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In many contexts, there is a need to construct C! maps from a given reference
domain to a family of deformed domains. In our case, the motivation comes from the
application of the Arbitrary Lagrangian Eulerian (ALE) method and also the reduced
basis element method. In these methods, the maps are used to construct the grid-points
needed on the deformed domains, and the corresponding Jacobian of the map is used
to map vector fields from one domain to another. In order to keep the continuity of the
mapped vector fields, the Jacobian must be continuous, and thus the maps need to be
C'. In addition, the constructed grids on the deformed domains should be quality grids
in the sense that, for a given partial differential equation defined on any of the deformed
domains, the solution should be accurate. Since we are interested in a family of deformed
domains, we consider the solutions of the partial differential equation to be a family of
solutions governed by the geometry of the domains. Different mapping strategies are
discussed and compared: the transfinite interpolation proposed by Gordon and Hall,?
the pseudo-harmonic extension proposed by Gordon and Wixom,'? a new generalization
of the Gordon-Hall method (e.g., to general polygons in two dimensions), the harmonic
extension, and the mean value extension proposed by Floater.®
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1. Extension of Boundary Values

Extension of a function over a domain based on its trace along the boundary of the
domain is a well studied problem. For a general domain 2 € R?, d = 2,3, with f
defined on 92, a common method to find u over € such that ujpq = f, is to solve
the Laplace problem: Find u such that

—Au=0 inQ,
u=f  on 9. (1.1)

This method is often referred to as the harmonic extension, and it is very robust with
respect to different domains 2. The extension u satisfies the maximum principle

i < < . .
Ve, nal%lnf_u(z)_né%xf (1.2)

It also has a regularising effect, in case the boundary 0f) is regular enough, since
u is generally in H*"2(Q) whenever f € H*(99Q) (except for integer values of ).
Since the harmonic extension requires the solution of a Laplace problem, several
more explicit extensions are attractive alternatives.

Gordon and coworkers introduced transfinite extension methods, also known as
blending-function methods, for rectangular domains in Ref. 4, 10, 11, 12, and for
triangular domains in Ref. 1. The extension u over €2 is found as a weighted sum of
f restricted to different parts of 9. If we let {I';}?_; denote the different parts of
the boundary of the unit square (numbered counter-clockwise), such that I'; is the
left boundary and I'y;; = I';, the transfinite extension is defined through

w(&n) = ¢1(&n) f(0,m) + ¢2(&n) f(£,0)
+ ¢3(&m) f(1,m) + ¢a(€m) (€, 1) (1.3)
- Z?:l ®i(&,m)div1(&m) fi,
where f; is the value of f in the corner between I'; and I'; 11, and the weight functions
are defined such that ¢; = 1 on I'; and ¢; = 0 on I';;5. The weight functions are
typically chosen to be linear and one-dimensional. The extension, u, satisfies

i < < .
Ve, 3%1%2nf7u(x)73né?zxf, (1.4)

and in Ref. 4 it is shown that if f = 0 at the four corners of the unit square the
factor 3 may be replaced by a factor 2.

Similarly, for a reference triangle with vertices at (0,0), (1,0), and (1,1), the
extension defined through

u(é,n) =

T—¢t ) (1L,1-&+n)
—(1—€)f(») ( )f(l,O) nf(1,1))],

satisfies the maximum principle

Q, 2mi < <2 . 1.
Ve, Igéznf_u(x)_ I%%Xf (1.6)
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(a) Pseudo-harmonic extension on a bounded con-  (b) Transfinite extension on the unit square.

vex domain, (taken from Ref. 13).

Fig. 1. Boundary points of influence on an arbitrary point (&, 7).

The factor 2 in (1.6) holds for all f, and if f = 0 at the vertices, it can be replaced
by 3/2.

For convex reference domains with piecewise differentiable boundaries, Gordon
and Wixom introduced pseudo-harmonic extension in Ref. 13. On a bounded and
convex domain € C R? the extension u is defined as

1T da(9) d1(6)
wen = 5 [ |G (@O @] s

27

where Q1 and @2 are the intersections between 02 and the line through the point
(&,m) at inclination 0, and dy and dy are the distances from (§,7) to these inter-
section points; see Figure 1(a) (taken from Ref. 13). The extension u satisfies the
maximum principle defined in (1.2). Note that on the unit disk it is shown in Ref.
13 that the extension defined in (1.7) is the solution of the Laplace problem (1.1).
At each point (&, 7), the extension u defined in (1.7) depends on the value of f along
the entire boundary of §2. For comparison, the extension defined through the trans-
finite extension scheme (1.3) only depends on the eight boundary points indicated
in Figure 1(b).

On convex domains found as slight deformations of the unit disk, the extension
in (1.7) is a good approximation to the solution of the Laplace problem. The only
requirement on the boundary is that it is piecewise differentiable, and thus this
method may be used on triangles, rectangles and general polygons as long as the
domains are convex. The main difficulty is in the computation of the intersection
points Q1(0) and Q2(f) on general domains. On special domains, e.g. a circle or a
square, these points may be found analytically; see Ref. 16.

