Improving File Tree Traversal Performance by Scheduling I/O Operations in
User space

Carl Henrik Lunde, Havard Espeland, Hakon Kvale Stensland, Pal Halvorsen
Department of Informatics, University of Oslo and Simula Research Laboratory, Norway
email: {chlunde, haavares, haakonks, paalh} @ifi.uio.no

Abstract

Current in-kernel disk schedulers provide efficient means
to optimize the order (and minimize disk seeks) of issued,
in-queue 1/0 requests. However, they fail to optimize se-
quential multi-file operations, like traversing a large file
tree, because only requests from one file are available in the
scheduling queue at a time. We have therefore investigated a
user-level, I/0O request sorting approach to reduce inter-file
disk arm movements. This is achieved by allowing applica-
tions to utilize the placement of inodes and disk blocks to
make a one sweep schedule for all file I/Os requested by a
process, i.e., data placement information is read first before
issuing the low-level I/O requests to the storage system. Our
experiments with a modified version of tar show reduced
disk arm movements and large performance improvements.

1 Introduction

There is an ever increasing demand for fast I/O. How-
ever, the properties of the mechanical, rotational disks and
the way current systems manage these storage devices raise
large challenges. In this area, a large number of data
placement and disk scheduling mechanisms have been pro-
posed [5], addressing different scenarios, application char-
acteristics and access patterns. Current commodity operat-
ing systems implement several policies such that the sys-
tem administrator can configure the system according to the
expected workload, e.g., Linux has the NOOP, Deadline
I/O, Anticipatory I/O and Complete Fair Queuing (CFQ)
schedulers. What is common for all these schedulers is that
they sort the issued, but non-served requests available in the
scheduling queue according to the placement on disk to op-
timize performance.

In modern operating systems, the disk schedulers oper-
ate at the kernel level. However, with respect to operations
requiring multiple file reads, the current approaches fail to
optimize seeks and thus I/O operation performance in an

GNU Tar (dirty ext4,CFQ) l]

BSD Tar (dirty ext4,CFQ) l l

GNU Tar (dirty ext4,NOOP) l]

e

GNU Tar (dirty NTFS,Win7) l l

WinZIP (dirty NTFS,Win7) []

e

Without Seeks (ext4,CFQ) :]

T T T T T T 1
0 10 20 30 40 50 60
Time (s)

Figure 1. Performance of programs travers-
ing directory trees showing potential im-
provement

application-wide manner. For Linux, this include applica-
tions like (recursive) copying (cp -r), deleting (rm -r),
archiving (tar and zip), searching (find), listing (1s
-R and file managers), synchronizing (rsync) and calcu-
lating file tree size (du). As exemplified by the tar archiv-
ing application (see listing 1), the reason for failing is sim-
ple and straight forward. These operations read one file at
a time. Requests within a single file may be optimized by
the operating system, but there is currently no way of order-
ing requests between different files as the scheduling queue
only contains requests for one file. Thus, the inter-file seek
distance may be large, reducing the overall performance by
orders of magnitude.

In figure 1, we see the performance of a multi-file read
operation performing tar on a Linux source tree contain-
ing about 22500 files stored on a 7200 RPM Maxtor Di-
amondMax 10 disk. We observe a high execution time
regardless of application implementation (BSD vs. Gnu),
scheduling policy (NOOP vs. CFQ), file system (ext4 vs.

NTFS) and operating system (Linux vs. Windows 7!). A
new, clean file system reduce the execution time, but as the
system age, the execution time increase due to a more frag-
mented file system (dirty vs. clean). Thus, this is a cross-
platform and cross-file system problem. The last two bars in
the figure also indicate that there is a large potential perfor-
mance gain, i.e., if the order of the files (or disk blocks) can
be sorted according to disk placement on an application-
wide basis instead of on a per-file basis. This is shown by
the ”one sweep” and “without seeks” bars where the data is
read in the file system’s logical block number order or com-
bined in one file without any inter-file seeks, respectively. In
both cases, the total execution time is drastically reduced.

