
Improving File Tree Traversal Performance by Scheduling I/O Operations in

User space

Carl Henrik Lunde, Håvard Espeland, Håkon Kvale Stensland, Pål Halvorsen

Department of Informatics, University of Oslo and Simula Research Laboratory, Norway

email: {chlunde, haavares, haakonks, paalh}@ifi.uio.no

Abstract

Current in-kernel disk schedulers provide efficient means

to optimize the order (and minimize disk seeks) of issued,

in-queue I/O requests. However, they fail to optimize se-

quential multi-file operations, like traversing a large file

tree, because only requests from one file are available in the

scheduling queue at a time. We have therefore investigated a

user-level, I/O request sorting approach to reduce inter-file

disk arm movements. This is achieved by allowing applica-

tions to utilize the placement of inodes and disk blocks to

make a one sweep schedule for all file I/Os requested by a

process, i.e., data placement information is read first before

issuing the low-level I/O requests to the storage system. Our

experiments with a modified version of tar show reduced

disk arm movements and large performance improvements.

1 Introduction

There is an ever increasing demand for fast I/O. How-

ever, the properties of the mechanical, rotational disks and

the way current systems manage these storage devices raise

large challenges. In this area, a large number of data

placement and disk scheduling mechanisms have been pro-

posed [5], addressing different scenarios, application char-

acteristics and access patterns. Current commodity operat-

ing systems implement several policies such that the sys-

tem administrator can configure the system according to the

expected workload, e.g., Linux has the NOOP, Deadline

I/O, Anticipatory I/O and Complete Fair Queuing (CFQ)

schedulers. What is common for all these schedulers is that

they sort the issued, but non-served requests available in the

scheduling queue according to the placement on disk to op-

timize performance.

In modern operating systems, the disk schedulers oper-

ate at the kernel level. However, with respect to operations

requiring multiple file reads, the current approaches fail to

optimize seeks and thus I/O operation performance in an

Without Seeks (ext4,CFQ)

One Sweep (dirty ext4,CFQ)

WinZIP (clean NTFS,Win7)

GNU Tar (clean NTFS,Win7)

WinZIP (dirty NTFS,Win7)

GNU Tar (dirty NTFS,Win7)

BSD Tar (clean ext4,CFQ)

GNU Tar (clean ext4,CFQ)

GNU Tar (dirty ext4,NOOP)

BSD Tar (dirty ext4,CFQ)

GNU Tar (dirty ext4,CFQ)

0 10 20 30 40 50 60

Time (s)

Figure 1. Performance of programs travers-

ing directory trees showing potential im-
provement

application-wide manner. For Linux, this include applica-

tions like (recursive) copying (cp -r), deleting (rm -r),

archiving (tar and zip), searching (find), listing (ls

-R and file managers), synchronizing (rsync) and calcu-

lating file tree size (du). As exemplified by the tar archiv-

ing application (see listing 1), the reason for failing is sim-

ple and straight forward. These operations read one file at

a time. Requests within a single file may be optimized by

the operating system, but there is currently no way of order-

ing requests between different files as the scheduling queue

only contains requests for one file. Thus, the inter-file seek

distance may be large, reducing the overall performance by

orders of magnitude.

In figure 1, we see the performance of a multi-file read

operation performing tar on a Linux source tree contain-

ing about 22500 files stored on a 7200 RPM Maxtor Di-

amondMax 10 disk. We observe a high execution time

regardless of application implementation (BSD vs. Gnu),

scheduling policy (NOOP vs. CFQ), file system (ext4 vs.



NTFS) and operating system (Linux vs. Windows 71). A

new, clean file system reduce the execution time, but as the

system age, the execution time increase due to a more frag-

mented file system (dirty vs. clean). Thus, this is a cross-

platform and cross-file system problem. The last two bars in

the figure also indicate that there is a large potential perfor-

mance gain, i.e., if the order of the files (or disk blocks) can

be sorted according to disk placement on an application-

wide basis instead of on a per-file basis. This is shown by

the ”one sweep” and ”without seeks” bars where the data is

read in the file system’s logical block number order or com-

bined in one file without any inter-file seeks, respectively. In

both cases, the total execution time is drastically reduced.

