, network protocols, scheduling, measurements.

I. INTRODUCTION

The growing deployment of wireless infrastructure and tech-
nologies, such as WLAN, HSDPA, Bluetooth, and WiMAX,
often places a single user device within coverage range of
multiple access networks. At the same time, there is an ongo-
ing trend towards integration of heterogeneous radio interfaces
into single end devices. An example scenario of a laptop that
communicates over both a WLAN and an HSDPA access
network is shown in Figure 1.

Despite the rise of wireless connectivity, from a user’s point
of view, Internet access is usually provided using a single link
at each point in time. Although multiple networks may be
accessible simultaneously, users are today still unable to freely
combine available connections and are required to choose a
default link over which all traffic will flow.

Using multiple concurrent network connections has several
potential benefits. Increased throughput by aggregation of
bandwidth is the most intuitive advantage. For applications
that open many transport sessions at once, this can be achieved
on most operating systems by proper configuration of routing
tables. Other benefits include increased service reliability,
latency reduction, fault tolerance by sending redundant data
over different paths, and enhanced mobility when combining
coverage areas of independent access networks.

The final target of our work is a multilink solution that al-
lows easy deployment and installation. The main requirement
is that any third-party server application, operating system,
and infrastructure should remain unchanged. Additionally, the
client-side operating systems should not have to be modified.
For enabling the concurrent use of multiple access networks at
the multihomed clients, a quick and user-friendly configuration
of network interfaces, routing tables, traffic rules, etc., would
be desirable. A solution is needed that is robust in severely
heterogeneous environments, compatible with all end-to-end
applications and transparent to any transport protocols.

For meeting the requirements and reaching the goal of
transparently striping packets to multiple addresses at a single
receiver, many challenges exist. The major difficulties are
caused by the heterogeneity of wireless links. As shown
in [1], when IP packets that belong to the same flow are
sent over highly variable wireless links, it is possible to
achieve increased throughput, but at the cost of high packet
reordering at the receiver. Packet reordering is crucial for the
buffer requirements at the clients, and it has negative effects
on the performance of transport protocols that make certain
assumptions (such as interpreting reordered packets as lost).
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Fig. 1. A multilink proxy is used to schedule traffic from a server to all
available interfaces on a client, which is simultaneously connected to a WLAN
and an HSDPA access network.

Previously, contributions to multilink transfer (more gener-
ally referred to as inverse multiplexing [2]) have been proposed
on many layers of the protocol stack (see Section II). However,
there has not yet been a breakthrough in allowing a user-
friendly and simultaneous utilization of multiple available
interfaces. Although there is increased interest in this topic,
in practice, it is usually the operating system that selects a
default network interface to be used for communication, while
any other interface remains idle. The reasons for the lack of a



commercial and technological breakthrough lie in the current
Internet architecture and payment models. Even though it is
possible to implement the above mentioned benefits on any
layer of the protocol stack, no solution has yet been found
that is not hindered by deployment issues and that is free of
negative effects to mechanisms on other layers.

This paper introduces the design of a multilink proxy,
which is able to transparently stripe traffic from servers to
multihomed clients, as shown in Fig. 1. We operate on the
network layer to achieve transport protocol transparency, and
our focus has been on downlink streaming of UDP traffic. Our
architecture includes the following functional components:

1) Support for network-layer striping

2) Bandwidth aggregation of multiple client interfaces

3) IP packet queuing for equalizing heterogeneous delays

4) Monitoring of path characteristics

The first component, network-layer multilink support, rep-
resents the base functionality, which all other components
build on. It is solved with network address translation (NAT).
The second component, the scheduler, assigns packets to links
according to experienced throughput. The third component,
the delay equalizer, is used to delay packets in the proxy in
order to reduce packet reordering at the client. The fourth
component, the path monitor, measures the different link
characteristics and uses them to optimize the scheduler and
the delay equalizer.

