
Using Cython to Speed up Numerical Python Programs

Ilmar M. Wilbers1, Hans Petter Langtangen1,3, and Åsmund Ødegård2

1Center for Biomedical Computing, Simula Research Laboratory, Oslo
2Simula Research Laboratory, Oslo
3Department of Informatics, University of Oslo, Oslo

Abstract
The present study addresses a series of techniques for speeding up numerical calculations
in Python programs. The techniques are evaluated in a benchmark problem involving
finite difference solution of a wave equation. Our aim is to find the optimal mix of
user-friendly, high-level, and safe programming in Pythonwith more detailed and more
error-prone low-level programming in compiled languages.In particular, we present
and evaluate Cython, which is a new software tool that combines high- and low-level
programming in an attractive way with promising performance. Cython is compared to
more well-known tools such as F2PY, Weave, and Instant. Withthe mentioned tools,
Python has a significant potential as programming platform in computational mechanics.

Keywords: Python, compiled languages, numerical algorithms

INTRODUCTION

Development of scientific software often consumes large portions of research budgets in compu-
tational mechanics. Using human-efficient programming tools and techniques to save code de-
velopment time is therefore of paramount importance. Python [13] has in recent years attracted
significant attention as a potential language for writing numerical codes in a human-efficient
way. There are several reasons for this interest. First, many of the features that have made MAT-
LAB so popular are also present in Python. Second, Python is afree, open source, powerful, and
very flexible modern programming language that supports allmajor programming styles (proce-
dural, object-oriented, generic, and functional programming). Third, there exist a wide range of
modules available for efficient code development related tothe many non-numerical tasks met
in scientific software, including I/O, XML, graphical user interfaces, Web interfaces, databases,
and file/folder handling. Another important feature of Python is the strong support for building,
testing, and distributing large simulation codes containing a mixture of Python, Fortran, C, and
C++ code. Since the administrative, non-numerical tasks often fill up most of large scientific
software packages, many code writers have a desire to develop new code in Python.

There is one major concern when using Python for scientific computations, namely the possible
loss of computational speed. The present paper addresses this issue and explains how Python
code written in MATLAB-style can be speeded up by using certain software tools and imple-
mentation techniques. In particular, we focus at a new and promising tool, Cython, which can
greatly speed up pure Python code in a user-friendly way.

Numerical algorithms typically involve loops over array structures. It is well known that stan-
dard Python loops over long lists or arrays run slowly in Python. The speed can be acceptable in
many settings, for example, when solving partial differential equations in one space dimension.
However, one soon encounters computational mechanics applications where standard Python
code needs hours to run while a corresponding Fortran or C code finishes within minutes.

One way of speeding up slow loops over large arrays is to replace the loops by a set of operations

on complete arrays. This is known as vectorization. The speed-up can be dramatic, as we show
later, but the correspondance between computer code and themathematical exposition of the
algorithm is not as clear as when writing loops over arrays.

Another strategy is to migrate the loops to compiled code, either in Fortran, C, or C++. There
exist a range of tools for simplifying the combination of Python and compiled languages.
F2PY [12] is an almost automatic tool for gluing Fortran 77/90 with Python. SWIG [1] and
Boost.Python [2] are similar tools for combining Python withC or C++ code, but they require
more manual intervention than F2PY. Tools like Instant [14]and Weave [6] allow “inline” C
or C++ code in Python, i.e., strings with C or C++ code are inserted in the Python code, com-
piled on the fly, and called from Python. Cython [5] is a recently developed tool that extends
the Python language with new syntax which enables automaticcompilation of constructs to
machine code and thereby achieving substantial speed-up ofthe program. One can also man-
ually write all the necessary C code for migrating loops to C, without relying on any tool for
automating the (quite complicated) communication of data between C and Python.

For a computational scientist who needs to develop computercode and who is interested in
using Python, there is a key question: What type of technique should be used to speed up loops
over arrays? Should the loops be vectorized? Should the loops be implemented in Fortran 77 and
glued with Python by F2PY? Or should the loops be written in C or C++ and glued via SWIG,
Boost.Python, Instant, or Weave? Or should one apply the new tool Cython and implement the
loops in Python with some extra commands? The present paper provides information to help
answer these questions. The information is extracted from aspecific case study involving finite
difference schemes over two-dimensional grids. Such type of algorithms arise in numerous
contexts throughout computational mechanics.

The topic of optimizing Python code has received some attention in the literature. The web-
site scipy.org [7] contains much useful information. Comparisons of some ofthe men-
tioned tools, applied to typical numerical operations in finite difference schemes, have been
published in the scientific literature [3, 4, 9, 8]. None of these contributions address the poten-
tial of Cython, which is the aim of the present paper. The hope is that the present paper can act
as a repository of smart tools and programming techniques for Python programmers who want
to speed up their codes. For non-experts the paper may act as amotivation for picking up a new
programming platform in computational mechanics and help them to navigate in the jungle of
implementation tools.

The paper is organized as follows. First, we describe what Cython is. Then we describe a bench-
mark problem and how the various tools and programming techniques perform in that problem.
Finally, in an appendix, we describe in detail how one can start with a MATLAB-style imple-
mentation of the benchmark problem in pure Python and apply tools and techniques to speed
up the code.

WHAT IS CYTHON?

Cython [5] is a new extension of the Python language that aims at making the integration of C
and Python simpler. In many ways, it is a mix of the both of them. Cython is based on Pyrex,
which has been around for some years, but the former supportsmore cutting-edge functionality
and optimizations. Development started in 2007, and in the summer of 2008, integration with
NumPy [11] arrays was added to the project, allowing us to write fast numerical array-based
code that is very close to Python itself, while running at thespeed of C. Cython is developed

actively, and therefore functionalities might still be added, and the documentation is not always
correct. The Cython community, however, has a very active mailing list.

