
Modelling Dependency in Multimedia Streams

Alexander Eichhorn
Distributed Systems and Operating Systems Department

Ilmenau Technical University
P.O. Box 100 565, 98684 Ilmenau, Germany

alexander.eichhorn@tu-ilmenau.de

ABSTRACT
Expressing and analysing data dependency in multimedia
streams is promising, since content-aware policies at a trans-
port level would benefit from such services. In this paper
we present a format-independent dependency model aimed
at specifying, validating and reasoning about structural de-
pendency in multimedia streams. Based on this model, we
developed a universal dependency description language and
a dependency validation service to serve as an infrastructure
for content-aware transport layers. Driven by application
knowledge, this special form of a cross-layer design enables
lower layers to reason about the impact of data loss and
drops during transmission while being unaware of the real
data format.

We outline, how this infrastructure can be used to build
content-aware error protection policies and explain how ap-
plications need to specify dependency and prepare media
streams in order to gain benefits from those policies. While
costs and benefits of a dependency model are only quantifi-
able in conjunction with special policies, we report on the
general worst-case costs of our model here.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols–Applications; D.2.11 [Software Engineering]:
Software Architectures–Domain-specific Architectures

General Terms
Algorithms, Design, Performance, Languages

Keywords
Content-aware media streaming, dependency, error control

1. INTRODUCTION
Protocols for packetised media streaming over best-effort

networks need to deal with transmission errors and band-
width variations introduced by the unpredictable behaviour

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’06, October 23–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-447-2/06/0010 ...$5.00.

of existing transport protocols. Neither bandwidth nor loss
or delay bounds are guaranteed here. In order to preserve re-
altime characteristics of media streams, streaming protocols
need to include policies for flow control and error protection
when layered on top of unreliable transport channels. How-
ever, building streaming protocols without considering data
contents yields sub-optimal results. Hence, content-aware
transport services gain increased interest. While informa-
tion such as rate-distortion, data dependency and timing
are suitable concepts to leverage content-awareness, this pa-
per primarily focuses on dependency concepts.

The efficient compression methods found in multimedia
coding standards introduce dependencies between sections
of a media stream and thus also between network packets.
Data dependency makes streams highly vulnerable to packet
loss since resulting decoding errors will propagate spatially
and temporally across the reconstructed signal. While most
delivery channels lack appropriate support, in reaction sev-
eral error protection mechanisms have been introduced at
the application level, such as resynchronisation markers, er-
ror concealment [20], packetisation rules [21, 12], unequal
and forward error correction (FEC) [2, 1] and retransmission
schemes (ARQ) [16, 17]. However, these mechanisms rely on
intimate knowledge of the encoding format and achieve ac-
ceptable results only if supported by additional information
about the delivery channel. Such information is sometimes
unavailable at encoding time (when delivering pre-encoded
streams), highly variable (for wireless channels) and mostly
transparently hidden by protocol layering. Current com-
munication system layers handle stream data at most equal
during a complete session, either protecting all data or none,
while usually ignoring real-time constraints.

In consequence, design and architecture of streaming error
control need to be carefully reconsidered. A central ques-
tion is how to integrate application-level error control with
transport-level mechanisms. Cross-layer design is a promis-
ing approach, but current cross-layer research is driven by
issues of wireless delivery channels. In contrast, our work
focuses on application-driven approaches, where an applica-
tion is able to express data properties and transport layers
are enabled to reason about them.

It is well known, that content-aware error control policies
are able to protect a stream’s integrity and thus information
much better than best-effort policies. Selective drop poli-
cies [10, 13], unequal error protection [14, 2, 1], selective re-
transmissions [17, 5], rate-distortion optimal packet schedul-
ing [15, 5] and layered quality adaptation [4] are examples.
If stream data needs to be dropped in overload situations,

941

policies may favour unimportant data and thus restrict er-
ror propagation [13, 10]. In particular, in error-prone envi-
ronments such as wireless networks important data may be
stronger protected using selective FEC and ARQ policies in
order to reduce extra bandwidth demands while preserving
signal fidelity.

In order to enable content-aware policies in cross-layer
optimised transport layers, a universal dependency model
is necessary. While several dependency models and stream
description languages do exist, they are targeted at special
bitstream formats only [13, 11, 14] or were designed for dif-
ferent purposes such as content scaling [7] and automated
parser generation [8].

In this paper we propose a framework for dependency
specification and validation in media streams, based on a
model to reason about structural dependency, a simple de-
scription language and a robust dependency validation ser-
vice. This infrastructure allows applications to specify de-
pendency and enables lower system layers to reason about
the impact of data loss and drops during transmission. Our
dependency model is able to (a) validate the structural in-
tegrity of a stream and (b) estimate the importance of stream
objects and (c) estimate the severity of damage caused by
packet loss and explicit drops. The dependency model has
been designed with the following requirements in mind:

Expressiveness In order to serve as a universal founda-
tion, the dependency model must be able to express
the complex dependency patterns found in audio-visual
streams regardless of the stream format and the pack-
etisation level (e.g. video objects, frames, slices, mac-
roblocks or even network packets).

Purpose Independence The model must be generally ap-
plicable in different policies and mechanisms for multi-
media streaming such as scheduling, error protection,
fragmentation, content scaling and security.

Efficiency Since media streaming systems usually operate
at the resource limits the costs for providing general
dependency validation must be low in terms of extra
amount of metadata appended to streams, computa-
tional overhead and storage complexity. Because mul-
timedia streams are delay sensitive, the model and the
validation service must avoid unpredictable and extra
delay.

Robustness To validate a stream’s integrity, the model
must deliberately deal with incomplete knowledge, in-
troduced by packet loss in unreliable networks and by
the general nature of streams, where future data may
be unavailable and unpredictable. In such cases, the
model may give weaker information, but should re-
cover quickly as more data becomes accessible.

In the remainder of this paper, we first examine related
work focused on media stream description and dependency
modelling. Next, we discuss media stream properties and re-
late them to dependency modelling. In section 4 we present
our dependency model, show how the model supports dif-
ferent kinds of dependency found in recent media formats
and explain how applications need to preprocess a stream
in order to make use of the model. Section 5 presents the de-
scription language, the validation service, and demonstrates

the integration of the dependency model into cross-layer er-
ror control policies. We then give some analytical estimates
on worst-case costs of the proposed model and finally con-
clude the paper with an outlook on future work.

