
Efficient Representation of Computational Meshes

Anders Logg
Simula Research Laboratory

e–mail: logg@simula.no

Summary We present a simple yet general and efficient approach to representation of compu-
tational meshes. Meshes are represented as sets ofmesh entitiesof different topological dimen-
sions and theirincidence relations. We discuss a straightforward and efficient storage scheme for
such mesh representations and efficient algorithms for computation of arbitrary incidence relations
from a given initial and minimal set of incidence relations.The general representation may harbor
a wide range of computational meshes, and may also be specialized to provide simple user inter-
faces for particular meshes, including simplicial meshes in one, two and three space dimensions
where the mesh entities correspond to vertices, edges, faces and cells. Benchmarks are presented
to demonstrate efficiency in terms of CPU time and memory usage.

Introduction

The computational mesh is a central component of any software framework for the (mesh-
based) solution of partial differential equations. To reduce run-time and enable the solution
of large problems, it is therefore important that the computational mesh may be represented
efficiently, both in terms of the speed of operations on the mesh or access of mesh data, and in
terms of the memory usage for storing any given mesh in memory.

It is furthermore important that the data structure for the representation of the mesh is general
enough to harbor a wide range of computational meshes. This generality must also be reflected
in the programming interface to the mesh representation, toallow the implementation of gen-
eral algorithms on the computational mesh. Many algorithms, such as the assembly of a linear
system from a finite element variational problem may be implemented similarly for simplicial,
quadrilateral and hexahedral meshes if the programming interface to the mesh representation
does not enforce a specific interface limited to a specific mesh type. For example, if the entities
on the boundary of a mesh (thefacets) may be accessed in a similar way independently of the
mesh dimension and not asedgesin two space dimensions andfacesin three space dimensions,
one may use the same code to apply boundary conditions in 2D and 3D.

In [9], a very general and flexible representation of computational meshes is presented. The
mesh is represented as asieve, which is in general a directed acyclic graph with the mesh entities
as points and directed edges describing how the mesh entities are connected. In this paper, we
take a slightly less general approach but reuse some of the concepts from [9]. In particular,
we will represent the mesh as a set ofmesh entities(corresponding to thepointsof the sieve)
and theirincidence relations. We also acknowledge the works [4, 5], where similar concepts
are defined and where the importance ofmesh iteratorsfor expressing generic algorithms on
computational meshes is advocated.

The data structures and algorithms discussed in this paper are implemented as a C++ library
and is distributed as part of DOLFIN, which is freely available from [8]. DOLFIN is a C++
problem-solving environment for ordinary and partial differential equations and is developed
as part of the FEniCS project [7, 6] for the automation of computational mathematical mod-
eling. A Python interface to DOLFIN is also available in the form of PyDOLFIN, generated
automatically from the C++ library by SWIG [3, 2].

Design goals

When designing the mesh library, we had the following designgoals in mind for the mesh
representation and its interface. The mesh representationshould besimple, meaning that the
data is represented in terms of basic C++ arraysunsigned int* anddouble*; it should
be generic, meaning that it should not be specialized to say simplicialmeshes in one, two
and three space dimensions; and it should beefficient, meaning that operations on the mesh or
access of mesh data should be fast and the storage should require minimal memory usage for
any given mesh. Furthermore, the programming interface to the mesh representation should be
intuitive, meaning that suitable abstractions (classes) should be available, including specialized
interfaces for specific types of meshes as well as generic interfaces that enable dimension-
independent programming; and it should beefficient, meaning that the overhead of the object-
oriented interface should be minimized.

Outline

In the following section, we present the basic concepts thatdefine the mesh representation
and its interface. We then discuss the data structures of theC++ implementation of the mesh
representation in DOLFIN, followed by a discussion of the algorithms used in DOLFIN to
compute any given incidence relation from a given minimal set of incidence relations. Next,
we demonstrate the programming interface to the mesh library. Finally, we present a series of
benchmarks to demonstrate the efficiency of the mesh representation and its implementation
followed by some concluding remarks.

Concepts

The mesh representation is based on the following basic concepts:mesh, mesh topology, mesh
geometry, mesh entityandmesh connectivity. Each of these concepts is mapped directly to the
corresponding component (class) of the implementation.