Cython does not simply translate Python code to C code. Instead, it uses the Python run-time
environment, compiling everything directly to machine code. Because of this, the Python header
files should be available on the system (e.g., by installing the packagepython2.5-dev on
Ubuntu Linux).

Almost all Python code is valid Cython code, but not all Cython code is Python code. This
means that one can start with plain Python code, and add Cythonconstructs to gain speed, as
we illustrate in detail in the appendix. The main differencebetween Python code and Cython
code is that the latter is statically typed, which means thatwe have to explicitly declare the
type of our variables. We can use pure Python objects, but if these are to interact with any of the
Cython code, they need to be casted to the right type, which in many cases is done automatically,
but in some cases requires manual intervention.

For a Cython example, let us look at the following simple code for numerical integration using
the Trapezoidal rule. The Python version looks like:

def f(x):
return 2*x*x + 3*x + 1

def trapez(a, b, n):
h = (b-a)/float(n)
sum = 0
x = a
for i in range(n):

x += h
sum += f(x)

sum += 0.5*(f(a) + f(b))
return sum*h

This code runs fine with Cython, but in order to get a speed-up, we need to statically declare
types using thecdef keyword. The following Cython code runs about 30 times fasterthan the
Python code:

cdef f(double x):
return 2*x*x + 3*x + 1

def trapez(double a, double b, int n):
cdef double h = (b-a)/n
cdef double sum = 0, x = a
cdef int i
for i in range(n-1):

x += h
sum += f(x)

sum += 0.5*(f(a) + f(b))
return sum*h

Functions defined withdef andcdef can call each other within the Cython code, but functions
defined withcdef cannot be called directly from Python, so one either has to use a function
defined with the keyworddef, or another keywordcpdef indicating that the function is to be
used both as a Python and a Cython function. In the appendix we show more advanced use of
the Cython functionality.

THE BENCHMARK PROBLEM

We prefer to investigate the performance of different programming tools and techniques on a not
too complicated mathematical problem, yet one that has a real application in mechanics and that
contains algorithmic steps of widespread importance in more advanced computational mechan-
ics applications. Our benchmark of choice is then a standardwave equation in a heterogeneous
medium with local wave velocityk:

∂2u

∂t2
= ∇ · [k∇u] . (1)

For the tests in the present paper, we restrict the attentionto two space dimensions:

∂2u

∂t2
=

∂

∂x

(

k(x, y)
∂u

∂x

)

+
∂

∂y

(

k(x, y)
∂u

∂y

)

. (2)

We set the boundary condition tou = 0 for the whole boundary of a rectangular domainΩ =
(0, 1) × (0, 1). Further,u has the initial valueI(x, y) at t = 0 while ∂u/∂t = 0. The initial
shape of the wave is chosen as a Gaussian bell function,

I(x, y) = A exp

(

(

x− xc

2σx

)2

+

(

y − yc

2σy

)2
)

,

with A = 2, xc = yc = 0.5, andσx = σy = 0.15. The functionk is defined ask(x, y) =
max(x, y), causing the waves to move along the line between the corners(0, 0) and(1, 1) of the
domain instead of uniformly over the grid.

We solve the wave equation using the following finite difference scheme:

ul
i,j =

(

∆t

∆x

)2

[ki+ 1

2
,j(ui+1,j − ui,j)− ki− 1

2
,j(ui,j − ui−1,j)]

l−1

+

(

∆t

∆y

)2

[ki,j+ 1

2

(ui,j+1 − ui,j)− ki,j− 1

2

(ui,j − ui,j−1)]
l−1. (3)

Here,ul
i,j representsu at the grid pointxi andyj at time leveltl, where

xi = i∆x, i = 0, . . . , n

yi = j∆y, j = 0, . . . ,m and

tl = l∆t,

Also, ki+ 1

2
,j is short fork(xi+ 1

2

, yj).

The finite difference scheme is explicit and only conditionally stable. We choose the largest
possible time step,

∆t =
1

maxx,y k(x, y)

(

1

∆x2
+

1

∆y2

)

−

1

2

.

The relevance of this benchmark problem goes far beyond physical problems that can be mod-
eled by the standard wave equation. In essence, the resulting computer code will perform an
update of a variable-coefficient Laplace operator, i.e., anoperation of the form

unew = Q +∇ · [k∇uold] ,

whereQ is some known quantity. Such updates appear in a wide range ofphysical problems
and numerical methods. Therefore, the code segment to be examined in this paper will be of
relevance to most finite difference-based software for fluidflow, heat transport, and electrostat-
ics. For example, consider an implicit scheme for a heat transport problem with nonlinear heat
conduction. Splitting convection and diffusion in two steps, the diffusion step will give rise to
a linear system that must be solved by iterative methods. Using a Conjugate Gradient method
for this purpose, combined with a Multigrid preconditioner, typically involves the discrete dif-
ferential operator in the smoother step of the Multigrid algorithm. This smoother step will be
an update fromuold to unew of the type shown above, andk may be computed fromuold values.
Similarly, finite difference schemes for the Navier-Stokesequations almost exclusively apply a
splitting of the equations, with Laplace operator steps of the same kind as in our wave equa-
tion. The main limitation of our benchmark problem is the useof structured grids and finite
difference operators.

The scheme then gives rise to a linear system we have an implicit scheme for, say a heat transport
problem, an iterative numerical solution strategy, say a multigrid method, will lead to updates
of the type we have for an explicit scheme for the wave equation.

