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SUMMARY

Large-scale simulations of flow in deformable porous media require efficient iterative methods for solving
the involved systems of linear algebraic equations. Construction of efficient iterative methods is particularly
challenging in problems with large jumps in material properties, which is often the case in geological applications,
such as basin evolution at regional scales. The success of iterative methods for this type of problems depends
strongly on finding effective preconditioners.

This paper investigates how the block-structured matrix system arising from single-phase flow in elastic porous
media should be preconditioned, in particular for highly discontinuous permeability and significant jumps in
elastic properties. The most promising preconditioner combines algebraic multigrid with a Schur complement-
based exact block decomposition. The paper compares numerous block preconditioners with the aim of providing
guidelines on how to formulate efficient preconditioners. Copyright c© 2010 John Wiley & Sons, Ltd.
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elements

Introduction

Common problems of important industrial and scientific interest in coupled geomechanics include
basin modelling, reservoir management, and groundwater depletion. Analysis of such models on
a regional scale requires the ability to solve coupled equations with a large number of unknowns,
complex geometries and significant spatial variation in the material parameters. To meet the challenge
of efficient solution of these models, scalable solvers that are robust with respect to the geometry and
discontinuities of realistic problems must be developed. This is addressed in the present paper.

The problem of interest couples single-phase fluid flow with deformation in elastic porous media.
This problem is described by a pair of partial differential equations (PDEs), one governing the fluid
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pressure and one describing the deformation of the porous matrix. Terzaghi [1] developed the original
theory of uniaxial soil consolidation, and introduced the ideas of effective stress and the diffusion of
fluid pressure by fluid flow. Biot [2] generalised this work to three dimensions and derived the PDEs
governing coupling of fluid flow and deformation in linear elastic porous media. The necessity of a
hydromechanically coupled formulation has been validated in field and laboratory studies [3, 4, 5]; see
Neuzil [6] for an overview. A review of modelling of such systems can be found in [7], while [8] offers
a comprehensive modern treatment. In this paper, we apply Biot’s equations to a series of test cases
and study the efficiency of preconditioned iterative solution methods.

In solvers for algebraic systems of equations, such as those arising from discretisations of PDEs,
there is a trade-off between robustness and scalability. Direct solvers are generally the most robust
with respect to the numerical properties of the equations, and as a result they have become popular
in “difficult” finite element applications. However, they suffer from suboptimal scaling in time and
space. The memory requirements in particular grow substantially faster than the number of unknowns
in the problem [9]. Furthermore, communication requirements limit parallel scalability [10]. Iterative
methods are in contrast highly scalable, but less robust. Their convergence is problem-dependent and
sensitive to the parameters of the problem. Even so, their efficiency makes them the only choice for
truly large-scale problems.

The number of iterations in Krylov space methods, such as the Conjugate Gradient (CG [11]) or
Stabilised Bi-Conjugate Grandient (BiCGStab [12]) methods, for solving a systemAx = b is typically
proportional to

√
κ, where κ is the condition number of the coefficient matrix A [13]. By applying a

preconditioner P−1 to the system, i.e., solving P−1Ax = P−1b, one can reduce the condition number
and obtain faster convergence. It is in the nature of the finite element method that the condition number
of the coefficient matrix increases when the number of unknowns increases — typically, κ ∼ O(h−2),
where h is the characteristic element length [14]. Using a multigrid method as preconditioner, the
condition number can in many cases be made independent of the number of unknowns, a property
which is referred to as an optimal method because the amount of work per unknown is then independent
of the problem size [15].

Multigrid methods have attracted quite some interest as efficient and widely applicable
preconditioners [16, 17]. A difficulty with the standard geometric multigrid method is that it needs
a hierarchy of coarse grids. This can be difficult to construct in problems with complicated geometries
and many internal layers of materials, which is the typical case in geological applications. Algebraic
multigrid (AMG [18]) is then a promising alternative, since it relies only on the algebraic structure of
the coefficient matrix. Previous studies [19, 20] indicate that AMG preconditioning can remove the
dependence of the number of iterations on the number of unknowns when solving the individual PDEs
in Biot’s model. How AMG can be used to efficiently precondition the coupled systems of equations
studied herein is, however, an open question, which we address in the present paper.

There are basically two main categories of preconditioners for coupled systems. The first category
addresses the system of algebraic equations that arises from numbering the displacement and pressure
degrees of freedom consecutively in each node. Such numberings may minimize the bandwidth for
banded solvers or the fill-in for direct sparse solvers. The other category is aimed at systems where all
the displacement degrees of freedom are numbered first, followed by the pressure degrees of freedom.
This numbering gives rise to a coefficient matrix with a block structure that more directly corresponds
to the original system of PDEs (e.g., the first row of blocks corresponds to the first PDE and so forth).
Block preconditioners rely on creating separate preconditioners for the individual decoupled equations,
and combining these to precondition the coupled system. While simple blockwise methods such as
block diagonal (or block Jacobi) preconditioning work well on some coupled problems [21], saddle-
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2 J. B. HAGA ET AL.

point problems (for example) require the application of Schur complement based methods, owing to
non-invertible diagonal blocks. Schur complement based block preconditioners have also been found
to work well on the discretisation of Biot’s equations [22, 23], although only homogeneous materials
were tested. To our knowledge, the efficacy of block preconditioners for Biot’s equations with strongly
varying material parameters has not been evaluated.