For comparison, we show in Figure 2 how the pseudo-harmonic extension (1.7)
and the transfinite extension (1.3) extends a function f given by a parabolic profile
on each side of the square (0, 1)2. For the pseudo-harmonic extension, the maximum
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(a) Pseudo-harmonic extension. (b) Transfinite extension.

Fig. 2. Extension of a parabolic profile.

principle defined in (1.2) is clearly satisfied. The transfinite extension satisfies the
maximum principle defined in (1.4).

In Ref. 2 a generalization of the pseudo-harmonic extension to non-convex do-
mains is given, and the scheme is seen as a particular case of a general construction
of transfinite barycentric coordinates. The same general construction also includes
Floater’s mean value coordinates,®?! and using Figure 1(a) we may write the mean

value extension on integral form as

2m 1 2m 1
wen) = [ oy [ [T (18)

The extension u defined here also satisfies the maximum principle (1.2). It is shown
in Ref. 15 that the mean value extension is well-defined on arbitrarily shaped planar
polygons. There is also a Hermite version of the pseudo-harmonic extension available
in order to control the derivative of the extension towards the boundary.'?

Extension of boundary functions can be used to generate a one-to-one and onto
map, @, from a reference domain Qto a closed, bounded and simply connected
domain 2. To this end we assume that the boundary of the domain 2 is given, such
that each coordinate on the boundary may be considered as a parametric curve,
e.g. z = f(&£(t),n(t)) and y = g(&(t),n(t)), defined on the boundary of the reference
domain. Corresponding values for x and y may then be found in the interior of Q
by solving the Laplace problem (1.1) first for « and then for y, with f and g as
boundary values, respectively. This is a vector version of the harmonic extension,
and as long as 2 is not too distorted, the pair (z,y) over Q then represents a one-
to-one and onto map from Q to Q. If the domain Q is too distorted, the pair (x,y)
may produce values outside the boundary of €2.

We note that instead of solving two separate problems for the x and y compo-
nents, an elasticity solver may be applied to solve for both components as a coupled
pair. This is more tedious than solving for the decoupled components, however, it
is generally more robust.

To avoid having to solve (1.1) twice, we may, depending on the reference domain
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Fig. 3. The unit circle mapped to a deformed ellipse using the pseudo-harmonic extension. Corre-
sponding grid-lines are also indicated.

(a) Pseudo-harmonic extension. (b) Transfinite extension.

Fig. 4. Maps of the unit square (0,1)? to an axisymmetric bend.

(AZ, employ either transfinite extension (1.3), or (1.5), pseudo-harmonic extension
(1.7), or mean value extension (1.8) to find the extensions (&, 7n) and y(&,n). If the
boundary of the reference domain is represented by a smooth curve, e.g. a circle,
the transfinite extension does not apply, while the harmonic extension, the pseudo-
harmonic extension, and the mean value extension work perfectly well; see Figure 3.
On the other hand, if we map the unit square (0,1)? to an axisymmetric bend, the
harmonic extension, the pseudo-harmonic extension, and the mean value extension
produce (x,y) values outside the boundary of the axisymmetric bend, while the
transfinite extension (1.3) produces an optimal grid; see Figure 4. (By ’optimal
grid” we mean that a particular point distribution in the (&£,7)-plane on (0,1)? is
maintained in the (r, #)-plane on the axisymmetric bend.)

Independent of which method is used, care has to be taken on very distorted
domains to validate the resulting (z,y). This is done by making sure that the

~

Jacobian determinant of the map from € to €2 is bounded away from zero. If the
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Jacobian determinant is zero, or changes sign, the grid is folding.

Domain decomposition is a convenient method for constructing grids on complex
geometries, and we next consider both the reference domain and a topologically
similar domain to be constructed as a non-overlapping union of regular, one-to-one

maps of some reference element, K, such that O = Ule Q) = UkK:1 &5;@(7\) and ) =

Uszl Q= UkK:1 @, (A), respectively. In addition we define the Jacobians of the two
domains with respect to A as T = J(Pg) and jk = j(@k), and the corresponding
Jacobian determinants as Ji, = J(®) and J; = J(®4). In two dimensions the
reference element is typically a triangle or a rectangle, and we let each map of the
reference element define one subdomain (element) of the corresponding geometry.
In general, the resulting global map @, defined by (I)glnk =®0 &5;1, is continuous
(by construction), but only piecewise smooth. Across the subdomain interfaces the
Jacobian determinant of the global map J,, defined by ngk = Jk/jk, will be
discontinuous. Hence, in situations where a global C''-continuous map is desired,
say problems with moving boundaries, this is a big disadvantage. Especially in an
Arbitrary Lagrangian Eulerian (ALE) framework, the regularity of each map is
crucial; see Ref. 7, 9. Also, in the reduced basis element method!” velocity fields are
mapped between complex geometries using the Piola transformation® to preserve

incompressibility, and a continuous global Jacobian is needed.

The solution of the Laplace problem (1.1) defined over a complex domain will
produce a global C* map, provided all angles in the domain are smaller than m, but
again this method is time-consuming compared to the other extension schemes.