We demonstrate that network-layer packet striping is able to
fully aggregate the bandwidths from a proxy to multiple client
interfaces. In order to optimize for the common case of data
downloads, the current focus of our analysis is on pure UDP
streams. Experimental results obtained in a proof-of-concept
implementation show that the proxy manages to dynamically
adapt to changes in throughput and latency. In contrast to
related research efforts, the presented solution is able to avoid
tunneling overhead and actively reduces the workload at the
client by buffering packets on the proxy.

This paper continues with a comprehensive description of
related work in Section II. The following Section III introduces
the details of our suggested proxy architecture and its imple-
mentation in Linux version 2.6.28. After presenting results in
Section IV, the final conclusions are drawn in Section V.

II. RELATED WORK

For several years, a lot of contributions to inverse multiplex-
ing, multilink transfer, and bandwidth aggregation have been
published. The most distinct way of categorizing the existing
work is by the layer in the network protocol stack a solution
is positioned. Different approaches require different changes
to servers, clients, proxies, or a combination of these. What
all approaches have in common, no matter on which layer, is
a method to schedule data over different links and a method
to later combine the diverted bytes again.

A. Application-Layer Striping

Bandwidth aggregation on the application layer has been
proposed in various forms. For instance, the method presented

in [3] modifies the FTP protocol to establish several connec-
tions when a transfer is initiated. The data to be transferred is
divided into fixed-size segments and sent on the first connec-
tion that is able to transfer data (i.e., when the socket is not
blocking). In [4], a purely client-based method is described,
which assigns newly established transport-layer connections to
one of the available interfaces and exploits traffic patterns of
individual subscribers for optimal flow scheduling.

However, traffic scheduling at the flow level has the dis-
advantage that concurrent flows must exist for bandwidth
aggregation to be exploitable. If only a single flow exists,
or if the throughput of one connection dominates all others,
the performance increase will be negligible. If both the server
and client are controllable, a single flow can be divided into
several flows and striped across all the links. This approach is
suggested in [5] for dynamic, packet-wise scheduling of TCP
streams over multiple paths.

Other research efforts in the highest layers of the protocol
stack focus on decoupling striping decisions from the appli-
cation by providing specialized middleware or a single virtual
network socket. For instance, an architecture for session-layer
striping is proposed in [6], while a networking middleware
for providing network striping capabilities to applications with
high demands on uplink throughput is presented in [7].

The drawback of all these network-layer approaches is that
they imply software modifications at both endpoints to allow
the full potential of bandwidth aggregation. In most cases,
the server belongs to a third party, which poses a barrier to
immediate deployment.

B. Transport-Layer Striping

Transport protocols build on the unreliable network layer
functionality to transparently provide end-to-end connections.
Current standardized transport protocols do not support net-
work striping and may experience severe performance degra-
dation from IP packet reordering. Nevertheless, numerous
attempts have been made to tune existing transport protocols
for multipath capability.

For instance, the work presented in [8] significantly modifies
TCP to use multiple paths using mechanisms for handling
packet reordering and bottleneck detection. Multiple paths are
provided by an overlay network, which guarantees interoper-
ability with arbitrary IP networks. In [9], a transport protocol
extension to RTP is described, which is specialized for real-
time multimedia transfer over ad hoc networks. It assumes
an underlying multipath routing topology and a complemen-
tary TCP-variant for session/flow control. In [10], exploiting
SCTP’s multihoming feature to simultaneously transfer data
across multiple end-to-end paths has been suggested. The
proposed concurrent multipath modifications to SCTP enable
a congestion window evolution very similar to having two
separate SCTP connections. A comprehensive overview of
recent solutions targeting transport-layer support of multilink
striping is provided in [11].

Consequently, approaches targeting the transport layer are
very difficult to deploy, because severe changes to operating



systems and already standardized protocols are necessary, with
little chance of being widely accepted in the near future.