The main physical parameters that influence the evolution of Biot’s equations are the elastic
parameters and the permeability of the porous matrix. The permeability in particular may exhibit
significant jumps of many orders of magnitude in geological applications [8, 24, 25]. This feature may
have a severe impact on the performance of numerical methods for solving Biot’s equations. Since
there is effectively no flow through the low-permeable regions, the use of tailored techniques such as
solving for the pressure on only the high-permeable part of the grid is common. In practice, however,
this requires either solving for an additional vector variable for the fluid flux in a mixed finite element
formulation, or the manipulation of two separate grid solutions for pressure and displacement. Hence,
numerical methods that allow the efficient solution of arbitrary permeability differences without special
considerations are attractive.

We assume that the governing differential equations are discretised by a Galerkin finite element
method using mixed elements, and study the effect that a large jump in the permeability and a moderate
jump in the elastic parameters (consistent with typical geological media) has on the preconditioned
iterative solvers. The permeability is parameterised by a factor ε � 1, meaning that we basically
consider a domain with two types of geological media: one with flow mobility (which is proportional
to the permeability) Λ0 and one with flow mobility εΛ0. The typical jump in permeability is then
described by a factor 1/ε� 1. The investigations are further extended to the case where the two media
have different elastic parameters.

The impact of the jump ε−1 on the accuracy of the finite element discretisation is not critical as long
as the discontinuities are aligned with the element boundaries [26], which we assume in the following.
The critical numerical impact of the discontinuities is then on the performance and convergence of
solution methods for the coupled linear system [p u]T = A−1b arising from the discretisation, where
p and u denote the pressure and displacement solution vectors, respectively.

The present paper studies the numerical convergence of an AMG-preconditioned conjugate gradient-
type method applied to the linear system arising from the coupled equations of pressure and
displacement in porous media. Our aim is to extend common knowledge from earlier work by
investigating a series of test cases and iterative solvers for the coupled problem, with varying degree of
discontinuity in the material parameters. We hope that our findings can guide practitioners in how
to choose efficient solution methods for large-scale simulations involving coupled geomechanical
problems and highly discontinuous media.

The mathematical model

The equations describing poroelastic flow and deformation can be derived from the principles of
conservation of fluid mass and the balance of forces on the porous matrix. The linear poroelastic can
be expressed, in the small-strains regime, as

Sṗ−∇ ·Λ∇p+ α∇ · u̇ = q, (1)
∇(λ+ µ)∇ · u +∇ · µ∇u− α∇p = r. (2)
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Here, we subsume body forces such as gravitational forces into the right-hand side source terms q and r.
The primary variables are p for the fluid pressure and u for the displacement of the porous medium, S
and Λ are the fluid storage coefficient and the flow mobility respectively, α is the Biot-Willis fluid/solid
coupling coefficient, and λ and µ are the Lamé elastic parameters.

As pointed out in the introduction, the aim of the present paper is to study the numerical properties
of Equations (1)–(2), and how to solve these efficiently with an iterative solver. To that end, we ignore
effects that are not essential to these properties. The fluid-solid coupling coefficient α is treated as a
constant (in practice it varies between about 0.5 and 1). The fluid storage coefficient S is insignificant
compared to the fluid mobility in high-permeable regions. In low-permeable regions it acts as an
effective fluid compressibility term, and makes the problem less numerically stiff for short time steps.
By dropping this term we try to ensure that the validity of the testing is not compromised by choosing
a too short (“easy”) time step. The other time-derivative term, ∇ · u̇ in Equation (1), couples the
displacement to the pressure and is included.

We employ a first-order backward finite difference method in time. Our simplified model problem is
thus

−∆t∇ ·Λ∇p+∇ · u = q∆t+∇ · uk−1, (3)
∇(λ+ µ)∇ · u +∇ · µ∇u−∇p = r, (4)

where variables without subscripts are taken to be at the current time step k. Moreover, we restrict Λ
to be isotropic, parameterised by ε ≤ 1, so that Λ = Λ0I in the high-permeable region and Λ = εΛ0I
in the low-permeable region, with I being the identity tensor.

Numerical approximation

We proceed to rewrite Equations (3) and (4) in weak form, using integration by parts to eliminate
second derivatives. The following relations must then be satisfied for all test functions π and w in the
domain Ω:∫

Ω

[∆t∇π ·Λ∇p+ π∇ · u] dΩ =

∫
Ω

[π∇ · uk−1 + πq∆t] dΩ−
∫

Γ

πfn∆tdΓ, (5)∫
Ω

[(∇ ·w)(λ+ µ)(∇ · u) +∇w : µ∇u− (∇ ·w)p] dΩ = −
∫

Ω

w · r dΩ +

∫
Γ

w · tn dΓ. (6)

The fluid flux fn and normal stress tn at the boundary Γ appear here as natural boundary conditions.
The discrete finite element approximation follows from solving Equations (5) and (6) in finite-

dimensional spaces. In this paper, a piecewise (triangular) continuous quadratic space is used for the
deformation and a piecewise continuous linear space is used for the pressure,

p, π ∈ P 1(Ω), u,w ∈ [P 2(Ω)]d, (7)

with dimensionality d = 2. The reason for this mix of spaces is that spurious pressure oscillations can
occur in low-permeable regions when the same spaces are used for pressure and deformation [27, 28].