2. RELATED WORK
Several models and languages for stream syntax descrip-

tion exist, but they are either incomplete [5, 15], format-
specific [14, 10] or lack expressiveness for dependency mod-
elling [8, 7].

In [5], Chou and Miao describe a framework for rate-
distortion optimal packet scheduling and ARQ-based error-
recovery for packet-based networks. Several authors extend
this framework to wireless environments [3], joint ARQ/FEC
error control [18] and provide more efficient algorithms for
special dependency classes [15]. While the focus of this work
is rather on optimising packet schedules and error control
mechanisms, the algorithms require rate-distortion measures
and dependency information. However, the work lacks ap-
propriate mechanisms to retrieve those information auto-
matically. At this point, our dependency model is able to
complement this work.

Modelling dependency in media streams is usually focused
at MPEG-like bitstreams with a quite fixed frame pattern
only. In [14] Mayer-Patel et. al. present an analytical model,
aimed at predicting the loss-probability of different MPEG
frame types in order to stronger protect vulnerable types by
FEC. While abstracting from real dependency, this model
is not able to serve validation purposes and correct impor-
tance estimation. In Röder et. al. [15] a simple graph-model
is used to express dependency relations in media streams.
Our dependency model extends this idea towards flexibil-
ity, format-independence and robustness against packet loss.
Another dependency model for media streams is proposed
by Hoffmann and Kühnhauser [10]. Like the model pre-
sented here, it is used for importance estimation and stream
validation, but it fixed to MPEG-2 streams. Our depen-
dency model extends the general ideas towards an universal
description and validation framework. Krasic et. al. [13]
propose a priority mapping framework which is used in se-
lective drop policies for media streams. This framework is
based on a dependency model and a special class of scalable
MPEG codecs. However, the described dependency model
is fixed and focused at simple MPEG-like dependency struc-
tures.

Several languages for stream format description and au-
tomated bitstream scaling do exist in the literature (mostly
originating from MPEG-4 and MPEG-21). Flavor [8] is a
formal language for stream format description and parser
generation. Although it is able to express syntactical struc-
tures in media streams it lacks tools for dependency mod-
elling. A more general framework for bitstream description,
based on XML, is presented in [7]. The proposed language
is explicitly targeted at stream adaptation environments in
the context of MPEG-21, but it provides no tools to express
dependency and does not define how to utilise the stream
description. While the language is format-independent, it
is intended to generate a separate description for every bit-
stream instead of generally modelling bitstream types. How-
ever, due to the flexibility of XML, static and dynamic de-
pendency information is easy to express.

942

3. PROPERTIES OF MEDIA STREAMS
While the aim of the dependency model is to support de-

pendency validation and importance estimation, its foun-
dations lie in general properties of media streams. In con-
sequence, we will first concentrate on those properties and
their impact on dependency.

3.1 Dependency Relations in Media Streams
Media streams are data streams containing application-

level objects with special properties such as dependency
relations. Current multimedia standards define objects as
instances of types, based on a format-specific type hierar-
chy. H.264/AVC [22], for example, knows seven types at the
slice level (i, p, b, ei, ep, si and sp-slices)) while MPEG-4
Visual defines video objects located in object planes (i, p,

b-vops). Slices are combined into frames which in turn are
combined into picture groups (gop), while they are inter-
nally structured into macroblocks. Such structural patterns
are continuously repeated within a stream.

For efficient encoding, stream objects feature increasingly
complex dependency relations (see figure 1 for examples),
such as the combination of bi-directional, multi-picture, and
weighted relations in H.264/AVC predictive video encoding
[19], spatial and SNR refinement layers in scalable video cod-
ing or dyadic trees for temporal scalability in Joint Scalable
Video Coding. Because of their relations, stream objects
become differently important for signal reconstruction.

Dependency could be intuitively regarded as a concept
to describe that the existence of one stream object is es-
sential for processing another, related, object. We call this
form essential dependency. However, there is an alternative
form of dependency, found, for example, in Multiple De-
scription Coding (MDC) [4]. MDC splits the encoded signal
of a frame or a slice into multiple independently decodable
description objects. The relation between those objects is
a mutual refinement relation rather than a unidirectional
existence requirement. In such schemes, every object con-
tributes to the increase in fidelity of the reconstructed signal,
if present at decoding time. If refinements get lost or cor-
rupted the importance of the remaining objects increases
proportionally since it is crucial to receive at least one de-
scription to reconstruct a signal at all. We call this second
form fragmental dependency. For brevity we concentrate on
modelling essential dependency in this paper (called depen-
dency in the following), while integrating fragmental depen-
dency remains an open issue.

Essential dependency relations in media streams are tran-
sitive in nature and they usually form a dependency graph

[15]. Obviously, dependency is a property of object types,
however, in recent formats object-based relations become
more important. While type-based dependency was suffi-
cient to describe early encoding formats (MPEG-1/2), re-
cent formats specify explicit dependency at the object level
such as the reference picture lists used for H.264/AVC b-

slices. So actual dependency is the property of an object
while references are required to be of the correct types.

Dependency relations between objects can span consider-
ably large sections of a stream such as a complete gop. We
call the maximal distance of all dependency relations for an
object type the dependency radius. Even if media encoders
use future frames for prediction, they reorder stream ob-
jects prior to transmission to avoid forward dependency and
extra buffer requirements at the decoder. Hence, encoders

guarantee that every dependency is satisfied by prior stream
objects. Reordering, drop or loss at the transport level can
violate this assumption.

The dependency radius of types is usually limited to small
partitions of a stream. There is, for example, no dependency
across distant gops and only limited dependency between
objects in adjacent gops (the last b-frames of an open gop

in MPEG-2 video depend on the first i-frame of the fol-
lowing gop). In layered streams, enhancement layer objects
depend on lower layers only, even if they are of the same
type. Even within a single gop there is limited dependency
between objects (consider MPEG-2 b-frames which may
depend on the last two p-frames, but not all p-frames in
a gop). These restrictions will later become useful for con-
straining relations in our model.