Our goal in this paper is to remove the restriction that the reference domain
in the transfinite extension method is a square or a triangle, such that a complex
curvilinear domain with more than four natural edges may be found as a global
C" map of a possibly non-convex reference domain comprising the same number of
edges as the complex domain. Since the transfinite extension method only involves
linear combinations of predefined functions, this would accelerate the construction
of such C' maps, in particular, if many such maps are needed.

In Section 2 we introduce the generalized transfinite extension method, and in
a series of numerical tests in Section 3, we compare this method to the harmonic
extension (1.1), the pseudo-harmonic extension (1.7), and the mean value extension
(1.8). On smooth reference domains the pseudo-harmonic extension and the mean
value extension are natural choices, but on piecewise smooth reference domains
we believe that the generalized transfinite extension method gives better compu-
tational grids, and is easier to implement. We note that on any reference domain,
the pseudo-harmonic extension scheme is rather tedious to implement,'® but if the
same reference domain will be used to compute many C!' maps this overhead may
be justified.

In Section 4, we show how the different methods may be combined in three
dimensions to produce C'! volume maps for selected geometries. Finally, in Section
5 we give some concluding remarks.
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(a) The boundary conditions of the (b) The boundary conditions of the
weight function associated with T';. projection function associated with

fi; t is distributed with respect to the
normalized arc-length of T';.

Fig. 5. Illustration of the boundary conditions for the harmonic weight and projection functions
used in the generalized transfinite extension scheme.

2. Transfinite Extension on General Domains

If the reference domain Q has more than four edges, we can no longer use one-
dimensional weight functions like the ones presented in the transfinite extension
scheme (1.3) to define a continuous map. Domain decomposition is a convenient
method for constructing a global map from a complex reference domain to a topo-
logically similar domain, but as described above, this global map will in general not
be C''-continuous across subdomain interfaces.

In order to generalize the transfinite extension scheme to general domains with
more than four sides, we first introduce some notation. On an n-sided reference
domain, where n > 4, we denote each side fi7 i =1,...,n, and number the sides in
a counter-clockwise manner. Associated with each side is a weight function ¢;, and
a projection function 7;, both defined over 0. We also assume that the value of the
function f along fz may be determined by the parametrization ;(t) : [0,1] — R,
where ¢ is the normalized arc-length of fl

To define the weight functions, we let ¢; = 1 on fi, and solve the Laplace
problem

Ap; =0 inQ, (2.1)

with homogeneous Neumann boundary conditions on the two sides of 0 adjacent
to fi, and homogeneous Dirichlet boundary conditions on the remaining sides; see
Figure 5(a). On the reference square these harmonic weight functions will coincide
with one-dimensional, linear weight functions, but on a general non-convex reference
domain, the weight functions will be non-affine C* functions; see Figures 6(c) and
6(e).

In the generalized transfinite extension scheme, we also need the projection from
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(a) Weight function. (b) Projection function.
(c) Weight function. (d) Projection function.
(e) Weight function. (f) Projection function.

Fig. 6. Contour lines of the weight and projection functions associated with one side of a rectangle,
a curved pentagon, and a bifurcation.

the interior onto each side ﬁ On the unit square these projections are given by
the reference coordinates as (&,0),(£,1),(0,7), and (1,1). On a general domain we
compute the projection function 7; onto the side I'; by solving the Laplace problem

Am; =0 inQ, (2.2)

with linear Dirichlet boundary condition along fz-, distributed from 0 to 1 with
respect to arc-length. On the sides adjacent to fz we set m; equal to either 0 or 1,
and on the remaining sides we use homogeneous Neumann boundary conditions; see
Figure 5(b). On the unit square this procedure will reproduce the reference coordi-
nates, while on general reference domains we again get non-affine C!' functions; see
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Figures 6(d) and 6(f). In fact, we have that the solutions ¢; and m; of the Laplace
problems (2.1) and (2.2) with the given boundary conditions at least satisfy the
regularity condition

Ty (bi € H1+ﬁ_€7 (23)

where w # 7 is the largest angle in the domain, and € is any small positive constant;
see Ref. 14. This is a consequence of the presence of corners with Dirichlet boundary
conditions on one edge, and Neumann boundary conditions on the other edge.
For problems with only Dirichlet boundary conditions, or only Neumann boundary
conditions the solution is in H'T% ¢,

We now recall that the value of f along fl is expressed through v;(t), and denote
the value of f in the corner between sides fl and fiJrl by %;(1). Furthermore we
let fnﬂ = fl, and define the generalized transfinite extension

n

u(§,n) = Z[%(f; MYi(mi(§:m)) — ¢i(§,n) i1 (€ m)i(1)]. (2.4)
i=1
If f is replaced by a vector containing the boundary coordinates of an n-sided
domain €, the generalized transfinite extension (2.4) will provide a one-to-one C'!
map from Q to Q.

We note that in order to increase the regularity of the harmonic solutions of
(2.1) and (2.2), the n-sided reference domain should be defined such that the angle
between any two adjacent sides is 7/2. Indeed, the boundary conditions on adjacent
edges are then consistent, and we get

¢ € H'To—cc O, (2.5)

for w = 5. This regularity comes from the fact that the coefficients in front of the
first singularities cancel out (actually, when w = 7 the exponent of the Sobolev
space is 3 — €, which implies almost C? functions and certainly C? away from the
corners).