In the scheme, we need values ofk between the grid points, as inki+ 1

2
,j. This is a straightfor-

ward computation ifk is known as an explicit mathematical function, which it is inthe present
problem. However, in the more general case,k(x, y) comes from measurements and will nor-
mally be known only over a grid. Assuming thatk is only available at the same grid as we use
for u, we need to approximate quantities likeki+ 1

2
,j by k values at the grid points. The most

immediate approximation is the arithmetic mean,

ki+ 1

2
,j ≈

1

2
(ki,j + ki+1,j) , (4)

with similar definitions forki− 1

2
,j, ki,j+ 1

2

, andki,j− 1

2

. For problems involving highly discontin-
uous media (e.g., waves in geological media), it is more common to apply the harmonic mean:

ki+ 1

2
,j ≈

(

1

2

(

1

ki,j

+
1

ki+1,j

))

−1

. (5)

It turns out that whether one applies an arithmetic or harmonic mean has substantial effect on
the relative performance of different programming tools and techniques, in the present problem.
The reason is that the harmonic mean implies significantly more work, which may then domi-
nate over the array look-ups in the scheme (for the fastest implementation the harmonic mean
computation actually consumes about 80% of the time of an update in the scheme). We may
view the arithmetic and harmonic mean alternatives as two (physically motivated) models for
two classes of the complexity of a diffusion operator in morecomplicated partial differential
equations. The arithmetic mean represents a model where thek coefficient is quickly evaluated,
while the harmonic mean represents a model with a significantset of arithmetic operations,
which typically arises in nonlinear diffusion operators, perhaps with complicated constitutive
laws. One may in the latter case be forced to call mathematical functions (e.g., the exponential
function) as part of theki+ 1

2

computation, and the result is even more work than for the harmonic
mean. It therefore makes sense to test both means as models for “simple” and “complicated”
variable-coefficient Laplace operators.

We can now summarize our algorithm to be implemented:

Defineui,j, upi,j, andumi,j to representul
i,j, ul+1

i,j andul−1

i,j

SET THE INITIAL CONDITIONS:
ui,j = I(x, y), for i = 0, . . . , n andj = 0, . . . ,m
CALCULATE THE FIRST TIME STEP

t = 0
START THE TIME LOOP:
while timet ≤ tstop

t← t + ∆t
SOLVE FOR CURRENT TIME STEP:
for i = 1, . . . , n− 1:

for j = 1, . . . ,m− 1:
calculateupi,j from (3)

SET BOUNDARY CONDITIONS

INITIALIZE FOR NEXT STEP:
um= u
u= up

Set of Tests

For all programs except for the pure Fortran program, we onlyconsider the time spent by the
main time loop. The time spent setting the initial conditionand calculating the first time step,
which needs to be treated separately, is thus ignored. Compared to the execution time of all the
other time steps, this time is negligible (for most implementations).

The allocation and initialization of data structures as well as the time loop is in pure Python for
all implementations, except the pure Fortran 77 code. Only the space loop with the variable-
coefficient Laplace operator is subject to various optimization techniques. We have also per-
formed timings where the time loop has been migrated to compiled code, but this gave negligi-
ble gain in speed, reminding us that the need for optimization is usually limited to small, very
computing intensive parts of a numerical code.

There are two ways of evaluating the variable coefficientki,j in the scheme: we can either
implementk as a Python function1, or we can storek values at the spatial grid points in an
array. We have adopted the latter approach, since it is clearly much more efficient than calling a
function.

The timings have been done on a Linux laptop with the setup as shown in Table 1. The laptop is
a Macbook Pro with a 2.4 GHz processor and 2GB of memory running the latest Ubuntu release
(8.10, Intrepid Ibex).

BENCHMARK RESULTS

In section we briefly report our main findings about the efficiency of different speed-up tools
and implementation constructs. The forthcoming text assumes that the reader is familiar with
what is programmed, but a basic introduction to the various programming elements is provided
in the appendix.

1Even when the loops over the grid points are migrated to compiled code in C or Fortran, that code can call a
Python function for evaluatingk(x, y). This is very convenient for easy specification of differentk(x, y) functions,
but results in very slow code, because the overhead of calling Python from C or Fortran is significant. Doing this
for every grid point slows down the compiled code dramatically.

Table 1: Machine Configuration

Software Version
Python 2.5.2
Cython 0.10.3
NumPy 1.1.1
Numeric 24.2-9
numarray 1.5.2-4
Instant 0.9.5
F2PY 1.1.1 (NumPy)
Weave 0.6.0-11 (SciPy)

Table 2: Timing results; arithmetic mean

Implementation CPU time
Pure Fortran 1.0
Weave with C arrays 1.2
Instant 1.2
F2PY 1.2
Cython 1.6
Weave with Blitz++ arrays 1.8
Vectorized NumPy arrays 13.2
Python with lists and Psyco 170
Python with NumPy andu.item(i,j) 520
Python with lists 760
Python with NumPy andu[i,j] 1520

We started out with the most natural approach, namely using NumPy arrays and explicit loops.
As indexing plain Python lists is generally faster than indexing NumPy arrays, we also tried
pure lists. For such a program utilizing only standard Python (with no NumPy arrays), the just-
in-time compiler Psyco can speed up the code, here we obtained almost an order of magnitude.
Further speed-up can be achieved by vectorizing array operations, i.e., operating on whole slices
of arrays instead of accessing individual elements. This resulted in a speed-up of two orders
of magnitude. For even faster execution, it was necessary toexport the most computational
intensive part of the code to a compiled language, as is done with Weave, Instant, and F2PY. We
also created a pure Fortran 77 program and used this as a timing reference. Finally, we utilized
Cython, starting with the pure Python code with indexing of NumPy arrays, and adding a series
of Cython constructs to see how the performance gain evolved.

