
FINITE ELEMENT CENTER

PREPRINT 2007–04

Benchmarking domain-specific compiler

optimizations for variational forms

Robert C. Kirby and Anders Logg

FINITE ELEMENT CENTER

PREPRINT 2007–04

Benchmarking domain-specific compiler

optimizations for variational forms

Robert C. Kirby and Anders Logg

Finite Element Center

http://www.femcenter.org/

Benchmarking domain-specific compiler

optimizations for variational forms

Robert C. Kirby and Anders Logg

Finite Element Center Preprint
NO 2007–04
ISSN 1653–574X

This preprint and other preprints can be found at
http://www.femcenter.org/preprints/

BENCHMARKING DOMAIN-SPECIFIC COMPILER

OPTIMIZATIONS FOR VARIATIONAL FORMS

ROBERT C. KIRBY AND ANDERS LOGG

Abstract. We examine the effect of using complexity-reducing relations to generate
optimized code for the evaluation of finite element variational forms. The optimizations
are implemented in a prototype code named FErari. We demonstrate that by invoking
FErari as an optimizing backend to the form compiler FFC, we obtain reduced local
operation counts by as much as a factor 7.9 and speedups for the assembly of the global
sparse matrix by as much as a factor 2.8.

1. Introduction

Projects such as the FEniCS Form Compiler (hence, FFC) [13, 14, 18], Sundance [19,
20, 21], and deal.II [4] aim to automate important aspects of finite element computation.
In the case of FFC, low-level code is generated for the evaluation of element stiffness
matrices or their actions, together with the local-to-global mapping. The existence of such
a compiler for variational forms naturally leads one to consider an optimizing compiler
for variational forms. What mathematical structure in the element-level computations is
tedious for humans to exploit by hand, but possible for a computer to find? We have
provided partial answers to this question in a series of papers [11, 15, 16]. These ideas
have been implemented in a prototype code called FErari, and we provide an empirical
study of the optimizations implemented by FErari in this paper.

FFC takes as input a multilinear variational form and generates code for evaluating
that form over affine elements. The formation of the local stiffness matrix on a single
element is expressed as a linear transformation (known at compile-time) applied to a vec-
tor representing the geometry and coefficient data (known only at run-time). The linear
transformation depends on the variational form and finite element basis, but not on the
mesh. The generated code is completely unrolled. This internal kernel is then called for
each of the many elements of the mesh at run-time to compute the global sparse matrix.

To a user of FFC, the optimizations are invoked simply with a -O flag, which turns on
a call to FErari and thence a modified code generator. In assessing the efficacy of these
techniques at reducing run-time, we focus on the construction of the sparse matrix and

Key words and phrases. finite element method, variational form, complexity-reducing relations , com-
piler, optimization, FFC, FErari.

Robert C. Kirby, Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX
79409-1042, Email: robert.c.kirby@ttu.edu.
Anders Logg, Simula Research Laboratory, Martin Linges v 17, Fornebu, PO Box 134, 1325 Lysaker,
Norway. Email: logg@simula.no.

1

2 ROBERT C. KIRBY AND ANDERS LOGG

its matrix-free application for a variety of variational forms. In particular, we study the
“pure” effect of the FErari optimizations as well as the optimizations relative to the cost
of inserting into a sparse matrix data structure.

2. Finite element assembly and the element tensor

2.1. Multilinear forms. In finite elements, the nonlinear and linear algebraic problems
come from evaluating the variational forms on the finite element basis functions. In our
work on FFC and FErari, we have focused on evaluating multilinear forms over affine
elements, and we continue to do so here. In particular, we are concerned with the dis-
cretization of general multilinear forms of arity r > 0,

(2.1) a : V 1
h × V 2

h × · · · × V r
h → R,

defined on the product space V 1
h ×V 2

h ×· · ·×V r
h of a given set {V j

h }
r
j=1 of discrete function

spaces on a triangulation T of a domain Ω ⊂ R
d. In the simplest case, all function spaces

are equal but there are many important examples, such as mixed methods, where it is
important to consider arguments coming from different function spaces. We shall restrict
our attention to multilinear forms expressed as integrals over the domain Ω. The typical
example is the bilinear form (r = 2) for Poisson’s equation,

(2.2) a(v, u) =

∫

Ω

∇v · ∇u dx.

Let now {φ1
i }

N1

i=1, {φ
2
i }

N2

i=1, . . . , {φ
r
i}

Nr

i=1 be bases of V 1
h , V 2

h , . . . , V r
h respectively and let

i = (i1, i2, . . . , ir) be a multiindex of length |i| = r. The multilinear form a then defines a
rank r tensor given by

(2.3) Ai = a(φ1
i1
, φ2

i2
, . . . , φr

ir
) ∀i ∈ I,

where I is the index set

(2.4) I =
r

∏

j=1

[1, |V j
h |] = {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (N1, N2, . . . , N r)}.

