Efficient Representation of Computational Meshes

Anders Logg

Simula Research Laboratory
e—mail: logg@simula.no

Summary We present a simple yet general and efficient approach teseptation of compu-
tational meshes. Meshes are represented as saetesii entitieof different topological dimen-
sions and theimcidence relationsWe discuss a straightforward and efficient storage scheme f
such mesh representations and efficient algorithms for atatipn of arbitrary incidence relations
from a given initial and minimal set of incidence relatiombe general representation may harbor
a wide range of computational meshes, and may also be dpedi&b provide simple user inter-
faces for particular meshes, including simplicial mesimesrie, two and three space dimensions
where the mesh entities correspond to vertices, edges &akcells. Benchmarks are presented
to demonstrate efficiency in terms of CPU time and memoryeisag

Introduction

The computational mesh is a central component of any satramework for the (mesh-
based) solution of partial differential equations. To reeluun-time and enable the solution
of large problems, it is therefore important that the corapahal mesh may be represented
efficiently, both in terms of the speed of operations on thehme access of mesh data, and in
terms of the memory usage for storing any given mesh in memory

It is furthermore important that the data structure for thgresentation of the mesh is general
enough to harbor a wide range of computational meshes. Enisrglity must also be reflected
in the programming interface to the mesh representatioallda the implementation of gen-
eral algorithms on the computational mesh. Many algorithsush as the assembly of a linear
system from a finite element variational problem may be imgleted similarly for simplicial,
guadrilateral and hexahedral meshes if the programmimgfade to the mesh representation
does not enforce a specific interface limited to a specifidntgse. For example, if the entities
on the boundary of a mesh (tifi@cety may be accessed in a similar way independently of the
mesh dimension and not adgesn two space dimensions amacesin three space dimensions,
one may use the same code to apply boundary conditions in @BR&n

In [9], a very general and flexible representation of comjomal meshes is presented. The
mesh is represented asiave which is in general a directed acyclic graph with the meshies

as points and directed edges describing how the mesh srdrgeconnected. In this paper, we
take a slightly less general approach but reuse some of theepts from [9]. In particular,
we will represent the mesh as a senoésh entitiegcorresponding to thpointsof the sieve)
and theirincidence relationsWe also acknowledge the works [4, 5], where similar coreept
are defined and where the importancerash iteratorgor expressing generic algorithms on
computational meshes is advocated.

The data structures and algorithms discussed in this papemglemented as a C++ library
and is distributed as part of DOLFIN, which is freely avai@from [8]. DOLFIN is a C++
problem-solving environment for ordinary and partial ei#ntial equations and is developed
as part of the FEnIiCS project [7, 6] for the automation of cataponal mathematical mod-
eling. A Python interface to DOLFIN is also available in tleerh of PyDOLFIN, generated
automatically from the C++ library by SWIG [3, 2].

Design goals

When designing the mesh library, we had the following degjgals in mind for the mesh
representation and its interface. The mesh representsitionld besimple meaning that the
data is represented in terms of basic C++ ar@ysi gned i nt * anddoubl ex*; it should

be generi¢ meaning that it should not be specialized to say simpligiaskhes in one, two
and three space dimensions; and it shoule@tfieient meaning that operations on the mesh or
access of mesh data should be fast and the storage shouiceregoimal memory usage for
any given mesh. Furthermore, the programming interfackearesh representation should be
intuitive, meaning that suitable abstractions (classes) shouldd&able, including specialized
interfaces for specific types of meshes as well as genemcfates that enable dimension-
independent programming; and it shoulddsgcient meaning that the overhead of the object-
oriented interface should be minimized.

Outline

In the following section, we present the basic concepts dedihe the mesh representation
and its interface. We then discuss the data structures aC#teimplementation of the mesh
representation in DOLFIN, followed by a discussion of thgoaithms used in DOLFIN to
compute any given incidence relation from a given minimalae@ncidence relations. Next,
we demonstrate the programming interface to the mesh yibFamally, we present a series of
benchmarks to demonstrate the efficiency of the mesh regets® and its implementation
followed by some concluding remarks.

Concepts

The mesh representation is based on the following basicepasicnesh mesh topologymesh
geometrymesh entityandmesh connectivityfgach of these concepts is mapped directly to the
corresponding component (class) of the implementation.