In this paper, we prove that this kind of high-level

scheduling is possible in practice by first retrieving file lo-

cation information and then performing the file I/O requests

in logical block number order. Furthermore, we have modi-

fied the tar program under Linux to schedule the requests

in this manner, and we show experimentally that the per-

formance gains are substantial with a negligible CPU and

memory overhead, e.g., the time to archive the Linux source

tree is reduced from 82.5 seconds to 17.9 seconds - a reduc-

tion of about 78 % - on an aged ext4 file system running on

a Seagate Barracuda 7200 RPM disk.

The rest of this paper is structured as follows: In sec-

tion 2, we outline the basic idea of the user space schedul-

ing and in section 3, we look at related work. Section 4 de-

scribes our implementation and a modified application ex-

ample, and in section 5, we present our experiments and

results. A brief discussion of our approach is given in sec-

tion 6, and finally, section 7 summarizes and concludes the

paper.

2 Why user space scheduling?

Traditionally, disk scheduling is performed in the kernel.

The scheduler orders the requests after their logical block

numbers2 in the file system by taking into account current

disk arm placement and move direction. Thus, based on the

concurrent, available I/O requests in the queue, a schedule

is made where a minimized disk arm movement and opti-

mized throughput and response time are the goals.

However, to perform scheduling across multiple files that

are read one by one, current kernel-level approaches fail,

because the only requests available for sorting are from one

file only. Consider the example in figure 2 starting to read

and process file A, then file B and then finally file C. In this

1We have also tested on Windows Vista, but the performance is slightly

lower than Windows 7, so the results are not included.
2The logical block numbers used by the operating system are assumed

to correspond to the physical placement of the blocks on disk, but the disk

often hides the true block layout. The physical placement and the logical

block numbers however usually corresponds, but there may be inaccura-

cies.

Figure 2. Example file placements on disk
within a file tree

scenario, the individual blocks of each file might be effi-

ciently scheduled, but the inter file seeks means moving the

disk head from cylinder 2 (file A) to cylinder 0 (file B) and

ending at cylinder 6 (file C). Obviously, it would be more

efficient to start at cylinder 0, go to cylinder 2 and stop at

cylinder 6. Furthermore, taking into account that high-end

disks like Seagate Cheetah X15.6 have an average seek of

3.6 milliseconds, a track-to-track seek of 0.2 milliseconds

and a full-stroke seek of 7 milliseconds, it is beyond doubt

that any reduction in the number of cylinders traversed give

great savings of disk access time. In order to make an ef-

ficient schedule based on location and thus reduce the seek

overhead we need information about block placement for

all files that need to be processed (which is not available

to the kernel scheduler due to the one file at a time type of

operation).

To address this scenario, we propose to implement a user

space scheduler, recommending the application developers

to utilize available information from the file system when

making I/O requests. We base our approach on two sets of

information, i.e., meta-data block number and block num-

ber (if available). Often, the order of the meta-data struc-

tures reflects the order of the disk blocks, and in file sys-

tems like the Linux ext4 and XFS, the ordering between

inode blocks is the same as the order of inode numbers.

Furthermore, in file systems like ext2/3 and XFS, the map-

ping of disk block extents is available to a superuser [4]

using the FIBMAP (FIle Block MAP) ioctl sys-

tem call. When using ext4, the new FIEMAP (FIle

Extent MAP) ioctl [3] call provides such informa-

tion to all users.

The basic idea is to use the available information about

meta-data (e.g., inode) placement and disk block placement

to make a cross-file schedule where we aim for a one-sweep

disk arm movement for the whole recursive file tree traver-

sal. In the tar scenario, the meta-data is read first in inode



order to recursively discover all files and directories, and

second, all the file data is ordered by file data position.

3 Related Work

Similar ideas were discussed in an lkml-email exchange

in 2003 about an ordered readdir operation and sorting

in user space to minimize seeks [10]. Nearly four years

later, Sun [8] filed a patent application which claims the

method of accessing files in order of physical location when

doing tree traversal. However, to the best of our knowledge,

no real implementation nor measurements exist. We have

therefore implemented such a scheduler in user space, and

further improved the technique [7]. In this paper, we exam-

ine user space scheduling in detail and evaluate the perfor-

mance by using tar as an example.

