Using Cython to Speed up Numerical Python Programs
llImar M. Wilbers, Hans Petter Langtangéf, and Asmund @degétd

ICenter for Biomedical Computing, Simula Research Laboratory, Oslo
2Simula Research Laboratory, Oslo
3Department of Informatics, University of Oslo, Oslo

Abstract

The present study addresses a series of techniques folirspepcumerical calculations
in Python programs. The techniques are evaluated in a bear&hpnoblem involvin
finite difference solution of a wave equation. Our aim is talfthe optimal mix o
user-friendly, high-level, and safe programming in Pythoth more detailed and more
error-prone low-level programming in compiled languagesparticular, we present
and evaluate Cython, which is a new software tool that consbingh- and low-level
programming in an attractive way with promising performanCython is compared to
more well-known tools such as F2PY, Weave, and Instant. Wi¢hmentioned tools,
Python has a significant potential as programming platferecomputational mechanics.

Keywords: Python, compiled languages, numerical algorith

INTRODUCTION

Development of scientific software often consumes largégus of research budgets in compu-
tational mechanics. Using human-efficient programmindstaad techniques to save code de-
velopment time is therefore of paramount importance. Ryfti8] has in recent years attracted
significant attention as a potential language for writingnetcal codes in a human-efficient
way. There are several reasons for this interest. Firstyrogtie features that have made MAT-
LAB so popular are also present in Python. Second, Pythofrégaopen source, powerful, and
very flexible modern programming language that supportsajor programming styles (proce-
dural, object-oriented, generic, and functional prograngh Third, there exist a wide range of
modules available for efficient code development relatetiéanany non-numerical tasks met
in scientific software, including I/0, XML, graphical useterfaces, Web interfaces, databases,
and file/folder handling. Another important feature of Ryths the strong support for building,
testing, and distributing large simulation codes contajra mixture of Python, Fortran, C, and
C++ code. Since the administrative, non-numerical taskenditl up most of large scientific
software packages, many code writers have a desire to gienelo code in Python.

There is one major concern when using Python for scientifiemdations, namely the possible
loss of computational speed. The present paper addregsesstie and explains how Python
code written in MATLAB-style can be speeded up by using cersaiftware tools and imple-
mentation techniques. In particular, we focus at a new anthjging tool, Cython, which can
greatly speed up pure Python code in a user-friendly way.

Numerical algorithms typically involve loops over arrayusttures. It is well known that stan-
dard Python loops over long lists or arrays run slowly in BythThe speed can be acceptable in
many settings, for example, when solving partial diffel@rgquations in one space dimension.
However, one soon encounters computational mechanicgcapphs where standard Python
code needs hours to run while a corresponding Fortran or € fioidhes within minutes.

One way of speeding up slow loops over large arrays is to ceftlee loops by a set of operations

on complete arrays. This is known as vectorization. Thedjpgecan be dramatic, as we show
later, but the correspondance between computer code andatematical exposition of the
algorithm is not as clear as when writing loops over arrays.

Another strategy is to migrate the loops to compiled codégeiin Fortran, C, or C++. There
exist a range of tools for simplifying the combination of Rgm and compiled languages.
F2PY [12] is an almost automatic tool for gluing Fortran T7#®ith Python. SWIG [1] and
Boost.Python [2] are similar tools for combining Python w@ttor C++ code, but they require
more manual intervention than F2PY. Tools like Instant [a4fl Weave [6] allow “inline” C
or C++ code in Python, i.e., strings with C or C++ code are irskirt the Python code, com-
piled on the fly, and called from Python. Cython [5] is a recengveloped tool that extends
the Python language with new syntax which enables autorsatigpilation of constructs to
machine code and thereby achieving substantial speed-tife gfrogram. One can also man-
ually write all the necessary C code for migrating loops to @hewt relying on any tool for
automating the (quite complicated) communication of datsveen C and Python.

For a computational scientist who needs to develop commaee and who is interested in
using Python, there is a key question: What type of technifoald be used to speed up loops
over arrays? Should the loops be vectorized? Should the lnepnplemented in Fortran 77 and
glued with Python by F2PY? Or should the loops be written i €6+ and glued via SWIG,
Boost.Python, Instant, or Weave? Or should one apply the oelWython and implement the
loops in Python with some extra commands? The present papedps information to help
answer these questions. The information is extracted frgpeaific case study involving finite
difference schemes over two-dimensional grids. Such typ&gorithms arise in numerous
contexts throughout computational mechanics.

The topic of optimizing Python code has received some attemn the literature. The web-
site sci py. or g [7] contains much useful information. Comparisons of somé¢hef men-
tioned tools, applied to typical numerical operations intdéirdifference schemes, have been
published in the scientific literature [3, 4, 9, 8]. None odsk contributions address the poten-
tial of Cython, which is the aim of the present paper. The heghat the present paper can act
as a repository of smart tools and programming techniqueByithon programmers who want
to speed up their codes. For non-experts the paper may achasvation for picking up a new
programming platform in computational mechanics and hedjprt to navigate in the jungle of
implementation tools.

The paper is organized as follows. First, we describe whdi@yis. Then we describe a bench-
mark problem and how the various tools and programming igaes perform in that problem.
Finally, in an appendix, we describe in detail how one cart stdh a MATLAB-style imple-
mentation of the benchmark problem in pure Python and amulls tand techniques to speed
up the code.

WHAT ISCYTHON?

Cython [5] is a new extension of the Python language that atmsaéing the integration of C
and Python simpler. In many ways, it is a mix of the both of th@&@ython is based on Pyrex,
which has been around for some years, but the former supports cutting-edge functionality
and optimizations. Development started in 2007, and in timenser of 2008, integration with
NumPy [11] arrays was added to the project, allowing us tdenfast numerical array-based
code that is very close to Python itself, while running at¢peed of C. Cython is developed

actively, and therefore functionalities might still be addand the documentation is not always
correct. The Cython community, however, has a very activdimgdist.