A mesh is defined by its topology and its geometry. The mesblogy defines how the mesh
is composed of its parts (the mesh entities) and the meshejepaescribes how the mesh is
embedded in some metric space, typic@lyfor n = 1,2, 3. A mesh topology (Figure 1) may

be specified as a set of mesh entities (the vertices, edggsietctheir connectivity (incidence

relations). Different embeddings (geometries) may be segoon any given mesh topology
to create different meshes, e.g., when moving the vertitasneesh in an ALE computation.

Below, we discuss the two basic concepts mesh entity and ocogstectivity in some detail and

also introduce the conceptesh function

Mesh entities

A mesh entity is a paifd, i), whered is the topological dimension of the mesh entity and
where: is a unique index for the mesh entity within its topologicahdnsion, ranging from

0 to Ny — 1 with N, the number of entities of topological dimensignWe let D denote the
maximal topological dimension over the mesh entities aridise topological dimension of
the mesh equal t®. This is illustrated in Figure 2, where each mesh entity elad by its
topological dimension and ind€x, 7).

For convenience, we also nhame common entities of low topcdbdimension or codimension.
We refer to entities of topological dimension 0 \&vtices entities of dimension 1 asdges
entities of dimension 2 afaces entities of codimension (dimensionD — 1) asfacetsand
entities of codimensiof (dimensionD) ascells Thus, for a triangular mesh, the edges are also

Figure 1: A mesh topology is a set of mesh entities (vertiedges, etc.) and their connectivity (incidence
relations), that is, which entities are connected (indipgenwhich entities.

(2,8)

(1,18) (0,9)
(1,10)

(2,3)

(0,2)

Figure 2: Each mesh entity of a mesh is identified with a faii), whered is the topological dimension
of the mesh entity and whelieis a unique index for the mesh entity within its topologicahdnsion,
ranging from0 to N; — 1 with V; the number of entities of topological dimensién

facets and the faces are also cells, and for a tetrahedrdl, thesfaces are also facets. This is
summarized in Table 1.

| Entity | Dimension| Codimension

Vertex 0 D
Edge 1 D—-1
Face 2 D—2
Facet D—1 1
Cell D 0

Table 1: Named entities of low topological dimension or coglnsion.

Mesh connectivity

We refer to the set of incidence relations on a set of meshients theconnectivityof the
mesh. For a mesh of topological dimensibnthere arg D + 1)? different classes of incidence
relations (connectivities) to consider. Each such cladsi®ted here by — d’' for0 < d,d’ <
D. For any given mesh entit, i), its connectivity(d — d’'); is given by the set of incident
mesh entities of dimensiafi.

Thus, for a triangular mesh (of topological dimension= 2), there are nine different incidence
relations of interest between the entities of the mesh.& hssin turrd — 0, that is, the vertices
incident to each vertex, — 1, that is, the edges incident to each vertex, .~ D, that s,
the cells incident to each cell.

Ford > d', the definition of incidence is evident. Mesh entty, i’) is incident to mesh entity
(d,i) if (d',7') is containedin (d, 7). Thus, the three vertices of a triangular cell form the set of
incident vertices and the three edges form the set of intieldges. For < d’, we define mesh
entity (d’,4') as incident to mesh entityl, i) if (d,4) is incident to(d’,4’). It thus remains to
define incidence fod = d'. Ford,d’" > 0, we say that mesh entity/’, i) is incident to mesh
entity (d, 7) if both are incident to a common vertex, that is, a mesh eofigimension zero,
while for d = d' = 0, we say thatd',) is incident to(d, ¢) if both are incident to a common
cell, that is, a mesh entity of dimensidh

Together, the set of mesh entities and connectivity (imwdeaelations) define the topology of
the mesh. Note that the complete set of incidence relationsd’ for 0 < d,d’ < D may be
determined from the single class of incidence relatibns- 0, that is, the vertices of each cell
in the mesh. We return to this below when we present an algorfor computing any given
class of incidence relations from the minimal set of incckerelationsD — 0.

Mesh functions

We define amesh functioras a discrete function that takes a value on the set of meglesnt
of a given fixed dimensiofl < d < D. Mesh functions are simple objects but very useful. A
real-valued mesh function may for example be used to desordderial parameters on the cells
of a mesh. A boolean-valued mesh function may be used to s&ensaon cells or edges for
adaptive refinement. Integer-valued mesh functions mayskd to express inter-connectivity
between two separate meshes. A typical use is when a boumaty is extracted from a given
mesh (by identifying the set of facets that are incident tacéy one cell). One may then use
a mesh function to describe the mapping from a cell in theaeid boundary mesh (which
has topological dimensiof — 1) to the corresponding facets in the original mesh (which has

topological dimensio). Note that mesh functions are discrete and are not meaeptesent
for example a piecewise polynomial finite element functiartiee mesh.