In this paper, we prove that this kind of high-level
scheduling is possible in practice by first retrieving file lo-
cation information and then performing the file I/O requests
in logical block number order. Furthermore, we have modi-
fied the tar program under Linux to schedule the requests
in this manner, and we show experimentally that the per-
formance gains are substantial with a negligible CPU and
memory overhead, e.g., the time to archive the Linux source
tree is reduced from 82.5 seconds to 17.9 seconds - a reduc-
tion of about 78 % - on an aged ext4 file system running on
a Seagate Barracuda 7200 RPM disk.

The rest of this paper is structured as follows: In sec-
tion 2, we outline the basic idea of the user space schedul-
ing and in section 3, we look at related work. Section 4 de-
scribes our implementation and a modified application ex-
ample, and in section 5, we present our experiments and
results. A brief discussion of our approach is given in sec-
tion 6, and finally, section 7 summarizes and concludes the

paper.
2 Why user space scheduling?

Traditionally, disk scheduling is performed in the kernel.
The scheduler orders the requests after their logical block
numbers? in the file system by taking into account current
disk arm placement and move direction. Thus, based on the
concurrent, available 1/0 requests in the queue, a schedule
is made where a minimized disk arm movement and opti-
mized throughput and response time are the goals.

However, to perform scheduling across multiple files that
are read one by one, current kernel-level approaches fail,
because the only requests available for sorting are from one
file only. Consider the example in figure 2 starting to read
and process file A, then file B and then finally file C. In this

'We have also tested on Windows Vista, but the performance is slightly
lower than Windows 7, so the results are not included.

2The logical block numbers used by the operating system are assumed
to correspond to the physical placement of the blocks on disk, but the disk
often hides the true block layout. The physical placement and the logical
block numbers however usually corresponds, but there may be inaccura-
cies.

Figure 2. Example file placements on disk
within a file tree

scenario, the individual blocks of each file might be effi-
ciently scheduled, but the inter file seeks means moving the
disk head from cylinder 2 (file A) to cylinder O (file B) and
ending at cylinder 6 (file C). Obviously, it would be more
efficient to start at cylinder 0, go to cylinder 2 and stop at
cylinder 6. Furthermore, taking into account that high-end
disks like Seagate Cheetah X15.6 have an average seek of
3.6 milliseconds, a track-to-track seek of 0.2 milliseconds
and a full-stroke seek of 7 milliseconds, it is beyond doubt
that any reduction in the number of cylinders traversed give
great savings of disk access time. In order to make an ef-
ficient schedule based on location and thus reduce the seek
overhead we need information about block placement for
all files that need to be processed (which is not available
to the kernel scheduler due to the one file at a time type of
operation).

To address this scenario, we propose to implement a user
space scheduler, recommending the application developers
to utilize available information from the file system when
making I/O requests. We base our approach on two sets of
information, i.e., meta-data block number and block num-
ber (if available). Often, the order of the meta-data struc-
tures reflects the order of the disk blocks, and in file sys-
tems like the Linux ext4 and XFS, the ordering between
inode blocks is the same as the order of inode numbers.
Furthermore, in file systems like ext2/3 and XFS, the map-
ping of disk block extents is available to a superuser [4]
using the FIBMAP (FIle Block MAP) ioctl sys-
tem call. When using ext4, the new FIEMAP (FIle
Extent MAP) ioctl [3] call provides such informa-
tion to all users.

The basic idea is to use the available information about
meta-data (e.g., inode) placement and disk block placement
to make a cross-file schedule where we aim for a one-sweep
disk arm movement for the whole recursive file tree traver-
sal. In the t ar scenario, the meta-data is read first in inode

order to recursively discover all files and directories, and
second, all the file data is ordered by file data position.

3 Related Work

Similar ideas were discussed in an lkml-email exchange
in 2003 about an ordered readdir operation and sorting
in user space to minimize seeks [10]. Nearly four years
later, Sun [8] filed a patent application which claims the
method of accessing files in order of physical location when
doing tree traversal. However, to the best of our knowledge,
no real implementation nor measurements exist. We have
therefore implemented such a scheduler in user space, and
further improved the technique [7]. In this paper, we exam-
ine user space scheduling in detail and evaluate the perfor-
mance by using tar as an example.