Due to realtime constraints and limited buffers, the de-
pendency radius can even encompass stream objects on dis-
tinct processing nodes in a network. While one object is de-
coded and displayed at a receiver node, dependent objects
may still be generated by a sender node. Consequently, it
is desirable to decouple actual stream processing from rea-
soning about dependency. Therefore we clearly distinguish
between stream objects and metadata about them, and we
require stream objects to contain metadata such as for ex-
ample their position in the stream, their type, their rela-
tive importance, and eventually their explicit dependencies.
For practical reasons we consider metadata to be attached
to stream objects as object labels. Our dependency model
solely keeps track of this metadata while stream objects are
processed and stored in buffers. This enables the model to
keep information about objects without requiring the actual
objects to be stored and without introducing extra delays to
stream processing.

3.2 Visibility and Predictability of Stream
Structures

Media streams are continuous sequences of typed data ob-
jects. For each instance of a processing chain, new objects
become visible as time advances. Information about the
stream’s future is usually unavailable and predictions are in
general difficult. However, sometimes prediction is possible
as we will discuss later. Due to resource constraints stream
objects are not indefinitely stored, so old objects may no
longer be available. We call this property of stream objects
their visibility. Visibility is additionally affected by loss, cor-
ruption or reordering of objects during transmission which
introduces gaps into the sequence and uncertainty about the
real properties of an object, including its actual dependency.
Only visible objects are subject to processing, error control
and stream scheduling, while metadata of visible as well as
processed, dropped and even lost objects is required for de-
pendency reasoning.

In order to reflect these constraints we define the region
of interest for our dependency model as the model’s horizon.
The horizon covers information on all objects starting at the
most recent visible object and ending at the oldest object
within the dependency radius of any visible and expected
forthcoming object. So for any visible object and for any
future object it is ensured that its dependency is covered
by the horizon. Of course, different processing stages in a
streaming system will have different horizons, and horizons
change over time as new objects arrive and others are beeing
processed.

943

Figure 1: Bitstream dependency examples: (a) Typical MPEG-1/2/4 structure. (b) Layered H.264/AVC structure.

(c) Dyadic-tree structure for temporal scalability.

Unfortunately, loss and corruption of stream objects de-
stroy their metadata too. So metadata is unavailable if (1)
the stream object itself is still invisible, (2) the object was
lost or corrupted, and (3) the metadata has been discarded.
While the last case is controlled by the dependency model,
the other cases need special attention because metadata
needs to be recovered in order to reconstruct or estimate
actual dependency relations.

Streaming formats can be categorised into one of three
predictability classes, reflecting the chance of correct recon-
struction. If for an object type the number, types and even
positions of depending objects in the stream can be pre-
dicted regardless of the horizon, the type is called strictly

predictable. Hence, a stream containing strictly predictable
object types only is strictly predictable too. Strictly pre-
dictable streams are restricted to a fixed structure. Since
dependency is a property of the object type here, the ben-
efits of such streams are a simple dependency validation
and a perfect importance estimation. Examples of strictly
predictable media stream formats are Digital Video (DV)
and certain MPEG profiles with fixed gop structures (e.g.
MPEG-2 for Digital Video Broadcast, MPEG-2 I-frames
only formats).

A second class of object types, called limitedly predictable,
supports variable and dynamic dependency, but requires
that they are known in advance. This can be accomplished
by embedding dependency information into the stream prior
to the involved objects or by specifying predictable proper-
ties for a subset of types (e.g. every 15th vop is an i-vop).
This additional knowledge enables the partial recovery of
metadata. While limited predictability can reveal additional
benefits, we consider it a subject to future work.

All other object types are regarded as unpredictable, ei-
ther because they alternatively depend on different object
types or the number and position of referenced objects is
unknown in advance. A prominent example is the already
mentioned b-slice in H.264/AVC [22] which’s actual depen-
dency relies on encoder decisions based on media content. In
unpredictable streams, the object type merely defines the set
of potential dependency relations, while actual dependency
is object specific. As a consequence, it becomes apparent
that object types are not always sufficient to express actual
dependency. Hence, we need to model both, static type-
based dependency and dynamic object-based dependency.
One can regard type-based dependency as a necessary and
object-based dependency as a sufficient property here.

Unpredictability limits the correctness of dependency val-
idation and importance estimation in case of lost and unre-
coverable metadata. Consider, for example, a lost MPEG-4

p-vop in an unpredictable stream. Since the type of the
lost vop is not recoverable, subsequent p-vops and b-vops
would mistakenly be regarded to depend on the wrong (a
preceding) p-vop instead of detecting the broken depen-
dency chain. Hence, it is essential to include explicit ref-
erence lists into object labels, as it is already happening in
today’s unpredictable formats like H.264/AVC.

4. DEPENDENCY MODELLING
Since every stream format uses separate syntactical ele-

ments and defines special relations between them, we regard
media streams as continuous sequences of typed data objects
and leave the type definition as well as the relation specifica-
tion to application programmers and stream format design-
ers. They may choose an arbitrary granularity level such as
frames, slices, and even macroblocks or network packets as
the basic unit. While the selection does not influence the
expressiveness or robustness of our model, it may influence
efficiency and scalability.

Since dependency relations form a dependency graph our
model uses graph-based representations. This section in-
troduces tools for specifying dependency and explains the
process of tracking dependency relations in streams as well
as the processes of dependency validation and importance
estimation.

4.1 Type-based and Object-based Dependency
In our model we define stream objects as instances of types

and use the function otype : O 7→ T to obtain the type of
a stream object, with O being the set of all stream objects
and T being the set of object types defined for a stream.
While type-based dependency is known prior to stream cre-
ation, object-based dependency is unknown until the stream
objects are actually created. Both kinds of dependency are
modelled as graphs: a static type-based dependency graph,
the type graph GT , and a dynamically generated graph for
object-based dependency, the object graph GO . While the
type graph is generated and exchanged once prior to stream
transmission, the object graph is decorated at runtime as
new stream objects become visible. It always contains the
complete horizon. Information to decorate the object graph
is stored in the type graph and in object labels.