An alternative approach to user-space scheduling is to

include support for optimized traversal in the file system it-

self. The new Btrfs [6] file system adds a secondary index

which can be used to iterate over directory trees. The sec-

ondary index in Btrfs is currently very simple, which only

sort entries according to creation time. However, this in-

dex could be extended to optimize full tree traversal. Our

approach does not require change to the underlying file sys-

tem, and can be used with any file system as long as the

block address of the file data is exposed to the user space

application.

4 Implementation

To evaluate our technique, we have chosen to adapt the

archiving program tar. This is an old Unix utility that has

been around for decades, so there are several implementa-

tions available. GNU Tar [2] is the default implementation

on most Linux distributions and is widely used. Since GNU

Tar is not developed as a two-part program, i.e., a tar library

and a command line front end, we chose instead to adapt

BSD Tar [1] as our reference implementation. The perfor-

mance of GNU Tar and BSD Tar is very similar (as shown

in figure 1). Our adaptation of BSD Tar, which does user

space reordering, is referred to as qtar.

The tar program does not use any metadata information

to read the files, directories, and metadata in any other or-

der than returned by the system calls for doing post-order

traversal of a directory tree. Pseudo-code for the GNU and

BSD traversal strategy of tar is shown in listing 1. Qtar is

our adaptation of tar which sorts the requests based on the

physical locations to minimize hard drive seek time. This

location is obtained using the FIEMAP ioctl on Linux,

which supports files, but not directory entries. Qtar first tra-

verses the directory tree (by C-SCAN order of the inodes)

and adds all files therein to a queue sorted by block order.

def archive(path):

for file in path:

stat file

read file

add to archive

for subdirectory in path:

stat subdirectory

add to archive

archive(subdirectory)

Listing 1. Tar traversal algorithm

def archive(path):

next = path

do

stat next

if is_directory:

add to archive(next)

for file in next:

inode_cscan_queue.add(next)

else:

FIEMAP next

block_sort_queue.add(next)

while (next = inode_cscan_queue.next())

flush()

def flush():

for file in block_sort_queue:

add to archive

Listing 2. Qtar traversal algorithm

The last operation is to process the files by the order of the

sorted queue. Pseudo-code for the qtar algorithm is shown

in listing 2.

Finally, a memory overhead of a couple of hundred bytes

for each file is required, i.e., storing metadata such as file

name, parent directory, inode and block number. However,

if an upper bound of consumed memory is required, the

flush() method (see listing 2) can be called at any time,

e.g., for every directory, for every 1000 files or when n MiB

RAM have been used.

This method of reading metadata in C-SCAN order and

sorting the full directory tree before accessing the files, has

not been described in previous work known to us.

5 Experiments and Results

We have conducted experiments to evaluate different as-

pects of this kind of user space scheduling and the qtar

technique in particular. The test setup is a machine run-

ning GNU/Linux using ext4 and XFS on a workstation-

class Seagate Barracuda 7200.11 hard drive. In our tests,

we did not use any limit on memory, so around 6 MiB of

memory were used for the largest directory tree (22 500 di-

rectory entries).



5.1 Running time and head movement

As shown in figure 3, the running time can be reduced us-

ing application level sorting. By running qtar on the Linux

kernel source tree consisting of about 22 500 files, we get

an average runtime of 17.9 seconds for five runs on ext4

(11.6 seconds on the setup in figure 1). The correspond-

ing time for GNU tar is 82.5 seconds (48.3 seconds on the

setup in figure 1) giving a performance increase of a factor

of more than 4.5. Furthermore, the elapsed running time of

qtar is fairly close to the time required for reading the data

using the theoretical one sweep benchmarks where we as-

sume that all files and directories immediately can be sorted

according to block numbers. However, one sweep is some-

what faster than practically possible, because we have sev-

eral data dependencies (directory data blocks must be read

to find new files and subdirectories, and inodes must be read

to find file data).