A mesh is defined by its topology and its geometry. The mesh topology defines how the mesh
is composed of its parts (the mesh entities) and the mesh geometry describes how the mesh is
embedded in some metric space, typicallyR

n for n = 1, 2, 3. A mesh topology (Figure 1) may
be specified as a set of mesh entities (the vertices, edges etc.) and their connectivity (incidence
relations). Different embeddings (geometries) may be imposed on any given mesh topology
to create different meshes, e.g., when moving the vertices of a mesh in an ALE computation.
Below, we discuss the two basic concepts mesh entity and meshconnectivity in some detail and
also introduce the conceptmesh function.

Mesh entities

A mesh entity is a pair(d, i), whered is the topological dimension of the mesh entity and
wherei is a unique index for the mesh entity within its topological dimension, ranging from
0 to Nd − 1 with Nd the number of entities of topological dimensiond. We letD denote the
maximal topological dimension over the mesh entities and set the topological dimension of
the mesh equal toD. This is illustrated in Figure 2, where each mesh entity is labeled by its
topological dimension and index(d, i).

For convenience, we also name common entities of low topological dimension or codimension.
We refer to entities of topological dimension 0 asvertices, entities of dimension 1 asedges,
entities of dimension 2 asfaces, entities of codimension1 (dimensionD − 1) as facetsand
entities of codimension0 (dimensionD) ascells. Thus, for a triangular mesh, the edges are also

Figure 1: A mesh topology is a set of mesh entities (vertices,edges, etc.) and their connectivity (incidence
relations), that is, which entities are connected (incident) to which entities.

Figure 2: Each mesh entity of a mesh is identified with a pair(d, i), whered is the topological dimension
of the mesh entity and wherei is a unique index for the mesh entity within its topological dimension,
ranging from0 to Nd − 1 with Nd the number of entities of topological dimensiond.

facets and the faces are also cells, and for a tetrahedral mesh, the faces are also facets. This is
summarized in Table 1.

Entity Dimension Codimension

Vertex 0 D
Edge 1 D − 1
Face 2 D − 2
Facet D − 1 1
Cell D 0

Table 1: Named entities of low topological dimension or codimension.

Mesh connectivity

We refer to the set of incidence relations on a set of mesh entities as theconnectivityof the
mesh. For a mesh of topological dimensionD, there are(D + 1)2 different classes of incidence
relations (connectivities) to consider. Each such class isdenoted here byd → d′ for 0 ≤ d, d′ ≤
D. For any given mesh entity(d, i), its connectivity(d → d′)i is given by the set of incident
mesh entities of dimensiond′.

Thus, for a triangular mesh (of topological dimensionD = 2), there are nine different incidence
relations of interest between the entities of the mesh. These are in turn0 → 0, that is, the vertices
incident to each vertex,0 → 1, that is, the edges incident to each vertex, . . . ,D → D, that is,
the cells incident to each cell.

For d > d′, the definition of incidence is evident. Mesh entity(d′, i′) is incident to mesh entity
(d, i) if (d′, i′) is containedin (d, i). Thus, the three vertices of a triangular cell form the set of
incident vertices and the three edges form the set of incident edges. Ford < d′, we define mesh
entity (d′, i′) as incident to mesh entity(d, i) if (d, i) is incident to(d′, i′). It thus remains to
define incidence ford = d′. Ford, d′ > 0, we say that mesh entity(d′, i′) is incident to mesh
entity (d, i) if both are incident to a common vertex, that is, a mesh entityof dimension zero,
while for d = d′ = 0, we say that(d′, i′) is incident to(d, i) if both are incident to a common
cell, that is, a mesh entity of dimensionD.

Together, the set of mesh entities and connectivity (incidence relations) define the topology of
the mesh. Note that the complete set of incidence relationsd → d′ for 0 ≤ d, d′ ≤ D may be
determined from the single class of incidence relationsD → 0, that is, the vertices of each cell
in the mesh. We return to this below when we present an algorithm for computing any given
class of incidence relations from the minimal set of incidence relationsD → 0.

Mesh functions

We define amesh functionas a discrete function that takes a value on the set of mesh entities
of a given fixed dimension0 ≤ d ≤ D. Mesh functions are simple objects but very useful. A
real-valued mesh function may for example be used to describe material parameters on the cells
of a mesh. A boolean-valued mesh function may be used to set markers on cells or edges for
adaptive refinement. Integer-valued mesh functions may be used to express inter-connectivity
between two separate meshes. A typical use is when a boundarymesh is extracted from a given
mesh (by identifying the set of facets that are incident to exactly one cell). One may then use
a mesh function to describe the mapping from a cell in the extracted boundary mesh (which
has topological dimensionD − 1) to the corresponding facets in the original mesh (which has

topological dimensionD). Note that mesh functions are discrete and are not meant to represent
for example a piecewise polynomial finite element function on the mesh.