C. Network-Layer Striping

Several research efforts on network-layer striping exist, as
well. The general network-layer approach, as followed in [12]-
[14], is to use tunneling mechanisms for transparently redi-
recting packets from the server or a proxy to all IP addresses
at the client. However, the reported solutions are often based
on assumptions and numbers that are unavailable in real-life
deployments. For example, the solution presented in [13] relies
on link-layer feedback from base stations, such as the time
the wireless channel requires until it is available for the next
transmission. The fact that most approaches have only been
tested in simulations, often based on very simple assumptions
about heterogeneity, adds to our skepticism on deployability.
Both the round-trip time and the throughput of a wireless
link are highly dependent on time. Our field measurement
results, described in [1] and [15], contradict frequently made
assumptions about the characteristics of heterogeneous links,
which are often modeled too evenly and not very realistically.
For example, the 30ms delay for both WLAN and UMTS
reported in [16] does not coincide with the field measurements
we have obtained. The delay characteristics of heterogeneous
network technologies may exhibit much larger differences and
the used packet size additionally affects the delay disparity. For
two endpoints that are 8 IP hops apart, Figure 2 depicts the
average round-trip times of WLAN and HSDPA.
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Fig. 2. The heterogeneity of round-trip times is one of the most dominant
challenges when aggregating wireless links, such as HSDPA and WLAN. In
truly heterogeneous environments, varying the packet size has negligible effect
on equalizing the latency of multiple links.

Another indication of the general underestimation of net-
work heterogeneity can be detected in [14]. In this work by
Phatak et al., the conclusion is drawn that packet sizes can be
adjusted to equalize round-trip times. While this is true to a
certain degree, for truly heterogeneous links it can easily be
verified that using different packet sizes per link may have no
significant effects on equalizing the RTTs. Figure 2 illustrates
that the round-trip times over WLAN and HSDPA may always
experience a significant delay difference, no matter how the
packet sizes are chosen.

D. Link-Layer Striping

Multiple interfaces of the same technology can also be
striped for better performance at the link layer, which is
referred to as bonding or trunking. The main idea of bandwidth
aggregation on the link layer is to stripe data across a bundle
of physical channels, as done in [17] and [18]. A method
for channel aggregation in cellular networks is described in
[19]. In order to improve resilience, parity codes are applied
across channels rather than across packets. Another interesting
approach is followed in [20], where it is proposed that users
of WLANs should be able to multihome and split their
traffic among all available access points, based on obtained
throughput and a charged price.

However, a link-layer solution of striping data through
heterogeneous networks and to different IP addresses is not
feasible because the link layer has no notion of IP. This leaves
us with the network layer as the most promising candidate for
tackling multilink transfer.

III. MULTILINK ARCHITECTURE

This chapter describes the implementation of our multi-
link proxy and the involved architectural elements used for
enabling network-layer packet striping. The final solution is
anticipated to consist of a cross-platform software package that
users can easily download and install on their end devices. This
software creates a connection to the nearest available proxy
(most likely over multiple IP hops) and communicates the IP
addresses of the various available interfaces. The proxy is also
informed when interfaces are added or removed.

A. Using a Proxy

The advantage of a proxy solution is that it is fully
controllable and allows servers to remain unchanged. Some
modifications on the multilinked clients are still necessary,
but they can be reduced to configuration issues. Figure 3
depicts the network-layer striping functionality of the proxy. A
transport-layer connection originating at the server is transpar-
ently divided at the proxy and recombined at the client, with
the transport layer being completely unaware of the fact that IP
packets traveled over multiple independent access networks.
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Fig. 3. Network-layer striping — By employing network address translation
at the proxy, a downlink packet stream is transparently divided to multiple
client interfaces, where the stream is combined again.

There is a tradeoff between the amount of intelligence on
the client and on the proxy. Moving functionality to the client’s
stack, or into its application layer, might severely increase
the workload and buffer requirements of thin clients, such as



mobile phones. On the other hand, scalability issues might
arise when introducing proxies. For the proof of concept
implementation in this paper, scalability issues are not a
concern. They will be studied in the future.

The proxy is composed of four functional elements, which
have already been outlined in the introduction and will be
described more thoroughly below. Figure 4 shows the internals
of the proxy with these four elements: NAT, Packet Scheduler,
Delay Equalizer, and Path Monitor.
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Fig. 4. Internals of the multilink proxy — The destination address of incoming
packets is rewritten according to a weighted round-robin schedule. Latency
differences are equalized by queuing packets destined to travel over a fast
path. Dynamic adaptation to differences in throughput and delay is facilitated
through path monitoring feedback from the client.