The algebraic system

The algebraic system that results from discretising Equations (5)–(6) is on the form

Ax = b, (8)
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4 J. B. HAGA ET AL.

whereA is the coefficient matrix derived from the left-hand sides of Equations (5) and (6), b is the load
vector arising from the right-hand sides, and x is the unknown solution vector. Since this is a coupled
system of two equations, the coefficient matrix is a 2× 2 block matrix

A =

[
Auu Aup
Apu App

]
, (9)

where the subscripts denote the primary variable(s) each block acts upon: App couples pressure to
pressure, Apu couples displacement to pressure, et cetera. The solution and load vectors are given as
x = [u p]T and b = [bu bp]T. The sign of the equations can be chosen so as to make this a symmetric
indefinite problem, which we write as

A =

[
A B
BT C

]
, (10)

where A is symmetric positive definite and C is symmetric negative definite.

Block preconditioning methods

Since the convergence rate of iterative solvers depends on the numerical properties — the condition
number in particular, but also the eigenvalue distribution — of the coefficient matrix, a preconditioner
is in most cases required to achieve a satisfactory convergence rate. In general, the preconditioner
P−1 should be fast to compute and close to A−1, although the latter is not a necessary condition. In
fact, a better (although somewhat circular) requirement is that it gives P−1A a beneficial eigenvalue
distribution. For the Krylov family of iterative solvers, the exact meaning of “beneficial” is somewhat
complicated, but having a small number of tight eigenvalue clusters often leads to rapid convergence
[29].

We assume for the moment the availability of good preconditioners for the symmetric definite
decoupled problems. These can be formed by, e.g., multigrid or incomplete factorisation methods; we
shall discuss these in a later section. The question then is: how can these be combined to an effective
preconditioner for the coupled Biot’s equations? We briefly present here the motivation for the block
preconditioners that are chosen for the numerical experiments.

Given a nonsingular 2× 2 block matrix

A =

[
A B
BT C

]
, (11)

such as that in Equation (9), we focus on block preconditioners of A, i.e, those that can be written on
the form

P−1 =

[
M N
P Q

]
. (12)

For example, the standard block Jacobi and block Gauß-Seidel preconditioners can be expressed as

P−1
sJ =

[
Ã−1 0

0 C̃−1

]
and P−1

sGS =

[
Ã−1 0

0 C̃−1

] [
I 0

−BTÃ−1 I

]
, (13)

respectively, where Ã−1 and C̃−1 are approximations to the inverses of the diagonal blocks in
Equation (11), i.e., to the inverses of the decoupled equations.
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BLOCK PRECONDITIONERS FOR DISCONTINUOUS MEDIA 5

Furthermore, when A is nonsingular, the associated Schur complement of A is

S = BTA−1B− C. (14)

It is then easily verified that the exact inverse of A can be written as

A−1 =

[
I −A−1B
0 I

] [
A−1 0

0 −S−1

] [
I 0

−BTA−1 I

]
, (15)

with S defined as in Equation (14). Using this block decomposition as the basis of a preconditioner
for symmetric indefinite systems was proposed by Toh et al. [23]. Equation (15) can also be viewed
as a symmetric block Gauß-Seidel preconditioner, where C−1 is replaced by −S−1 as the (2, 2) block.
This is seen by comparing Equations (13) and (15). We generalise this observation by defining the
preconditioning basis of A as

Aprec =

[
A B
BT D

]
, (16)

where the D block may be replaced by, e.g., the original (C), which leads to the standard block
preconditioners in Equation (13); or the negative Schur complement (−S), which produces the Schur
complement preconditioners based on Equation (15). We have tested preconditioners using both of
these bases, as well as one using an ε-capped modification of C, in our numerical experiments.

Another Schur complement based preconditioner was evaluated in a homogeneous context by Phoon
et al. [22], where the Generalised Jacobi preconditioner was defined (in un-inverted form) as

PgJ(α) =

[
Ã 0

0 αS̃

]
, (17)

where Ã and S̃ are approximations to the exact (1, 1) block and the Schur complement, respectively.
The Generalised Jacobi preconditioner is equivalent to a block Jacobi preconditioner with D = αS.
Phoon et al. argue that while the choice of α is not significant when the exact (1, 1) block Ã = A is
used, a negative value for α performs better when a cruder approximation is used. It was shown that
this preconditioner leads to an attractive eigenvalue distribution, with three distinct eigenvalue clusters
around 1 and (1±

√
1 + 4/α)/2, each with diameter of order ‖S−1C‖. Although this theoretical result

depends on the exact inversion of Equation (17), the practical applicability of a diagonal approximation
with α = −4 was demonstrated.

An interesting question, when utilising a symmetric preconditioner such as one based on
Equation (15), is whether the preconditioned coefficient matrix is positive definite. If it is, then the
Conjugate Gradient method can be used instead of indefinite methods such as BiCGStab. We can
define the “approximate identities” generated by Ã−1 and S̃−1 as

ĨA = Ã−1A, (18)

ĨS = S̃−1(BTÃ−1B− C). (19)

Both approach the identity matrix I (of the appropriate dimension) as Ã−1 and S̃−1 approach the real
inverses, and both are symmetric positive definite as long as the single-block preconditioners are. The
preconditioned coefficient matrix, which can be written as

P−1
gSGSA =

[
ĨA 0

0 ĨS

]
+

[
Ã−1BS̃−1BT Ã−1B

−S̃−1BT 0

] [
I− ĨA 0

0 I− ĨS

]
, (20)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2010; 0:0–0
Prepared using nagauth.cls



6 J. B. HAGA ET AL.

Table I: Number of applications of the single-block operations
for one application of the block preconditioner.