An alternative approach to user-space scheduling is to
include support for optimized traversal in the file system it-
self. The new Btrfs [6] file system adds a secondary index
which can be used to iterate over directory trees. The sec-
ondary index in Btrfs is currently very simple, which only
sort entries according to creation time. However, this in-
dex could be extended to optimize full tree traversal. Our
approach does not require change to the underlying file sys-
tem, and can be used with any file system as long as the
block address of the file data is exposed to the user space
application.

4 Implementation

To evaluate our technique, we have chosen to adapt the
archiving program tar. This is an old Unix utility that has
been around for decades, so there are several implementa-
tions available. GNU Tar [2] is the default implementation
on most Linux distributions and is widely used. Since GNU
Tar is not developed as a two-part program, i.e., a tar library
and a command line front end, we chose instead to adapt
BSD Tar [1] as our reference implementation. The perfor-
mance of GNU Tar and BSD Tar is very similar (as shown
in figure 1). Our adaptation of BSD Tar, which does user
space reordering, is referred to as qtar.

The tar program does not use any metadata information
to read the files, directories, and metadata in any other or-
der than returned by the system calls for doing post-order
traversal of a directory tree. Pseudo-code for the GNU and
BSD traversal strategy of tar is shown in listing 1. Qtar is
our adaptation of tar which sorts the requests based on the
physical locations to minimize hard drive seek time. This
location is obtained using the FIEMAP ioctl on Linux,
which supports files, but not directory entries. Qtar first tra-
verses the directory tree (by C-SCAN order of the inodes)
and adds all files therein to a queue sorted by block order.

def archive (path):
for file in path:
stat file
read file
add to archive

for subdirectory in path:
stat subdirectory
add to archive
archive (subdirectory)

Listing 1. Tar traversal algorithm

def archive (path):
next = path
do
stat next
if is_directory:
add to archive (next)
for file in next:
inode_cscan_queue.add (next)
else:
FIEMAP next
block_sort_qgueue.add (next)
while (next = inode_cscan_gueue.next ())

flush ()
def flush{():

for file in block_sort_qgueue:
add to archive

Listing 2. Qtar traversal algorithm

The last operation is to process the files by the order of the
sorted queue. Pseudo-code for the gtar algorithm is shown
in listing 2.

Finally, a memory overhead of a couple of hundred bytes
for each file is required, i.e., storing metadata such as file
name, parent directory, inode and block number. However,
if an upper bound of consumed memory is required, the
flush () method (see listing 2) can be called at any time,
e.g., for every directory, for every 1000 files or when n MiB
RAM have been used.

This method of reading metadata in C-SCAN order and
sorting the full directory tree before accessing the files, has
not been described in previous work known to us.

S Experiments and Results

We have conducted experiments to evaluate different as-
pects of this kind of user space scheduling and the qtar
technique in particular. The test setup is a machine run-
ning GNU/Linux using ext4 and XFS on a workstation-
class Seagate Barracuda 7200.11 hard drive. In our tests,
we did not use any limit on memory, so around 6 MiB of
memory were used for the largest directory tree (22 500 di-
rectory entries).

5.1 Running time and head movement

As shown in figure 3, the running time can be reduced us-
ing application level sorting. By running qtar on the Linux
kernel source tree consisting of about 22 500 files, we get
an average runtime of 17.9 seconds for five runs on ext4
(11.6 seconds on the setup in figure 1). The correspond-
ing time for GNU tar is 82.5 seconds (48.3 seconds on the
setup in figure 1) giving a performance increase of a factor
of more than 4.5. Furthermore, the elapsed running time of
qtar is fairly close to the time required for reading the data
using the theoretical one sweep benchmarks where we as-
sume that all files and directories immediately can be sorted
according to block numbers. However, one sweep is some-
what faster than practically possible, because we have sev-
eral data dependencies (directory data blocks must be read
to find new files and subdirectories, and inodes must be read
to find file data).