Data structures

The mesh representation as described in the previous sdtés been implemented as a
small C++ class library and is available freely as part of I@LFIN C++ finite element
library [8], version 0.6.3 or higher. Each of the basic cqusenesh mesh topologymesh
geometry mesh entitymesh connectivitand mesh functioris realized by the correspond-
ing classvesh, MeshTopol ogy, MeshGeonetry,MeshEnti ty, MeshConnectivity
andMeshFunct i on. All basic data structures are stored as static arrays ofjned integers
(unsi gned i nt *) or floating point valuesdoubl ex), which minimizes the cost of storing
the mesh data and allows for quick access of mesh data. Wesdisach of these classes/data
structures in detail below.

The classvesh

The classvesh stores aMeshTopol ogy and aMeshGeonet ry that together define the
mesh. TheveshTopol ogy andMeshGeonet ry are independent of each other and of the
Mesh. Although it is possible to work with theeshTopol ogy andMeshGeonet ry sepa-
rately, they are most conveniently accessed througisd class that holds a pair of a matching
topology and geometry.

The classveshTopol ogy

The classMeshTopol ogy stores the topology of a mesh as a set of mesh entities and
connectivities. For each pair of topological dimensidasd’),0 < d,d" < D, the class
MeshTopol ogy stores aveshConnect i vi ty representing the set of incidence relations
d — d'. The mesh entities themselves need not be stored explitidy are stored implicitly

for each topological dimensiod as the set of pair&d,) for 0 < i < N, whereN, is the
number of mesh entities of topological dimensibThus, for each topological dimension, the
classMeshTopol ogy stores an (unsigned) integéf;, from which the set of mesh entities
{(d,0),(d,1),...,(d, Ny — 1)} may be generated.

The classveshCGeonet ry

The classveshCGeonet r y stores the geometry of a mesh. Currently, only the simplesgiple
representation has been implemented, where only the catedi of each vertex are stored.
These coordinates are stored in a contiguous aroay di nat es of sizenN,, wheren is the
geometric dimension andi, is the number of vertices.

The classveshEnt ity

The classdveshEnt i t y provides aviewof a given mesh entityd, 7). The mesh entities them-
selves are not stored, butMeshEnt i t y may be generated from a given pédt 7). The class
MeshEnt ity provides a convenient interface for accessing mesh dapayrtrcular in combi-
nation with the concept of mesh iterators, as will be disedss more detail below. Thus, one
may for any giverMeshEnt i t y access its topological dimensidnits index: and its set of
incidence relations (connected mesh entities) of any gigpological dimensionl’. Special-
ized interfaces are provided for the named mesh entitiealoleTl in the form of the following
sub classes d¥eshEnti ty: Vert ex, Edge, Face, Facet andCel | .

The classgveshConnecti vity

The classMeshConnecti vi ty stores the set of incidence relatiods— d' for a fixed
pair of topological dimension&d, d’). The set of incidence relations is stored as a contigu-
ousunsi gned i nt arrayi ndi ces of entity indices for dimensiod’ entities, together with
an auxiliaryunsi gned i nt arrayof f set s that specifies the offset into the first array for
each entity of dimensio.! The size of the first arraiyndi ces is equal to the total number of
incident entities of dimensiodl and the size of the second armalfyf set s is equal to the total
number of entities of dimensiahplus one.

As an example, consider the storage of the set of incidetagares2 — 0, that is the vertices
of each cell, for the triangular mesh in Figure 3. The meshivasentities of dimensiod = 2
and four entities of dimensiaff = 0. Furthermore, each entity of dimensidn= 2 is incident
to three entities of dimensiafi = 0. The arrayent i ti es isthengivenby 0, 1, 3, 1,
2, 3] andthe arrapf f set sisgivenby[0, 3, 6].

(0,3)

(0,0) (0,2)

(0,1)

Figure 3: The mesh connectivity — 0 (the vertices of each cell) for this triangular mesh with two
cells and four vertices is stored as two arraysli ces = [0, 1, 3, 1, 2, 3] andoffsets
=[0, 3, 6].