All the timings reported in Table 2 are done for a250 × 250 grid with 707 time steps using
the arithmetic mean fork. The timings are based on the mean value from ten runs, and divided
by the CPU-time of the fastest implementation, which is the pure Fortran program. Table 3
shows the same results using the harmonic mean. Note that thepure Fortran program again is
set to one time unit, although taking almost 10 times longer to run than the Fortran program
using arithmetic mean. The other implementations showed less difference in speed between the

Table 3: Timing results; harmonic mean

Implementation CPU time
Pure Fortran 1.0
Weave with C arrays 1.0
Instant 1.0
F2PY 1.0
Cython 1.0
Weave with Blitz++ arrays 1.1
Vectorized NumPy arrays 2.9
Python with lists and Psyco 17.1
Python with lists 80
Python with NumPy andu.item(i,j) 150
Python with NumPy andu[i,j] 190

arithmetic and harmonic mean. One reason why Fortran is so much faster in the arithmetic mean
case may be that the compiler manages to apply aggressive optimization techniques and utilize
parallelism and registers on the chip in an effective way. With the harmonic mean, there are
more complicated arithmetics involved, and the same optimizations may not be applicable in
this case. For the implementations with a significant part ofthe computations in Python, there is
so much overhead anyway that the difference between the types of mean computations drowns
in other, more costly operations.

Psyco and Numerical Python Packages

There are three implementations of numerical Python arrays: Numeric is the original imple-
mentation from the mid 1990s, numarray appeared some years later and offered several useful
new features, while NumPy is a merge of the latter two, aimingat being the only serious imple-
mentation of numerical arrays for Python. In this section wego more into detail on the relative
performance of these three implementations.

Table 4 reports the differences between the three array implementations and various syntax for
indexing arrays. We also show to what extent Psyco can speed up Python code. The time is
scaled to the pure Python version with lists (instead of arrays) and arithmetic mean fork. Note
that it is easy to transform a Python code with arrays to a codewith (nested) lists: just perform
the operationa = a.tolist() for every arraya, and then substitute the indexing syntax for
arrays,a[i,j], by the syntax for nested lists,a[i][j]. Psyco is good for plain Python loops,
as it reduces the execution time with 70-80%. For loops usingthe numerical modules we only
get a reduction of 20-30%. This is expected, as Psyco only manages to optimize the Python code
calling the numerical modules, not the code within the numerical modules themselves. The one
exception here is NumPy when using the functionitem for accessing array elements. This is
becauseitem is a function. What Psyco does, is to scan the code, and keep compiled versions
of blocks of code that are used often in memory, instead of interpreting every line of code on the
fly. The downside is that it uses a lot of memory. It is, however, possible to control the amount of
memory that Psyco is allowed to use. The conclusion is that Psyco is very efficient for speeding
up pure Python loops over lists.

Instead of rewriting loops in an extension module in C, we might get a speed-up of a significant

Table 4: Timing results for various numerical Python packages and Psyco, for arithmetic and harmonic
mean ofk

Implementation Arithm. Arithm. Psyco Harm. Harm. Psyco
Python with lists 1.00 0.22 1.00 0.33
NumPy andu[i,j] 2.00 1.55 2.17 1.83
NumPy andu[i][j] 2.32 1.92 2.50 2.19
NumPy andu.item(i,j) 0.68 0.30 1.78 0.30
Numeric andu[i,j] 1.35 1.08 1.29 1.03
Numeric andu[i][j] 1.13 0.83 1.08 0.79
numarray andu[i,j] 2.31 1.86 2.09 1.76
numarray andu[i][j] 1.63 1.10 1.49 1.12

factor by simply adding the linepsyco.bind(foo) for a functionfoo, so the extra amount
of work needed is an absolute minimum. It is important to notethat both the space and time
loops should reside within functions in order to gain the maximum speed-up, because only
functions can be bound with Psyco.

Psyco has no support for 64-bit platforms, and development has ceased. Instead, the developer
has decided to contribute to a project called Pypy. The just-in-time (JIT) compiler for this project
apparently has a similar speed-up as did Psyco, but we were not successful in compiling a
version of Pypy with the JIT compiler.

Next we comment upon some differences we have observed between the three implementations
of numerical Python arrays. When replacing Python lists withNumPy arrays in plainfor-
loops, the execution time is increased by a factor of 2. This is for NumPy arrays using the
syntaxu[i,j]. Using Numeric with the syntaxu[i][j] the running time is only increased
about 10% compared to the list implementation. The reason that we do not get a bigger speed-
up is due to the fact that lists are intrinsic Python objects that are highly optimized, whereas
using one of the numerical modules implies using external code. Unless we use vectorization or
perform array operations instead of simple element-by-element operations, using these modules
will not give us any speed-up.

We have observed that numarray is the slowest of the three numerical Python modules in all
cases. Using NumPy, the syntaxu[i,j] is faster thanu[i][j]. With Numeric and numar-
ray, this is the other way around. Numeric is still the fastest, but using NumPy and the syntax
u.item(i,j) runs at almost the same speed, sometimes the latter is even faster. For vector-
ized expressions, NumPy seems to be fastest, see Tables 2 and3 as well as [4, 9].

Some difference is seen when using Numeric and numarray on 64-bit platforms compared to
32-bit platforms compared to the timings from NumPy. This isbecause the former two modules
have no support for 64-bit arrays, while the latter uses these by default when available.

Cache size is an important factor. It is probably the main reason for the vectorized numerical
Python modules not being faster, as a lot of temporary arraysare created. Even though they
do get cleaned up, copying all the values between arrays takes time. In fact, running the same
benchmarks on a 64-bit 32GB machine, the vectorized NumPy code is twice as fast relative to
the Fortran program for the arithmetic mean.

CONCLUDING REMARKS

Python is a great programming platform for scientific applications. Maybe the most important
features of Python are that the code looks clean, few statements can do a lot, and the statements
are close to how one would write the algorithm in pseudo code in a paper or report. In fact,
Python is sometimes referred to as “executable pseudo code”. Python constitues in particular a
very powerful and human-effective tool for implementing all the non-numerical tasks one has
to deal with in scientific software.