Cython does not simply translate Python code to C code. ldsteases the Python run-time
environment, compiling everything directly to machine eoBecause of this, the Python header
files should be available on the system (e.g., by installmgdackageyt hon2. 5- dev on
Ubuntu Linux).

Almost all Python code is valid Cython code, but not all Cythade is Python code. This

means that one can start with plain Python code, and add Cythstructs to gain speed, as
we illustrate in detail in the appendix. The main differebegween Python code and Cython
code is that the latter is statically typed, which means timathave to explicitly declare the

type of our variables. We can use pure Python objects, boe#e are to interact with any of the
Cython code, they need to be casted to the right type, whiclamyroases is done automatically,
but in some cases requires manual intervention.

For a Cython example, let us look at the following simple camtenumerical integration using
the Trapezoidal rule. The Python version looks like:

def f(x):

return 2xx*x + 3*xx + 1
def tr (a b, n):
h a)/float(n)
su 0
X
fo

S ||3 ||m
F o x ||Aq>
c

in range(n):
+= h
m =]

sum += 0. 5*(%(?51) + f(b))
return sumh

This code runs fine with Cython, but in order to get a speed-@pneed to statically declare
types using thedef keyword. The following Cython code runs about 30 times fasten the
Python code:

cdef f(double x):
return 2xx*x + 3*xx + 1

def trapez(doubl e a, double b, int n):
cdef double h = (b- a)/n
cdef double sum= 0, x a
cdef int i
for i in range(n-1):
X += h
sum += f(x)
sum += 0.5+(f(a) + f(b))
return sunxh

Functions defined witdef andcdef can call each other within the Cython code, but functions
defined withcdef cannot be called directly from Python, so one either has ¢oaufunction
defined with the keywordef , or another keywordpdef indicating that the function is to be
used both as a Python and a Cython function. In the appendihowe siore advanced use of
the Cython functionality.

THE BENCHMARK PROBLEM

We prefer to investigate the performance of different paogming tools and techniques on a not
too complicated mathematical problem, yet one that had apg#ication in mechanics and that
contains algorithmic steps of widespread importance inenadivanced computational mechan-
ics applications. Our benchmark of choice is then a standaxe@ equation in a heterogeneous
medium with local wave velocity:

d%u
V.) 1
5 V- [kVu] (1)
For the tests in the present paper, we restrict the attetditwo space dimensions:
Pu 0 ou 0 ou
—=— |k — — [& — . 2
o = o (Mo gt) + o (e @)

We set the boundary condition to= 0 for the whole boundary of a rectangular dom&in=
(0,1) x (0,1). Further,u has the initial valud/ (x,y) att = 0 while du/0t = 0. The initial
shape of the wave is chosen as a Gaussian bell function,

2 2
T — Te Y—VYc
1 =A
(2,y) eXP((2. > +(2,))
with A = 2, . = y. = 0.5, ando, = o, = 0.15. The functionk is defined ag:(z,y) =

max(z,y), causing the waves to move along the line between the cofddrsand(1, 1) of the
domain instead of uniformly over the grid.

We solve the wave equation using the following finite diffeze scheme:
At B
Ui] = <A_x) [kiJr%,j(uHLj — Uij) — kze%,j(ui,j —ui—1)]"

At -1
+ o [Fi s (i — wig) — Ky ja (uig — wij-1)] ™ (3)

Here,uﬁvj represents at the grid pointr; andy; at time levelt;, where

r, =iAx,i=0,...,n
y; = jAy,7=0,...,mand
t = IAt,

Also, k; 1 ; is short fork(a:iJr%,yj).

The finite difference scheme is explicit and only conditibnatable. We choose the largest
possible time step,

[N

At = ! L)
C max,, k(r,y) \Az2 Ay?

The relevance of this benchmark problem goes far beyondgdiysoblems that can be mod-
eled by the standard wave equation. In essence, the rgsutimputer code will perform an
update of a variable-coefficient Laplace operator, i.eqaration of the form

Unew = Q +V- [kvuold])

where(is some known quantity. Such updates appear in a wide rangbysical problems
and numerical methods. Therefore, the code segment to beie@ in this paper will be of
relevance to most finite difference-based software for filod, heat transport, and electrostat-
ics. For example, consider an implicit scheme for a heaspart problem with nonlinear heat
conduction. Splitting convection and diffusion in two stefhe diffusion step will give rise to
a linear system that must be solved by iterative methodsi\dJsiConjugate Gradient method
for this purpose, combined with a Multigrid preconditiontgpically involves the discrete dif-
ferential operator in the smoother step of the Multigridoaithm. This smoother step will be
an update fromu,4 to u,.,, Of the type shown above, aidnay be computed from, 4 values.
Similarly, finite difference schemes for the Navier-Stokgsiations almost exclusively apply a
splitting of the equations, with Laplace operator stepshefgame kind as in our wave equa-
tion. The main limitation of our benchmark problem is the o$etructured grids and finite
difference operators.