The clasdveshFuncti on

The classMeshFuncti on stores a single array oN,; values on the mesh entities of
a given fixed dimension/, and is templated over the value type. Typical uses include
MeshFunct i on<doubl e>for material parameters that take a constant value on eddf ae
meshMeshFunct i on<bool > for cell markers that indicate cells that should be refined, a
MeshFunct i on<unsi gned i nt > to store inter-mesh connectivity or sub domain markers.

Minimal storage

The mesh data structures described above are summarizatle 2. We note that the classes
Mesh andMeshTopol ogy function as “aggregate classes” that collect mesh datacd&ise-
where, and that no data is stored in the clbshEntity. All data is thus stored in the
classMeshConnecti vi ty (in the two arrays ndi ces andof f set s) and in the class
MeshCeonet ry (in the arraycoor di nat es). Note that onédveshConnect i vi t y object

is stored for each pair of topological dimensidasd’) for which the mesh connectivity has
been initialized.

1The storage is similar to the standard compressed row ¢@8R) format for sparse matrices, except that
only the column indices need to be stored, not the values. dée that the two arraysndi ces andof f set s
are private data structures of the cldshConnect i vi t y. The user is presented with a more intuitive interface,
as will be demonstrated below.

| Data structure | Principal data | Size |

Mesh MeshTopol ogy topol ogy -
MeshGeonetry geonetry -
MeshTopol ogy MeshConnectivityx* connectivities |—
MeshGeonetry doubl ex coordi nat es nNy
MeshEntity - -
MeshConnectivity | unsigned int* indices O(N,)
unsigned intx offsets Ng+1

Table 2: Summary of mesh data structures.

As an illustration, consider the storage of a tetrahedradimeith NV, vertices andV; cells
(tetrahedra) embedded i&* where we only store the set of incidence relatidghs— 0. Each

cell has four vertices, so the clagsshConnecti vi ty storest N3 + N3 + 1 ~ 5N;3 values

of typeunsi gned i nt . Furthermore, the claggeshCGeonet ry stores3N, values of type
doubl e. Thus, if anunsi gned i nt is four bytes and @aoubl e is eight bytes, then the
total size of the mesh &) N5 4 24 N, bytes. For a standard uniform tetrahedral mesh of the unit
square, the number of cells is approximately six times thraber of vertices, so the total size
of the meshis

(20N; + 24Ng) b = (20N3 + 24N3/6) b = (20N5 + 4N3) b = 24N; b. (1)

Thus, a mesh with, 000, 000 cells may be stored in jugi Mb. Note that if additional mesh
connectivity is computed, like the edges or facets of theletdra, more memory will be re-
quired to store the mesh.

Algorithms

In this section, we present the algorithms used by the DOLUE¢h library to compute the
mesh connectivityl — d’ for any given0 < d,d’ < D. We assume that we are given an initial
set of incidence relation® — 0, that is, we know the vertices of each cell in the mesh.

The key to computing the mesh connectivities of a mesh is toptde the connectivities in a
particular order. For example, if the vertices are knowndach edge in the mesh 0),
then it is straightforward to compute the edges incidentachevertex (— 1) as will be
explained below. The computation is based on three algosittihat are used successively in a
particular order to compute the desired connectivity. A®asequence, the computation of a
certain connectivityl — d’ might require the computation of one or more other conniietss
We describe these algorithms in detail below. An overviegiven in Figure 4

Build

Algorithm 1 (Build) computes the connectivitiés — d andd — 0 from D — 0 andD — D

for 0 < d < D. In other words, given the vertices and incident cells oheaall in the mesh,
Algorithm 1 computes the entities of dimensidrof each cell and for each such entity the
vertices of that entity. Thus, it = 1, then the edges of each cell and the vertices of each edge
are computed.

The notation of Algorithm 1 requires some explanation. Altee we let(d — d'); denote the
set of entities of dimensiodf incident to entity(d, i):

(d—d), ={(d,j): (d,7)incidentto(d,q)}. (2)

Figure 4: The three basic algorithms for computing conmiygtiFrom the left: Build (computing con-
nectivity D — d andd — 0 from D — 0 and D — D), Transpose (computing connectivity— d’
from d’ — d) and Intersection (computing connectivify— d’ fromd — d” andd” — d').