We also note that, as for transfinite extension on the unit square, the value of
the extension u in any point (£,n) € 0 only depends on the value of f in isolated
points on the boundary of the reference domain. These 2n points are the corner
points and the projection of (§,7n) onto each of the sides of Q; see Figure 1(b).

The large benefit of using the generalized transfinite extension compared to the
harmonic extension defined in (1.1) is that all the harmonic functions are computed
only once. For each new given function f we only need to find the correspond-
ing boundary functions 1;, and perform the linear combination of the harmonic
functions in (2.4).

In the following section we study the regularity of the maps constructed with
the different extension methods mentioned in Sections 1 and 2. In particular, we are
interested in how the regularity affects the computational quality of a grid which is
defined on a reference domain and mapped to a deformed domain.
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OReRe

) Uniform pentagon. ) Curved pentagon. ) Circle.

Fig. 7. The three different reference domains used in the tests.

DA\

(a) Deformed pentagon. (b) Deformed ellipse. (c) C! boundary.

Fig. 8. The three different generic domains used in the tests.

3. Global Regularity

To investigate the regularity of the maps constructed with the different extension
methods we perform a series of numerical tests. For the harmonic extension and
the generalized transfinite extension we compare the results of these tests with
the regularity estimates (2.3) and (2.5). For the mean value extension we have not
found any regularity estimate in the literature, while the pseudo harmonic extension
behaves like the harmonic extension when the reference domain is a circle.

We use the three different reference domains in Figure 7 to construct computa-
tional grids on generic domains with similar topologies; see Figure 8. The generic
domains are constructed by defining a grid on the reference domain, and map the
grid-points through the extension methods described in Sections 1 and 2.

For the different reference domains we compare the grids constructed with the
generalized transfinite extension, the harmonic extension, the pseudo-harmonic ex-
tension, and with the mean value extension. The comparison is done by considering
the following indicators: (1) the error convergence of the solution of a Laplace prob-
lem; (2) the divergence of a divergence-free field either defined on the reference
domain and mapped to the constructed domain by the Piola transformation,® or
defined directly on the constructed domain; and (3) the jumps in the Jacobian of the
map from the reference domain to the constructed domain. The first two properties
reflect the computational quality of the constructed grid, while the last property
indicates how close the ‘realized’ map is to being C*.

To evaluate these properties we apply the spectral element method!'® and de-
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compose the reference domains into several subdomains (deformed quadrilateral
elements), as described in Section 1. The discrete space is defined by

Xy={veH' v, o Py} (3.1)
where Py is the space of all functions which are polynomials of degree less than or
equal to N in each spatial direction. As a basis for X we use a nodal basis through
the tensor-product Gauss-Lobatto Legendre points on the reference element. Ac-
cording to spectral element theory'® for problems with analytic solutions, the error
in the spectral element solution should converge exponentially to the analytic solu-
tion in the H!'-norm. For problems on a rectangular domain where the solution has
lower regularity, e.g. u € H?, and constant coefficients, we have the following error
estimate for the spectral element solution uy:

o= unllp < e infflu=oxl < N7l (3.2)
where N is the polynomial degree of the spectral element basis, and c¢ is some
positive constant. This is referred to as algebraic convergence. This estimate is
polluted by extra factors'® if geometric coefficients are present in the differential
operator. We get

lu—un|lgr < e inf |lu—vn|gi+ err(P) < ch_”||uHHo—|—N_mH<I>||Hs(m>, (3.3)
vNEXN

where ® is the mapping from which the geometric factors are built, and S(m) >
m+ 1.

Due to the regularity statement (2.3) for the weight functions and the projection
functions used in the generalized transfinite extension, it follows that the resulting
global map ® € H? for 0 < 1+ A, where A = 5~ when w # 7. The map may be
written as the sum of a regular part ®, € H'*?*~€ and a singular part &, € H°.
In Ref. 3 it is shown that the spectral element approximation of the singular part
is more accurate than expected from the general theory leading to (3.2). For any
u regular enough in €2, the function @ = u o ® is the one that is approximated by
polynomials, hence

inf flu—vn|m < eNT2 4 e(P)N™, (3.4)
vNEXN

where the limit comes from the regularity of the singular part of ®. Note that for w =
™
w?

in (3.4) is much better. The improved regularity statement also holds for problems

5 the improved regularity statement (2.5) gives A = =, and the convergence rate
with only Dirichlet boundary conditions, e.g. the harmonic extension.

The first reference domain we consider is the uniform pentagon in Figure 7(a).
The length of each side is 1, and the angle between any two adjacent sides is ?“ For
this reference domain the map generated by the generalized transfinite extension
according to (2.3) belongs to H*§~¢ while the map generated by the harmonic
extension belongs to H 1+3—¢_ The second reference domain is the curved pentagon
in Figure 7(b). Here the arc-length of each side is 1, while the angle between two
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adjacent sides is 5. The maps generated by both the harmonic extension and the
generalized transfinite extension on this domain will according to (2.5) belong to
H'*t2~¢. Both these reference domains are decomposed into five quadrilateral sub-
domains such that their respective subdomains are equal in size and shape. The
third reference domain is the circle in Figure 7(c) with radius 1. The circle is de-
composed into eight quadrilateral subdomains, with six subdomains along the outer
boundary of the circle, and two subdomains in the middle.