The scheme then givesrise to a linear system we have an inggleme for, say a heat transport
problem, an iterative numerical solution strategy, say #igrid method, will lead to updates
of the type we have for an explicit scheme for the wave eqoatio

In the scheme, we need valueskobetween the grid points, as lqn+1 .. This is a straightfor-
ward computation ik is known as an explicit mathematical functlon which it ighe present
problem. However, in the more general casg;, y) comes from measurements and will nor-
mally be known only over a grid. Assuming thats only available at the same grid as we use
for u, we need to approximate quantities Ilkg by k values at the grid points. The most
immediate approximation is the arithmetic mean

Kip1; = 5 (km‘ + kiv1j) (4)

with similar definitions fork, 1 ,, kZHl, andk; ;1. For problems involving highly discontin-
uous media (e.g., waves in geologlcal medla) |t is more comta apply the harmonic mean:

1/ 1 1 -1
k.o1.~|= . 5
3.7 (2 (kw - k‘z‘+1,j>) ®)

It turns out that whether one applies an arithmetic or haimoean has substantial effect on
the relative performance of different programming toold sechniques, in the present problem.
The reason is that the harmonic mean implies significantlyemerk, which may then domi-
nate over the array look-ups in the scheme (for the fastgaeimentation the harmonic mean
computation actually consumes about 80% of the time of amtgpith the scheme). We may
view the arithmetic and harmonic mean alternatives as twgdjpally motivated) models for
two classes of the complexity of a diffusion operator in mooenplicated partial differential
equations. The arithmetic mean represents a model whekedbefficient is quickly evaluated,
while the harmonic mean represents a model with a signifisanbf arithmetic operations,
which typically arises in nonlinear diffusion operatorgyipaps with complicated constitutive
laws. One may in the latter case be forced to call mathentdiications (e.g., the exponential
function) as part of the, 1 computation, and the resultis even more work than for thenbarc
mean. It therefore makes sense to test both means as mod&aiple” and “complicated”
variable-coefficient Laplace operators.

We can now summarize our algorithm to be implemented:

Defineuw; ;, up; ;, andum; ; to represent ,, v, andu!”'
SET THE INITIAL CONDITIONS:

w ;= 1(x,y),fori=0,....,nandj =0,...,m
CALCULATE THE FIRST TIME STEP

t=20

START THE TIME LOOP.

while timet < ¢,

t—t+ At
SOLVE FOR CURRENT TIME STEP
fori=1,...,n—1:

foryj=1,....m—1:
calculateup, ; from (3)
SET BOUNDARY CONDITIONS
INITIALIZE FOR NEXT STEP:
um= u
U= up

Set of Tests

For all programs except for the pure Fortran program, we oahsider the time spent by the
main time loop. The time spent setting the initial conditeord calculating the first time step,
which needs to be treated separately, is thus ignored. Ceapathe execution time of all the
other time steps, this time is negligible (for most implemad¢ions).

The allocation and initialization of data structures asaglthe time loop is in pure Python for
all implementations, except the pure Fortran 77 code. Omyspace loop with the variable-
coefficient Laplace operator is subject to various optitmzratechniques. We have also per-
formed timings where the time loop has been migrated to cleahjgiode, but this gave negligi-
ble gain in speed, reminding us that the need for optiminasaisually limited to small, very
computing intensive parts of a numerical code.

There are two ways of evaluating the variable coefficigntin the scheme: we can either
implementk as a Python functi@m or we can storé: values at the spatial grid points in an
array. We have adopted the latter approach, since it islglemrch more efficient than calling a
function.

The timings have been done on a Linux laptop with the setup@srsin Table 1. The laptop is
a Macbook Pro with a 2.4 GHz processor and 2GB of memory rgrhia latest Ubuntu release
(8.10, Intrepid Ibex).

BENCHMARK RESULTS

In section we briefly report our main findings about the efficieof different speed-up tools
and implementation constructs. The forthcoming text agsuthat the reader is familiar with
what is programmed, but a basic introduction to the varioogm@amming elements is provided
in the appendix.

1Even when the loops over the grid points are migrated to cleahgiode in C or Fortran, that code can call a
Python function for evaluating(z, y). This is very convenient for easy specification of differeqt, y) functions,
but results in very slow code, because the overhead of gaftithon from C or Fortran is significant. Doing this
for every grid point slows down the compiled code dramaltjcal

Table 1: Machine Configuration

Software | Version

Python | 2.5.2

Cython | 0.10.3

NumPy | 1.1.1

Numeric | 24.2-9
numarray| 1.5.2-4

Instant 0.9.5

F2PY 1.1.1 (NumPy)
Weave 0.6.0-11 (SciPy

Table 2: Timing results; arithmetic mean

Implementation CPU time
Pure Fortran 1.0
Weave with C arrays 1.2
Instant 1.2
F2PY 1.2
Cython 1.6
Weave with Blitz++ arrays 1.8
Vectorized NumPy arrays 13.2
Python with lists and Psyco 170
Python with NumPy and. i tem(i,j) | 520
Python with lists 760
Python with NumPy and[i , j] 1520

We started out with the most natural approach, namely using® arrays and explicit loops.
As indexing plain Python lists is generally faster than kidg NumPy arrays, we also tried
pure lists. For such a program utilizing only standard Pygtfwaith no NumPy arrays), the just-
in-time compiler Psyco can speed up the code, here we obltaineost an order of magnitude.
Further speed-up can be achieved by vectorizing array tipesai.e., operating on whole slices
of arrays instead of accessing individual elements. Tlsslted in a speed-up of two orders
of magnitude. For even faster execution, it was necessaexport the most computational
intensive part of the code to a compiled language, as is ditheMeave, Instant, and F2PY. We
also created a pure Fortran 77 program and used this as gtieference. Finally, we utilized
Cython, starting with the pure Python code with indexing ofMRy arrays, and adding a series
of Cython constructs to see how the performance gain evolved.