Ã−1x D̃−1x Bx x + ay

Block Jacobi 1 1 0 0
Block Gauß-Seidel 1 1 1 1

Symmetric Block Gauss-Seidel 2 1 2 2

then also approaches the identity, and the problem is trivially solved. Of more practical interest is under
what circumstances Equations (18) and (19) are close enough to the identity such that Equation (20) is
ensured to be positive definite. Since the preconditioned matrix is symmetric,† its eigenvalues are on
the real axis. The question is whether they are positive. The eigenvalue distribution of Equation (20)
(as well as the non-symmetric Gauß-Seidel variant of the same) was analysed in [23]‡. In particular,
it was found that the eigenvalues are not guaranteed to be positive unless all eigenvalues of Ã−1A
are greater or equal to one, which is typically not the case for efficient single-block preconditioners.
Hence, P−1

gSGSA is not necessarily positive definite; but since all eigenvalues approach unity in the
limit of exact single-block preconditioners, it clearly is if these are sufficiently accurate. The utility
of transforming a symmetric indefinite system into a positive definite one was demonstrated in [30],
wherein a preconditioner was explicitly designed to transform the system of equations into a positive
definite one, solvable by Conjugated Gradients.

Computational cost

The computational cost of the preconditioner can be divided in two parts. First, the construction of
the preconditioner involves, in addition to the cost of constructing the single-block preconditioners, the
creation of the D block of the preconditioning basis in Equation (16). If this involves a modified version
of the model equations, the cost is that of an extra finite element assembly. The Schur complement can
be very costly to construct, but a reasonable approximation (as we shall see, the one used in this paper)
can be created at roughly the cost of three single-block matrix-vector products. This is cheaper than a
single iteration of the BiCGStab iterative method.

Second, each application of the block preconditioner results in a number of single-block operations,
which is listed in Table I. This cost is incurred twice for each iteration in BiCGStab, or once per iteration
with CG. For comparison, the 2×2 block BiCGStab iteration also involves eight matrix-vector products
(two for each block), twelve vector additions, and eight inner products.

Numerical investigations

Block preconditioners

In our numerical investigations we compare the performance of ten block preconditioners in
combination with the BiCGStab method and one with the CG method. These are selected from the

†Strictly speaking, it is the spectrally equivalent matrix E−1AE−T with P = ETE that is symmetric.
‡In the reference, these are called the “constrained” and “block triangular” preconditioners.
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Table II: Abbreviations used for the tested preconditioners. These have a three-
part structure: The block basis (standard, generalised or capped) in lower case,
followed by the preconditioning scheme (Jacobi, Gauß-Seidel or Symmetric Gauß-
Seidel), and optionally followed by the variant (the value of α in the generalised
Jacobi preconditioners, or the “cg” postfix where the Conjugate Gradient method
is used). With the exception of gSGS/cg, all preconditioners are used with the
BiCGStab iterative solver.

Standard Capped Generalised

D = C D = Cε≥c D = −S̃ D = αS̃

Block Jacobi sJ cJ gJ(−1) gJ(1), gJ(±4)
Block Gauß-Seidel sGS gGS

Symmetric Block Gauß-Seidel sSGS gSGS
(. . . with Conjugated Gradients) gSGS/cg

combinations of five different preconditioning bases with three different blocking schemes.
We define the lower-triangular coupling matrix as

G =

[
I 0

−BTÃ−1 I

]
. (21)

The blocking schemes are then, with reference to the definition of Aprec in Equation (16), the block
Jacobi preconditioning scheme,

P−1
1 =

[
Ã−1 0

0 D̃−1

]
, (22)

where Ã−1 and D̃−1 are (in some sense) close to the real inverses; the block Gauß-Seidel
preconditioning scheme

P−1
2 = P−1

1 G; (23)

and the symmetric block Gauß-Seidel variant

P−1
3 = GTP−1

1 G. (24)

Note that when D = −S, Equation (15) is approximated by P−1
3 .

The (2, 2) block in the preconditioning bases are D = C (the “standard” basis), D = αS̃
(approximate Schur complement, or “generalised”, basis), and D = Cε≥10−4 (capped-ε basis). In the
latter, the coefficient matrix of a more regular problem, with ε capped to nowhere be smaller than 10−4,
is used in the basis. This particular value of ε was chosen after some experimentation.

The selected combinations are then: The standard basis combined with all three blocking schemes;
the Schur complement (generalised) basis with α = −1, combined with all three blocking schemes;
the Schur complement (generalised) basis with α = 1 and α = ±4, combined with block Jacobi; and
the capped-ε basis combined with block Jacobi (symmetric block Gauß-Seidel was also tested, but it
was not observed to bring any advantages over the Jacobi variant). Finally, the α = −1 generalised
basis with the symmetric Gauß-Seidel scheme is tested in combination with the Conjugate Gradient
method. These combinations are summarised in Table II along with their abbreviations.
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8 J. B. HAGA ET AL.