GNU Tar (ext4) l l

Gnu Tar (XFS) [

——

0 20 40 60 80
Time (s)

Figure 3. Time to tar the Linux source tree
(22500 files)

In figure 4, we visualize the runtime and seek footprint
of GNU Tar and Qtar for the same experiments, by show-
ing the maximum and minimum disk sector accessed for
every 100 millisecond intervals. The data for the figure
was recorded using blktrace. We could not include the
full seek pattern, because there were too many seeks for
the GNU Tar implementation. Therefore, the figure shows
only the upper and lower bound of the disk head position,
even though the finer details are lost. As we can see, the
traditional solution requires multiple sweeps over the disk
platters as a result of multiple SCAN operations performed
by the kernel-level I/O scheduler. However, the footprint
of the improved qtar solution is radically different from the
original solution. Almost all seeks are going in the same (C-
SCAN) direction, except for some directory blocks which
need to be read before new inodes are discovered. Our im-
plementation orders directories by inode number, which is
one of the reasons for the seeking done during the direc-
tory traversal the first few seconds. After the directory tree
has been traversed, there do not seem to be any unnecessary
seeks at all. This means that the file system allocator did not
have to resort to any file fragmentation in order to fit the file
on the file system. Ext4 has implemented delayed alloca-
tion, so the full size of the file is known before the physical

976768065

Sector

O Il L L Il Il L Il Il
0s 10's 20s 30s 40's 50s 60 s 70s 80s

Time

(a) GNU tar (ext4)

976768065

Sector

Il Il Il Il Il Il Il
0s 10's 20's 30s 408 50 s 60 s 70's 80s
Time

(b) Qtar (ext4)

Figure 4. Disk head movement every 100 ms

blocks of the file are allocated. A video showing the disk
head movement on an actual disk using GNU tar and qtar
can be downloaded from 3.

5.2 Partial Sorting

The implementation we have tested so far read the full
directory tree and ensured that both metadata (inodes) and
file data were read according to disk placement. In figure 5,
we show the performance of an experiment reading a direc-
tory tree on ext4 with 1000 files using various alternative
implementations of tar with only partial sorting:

Unordered (GNU tar)

Inode

Full inode

Inode+block

T T T

1 2 3

|
|
|
|
Full inode+block (gtar) |
I
0 Time (s)

Figure 5. Sorting alternatives compared

e Unordered (GNU Tar): This implementation read all
the metadata for all files in a directory in the order in
which they were retrieved from the file system. Then,
it read the file data in the same order, before recursively
repeating the procedure for each subdirectory.

3http://www.ping.uio.no/ gus/misc/diskhead-low.avi

—— GNU tar
—8— Qtar

Time (s)

Age
Figure 6. Performance as file system ages

e Inode sort: This implementation sorted the directory
entries by inode before reading the metadata. It also
read the file data in the same order, i.e., sorted by in-
ode.

e Full inode sort: This implementation traversed the
full directory tree before reading all the metadata or-
dered by inode, and then it read all the file data ordered
by inode.

e Inode and block sort: This implementation read all
the metadata for a directory ordered by inode. Then, it
read all the file data for the file in the directory, ordered
by the position of the first block of each file. This pro-
cedure was repeated for each subdirectory.

e Full inode and block sort (Qtar): This implementa-
tion traversed the full directory tree and read all the
metadata ordered by inode. Then, it read all the file
data ordered by the first block of each file.

The results clearly show that doing the full inode and
block sort gives the best performance, but also that even the
simplest change, ordering directory entries by inode, helps
a lot. This shows that there is a high correlation between
the inode number and the position of the file data on disk on
the ext4 file system, i.e., information that could be used to
implement applications doing directory tree traversal more
efficient. We do not know if such an assumption can be
made on other file systems than ext.