All three reference domains are used to construct computational grids on the
deformed pentagon in Figure 8(a), while only the circle in Figure 7(c) is used to
construct computational grids on the smooth domains in Figures 8(b) and 8(c). We
use an arc-length distribution of the boundary points on both the reference domains
and on the generic domains.

3.1. Test 1: A Laplace problem

In order to assess the computational quality of the grids found, we perform a con-
vergence analysis. We consider the following problem: Find u such that

—Au =0 in ,

u=e"sin(y) on 0N, (3:5)

where € is one of the generic domains in Figure 8. The analytical solution to this
problem is u = e®sin(y), and we use this as a comparison for the solutions uy
found on the constructed grids for an increasing polynomial degree of the underlying
spectral element grid.

On each subdomain the solution is represented on the reference square (—1,1)2.
Hence, what is actually approximated is the representation of the solution on the
reference domain, i.e. & = uwo ®. If both the solution v and the map ® are analytic
over each spectral subdomain, the error convergence is exponential. This is the case
when domain decomposition is used together with standard transfinite extension
on each subdomain. If the domain decomposition is done properly, each ®; will be
regular enough to ensure exponential convergence.

In our case we compromise this local regularity in our pursuit of global C'-
continuity, and the local maps are no longer very regular. For the generalized trans-
finite extension we presented the minimal regularity statement for the weight func-
tions and the projection functions in (2.3). The map constructed with these func-
tions will have the same regularity. In addition, the harmonic extension is found by
solving one Laplace problem for each spatial dimension on the reference domain.
When the reference domain has corners, like the uniform pentagon in Figure 7(a)
and the curved pentagon in Figure 7(b), the map constructed with the harmonic
extension satisfies the regularity statement in (2.5).

Uniform pentagon. The first domain is constructed by mapping the uniform
pentagon in Figure 7(a) to the domain depicted in Figure 8(a). According to (3.4)

s

with A = 5= and w = %’T, the spectral element solution of problem (3.5) should
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Method Reference domain
Uniform pentagon | Curved pentagon
Transfinite extension 3.7 5.0
Harmonic extension 4.3 5.0
Pseudo-harmonic extension 2.5
Mean value extension 2.5

Table 1. The convergence rate of the error in the spectral element solution of the Laplace problem
(3.5) when € is the domain depicted in Figure 8(a), and € is either the uniform pentagon in
Figure 7(a) or the curved pentagon in Figure 7(b).

converge like N3 + ¢(®)N~™ when the map is constructed by the generalized
transfinite extension. When the map is constructed by the harmonic extension we
have A = 7 and the convergence is proportional to Ne—% 4+ c¢(P)N~™2 with
mg > my. We see in Table 1 that the solution of problem (3.5) on the domains
Q = &(Q), found using the generalized transfinite extension and the harmonic
extension, converge like N=37 and N~%3, respectively.

In both these methods, the maps are built from the solutions to Laplace prob-
lems that need to be approximated by numerical methods. The exact solutions are
at least globally regular as stated in (2.3), hence they belong to C!. In the case
of using spectral elements the numerical approximation of the maps will have a
local regularity which reflects this global regularity. In addition there will be small
jumps in the first derivatives of these spectral element approximations across the
subdomain interfaces which decay algebraically with the polynomial degree. We
remark, however, that even if the exact maps were known for both methods, the
regularity of the maps would still only satisfy the regularity statement (2.3), and
the convergence of problem (3.5) would still be algebraic.

By using the spectral element method in these tests we are easily able to capture
the effect of the loss in regularity associated with the maps. A low order finite
element method has low order algebraic convergence even for regular maps, and
thus the associated convergence rate would not be a good indicator to study the
effect of the regularity of the various maps.

The solution of problem (3.5) found on the domains constructed with both the
pseudo-harmonic extension and the mean value extension give convergence of order
N—25; see Table 1. This indicates that the maps constructed with these methods
have lower regularity than the maps found with the harmonic extension and the
generalized transfinite extension.

Curved pentagon. We recall that in Section 2 we argued that the angle be-
tween two adjacent sides on the reference domain should be /2. When we use A = T
and w = % in (3.4) we see that the expected convergence is N~* + ¢(®)N~™ for
both the harmonic extension and the generalized transfinite extension. When we
implement the generalized transfinite extension and the harmonic extension on the
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reference domain depicted in Figure 7(b), the error convergences like N> as
presented in Table 1. Thus, by improving the regularity of the maps, both meth-
ods have an improved convergence rate compared to the results on the uniform
pentagon. The only additional work in the implementation is the definition of the
curved sides of the reference domain to ensure right angles between adjacent sides.
The pseudo-harmonic extension and the mean value extension are not considered
on this reference domain for two reasons. First, the presentations in (1.7) and (1.8)
assume a convex reference domain, and second, their results were poor compared
to the other methods in the previous test. It is possible to implement the pseudo-
harmonic extension and the mean value extension also on non-convex domains, but
the procedure is more involved.?'°

Circle. The last reference domain we consider is the unit circle. The harmonic
extension is independent of the underlying domain, and is ideal for mapping a circle
to any smooth geometry as long as we are careful not to produce folding grids. The
pseudo-harmonic extension coincides with the harmonic extension if the reference
domain is a circle, and the mean value extension is also well-defined on this domain.
In fact, the only condition on the boundary value function is that it is piecewise
continuous, so all three methods should be able to map a reference circle to, say,
both a deformed ellipse and a deformed pentagon.