The single-block preconditioners

The block preconditioners in the previous section depend on the availability of efficient single-block
preconditioners Ã−1 and D̃−1. We restrict our attention to preconditioners which have the property
of being efficient on massively parallel computers. This rules out incomplete and approximate direct
solvers such as the otherwise excellent ILU methods.

Adams [19] found algebraic multigrid (AMG) to behave very well on problems of elastic
deformation, even in the presence of strong material discontinuities. In particular, the smoothed
aggregation method [31, 32] was considered to be the overall superior AMG method for elasticity
problems. The present authors likewise found AMG to be a nearly optimal preconditioner for the
discontinuous Poisson pressure problem, as long as the low-permeable regions do not completely
isolate any high-permeable regions [20]. In the limit of ε → 0, such isolation would in fact create
a physically indeterminate problem. When coupled with deformation of the solid matrix, however, the
problem becomes well-posed both physically and — as we shall see — numerically.

In the light of these earlier results, and the fact that AMG has been shown to scale very well in
parallel, to at least thousands of processors [17, 33, 34, 35], we have chosen to use AMG for both the
pressure and the displacement equation. As for the other preconditioning bases, both αS and Cε≥10−4

are modifications of the single block in the preconditioning basis associated with the pressure equation,
and AMG is used also to approximate the inverses of these.

Approximating the Schur complement

The Schur complement in Equation (14) is a dense matrix, and as such it is neither feasible nor desirable
to compute. While a number of sparse approximations to S are possible, one approximation that is very
fast to compute§ is

S̃1 = diag(BT(diag A)−1B)− C. (25)

This is the approximation used in the numerical experiments in this paper. The entries of S̃ are simply
S̃ij = δij

∑
k(Akk)−1(Bki)

2−Cij . When the matrices are stored in the CRS (compressed row storage)
representation, this makes the calculation extremely cheap: a sequential traversal of three matrices plus
arbitrary accesses into the diagonal of A.

More accurate approximations to the Schur complement can be calculated. Toh et al. [23] evaluated
a number of approximations in the context of iterative solution of Biot’s equations, and found the
simple approximations to be effective. This matches our experience: In addition to the approximation
in Equation (25), we also looked at a slightly more accurate variation,

S̃2 = BT(diag A)−1B− C, (26)

but no improvement was observed (the performance in initial testing was in fact slightly worse). Other
variants, such as using a sparse approximate inverse of A in the triple matrix product, are also possible.

The action of S̃−1 on a vector v can however also be approximated by an inner iterative solution of
S̃x = v, in which case S̃ need not be formed explicitly. For example, the Conjugate Gradient method
can be employed with S̃3 = BTÃ−1B − C. We notice from Equation (19) that it is in fact better if
S̃ approximates BTÃ−1B − C rather than the exact Schur complement. We have not seen the need to
include this procedure in our test, so it is mentioned here only for completeness.

§In particular, this matrix can be calculated with minimal or no interprocess communication on a parallel computer.
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Ω0

Ωε

Ω1

(a) The domain. High-permeable regions
are Ωi, low-permeable are Ωε.

(b) The mesh. Pressure nodes are shown as
circles ( ), displacement nodes as dots ( ).

Figure 1: The domain (a) and the mesh (b). The mesh is the smallest
regular P 2–P 1 mesh that aligns the element boundaries with the
discontinuities (N = 9).

Implementation

We have implemented the finite element discretisation, block preconditioners and linear solvers
using the Diffpack C++ framework [36], somewhat modified for our needs. The single-block AMG
preconditioners are from the ML package for smoothed aggregation [37], which is part of Trilinos
[38].

Test geometry

Figure 1 shows the two-dimensional domain of the test problems. For the pressure variable, we use
essential boundary conditions at the top of the domain (specified pressure) and natural boundary
conditions at the bottom and sides (no-flow condition). The displacement boundary conditions are
essential at the bottom (fixed position) and natural at the top (specified traction force). At the sides the
horizontal displacement components are zero.

It should be noted that when ε → 0, the decoupled pressure equation is ill-posed because Ω1 in
Figure 1a becomes an isolated subdomain with indeterminate pressure because of the pure Neumann
conditions. When coupled to deformation, however, the problem is well-posed.

Convergence criterion

We have in our earlier work observed that a convergence criterion based on the residual in iteration
k, rk = b − Axk, may be misleading when A is severely ill-conditioned, owing to some components
of x being κ(A) times more influential than others [20]. This problem is exacerbated when pushing
against the limits of machine precision, as may happen when parameters vary by more than ten orders
of magnitude. Hence, in the convergence tests in the present paper we exploit an established property
of iterative solvers: their rate of convergence is independent of the right-hand side b as long as the
initial guess contains all eigenvectors of A [13, ch. 3.4].
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10 J. B. HAGA ET AL.

For this reason we have chosen to solve the modified problem Ax = 0, instead of Ax = b, together
with a random initial solution vector x0. With this choice of right-hand side, the error norm ‖ek‖`2 is
trivially available, since ek = xk. The convergence criterion is ‖ek‖`2 < 10−6‖e0‖`2 . We also note
that due to this testing procedure, the exact value of any boundary condition is irrelevant, since these
values go into the b vector. The only relevant information is whether or not they are essential, since the
presence of an essential boundary condition at a node is reflected by a modification to A.