Algorithm 1 also uses the operation

d 0, (3)
which denotes the set of vertex sets incident to the mestiesndif topological dimensiod of
a given cell(D,). To make this concrete, consider a triangular mesh (for vhic= 2) and
takedzl.lfvi:dw

local(D,3)
_

) 0, thenV; denotes the set of vertex sets incident to the edges of
triangle numbei. The setl; consists of three sets of vertices (one for each edge) afmdsetc
v; € V; contains two vertices. In addition, Algorithm 1 uses therafien

index((D, j),d, v;), 4)

which denotes the index of the entity of dimensibim the cell(D, j) which is incident to the
verticesy;.

We may now summarize Algorithm 1 as follows. For each ¢Bl]:), we create a set of candi-
date entities of dimensiad, represented by their incident vertices in thelgefThis operation
is local on each cell and must be performed differently fahedifferent type of mesh. We then
iterate over each cell incident to the célb, i) and check for each candidate entityc V; if

it has already been created by any of the previously visié#ld,anaking sure that two incident
cells agree on the index of any common incident entity.

Transpose

Algorithm 2 (Transpose) computes the connectivity- d' from the connectivityl’ — d for

d < d'. For each entity of dimensiafi, we iterate over the incident entities of dimensiband
add the entities of dimensiafi as incident entities to the entities of dimensibiWe may thus
compute for example the incident cells of each vertex (ttie tewhich the vertex belongs) by
iterating over the cells of the mesh and for each cell ovend®lent vertices.

Intersection

Algorithm 3 (Intersection) computes the connectivity— d’ fromd — d” andd” — d’ for
d > d'. For each entity(d,:) of dimensiond, we iterate over each incident entity”, k) of
dimensiond” and for each such entity we iterate over each incident eftity) of dimension
d'. We then check if eithefd, i) and(d’, j) are entities of the same topological dimension or if

Algorithm 1 Build(d), computingD — d andd — 0 from D — 0 andD — Dfor0 <d < D
k=0

for each (D, 1)

V= d local(D,i) 0

foreach (D, j) € (D — D); suchthatj <

V;' —d local(D,j) 0
for eachv, € V;
if v, €V
(D —d); = (D — d); U (d,index((D, j),d,v;))
else
(D —d);=(D—d);U(dk)
k=k+1

Algorithm 2 Transpose{, d’), computingd — d’' fromd" — dford < d’
for each (d', j)
foreach(d,i) € (d' — d);
(d—d); = (d—d);U(d,))

(d', j) is completely contained if, i) by checking that each vertex incident(id, j) is also
incident to(d,), in which cas€d’, ;') is added as an incident entity of entity, 7).

Here,d” must be chosen according to the definition of incidence galemve. For example,
we may takel” = 0 to compute the connectivity) — D (the incident cells of each cell) by
iterating over the vertices of each cell and for each suctexéterate over the incident cells.

Algorithm 3 Intersectiond, d’, d”), computingd — d’' fromd — d” andd” — d' ford > d’

for each (d, 1)
foreach (d",k) € (d — d");
foreach (d',j) € (d" — d')y
if d=d andi# j)or(d>d and(d — 0); C (d — 0);)
(d—d)i=(d—d)U(d,j)

Successive application of Build, Transpose and Intersecti

Any given connectivityl — d’' for 0 < d,d’ < D may be computed by a successive application
of Algorithms 1-3 in a suitable order. In Algorithm 4, we peasthe basic logic for a successive
and recursive application of the three basic algorithmddBUiranspose and Intersection to
compute any given connectivity.

We illustrate this in Figure 5 for computation of the conmatt 2 — 2, the incident faces
of each face, for a tetrahedral mesh. From the given comvigcid — 0, we compute the
connectivity) — D by an application of Transpose. This allows us to comgute> D by an

application of Intersection. The connectivity— 0 (and D — 2) may then be computed by

s

D

Figure 5: Computing connectivity — 2 (the faces incident to any given face) by successive apjgica
of Transpose, Intersection, Build, Transpose and Intésec

Algorithm 4 Connectivity(l, d'), computingd — d’ by application of Algorithms 1-3
Build(d)

|f Nd/ = 0
Build(d")

ifd—d #10
return

if d<d
Connectivity(’, d)
Transposel, d')
else
ifd=0andd =0
d"=D
else
d" =0
Connectivity(, d”)
Connectivity(”, d')
Intersectiond, d’, d")

an application of Build. We then apply Transpose to compute 2 and finally Intersection to
compute2 — 2.