All the timings reported in Table|2 are done foR30 x 250 grid with 707 time steps using
the arithmetic mean fat. The timings are based on the mean value from ten runs, artediv
by the CPU-time of the fastest implementation, which is theedeortran program. Table 3
shows the same results using the harmonic mean. Note thptitee~ortran program again is
set to one time unit, although taking almost 10 times longewun than the Fortran program
using arithmetic mean. The other implementations showesidéference in speed between the

Table 3: Timing results; harmonic mean

Implementation CPU time
Pure Fortran 1.0
Weave with C arrays 1.0
Instant 1.0
F2PY 1.0
Cython 1.0
Weave with Blitz++ arrays 1.1
Vectorized NumPy arrays 2.9
Python with lists and Psyco 17.1
Python with lists 80
Python with NumPy and. i tem(i,j) | 150
Python with NumPy and[i, j] 190

arithmetic and harmonic mean. One reason why Fortran is sh faster in the arithmetic mean
case may be that the compiler manages to apply aggressiv@zgiton techniques and utilize

parallelism and registers on the chip in an effective waythviie harmonic mean, there are
more complicated arithmetics involved, and the same opétiins may not be applicable in
this case. For the implementations with a significant patthefcomputations in Python, there is
so much overhead anyway that the difference between the tfpeean computations drowns
in other, more costly operations.

Psyco and Numerical Python Packages

There are three implementations of numerical Python arfdysneric is the original imple-
mentation from the mid 1990s, numarray appeared some atarsand offered several useful
new features, while NumPYy is a merge of the latter two, ainaitigeing the only serious imple-
mentation of numerical arrays for Python. In this sectiong@enore into detail on the relative
performance of these three implementations.

Table 4 reports the differences between the three arrayeimgahtations and various syntax for
indexing arrays. We also show to what extent Psyco can spedtython code. The time is
scaled to the pure Python version with lists (instead ofyajrand arithmetic mean f@r. Note
that it is easy to transform a Python code with arrays to a @otte(nested) lists: just perform
the operatiom = a. tolist() foreveryarraya, and then substitute the indexing syntax for
arraysa[i, |], bythe syntax for nestedlis@]i][]] . Psycois good for plain Python loops,
as it reduces the execution time with 70-80%. For loops uirghumerical modules we only
get a reduction of 20-30%. This is expected, as Psyco onhagesio optimize the Python code
calling the numerical modules, not the code within the nucaémodules themselves. The one
exception here is NumPy when using the functidremfor accessing array elements. This is
because t emis a function. What Psyco does, is to scan the code, and keepilednwersions
of blocks of code that are used often in memory, instead effméting every line of code on the
fly. The downside is that it uses a lot of memory. It is, howegessible to control the amount of
memory that Psyco is allowed to use. The conclusion is thatdAis very efficient for speeding
up pure Python loops over lists.

Instead of rewriting loops in an extension module in C, we gt a speed-up of a significant

Table 4: Timing results for various numerical Python packages and Pyaarithmetic and harmonic
mean ofk

Implementation Arithm. | Arithm. Psyco| Harm. | Harm. Psyco
Python with lists 1.00 0.22 1.00 |0.33
NumPy andu[i, j] 2.00 1.55 2.17 |1.83
NumPyandu[i][]] 2.32 1.92 250 | 219
NumPy andu. i tenm(i,j) | 0.68 0.30 1.78 | 0.30
Numericandu[i, j] 1.35 1.08 1.29 |1.03
Numericandu[i][]] 1.13 0.83 1.08 | 0.79
numarray andi[i , j | 2.31 1.86 209 | 1.76
numarray andi[i][]] 1.63 1.10 149 | 1.12

factor by simply adding the linpsyco. bi nd(f oo) for a functionf 00, so the extra amount
of work needed is an absolute minimum. It is important to ribtd both the space and time
loops should reside within functions in order to gain the mmasm speed-up, because only
functions can be bound with Psyco.

Psyco has no support for 64-bit platforms, and developmasickased. Instead, the developer
has decided to contribute to a project called Pypy. Theijusime (JIT) compiler for this project
apparently has a similar speed-up as did Psyco, but we wersuccessful in compiling a
version of Pypy with the JIT compiler.

Next we comment upon some differences we have observed &etive three implementations
of numerical Python arrays. When replacing Python lists WthmPy arrays in plairf or -
loops, the execution time is increased by a factor of 2. Thi®r NumPy arrays using the
syntaxu[i,]] . Using Numeric with the syntax[i] []] the running time is only increased
about 10% compared to the list implementation. The reasanal do not get a bigger speed-
up is due to the fact that lists are intrinsic Python objektt tire highly optimized, whereas
using one of the numerical modules implies using externaééctynless we use vectorization or
perform array operations instead of simple element-byretd operations, using these modules
will not give us any speed-up.

We have observed that numarray is the slowest of the threemecsh Python modules in all
cases. Using NumPy, the syntaki , j | is faster tharu[i][] . With Numeric and numatr-
ray, this is the other way around. Numeric is still the fastest using NumPy and the syntax
u.item(i,]j) runs atalmost the same speed, sometimes the latter is esten féor vector-
ized expressions, NumPy seems to be fastest, see Tables32aanwell as [4, 9].

Some difference is seen when using Numeric and numarray 4nit @datforms compared to
32-bit platforms compared to the timings from NumPy. Thigasause the former two modules
have no support for 64-bit arrays, while the latter usesagsdefault when available.

Cache size is an important factor. It is probably the mainaedsr the vectorized numerical

Python modules not being faster, as a lot of temporary amagsreated. Even though they
do get cleaned up, copying all the values between arrays take. In fact, running the same
benchmarks on a 64-bit 32GB machine, the vectorized NumBg otwice as fast relative to

the Fortran program for the arithmetic mean.

CONCLUDING REMARKS

Python is a great programming platform for scientific apians. Maybe the most important
features of Python are that the code looks clean, few staitsnean do a lot, and the statements
are close to how one would write the algorithm in pseudo coda paper or report. In fact,
Python is sometimes referred to as “executable pseudo cBgi#ion constitues in particular a
very powerful and human-effective tool for implementingthe non-numerical tasks one has
to deal with in scientific software.