All the reported iteration counts are from at least five runs using different random initial guesses. In
the graphs, the mean and range of the results are shown.

On the order of iterative methods

We often refer to the order of an iterative solution method, or the order of a preconditioner (in
combination with an iterative method). As mentioned in the introduction, the number of iterations to
solve a linear system to a given accuracy with conjugate gradient-type methods is proportional to

√
κ,

where κ(P−1A) is the condition number of the preconditioned coefficient matrix. For discretisations
of the finite element methods, κ(A) ∼ O(h−2), where h is the length scale of the elements. The
number of iterations of an iterative method for this unpreconditioned coefficient matrix is then of order
O(h−1) ∼ O(N), since N ∼ h−1 in the present paper denotes the number of nodes in each space
direction.

In general, we assume that the number of iterations to reduce the error by a fixed factor can be
modelled as

n ∼ aNp, (27)

where the multiplicative factor a and the exponent p of the order may depend on the geometry and
mesh, the heterogeneity of the material parameters, boundary conditions, and so on; but not on N . By
optimal order (with respect to N ) we mean that p = 0, and hence that the number of iterations is
independent of N . A method which is optimal with respect to ε may have p > 0, but the number of
iterations is independent of ε. Finally, a weaker (but still attractive) property is having a growth rate
that is independent of ε; that is, p does not depend on ε even if a does.

Performance of the fully coupled solver with uniform elastic parameters

In the first group of experiments with the fully coupled solver, the elastic parameters are held constant
throughout the domain, while the permeability has a discontinuous jump of up to 16 orders of
magnitude (ε = 100, . . . , 10−16). The time step and fluid mobility are scaled such that Λ0∆t = 1,
and the elastic parameters are λ = 114 and µ = 455 (corresponding to Young’s modulus E = 103 and
Poisson’s ratio ν = 0.1).

Performance with constant permeability The constant-parameter Biot’s equations, with ε = 100 and
uniform elasticity, seem simple to solve. If AMG can solve or precondition the separate equations
nearly optimally — which seems to be the case, at least in idealised cases [20, 33] — then one
might expect the same to be the case for the fully coupled problem with the application of an equally
simple block preconditioner. Yet, as seen in Figure 2, this is not necessarily the case. The (nearly)
optimal order, where the number of iterations is independent of problem size, is seen only when the
domain is discretised with equal polynomial order quadrilateral (Q1–Q1) elements. These elements are
however less attractive for other reasons; equal-order elements are susceptible to pressure oscillations
in permeability interfaces, and quadrilaterals are less flexible with respect to unstructured geometries
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Figure 2: Iteration count for the homogeneous-domain
problem. The sJ preconditioner was used. Q denotes
quadrilaterals and P denotes simplices of a given
polynomial order.

than triangular elements. When triangular or mixed elements are used, the order is slightly below
√
N .

This is still a major improvement over the expected order N of the unpreconditioned or diagonally
scaled finite element method. For two-dimensional problems, it means that the number of unknowns
can be increased at least 16 times for a doubling in the number of iterations, whereas using diagonal
scaling it can only be increased fourfold.

The figure shows convergence data for the block Jacobi (sJ) preconditioner, but as seen in Table IIIb
similar rates are seen with the other preconditioners for the P 2–P 1 space.

Performance with moderate jumps in permeability. As long as the jumps in permeability are
of moderate size, ε ≥ 10−4, the problem is numerically well behaved. Figure 3a shows the
convergence behaviour of the different block preconditioners under these conditions. In fact, some
of the preconditioned solvers initially have decreasing order as ε gets smaller (most easily seen by
comparing columns one through three in Table IIIb). This is however a small effect, and not significant
compared to the increase in number of iterations observed in Figure 3a.

Performance of the fully coupled solver with severe jumps in permeability. When the discontinuities
become more severe, with ε < 10−4, several of the preconditioners fail to converge, as shown
in Figure 3b. The first to diverge are the standard and generalised Jacobi preconditioners sJ and
gJ(−1), which drop out at ε = 10−8 (hence these are not plotted in this figure). The Gauß-Seidel
preconditioners are better, but when ε goes below 10−8, the standard-basis variants sGS and sSGS also
fail. At ε = 10−16, the gJ(−4) preconditioner does not converge on the finest grid (N = 65).

In short, the story told in Figure 3 is that the generalised Gauß-Seidel (gGS and gSGS)
preconditioners perform consistently well (the latter also with Conjugated Gradients), with both a low
number of iterations and a low growth rate. The gJ(1)/gJ(4) preconditioners also exhibit a low rate of
growth, and their higher absolute iteration count is at least partly offset by a lower computational cost
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(a) Low to moderate permeability contrast. The Gauß-Seidel methods overlap, and are drawn in gray for legibility.
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Figure 3: Number of iterations to reach convergence (|ek| < 10−6|e0|) for the model problem with
uniform elastic parameters. In (a), all preconditioners except for gJ(α > 0) show a growth rate of
roughly N0.3–N0.4, with N being the number of displacement nodes in each space direction. At
ε = 10−8 (lower left), the sGS and sSGS preconditioners show a surprisingly low growth rate as N
increases, but with a large constant factor. When the discontinuities are even stronger (lower right),
these variants fail to converge at all. The Schur variants (gGS, gSGS and gJ(1)/gJ(4)) show a growth
rate of about N0.5 for both values of ε, while the cJ preconditioner exhibits linear growth.
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per iteration.