To the best of our knowledge, the only use of a network
proxy for bandwidth aggregation to multihomed hosts has been
mentioned by Chebrolu et al. [12], [13]. However, in contrast
to their research, we do not assume that the base stations are
placed within the same administrative system. Our proxy can
be located anywhere in the Internet, preferably close to the
clients it serves. In addition, the only feedback the proxy
receives is from the clients; it is totally independent of any
sort of feedback from base stations or other elements within
an access network. We assume the access networks to be black
boxes that induce variable path characteristics.

B. Network Address Translation

While we envision the sender to be any third-party server in
the Internet, both the client and the proxy must be configured
for transparent traffic redirection. In contrast to all previous
research efforts that rely on tunneling mechanisms (such as
[14] and [13]), our solution makes use of NAT. For scheduling
packets to arbitrary client interfaces, the proxy rewrites the
default destination IP address (and port) to the address of
a secondary interface. For packets that do not arrive at the
default interface, the client does the inverse address translation
and forwards them internally.

Even though our approach induces no additional encapsula-
tion overhead and does not suffer from packet fragmentation
problems, the main reason for following a NAT solution is
its easy configuration on both the proxy and the client. For

instance, in Linux, iptables commands are sufficient to achieve
the desired redirections.

C. Packet Scheduler

NAT alone is insufficient for sending packets over various
paths. For bandwidth aggregation, a scheduler is needed that
decides for each packet to which client interface it should
be sent. On the proxy, this function is implemented as a
dynamically loadable kernel module (see Figure 4).

Since the available interfaces at the client experience vari-
able throughput, IP packets should be forwarded at the esti-
mated throughput ratio. We propose the use of a send vector
for allowing both static and dynamic packet striping. The send
vector contains the order of client interfaces (identified by
integers) to be picked and is used to decide the forwarding
destination of incoming packets at the proxy. A pointer into
the send vector is incremented after each lookup and reset
when the end is reached or when the vector is updated.
During initialization, the send vector V' is set to emulate pure
round-robin behavior, ie., V = {0,1,...,m} for m client
interfaces. Once the path monitor (Section III-E) has received
new information about the throughput ratio, it updates the
send vector accordingly. For the bandwidth estimates of two
interfaces, which correspond to two weights wy and wq, the
send vector V' is constructed as described in Algorithm 1, a fair
variant of weighted round-robin scheduling.

Algorithm 1 createSendVector(n, wg, wy)

Input: Vector length n € N> and weights wo, w1 € R>o
Output: Send vector V' of length n
1: V = zeros(n); {initialize V' with n zeros}
r = w1 /(wo + w1); {calculate weight ratio}
r = round(r * n)/n; {adjust r such that r x n is an integer}
for i =1tor+ndo
V([i/r]) = 13

end for

AN

Send vectors for more than two client interfaces can be
created by recursively merging send vectors created for two
weights. The main idea is illustrated in Figure 5, in which
a send vector is constructed based on three weights that
correspond to throughput estimates of 2, 3, and 5 Mbit/s. In
the first step, Algorithm 1 returns Vy = {0,1,1,0, 1} for the
weights wy = 2 and w; = 3. In the second step, Algorithm 1
is again called for the combined weight of wy + w; = 5
and we = 5, which returns V; = {0,2,0,2,0,2,0,2,0,2}.
Overwriting the zeros in V3 with the elements of Vj will result
in the final send vector V' = {0,2,1,2,1,2,0,2,1,2}. The
same procedure can be continued for m interfaces.