The potential problem with Python used for pure number crunching compared to compiled
languages is the loss of speed. The present paper has presented a number of techniques to
overcome this problem and evaluated the efficiency of each technique for solving the standard
wave equation. At its core, the numerical test consists in applying a finite difference stencil
to all points in a two-dimensional grid. Our findings is that plain Python runs slowly, but we
are only required to optimize the loop over the grid – the restof the code (data allocation,
initialization, and the time loop) can be kept in Python. This is good news as it indicates that
only very computing intensive nested loops need to be optimized.

Migrating the loops over the grid points to compiled code, either to Fortran 77 via F2PY or to
C/C++ via Instant or Weave, results in a speed close to that of having the whole application
in pure Fortran 77. The Fortran, C, or C++ code for the loops can be placed inside the Python
program and compiled and linked on the fly.

Cython is a new, user-friendly alternative to mixing Python with Fortran, C, or C++ code. Since
Cython can be viewed as an extension of the Python language, the optimization consists in
“decorating” a first, rough, pure Python implementation of,e.g., nested loops by special con-
structs (see the appendix). These constructs automatically move large parts of the calculation
to assembly code. The performance is almost as good as that ofusing Fortran, C, or C++ from
Python, but Cython seems considerably easier to work with.

The present paper has outlined the potential of Cython and compared it to older alternatives
in a quite simple model problem. Whether Cython is easy to program with and gives high
performance for other numerical operations than applying finite difference stencil to structured
grids, requires further investigation.

APPENDIX: DETAILS ABOUT THE DIFFERENT IMPLEMENTATIONS

The purpose of this appendix is two-fold: i) to give the reader a glimpse of what it means to
program in Python and speed up the code using vectorization,F2PY, Weave, Instant, or Cython,
and ii) to make the reader quickly started with the mentionedtools and list some important
programming tricks that are not presented in a coherent fashion, related to a scientific computing
problem, elsewhere in the literature.

In the following, we start with a naive implementation in pure Python, very close the type of
implementation one would aim at in Matlab, IDL, or similar environments. We then introduce
various tools and implementation tricks to speed up the code, one at a time. For each trick that
came to our mind, we have judged whether the trick representsa reasonably clean implementa-
tion or if it is a specialized hack. In the latter case, we omitto describe the trick in this text. This
means that one can sometimes get faster code than what we present by turning to constructions
that the authors would not like to have in a clear scientific computing code. For this reason,
we have also abandoned writing all C code by hand for the communication between Python

and compiled code, and we have not considered operating directly on pointers to NumPy array
objects in C, which could have some performance gain (see [8] for what this means technically).

The forthcoming text is written for readers with a basic knowledge of Python and NumPy
programming.

NumPy

A standard implementation of the basic algorithms, utilizing NumPy arrays, goes as follows:

import numpy

def k_function(x, y):
return max(x, y)

m = 250; n = 250 # grid size
dx = 1.0/m
dy = 1.0/n
arrays that enter the numerical scheme:
k = zeros((m+1, n+1))
up = zeros((m+1, n+1))
u = zeros((m+1, n+1))
um = zeros((m+1, n+1))

initialize u from initial condition, plus um and k

make sure dt is float, not numpy.float:
dt = float(1/sqrt(1/dx**2 + 1/dy**2)/k.max())

while t <= t_stop:
t += dt
up = calculate_u(dt, dx, dy, u, um, up, k)
um[:] = u
u[:] = up

Thecalculate_u function implements the nested space loop in the finite difference scheme.
Using an arithmetic mean for the variable coefficient, this loop reads

def calculate_u(dt, dx, dy, u, um, up, k):
hx = (dt/dx)**2
hy = (dt/dy)**2
for i in xrange(1, u.shape[0]-1):

for j in xrange(1, u.shape[1]-1):
k_c = k[i,j]
k_ip = 0.5*(k_c + k[i+1,j])
k_im = 0.5*(k_c + k[i-1,j])
k_jp = 0.5*(k_c + k[i,j+1])
k_jm = 0.5*(k_c + k[i,j-1]
up[i,j] = 2*u[i,j] - um[i,j] +

hx*(k_ip*(u[i+1,j] - u[i,j]) - k_im*(u[i,j] - u[i-1,j])) +
hy*(k_jp*(u[i,j+1] - u[i,j]) - k_jm*(u[i,j] - u[i,j-1]))

return up

A point is worth mentioning here. It is tempting to compute the (maximum) time step as

dt = 1/sqrt(1/dx**2 + 1/dy**2)/k.max()

However, thesqrt function used here is the one imported from NumPy (since we doafrom
numpy import *), but it works with scalars too. The problem is that thissqrt function
returns anumpy.float64 object rather than a plain Pythonfloat object. The former turns
out to slow down scalar computations.

Vectorization

One way to get rid of loops in a finite difference scheme is to rewrite the algorithm to operate
on displaced slices of arrays:

def calculate_u(dt, dx, dy, u, um, up, k):
hx = (dt/dx)**2
hy = (dt/dy)**2
k_c = k[1:m,1:n]
k_ip = 0.5*(k_c + k[2:m+1,1:n])
k_im = 0.5*(k_c + k[0:m-1,1:n])
k_jp = 0.5*(k_c + k[1:m,2:n+1])
k_jm = 0.5*(k_c + k[1:m,0:n-1])
up[1:m,1:n] = 2*u[1:m,1:n] - um[1:m,1:n] +
hx*(k_ip*(u[2:m+1,1:n] - u[1:m,1:n]) -

k_im*(u[1:m,1:n] - u[0:m-1,1:n])) +
hy*(k_jp*(u[1:m,2:n+1] - u[1:m,1:n]) -

k_jm*(u[1:m,1:n] - u[1:m,0:n-1]))
return up

This approach might give fast enough code (e.g., when using harmonic mean in the present
case), but there is a severe limitation of the possible speedof vectorization. Although all loops
are now in C, there are a dozen of binary operations between vectors in the code segment
above, and each binary operation needs a temporary array to store the results. This gives rise to
a number of temporary arrays, which are quite efficiently created and destroyed by Python, but
the overhead prevents vectorization from reaching the speed of compiled loops where there are
no temporary arrays present.