Data structures

The mesh representation as described in the previous section has been implemented as a
small C++ class library and is available freely as part of theDOLFIN C++ finite element
library [8], version 0.6.3 or higher. Each of the basic concepts mesh, mesh topology, mesh
geometry, mesh entity, mesh connectivityand mesh functionis realized by the correspond-
ing classMesh, MeshTopology,MeshGeometry,MeshEntity,MeshConnectivity
andMeshFunction. All basic data structures are stored as static arrays of unsigned integers
(unsigned int*) or floating point values (double*), which minimizes the cost of storing
the mesh data and allows for quick access of mesh data. We discuss each of these classes/data
structures in detail below.

The classMesh

The classMesh stores aMeshTopology and aMeshGeometry that together define the
mesh. TheMeshTopology andMeshGeometry are independent of each other and of the
Mesh. Although it is possible to work with theMeshTopology andMeshGeometry sepa-
rately, they are most conveniently accessed through aMesh class that holds a pair of a matching
topology and geometry.

The classMeshTopology

The classMeshTopology stores the topology of a mesh as a set of mesh entities and
connectivities. For each pair of topological dimensions(d, d′), 0 ≤ d, d′ ≤ D, the class
MeshTopology stores aMeshConnectivity representing the set of incidence relations
d → d′. The mesh entities themselves need not be stored explicitly; they are stored implicitly
for each topological dimensiond as the set of pairs(d, i) for 0 ≤ i < Nd, whereNd is the
number of mesh entities of topological dimensiond. Thus, for each topological dimension, the
classMeshTopology stores an (unsigned) integerNd, from which the set of mesh entities
{(d, 0), (d, 1), . . . , (d, Nd − 1)} may be generated.

The classMeshGeometry

The classMeshGeometry stores the geometry of a mesh. Currently, only the simplest possible
representation has been implemented, where only the coordinates of each vertex are stored.
These coordinates are stored in a contiguous arraycoordinates of sizenN0, wheren is the
geometric dimension andN0 is the number of vertices.

The classMeshEntity

The classMeshEntity provides aviewof a given mesh entity(d, i). The mesh entities them-
selves are not stored, but aMeshEntity may be generated from a given pair(d, i). The class
MeshEntity provides a convenient interface for accessing mesh data, inparticular in combi-
nation with the concept of mesh iterators, as will be discussed in more detail below. Thus, one
may for any givenMeshEntity access its topological dimensiond, its indexi and its set of
incidence relations (connected mesh entities) of any giventopological dimensiond′. Special-
ized interfaces are provided for the named mesh entities of Table 1 in the form of the following
sub classes ofMeshEntity: Vertex, Edge, Face, Facet andCell.

The classMeshConnectivity

The classMeshConnectivity stores the set of incidence relationsd → d′ for a fixed
pair of topological dimensions(d, d′). The set of incidence relations is stored as a contigu-
ousunsigned int arrayindices of entity indices for dimensiond′ entities, together with
an auxiliaryunsigned int arrayoffsets that specifies the offset into the first array for
each entity of dimensiond.1 The size of the first arrayindices is equal to the total number of
incident entities of dimensiond′ and the size of the second arrayoffsets is equal to the total
number of entities of dimensiond plus one.

As an example, consider the storage of the set of incidence relations2 → 0, that is the vertices
of each cell, for the triangular mesh in Figure 3. The mesh hastwo entities of dimensiond = 2
and four entities of dimensiond′ = 0. Furthermore, each entity of dimensiond = 2 is incident
to three entities of dimensiond′ = 0. The arrayentities is then given by[0, 1, 3, 1,
2, 3] and the arrayoffsets is given by[0, 3, 6].

Figure 3: The mesh connectivity2 → 0 (the vertices of each cell) for this triangular mesh with two
cells and four vertices is stored as two arraysindices = [0, 1, 3, 1, 2, 3] andoffsets
= [0, 3, 6].