Proposition: A binary send vector V' of finite length n
will often be unable to accurately represent the ratio of two
measured bandwidths by and b;. Errors in approximating the
true ratio translate directly into a less efficient aggregation of
bandwidth. The error is bounded and never exceeds ﬁ

Proof: The approximation error is the difference between
the actual bandwidth ratio rgws = bo/(byp + b1) and the
send vector’s approximated ratio ry = m/n, where m is the



_ Wy 2

wo + wy 5

HE

2[1]2] =@t

Fig. 5. Example — the recursive creation of a send vector for a client with
three interfaces. The weights correspond to measured bandwidth estimates of
2 Mbit/s (wg), 3 Mbit/s (w2), and 5 Mbit/s (ws2).

number of zeros in the vector and n — m the number of ones
(n > m,m € N). The approximation error Err is defined as:

Err = |rpws — rv| (1

In the worst case, m will differ from its ideal value gy s*n
by :l:%. Thus, we can write m = rgWs*n + % and replace
it into Equation 1:

1
rpws*nt 3

rews — ——————| ()

o ‘
n

Err= ‘TBWS - —
n

For an upper limit on the error, this simplifies to:

1
Err < o 3)

|
A generalization of this worst-case analysis to more than
two links is beyond the scope of this paper.

D. Delay Equalizer

In practical wireless environments, IP packet reordering
depends mostly on variances in delay [1], not bandwidth. If
all available paths were of constant and equal delay, packets
would always arrive in order, no matter which destination
interface the scheduler picks. Therefore, for mitigating IP
packet reordering, a dynamic scheduler is needed that adapts
to both throughput and delay estimates.

While the previously described packet scheduler handles
bandwidth aggregation, the delay equalizer is implemented as
an independent user space module, where packets are delayed
for a short while if they are destined to travel over a low-
delay path p; (with ¢ € {1,...,m}). Thus, the delays d;
of m paths are equalized so that packets should experience
similar latencies over all paths. In order to always use up-to-
date estimates on the path delays d;, feedback from the path
monitor (Section III-E) is used.

If a packet is destined to travel over a path p;, the total
time T3¢, that it should be held in the buffer is the difference
between the estimated path delay d; and the highest measured
delay of all paths d,q, = maz(d;),i € {1,...,m}:

Ttoti = dmam - dv (4)

Since packets should be guaranteed to travel in-order over
individual links, the buffer for each path is implemented as a
FIFO queue. Every packet that enters the queue is released a

given time offset T, after the previous packet in the queue.
This time offset is dominated by the interarrival time T a7,
which is measured for each packet coming into the proxy.
Additionally, the time offset 75, depends on measurement
updates from the path monitor. Given the current delay es-
timate d;,,, and a new measurement d of path p;, the
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wait time offset T, is defined as:

Ts, = Trar, + (di,.,, — di.,..) (5)

For illustrative purposes, assume that there are two paths
po and p; from the proxy to the client with estimated delays
dy = 30ms and d; = 10ms, implying that the packets
destined for p; will be delayed by 20 ms. The throughput of
po is estimated to 3.8 Mbit/s and p; to 2.2 Mbit/s. Follow-
ing Algorithm 1, this results in an 11-element send vector
vV =1{0,0,1,0,0,1,0,1,0,0,1}. The stream from the server
is offered in packets of 1500 bytes at 6 Mbit/s, which ideally
translates to a time of 2 ms between incoming packets at the
proxy. Table I lists all the values needed in the procedure
of equalizing the heterogeneous path delays. Looking at the
values for the arrival times at the client makes it clear that in
an ideal scenario with predictable delays, the delay equalizer
is able to perfectly avoid packet reordering.

Tnew

TABLE 1
EXAMPLE DELAY EQUALIZING PROCEDURE
Packet sequence number 112|13[4[5(6]7[8]9/(10]|11
Send vector 0[0[1]|O0|O0O|1]|O0O|1]|0]|O]|]1
Arrival time at proxy (ms) 012(4|16]|8(10(12|14|16[18(20
Wait time offset T, (ms) 0(0(20[{0|0]|6|0]|4]0|0]6
Total wait time Ttot; (ms) 0[01(20[{0]0(20]012010 |0 |20
Departure time from proxy (ms)| 0 | 2 |24| 6 | 8 |30|12|34|16|18|40

[Arrival time at client [30[32[34]36]38 40| 42[44[46[48]30]

This method allows the reduction of IP packet reordering
without any changes to the operating system at the client. A
packet buffer at the proxy can also be useful in case the offered
load from the server exceeds the aggregated bandwidth of all
client interfaces.