Weave

Weave comes as part of SciPy [7], which is a comprehensive package for numerical computa-
tions, containing Python interfaces to LAPACK/ATLAS, a widerange of special mathematical
functions, and many packages from Netlib [10] for numericalintegration, optimization, and
solution of ordinary differential equation – to mention some of SciPy’s rich functionality. One
may view SciPy as an extension of NumPy.

Weave allows parts of the Python code to be written in C or C++, inside Python strings. The
strings are compiled and linked with the Python program at run time (if not a previous compi-
lation is sufficient). In our implementation, we used the functioninline from Weave.

A central question is: how large parts of the original pure Python program above must be mi-
grated to compiled code? Ideally, we would like to have as large portions of a numerical code
as possible in Python and minimize the parts to be migrated. In the present application, we limit
migration of code to the nested loops over the computationalgrid, i.e., the application of the
discrete Laplace operator. The allocation of data structures, initialization of these, and the time
loop are kept in Python.

Here is the implementation of the loops over the 2D grid, i.e., thecalculate_u function,
utilizing Weave:

def calculate_u(dt, dx, dy, u, um, up, k):
Weave with plain C arrays
m, n = u.shape
c_code=r’’’

int i, j;
double hx, hy, k_c, k_ip, k_im, k_jp, k_jm;
hx = pow(dt/dx, 2);
hy = pow(dt/dy, 2);
for (i=1; i<m-1; i++)

for (j=1; j<n-1; j++){
k_c = k[i*m+j];
k_ip = 0.5*(k_c + k[(i+1)*m+j]);
k_im = 0.5*(k_c + k[(i-1)*m+j]);
k_jp = 0.5*(k_c + k[i*m+j+1]);
k_jm = 0.5*(k_c + k[i*m+j-1]);
up[i*m+j] = 2*u[i*m+j] - um[i*m+j] +
hx*(k_ip*(u[(i+1)*m+j] - u[i*m+j]) - k_im*(u[i*m+j] - u[(i-1)*m+j])) +
hy*(k_jp*(u[i*m+j+1] - u[i*m+j]) - k_jm*(u[i*m+j] - u[i*m+j-1]));

}
’’’

err = weave.inline(c_code, [’m’, ’n’, ’dt’, ’dx’, ’dy’,
’u’, ’um’, ’up’, ’k’], compiler=’gcc’,)

return up

Note that the C/C++ code is placed inside strings and passed on to weave.inline for com-
pilation and linking (if necessary) and execution. Also note that we use plain one-dimensional
(flat) C arrays, which makes indexing likeu[i,j] less readable asu[i*m+j]. A syntax
u(i,j) is possible by letting Weave utilize Blitz++ arrays (in C++). This is easily done with
the keyword argumenttype_converters for weave.inline. However, the C++ code
with Blitz++ runs slower than the code with plain C arrays: thescaled speeds being 1.7 and
1.2, respectively (for arithmetic mean – the differences are much smaller when the harmonic
mean is used). Obviously, iterating over one-dimensional arrays when working with a 3D grid
results in a syntax that is harder to debug, but the extra speed gained probably outweights the
less attractive syntax.

Instant

Instant [14] is similar to Weave in that one can write C code inside a Python program and get it
compiled and linked with the Python application. Technically, Instant applies SWIG [1] to the
C code and automates the otherwise more complicated, manualprocess of using SWIG directly
on a C function. Instant uses a cache system based on the checksums of files, making sure to
not recompile code unless needed. The difference compared with Weave is that we actually
need to write the entire C function, i.e., also the function definition and arguments, in addition
to the loops over the grid points. This means that we must handle type declarations, including
pointers, and we also need to import the function afterwards:

c_code=r’’’
void calculate_u(double dt, double dx, double dy,

int nu, int* pu, double* u,
int num, int* pum, double* um,
int nup, int* pup, double* up,
int nk, int* pk, double* k){

int i=0, j=0, m = pu[0], n = pu[1];
double hx, hy, k_c, k_ip, k_im, k_jp, k_jm;
hx = pow(dt/dx, 2);
hy = pow(dt/dy, 2);
for (i=1; i<m-1; i++)

for (j=1; j<n-1; j++){
k_c = k[i*m+j];
k_ip = 0.5*(k_c + k[(i+1)*m+j]);
k_im = 0.5*(k_c + k[(i-1)*m+j]);
k_jp = 0.5*(k_c + k[i*m+j+1]);
k_jm = 0.5*(k_c + k[i*m+j-1]);
up[i*m+j] = 2*u[i*m+j] - um[i*m+j] +

hx*(k_ip*(u[(i+1)*m+j] - u[i*m+j]) -
k_im*(u[i*m+j] - u[(i-1)*m+j])) +

hy*(k_jp*(u[i*m+(j+1)] - u[i*m+j]) -
k_jm*(u[i*m+j] - u[i*m+(j-1)]));

}
}
’’’
build_module(code=c_code, system_headers=["numpy/arrayobject.h"],

include_dirs=[get_include()],
init_code="import_array();",
modulename="instant_",
arrays=[[’nu’, ’pu’, ’u’],

[’num’, ’pum’, ’um’],
[’nup’, ’pup’, ’up’],
[’nk’, ’pk’, ’k’]])

import instant_

def calculate_u(dt, dx, dy, u, um, up, k):
instant_.calculate_u(dt, dx, dy, u, um, up, k)
return up

As Instant is nothing more than a layer on top of SWIG simplifying things, the execution times
for the Instant implementation are really those implied by using SWIG on C code. There are
quite a few keyword arguments available to thebuild_module function, allowing us to use
Instant for much of the functionality available through SWIG.