One sweep (ext4)

Qtar (XFS)

Qtar (ext4)

Gnu Tar (XFS)

GNU Tar (ext4)

0 20 40 60 80
Time (s)

Figure 3. Time to tar the Linux source tree
(22500 files)

In figure 4, we visualize the runtime and seek footprint

of GNU Tar and Qtar for the same experiments, by show-

ing the maximum and minimum disk sector accessed for

every 100 millisecond intervals. The data for the figure

was recorded using blktrace. We could not include the

full seek pattern, because there were too many seeks for

the GNU Tar implementation. Therefore, the figure shows

only the upper and lower bound of the disk head position,

even though the finer details are lost. As we can see, the

traditional solution requires multiple sweeps over the disk

platters as a result of multiple SCAN operations performed

by the kernel-level I/O scheduler. However, the footprint

of the improved qtar solution is radically different from the

original solution. Almost all seeks are going in the same (C-

SCAN) direction, except for some directory blocks which

need to be read before new inodes are discovered. Our im-

plementation orders directories by inode number, which is

one of the reasons for the seeking done during the direc-

tory traversal the first few seconds. After the directory tree

has been traversed, there do not seem to be any unnecessary

seeks at all. This means that the file system allocator did not

have to resort to any file fragmentation in order to fit the file

on the file system. Ext4 has implemented delayed alloca-

tion, so the full size of the file is known before the physical

Time

S
e
c
t
o
r

0

976768065

0 s 10 s 20 s 30 s 40 s 50 s 60 s 70 s 80 s

(a) GNU tar (ext4)

Time

S
e
c
t
o
r

0

976768065

0 s 10 s 20 s 30 s 40 s 50 s 60 s 70 s 80 s

(b) Qtar (ext4)

Figure 4. Disk head movement every 100 ms

blocks of the file are allocated. A video showing the disk

head movement on an actual disk using GNU tar and qtar

can be downloaded from 3.

5.2 Partial Sorting

The implementation we have tested so far read the full

directory tree and ensured that both metadata (inodes) and

file data were read according to disk placement. In figure 5,

we show the performance of an experiment reading a direc-

tory tree on ext4 with 1000 files using various alternative

implementations of tar with only partial sorting:

Full inode+block (qtar)

Inode+block

Full inode

Inode

Unordered (GNU tar)

0 1 2 3
Time (s)

Figure 5. Sorting alternatives compared

• Unordered (GNU Tar): This implementation read all

the metadata for all files in a directory in the order in

which they were retrieved from the file system. Then,

it read the file data in the same order, before recursively

repeating the procedure for each subdirectory.

3http://www.ping.uio.no/˜gus/misc/diskhead-low.avi



0 5 10 15 20 25

0
2
0

4
0

6
0

8
0

Age

T
im

e
 (

s
)

GNU tar
Qtar

Figure 6. Performance as file system ages

• Inode sort: This implementation sorted the directory

entries by inode before reading the metadata. It also

read the file data in the same order, i.e., sorted by in-

ode.

• Full inode sort: This implementation traversed the

full directory tree before reading all the metadata or-

dered by inode, and then it read all the file data ordered

by inode.

• Inode and block sort: This implementation read all

the metadata for a directory ordered by inode. Then, it

read all the file data for the file in the directory, ordered

by the position of the first block of each file. This pro-

cedure was repeated for each subdirectory.

• Full inode and block sort (Qtar): This implementa-

tion traversed the full directory tree and read all the

metadata ordered by inode. Then, it read all the file

data ordered by the first block of each file.

The results clearly show that doing the full inode and

block sort gives the best performance, but also that even the

simplest change, ordering directory entries by inode, helps

a lot. This shows that there is a high correlation between

the inode number and the position of the file data on disk on

the ext4 file system, i.e., information that could be used to

implement applications doing directory tree traversal more

efficient. We do not know if such an assumption can be

made on other file systems than ext.