The type graph is a directed graph GT = (VT , ET) which
may contain parallel edges, loops and cycles in order to ex-
press arbitrary type relations found in current and future
encoding formats. The vertices VT represent the set of spec-
ified stream object types t ∈ T and the edges ET ⊆ VT ×VT

represent static dependency relations between those types.
Thus, a relation is unidirectional and exists between exactly

944

two types. Types contain additional attributes, which are
modelled as vertex labels, while relations are further con-
fined by constraints, which are modelled as edge labels.

Type attributes express (limitedly) predictable features
of types such as a minimal required number of references
and an average importance assigned to objects of this type.
Attributes are used during validation and for initial impor-
tance estimation of unpredictable types, while constraints
ensure the uniqueness of relations in the type graph. Rela-
tion constraints are rules to confine actual dependency, so
that only a subset of actual objects of the given type satis-
fies the relation. Attributes and constraints are discussed in
the next section.

The type graph is used when decorating the object graph,
either to provide implicit dependency for predictable types
or to serve as an integrity constraint when explicit depen-
dency is specified on the object level. The type graph can
be statically validated to detect inconsistencies and to verify
uniqueness. Its structure reveals a first approximation of the
real importance of objects since types with more dependency
relations are likely to produce more important objects.

The object dependency graph GO = (VO, EO) is a directed
acyclic graph (DAG). The set of vertices VO represents the
currently visible subset of interdependent stream objects
o ∈ O within the horizon and the set of edges EO ⊆ VO×VO

represents dependency relations between those objects, such
that (vo, vo′) ∈ E iff object o′ must be decoded in order to
be able to decode object o (in other words: object o depends
on o′ and object o′ is a reference for o). Each vertex contains
a state attribute which reflects if the object is currently vis-
ible or invisible for some reason (e.g. already processed, lost
or explicitly dropped).

Each stream object must be labelled by a common set
of metadata (see table 1) which can be derived from en-
coders. Sequence, type and explicit reference information is
used to build the object graph and to verify dependency.
Epochs model independent stream partitions with either
no or strictly limited external dependency, such as MPEG
gops. If not specified otherwise, no dependency between
objects in different epochs is allowed. This property lim-
its error propagation in case of object loss and is used for
garbage collecting unimportant information in the horizon.
The optional importance correction value, when set by an
application, is used to raise the importance level of an object
in addition to its dependency-based importance. This may
be necessary to reflect the higher weight of special headers
or coding tables which are otherwise not explicitly refer-
enced. Layer attributes define the actual layer of an object
and the layer it refines. The explicit reference list, if present,
contains sequence numbers of explicitly referenced objects,
while if absent, type-based relations from the type graph are
used instead. Without explicit references in object labels all
potentially matching dependency relations as specified in
the type graph are considered to be actual dependencies.

4.2 Type Attributes and Dependency
Constraints

In combination, the flexibility of type-based and object-
based dependency allows a format designer to express arbi-
trary relations. However, in order to properly express the
increasingly complex dependency structures of current and
future stream formats, different types of relations and sev-
eral dependency constraints are required.

Label Description

seq sequence number (∈ N)
type an object’s type identifier (∈ T)
epoch an object’s structural epoch (∈ N)
imp corr an object’s additional importance (∈ N0)
enclayer encoding layer for layered streams (∈ N0)
reflayer reference layer for layered streams (∈ N0)
reflist sequence numbers of all referenced objects

Table 1: Attributes contained in object labels.

When defining type-based dependency relations, each re-
lation points to a potential reference type. Since actual de-
pendency exists within a maximal dependency radius only
and not all objects of one type will always depend on all
objects of another type, we need a way to constrain the
relations.

In MPEG, for example, a p-vop depends either on a pre-
vious i-vop or a previous p-vop in the same gop. Another
example are H.264/AVC b-slices with multiple references
to p-slices and i-slices. The actual count of references may
differ between objects, however, there is a maximal limit
for practical reasons and usually a minimal acceptable limit
too. Sometimes, dependency is even optional, for example
when special headers or codec parameter sets are intermit-
tently exchanged. Object types usually depending on such
optional headers must not essentially depend on them, or
else they wrongly get rejected by validation when optional
headers are missing. Essential dependency is, however, re-
quired to model relations for strictly predictable types, since
their dependency must be satisfied by all object instances.

For those reasons, we define two kinds of dependency,
strong dependency which is used to express essential rela-
tions and weak dependency to express optional ones. Both
kinds of dependency are modelled as attributes of a depen-
dency relation between object types. It is allowed to mix
strong and weak dependency relations, but if relations are
otherwise identical, the strong relation overrides the weak.

Sometimes, a minimal number of (strong or weak) depen-
dency relations is required for all objects of a type. Hence,
we define the optional type attribute min deps ∈ N0 which
defaults to the number of strong relations defined for this
type or 1 if only weak relations exist. An object of this type
is considered valid (its necessary dependencies are satisfied)
if at least min deps relations to other objects actually exist,
otherwise the object exhibits a broken dependency.

Without strict predictability it is unclear how many ob-
jects will later depend on an object when it initially becomes
visible. In order to have a good approximation on object im-
portance, an average importance can be obtained from the
object type. This type property can be customised by a
format developer using the avg imp attribute.

Please recall from section 3.1, that dependency in me-
dia streams is unidirectional and backward only, has a lim-
ited radius, exists between types in certain layers and inside
epochs, and in rare cases even across epochs. In order to
model these properties we identified the following necessary
and optional constraints. Note, that these constraints are
intended to restrict the set of actual objects, a given object
depends on. They work in backward order over the object
sequence within the horizon.

945

Set Selector The set selector specifies how to select refer-
ence objects in the horizon. Two selectors do exist:
last of selects a single object of the specified type as
reference (e.g. it selects the last p-vop prior to another
vop). The second selector, all of, likewise selects all
objects of that type.

Distance The distance parameter dist ∈ N defines the size
of the dependency radius for objects of type t1 in terms
of occurrences of objects of type t2 rather than in se-
quence numbers. Combined with the set selectors, a
distance of 2 for last of(p-vop) selects the object of
type p-vop before the last p-vop and a distance of 2
for all of(p-vop) selects the last two p-vops.