For any given multilinear form of arity r, the tensor A is a (typically sparse) tensor of
rank r and dimension (|V 1

h |, |V
2
h |, . . . , |V

r
h |) = (N1, N2, . . . , N r).

Typically, the arity of the multilinear form a is r = 2 or r = 1. When r = 2, a is a bilinear
form and so the corresponding tensor A is a matrix. When r = 1, the corresponding tensor
is a vector and when r = 0, the corresponding tensor is a scalar.

Forms of higher arity also appear, though they are rarely assembled as a higher-dimensional
sparse tensor. As an example, consider the discrete trilinear form a : V 1

h × V 2
h × V 3

h → R

associated with the weighted Poisson equation −∇ · (w∇u) = f . The trilinear form a is
given by

(2.5) a(v, u, w) =

∫

Ω

w∇v · ∇u dx,

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 3

and the corresponding rank three tensor is given by

(2.6) Ai =

∫

Ω

φ3
i3
∇φ1

i1
· ∇φ2

i2
dx.

For any w =
∑N3

i=1 wiφ
3
i , the tensor contraction A : w =

(

∑N3

i3=1 Ai1i2i3wi3

)

i1i2

is a matrix.

We may thus obtain the solution u by solving the linear system

(2.7) (A : w)u = b,

where bi = L(φ1
i1
) =

∫

Ω
φ1

i1
f dx. We typically consider w as a fixed finite element function

and directly compute the matrix A associated with the bilinear form a(·, ·, w). It may also
be desirable, both in trilinear and bilinear forms, to consider the function u as fixed and
directly compute a vector A (the action) associated with the linear form a(·, u, w). This
corresponds to a “matrix-free” application of the matrix, which may be used when solving
the linear system with a Krylov method.

2.2. Assembling the discrete system. The standard algorithm [23, 10, 17] for comput-
ing the matrix A is known as assembly ; it is computed by iterating over the cells of the
mesh T and adding from each cell the local contribution to the global sparse matrix A. A
similar process can compute a global action.

The integral defining a multilinear form a may be written as a sum of integrals over the
cells K of a triangulation T of the domain Ω:

(2.8) a =
∑

K∈T

aK ,

and thus

(2.9) Ai =
∑

K∈T

aK(φ1
i1
, φ2

i2
, . . . , φr

ir
).

For Poisson’s equation, the element bilinear form aK is thus given by aK(v, u) =
∫

K
∇v ·

∇u dx.
With n

j
K = |PK |, the dimension of the local finite element space on K, we now let

ι
j
K : [1, nj

K] → [1, N j] denote the standard local-to-global mapping for each discrete function

space V
j
h , j = 1, 2, . . . , r, and define for each K ∈ T the collective local-to-global mapping

ιK : IK → I by

(2.10) ιK(i) = (ι1K(i1), ι
2
K(i2), . . . , ι

r
K(ir)) ∀i ∈ IK ,

where IK is the index set

(2.11) IK =
r

∏

j=1

[1, |Pj
K |] = {(1, 1, . . . , 1), (1, 1, . . . , 2), . . . , (n1

K , n2
K , . . . , nr

K)}.

Furthermore, for each V
j
h we let {φK,j

i }
n

j

K

i=1 denote the restriction to an element K of the

subset of the basis {φj
i}

Nj

i=1 of V
j
h supported on K, and for each i ∈ I we let Ti ⊂ T denote

the subset of cells on which all of the basis functions {φj
ij
}r

j=1 are supported.

4 ROBERT C. KIRBY AND ANDERS LOGG

We may now compute A by summing the contributions from each local cell K,

AιK(i) =
∑

K∈T

aK(φ1
ιK(i1), φ

2
ιK(i2), . . . , φ

r
ιK(ir))

=
∑

K∈Ti

aK(φ1
ιK(i1), φ

2
ιK(i2), . . . , φ

r
ιK(ir))

=
∑

K∈Ti

aK(φK,1
i1

, φ
K,2
i2

, . . . , φ
K,r
ir

) = AK
i ,

(2.12)

where AK is the local element tensor on cell K (the “element stiffness matrix”). This
computation may be carried out by iterating once over all cells K ∈ T and adding the
contribution from each K to each entry Ai of A such that K ∈ Ti.

Our work in [13, 14] has focused on a general paradigm for efficiently constructing the
element tensor AK . In [11, 15, 16], we have explored special mathematical structure that
leads to reduced operation counts. However, it was studied only in a limited case what
the net impact of FErari operations were on overall assembly time, especially when the
cost of global assembly is counted as well. Additionally, to assess the overall efficacy of the
optimizations we have proposed, the relative costs of computing local matrices or vectors
and collecting them into the global data structure must be considered.