The reference circle is shown in Figure 7(c), and we use eight subdomains to
generate the spectral element grid on this domain. The number of subdomains is
chosen such that one edge of each of the outer subdomains easily maps to one
of the sides of the deformed pentagon in Figure 9(c). For the deformed ellipse in
Figure 9(a) we have no problems generating a map of the outer boundary. The
analytic expression of the map from the circle to the deformed ellipse is

(.’E, y) = q)(ga 77) = (afvbn - 5(52 - 772))) (36)

where we have chosen a = 1.4,b = 0.7, and § = 0.2, and (£, ) are the coordinates of
the reference circle (with (0, 0) at the center of the circle). The Jacobian determinant
of this map is linear with respect to 7, J = a(b + 2dn). The regularity of the map
from the circle to the deformed ellipse in Figure 9(a) suggests that the convergence
of the Laplace problem given in (3.5) should converge exponentially on this domain.
A less regular map is achieved by imposing the expression

('Jl,y) :(agabnf(s(gz*nZ))? 52(),
(ﬂf,y) = ((15, b77 - 5(52 - 772) + (a’ - 0'2)252)7 5 <0.

This map has continuous derivatives along the boundary, but the second derivative

(3.7)

of y with respect to £ is discontinuous for £ = 0. In Figure 9(b) this general domain
with C'-continuous boundary is shown for @ = 1.4,b = 0.7, and § = 0.3.

We construct the computational grids for the deformed ellipse in Figure 9(a) by
extending the trace of the map given in (3.6). On the constructed grids we solve
the Laplace problem given in (3.5), and again compare the results with the exact
solution. The convergence of the errors for the three extension methods applicable
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Fig. 9. The effect of using the pseudo-harmonic extension to map a circle to (a) a deformed ellipse,
(b) a more general domain with C! boundary, and (c) a deformed pentagon.

Method Generic domain
Deformed ellipse|C! boundary|Deformed pentagon
Harmonic extension 00 5.0 3.0
Pseudo-harmonic extension 00 5.0 2.3
Mean value extension 4.5 4.6 2.3

Table 2. The convergence rate of the error in the solution of the Laplace problem (3.5) when Q
is the circle in Figure 7(c), and Q is either the deformed ellipse in Figure 9(a), the more general
domain with C! boundary in Figure 9(b), or the deformed pentagon shown in Figure 9(c).

to reference domains with smooth boundaries are shown in Table 2. We see that
while the harmonic extension and the pseudo-harmonic extension show exponen-
tial convergence, the mean value extension only shows algebraic convergence. The
reason is that the trace of the map (3.6) is analytic, and thus the exact solution
of the harmonic extension (1.1) is analytic. From spectral element theory we know
that a spectral element solution of the harmonic extension converges exponentially
towards the analytic map. The regularity of the map found with the spectral ele-
ment method then assures that @ = u o ® is analytic, and the convergence to the
exact solution of the Laplace problem (3.5) on the deformed ellipse is exponential.
The grid constructed with the harmonic extension is in this case close to an optimal
grid, and on a circle the pseudo-harmonic extension mimics the harmonic extension.
On the other hand, the mean value extension is only shown to be exact for linear
boundary functions,'® and thus the convergence is not as good as for the other
methods on this particular geometry. We note that when the reference domain is
mapped to a standard ellipse, the z- and y-coordinates varies linearly with respect
to & and 7, and also the mean value extension gives exponential convergence due to
exact extension of linear functions.

We next extend the trace of the map given in (3.7) to construct the computa-
tional grids for the general domain with C'-continuous boundary in Figure 9(b).
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The exact solution of the harmonic extension is in this case less regular, and the
convergence of the spectral element approximation is algebraic. The boundary data
belongs to H3~¢, and hence the harmonic extension belongs to H i<, The corre-
sponding solution % then belongs to H %_6, and the error of the spectral element
approximation should according to (3.4) converge like N=5 + ¢(®)N~". We see
in Table 2 that the convergence rates for the harmonic extension and the pseudo-
harmonic extension are actually approximately 5.0. The convergence rate of the
mean value extension is approximately 4.6, which is similar to the convergence rate
for this method when used to construct the deformed ellipse.

When we use the three extension methods applicable to reference domains with
smooth boundaries to map the reference circle in Figure 7(c) to the deformed pen-
tagon in Figure 9(c) we get the error convergence presented in Table 2. The con-
vergence rate of the harmonic extension is 3.0, while the convergence rates for the
two other methods are slightly lower, again consistent with the regularity of the
harmonic extension.

3.2. Test 2: The Piola transformation

Since we are interested in the mapping of vector fields from one domain to another
using the Piola transformation, we also test the constructed grids with respect to
being able to preserve the divergence of vector fields.