Epoch Selector The epoch selector epoch ∈ Z specifies
dependency across epochs. It further constricts the
radius of potential dependency relative to the epoch
of the given object to the same epoch (epoch = 0), a
preceding epoch (epoch < 0) or a subsequent epoch
(epoch > 0). It is optional and defaults to the same
epoch as the object in question. Hence, the largest
epoch selector for all relations in the type graph con-
trols the maximal size of the horizon. One usage ex-
ample is the relation between adjacent gops in MPEG
video.

Layer Selector For layered streams, the optional layer se-
lector layer ∈ {0, 1} constraints the dependency rela-
tion to objects within the same layer (layer = 0) or
to objects in lower layers (layer = 1). A layer selector
becomes necessary when the same object types appear
in more than one layer as is the case for ei, ep and b-

slices in H.263++ and H.264/AVC layered encoding.

Figure 2 shows an example type graph for the MPEG
bitstream layout displayed in figure 1a. A b-vop in this
example depends on at least two other vops, a preceding
i-vop in the current or the subsequent epoch, or one or two
preceding p-vops, if they are within the b-vop’s epoch.

Figure 2: Type dependency graph for a simple MPEG-

like stream.

4.3 Object Graph Decoration
While the type graph is statically created, the object

graph is generated as new stream objects become visible.
This process, called graph decoration, uses the dependency
relations contained in the type graph and metadata con-
tained in object labels if available. During decoration the
function decorate(GO, GT , o) adds the vertex vo and even-
tually new adjacent edges to the object graph GO . An edge

(vo, vo′) is added iff one of the two following conditions is
true: Either o′ satisfies a dependency relation, defined in the
type graph GT for otype(o) when the object label’s reference
list is empty, or o′ is contained in the object’s reference list
and a dependency relation between otype(o) and otype(o′)
in GT is satisfied.

If a lost object, an explicitly dropped object or any tran-
sitive reference of such objects is selected as reference, the
new object is immediately marked to have a broken depen-

dency. This information is later valuable for dependency
validation. If a lost object is successfully retransmitted, the
object graph is updated accordingly.

If objects are lost or corrupted, their labels are lost too.
Decoration in this case requires reconstruction or predic-
tion of metadata (at least of the object type) from missing
sequence numbers. While type prediction is feasible and
sufficient for strictly predictable streams, metadata of other
streams is hard to reconstruct. Here, the decoration algo-
rithm must ensure, that subsequent valid objects are deco-
rated correctly, so that they won’t get linked to wrong ob-
jects, prior to a gap of lost objects with unknown type, only
because type and distance seem correct. This is only feasi-
ble having explicit reference lists. Thus, they are essential
for loss robustness.

Since explicit reference lists are unrecoverable, decoration
will be incomplete for a lost object, resulting in less reliable
estimations of the model when such objects are involved.
However, the model is able to recover quickly because even
lost objects are able to collect dependants, which in turn
reveals their actual importance.

4.4 Dependency Validation
The purpose of dependency validation is to ensure, that all

necessary (object-based) and sufficient (type-based) depen-
dency relations for a given object and its transitive ancestors
are satisfied so that the object may be successfully decoded.

Dependency validation is implemented by the function
valid : O 7→ {true, false}, using the object graph and the
type graph. Since the object graph is already prepared for
validation by the decoration function, valid is able to effi-
ciently check the following four conditions: A stream object
o ∈ O is valid iff it is (a) neither dropped nor lost itself,
(b) has no broken dependency, (c) all its strong dependency
relations are satisfied and (d) its minimum dependency is
satisfied too.

When using the model for strictly predictable streams,
dependency validation is even possible in the case of lost or
corrupted objects. This is not because the dependency of
the lost object itself can be reconstructed, which is unim-
portant anyway, but rather because the object type is pre-
dictable and decoration as well as validation of subsequent
objects can rely on this information. When streams are un-
predictable, the type of lost objects is not recoverable and
type-based dependency alone becomes insufficient. Then,
explicit object reference lists are required for compensation.

4.5 Importance Estimation
The importance of an object depends on the information

encoded within the object itself as well as on the number
and importance of objects which depend on this information
directly or transitively. As with validation, the importance
function imp : O 7→ N uses information from both graphs
to estimate the importance value. The importance of an

946

object is the maximum of its type importance and its meta-
importance, additionally increased by the correction value
stored in the object’s label.

imp(o) = max
“

type imp(otype(o)),meta imp(o)
”

+

imp corr(o)

The meta-importance for the object o is defined to be the
number of vertices in the transitive closure (TC) of o in GO .
The type importance for type t is defined to be the maximum
of (a) the type-specific avg imp value, (b) the number of
vertices in the transitive closure of t in GT increased by
1 or (c) the maximum of avg imp over all vertices in the
transitive closure increased by 1.

type imp(t) = max

8

>

>

<

>

>

:

avg imp(t)
˛

˛

˛ TC(GT , t)
˛

˛

˛ + 1

max
“

avg imp(ti)
”

+ 1
˛

˛

˛
ti ∈ TC(GT , t)

Unlike validation which uses backward dependency, im-
portance estimation relies on forward dependency. Thus,
exact importance values for every object can only be given in
strictly predictable streams. In unpredictable streams exact
importance is only available when all transitively depending
objects are within the horizon. In contrast, it is impossible
to give exact importance values if some depending objects
are still invisible or lost. Consequently, a first estimation of
object importance is initially based on the object type. As
the horizon proceeds and loss is repaired, importance values
for each object are refined to approach the exact values.

4.6 Model Conclusion
While the model enables format designers to express flex-

ible constraints on static typed-based dependency as well
as explicit object-based dependency, a developer needs to
carefully consider the impacts of a stream’s structural prop-
erties on general predictability, validation and importance
estimation. When adopting the model in a real scenario,
the effects subsume as follows:

• Type-based dependency is useful for partial depen-
dency validation (in particular for strong dependency)
and for initial importance estimation. It is sufficient
if a stream is strictly predictable while it cannot avoid
imprecise results if objects of unpredictable streams
are lost. Since the type graph is static it may be stat-
ically validated and it must be exchanged only once
prior to stream data.