2.3. Sparse matrix insertion. In principle, summing the entries of AK into the global
tensor A may be accomplished by iterating over all i ∈ IK and adding the entry AK

i

at position ιK(i) of A as illustrated in Figure 1. Libraries such as PETSc [2, 1, 3] and
Trilinos [5, 6] provide high-level operations for doing just this. Use of such libraries is
encouraged, for they handle most of the parallel issues, provide good performance, and
give access to many advanced solver algorithms. Despite their success, however, many
external factors affect the actual performance they can provide. First, data locality plays
an important role in assembling either vectors or matrices. If the local degrees of freedom
on an element are mapped to entries close together in the global ordering, then memory
performance will be better. In addition, several additional factors affect the performance
of assembling a sparse matrix. These include the storage format (compressed sparse row
or column, coordinate indices, etc.), whether the items to be inserted are pre-sorted, how
memory has been preallocated, and what internal data structures are used.

2.4. A representation formula for the element tensor. It has long been known that
precomputing certain integrals on the reference element can speed up computation of the
element tensor, especially for bilinear forms with straight-sided elements. A general ap-
proach to precomputing certain integrals was first introduced in [12, 11] and later formal-
ized and automated in [13, 14]. A similar approach was implemented in early versions of
DOLFIN [9, 7, 8], but only for piecewise linear elements.

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 5

ι1K(1)

ι1K(2)

ι1K(3)

ι2K(1) ι2K(2) ι2K(3)

AK
32

1

1

2

2

3

3

Figure 1. Adding the entries of the element tensor AK to the global ten-
sor A using the local-to-global mapping ιK , illustrated here for a rank two
tensor (a matrix).

X1 = (0, 0) X2 = (1, 0)

X3 = (0, 1)

X

x = FK(X)

FK

x1

x2

x3

K0

K

Figure 2. The (affine) mapping FK from a reference cell K0 to some cell
K ∈ T .

6 ROBERT C. KIRBY AND ANDERS LOGG

When the mapping FK from the reference cell is affine (Figure 2), we have for the
Laplacian

(2.13) AK
i =

∫

K

∇φ
K,1
i1

· ∇φ
K,2
i2

dx =

∫

K

d
∑

β=1

∂φ
K,1
i1

∂xβ

∂φ
K,2
i2

∂xβ

dx,

whence a change of variables yields

(2.14) AK
i =

∑

α∈A

A0
iαGα

K ∀i ∈ IK ,

or simply

(2.15) AK = A0 : GK ,

where

A0
iα =

∫

K0

∂Φ1
i1

∂Xα1

∂Φ2
i2

∂Xα2

dX,

Gα
K = det F ′

K

d
∑

β=1

∂Xα1

∂xβ

∂Xα2

∂xβ

.

(2.16)

We refer to the tensor A0 as the reference tensor and to the tensor GK as the geometry

tensor. Furthermore, we refer to IK as the set of primary indices and to A as the set of
secondary indices. The tensor representation (2.15) generalizes to other multilinear forms.
This is made precise in [14]. The ranks of the tensors A0 and GK for a particular variational
form a are determined mechanically, from properties such as the number of coefficients and
derivatives.

We remark that in general, a multilinear form will correspond to a sum of tensor con-
tractions, rather than a single tensor contraction,

(2.17) AK =
∑

k

A0,k : GK,k.

One such example is the computation of the element tensor for the diffusion–reaction
problem −∆u + u = f , which may be computed as the sum of a tensor contraction of
a rank four reference tensor A0,1 with a rank two geometry tensor GK,1 and a rank two
reference tensor A0,2 with a rank zero geometry tensor GK,2.

3. A framework for optimization

In this section, we present an overview of our framework for optimization of variational
form evaluation. Two different approaches are presented. The first is a coarse-grained
strategy based on phrasing the tensor contraction (2.15) as a matrix-vector or matrix-
matrix multiplication that may be computed by an optimized library call. The second,
which is what FErari implements, exploits the structure of the tensor contraction to find
an optimized computation with a reduced operation count.

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 7

3.1. Tensor contraction as a matrix-vector product. To evaluate the element ten-
sor AK , one must evaluate the tensor contraction (2.15). A simple approach would be to
iterate over the entries {AK

i }i∈IK
of AK and for each entry AK

i compute the value of the en-
try by summing over the set of secondary indices A. However, by an appropriate reshaping
of the tensors AK , A0 and GK , one may phrase the tensor contraction as a matrix–vector
product and call an optimized library routine for the computation of the matrix–vector
product, such as the level 2 BLAS routine DGEMV.

To see this, let {ij}
|IK |
j=1 be an enumeration of the set of primary multiindices IK and let

{αj}
|A|
j=1 be an enumeration of the set of secondary multiindices A. As an example, for the

computation of the 6×6 element tensor for Poisson’s equation with quadratic elements on
triangles, we may enumerate the primary and secondary multiindices by

{ij}
|IK |
j=1 = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)},

{αj}
|A|
j=1 = {(1, 1), (1, 2), (2, 1), (2, 2)}.