To this end, we define the divergence free vector field u = (sin(n), cos(€)) on the
reference domain. When we compute the divergence of the polynomial interpolation
of this field on the reference domain it will, measured in the L?-norm, converge
exponentially to zero with respect to the polynomial degree; see Figure 10(a).

Uniform pentagon. We first use the uniform pentagon in Figure 7(a) as our
reference domain, and map the field 4 to the deformed domain depicted in Fig-
ure 8(a) through the Piola transformation,’

u=U(w) = Jy(wo®,")|Jy| ", (3.8)

where J, is the Jacobian of the global map ®,, and J, the corresponding Jacobian
determinant. On the deformed domain, we compute the L?-norm of the divergence of
the polynomial approximation of the transformed fields when the different C! maps
are used. The results are shown in Figure 10(b). While both the harmonic extension
and the generalized transfinite extension preserve the exponential convergence, the
other two maps do not. The Jacobian determinant of the pseudo-harmonic extension
in fact approaches zero in some points as the polynomial degree increases, indicating
that the map is close to producing points where the grid might fold. Since the inverse
of the Jacobian determinant appears in the Piola transformation, the resulting field
u in this case is very disrupted, and we see in Figure 10(b) that the corresponding
divergence is not converging.

By defining a divergence free vector field v = (sin(y), cos(z)) on the deformed
domain directly, the divergence of the polynomial approximation of the field only
converges algebraically as the polynomial degree is increased; see Table 3.
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Fig. 10. The divergence of the polynomial approximation of @ = (sin(7),cos(§)) defined on the
reference domain in Figure 7(a) before and after Piola transformation to the deformed domain
depicted in Figure 8(a). N is the polynomial degree of the spectral element basis functions.

To see the reason for this, we recall the definition of the global map as ®,, =
Py 0 (f),:l, where each @, and @k is a map from A to the respective subdomains of
Q and Q. We note that each @y, is analytic. The Piola transformation on a single
subdomain may then be expressed as

wp = Tu Ty Ty 0 Bt o ) SE (3.9)

The computation of the divergence on each subdomain may be done on A by noting
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Method Reference domain
Uniform pentagon | Curved pentagon
Transfinite extension 4.7 6.0
Harmonic extension 5.0 6.0
Pseudo-harmonic extension 3.6
Mean value extension 3.6

Table 3. The convergence rate of the divergence of the polynomial approximation of v =
(sin(y), cos(x)) defined on the deformed domain in Figure 8(a) when either the uniform pentagon
in Figure 7(a), or the curved pentagon in Figure 7(b) is used as the reference domain.

that
Vu, =V I (g 0 @), (3.10)

where V is the divergence operator with respect to the reference coordinates on A.

Thus, for a field found as u = ¥(u) the Jacobian of the map from A to each subdo-

main in Q cancels against the inverse Jacobian in (3.10). The resulting expression
o~y

Yy, 0 Br) S, (3.11)
Jk

~ ~

Veou,=V-J;

only depends on the Jacobian determinant Jj, of the map from A to each subdomain
of Q. As long as each Jj, is bounded away from zero, the divergence of u is preserved
through the Piola transformation. When v is defined on the deformed domain,
the maps ®; does not cancel from the computation of the divergence, and the
convergence depends on the regularity of the global map.

We also note that if the field v defined on the deformed domain is mapped to
the reference domain using the inverse of the Piola transformation, the L2-norm of
the divergence is preserved for all methods. In the inverse Piola transformation we
no longer divide by Ji, and when the Jacobian determinant approaches zero in the
map constructed with the pseudo-harmonic extension, the Piola transformed fields
are still smooth.

Curved pentagon. Numerical results for the mapping of the curved reference
pentagon in Figure 7(b) to the deformed pentagon in Figure 8(a) are also presented
in Table 3. Again we see that by improving the regularity of the map, the conver-
gence rates of both the harmonic extension and the generalized transfinite extension
have improved.

Circle. For the mapping of the circle to a general domain with C'-continuous
boundary, we first define u = (sin(n), cos(£)) on the reference circle, and map this
vector field through the Piola transformation (3.8) to the domain depicted in Fig-
ure 9(b). Both the harmonic extension, the pseudo-harmonic extension, and the
mean value extension preserve the exponential convergence after the Piola transfor-
mation, indicating that their Jacobian determinants are bounded away from zero.
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Method Generic domain
Deformed ellipse | C!' boundary
Harmonic extension 00 6.4
Pseudo-harmonic extension 00 6.4
Mean value extension 6.3 6.3

Table 4. The convergence rate of the divergence of the polynomial approximation of v =
(sin(y), cos(x)), defined either on the deformed ellipse in Figure 9(a), or the general domain with
C' boundary depicted in Figure 9(b).

Again, when the field v = (sin(y), cos(x)) is defined directly on the deformed do-
main, the convergence is algebraic; see Table 4. The corresponding results for the
deformed ellipse depicted in Figure 9(a) shows exponential convergence for the har-
monic extension and the pseudo-harmonic extension, while the mean value extension
has about the same convergence rate as for the general domain with C''-continuous
boundary.