Discontinuities in both permeability and elastic parameters

In the experiments we have looked at so far, the elastic parameters have been constant throughout the
domain. We now proceed to investigate the effect of discontinuous elastic material parameters. This is
a more realistic case of two different geological materials. The parameters of the (soft, high-permeable)
surrounding subdomain Ω0 are the same as in the constant-parameter case. Inside Ωε, the scaled elastic
parameters are λ = 1.43 · 105 and µ = 3.57 · 104, corresponding to Young’s modulus E = 105 and
Poisson’s ratio ν = 0.4.

Performance with moderate jumps in permeability. Figure 4a shows the results for a moderate
discontinuity in permeability. The general behaviour of the preconditioners is quite similar to the
constant-elasticity case, differing mostly by a multiplicative factor (on average, the number of iterations
is about doubled). Except for the α > 0 generalised Jacobi variants, all preconditioners perform equally
well, with a growth rate in the range N0.3–N0.4 (see Table IIIb). This demonstrates that heterogeneity
in the elastic parameters is not in itself a major difficulty with these block preconditioners.

Performance with severe jumps in permeability. When the permeability contrasts are strengthened,
however, we see some changes relative to the constant-elasticity case. This is shown in Figure 4b
(compared with Figure 3b). Four of the preconditioners have the same behaviour as they did with
uniform elasticity. These are the sJ and gJ(−1) Jacobi-scheme methods, which fail, and the gGS and
gSGS generalised Gauß-Seidel methods, which converge robustly. But the remaining preconditioners
behave differently in the problem with discontinuous elastic parameters.

At ε = 10−8, the standard Gauß-Seidel preconditioners, sGS and sSGS, perform very well, while the
capped-ε Jacobi method (cJ) actually converges faster as N grows (although the number of iterations
is still much higher than for the other methods). All of these methods were among the worst performers
with the same value of ε and uniform elastic parameters. These anomalies disappear in the most
discontinuous case, where ε = 10−16; here, the standard basis (sGS, sSGS) methods do not converge
at all, and the cJ and gJ(−4) methods fail for largeN . The latter result is in line with its performance in
the continuous-elasticity case, Figure 3b. While the good result at ε = 10−8 is surprising, it has little
practical significance since the effect appears to be a result of particular combinations of parameters.

We note that the only four preconditioners that achieve convergence for all values of ε are the same
that performed best in the constant-elasticity test: The positive-α generalised Jacobi methods gJ(1)
and gJ(4), and the generalised Gauß-Seidel methods gGS and gSGS (with either BiCGStab or CG
iterations). The high sensitivity of gJ(4) to the initial vector, seen most clearly in Figure 4a as a large
variance in the results, can be construed either as a warning flag, or as a sign that it can potentially be
more efficient if certain (unidentified) modes are not present in the initial guess.

The orders of the different methods, when used with discontinuous elastic material parameters, is
given on the right side of Table IIIb. The gSGS method does not go significantly aboveO(N0.5) in any
of the tests — a remarkably robust result.

Summary of experimental results

Figure 5a summarises the performance of the successful preconditioners for the largest problem size,
N = 65. The ones that fail to converge in one or more of the tests are similarly shown in Figure 5b.
It is clear that when ε ≥ 10−4, it does not matter much which preconditioner is chosen; they all
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(a) Low to moderate permeability contrast. The Gauß-Seidel methods overlap, and are drawn in gray for legibility.
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(b) Severe permeability contrast.

Figure 4: Iterations to reach convergence for the model problem with discontinuous elastic
parameters. With moderate permeability contrasts, (a), the tested preconditioners show a growth rate
of roughly

√
N , with N being the number of divisions in each space direction. When the contrasts

are stronger, (b), the picture is more complicated; but the generalised Gauß-Seidel preconditioners
remain efficient.
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Table III: Performance of the iterative solvers with the various preconditioners listed in Table II,
with uniform and discontinuous elastic parameters. Failure to converge is indicated by “—”.

(a) Average number of iterations at N = 65

Uniform elastic parameters Discontinuous elastic parameters

ε→ 100 10−4 10−8 10−12 10−16 100 10−4 10−8 10−12 10−16

sJ 18 35 — — — 36 57 178 — —
sGS 19 34 486 — — 37 56 80 — —

sSGS 19 32 621 — — 37 59 95 — —

cJ same as sJ 323 313 326 same as sJ 579 — —

gGS 19 36 72 71 75 38 57 79 116 109
gSGS 19 35 67 66 66 37 56 70 104 108

gSGS/cg 26 45 89 91 91 46 65 96 146 153

gJ(−1) 18 35 — — — 36 63 177 — —
gJ(−4) 19 38 1279 1545 — 36 61 152 — —

gJ(1) 60 103 195 213 207 119 173 177 348 360
gJ(4) 76 122 195 204 199 134 185 210 327 409