(3.1)

By similarly enumerating the 36 entries of the 6×6 element tensor AK and the four entries
of the 2 × 2 geometry tensor GK , one may define two vectors aK ∈ R

36 and gK ∈ R
4

corresponding to the two tensors AK and GK respectively.
In general, the element tensor AK and the geometry tensor GK may be flattened to

create the corresponding vectors aK ↔ AK and gK ↔ GK , defined by

aK = (AK
i1 , A

K
i2 , . . . , A

K

i|IK |)
⊤,

gK = (Gα1

K , Gα2

K , . . . , Gα|A|

K)⊤.
(3.2)

Similarly, we define the |IK | × |A| matrix Ā0 by

(3.3) Ā0
jk = A0

ijαk , j = 1, 2, . . . , |IK |, k = 1, 2, . . . , |A|.

Since now

(3.4) aK
j = AK

ij =
∑

α∈A

A0
ijαGα

K =

|A|
∑

k=1

A0
ijαkG

αk

K =

|A|
∑

k=1

Ā0
jk(gK)k,

it follows that the tensor contraction AK = A0 : GK corresponds to the matrix–vector
product

(3.5) aK = Ā0gK .

Of course, once the computation of one aK may be computed as a matrix-vector product,
the computation of {aKi}M

i=1 for some M elements of the mesh can naturally be encoded
as a matrix-matrix multiplication. Using DGEMM in such a context is an example of
coarse-grained optimization, making good use of cache in a large computation. Such an
approach necessarily overlooks problem-specific optimizations such as we find in FErari,
but may be very effective in many circumstances. It is to be expected that which approach
is preferable will depend strongly on how much structure FErari finds and how well the
resulting algorithms are mapped onto hardware, as well as whether Ā0 is large enough for
DGEMM to be fast. We do not explore the coarse-grained strategy further in this paper.

8 ROBERT C. KIRBY AND ANDERS LOGG

3.2. Complexity-reducing relations. The matrix Ā0 is computed at compile-time by
FFC, and it typically possesses significant structure that can be exploited to reduce the
amount of arithmetic needed to multiply it by a vector gK .

Letting gK ∈ R
|A| be the vector obtained by flattening the geometry tensor GK as above,

we note that each entry AK
i of the element tensor AK is given by the inner product

(3.6) AK
i = a0

i · gK ,

where a0
i is the vector defined by

(3.7) a0
i = (A0

iα1 , A
0
iα2 , . . . , A

0
iα|A|)

⊤,

corresponding to a row in the matrix Ā0.
To optimize the evaluation of the element tensor, we look for dependencies between the

vectors {a0
i }i∈IK

that can be used to reduce the operation count. For example, if two
vectors a0

i and a0
i′ are collinear, then a0

i · gK may be computed using a0
i′ · gK in only one

multiply, and vice versa. If the Hamming distance (number of different entries between ai
0

and ai′

0) is k, then the result a0
i′ · gK can be computed from a0

i · gK in about k multiply-add
pairs, and vice versa. These kinds of relations are called “complexity-reducing relations”,
and they are related to common subexpressions. In [15], we constructed a weighted, undi-
rected graph, the vertices of which were the vectors a0

i and the weights of whose edges were
the pairwise distances under a complexity-reducing relation. We proved that a minimum
spanning tree of this graph encodes a minimal-arithmetic (in a specific sense) algorithm
for evaluating the product of Ā0 with an arbitrary input vector.

In fact, other kinds of structure is to be found in Ā0, such as when three or more rows
are linearly dependent. A first attempt at exploiting this structure is found in [16], but
our present work is limited to complexity-reducing relations.

4. Benchmark results

For a range of forms and polynomial degrees, we report several quantities for forming
the matrix and its action. First, we report the base operation count |IK | |A| for forming
the element tensor AK , as well as the operation counts generated by FFC1 and the FErari
optimizations. Having generated code for the local element computation from both FFC
and FErari, we compare the run-time for these codes being executed several times. This
measures the efficacy of FErari at exactly the point it seeks to optimize. Then, to provide
a broader context, we present the speedup obtained in the global assembly process, when
the overhead of sparse data structures is included.

In each case, we generated code for the local and global computation both with and
without FErari optimizations. This code was compiled and run on an IBM Thinkpad
T60p with 2GB of RAM and a dual core Intel T2600 chip running at 2.16 GHz. The
operating system was Ubuntu Linux with kernel 2.6.17-10-386. The compiler was g++

version 4.1.2 using optimization flag -O2 on all variational forms except the weighted

1FFC reduces the base operation count by omitting computation of zeros when the element tensor is
sparse.

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 9

Laplacian operator and action using quartics in 3D. The compiler and machine could only
handle optimization mode -O0 in these cases. For two-dimensional problems, we used
a regular triangulation based on subdividing a 64 × 64 square mesh into right triangles,
resulting in a total of 4,225 vertices and 8,192 triangles. For three dimensions, we used
a 16 × 16 × 16 partition of the unit cube into 4,913 vertices and 24,576 tetrahedra. The
timing was performed adaptively to ensure that at least one second of CPU time elapsed
for a set of at least ten repetitions for each test case. For the sparse matrix data structure,
a simple std::vector<std::map<unsigned int, double> > was used, which was found
competitive with insertion into a sparse PETSc matrix.