The potential problem with Python used for pure number dningc compared to compiled

languages is the loss of speed. The present paper has pesenumber of techniques to
overcome this problem and evaluated the efficiency of eattinique for solving the standard
wave equation. At its core, the numerical test consists plyapy a finite difference stencil

to all points in a two-dimensional grid. Our findings is théip Python runs slowly, but we

are only required to optimize the loop over the grid — the odsthe code (data allocation,

initialization, and the time loop) can be kept in Python.sTts good news as it indicates that
only very computing intensive nested loops need to be opéchi

Migrating the loops over the grid points to compiled codéhei to Fortran 77 via F2PY or to
C/C++ via Instant or Weave, results in a speed close to thatwh@ahe whole application
in pure Fortran 77. The Fortran, C, or C++ code for the loops eapléced inside the Python
program and compiled and linked on the fly.

Cython is a new, user-friendly alternative to mixing Pythathwrortran, C, or C++ code. Since
Cython can be viewed as an extension of the Python languageptimization consists in
“decorating” a first, rough, pure Python implementationen§y., nested loops by special con-
structs (see the appendix). These constructs automgticaNe large parts of the calculation
to assembly code. The performance is almost as good as thaingf Fortran, C, or C++ from
Python, but Cython seems considerably easier to work with.

The present paper has outlined the potential of Cython angared it to older alternatives
in a quite simple model problem. Whether Cython is easy to aragwith and gives high

performance for other numerical operations than applymtgefdifference stencil to structured
grids, requires further investigation.

APPENDIX: DETAILSABOUT THE DIFFERENT IMPLEMENTATIONS

The purpose of this appendix is two-fold: i) to give the reaalglimpse of what it means to
program in Python and speed up the code using vectoriz&iny, Weave, Instant, or Cython,
and ii) to make the reader quickly started with the mentiotwads and list some important
programming tricks that are not presented in a coherenidfiastelated to a scientific computing
problem, elsewhere in the literature.

In the following, we start with a naive implementation in puPython, very close the type of
implementation one would aim at in Matlab, IDL, or similave@onments. We then introduce
various tools and implementation tricks to speed up the ,cmde at a time. For each trick that
came to our mind, we have judged whether the trick represergasonably clean implementa-
tion or if it is a specialized hack. In the latter case, we dmdescribe the trick in this text. This
means that one can sometimes get faster code than what vemplbgsurning to constructions
that the authors would not like to have in a clear scientifimpating code. For this reason,
we have also abandoned writing all C code by hand for the camuation between Python

and compiled code, and we have not considered operatincflgic pointers to NumPy array
objects in C, which could have some performance gain (seei8tat this means technically).

The forthcoming text is written for readers with a basic kiemge of Python and NumPy
programming.

NumPy

A standard implementation of the basic algorithms, utiigNumPy arrays, goes as follows:

i mport nunpy

def k_function(x, y):
return max(x, vy)

m = 250; n = 250 # grid size

dx = 1.0/ m

dy = 1.0/n

arrays that enter the nunerical schene:
k = zeros((m+l, n+l))

up = zeros((m+l, n+l))
u = zeros((m-l, n+l))
um = zeros((m+l, n+l))

initialize u frominitial condition, plus umand k

make sure dt is float, not nunpy.float:
dt = float(1/sqrt(1/dx**2 + 1/dy**2)/k. max())

while t <= t_stop:

t += dt

up = calculate_u(dt, dx, dy, u, um up, k)
unf:] =u

uf:] = up

Thecal cul at e_u function implements the nested space loop in the finite diffee scheme.
Using an arithmetic mean for the variable coefficient, thgd reads

def calculate_u(dt, dx, dy, u, um up, k):
hx = (dt/dx)=*=*2
hy = (dt/dy)=*=*2
for i in xrange(l, u.shape[0]-1):
for j in xrange(1l, u.shape[1l]-1)
k ¢ = Kk[i,j]
k ip =0.5x(k_c + Kk[i+1,j])
k im=0.5x(k_c + Kk[i-1,]])
k jp = 0.5%(k_c + k[i,]+1])
k Jm= 0.5+(k_c + Kk[i,]-1]
upli,j] = 2+u[i,j] - unfi,j] + _ _
hx*(k_i px(u[i+1,j] - u[i,j]) - kZime(u[i,j] - u[i-1,j])) +
hy=(k_jpx(u[i,j+1] - u[i,j]) - k_me(uli,j] - u[i,j-1]))
return up

A point is worth mentioning here. It is tempting to compute {lmaximum) time step as

dt = 1/sqgrt(1/dx**2 + 1/dy**2)/k. max()

However, thesqr t function used here is the one imported from NumPy (since wa fdoom
nunpy i nport =), but it works with scalars too. The problem is that thigrt function
returns anunpy. f | oat 64 object rather than a plain Pythéh oat object. The former turns
out to slow down scalar computations.

Vectorization

One way to get rid of loops in a finite difference scheme is tarite the algorithm to operate
on displaced slices of arrays:

def caI cuI ate_u(dt, dx, dy, u, um up, k):
= (dt/dx)=*=*2
hy = (dt/dy)=*=*2
k_ ¢ = k[1:m 1:n]
k ip=0.5(k_c + k[2:m+1, 1:n])
k im=0.5(k_c + k[0O:m1,1:n])
k jp = 0.5%(k_c + k[1: m2:n+1])
k Jjm= 0.5x(k_c + k[1: mO0:n-1])
up[1l:m 1l:n] = 2xu[1l:m1:n] - un{1l:m1: n] +
hx*(k_ipx(u[2: mtl,1:n] - u[l:m1:n])
kK im(u[1l:m1l:n] - u[O0: ml 1:n])) +
hy*(k_j p*(u[l 2:n+l] - u[l:m1l:n]) -
_Jm(u[l m1l:n] - u[l:mO0:n-1]))
return up

This approach might give fast enough code (e.g., when usamgndnic mean in the present
case), but there is a severe limitation of the possible spéeéctorization. Although all loops
are now in C, there are a dozen of binary operations betweeiorgein the code segment
above, and each binary operation needs a temporary arréyréotise results. This gives rise to
a number of temporary arrays, which are quite efficienthatzd and destroyed by Python, but
the overhead prevents vectorization from reaching thedspeeompiled loops where there are
no temporary arrays present.