E. Path Monitor

The path monitor is a user space tool implemented at the
proxy. It collects estimates of path throughput and latency
used for optimizing the packet scheduler and delay equalizer.
For simplifications in our testbed setup, delay estimates are
derived from sending TCP probe packets every 200 ms and
measuring the time until an ACK returns, while throughput
estimates are obtained by measuring the client’s incoming data
rate. In order to compensate for high variances in reported
feedback, the path monitor reports the average of the 10
most recent measurements. A disadvantage of this approach is
that inaccuracies can be caused during congestion and when
retransmissions delay later measurements. Thus, for our results
we made sure that the network had close to no loss and enough
bandwidth to support control traffic.

Packet pairing, a method less affected by congestion, has
been described in [21]. The idea is to send consecutive packet



pairs over the same path and to derive the bandwidth from the
time difference of arrival. We use packet pairs to check for
available bandwidth when the send vector locks to unwanted
patterns, such as V' = {0,0,0,0, ...}, and plan to utilize it for
all throughput monitoring in the future.

There exists a tradeoff between the monitoring overhead and
the accuracy of the send vector. Frequent monitoring updates
allow the send vector to become accurate more quickly, but it
also introduces more traffic and calculation overhead.

IV. RESULTS

This section addresses the two conflicting main goals of the
multilink proxy through experimental verification. Is it possi-
ble to aggregate the bandwidth of multiple client interfaces, no
matter how heterogeneous the links are? At the same time, is
the delay equalizer able to mitigate IP packet reordering and
to reduce the buffer requirements at the client?

A. Testbed Setup

For measuring the performance of the multilink proxy, an
experimental, basic testbed was set up as shown in Figure 6.
This test network contains a client machine with two network
interfaces, a server machine that streams packets at a constant
bitrate, and the proxy machine that transparently schedules
the packets to different client interfaces. All machines are
connected with 100 Mbit/s Ethernet links. For varying the test
parameters, the netem network emulator was used to throttle
the bandwidths to the client and to introduce additional latency.

Client (receiver) Proxy

Server (sender)

-.4_M£I‘I/s, 10 m,
gl 6 Mbit/s, 1 ms

Emulator
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- — — Link Throttled by Network Emulator
—— Bitrate of Application (e.g., Video Stream)

Fig. 6. Multilink test network — The netem tool is used to emulate link
heterogeneity (bandwidth and latency) in a controlled manner.

While the performance of bandwidth aggregation can be ex-
pressed in Mbit/s, getting a notion of the amount of reordering
in a packet sequence is less straightforward. Various metrics
for IP packet reordering have been defined in the literature
(e.g., [22]) and by standardization efforts in the IETF. Where
appropriate, we report the number of packets that arrived
with an out-of-order sequence number, as defined in RFC
4737 [23]. However, counting the number reordered packets
is often insufficient to express the magnitude of disorder and
its implications, such as buffering requirements.

On the client, packet reordering can be reduced through
the use of a buffer, where every incoming packet is stored if
its sequence number is greater than the currently expected. If
more out-of-order packets arrive than the buffer can hold, they
must be discarded. The intuitive measure of a buffer’s load,
the average buffer occupancy, has been defined in RFC 5236

[24]. However, the average buffer occupancy does not give
much insight on the number of packets that were discarded
due to overflows. In addition to the share of reordered packets,
we report the 95th (or 99th) percentile values of the buffer
occupancy to express the buffer size needed to guarantee at
most 5% (or 1%) packet discards.

B. Bandwidth Aggregation

In a first experiment, it is shown that a send vector-based
approach is able to fully aggregate two links, regardless of
their bandwidth ratio. For this, the incoming bitrate was set
to a constant 6 Mbit/s, while the two links from the proxy
to the client were throttled so that their bandwidths summed
up exactly to the offered load of 6 Mbit/s. The send vector
was limited to 64 elements and no additional latency was
introduced. Table II shows that for all chosen bandwidth
ratios, the aggregated throughput at the client was measured as
5.99 Mbit/s and at most 0.12% traffic was lost. These results
are statistics of 5 experiment batches, each lasting 10 min.