The classMeshFunction

The classMeshFunction stores a single array ofNd values on the mesh entities of
a given fixed dimensiond, and is templated over the value type. Typical uses include
MeshFunction<double> for material parameters that take a constant value on each cell of a
mesh,MeshFunction<bool> for cell markers that indicate cells that should be refined, and
MeshFunction<unsigned int> to store inter-mesh connectivity or sub domain markers.

Minimal storage

The mesh data structures described above are summarized in Table 2. We note that the classes
Mesh andMeshTopology function as “aggregate classes” that collect mesh data stored else-
where, and that no data is stored in the classMeshEntity. All data is thus stored in the
classMeshConnectivity (in the two arraysindices andoffsets) and in the class
MeshGeometry (in the arraycoordinates). Note that oneMeshConnectivity object
is stored for each pair of topological dimensions(d, d′) for which the mesh connectivity has
been initialized.

1The storage is similar to the standard compressed row storage (CSR) format for sparse matrices, except that
only the column indices need to be stored, not the values. Also note that the two arraysindices andoffsets
are private data structures of the classMeshConnectivity. The user is presented with a more intuitive interface,
as will be demonstrated below.

Data structure Principal data Size

Mesh MeshTopology topology –
MeshGeometry geometry –

MeshTopology MeshConnectivity** connectivities –
MeshGeometry double* coordinates nN0

MeshEntity – –
MeshConnectivity unsigned int* indices O(Nd)

unsigned int* offsets Nd + 1

Table 2: Summary of mesh data structures.

As an illustration, consider the storage of a tetrahedral mesh with N0 vertices andN3 cells
(tetrahedra) embedded inR3 where we only store the set of incidence relationsD → 0. Each
cell has four vertices, so the classMeshConnectivity stores4N3 + N3 + 1 ∼ 5N3 values
of typeunsigned int. Furthermore, the classMeshGeometry stores3N0 values of type
double. Thus, if anunsigned int is four bytes and adouble is eight bytes, then the
total size of the mesh is20N3 +24N0 bytes. For a standard uniform tetrahedral mesh of the unit
square, the number of cells is approximately six times the number of vertices, so the total size
of the mesh is

(20N3 + 24N0) b = (20N3 + 24N3/6) b = (20N3 + 4N3) b = 24N3 b. (1)

Thus, a mesh with1, 000, 000 cells may be stored in just24 Mb. Note that if additional mesh
connectivity is computed, like the edges or facets of the tetrahedra, more memory will be re-
quired to store the mesh.

Algorithms

In this section, we present the algorithms used by the DOLFINmesh library to compute the
mesh connectivityd → d′ for any given0 ≤ d, d′ ≤ D. We assume that we are given an initial
set of incidence relationsD → 0, that is, we know the vertices of each cell in the mesh.

The key to computing the mesh connectivities of a mesh is to compute the connectivities in a
particular order. For example, if the vertices are known foreach edge in the mesh (1 → 0),
then it is straightforward to compute the edges incident to each vertex (0 → 1) as will be
explained below. The computation is based on three algorithms that are used successively in a
particular order to compute the desired connectivity. As a consequence, the computation of a
certain connectivityd → d′ might require the computation of one or more other connectivities.
We describe these algorithms in detail below. An overview isgiven in Figure 4

Build

Algorithm 1 (Build) computes the connectivitiesD → d andd → 0 from D → 0 andD → D
for 0 < d < D. In other words, given the vertices and incident cells of each cell in the mesh,
Algorithm 1 computes the entities of dimensiond of each cell and for each such entity the
vertices of that entity. Thus, ifd = 1, then the edges of each cell and the vertices of each edge
are computed.

The notation of Algorithm 1 requires some explanation. As before, we let(d → d′)i denote the
set of entities of dimensiond′ incident to entity(d, i):

(d → d′)i = {(d′, j) : (d′, j) incident to(d, i)}. (2)

Figure 4: The three basic algorithms for computing connectivity. From the left: Build (computing con-
nectivity D → d andd → 0 from D → 0 andD → D), Transpose (computing connectivityd → d′

from d′ → d) and Intersection (computing connectivityd → d′ from d → d′′ andd′′ → d′).