Weave

Weave comes as part of SciPy [7], which is a comprehensivieagacfor numerical computa-
tions, containing Python interfaces to LAPACK/ATLAS, a widage of special mathematical
functions, and many packages from Netlib [10] for numericéégration, optimization, and

solution of ordinary differential equation — to mention soof SciPy'’s rich functionality. One

may view SciPy as an extension of NumPYy.

Weave allows parts of the Python code to be written in C or Crside Python strings. The
strings are compiled and linked with the Python program attime (if not a previous compi-
lation is sufficient). In our implementation, we used thediioni nl i ne from Weave.

A central question is: how large parts of the original puréhBg program above must be mi-
grated to compiled code? Ideally, we would like to have agearortions of a numerical code
as possible in Python and minimize the parts to be migratetthd present application, we limit
migration of code to the nested loops over the computatignd] i.e., the application of the

discrete Laplace operator. The allocation of data strestunitialization of these, and the time
loop are kept in Python.

Here is the implementation of the loops over the 2D grid, tlee cal cul at e_u function,
utilizing Weave:

def calculate_u(dt, dx, dy, u, um up, Kk):
Weave with plain C arrays
m n = u.shape
c_code=r"""’
int i, j;
double hx, hy, k_ c, k_ip, k_.im k_jp, k jm
hx = pow(dt/dx 2);
hy = pow(dt/dy, 2);
for (1=1; i<m1; |++)

for (j=1; j<n-1; j++){

k_c :k[l*rm-j];

k_ip = 0.5+(k_c + Kk[(i+1)*m+j]);

k_im= 0.5+x(k_c + k[(i-2)*m+]]);

k jp = 0.5%(k_c + k[i*m+ +1]);

k_ jm= 0.5+(k_c + k[i*m-1]);

upli*mi] = 2sufi=me] - unfi*ms] +

hxs(k_i px(u[(i +1)*m+j] - ufi*=mej]) - k_ime(u[i*mej] - u[(i-1)*mj])) +
} hy*(k_j px(u[i*mtj+1] - ufi*m]) - k jme(uli=mej] - ufi*mj-1]));
err = weave.inline(c_code, ['m, 'n, "dt’, "dx', 'dy’,
u’, um, "up’, 'k’], conpiler=gcc’,)

return up

Note that the C/C++ code is placed inside strings and passemivaaive. i nl i ne for com-
pilation and linking (if necessary) and execution. Alsoenthtat we use plain one-dimensional
(flat) C arrays, which makes indexing likg i, j] less readable as[i »mtj]. A syntax
u(i,j) is possible by letting Weave utilize Blitz++ arrays (in C++hi3 is easily done with
the keyword argumertype_converters for weave. i nl i ne. However, the C++ code
with Blitz++ runs slower than the code with plain C arrays: ftaled speeds being 1.7 and
1.2, respectively (for arithmetic mean — the differencesrauch smaller when the harmonic
mean is used). Obviously, iterating over one-dimensiorralya when working with a 3D grid
results in a syntax that is harder to debug, but the extradsga®ed probably outweights the
less attractive syntax.

| nstant

Instant [14] is similar to Weave in that one can write C codsida a Python program and get it
compiled and linked with the Python application. Techrigdhstant applies SWIG [1] to the

C code and automates the otherwise more complicated, maroagass of using SWIG directly

on a C function. Instant uses a cache system based on thescineslof files, making sure to

not recompile code unless needed. The difference compaitdWeave is that we actually

need to write the entire C function, i.e., also the functiefition and arguments, in addition
to the loops over the grid points. This means that we mustlbagde declarations, including

pointers, and we also need to import the function afterwards

c_code=r’

voi d cal cul at e_u(doubl e dt,

int
int
int
int
int i=0,
doubl e hx,

nu, intx pu,

doubl e dx,
doubl e* u,

num int+* pum double* um
nup, int* pup, doublex up
nk, intx pk, doublex k){

j=0, m= pu[0], n =

pu[1],

doubl e dy,

hy, k_c,
hx = pow(dt/dx 2);
hy pow(dt/dy, 2);
for (i=1; i<m1 |+ﬂ
for (j=1; j<n-1,;

_Cc = k[l*n%J

i

i

k_ip, kiim k_jp, k jm

i++){

_C o+ K[(i+1)*mH]);
K[(i-1)*mH]);
K[i*mH +1]);
K[i *m#j -

B

O

:j =
_] =]
* M|

pli
h

—~

b

bui | d_nodul e(code=c_code, system headers=["nunpy/arrayobject.h"],
include_dirs=[get_include()],
init_code="inport_array();",
nodul enane="i nstant _"

arrays=[['nu, 'pu, U],
["num, "pum, "um],
[nup’, "pup’, "up’],
["nk, "pk', "k']])
i nport instant_
def calculate_u(dt, dx, dy, u, um up, k):
instant _.calculate_u(dt, dx, dy, u, um up, k)
return up

As Instant is nothing more than a layer on top of SWIG simptifythings, the execution times
for the Instant implementation are really those implied Bing SWIG on C code. There are
quite a few keyword arguments available to the | d_nodul e function, allowing us to use
Instant for much of the functionality available through SWIG