(b) Order of convergence (p in Equation (27)) calculated from N = 33 . . . 65

Uniform elastic parameters Discontinuous elastic parameters

ε→ 100 10−4 10−8 10−12 10−16 100 10−4 10−8 10−12 10−16

sJ 0.41 0.31 — — — 0.35 0.45 −0.10 — —
sGS 0.33 0.48 0.18 — — 0.41 0.34 0.05 — —

sSGS 0.43 0.29 0.33 — — 0.37 0.44 0.09 — —

cJ same as sJ 1.00 0.86 1.00 same as sJ −0.14 — —

gGS 0.47 0.47 0.57 0.49 0.60 0.40 0.41 0.47 0.58 0.54
gSGS 0.37 0.46 0.51 0.48 0.43 0.35 0.38 0.26 0.46 0.52

gSGS/cg 0.40 0.49 0.42 0.45 0.44 0.37 0.36 0.27 0.42 0.50

gJ(−1) 0.38 0.30 — — — 0.33 0.59 0.08 — —
gJ(−4) 0.42 0.36 2.98 2.20 — 0.38 0.48 0.81 — —

gJ(1) 0.52 0.54 0.46 0.50 0.45 0.53 0.49 0.26 0.47 0.54
gJ(4) 0.64 0.66 0.51 0.53 0.53 0.70 0.57 0.48 0.50 0.91

converge, and with the exception of the generalised Jacobi preconditioners gJ(1)/gJ(4) they are equally
effective. When the permeability jump becomes larger, however, there are only four preconditioners
that converge consistently with every combination of material parameters: the generalised Gauß-Seidel
methods gGS/gSGS, and the generalised Jacobi methods gJ(1)/gJ(4), again with gJ(α) being least
efficient. Additionally, gSGS/cg (which is solved with Conjugated Gradients) performs well in all
cases. Although the number of iterations is higher for this method, the cost per iteration is lower than
with BiCGStab, resulting in faster overall performance.

We further note that:

• The standard-basis family of block methods (sJ, sGS and sSGS) does not work well for this
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(b) The preconditioning methods that fail to converge for small values of ε (large jumps in permeability)

Figure 5: The ε-dependence of the preconditioners with N = 65 displacement nodes in each space
direction. The upper plots show the methods that converged in all tests, while those that failed to
converge for some combination of parameters are shown at the bottom.
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problem.
• The Generalised Jacobi family of block preconditioners is unstable with negative α, even though

these are more efficient with less severe discontinuities. Positive α is stable, but requires a large
number of BiCGStab iterations to converge. The magnitude of α seems to be of less importance,
although the variance is much higher with α = 4 than with α = 1.

• The capped-ε cJ preconditioner is stable, although inefficient for large permeability jumps, when
the elastic parameters are uniform; but it fails for large jumps in the discontinuous-elasticity
cases.

• The generalised symmetric Gauß-Seidel (gSGS) block preconditioner performs well in all cases.
• The gGS block preconditioner, which is a simplified variant of gSGS, performs almost as well

(but fails to preserve symmetry, limiting the choice of iterative solver).
• The gSGS block preconditioner with sufficiently accurate single-block preconditioners

transforms the problem into a symmetric positive definite one, which can be solved by the
Conjugated Gradient method. This combination is denoted as the gSGS/cg method. The AMG
method combined with a cheap approximation of the Schur complement is sufficiently accurate
for the model problems presented in this paper.

Concluding remarks

The iterative solution of large-scale problems in geomechanics requires efficient and robust
preconditioners. While a number of preconditioners for Biot’s equation (and similar symmetric
indefinite problems) have been put forth in the literature, their performance with highly discontinuous
permeability has to our knowledge not previously been systematically evaluated. This paper evaluates
several block preconditioners for this problem in the presence of severe jumps in the material
parameters.

Our investigations reveal that discontinuous material parameters, which are present in many
realistic geological scenarios, pose a serious challenge for iterative solution methods. Indeed, some
seemingly attractive methods converge very slowly, or fail to converge, on a model problem when the
heterogeneities are sufficiently strong. These include the standard block Jacobi and block Gauß-Seidel
preconditioners [21], as well as the generalised Jacobi block preconditioner [22] with α < 0. The
generalised Jacobi block preconditioner with α > 0 does however converge at an acceptable rate.

Using Algebraic Multigrid as the single-block preconditioners and a cheap approximation to
the Schur complement, we identify two block preconditioners that perform consistently well on
Biot’s equation with severe jumps in permeability and discontinuous elastic parameters. These two,
one symmetric and one non-symmetric variant of the generalised Gauß-Seidel method, are (in our
interpretation) based on an exact blockwise inversion of the coupled equations. The performance of
these preconditioners is very good, with a number of BiCGStab iterations which is about one third of
the generalised Jacobi preconditioner with α > 0. Furthermore, the symmetric variant leads (under
certain assumptions) to a symmetric positive definite problem which can be solved by the Conjugate
Gradient method.

Given that AMG preconditioners have shown themselves to scale to massively parallel computers
[33, 34], and that the methods presented herein only have minor parallel communication requirements
beyond those of AMG, we anticipate that this combined block preconditioner is equally scalable. This
assertion must however be investigated in more detail, which will be performed in a forthcoming paper.

Moreover, owing to its construction from an exact decomposition, we believe that the generalised
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symmetric Gauß-Seidel preconditioner is widely useful for general difficult coupled problems where
the single blocks A and S are individually invertible.
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