Algorithm 1 also uses the operation

d
local(D,i)
−−−−−→ 0, (3)

which denotes the set of vertex sets incident to the mesh entities of topological dimensiond of
a given cell(D, i). To make this concrete, consider a triangular mesh (for which D = 2) and

taked = 1. If Vi = d
local(D,i)
−−−−−→ 0, thenVi denotes the set of vertex sets incident to the edges of

triangle numberi. The setVi consists of three sets of vertices (one for each edge) and each set
vi ∈ Vi contains two vertices. In addition, Algorithm 1 uses the operation

index((D, j), d, vi), (4)

which denotes the index of the entity of dimensiond in the cell(D, j) which is incident to the
verticesvi.

We may now summarize Algorithm 1 as follows. For each cell(D, i), we create a set of candi-
date entities of dimensiond, represented by their incident vertices in the setVi. This operation
is local on each cell and must be performed differently for each different type of mesh. We then
iterate over each cell incident to the cell(D, i) and check for each candidate entityvi ∈ Vi if
it has already been created by any of the previously visited cells, making sure that two incident
cells agree on the index of any common incident entity.

Transpose

Algorithm 2 (Transpose) computes the connectivityd → d′ from the connectivityd′ → d for
d < d′. For each entity of dimensiond′, we iterate over the incident entities of dimensiond and
add the entities of dimensiond′ as incident entities to the entities of dimensiond. We may thus
compute for example the incident cells of each vertex (the cells to which the vertex belongs) by
iterating over the cells of the mesh and for each cell over itsincident vertices.

Intersection

Algorithm 3 (Intersection) computes the connectivityd → d′ from d → d′′ andd′′ → d′ for
d ≥ d′. For each entity(d, i) of dimensiond, we iterate over each incident entity(d′′, k) of
dimensiond′′ and for each such entity we iterate over each incident entity(d′, j) of dimension
d′. We then check if either(d, i) and(d′, j) are entities of the same topological dimension or if

Algorithm 1 Build(d), computingD → d andd → 0 from D → 0 andD → D for 0 < d < D

k = 0
for each (D, i)

Vi = d
local(D,i)
−−−−−→ 0

for each (D, j) ∈ (D → D)i such that j < i

Vj = d
local(D,j)
−−−−−→ 0

for each vi ∈ Vi

if vi ∈ Vj

(D → d)i = (D → d)i ∪ (d, index((D, j), d, vi))
else

(D → d)i = (D → d)i ∪ (d, k)
(d → 0)k = vi

k = k + 1

Algorithm 2 Transpose(d, d′), computingd → d′ from d′ → d for d < d′

for each (d′, j)
for each (d, i) ∈ (d′ → d)j

(d → d′)i = (d → d′)i ∪ (d′, j)

(d′, j) is completely contained in(d, i) by checking that each vertex incident to(d′, j) is also
incident to(d, i), in which case(d′, j′) is added as an incident entity of entity(d, i).

Here,d′′ must be chosen according to the definition of incidence givenabove. For example,
we may taked′′ = 0 to compute the connectivityD → D (the incident cells of each cell) by
iterating over the vertices of each cell and for each such vertex iterate over the incident cells.

Algorithm 3 Intersection(d, d′, d′′), computingd → d′ from d → d′′ andd′′ → d′ for d ≥ d′

for each (d, i)
for each (d′′, k) ∈ (d → d′′)i

for each (d′, j) ∈ (d′′ → d′)k

if (d = d′ and i 6= j) or (d > d′ and (d′ → 0)j ⊆ (d → 0)i)
(d → d′)i = (d → d′)i ∪ (d′, j)

Successive application of Build, Transpose and Intersection

Any given connectivityd → d′ for 0 ≤ d, d′ ≤ D may be computed by a successive application
of Algorithms 1–3 in a suitable order. In Algorithm 4, we present the basic logic for a successive
and recursive application of the three basic algorithms Build, Transpose and Intersection to
compute any given connectivity.

We illustrate this in Figure 5 for computation of the connectivity 2 → 2, the incident faces
of each face, for a tetrahedral mesh. From the given connectivity D → 0, we compute the
connectivity0 → D by an application of Transpose. This allows us to computeD → D by an
application of Intersection. The connectivity2 → 0 (andD → 2) may then be computed by

Figure 5: Computing connectivity2 → 2 (the faces incident to any given face) by successive application
of Transpose, Intersection, Build, Transpose and Intersection.