Memory handling

For each of Algorithms 1-3, memory usage may be conservedryng each algorithm twice;
first one round to count the number of incident entities, Wwtattows the static data structures
discussed above to be preallocated, and then another rouset the values of the incident
entities. Furthermore, memory usage may be conserved agirgeincidence relations that get
computed as byproducts of Algorithms 1-3 when they are ngdoneeded.

Interfaces

In this section, we briefly describe the user interface of@LFIN mesh library. We only
describe the C++ interface, but note that an (almost) idahiython interface is also available.

Creating a mesh

A mesh may be created in one of three ways, as illustratedgar€&i6. Either, the mesh is
defined by a data file in the DOLFIN XML forndator the mesh is defined vertex by vertex
and cell by cell using the DOLFIN mesh editor, or the mesh fed as one of the DOLFIN
built-in meshes. Currently provided built-in meshes idddariangular meshes of the unit square
and tetrahedral meshes of the unit cube.

/1 Read nmesh fromfile
Mesh neshO("nmesh. xm ");

/1 Build nmesh using the nesh editor
Mesh nmeshl;

MeshEdi t or editor;

edi tor.open(neshl, "triangle", 2, 2);
editor.initVertices(4);

edi tor.addVertex(0, 0.0, 0.0);
editor.addVertex(1, 1.0, 0.0);

edi tor.addVertex(2, 1.0, 1.0);

edi tor.addVertex(3, 0.0, 1.0);
editor.initCells(2);
editor.addCel I (O, O, 1, 2);
editor.addCel I (1, 0, 2, 3);
editor.close();

/1l Create sinple nesh of the unit cube
Uni t Cube nesh2(16, 16, 16);

Figure 6: A DOLFIN mesh may be defined either by an XML data fde,explicitly using the
DOLFIN mesh editor, or as a built-in predefined mesh. The tasi arguments in the call to
MeshEdi t or: : open() specify the topological and geometric dimensions of thehmespectively.

Mesh iterators

Mesh data may be accessed directly from the mesh, but is mmogegiently accessed through
the mesh iterator interface. Algorithms operating on a n@stiuding Algorithms 1-3) can

2A conversion scriptiol f i n- conver t is provided for conversion from other popular mesh formiaisligd-
ing Gmsh and Medit) to DOLFIN XML format.

often be expressed in terms itérators. Mesh iterators can be used to iterate either over the
global set of mesh entities of a given topological dimensamover the locally incident en-
tities of any given mesh entity. Two alternative interfaees provided; the general interface
MeshEntitylterator for iteration over entities of some given topological direiem d,

and the specialized mesh iteratder t ex| t er at or , Edgel t er at or , Facel t erat or,
Facet | terator andCel | | t er at or foriteration over named entities. Iteration over mesh
entities may be nested at arbitrary depth and the connigctimcidence relations) required for
any given iteration is automatically computed (at the fistwosrence) by the algorithms pre-
sented in the previous section.

A MeshEntitylterator (it) may be dereferencedi(t) to create aveshEntity,
and any member functioMeshEntity::foo() may be accessed hyt - >f oo(). A
MeshEntitylterator may thus be thought of aspinterto aMeshEnt i t y. Similarly,
the named mesh entity iterators may be dereferenced teedieatorresponding named mesh
entities. Thus, dereferencingvr t exl t er at or gives aVer t ex which provides an inter-
face to access vertex data. For exampletifis aVer t exl t er at or, theni t - >poi nt ()
returns the coordinates of the vertex.

The use of mesh iterators is demonstrated in Figure 7, faatite over all cells in the mesh
and for each cell all its vertices as illustrated in Figuré@&: each cell and each vertex, we print
its mesh entity index. We also demonstrate the use of namet pity iterators to print the
coordinates of each vertex.

/1l lteration over all vertices of all cells
unsi gned int D = nesh.topol ogy().din();
for (MeshEntitylterator cell (nmesh, D); !cell.end(); ++cell)

{
cout << "cell index =" << cell->index() << endl
for (MeshEntitylterator vertex(cell, 0); !vertex.end(); ++vertex)
{
cout << "vertex index =" << vertex->index() << endl
}
}

/1 1teration over all vertices of all cells
for (Celllterator cell(nesh); !cell.end(); ++cell)
{
cout << "cell index =" << cell->index() << endl
for (Vertexlterator vertex(cell); !'vertex.end(); ++vertex)
{
cout << "vertex index =" << vertex->index() << endl
cout << "vertex coordinates = " << vertex->point() << endl
}
}

Figure 7: lteration over all vertices of all cells in a meslsing the general iterator interface
MeshEnti tylterator and the specialized iterato@el | 1 t er at or andVert exlterator.