In most cases, we find decent speedup in the operation count, although it does not always
translate into a speedup in the runtime for the local computation. FErari is currently
architecture-unaware. Rearranging the matrix-vector computation in a way that makes
poor use of registers, for example, can more than offset reductions in the actual amount
of arithmetic. A better result would be obtained by somehow combining the graph-based
optimizations with an architecture model, or using a special-purpose compiler such as
Spiral [22].

Moreover, even a speedup in local computation does not always improve the global cost
of assembling a matrix or vector. If a relatively small amount of work is required to
compute AK , then the cost of assembling it into the global matrix or vector may dominate;
reductions in arithmetic are not significant. On the other hand, when the construction of
AK is relatively expensive, then speedup in the construction of the global matrix or vector
can be realized by reduction of arithmetic in the local computation. In our empirical results,
we observe a tendency of FErari to provide better global speedups for more complicated
variational forms.

4.1. Laplacian. First, we consider the Laplacian, with the variational form

(4.1) a(v, u) =

∫

Ω

∇v · ∇u dx.

We use Lagrange polynomials Pk of degree k = 1, 2, . . . , 5 on triangles and degree k =
1, 2, . . . , 4 on tetrahedra.2 When forming the element matrix for some K, the matrix Ā0

has m = |Pk|
2 rows and n = d2 columns. For particular values of k and d, we tabulate the

size of Ā0 and display the operation counts for the FFC- and FErari-generated algorithms
in Table 1. We also give the base operation count mn which is the number of operations
needed to compute the entries of the element tensor AK with no optimization.

In each case, FErari provides up to about a factor of three improvement in operation
count. The reduction in operation count, local computation time, and global computation
time required is plotted in Figure 3. The reduction in arithmetic reduces the run-time to
evaluate the local stiffness matrix (multiplying by ḡK) by a factor of 1.5 to 2 in both two
and three dimensions. However, the reduction does not have a major impact on the global
time to assemble the matrix. In this case, there are very few arithmetic operations needed

2The polynomial degree on tetrahedra was limited by available resources to compute the optimization.

10 ROBERT C. KIRBY AND ANDERS LOGG

Triangles Tetrahedra

k m n mn FFC FErari

1 9 4 36 16 11

2 36 4 144 64 21

3 100 4 400 252 71

4 225 4 900 712 236

5 441 4 1764 1480 523

k m n mn FFC FErari

1 16 9 144 36 28

2 100 9 900 381 196

3 400 9 3600 1968 848

4 1225 9 11025 6924 2494

Table 1. Base operation count mn versus FFC- and FErari-generated op-
eration counts for forming the element stiffness matrix for the Lapla-
cian (4.1).

Triangles Tetrahedra

k m n mn FFC FErari

1 3 12 36 16 12

2 6 24 144 64 52

3 10 40 400 252 189

4 15 60 900 712 566

5 21 84 1764 1480 1300

k m n mn FFC FErari

1 4 36 144 36 30

2 10 90 900 381 330

3 20 180 3600 1968 1540

4 35 315 11025 6924 5546

Table 2. Base operation count mn versus FFC- and FErari-generated op-
eration counts for applying the element stiffness matrix for the Lapla-
cian (4.1).

to construct the local matrix, and the cost of inserting into the global matrix overshadows
the gains FErari provides.

We also consider the matrix action as needed in a Krylov solver. Assembling into a global
vector is less expensive than into a global matrix, and we see better speedups in evaluating
the action of the Laplacian operator. In this case, FFC and FErari generate code for
evaluating (4.1) with u a member of the finite element space. Speedup of this operation
is felt at each iteration of a Krylov method and so translates directly into decreased solve
time. The matrix Ā0 has the same entries as for forming the stiffness matrix, but has a
different shape. In this case, the shape is |Pk| × (d2|Pk|). Table 2 shows the dimensions of
Ā0 and the FFC and FErari operation counts. Note that FErari does not do as well for the
action as for forming the matrix. Although the entries of Ā0 are the same as before, the
difference in shapes complicates finding collinear relationships. When the rows have only
d2 (4 or 9) entries for the stiffness matrix, more collinearity is found than when there are
|Pk| times as many entries. However, finding Hamming distance relations is as effective as
before. Despite the smaller reduction in operation count, the effect of the optimizations on
run-time is much greater than in forming the matrix, as we can see by comparing Figure 4
to Figure 3. A global speedup of about 10% is observed for degrees three through five
in two dimensions, and a speedup of 20%–40% for quadratics through quartics in three
dimensions. Again, only a small improvement is observed for low order methods.