5.3 Effect of File system Aging

An interesting detail is how the performance changes as

a file system ages. To evaluate this, we ran our qtar and

GNU Tar five times throughout an aging procedure which

repeatedly checked out 24 different versions of the Linux

source code. In short, our aging procedure replays devel-

opment activity on the kernel source tree by incrementally

checking out new versions. The archiving processes were

again run on the full Linux kernel source, and we used the

ext4 file system. In figure 6, we show the average runtime

for the five runs. The amount of change for each step in

the aging procedure is different, which is why step 1, 2, 10

and 17 are especially steep for GNU Tar. It is interesting to

see in this graph that the age has much less impact on the

improved qtar implementation. As the file system ages, the

improvement factor increases from 3.95 to 4.75.

5.4 Other File Systems

To evaluate how the underlying file system impacts tar

and qtar, we compared the performance running on ext4 and

XFS. The tests were run 5 times, and the average runtime

was used. Each test was measured for 16 different direc-

tories which were created in the same way, but at different

times. We also ran the tests on 16 aged (dirty) directories.

Detailed boxplots with absolute timings are shown in fig-

ure 7, and a summary of the results in terms of relative per-

formance gain (GNU tar / qtar) can be seen in figure 8. We

can see that the improvement obtained with qtar is larger

on ext4 than on XFS. Still, qtar outperforms tar in all cases,

even on clean file systems.

The difference in improvement factor for the file systems

relates to the order the file systems returns files in when

reading directories. Note that the variance for the boxplots

mainly shows variance in the file system allocator, not vari-

ance in runtime with the same directory. Thus, in summary,

this experiment shows that qtar improves the performance

over GNU tar for different file systems regardless of the size

of the file tree and the fragmentation of the file system. Us-

ing the smallest file tree of 100 files, the improvement is

”only” about 10% on a clean XFS file system. However, for

the benchmarks we performed, the improvements increase

with the file system age and file tree size, i.e., giving a per-

formance increase of about 200% using an aged XFS on the

Linux source tree (22500 files). The improvement factor

on ext4 for the clean filesystem approaches that of the dirty

filesystem for the run with 22,500 files. Why we see this

slight decrease of improvement in figure 8 is unknown to

us, but it still runs at about four times the speed of GNU tar

for both clean and dirty ext4.

6 Discussion

The performance gain of the user space scheduling

approach, i.e., first retrieving meta-information from the

file system about file placement on disk and then mak-

ing logical-block-number-sorted I/O requests, is promising.



E
la

p
s
e

d
 t

im
e

0.2

0.4

0.6

qtar tar

l

l

ext4

clean

qtar tar

l
l

xfs

clean

qtar tar

l

l

ext4

dirty

qtar tar

l

l

xfs

dirty

(a) 100 files

0.5

1.0

1.5

qtar tar

l

l

ext4

clean

qtar tar

l

l

xfs

clean

qtar tar

l

l

ext4

dirty

qtar tar

l

l

xfs

dirty

(b) 250 files

0.5

1.0

qtar tar

l

l

ext4

clean

qtar tar

l

l

xfs

clean

qtar tar

l

l

ext4

dirty

qtar tar

l

l

xfs

dirty

(c) 500 files

E
la

p
s
e

d
 t

im
e

1

2

3

4

qtar tar

l

l

ext4

clean

qtar tar

l

l

xfs

clean

qtar tar

l

l

ext4

dirty

qtar tar

l

l

xfs

dirty

(d) 1000 files

5

10

15

20

25

30

qtar tar

l

l

ext4

clean

qtar tar

l

l

xfs

clean

qtar tar

l

l

ext4

dirty

qtar tar

l

l

xfs

dirty

(e) 5000 files

20

40

60

80

qtar tar

l

l

ext4

clean

qtar tar

l

l

xfs

clean

qtar tar

l

l

ext4

dirty

qtar tar

l

l

xfs

dirty

(f) 22500 files

Figure 7. Boxplots for qtar and tar performance on the ext4 and XFS file systems



100 200 500 1000 2000 5000 10000 20000

0
1

2
3

4
5

File count

Im
p
ro

v
e
m

e
n
t 
fa

c
to

r

Clean ext4
Dirty ext4
Clean XFS
Dirty XFS

Figure 8. Improvement factor for qtar over

GNU tar comparing results on ext4 and XFS

However, there are a number of issues that must be consid-

ered.