Algorithm 4 Connectivity(d, d′), computingd → d′ by application of Algorithms 1–3

if Nd = 0
Build(d)

if Nd′ = 0
Build(d′)

if d → d′ 6= ∅
return

if d < d′

Connectivity(d′, d)
Transpose(d, d′)

else
if d = 0 and d′ = 0

d′′ = D
else

d′′ = 0
Connectivity(d, d′′)
Connectivity(d′′, d′)
Intersection(d, d′, d′′)

an application of Build. We then apply Transpose to compute0 → 2 and finally Intersection to
compute2 → 2.

Memory handling

For each of Algorithms 1–3, memory usage may be conserved by running each algorithm twice;
first one round to count the number of incident entities, which allows the static data structures
discussed above to be preallocated, and then another round to set the values of the incident
entities. Furthermore, memory usage may be conserved by clearing incidence relations that get
computed as byproducts of Algorithms 1–3 when they are no longer needed.

Interfaces

In this section, we briefly describe the user interface of theDOLFIN mesh library. We only
describe the C++ interface, but note that an (almost) identical Python interface is also available.

Creating a mesh

A mesh may be created in one of three ways, as illustrated in Figure 6. Either, the mesh is
defined by a data file in the DOLFIN XML format2, or the mesh is defined vertex by vertex
and cell by cell using the DOLFIN mesh editor, or the mesh is defined as one of the DOLFIN
built-in meshes. Currently provided built-in meshes include triangular meshes of the unit square
and tetrahedral meshes of the unit cube.

// Read mesh from file
Mesh mesh0("mesh.xml");

// Build mesh using the mesh editor
Mesh mesh1;
MeshEditor editor;
editor.open(mesh1, "triangle", 2, 2);
editor.initVertices(4);
editor.addVertex(0, 0.0, 0.0);
editor.addVertex(1, 1.0, 0.0);
editor.addVertex(2, 1.0, 1.0);
editor.addVertex(3, 0.0, 1.0);
editor.initCells(2);
editor.addCell(0, 0, 1, 2);
editor.addCell(1, 0, 2, 3);
editor.close();

// Create simple mesh of the unit cube
UnitCube mesh2(16, 16, 16);

Figure 6: A DOLFIN mesh may be defined either by an XML data file,or explicitly using the
DOLFIN mesh editor, or as a built-in predefined mesh. The lasttwo arguments in the call to
MeshEditor::open() specify the topological and geometric dimensions of the mesh respectively.

Mesh iterators

Mesh data may be accessed directly from the mesh, but is most conveniently accessed through
the mesh iterator interface. Algorithms operating on a mesh(including Algorithms 1–3) can

2A conversion scriptdolfin-convert is provided for conversion from other popular mesh formats (includ-
ing Gmsh and Medit) to DOLFIN XML format.

often be expressed in terms ofiterators. Mesh iterators can be used to iterate either over the
global set of mesh entities of a given topological dimension, or over the locally incident en-
tities of any given mesh entity. Two alternative interfacesare provided; the general interface
MeshEntityIterator for iteration over entities of some given topological dimension d,
and the specialized mesh iteratorsVertexIterator, EdgeIterator, FaceIterator,
FacetIterator andCellIterator for iteration over named entities. Iteration over mesh
entities may be nested at arbitrary depth and the connectivity (incidence relations) required for
any given iteration is automatically computed (at the first occurrence) by the algorithms pre-
sented in the previous section.

A MeshEntityIterator (it) may be dereferenced (*it) to create aMeshEntity,
and any member functionMeshEntity::foo() may be accessed byit->foo(). A
MeshEntityIterator may thus be thought of as apointer to aMeshEntity. Similarly,
the named mesh entity iterators may be dereferenced to create the corresponding named mesh
entities. Thus, dereferencing aVertexIterator gives aVertex which provides an inter-
face to access vertex data. For example, ifit is aVertexIterator, thenit->point()
returns the coordinates of the vertex.

The use of mesh iterators is demonstrated in Figure 7, for iteration over all cells in the mesh
and for each cell all its vertices as illustrated in Figure 8.For each cell and each vertex, we print
its mesh entity index. We also demonstrate the use of named mesh entity iterators to print the
coordinates of each vertex.