• Object-based dependency is necessary for correct val-
idation and precise importance estimation if streams
are unpredictable or uncontrolled packet loss occurs.
In combination with type-based dependency it com-
pensates for incomplete knowledge in those cases.

• The size of the horizon solely depends on the radius of
potential dependency within a stream. There is no in-
terrelation between the model’s horizon and the size of
buffers required to store stream objects. Even if there
is no stream buffer at all, the model is able to rea-
son about the stream’s recent past within the horizon
limits.

• The model does not introduce extra delay besides its
own execution time, since it simply caches information
on stream objects, without requiring the objects to be
actually stored.

5. IMPLEMENTATION
In order to separate the tasks of dependency specification

and validation, we propose a Dependency Description Lan-

guage (DDL) and a Dependency Validation Service (DVS),
both based on the discussed dependency model. The DDL
is used to specify type-based dependency for a given stream
format at the design time of this format. This specification
is used to initialise the DVS, which is intended to monitor
and validate the state of a visible stream section as stream
data arrives and departs at runtime.

5.1 Dependency Description Language
In order to specify object types, type-based dependency

relations and constraints, we developed a simple description
language and a parser for transforming the description into
a type graph. The keyword types specifies the set of object
types while the keyword dependency is used to define de-
pendency rules as well as type attributes. Each dependency
rule corresponds to a dependency relation in the type graph.
It is of the form:

<set selector> (<typename>,
<distance>,
<epoch selector>,
<layer selector>) <relation>;

The typename is one of the object types specified by the
types keyword. Set selector, distance, epoch selector, layer
selector and relation are used as specified in section 4.2.

types := {seq_head, i_frame, p_frame, b_frame};
dependency(i_frame) := { last_of(seq_head) weak;

avg_imp(12); min_deps(0); };
dependency(p_frame) := { last_of(i_frame) weak;

last_of(p_frame) weak;
avg_imp(10); min_deps(1); };

dependency(b_frame) := { last_of(i_frame) weak;
first I-frame in next epoch
last_of(i_frame, 0, 1) weak;
one or two previous P-frames
in the same epoch
all_of(p_frame, 2) weak;
min_deps(2); };

Figure 3: Dependency description for a simple MPEG-

like stream.

Figure 3 shows a dependency description example for the
typical MPEG stream displayed in figure 2 with an open
gop of average size 12 in transport order, having the form
ipbbpbbpbb. . . (note that MPEG transport order slightly
differs from encoding order to avoid forward dependency).
The average gop size is reflected in the average importance
of the specified types.

5.2 Dependency Validation Service
The dependency validation service implements an instance

of the dependency model and offers interfaces for manipula-
tion, validation and estimation. It enables streaming proto-
col services such as scheduling, error protection and content
scaling to reason about dependency and importance.

947

We assume, that every stream is partitioned into stream
objects and that each object is properly labelled by the
application. A service instance is initialised using a DDL
description while the actual exchange of this description is
beyond the scope of the service. As the stream flows, the
DVS decorates the internal object graph and stores object
states. Objects can be updated later when they are pro-
cessed, dropped or retransmitted.

5.2.1 Interfaces
The interfaces of the DVS are organised into the three

sections decoration, validation and estimation (see table 2).
The methods implement the corresponding model functions
decorate, valid and imp. They use the sequence number of
stream objects as an index value. As new stream objects be-
come visible or gaps in sequence numbers are detected, the
user must call insertObject or insertLostObject to deco-
rate the object graph. If a reordered or retransmitted object
arrives later, the method updateObject(seq, label) must
be used. It takes special care of properly updating the object
graph. If an object is processed or dropped, a second form
of updateObject(seq, newstate) is provided since it can
be implemented more efficiently. Note that there is no spe-
cial garbage collection method, since the dependency model
implicitly manages its horizon based on dependency radius
and object state.

Graph Decoration

void insertObject(seq, label)

void insertLostObject(seq)

void updateObject(seq, label)

void updateObject(seq, newstate)

Object Validation

bool isValid(seq)

state getState(seq)

list<seq> listDependants(seq)

Importance Estimation

int getImportance(seq)

list<seq, imp> listByImportance(state)

Table 2: Dependency validation service API.

For validation and inspection, the service offers the meth-
ods isValid, getState and listDependants. Importance
estimation can be performed in two ways. Either the impor-
tance of a single known object is obtained by getImportance

or a list of all currently known objects, sorted by importance,
is obtained by listByImportance. The latter method con-
fines the listing to objects in a given state. Thus a user
can, for example, select the most important lost objects to
consider them for retransmission.

5.2.2 Architecture and Cross-Layer Issues
The intended purpose of the dependency validation ser-

vice is to make lower transport layer policies aware of the
internal properties of media streams. This cross-layer ap-
proach differs from other cross-layer architectures, which
mainly focus on optimising channel issues. Our approach is
application-driven and focuses on format-independent con-
tent description. We believe that combining both approaches
into a single cross-layer architecture is essential.

Figure 4 shows the dependency infrastructure, embed-
ded into the application-driven part of such an architecture.

While the format-independent dependency validation ser-
vice is embedded into transport layers and used by error- and
flow-control mechanisms, format-specific type description,
stream fragmentation and object labelling are performed at
the application level. In addition to traditional communi-
cation interfaces, a developer needs to provide the type de-
scription and the object labels.

Application and transport layers share the notion of la-
belled transport entities, the stream objects. This system-
atically extends the Application Level Framing concept [6]
by a common set of metadata. While the DVS requires
the transport layer to forward the labels, they are otherwise
transparent. This can be achieved by RTP extension head-
ers for example. However, transport layer strategies need to
be changed in order to integrate with the DVS.

Figure 4: Cross-Layer design using the dependency val-

idation service.

5.3 Embedding content-awareness into error
control

In this section we outline on the example of error control
policies, how transport-level services can become content-
aware using the DVS. While the number of existing error
control policies, protocols and algorithms for distributed
multimedia streaming systems is immense, we do not con-
sider any special mechanism or protocol. Instead we discuss
three classes of basic error control mechanisms and outline
how to make each class content-aware. We consider:

• Protection Policies, which preventively protect data
against loss or corruption by adding redundancy or
spreading the risk across multiple packets or paths.