6.1 Applicability

To increase the application performance by reordering

requests, it obviously must have multiple I/O operations to

choose from. The potential improvement in execution time

will generally depend on the number of I/O operations that

can be reordered. In this respect, there are many exam-

ples where this kind of user space scheduling is useful, i.e.,

where file and directory traversal is the core functionality.

However, there are also examples where the added com-

plexity does not pay off. This includes applications that de-

pend on external input, such as interactive applications and

databases; there is no way to know what data to read until

a user requests it. There is also a limitation for applications

with data dependencies; when one I/O operation decides

which operation to do next, or when one write operation

must be written to disk before another for consistency rea-

sons. As an example of the former case, consider a binary

search in a database index; the database only knows about

one operation, read the middle block, while the next opera-

tion, read the left branch or read the right branch, depends

on the data found by the first operation in the middle block.

Another examples of dependencies when we need to read

a directory block to find a file’s inode number, and to read

the file inode before we can read the file data. Finally, this

inter-file-seek optimizing is most efficient with many small

files. For large files, there is usually not enough external

fragmentation in modern Linux file systems to warrant re-

ordering of requests, neither within a file nor between files.

In these cases, we will likely introduce intrusive changes

in the program flow, and yield relatively low performance

gains. Another consideration is whether it is likely that files

are cached, i.e., if they have been recently used. A compiler

such as gcc, or rather the preprocessor cpp, may seem like

a good candidate for this technique because it reads many

small header files (around 20 for many standard C head-

ers in GNU libc, almost 100 for GTK+). But in most work

flows, header files will be cached, and therefore, the average

gain over time will be low.

6.2 Implementation alternatives

The traditional approach is to let the kernel I/O scheduler

do the scheduling. Our approach is application-specific,

and is implemented in user space since only the application

knows (and can adapt) its disk access pattern. The main

argument against doing scheduling in user space is that it

adds complexity. Nevertheless, a solution where the kernel

does the sorting could be implemented in several ways. For

example, an application can ensure that the I/O scheduler

has multiple files to choose from by using the existing asyn-

chronous APIs or by using multiple threads each issuing I/O

requests. There are problems with this solution, which leads

us to believe that such a solution would be slower and more

intrusive:

• Complexity: The application must handle multiple

buffers and multiple pending asynchronous requests,

which is more complex than sorting a list of files.

• Memory overhead: The performance depends on the

depth of I/O queue. For efficiency, we should allocate

buffers for all the file data we want to have pending.

If we use smaller buffers, we may end up with more

seeks due to inter-file request interleaving. For exam-

ple, if we want a queue depth of 500 and the average

file size is 20 KiB, the kernel approach needs 4 MiB

RAM. Our approach uses 200 bytes of memory per

file giving the equivalent of a queue depth of around

20.000.

• Scheduler deadlines: The I/O scheduler in the kernel

assigns deadlines to prevent starvation. However, in

our target scenarios, the total finishing time is the im-

portant metric, and individual request can therefore be

delayed longer than the I/O scheduler deadlines.

• Metadata API: Another performance issue is the lack

of efficient asynchronous APIs for metadata opera-

tions. There are several projects implementing such

APIs, such as fibrils in Linux. However, our experi-

ments revealed that the kernel serializes operations on

files in the same directory using the i mutex lock,

i.e., the I/O requests will still arrive one at a time.

The alternative approach of modifying the file system to re-

turn files in readdir by sorted order also have limitations.



The first being decrease in performance for software which

will not traverse the tree, e.g., programs only interested in

the filenames. Looking up the block address of every file

in a directory may add a large performance penalty. A so-

lution could be to add a new parameter to the open sys-

tem call to indicate that the program will do tree traversal.

The problem with this approach is that the sorting is lim-

ited to one directory at time, and as shown in figure 5, this

decreases the performance considerably compared to a full

inode and block sort. Another approach is to implement a

special kernel API for this operation, but we would need to

move user space logic into the kernel. For example, a file

manager which generates previews of all files in a directory

would only be interested in the embedded thumbnails for

JPEG images (a small part of the file), and the first page of

a multi-page document. Since this behavior is application-

specific, the best place to put this logic is in user-space.