5.3 Effect of File system Aging

An interesting detail is how the performance changes as
a file system ages. To evaluate this, we ran our qtar and
GNU Tar five times throughout an aging procedure which
repeatedly checked out 24 different versions of the Linux

source code. In short, our aging procedure replays devel-
opment activity on the kernel source tree by incrementally
checking out new versions. The archiving processes were
again run on the full Linux kernel source, and we used the
ext4 file system. In figure 6, we show the average runtime
for the five runs. The amount of change for each step in
the aging procedure is different, which is why step 1, 2, 10
and 17 are especially steep for GNU Tar. It is interesting to
see in this graph that the age has much less impact on the
improved qtar implementation. As the file system ages, the
improvement factor increases from 3.95 to 4.75.

5.4 Other File Systems

To evaluate how the underlying file system impacts tar
and qtar, we compared the performance running on ext4 and
XFS. The tests were run 5 times, and the average runtime
was used. Each test was measured for 16 different direc-
tories which were created in the same way, but at different
times. We also ran the tests on 16 aged (dirty) directories.

Detailed boxplots with absolute timings are shown in fig-
ure 7, and a summary of the results in terms of relative per-
formance gain (GNU tar / qtar) can be seen in figure 8. We
can see that the improvement obtained with qtar is larger
on ext4 than on XFS. Still, qtar outperforms tar in all cases,
even on clean file systems.

The difference in improvement factor for the file systems
relates to the order the file systems returns files in when
reading directories. Note that the variance for the boxplots
mainly shows variance in the file system allocator, not vari-
ance in runtime with the same directory. Thus, in summary,
this experiment shows that qtar improves the performance
over GNU tar for different file systems regardless of the size
of the file tree and the fragmentation of the file system. Us-
ing the smallest file tree of 100 files, the improvement is
“only” about 10% on a clean XFS file system. However, for
the benchmarks we performed, the improvements increase
with the file system age and file tree size, i.e., giving a per-
formance increase of about 200% using an aged XFS on the
Linux source tree (22500 files). The improvement factor
on ext4 for the clean filesystem approaches that of the dirty
filesystem for the run with 22,500 files. Why we see this
slight decrease of improvement in figure 8 is unknown to
us, but it still runs at about four times the speed of GNU tar
for both clean and dirty ext4.

6 Discussion

The performance gain of the user space scheduling
approach, i.e., first retrieving meta-information from the
file system about file placement on disk and then mak-
ing logical-block-number-sorted I/O requests, is promising.

Elapsed time

Elapsed time

clean | clean | dirty | dirty
ext4 xfs ext4 xfs
0.6
0.4 i Q
o -
° o H
0.2 E] E]
gtar tar qgtar tar gtar tar qgtar tar
(a) 100 files
clean | clean | dirty | dirty
ext4 xfs ext4 xfs
o]
4 -
: .
s 2
JE s
®
@ e

qtar tar qtar tar gtar tar qtar tar

(d) 1000 files

clean | clean | dirty | dirty
ext4 | xfs | ext4 | xfs
1.5 ‘ r
1.0 H -
- 0. L
0.5 H E] -
. |®
qtar tar qgtar tar qgtar tar gtar tar
(b) 250 files
clean | clean | dirty | dirty
ext4 | xfs | extd | xfs
30 H -
25 K -
20 T
15 N -
10 E] -
| |®
5 0 -
& ®

qtar tar qgtar tar qtar tar qtar tar

(e) 5000 files

clean | clean | dirty | dirty
ext4 | xfs | extd | xfs
1.0 J H -
054 - E CI
n L
gtar tar qtar tar gtar tar qgtar tar
(c) 500 files
clean | clean | dirty | dirty
ext4 | xfs | ext4d | xfs
80 H
60 — ?]
40 -
20 - . z
st |@
& @

qtar tar qtar tar qgtar tar qtar tar

(f) 22500 files

Figure 7. Boxplots for gqtar and tar performance on the ext4 and XFS file systems

Clean ext4

Dirty XFS

Improvement factor

T T T T T T T T
100 200 500 1000 2000 5000 10000 20000

File count

Figure 8. Improvement factor for qtar over
GNU tar comparing results on ext4 and XFS

However, there are a number of issues that must be consid-
ered.