F2PY

F2PY is a tool that makes it very simple to combine Python withFortran 77 and 90 code. A
complete rewrite of F2PY is in progress, aiming at having full support for wrapping Fortran
95 code and parts of Fortran 2003 features, in particular derived types. Documentation is good,
although not completely up-to-date at the moment. F2PY now comes as part of NumPy. As with
Weave and Instant, we can place the Fortran code inside strings in the Python program and get
it compiled and linked on the fly. Alternatively, we may run F2PY (from the command-line) on
a set of Fortran files. That is, F2PY can be used both to make large Fortran libraries callable
from Python and to migrate slow loops in Python to Fortran code.

In the present case we may write some “inline” Fortran 77 codeas follows:

f_code = """
subroutine calculate_u(dt, dx, dy, u, um, up, k, n, m)
integer m, n
real*8 u(0:m, 0:n), um(0:m, 0:n)
real*8 up(0:m, 0:n), k(0:m, 0:n)
real*8 dt, dx, dy, hx, hy
real*8 k_c, k_ip, k_im, k_jp, k_jm
hx = (dt/dx)*(dt/dx)
hy = (dt/dy)*(dt/dy)

Cf2py intent(in) u, up, k
Cf2py intent(out) up

integer i, j
do j = 1, n-1

do i = 1, m-1
k_c = k(i,j)
k_ip = 0.5*(k_c + k(i+1,j))
k_im = 0.5*(k_c + k(i-1,j))
k_jp = 0.5*(k_c + k(i,j+1))
k_jm = 0.5*(k_c + k(i,j-1))
up(i,j) = 2*u(i,j) - um(i,j) +

& hx*(k_ip*(u(i+1,j) - u(i,j)) -
& k_im*(u(i,j) - u(i-1,j))) +
& hy*(k_jp*(u(i,j+1) - u(i,j)) -
& k_jm*(u(i,j) - u(i,j-1)))

end do
end do
return
end

"""
f2py.compile(f_code, modulename=’f2py_’, verbose=0)

import f2py_

def calculate_u(dt, dx, dy, u, um, up, k):
up = f2py_.calculate_u(dt, dx, dy, u, um, up, k)
return up

F2PY tries to make “Pythonic” interfaces to Fortran code, meaning that output arguments from
a subroutine are returned to the user code. For example, ifo1 ando2 are output arrays to be
calculated in

subroutine calc(o1, o2, i1, i2, m, n)
integer m, n
real*8 o1(m,n), o2(m,n), i1(m,n), i2(m,n)

F2PY will enable you to callcalc as follows from Python:

o1, o2 = calc(i1, i2)

That is, output arguments are returned and array dimensionscan be skipped since arrays in
Python (herei1 andi2) carry that information. However, Fortran has no syntax fordistin-
guishing between input and output arguements. F2PY solves this problem through some special
comment lines starting withCf2py. By default, F2PY treats all arguments as input and none as
output. In the subroutinecalculate_u we must therefore specifyup asintent(out) (as
in Fortran 90) if we want it to be returned to the calling Python code. We have also for clarity
specified the arrays that are input arguments. F2PY will alsoremove them andn arguments
from the argument list since these integers can automatically be extracted from the supplied
arrays in the call. There are several otherintent specifications that allow control over the
memory usage when sending large arrays between Fortran and Python.

It is always important to traverse arrays in the way they are stored in (one-dimensional) memory.
Two-dimensional C arrays are stored row by row, while Fortran applies a column by column

storage. Therefore, we must be careful with the order of the loops in Fortran and remember
to traverse our arrays column-wise. One may otherwise easily lose a factor of two in speed.
Python, on the other hand, creates arrays with C storage by default. When NumPy arrays are to
be sent to Fortran one must create them as, or convert them to,Fortran storage:

u = zeros((m, n), order=’Fortran’)

Otherwise, F2PY will make a copy of the array and transpose itfor you, which may imply some
significant overhead, especially when a Fortran routine is called many times in a time simulation
as in our present example.

Cython

For all execution time results referred to in this section, we have used the arithmetic mean and
a grid of size250 × 250. Applying Cython is easy: we may cut thecalculate_u function
from the pure NumPy implementation above, paste it in a file with the suffix.pyx, and compile
it. The speed-up with this configuration was minimal (about 10%). However, this demonstrates
that the original Pythoncalculate_u is also a valid Cython function.

To gain more speed, we need to utilize the power of the Cython language. A natural next step
is to add types to the Cython function in the.pyx file, i.e., declaring all variables to be used as
floats with the statementcdef float dt when declared within the function or simply as
float dt when given as a keyword argument. This also includes the integer variables used
for indexing arrays. The resulting speed-up of using statictypes is, unfortunately, not noticable,
because accessing the arrays elements takes the majority ofthe execution time. However, spec-
ifying the types of variables is a necessary step (though notalways sufficient) for fast code with
Cython.

The second step is to take advantage of the integration between Cython and NumPy. Even
though arrays are declared asnumpy.ndarray, the[]-operator for accessing array elements
is still implemented in Python. One needs to tell Cython aboutthe type of the array elements.
This is done with the syntax

numpy.ndarray[numpy.float_t, ndim=2] u

As a result, the indexing is now performed in C and the execution time is down to 0.3% of the
pure NumPy implementation, or only about 5 times slower thanthe Fortran implementation.

To further speed things up, we need to turn off bounds checking. As a result, if you do try to
index an array outside its bounds, the program will crash with a segmentation fault instead of an
error. Hence, this should only be done when one has verified that the function works correctly.
The run time is now halfed, and takes only 2.5 times that of theFortran implementation.