// Iteration over all vertices of all cells
unsigned int D = mesh.topology().dim();
for (MeshEntityIterator cell(mesh, D); !cell.end(); ++cell)
{

cout << "cell index = " << cell->index() << endl;
for (MeshEntityIterator vertex(cell, 0); !vertex.end(); ++vertex)
{
cout << "vertex index = " << vertex->index() << endl;

}
}

// Iteration over all vertices of all cells
for (CellIterator cell(mesh); !cell.end(); ++cell)
{

cout << "cell index = " << cell->index() << endl;
for (VertexIterator vertex(cell); !vertex.end(); ++vertex)
{
cout << "vertex index = " << vertex->index() << endl;
cout << "vertex coordinates = " << vertex->point() << endl;

}
}

Figure 7: Iteration over all vertices of all cells in a mesh, using the general iterator interface
MeshEntityIterator and the specialized iteratorsCellIterator andVertexIterator.

Direct access to mesh data

In addition to the iterator interface, all mesh data may be accessed directly. Thus, one may
obtain an array of the vertices of all cells in the mesh directly from the mesh topology, and one

Figure 8: Iteration over all vertices of all cells in a mesh. The order of iteration is decided by the definition
of the mesh, or alternatively, the UFC ordering convention [1] if the mesh is ordered. Meshes may be
ordered by a call toMesh::order().

may obtain the vertex coordinates of the mesh directly from the mesh geometry. This illustrated
in Figure 9 where the same iteration as in Figure 7 is performed without mesh iterators.

Mesh algorithms

In addition to the computation of mesh connectivity as discussed previously, the DOLFIN mesh
library provides a number of other useful mesh algorithms, including boundary extraction, uni-
form mesh refinement, adaptive mesh refinement (in preparation), mesh smoothing, and re-
ordering of mesh entities.

Figure 10 demonstrates uniform refinement and boundary meshextraction. When extracting a
boundary mesh, it may be desirable to also generate a mappingfrom the entities of the boundary
mesh to the corresponding entities of the original mesh. This is the case for example when
assembling the contribution from boundary integrals during assembly of a linear system arising
from a finite element variational formulation of a PDE. One then needs to map each cell of
the boundary mesh to the corresponding facet of the originalmesh. Note that the cells of the
boundary mesh are facets of the original mesh. In Figure 11, we demonstrate how to extract a
boundary and generate the mapping from the boundary mesh to the original mesh. The mapping
is expressed as twoMeshFunctions, one from the vertices of the boundary mesh to the
corresponding vertex indices of the original mesh and one from the cells of the boundary mesh
to the corresponding facet indices of the original mesh.

Benchmark results

In this section, we present a series of benchmarks to illustrate the efficiency of the mesh repre-
sentation and its implementation. The new mesh library, which is available as part of DOLFIN
version 0.6.3 and higher, is compared to the old DOLFIN mesh library which is a fairly effi-
cient C++ implementation, but which suffers from object-oriented overhead; all mesh entities
are there stored as arrays of objects, which store their datalocally in each object (including
mesh incidence relations and vertex coordinates).

MeshTopology& topology = mesh.topology();
MeshGeometry& geometry = mesh.geometry();
unsigned int D = topology.dim();

for (unsigned int cell = 0; cell < topology.size(D); ++cell)
{

cout << "cell index = " << cell << endl;

MeshConnectivity& connectivity = topology(D, 0);
unsigned int* vertices = connectivity(cell);

for (unsigned int i = 0; i < connectivity.size(cell); ++i)
{
unsigned int vertex = vertices[i];

cout << "vertex index = " << vertex << endl;
cout << "vertex coordinates = " << geometry.point(vertex) << endl;

}
}

Figure 9: Iteration over all vertices of all cells in a mesh and direct access of mesh data corresponding to
the iteration of Figure 7 and Figure 8.

// Refine mesh uniformly twice
mesh.refine();
mesh.refine();

// Extract boundary mesh
BoundaryMesh boundary(mesh);

// Refine boundary mesh uniformly
boundary.refine();

// Save boundary mesh to file
File file("boundary.xml");
file << boundary;

Figure 10: Uniform refinement, boundary extraction and uniform refinement of the boundary mesh using
the DOLFIN mesh library. Note that the extracted boundary mesh is itself a mesh and may thus itself be
refined.

MeshFunction<unsigned int> vertex_map;
MeshFunction<unsigned int> cell_map;

BoundaryMesh boundary(mesh, vertex_map, cell_map);

Figure 11: Extraction of a boundary mesh and generation of a pair of mappings from the vertices of the
boundary mesh to the indices of the corresponding vertices of the original mesh and from the cells of the
boundary mesh to the indices of the corresponding facets of the original mesh.