• Drop Policies, which discard late or unimportant
stream data in a controlled way in order to adapt a
stream to resource constraints and relax overload sit-
uations.

• Recovery Policies, which systematically recover from
loss or corruption, either by retransmissions or con-
cealment. We focus on retransmission-based approaches
here.

948

As a general example we consider a streaming system with
a single stream sender and a single stream receiver connected
by a lossy channel. Both parties use a private instance
of the DVS for content-aware error control. Additionally
both use a private stream buffer to store stream objects.
As new stream objects arrive in the buffer and others get
processed, the DVS is used to validate dependency and pro-
vide importance estimations. A sender can incorporate this
into content-aware drop, importance-aware packet schedul-
ing and unequal error protection, while a receiver can use
selective retransmissions, based on object importance.

5.3.1 Content-aware Error Protection
Error protection policies are proactive and sender-based.

Content-awareness enables them to protect important stream
objects stronger than less important ones. Since importance
is type- and context-specific, objects of the same type may
have different importance values in different contexts. Con-
sequently an error protection policy needs to interpret im-
portance by own means.

Content-aware scheduling [15] and FEC mechanisms [9]
for example would use the getImportance to obtain the im-
portance value of an object in question or listByImportance
to get a list of all objects, ordered by importance.

5.3.2 Content-aware Drop Policies
Selective drop policies such as [13] handle three kinds

of problems by systematically discarding stream objects:
buffer overflows, missed deadlines and broken dependency.
If buffers run full, a content-aware drop policy needs to select
one or more objects to discard. Drop policies usually prefer
to drop objects with the least severe impact on signal fidelity,
in other words the least important objects within the hori-
zon. For such policies the DVS offers the listByImportance
operation. Since importance values are compared here, their
absolute value is not relevant. An alternative drop policy
can choose objects which missed their deadlines. However,
if any depending object is still in time the reference object
should not be dropped until all references are eventually
late. Using the listDependants operation the DVS creates
a dependency list for a given object. This list contains only
objects which are already visible and does not include lost
or dropped ones.

Explicitly dropping an object can create broken depen-
dencies. Since our dependency model assigns importance
according to actual dependency, each policy which drops the
least important objects first implicitly avoids broken depen-
dencies within the visible horizon. However, future objects
still outside the horizon are likely to experience broken de-
pendencies after drop. Hence, a drop policy must inform the
DVS when discarding objects via the updateObject opera-
tion. To detect a broken dependency for arriving objects,
isValid can be used directly after inserting the new object.

A receiver suffering from channel loss will experience bro-
ken dependencies too. If a previous reference object was lost,
it may be necessary to drop other objects too. However in
combination with retransmission policies, this decision can
be postponed until the objects need to be processed at the
receiver side.

5.3.3 Content-aware Retransmission Policies
In selective retransmission policies [16, 17, 3, 18] either the

receiver, the sender or both decide on the handling of lost

data. We do not consider how a retransmission protocol is
structured or if it is ACK/NACK-based. Instead we outline
a content-aware decision making process.

If a receiver detects a lost object he may use the im-
portance value provided by the getImportance operation
to reason about a selective retransmission. For predictable
streams, the estimation will always be correct, while for un-
predictable streams the initial estimations are less reliable
as discussed in section 4.4. Therefore the retransmission de-
cision may be postponed until more objects become visible.
Another way to obtain importance information regarding
lost objects is the listByImportance operation, which op-
tionally selects objects in a given state.

A sender-based approach for retransmission benefits from
a more complete knowledge about dependency since the
sender’s horizon is usually larger than the horizon of the
receiver and it contains no lost objects. Thus the impor-
tance estimation provided by getImportance is fairly exact
for senders. If a sender is informed by the receiver about
loss, he might selectively retransmit the most important ob-
jects instead of all missing ones.

6. ANALYTICAL EVALUATION
While costs and benefits of a dependency model are only

quantifiable in conjunction with real streams and policies,
we report on the analytical worst-case costs of our model
here. These costs include the runtime and storage complex-
ity of a model instance as used by the DVS, namely the costs
for decorating the object graph, validating dependency and
estimating importance. In this respect, the following prop-
erties of the type description and the stream itself are sig-
nificant (see table 3).

Type-based Properties
T number of types in the type graph
R number of dependency relations in the type graph

Stream-based Properties
S size of the stream buffer
L maximal number of entries in object dependency list

Table 3: Significant cost factors.

Since the dependency model caches information regarding
stream object labels only, the payload size of the objects is
irrelevant. So, for every object there is a small and con-
stant space complexity, subsuming to O(S) for the object
labels and the object state. However, the graph represen-
tations need additional but fixed storage too. Worst-case
space complexity for the type graph is O(T + R) since it
requires list representations due to parallel edges and O(S2)
for the object graph which may be implemented using an
adjacency matrix.

The runtime costs differ between the case where implicit
type-based dependency is available only and the case where
explicit object-based dependency is expressed in object la-
bels. Therefore table 4 shows worst-case costs for naive
straight-forward algorithms in both cases. Since the model
is intended to provide validation and estimation for any
new inserted object, graph decoration is performed during
insertObject and updateObject. If this is unnecessary or
loss and retransmissions are frequent, the costs may be post-
poned until either validation or estimation operation are
called.

949

Operation Implicit Explicit

Dependency Dependency

insertObject O(R × S) O(R × L)
insertLostObject O(1) O(1)
updateObject (retransmit) O(R × S2) O(S2 + S × R)
updateObject (drop) O(S2) O(S2)
updateObject (processed) O(1) O(1)
isValid O(1) O(1)
getState O(1) O(1)
listDependants O(S2) O(S2)
getImportance O(S2) O(S2)
listByImportance O(S3) O(S3)

Table 4: Worst-case costs for DVS operations.

These worst-case costs are considerably larger than aver-
age case costs for real streams, since (a) only a fraction of
all dependency relations must be checked for a single object
type, (b) the horizon is usually smaller than its maximal
size and (c) the intended algorithms are not optimised to
the special case of the dependency graphs. In general, the
operations for update and importance estimation suffer the
algorithmic costs of finding the transitive closure in the ob-
ject graph (in the class of O(S2)). Algorithmic optimisation
and specialisation may yield improvements here.