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 11

1 2 3 4 5P o l y n o m i a l d e g r e e0 . 51 . 01 . 52 . 02 . 53 . 03 . 54 . 0

FE rari speed upversusFFC
L a p l a c i a n m a t r i x f o r m a t i o nO p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 3. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the Laplacian (4.1).

1 2 3 4 5P o l y n o m i a l d e g r e e1 . 01 . 11 . 21 . 31 . 41 . 51 . 61 . 7

FE rari speed upversusFFC
L a p l a c i a n a c t i o nO p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 4. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the action of the Laplacian (4.1).

12 ROBERT C. KIRBY AND ANDERS LOGG

Triangles Tetrahedra

k m n mn FFC FErari

1 9 12 108 48 33

2 36 24 864 552 331

3 100 40 4000 2992 1976

4 225 60 13500 11512 7758

5 441 84 37044 33260 23120

k m n mn FFC FErari

1 16 36 576 144 112

2 100 90 9000 4122 3101

3 400 180 72000 42846 30771

4 1225 315 385875 272832 196910

Table 3. Base operation count mn versus FFC- and FErari-generated oper-
ation counts for forming the element stiffness matrix for the weighted Lapla-
cian (4.2).

Triangles Tetrahedra

k m n mn FFC FErari

1 3 36 108 48 36

2 6 144 864 552 443

3 10 400 4000 2992 2596

4 15 900 13500 11512 10625

5 21 1764 37044 33260 31410

k m n mn FFC FErari

1 4 144 576 144 120

2 10 900 9000 4122 3561

3 20 3600 72000 42846 36394

4 35 11025 385875 272832 238641

Table 4. Base operation count mn versus FFC- and FErari-generated op-
eration counts for applying the element stiffness matrix for the weighted
Laplacian (4.2).

4.2. Weighted Laplacian. Now, we consider the form

(4.2) a(v, u, w) =

∫

Ω

w∇v · ∇u dx,

for a fixed weight w where we assume that v, u, w all come from the same Lagrange finite
element space. In this case, the presence of the coefficient w makes the local form more
expensive to evaluate. The matrix Ā0 now has |Pk|

2 rows and d2|Pk| columns. However,
the graph of the global matrix for this form is the same as for the constant coefficient case,
assuming the same basis and mesh are used. Consequently, the cost of assembly is exactly
the same once AK is constructed.

Table 3 tabulates the shape of Ā0 for the same degrees as the constant coefficient case,
as well as the operation count resulting from FFC and FErari. Again, FErari reduces
the operation count and run-time for the local computation considerably. Given that the
arithmetic cost is much larger than for the constant-coefficient case, it is not surprising
that the global speedups are much better, as seen in Figure 5.

As before, Ā0 has the same entries but a different shape when the action of the form
is considered. Now, the shape is |Pk| × (d2|Pk|

2). The shape of Ā0 and the FFC- and
FErari-generated operation counts are shown in Table 4. While FErari does not reduce
the operation count for the matrix action as significantly as it does for the matrix itself,
the global speedups are more significant (Figure 6).

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 13

1 2 3 4 5P o l y n o m i a l d e g r e e0 . 81 . 01 . 21 . 41 . 61 . 82 . 02 . 2

FE rari speed upversusFFC
W e i g h t e d L a p l a c i a n m a t r i x f o r m a t i o nO p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 5. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the weighted Laplacian (4.2).

4.3. Advection. Next, we consider the advection operator

(4.3) a(v, u) =

∫

Ω

v(β · ∇u) dx,

where β is some constant vector and consider forming the global stiffness matrix and its
action. For the matrix, the dimension of Ā0 is |Pk|

2×d3, and these values together with the
operation counts obtained from FFC and FErari are presented in Table 5. The advection
β is defined as a piecewise constant vector-valued Lagrange function which has d degrees of
freedom on each element. As a result, the matrix Ā0 is physically of dimension |Pk|

2×d3, but
the number of nonzero elements scales like |Pk|

2 × d2. This is because the reference tensor
A0 generating the matrix Ā0 is formed as an outer product with Φα1

[α2] = δα1α2
, that is,

component α2 of the piecewise constant vector-valued basis function Φα1
. Precontracting

the reference tensor along dimensions α1, α2 would thus reduce the size of the matrix Ā0 to
|Pk|

2×d2. Low-order elements like piecewise constants and linears often generate particular
structures that can be used for further optimizations. Such optimizations are not handled
by FErari and are an interesting venue for further research.

As with forming the Laplacian, the reduced operation counts (Table 5) do not signif-
icantly affect the global runtime (Figure 7). The operation counts and speedups for the
matrix action are found in Table 6 and Figure 8. Global speedup is again most significant
for higher order elements in three dimensions.

14 ROBERT C. KIRBY AND ANDERS LOGG

1 2 3 4 5P o l y n o m i a l d e g r e e1 . 01 . 21 . 41 . 61 . 8
FE rari speed upversusFFC

W e i g h t e d L a p l a c i a n a c t i o nO p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 6. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the action of the weighted Lapla-
cian (4.2).