Using our technique for directory traversal is somewhat

more complex than traditional blocking I/O found in pro-

grams like tar. To avoid code duplication and allow system

wide disabling of the technique, it should be implemented

as a library instead of in the application itself. The tech-

nique can then be optionally enabled at runtime and adapted

to the underlying file system. For partial sorting (see inode

and inode+block in section 5.2), the readdir call can sim-

ply be wrapped to return files in traversal order. However,

using full inode+block sort (used in qtar) requires a new in-

terface that allows traversing files in an order not limited by

its containing directory.

6.3 Non-rotational devices

The technique is applicable for all types of hard drives

that experience seek times which increase relative to the dis-

tance between the previous block read and the next. How-

ever, we have only tested in on storage devices using ro-

tational disks. If other types storage devices are used, like

solid state disks, there is no disk armmovement to optimize.

Since version 2.6.29, Linux exposes if a block device is ro-

tational or not through the sysfs interface which could be

used to determine if user space scheduling should be turned

on or off.

6.4 Portability

The block address is not always available to user

space applications without root privileges. For ext4

and XFS, this is exposed on Linux for normal users

through FIEMAP ioctl, but currently requires root ac-

cess for ext3 using FIBMAP ioctl. On Windows,

the block address of files can be found by sending

the FSCTL GET RETRIEVAL POINTERS command us-

ing the NtFsControlFile function, which is part of the

defragmentation interface [9].

6.5 Physical vs. logical block numbers

Disk scheduling in general requires knowledge of where

the data is physically located on disk. Commodity hard

drives do not expose this information directly, but instead

present logical block numbers. There is no guarantee of

a direct mapping between the block numbers used by the

operating system and the actual physical placement on the

disk, but usually the disk layout resembles the logical disk

block numbers. Thus, differences in the assumed correct

mapping will influence all disk I/O schedulers.

7 Conclusion

Traversing directory trees and reading all files one by one

is a common operation in many applications. Traditional,

in-kernel scheduling fail to optimize inter-file seek opera-

tions, i.e., this is a problem that cross different schedulers,

file systems and operating systems. We have therefore pro-

posed to take all file placements on disk into account using

a user space scheduler where I/O request ordering can be

adapted to the application’s requirements. Finally, our ex-

periments demonstrate that this can give huge performance

improvements.

References

[1] libarchive. http://code.google.com/p/libarchive/.
[2] Tar - gnu project. http://www.gnu.org/software/tar/.
[3] A. Cox. Why is fibmap ioctl root only? Linux Kernel Mail-

ing List, 2007. http://lkml.org/lkml/2007/11/22/97.
[4] M. Fasheh. Fiemap, an extent mapping ioctl, 2008.

http://lwn.net/Articles/297696/.
[5] P. Halvorsen, C. Griwodz, V. Goebel, K. Lund, T. Plage-

mann, and J. Walpole. Storage system support for

continuous-media applications, part 1: Requirements and

single-disk issues. IEEE Distributed Systems Online, 5(1),

2004.
[6] J. Kára. Ext4, btrfs, and the others. In UpTimes - Proceed-

ings of Linux-Kongress and OpenSolaris Developer Confer-

ence, pages 99–111, Oct. 2009.
[7] C. H. Lunde, H. Espeland, H. Stensland, A. Petlund, and

P. Halvorsen. Improving disk i/o performance on linux. In

UpTimes - Proceedings of Linux-Kongress and OpenSolaris

Developer Conference, pages 61–70, Oct. 2009.
[8] O. Manczak and E. Kustarz. Speeding up traversal of a

file system tree. US Patent Application, (US 20080172387),

2008.
[9] M. Russinovich. Inside windows nt disk defragmenting.

Microsoft TechNet, 2007. http://technet.microsoft.com/en-

us/sysinternals/bb897427.aspx.
[10] T. Ts’o. Re: [bug 417] new: htree much slower than

regular ext3. Linux Kernel Mailing List, Mar. 2003.

http://lkml.org/lkml/2003/3/7/348.