6.1 Applicability

To increase the application performance by reordering
requests, it obviously must have multiple I/O operations to
choose from. The potential improvement in execution time
will generally depend on the number of I/O operations that
can be reordered. In this respect, there are many exam-
ples where this kind of user space scheduling is useful, i.e.,
where file and directory traversal is the core functionality.
However, there are also examples where the added com-
plexity does not pay off. This includes applications that de-
pend on external input, such as interactive applications and
databases; there is no way to know what data to read until
a user requests it. There is also a limitation for applications
with data dependencies; when one I/O operation decides
which operation to do next, or when one write operation
must be written to disk before another for consistency rea-
sons. As an example of the former case, consider a binary
search in a database index; the database only knows about
one operation, read the middle block, while the next opera-
tion, read the left branch or read the right branch, depends
on the data found by the first operation in the middle block.
Another examples of dependencies when we need to read
a directory block to find a file’s inode number, and to read
the file inode before we can read the file data. Finally, this
inter-file-seek optimizing is most efficient with many small
files. For large files, there is usually not enough external
fragmentation in modern Linux file systems to warrant re-
ordering of requests, neither within a file nor between files.
In these cases, we will likely introduce intrusive changes
in the program flow, and yield relatively low performance

gains. Another consideration is whether it is likely that files
are cached, i.e., if they have been recently used. A compiler
such as gcc, or rather the preprocessor cpp, may seem like
a good candidate for this technique because it reads many
small header files (around 20 for many standard C head-
ers in GNU libc, almost 100 for GTK+). But in most work
flows, header files will be cached, and therefore, the average
gain over time will be low.

6.2 Implementation alternatives

The traditional approach is to let the kernel I/O scheduler
do the scheduling. Our approach is application-specific,
and is implemented in user space since only the application
knows (and can adapt) its disk access pattern. The main
argument against doing scheduling in user space is that it
adds complexity. Nevertheless, a solution where the kernel
does the sorting could be implemented in several ways. For
example, an application can ensure that the I/O scheduler
has multiple files to choose from by using the existing asyn-
chronous APIs or by using multiple threads each issuing I/O
requests. There are problems with this solution, which leads
us to believe that such a solution would be slower and more
intrusive:

e Complexity: The application must handle multiple
buffers and multiple pending asynchronous requests,
which is more complex than sorting a list of files.

e Memory overhead: The performance depends on the
depth of I/O queue. For efficiency, we should allocate
buffers for all the file data we want to have pending.
If we use smaller buffers, we may end up with more
seeks due to inter-file request interleaving. For exam-
ple, if we want a queue depth of 500 and the average
file size is 20 KiB, the kernel approach needs 4 MiB
RAM. Our approach uses 200 bytes of memory per
file giving the equivalent of a queue depth of around
20.000.

o Scheduler deadlines: The 1/0O scheduler in the kernel
assigns deadlines to prevent starvation. However, in
our target scenarios, the total finishing time is the im-
portant metric, and individual request can therefore be
delayed longer than the I/O scheduler deadlines.

e Metadata API: Another performance issue is the lack
of efficient asynchronous APIs for metadata opera-
tions. There are several projects implementing such
APIs, such as fibrils in Linux. However, our experi-
ments revealed that the kernel serializes operations on
files in the same directory using the i_mutex lock,
i.e., the I/O requests will still arrive one at a time.

The alternative approach of modifying the file system to re-
turn files in readdir by sorted order also have limitations.

The first being decrease in performance for software which
will not traverse the tree, e.g., programs only interested in
the filenames. Looking up the block address of every file
in a directory may add a large performance penalty. A so-
lution could be to add a new parameter to the open sys-
tem call to indicate that the program will do tree traversal.
The problem with this approach is that the sorting is lim-
ited to one directory at time, and as shown in figure 5, this
decreases the performance considerably compared to a full
inode and block sort. Another approach is to implement a
special kernel API for this operation, but we would need to
move user space logic into the kernel. For example, a file
manager which generates previews of all files in a directory
would only be interested in the embedded thumbnails for
JPEG images (a small part of the file), and the first page of
a multi-page document. Since this behavior is application-
specific, the best place to put this logic is in user-space.