Triangles Tetrahedra

k m n mn FFC FErari

1 9 8 72 24 6

2 36 8 288 112 35

3 100 8 800 336 95

4 225 8 1800 776 185

5 441 8 3528 1592 449

k m n mn FFC FErari

1 16 27 432 72 15

2 100 27 2700 558 71

3 400 27 10800 2646 450

4 1225 27 33075 8730 1335

Table 5. Base operation count mn versus FFC- and FErari-generated op-
eration counts for forming the element stiffness matrix for the advection
operator (4.3).

Triangles Tetrahedra

k m n mn FFC FErari

1 3 24 72 24 8

2 6 48 288 112 92

3 10 80 800 336 306

4 15 120 1800 776 712

5 21 168 3528 1592 1508

k m n mn FFC FErari

1 4 108 432 72 18

2 10 270 2700 558 387

3 20 540 10800 2646 2070

4 35 945 33075 8730 7428

Table 6. Base operation count mn versus FFC- and FErari-generated op-
eration counts for applying the element stiffness matrix for the advection
operator (4.3).

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 15

1 2 3 4 5P o l y n o m i a l d e g r e e0 1234 567
8

FE rari speed upversusFFC
A d v e c t i o n m a t r i x f o r m a t i o nO p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 7. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the advection operator (4.3).

4.4. Weighted advection in a coordinate direction. Finally, we consider the advec-
tion operator oriented along a coordinate axis, but with the velocity field varying in space
(projected into the finite element space):

(4.4) a(v, u, w) =

∫

Ω

vw
∂u

∂x1
dx,

We consider forming the matrix and its action for a fixed weight w. This operator is a
portion of the trilinear momentum advection term in the Navier-Stokes equations. For
constructing the matrix, we observe a nice speedup in local computation, although in two
dimensions this has only a marginal effect on the global run-time for assembly. However,
we gain significantly for higher-order elements in three dimensions, where we see a global
speedup with 180% for quartics. The operation counts for the local matrix construction
and action are shown in Tables 7 and 8, and the speedups are shown in Figures in 9 and 10.

4.5. Speedup versus work. As we noted before, reducing floating-point arithmetic is
expected to be more significant to the global computation when the individual entries in
the local matrix or vector are already expensive to compute. As a test of this, we plot the
speedup of FErari over FFC against the number of columns in each reference operator Ā0

in Figure 11. We do this for all orders and forms, considering matrices and their actions

16 ROBERT C. KIRBY AND ANDERS LOGG

1 2 3 4 5P o l y n o m i a l d e g r e e0 . 51 . 01 . 52 . 02 . 53 . 03 . 54 . 0

FE rari speed upversusFFC
A d v e c t i o n a c t i o n O p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 8. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the action of the advection opera-
tor (4.3).

Triangles Tetrahedra

k m n mn FFC FErari

1 9 6 54 36 23

2 36 12 432 344 247

3 100 20 2000 1660 1301

4 225 30 6750 6168 5209

5 441 42 18522 17436 15194

k m n mn FFC FErari

1 16 12 192 96 56

2 100 30 3000 1686 984

3 400 60 24000 18582 11723

4 1225 105 128625 107178 56555

Table 7. Base operation count mn versus FFC- and FErari-generated op-
eration counts for forming the element stiffness matrix for the advection
operator(4.4).

Triangles Tetrahedra

k m n mn FFC FErari

1 3 18 54 36 28

2 6 72 432 344 320

3 10 200 2000 1660 1595

4 15 450 6750 6168 6082

5 21 882 18522 17436 17091

k m n mn FFC FErari

1 4 48 192 96 60

2 10 300 3000 1686 1399

3 20 1200 24000 18582 15243

4 35 3675 128625 107178 78617

Table 8. Base operation count mn versus FFC- and FErari-generated op-
eration counts for forming the element stiffness matrix for the advection
operator(4.4).

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 17

1 2 3 4 5P o l y n o m i a l d e g r e e0 . 51 . 01 . 52 . 02 . 53 . 03 . 54 . 04 . 5

FE rari speed upversusFFC
W e i g h t e d a d v e c t i o n m a t r i x f o r m a t i o nO p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 9. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the weighted advection operator (4.4).

separately. Although it is not an exact relation (as to be expected), Figure 11 does indicate
a general trend of speedup increasing with the base cost of work per entry.

5. Conclusions

Several things emerge from our empirical study of optimizing FFC with FErari. In
certain contexts, FErari can provide tens of percent speedup in runtime in forming or
applying stiffness matrices. Moreover, these cases tend to be the computationally harder
ones (three dimensions, higher order polynomials). However, FErari is not without its
costs. It dramatically adds to the compile-time for FFC, and when used for simple forms
can actually hinder runtime.