The four test cases that are examined are the following: (i) CPU time and (ii) memory usage for
creation of a uniform tetrahedral mesh of the unit cube, (iii) iteration over all vertices of all cells
of the uniform tetrahedral mesh of the unit cube, and (iv) uniform refinement of the uniform
tetrahedral mesh of the unit cube.

In summary, the speedup was in all cases a factor10–100 and memory usage was reduced by
a factor of10. The speedup and decreased memory usage is the result of moreefficient algo-
rithms and data structures, where all data is stored in largestatic arrays and objects are only
provided as part of the interface for simple access to the underlying data representation, not to
store data themselves. Another contributing factor is thatthe old DOLFIN mesh library pre-
computes certain connectivities (including the edges and faces of each cell) at startup, whereas
this computation is carried out only when requested in the new DOLFIN mesh library, either as
part of the iterator interface or by an explicit call toMesh::init().

100 101 102 103 104 105 106

Number of cells

10-4

10-3

10-2

10-1

100

101

C
P
U

 t
im

e
 /

 s

Creating unit cube mesh

Old mesh
New mesh

Figure 12: Benchmarking the CPU time for creation of a uniform tetrahedral mesh of the unit cube for
the new mesh library vs. the old DOLFIN mesh library.

Conclusions

We have presented a simple yet general and efficient representation of computational meshes
and demonstrated a straightforward implementation of thisrepresentation as a set of C++ classes
that correspond to the basic concepts of the mesh representation. The implementation is avail-
able freely as part of DOLFIN [8]. Work is currently in progress to implement adaptive mesh
refinement and partition of meshes for parallel computationas part of the DOLFIN mesh library.

0.0 0.5 1.0 1.5 2.0

Number of cells x1e+5

0

20

40

60

80

100

120

140

M
e
m

o
ry

 s
iz

e
 /

 M
B

Memory usage

Old mesh
New mesh

Figure 13: Benchmarking the memory usage for creation of a uniform tetrahedral mesh of the unit cube
for the new mesh library vs. the old DOLFIN mesh library.

100 101 102 103 104 105 106

Number of cells

10-4

10-3

10-2

10-1

C
P
U

 t
im

e
 /

 s

Iteration over mesh entities

Old mesh
New mesh

Figure 14: Benchmarking the CPU time for iteration over the vertices of each cell for the new mesh
library vs. the old DOLFIN mesh library.

100 101 102 103 104 105 106

Number of cells

10-2

10-1

100

101

102

103

C
P
U

 t
im

e
 /

 s

Uniform mesh refinement

Old mesh
New mesh

Figure 15: Benchmarking the CPU time for uniform refinement of the unit cube for the new mesh library
vs. the old DOLFIN mesh library.

References

[1] M.Alnæs, H.-P.Langtangen, A.Logg, K.-A.Mardal and O.Skavhaug UFC, 2007 URL:http://
www.fenics.org/ufc/.

[2] D. M.Beazley SWIG : An easy to use tool for integrating scripting languages with C and C++
presented at the 4th Annual Tcl/Tk Workshop, Monterey, CA, 2006.

[3] D. M.Beazley et al. Simplified Wrapper and Interface Generator, 2006 URL:http://www.
swig.org/.

[4] G.Berti Generic programming for mesh algorithms: Towards universally usable geometric compo-
nents InProceedings of the Fifth World Congress on Computational Mechanics,Vienna University
of Technology July, 2002.

[5] G.Berti GrAL - the grid algorithms libraryFuture Generation Computer Systems, vol.22, 2006.

[6] T.Dupont, J.Hoffman, C.Johnson, R. C.Kirby, M. G.Larson, A.Logg and L. R.Scott The FEniCS
project Technical Report 2003–21, Chalmers Finite ElementCenter Preprint Series, 2003.

[7] J.Hoffman, J.Jansson, C.Johnson, M. G.Knepley, R. C.Kirby, A.Logg, L. R.Scott and G. N.Wells
FEniCS, 2006http://www.fenics.org/.

[8] J.Hoffman, J.Jansson, A.Logg and G. N.WellsDOLFIN, 2006 http://www.fenics.org/
dolfin/.

[9] D. A.Karpeev and M. G.Knepley Flexible representation of computational meshessubmitted to
ACM Trans. Math. Softw., 2005.