F2PY

F2PY is a tool that makes it very simple to combine Python Wibintran 77 and 90 code. A

complete rewrite of F2PY is in progress, aiming at having $upport for wrapping Fortran

95 code and parts of Fortran 2003 features, in particulavetktypes. Documentation is good,
although not completely up-to-date at the moment. F2PY rmwes as part of NumPy. As with

Weave and Instant, we can place the Fortran code insidgstinrthe Python program and get
it compiled and linked on the fly. Alternatively, we may runf®2 (from the command-line) on

a set of Fortran files. That is, F2PY can be used both to mage Fortran libraries callable

from Python and to migrate slow loops in Python to Fortranecod

In the present case we may write some “inline” Fortran 77 asi®llows:

f_code = nmoan
subroutine calculate_u(dt, dx, dy, u, um up, k, n, m
integer m n
real*8 u(0:m 0:n), um0:m O0:n)
real *8 up(0:m 0:n), k(0:m 0:n)
real *8 dt, dx, dy, hx, hy
real *8 k_c, k_ip, k.im k jp, k jm

hx = (dt/dx)*(dt/dx)
hy = (dt/dy)=*(dt/dy)
Cf2py intent(in) u, up, k
Cf 2py intent(out) up
integer i, |j
doj =1, n-1
doi =1, m1l

k_c = k(i,j)
k_ip = 0.5+(k_c + k(i+1,j))
k im=0.5%(k_c + k(i-1,]))
k jp = 0.5+(k_c + k(i,]+1))
k_ jm= 0.5+(k_c + k(i,]-1))
up(i,j) = 2+u(i,j) - un(i,j) *

& hxex (k_i px(u(i+1,j) - u(i,j)) -

& kK_ime(u(i,j) - u(i-1,5))) +

& hy* (KZj p(u(i,j+1) - u(i,j)) -

& kjme(u(i,j) - u(i,j-1)))

end do

end do

return

end

f 2py. conpi | e(f_code, nodul enanme=’f2py ', verbose=0)

i mport f2py_

def calculate_u(dt, dx, dy, u, um up, k):
up = f2py_.calculate_u(dt, dx, dy, u, um up, k)
return up

F2PY tries to make “Pythonic” interfaces to Fortran codeameg that output arguments from
a subroutine are returned to the user code. For exampdd, #éndo2 are output arrays to be
calculated in

subroutine calc(ol, 02, il, i2, m n)
integer m n
real *8 ol(mmn), o2(mn), il(mn), i2(mn)

F2PY will enable you to caltal ¢ as follows from Python:
0l, 02 = calc(il, i2)
That is, output arguments are returned and array dimensamde skipped since arrays in

Python (hera 1 andi 2) carry that information. However, Fortran has no syntaxdistin-
guishing between input and output arguements. F2PY sdh&pitoblem through some special

comment lines starting witBf 2py. By default, F2PY treats all arguments as input and none as

output. In the subroutineal cul at e_u we must therefore specifyp asi nt ent (out) (as

in Fortran 90) if we want it to be returned to the calling Pytlemde. We have also for clarity
specified the arrays that are input arguments. F2PY will edsaove themandn arguments
from the argument list since these integers can automigtibal extracted from the supplied
arrays in the call. There are several othet ent specifications that allow control over the
memory usage when sending large arrays between FortranysmohP

Itis always important to traverse arrays in the way they tmeed in (one-dimensional) memory.
Two-dimensional C arrays are stored row by row, while For@aplies a column by column

storage. Therefore, we must be careful with the order of do@d in Fortran and remember
to traverse our arrays column-wise. One may otherwise\ekse a factor of two in speed.
Python, on the other hand, creates arrays with C storagefaultéNVhen NumPYy arrays are to
be sent to Fortran one must create them as, or convert théfortoan storage:

u = zeros((m n), order= Fortran’)

Otherwise, F2PY will make a copy of the array and transpad®e ytou, which may imply some
significant overhead, especially when a Fortran routinalled many times in a time simulation
as in our present example.

Cython

For all execution time results referred to in this section,ivave used the arithmetic mean and
a grid of size250 x 250. Applying Cython is easy: we may cut tleal cul at e_u function
from the pure NumPy implementation above, paste it in a fite e suffix. pyx, and compile

it. The speed-up with this configuration was minimal (abd#0). However, this demonstrates
that the original Pythoral cul at e_u is also a valid Cython function.

To gain more speed, we need to utilize the power of the Cythogulage. A natural next step
is to add types to the Cython function in thpyx file, i.e., declaring all variables to be used as
f | oat s with the statemermtdef fl oat dt when declared within the function or simply as
fl oat dt when given as a keyword argument. This also includes thgeénteariables used
for indexing arrays. The resulting speed-up of using stgpes is, unfortunately, not noticable,
because accessing the arrays elements takes the majdhiy éfecution time. However, spec-
ifying the types of variables is a necessary step (thouglalmatys sufficient) for fast code with
Cython.

The second step is to take advantage of the integration batWgthon and NumPy. Even
though arrays are declaredrasnpy. ndar r ay, the[] -operator for accessing array elements
is still implemented in Python. One needs to tell Cython altbettype of the array elements.
This is done with the syntax

nunpy. ndarray[nunpy. fl oat _t, ndi m=2] u

As a result, the indexing is now performed in C and the exeautme is down to 0.3% of the
pure NumPy implementation, or only about 5 times slower thar~ortran implementation.

To further speed things up, we need to turn off bounds chegclds a result, if you do try to
index an array outside its bounds, the program will crash ewgegmentation fault instead of an
error. Hence, this should only be done when one has verifegdltle function works correctly.
The run time is now halfed, and takes only 2.5 times that ofFbréran implementation.