TABLE I
THROUGHPUT AGGREGATION FOR VARIOUS BANDWIDTH RATIOS

[Bandwidth ratio [1:11]2:10[ 3:9 [48[5:7 [ 6:6]
Avg. aggregated throughput (Mbit/s) 5.99(5.9915.99(5.99(5.99|5.99
Out-of-order packets (%) 1.56(1.98|1.68|1.29(2.03|0.09
95th percentile buffer occupancy (packets)| 0 O[O0 0] 0¢]O0
99th percentile buffer occupancy (packets)| 1 1 1 1 1 0

Lost packets (%) 0.10]0.12]0.11{0.05|0.04|0.01

For the stable links used in this experiment, the observed
packet reordering is comparable to the 0.01-1.65% [25]
and 1-1.5% [26] reported for wired, high-speed networks.
Additionally, our low buffer occupancy values show that in
99% of the time a buffer with capacity for only 1 packet is
able to avoid packet discards.

Small amounts of packet loss are caused during an experi-
ment’s initialization phase, when the round-robin send vector
V ={0,1,0,1...} is unable to correctly represent the actual
bandwidth ratio. Therefore, one link becomes congested for
a short time until the first feedback messages from the path
monitor are able to stabilize the send vector to a pattern that
is able to represent the true ratio.

Even when the bandwidth characteristics are unstable and
change over time, the multilink proxy is able to adapt dy-
namically. Figure 7 depicts this behavior with results obtained
from an experiment in which the emulated links were abruptly
changed at constant intervals of 30 seconds. Systems without
support for packet striping can only achieve the throughput
of either Path 1 or Path 2, while our approach is able to
aggregate the throughput of both paths. The visible spikes
in the curve of the aggregated throughput are caused by the
path monitor’s needed time to adjust the send vector to a
new pattern. Therefore, the bandwidth estimates are briefly
imprecise, which leads to short spikes in throughput.

C. Reduction of Packet Reordering at the Client

In a second experiment, we investigated how proxy-based
packet buffering affects the client workload. We used the
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Fig. 7. Adaptive bandwidth aggregation — A send vector based on path

monitoring feedback is able to adapt to arbitrary bandwidth changes. In this
example, the bandwidths of Link 1 and Link 2 always sum up to 6 Mbit/s.

testbed described in Section IV-A and the server streamed
packets at 6 Mbit/s. However, in this experiment, the two links
between the proxy and the client had no bandwidth limitations,
so that a static send vector V' = {0, 1} was used.

Figure 8 shows that a packet buffer on the proxy is able to
significantly reduce the number of reordered packets. When
the delay equalizer module is disabled, the buffer occupancy
grows as the delays become increasingly heterogeneous. When
the delay equalizer is enabled, the buffer occupancy at the
client is decreased. Under stable network conditions, a buffer
with the capacity of a single packet would be enough to
guarantee less than 1% packets to be lost due to overflows.
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Fig. 8. Reducing IP packet reordering — At the proxy, a buffer is used to
delay packets over the low-latency link by putting them into a buffer. This is
useful to compensate for latency differences and to reduce the client workload.

A conventional packet striping solution, without the func-
tionality of a delay equalizer, requires buffering at the client
that increases with the degree of delay heterogeneity. In con-
trast, multihomed clients connected to our proxy can benefit
significantly from the reduction in IP packet reordering.

Even when the links are unstable and exhibit variances in
delay, our multilink proxy is able to compensate for part of

the heterogeneity. For illustrating this by means of an arbitrary
scenario, we have modeled the two paths from the client
to the proxy to roughly resemble the heterogeneity between
WLAN and HSDPA. The delay of the first path was set to an
average of 10 ms with £5 ms jitter (normally distributed) and
the delay characteristics of the second path were set to 50 ms
and £15ms jitter (uniformly distributed).