Like with Python arrays, Cython allows negative indices, e.g., the syntaxu[-1] accesses the
last element of the arrayu. Turning off this feature may speed up the code (tryingu[-1] will
then most likely lead to a segmentation fault). One can either declare all indices as unsigned
integers explicitly, and make sure to cast any indices that need to be computed, or one can add
another option to the declaration of the arrays:

numpy.ndarray[numpy.float_t, ndim=2, negative_indices=False] u,

Now, we have arrived at the optimal Cython version for our problem. The CPU time is now 1.6
(versus Fortran’s 1.0).

The complete Cython code is shown below, and is located in a filecython_.pyx:

import numpy as np
cimport numpy as np
cimport cython
DTYPE = np.float
ctypedef np.float_t DTYPE_t
@cython.boundscheck(False)
def calculate_u(float dt, float dx, float dy,

np.ndarray[DTYPE_t, ndim=2, negative_indices=False] u,
np.ndarray[DTYPE_t, ndim=2, negative_indices=False] um,
np.ndarray[DTYPE_t, ndim=2, negative_indices=False] up,
np.ndarray[DTYPE_t, ndim=2, negative_indices=False] k):

cdef int m = u.shape[0]-1
cdef int n = u.shape[1]-1
cdef int i, j, start = 1
cdef float k_c, k_ip, k_im, k_jp, k_jm
cdef float hx = (dx/dt)**2
cdef float hy = (dy/dt)**2
for i in xrange(start, m):

for j in xrange(start, n):
k_c = k[i,j]
k_ip = 0.5*(k_c + k[i+1,j])
k_im = 0.5*(k_c + k[i-1,j])
k_jp = 0.5*(k_c + k[i,j+1])
k_jm = 0.5*(k_c + k[i,j-1])
up[i,j] = 2*u[i,j] - um[i,j] +

hx*(k_ip*(u[i+1,j] - u[i,j]) -
k_im*(u[i,j] - u[i-1,j])) +

hy*(k_jp*(u[i,j+1] - u[i,j]) -
k_jm*(u[i,j] - u[i,j-1]))

return up

Calling this code is done as follows:

import pyximport
pyximport.install()
import cython_

def calculate_u(dt, dx, dy, u, um, up, k):
up = cython_.calculate_u(dt, dx, dy, u, um, up, k)
return up

Trying to use a different form of indexing of NumPy arrays, i.e.u[i][j] oru.item(i,j),
instead ofu[i,j], was found to slow down the program to a speed similar to the initial Python
program. This means that the integration with NumPy only works for the indexingu[i,j].

Trying to vectorize the code also resulted in very poor performance, for the same reasons.
Vectorization uses slicing, and slices are Python objects not implemented in Cython.

When changes are made to the Cython code, one would have to recompile the code before
running the Python program again, but using the modulepyximport eliminates the need for
this step. Instead, code is only recompiled if necessary at import time.

Fortran

From these examples, it becomes clear that Python is a good alternative for coding even CPU-
intensive numerical calculations. Combined with proper error messages and the fact that we
can develop Python programs that, using extension modules for the most time consuming code,
run at a speed only 10% slower than a pure Fortran program, shows us that although Python

by itself is not fast enough for numerical calculations, simple steps can be taken that more than
weigh up for this drawback.

References

[1] D. Beazley et al. SWIG: Simplified wrapper and interface generatorhttp://www.swig.org.

[2] Boost C++ librarieshttp://boost.org/libs.

[3] X. Cai and H. P. Langtangen Parallelizing PDE solvers using the Python programming language
In A. M. Bruaset and A. Tveito, editors,Numerical Solution of Partial Differential Equations on
Parallel Computers, volume 51 ofLecture Notes in Computational Science and Engineering, pages
295–325. Springer, 2006.

[4] X. Cai, H. P. Langtangen and H. Moe On the performance of the Python programming language
for serial and parallel scientific computationsScientific Programming, vol.13(1), 31–56, 2005.

[5] G. Ewing, R. Bradshaw, S. Behnel, D. S. Seljebotn et al. Cython: C-extensions for Python
http://cython.org.

[6] E. Jones Weave: Tools for inlining C/C++ in Pythonhttp://scipy.org/Weave.

[7] E. Jones, T. Oliphant, P. Peterson et al. SciPy: Open source scientific tools for Python
http://scipy.org.

[8] H. P. LangtangenPython Scripting for Computational ScienceTexts in Computational Science
and Engineering, vol 3. Springer, third edition, 2009.

[9] H. P. Langtangen and X. Cai On the efficiency of Python for high-performance computing: A case
study involving stencil updates for partial differential equations In H. G.Bock, E. Kostina, H. X.
Phu and R. Rannacher, editors,Modeling, Simulation and Optimization of Complex Processes,
pages 337–358. Springer, 2008.

[10] Netlib software collection.http://netlib.org.

[11] T. Oliphant et al. NumPy software packagehttp://numpy.org.

[12] P. Peterson F2PY: Fortran to Python interface generatorhttp://scipy.org/F2py.

[13] G. van Rossum et al. The Python programming languagehttp://python.org.

[14] M. Westlie, K. A. Mardal and M. S. Alnæs Instant: Inlining of C/C++ in Python
http://fenics.org/instant.

	INTRODUCTION
	WHAT IS CYTHON?
	THE BENCHMARK PROBLEM
	Set of Tests
	BENCHMARK RESULTS
	Psyco and Numerical Python Packages
	CONCLUDING REMARKS
	APPENDIX: DETAILS ABOUT THE DIFFERENT IMPLEMENTATIONS
	NumPy
	Vectorization
	Weave
	Instant
	F2PY
	Cython
	Fortran
	References