Direct access to mesh data

In addition to the iterator interface, all mesh data may beessed directly. Thus, one may
obtain an array of the vertices of all cells in the mesh diygfcbm the mesh topology, and one

Figure 8: Iteration over all vertices of all cells in a mesherder of iteration is decided by the definition
of the mesh, or alternatively, the UFC ordering conventibhifthe mesh is ordered. Meshes may be
ordered by a call tdesh: : order ().

may obtain the vertex coordinates of the mesh directly freeesh geometry. This illustrated
in Figure 9 where the same iteration as in Figure 7 is perfdrmigéhout mesh iterators.

Mesh algorithms

In addition to the computation of mesh connectivity as dsseal previously, the DOLFIN mesh
library provides a number of other useful mesh algorithmapiding boundary extraction, uni-
form mesh refinement, adaptive mesh refinement (in prepajatmesh smoothing, and re-
ordering of mesh entities.

Figure 10 demonstrates uniform refinement and boundary esfction. When extracting a
boundary mesh, it may be desirable to also generate a mafppmghe entities of the boundary
mesh to the corresponding entities of the original meshs T$hithe case for example when
assembling the contribution from boundary integrals dyaasembly of a linear system arising
from a finite element variational formulation of a PDE. Onertmeeds to map each cell of
the boundary mesh to the corresponding facet of the orignesh. Note that the cells of the
boundary mesh are facets of the original mesh. In Figure #ldemonstrate how to extract a
boundary and generate the mapping from the boundary meka twiginal mesh. The mapping
is expressed as twhkshFuncti ons, one from the vertices of the boundary mesh to the
corresponding vertex indices of the original mesh and oo the cells of the boundary mesh
to the corresponding facet indices of the original mesh.

Benchmark results

In this section, we present a series of benchmarks to illtesthe efficiency of the mesh repre-
sentation and its implementation. The new mesh libraryctvis available as part of DOLFIN
version 0.6.3 and higher, is compared to the old DOLFIN méslarty which is a fairly effi-
cient C++ implementation, but which suffers from objedeated overhead; all mesh entities
are there stored as arrays of objects, which store theirldesdly in each object (including
mesh incidence relations and vertex coordinates).

MeshTopol ogy& t opol ogy
MeshCeonetry& geonetry
unsi gned int

for

{

(unsigned int cel

cout << "cell index

unsigned int* vertices

for (unsigned int

{

unsi gned int vertex

' << cel

MeshConnectivity& connectivity

0

nmesh. t opol ogy() ;
nmesh. geonetry();

D = topol ogy. dim);

0; cell < topology.size(D);

<< endl

t opol ogy(D, 0);
connectivity(cell);

; I < connectivity.size(cell);

vertices[i];

++cel |)

++i)

cout << "vertex index << vertex << endl
cout << "vertex coordinates << geonetry. poi nt(vertex) << endl

}

}

Figure 9: Iteration over all vertices of all cells in a meslkl direct access of mesh data corresponding to
the iteration of Figure 7 and Figure 8.

/1 Refine mesh uniformy tw ce
mesh. refine();
mesh. refine();

/1 Extract boundary nesh
Boundar yMesh boundar y(nesh);

/1 Refine boundary mesh uniformy
boundary. refine();

/1 Save boundary nesh to file
File file("boundary.xm");
file << boundary;

Figure 10: Uniform refinement, boundary extraction andamif refinement of the boundary mesh using
the DOLFIN mesh library. Note that the extracted boundarghmis itself a mesh and may thus itself be
refined.

MeshFunct i on<unsi gned int> vertex_nap;
MeshFunct i on<unsi gned int> cel |l _map;
Boundar yMesh boundary(mesh,

vertex_map, cell _map);

Figure 11: Extraction of a boundary mesh and generation airagh mappings from the vertices of the
boundary mesh to the indices of the corresponding vertittseariginal mesh and from the cells of the
boundary mesh to the indices of the corresponding facetseadriginal mesh.