Figure 9 illustrates the influence of the delay equalizer on
packet reordering. When the delay equalizer was disabled,
almost all packets experienced reordering with peak displace-
ments of —10 and +10 sequence numbers. However, with
the delay equalizer enabled, these peaks were merged into a
single peak at 0, implying that the largest share of the packets
exhibited no reordering at all. This shift results in a reduction
of the 99th percentile value of the buffer occupancy from
18 packets to 9 packets; in other words, a 50% decrease in
buffer requirements.
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Fig. 9. Buffering packets at the proxy is able to considerably reduce IP
packet reordering even if the used links exhibit variable delays.

D. Coping with Dynamic Bandwidth and Delay

In a last experiment, we compared the performance of the
multilink proxy to pure round-robin packet striping, while both
the throughput and delay characteristics were dynamic. The
parameters used were a combination of the two previously
conducted experiments. The incoming bitrate at the proxy was
set to 6 Mbit/s, while the bandwidth of the two paths from the
proxy to the client were given random values that add up to
6 Mbit/s (as in Fig. 7). The paths to the client were modeled
with the approximate latency characteristics of WLAN and
HSDPA, analogous to the values used in Section IV-C.

TABLE III
COPING WITH COMBINED BANDWIDTH AND DELAY VARIATION

[ [Round-robin striping [Multilink proxy]

Average aggregated throughput 4.49 Mbit/s 5.86 Mbit/s
99th percentile buffer occupancy 26 packets 9 packets
Packet loss 25% 2.2%

The results of this experiment are summarized in Table III.
They clearly show the combined benefits of the packet sched-
uler and the delay equalizer modules. The multilink proxy



outperforms pure round-robin packet striping in all aspects:
it achieves higher aggregated throughput, a lower packet loss
ratio, and it requires less buffer capacity at the client.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a modular architecture
of a multilink proxy that is capable of striping IP packets
to multiple network interfaces at a client. The proof-of-
concept implementation presented in this paper operates on
the network layer and utilizes NAT rules for transparent traffic
redirection, a packet scheduler for bandwidth aggregation, a
delay equalizer to reduce packet reordering, and a path monitor
that enables adaptation to changing network characteristics.

The experiments conducted in our network testbed have
shown that packet scheduling based on a send vector, which
is dynamically updated according to throughput estimates, is
able to adapt to variations in bandwidth, i.e., the proxy is able
to fully aggregate the throughput of multiple client interfaces,
regardless of their bandwidth ratio.

In addition, we have experimentally verified that it is
possible to reduce the buffer requirements at the client by
introducing a delay equalizing buffer at the proxy. The work-
load can therefore be shifted from the client to the proxy,
which is useful for low-performance end devices. A packet
buffer at the proxy will become even more interesting when
placed into an application-specific scenario. For instance, it is
conceivable to improve the quality of video streams by making
the scheduling decision dependent on the number of packets
in the buffer, their type and content.

The currently implemented testbed has shown very promis-
ing results in a controlled environment. However, several tech-
nical challenges have slowed down the process of deploying
our multilink proxy for field measurements into real wireless
access networks. In the near future, we will tackle these
challenges and enhance the system to also support uplink
streams. Our main short-term goal is to evolve the current
code so that it can be installed onto a handheld system, such
as a Linux-enabled cellphone, that can be taken out of the lab
and demonstrated in public. In addition, our current results
were obtained for a client with two interfaces; thus, it would
be of high interest to expand our experiments to three and
more access networks.

A very important analysis that we will carry out in the
future is the impact of transparent packet striping on the
performance of transport- and application-layer protocols. Will
the compensation of delay heterogeneity at the proxy be
sufficient for keeping a transport connection intact? How can
control messages, such as acknowledgements, be exploited to
optimize the path monitoring and the scheduling decisions?

Furthermore, in the future, we plan to enhance our system
with support for mobile clients and allowing the use of
multiple interfaces for optimizing seamless handover across
heterogeneous wireless technologies. In an environment with
many mobile clients, scalability issues will become apparent
and will have to be studied.
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