Using our technique for directory traversal is somewhat
more complex than traditional blocking I/O found in pro-
grams like tar. To avoid code duplication and allow system
wide disabling of the technique, it should be implemented
as a library instead of in the application itself. The tech-
nique can then be optionally enabled at runtime and adapted
to the underlying file system. For partial sorting (see inode
and inode+block in section 5.2), the readdi r call can sim-
ply be wrapped to return files in traversal order. However,
using full inode+block sort (used in qgtar) requires a new in-
terface that allows traversing files in an order not limited by
its containing directory.

6.3 Non-rotational devices

The technique is applicable for all types of hard drives
that experience seek times which increase relative to the dis-
tance between the previous block read and the next. How-
ever, we have only tested in on storage devices using ro-
tational disks. If other types storage devices are used, like
solid state disks, there is no disk arm movement to optimize.
Since version 2.6.29, Linux exposes if a block device is ro-
tational or not through the sysfs interface which could be
used to determine if user space scheduling should be turned
on or off.

6.4 Portability

The block address is not always available to user
space applications without root privileges. For ext4
and XFS, this is exposed on Linux for normal users
through FIEMAP ioctl, but currently requires root ac-
cess for ext3 using FIBMAP ioctl. On Windows,
the block address of files can be found by sending
the FSCTL_GET_RETRIEVAL_POINTERS command us-
ing the NtFsControlFile function, which is part of the

defragmentation interface [9].
6.5 Physical vs. logical block numbers

Disk scheduling in general requires knowledge of where
the data is physically located on disk. Commodity hard
drives do not expose this information directly, but instead
present logical block numbers. There is no guarantee of
a direct mapping between the block numbers used by the
operating system and the actual physical placement on the
disk, but usually the disk layout resembles the logical disk
block numbers. Thus, differences in the assumed correct
mapping will influence all disk I/O schedulers.

7 Conclusion

Traversing directory trees and reading all files one by one
is a common operation in many applications. Traditional,
in-kernel scheduling fail to optimize inter-file seek opera-
tions, i.e., this is a problem that cross different schedulers,
file systems and operating systems. We have therefore pro-
posed to take all file placements on disk into account using
a user space scheduler where I/0 request ordering can be
adapted to the application’s requirements. Finally, our ex-
periments demonstrate that this can give huge performance
improvements.

References

[1] libarchive. http://code.google.com/p/libarchive/.

[2] Tar - gnu project. http://www.gnu.org/software/tar/.

[3] A.Cox. Why is fibmap ioctl root only? Linux Kernel Mail-
ing List, 2007. http://lkml.org/lkml/2007/11/22/97.

[4] M. Fasheh. Fiemap, an extent mapping ioctl, 2008.
http://lwn.net/Articles/297696/.

[5] P. Halvorsen, C. Griwodz, V. Goebel, K. Lund, T. Plage-
mann, and J. Walpole. Storage system support for
continuous-media applications, part 1: Requirements and
single-disk issues. IEEE Distributed Systems Online, 5(1),
2004.

[6] J. Kéra. Ext4, btrfs, and the others. In UpTimes - Proceed-
ings of Linux-Kongress and OpenSolaris Developer Confer-
ence, pages 99-111, Oct. 2009.

[7] C. H. Lunde, H. Espeland, H. Stensland, A. Petlund, and
P. Halvorsen. Improving disk i/o performance on linux. In
UpTimes - Proceedings of Linux-Kongress and OpenSolaris
Developer Conference, pages 61-70, Oct. 2009.

[8] O. Manczak and E. Kustarz. Speeding up traversal of a
file system tree. US Patent Application, (US 20080172387),
2008.

[9] M. Russinovich. Inside windows nt disk defragmenting.
Microsoft TechNet, 2007. http://technet.microsoft.com/en-
us/sysinternals/bb897427.aspx.

[10] T. Ts’o. Re: [bug 417] new: htree much slower than
regular ext3. Linux Kernel Mailing List, Mar. 2003.
http://lkml.org/lkml/2003/3/7/348.