The four test cases that are examined are the following:RL) @me and (ii) memory usage for
creation of a uniform tetrahedral mesh of the unit cubg,i{eration over all vertices of all cells
of the uniform tetrahedral mesh of the unit cube, and (ivfarm refinement of the uniform
tetrahedral mesh of the unit cube.

In summary, the speedup was in all cases a faftet 00 and memory usage was reduced by
a factor of10. The speedup and decreased memory usage is the result okfficikent algo-
rithms and data structures, where all data is stored in Istggc arrays and objects are only
provided as part of the interface for simple access to thenyidg data representation, not to
store data themselves. Another contributing factor is thatold DOLFIN mesh library pre-
computes certain connectivities (including the edges andd of each cell) at startup, whereas
this computation is carried out only when requested in the DOLFIN mesh library, either as
part of the iterator interface or by an explicit callMesh: :init ().

Creating unit cube mesh
10? T T T T
ax4a Old mesh 3 3 3
mmmE New mesh

1o . —— T —

T ___ — e e

CPU time /s

T R o o —

104 ‘

100 10! 102 103 104 10° 10°
Number of cells

Figure 12: Benchmarking the CPU time for creation of a umif@getrahedral mesh of the unit cube for
the new mesh library vs. the old DOLFIN mesh library.

Conclusions

We have presented a simple yet general and efficient refeggemof computational meshes
and demonstrated a straightforward implementation ofépgesentation as a set of C++ classes
that correspond to the basic concepts of the mesh représentBhe implementation is avail-
able freely as part of DOLFIN [8]. Work is currently in progseto implement adaptive mesh
refinement and partition of meshes for parallel computa®part of the DOLFIN mesh library.

Memory usage
140

ax44 Old mesh
mmmE New mesh

120

100

80

60

Memory size / MB

40

20

8.0 0.5 1.0 1.5 2.0
Number of cells xle+5

Figure 13: Benchmarking the memory usage for creation ofifaum tetrahedral mesh of the unit cube
for the new mesh library vs. the old DOLFIN mesh library.

Iteration over mesh entities

10° ! % % %
axxA Old mesh ‘ : ‘
mmmE New mesh
0 T — AE— R A—
. ‘ ‘ ‘ ‘ ‘
(0]
E
)
]
o
U N
0 e cad R
10»4 ({ { (\‘
100 10! 102 103 104 10° 106

Number of cells

Figure 14: Benchmarking the CPU time for iteration over tleetices of each cell for the new mesh
library vs. the old DOLFIN mesh library.

103 Uniform mesh refinement

T T T

AckckA Old mesh
mmmE New mesh

102

=
o
)

CPU time /s

10°

107}

L L L
100 10! 102 103 104 10° 106
Number of cells

Figure 15: Benchmarking the CPU time for uniform refinemdrihe unit cube for the new mesh library
vs. the old DOLFIN mesh library.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M.Alneges, H.-P.Langtangen, A.Logg, K.-A.Mardal and ®a8haug UFC, 2007 URLhtt p://
www. f eni cs. org/ufc/.

D. M.Beazley SWIG : An easy to use tool for integratingipting languages with C and C++
presented at the 4th Annual Tcl/Tk Workshop, Monterey,2086.

D. M.Beazley et al. Simplified Wrapper and Interface Gatar, 2006 URL:ht t p: // www.
Swi g. org/.

G.Berti Generic programming for mesh algorithms: Todguniversally usable geometric compo-
nents InProceedings of the Fifth World Congress on Computationatieics,Vienna University
of Technology July2002.

G.Berti GrAL - the grid algorithms libraryFuture Generation Computer Systemsl.22, 2006.

T.Dupont, J.Hoffman, C.Johnson, R. C.Kirby, M. G.Lans@.Logg and L. R.Scott The FEnIiCS
project Technical Report 2003—-21, Chalmers Finite Eler@amiter Preprint Series, 2003.

J.Hoffman, J.Jansson, C.Johnson, M. G.Knepley, R. ByIA.Logg, L. R.Scott and G. N.Wells
FENnICS 2006ht t p: / / ww. f eni cs. org/.

J.Hoffman, J.Jansson, A.Logg and G. N.WelBOLFIN, 2006 htt p://wwv. f eni cs. or g/
dol fin/.

D. A.Karpeev and M. G.Knepley Flexible representatidncomputational meshesubmitted to
ACM Trans. Math. Softw2005.