Besides improving the run-time performance of finite element codes generated by FFC
and FErari, our results shed some light on where FErari could be improved and in how
a fully functional optimizing compiler for finite elements might be developed. First, our
calculations did little to optimally order the degrees of freedom; better ordering algorithms
should decrease the cost of insertion. Second, algorithms trying to maximize performance
must have some awareness of the underlying computer architecture. The success of Spiral
in signal processing suggests this should be possible. Moreover, knowing when to do what
kinds of optimization, such as FErari’s fine-grained optimization versus a coarse-grained
level 3 BLAS approach, must be determined. This must also be compared against when
quadrature-based algorithms might be effective, as well as whether the stiffness matrix

18 ROBERT C. KIRBY AND ANDERS LOGG

1 2 3 4 5P o l y n o m i a l d e g r e e1 . 01 . 11 . 21 . 31 . 41 . 51 . 61 . 71 . 8

FE rari speed upversusFFC
W e i g h t e d a d v e c t i o n a c t i o nO p c o u n t 2 dO p c o u n t 3 dL o c a l 2 DL o c a l 3 DG l o b a l 2 DG l o b a l 3 D

Figure 10. Speedup in operation count, local run-time and global run-time
for using FErari versus FFC only for the action of the weighted advection
operator (4.4).

should be explicitly constructed or if it is suitable to compute directly the action of the
matrix.

References

[1] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.

McInnes, B. F. Smith, and H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision
2.1.5, Argonne National Laboratory, 2004.

[2] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,

B. F. Smith, and H. Zhang, PETSc, 2006. URL: http://www.mcs.anl.gov/petsc/.
[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism

in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing,
E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997, pp. 163–202.

[4] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II Differential Equations Analysis Li-

brary, 2006. URL: http://www.dealii.org/.
[5] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,

R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and

A. Williams, An Overview of Trilinos, Tech. Rep. SAND2003-2927, Sandia National Laboratories,
2003.

[6] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.

Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,

R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the

Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

BENCHMARKING DOMAIN-SPECIFIC COMPILER OPTIMIZATIONS 19

1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5O p e r a t i o n s p e r e n t r y0 . 51 . 01 . 52 . 02 . 53 . 0

Gl ob al speed upofFE rari vsFFC
G l o b a l s p e e d u p M a t r i xA c t i o n

Figure 11. The global speedup that FErari produces over FFC is plotted
against the number of columns in the associated reference matrix Ā0, which
is a measure of the work required to compute each entry of AK .

[7] J. Hoffman, J. Jansson, A. Logg, and G. N. Wells, DOLFIN, 2006. http://www.fenics.
org/dolfin/.

[8] , DOLFIN User Manual, 2006.
[9] J. Hoffman and A. Logg, DOLFIN: Dynamic Object oriented Library for FINite element compu-

tation, Tech. Rep. 2002–06, Chalmers Finite Element Center Preprint Series, 2002.
[10] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,

Prentice-Hall, 1987.
[11] R. C. Kirby, M. G. Knepley, A. Logg, and L. R. Scott, Optimizing the evaluation of finite

element matrices, SIAM J. Sci. Comput., 27 (2005), pp. 741–758.
[12] R. C. Kirby, M. G. Knepley, and L. R. Scott, Evaluation of the action of finite element

operators, Tech. Rep. TR–2004–07, University of Chicago, Department of Computer Science, 2004.
[13] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Transactions on Mathematical

Software, 32 (2006), pp. 417–444.
[14] , Efficient compilation of a class of variational forms, ACM Transactions on Mathematical

Software, 33 (2007).
[15] R. C. Kirby, A. Logg, L. R. Scott, and A. R. Terrel, Topological optimization of the evaluation

of finite element matrices, SIAM J. Sci. Comput., 28 (2006), pp. 224–240.
[16] R. C. Kirby and L. R. Scott, Geometric optimization of the evaluation of finite element matrices,

to appear in SIAM J. Sci. Comput., (2007).
[17] H. P. Langtangen, Computational Partial Differential Equations – Numerical Methods and Diffpack

Programming, Lecture Notes in Computational Science and Engineering, Springer, 1999.
[18] A. Logg, FFC, 2007. http://www.fenics.org/ffc/.

20 ROBERT C. KIRBY AND ANDERS LOGG

[19] K. Long, Sundance, a rapid prototyping tool for parallel PDE-constrained optimization, in Large-Scale
PDE-Constrained Optimization, Lecture notes in computational science and engineering, Springer-
Verlag, 2003.

[20] , Sundance 2.0 tutorial, Tech. Rep. TR–2004–09, Sandia National Laboratories, 2004.
[21] , Sundance, 2006. URL: http://software.sandia.gov/sundance/.
[22] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong,

F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo,
SPIRAL: Code generation for DSP transforms, Proceedings of the IEEE, special issue on ”Program
Generation, Optimization, and Adaptation”, 93 (2005), pp. 232–275.

[23] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method — Its Basis and

Fundamentals, 6th edition, Elsevier, 2005, first published in 1967.