Like with Python arrays, Cython allows negative indices,,dltge syntaxu[- 1] accesses the
last element of the array. Turning off this feature may speed up the code (tryifg 1] will
then most likely lead to a segmentation fault). One can eitleelare all indices as unsigned
integers explicitly, and make sure to cast any indices thatino be computed, or one can add
another option to the declaration of the arrays:

nunpy. ndar ray[nunpy. fl oat _t, ndi n=2, negative_i ndi ces=Fal se] u

Now, we have arrived at the optimal Cython version for our pgob The CPU time is now 1.6
(versus Fortran’s 1.0).

The complete Cython code is shown below, and is located in ayitehon_. pyx:

i mport nunpy as np

ci nport nunpy as np
cinport cython

DTYPE = np. fl oat

ctypedef np.float_t DTYPE t

@yt hon. boundscheck(Fal se)

def calculate_u(float dt, float dx, float dy,
np. ndarray[DTYPE_t, ndi n¥2, negative_i ndi ces=Fal se] u,
np. ndarray[DTYPE t, ndi m=2, negative_i ndi ces=Fal se] um
np. ndarray[DTYPE_t, ndi m=2, negati ve_i ndi ces=Fal se] up,
np. ndarray[DTYPE_t, ndi nF2, negative_indi ces=Fal se] k):

cdef int m= u.shape[0]-1
cdef int n = u.shape[1]-1
cdef int i, j, start =1
cdef float k_c, k_ip, k_im k_jp, kjm
cdef float hx = (dx/dt)x*x*2
cdef float hy = (dy/dt)=**2
for i in xrange(start, m:
for j in xrange(start, n)
k_c = K[i,j]
k ip=0.5%x(k_c + Kk[i+1,j])
k_im= 0.5+«(k_c + k[i-1,]])
k_jp = 0.5x(k_c + k[i,]+1])
k jm= 0.5%x(k_c + Kk[i,]-1])
upli,j] = 2+u[i,j] - unfi,j] +
hxx(k_ip=(uli+1,j] - ufi,j]) -
KZime(uli,jl - uli-1,1])) +
hy*(k_j px(u[i,j+1] - u[i,j]) -
k_gme(uli,j] - uli,j-1]))
return up

Calling this code is done as follows:

i mport pyxi nport
pyxi nmport.install ()
i mport cython_

def calculate_u(dt, dx, dy, u, um up, k):
up = cython_.calculate_u(dt, dx, dy, u, um up, k)
return up

Trying to use a different form of indexing of NumPy arrays.iu[i][j] oru.iten(i,j),
instead olu[i , j], was found to slow down the program to a speed similar to tiialiRPython
program. This means that the integration with NumPy onlyksdor the indexingu[1,] .

Trying to vectorize the code also resulted in very poor penénce, for the same reasons.
Vectorization uses slicing, and slices are Python objeatsmplemented in Cython.

When changes are made to the Cython code, one would have top#edhe code before
running the Python program again, but using the mogybei npor t eliminates the need for
this step. Instead, code is only recompiled if necessanmyport time.

Fortran

From these examples, it becomes clear that Python is a gteydative for coding even CPU-
intensive numerical calculations. Combined with propeoremessages and the fact that we
can develop Python programs that, using extension modoielsé most time consuming code,
run at a speed only 10% slower than a pure Fortran progrannsshs that although Python

by itself is not fast enough for numerical calculations, @@steps can be taken that more than
weigh up for this drawback.

References
[1] D. Beazley et al. SWIG: Simplified wrapper and interface generatiqr.//www.swig.org
[2] Boost C++ librarieshttp://boost.org/libs

[3] X. Cai and H. P. Langtangen Parallelizing PDE solvers using the Ryphoagramming language
In A. M. Bruaset and A. Tveito, editor&yumerical Solution of Partial Differential Equations on
Parallel Computersvolume 51 of_ecture Notes in Computational Science and Engineepages
295-325. Springer, 2006.

[4] X. Cai, H. P. Langtangen and H. Moe On the performance of the Rypinogramming language
for serial and parallel scientific computatio8sientific Programmingvol.13(1), 31-56, 2005.

[5] G. Ewing, R. Bradshaw, S. Behnel, D. S. Seljebotn et al. Cythoexi&nsions for Python
http://cython.org

[6] E. Jones Weave: Tools for inlining C/C++ in Pythbitp://scipy.org/Weave

[7] E. Jones, T. Oliphant, P. Peterson et al. SciPy: Open sourcetificignols for Python
http://scipy.org

[8] H. P. LangtangenPython Scripting for Computational Sciendeexts in Computational Science
and Engineering, vol 3. Springer, third edition, 2009.

[9] H. P. Langtangen and X. Cai On the efficiency of Python for highfgrmance computing: A case
study involving stencil updates for partial differential equations In HBGck, E. Kostina, H. X.
Phu and R. Rannacher, editoMpdeling, Simulation and Optimization of Complex Processes
pages 337-358. Springer, 2008.

[10] Netlib software collectionhttp://netlib.org

[11] T. Oliphant et al. NumPy software packalggp://numpy.org

[12] P. Peterson F2PY: Fortran to Python interface genetgtpr//scipy.org/F2py
[13] G.van Rossum et al. The Python programming langu#tpe//python.org

[14] M. Westlie, K. A. Mardal and M. S. Alnaes Instant: Inlining of C/C++ in tRgn
http://fenics.org/instant

	INTRODUCTION
	WHAT IS CYTHON?
	THE BENCHMARK PROBLEM
	Set of Tests
	BENCHMARK RESULTS
	Psyco and Numerical Python Packages
	CONCLUDING REMARKS
	APPENDIX: DETAILS ABOUT THE DIFFERENT IMPLEMENTATIONS
	NumPy
	Vectorization
	Weave
	Instant
	F2PY
	Cython
	Fortran
	References