7. CONCLUSION
In this paper we presented a universal format-independent

dependency framework for multimedia streams and discussed
its benefits for cross-layer optimised error control policies.
Based on a formal dependency model, we developed a uni-
versal dependency description language and a robust depen-
dency validation service. This framework enables applica-
tion layers and lower transport layers to express, validate
and reason about structural dependency in media streams
and the impact of data loss and drops during transmission.
Since our framework is based on simple graphs and relations,
it may be implemented efficiently.

The expressiveness of our model allows format designers to
specify dependency relations for virtually any media format,
including most layered and scalable formats. The model is
robust against packet loss and deals with incomplete knowl-
edge introduced by the unpredictability of streams. While
designing the model we learned, that unpredictability of cur-
rent streaming formats constricts correct validation and im-
portance estimation if based on static type relations only.
In consequence, stream data needs to be explicitly labelled
to correctly reason about dependency.

While in this paper we only considered essential data de-
pendency for enabling content-awareness, other forms of de-
pendency as well as information on timing and rate-distortion
are equally important. The extension of this model towards
those concepts remains an issue for future work. Based on
the presented infrastructure we are currently implement-
ing a multimedia middleware platform and a novel content-
aware IPC mechanism for operating system kernels, includ-
ing content-aware error policies. Both platforms are sup-
posed to demonstrate the real costs and the utility of our
dependency framework.

8. REFERENCES
[1] J.-C. Bolot and T. Turletti. Adaptive Error Control for Packet

Video in the Internet. In Proceedings of CIP ’96, Lausanne,
1996.

[2] H. Cai, B. Zeng, G. Shen, and S. Li. Error-Resilient Unequal
Protection of Fine Granularity Scalable Video Bitstreams. In
Proceedings of the ICC, Paris, France, 2004.

[3] J. Chakareski and P. A. Chou. Application Layer Error
Correction Coding for Rate-Distortion Optimized Streaming to
Wireless Clients. In IEEE ICASSP, pages 2513–2516, 2002.

[4] J. Chakareski, S. Han, and B. Girod. Layered Coding vs.
Multiple Descriptions for Video Streaming over Multiple
Paths. In ACM Multimedia ’03, pages 422–431, 2003.

[5] P. Chou and Z. Miao. Rate-Distortion Optimized Streaming of
Packetized Media. Technical Report MSR-TR-2001-35,
Microsoft Research, February 2001.

[6] D. Clark and D. L. Tennenhouse. Architectural Consideration
for a New Generation of Protocols. In Proceedings of the ACM
Symposium on Communication Architectures and Protocols,
Philadelphia, 1990.

[7] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner.
Bitstream Syntax Description-Based Adaptation in Streaming
and Constrained Environments. IEEE Transactions on
Multimedia, 7:463–470, 2005.

[8] A. Eleftheriadis and D. Hong. Flavor: A Formal Language for
Audio-Visual Object Representation. In ACM Multimedia,
New York, NY, USA, 2004.

[9] M. Etoh and T. Yoshimura. Advances in Wireless Video
Delivery. Proceedings of the IEEE, Special Issue on Advances
in Video Coding and Delivery, 93(1):111–122, January 2005.

[10] M. Hoffmann and W. E. Kühnhauser. Towards a
Structure-Aware Failure Semantics for Streaming Media
Communication Models. Journal of Parallel and Distributed
Computing, 65(9):1047–1056, 2005.

[11] D. Isovic and G. Fohler. Quality Aware MPEG-2 Stream
Adaptation in Resource-Constrained Systems. In Proceedings
of ECRTS’04, Catania, Italy, 2004.

[12] J. Korhonen and R. Jorvinen. Packetization Scheme for
Streaming High-Quality Audio over Wireless Links. Lecture
Notes in Computer Science, 2899:42–53, 2003.

[13] C. Krasic and J. Walpole. Quality-Adaptive Media Streaming
by Priority Drop. In Proc. of NOSSDAV’03, Monterey, CA,
USA, 2003.

[14] K. Mayer-Patel, L. Le, and G. Carle. An MPEG Performance
Model and its Application to Adaptive Forward Error
Correction. In ACM Multimedia ’02, pages 1–10, 2002.

[15] M.Röder, J.Cardinal, and R.Hamzaoui. Efficient
Rate-Distortion Optimized Media Streaming for
Tree-Reducible Packet Dependencies. In Proceedings of
MMCN, San Jose, California, 2006.

[16] C. Papadopoulos and G. M. Parulkar. Retransmission-Based
Error Control for Continuous Media Applications. In Proc. of
NOSSDAV’96, 1996.

[17] M. G. Podolsky, S. McCanne, and M. Vetterli. Soft ARQ for
Layered Streaming Media. Journal on VLSI Signal Processing
Systems, 27(1-2):81–97, 2001.

[18] H. Seferoglu, Y. Altunbasak, O. Gurbuz, and O. Ercetin.
Rate-Distortion Optimized Joint ARQ-FEC Scheme for
Real-time Wireless Multimedia. In Proceedings of IEEE Int.
Conf. on Communications (ICC), 2005.

[19] G. Sullivan and T. Wiegand. Video Compression - From
Concepts to the H.264/AVC Standard. Proceedings of the
IEEE, Special Issue on Advances in Video Coding and
Delivery, 93(1):18–31, January 2005.

[20] B. Wah, X. Su, and D. Lin. A Survey of Error-Concealment
Schemes for Real-Time Audio and Video Transmissions over
the Internet. In Proceedings of the International Symposium
on Multimedia Software Engineering, pages 17–24, Taipei,
Taiwan, 2000.

[21] Y. Wang, W. Huang, and J. Korhonen. A Framework for
Robust and Scalable Audio Streaming. In Proceedings of ACM
Multimedia 2004, New York, NY, USA, 2004.

[22] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra.
Overview of the H.264/AVC Video Coding Standard. IEEE
Transactions on Circuits and Systems for Video Technology,
13(7):560–576, 2003.

950