3.3. Test 3: C'-continuity

The third test is included to see how close the grids constructed with the different
maps indeed are to being C'' maps of the reference domain. To this end we com-
pute the Jacobian of the global map from the reference domain to the deformed
pentagon. The elements in the Jacobian should ideally be continuous across subdo-
main interfaces for the map to be C'', but we observe that the Jacobian determinant
has jumps across these interfaces.

This is due to the fact that the harmonic weight functions and the harmonic
projection functions used in the generalized transfinite extension (2.4), and also
the extension found by the harmonic extension (1.1), are approximations of exact
solutions that only satisfy the minimal regularity statement (2.3). Since the exact
solutions have limited regularity, the approximation found with the spectral element
method also converges algebraically. The derivatives of the harmonic functions thus
exhibit jumps across the subdomain interfaces of the same size as the Jacobian
determinant. These jumps are reduced when the polynomial degree of the spectral
discretization is increased, both for the Jacobian determinant and for the derivatives
of the harmonic functions. The pseudo-harmonic extension is an approximation to
the harmonic extension, and should suffer from the same effect. Our intuition indeed,
is that the pseudo-harmonic extension has the same behaviour at least at the corners
as the harmonic extension. The analysis goes far beyond the scope of the present
paper, but is certainly worth analyzing since we are not aware of any contributions
on this subject.

Uniform pentagon. First we construct the grids using the uniform pentagon
as our reference domain; see Figure 7(a). In Table 5 we see the convergence rate
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Method Reference domain
Uniform pentagon | Curved pentagon
Transfinite extension 3.4 4.7
Harmonic extension 4.0 4.7
Pseudo-harmonic extension 0.8
Mean value extension 0.5

Table 5. The convergence rate of the L%-norm of the jump in the Jacobian determinant across
subdomain interfaces on the domain depicted in Figure 8(a). Either the uniform pentagon in
Figure 7(a), or the curved pentagon in Figure 7(b) is used as reference domain.

of the jump in the Jacobian determinant across the subdomain interfaces when the
polynomial degree in the spectral element basis is increased. The results are found
by taking the L2-norm of the jump in the Jacobian determinant along the interfaces
in a pentagon with 5 subdomains, i.e.,

5 1/2
Iz = (Z / [JeFds) , (3.12)

e=1"Y"7e
where {7.}2_, are the interfaces, and [J.] is the jump in the Jacobian determinant
across each interface. We remind that the Jacobian determinant of the global map
is found as J; = Uszl Ji/Jx (as discussed in Section 1), since ® : Q- Qis CL.

Again we see that the harmonic extension and the generalized transfinite exten-
sion give algebraic convergence. The results from the pseudo-harmonic extension
and the mean value extension are not that good. The convergence rates are below
one initially, and then the jump in the Jacobian for both methods seems to diverge
for large values of N. Similar results are obtained also for other domains and other
domain decompositions of the pentagon.

Curved pentagon. If we compare the results from the harmonic extension
and the generalized transfinite extension on the curved reference domain (see Fig-
ure 7(b)), we get the results seen in Table 5. Now the two methods produce almost
identical results, and they have both an improved convergence rate compared to
the results on the uniform reference pentagon. So for a little more overhead, the
generalized transfinite extension method produces the same results as the harmonic
extension. If many grids are to be constructed from the same reference shape, the
generalized transfinite extension method would be preferable, since each new grid
would require the solution of two additional Laplace problems in the harmonic
extension method. On an n-sided reference domain the generalized transfinite ex-
tension method only requires the solution of 2n-Laplace problems (or fewer for
symmetric domains), independent of the number of new grids to be constructed.

Circle. For the map from the unit circle to the deformed ellipse defined in (3.6),
we mentioned that the Jacobian is linear with respect to 7. As a consequence of
this the L?-norm of the jump in the Jacobian determinant across subdomain inter-
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Method Generic domain
Deformed ellipse | C!' boundary
Harmonic extension 00 4.6
Pseudo-harmonic extension 00 4.6
Mean value extension 3.9 3.9

Table 6. The convergence rate of the L?-norm of the jump in the Jacobian determinant across
subdomain interfaces on the deformed ellipse and the general domain with C! boundary. Here the
unit circle is used as the reference domain.

faces for the map generated by harmonic extension and pseudo-harmonic extension
converges exponentially to zero; see Table 6. In contrast, the mean value extension
is not an approximation to the actual solution for non-linear boundary functions.
The resulting Jacobian determinant for the mean value extension is not linear with
respect to 77, and the jump in the Jacobian determinant across subdomain interfaces
shows only algebraic convergence. When the unit circle is mapped to the general
domain with C*-continuous boundary depicted in Figure 9(b), all three methods
show algebraic convergence.

4. Volume Maps

For volumes that are topologically similar to a cube, a generalization of the tradi-
tional transfinite extension method to three dimensions is well defined. For volumes
that are topologically similar to a sphere, a generalization of the pseudo-harmonic
extension would be a natural choice. Also for three dimensional bifurcations with
rectangular cross-sections, the generalized transfinite extension applies when map-
ping a reference bifurcation to a generic bifurcation. Of course, the harmonic ex-
tension may be used in all three cases. In the case of bifurcations with rectangular
cross-sections, care must be taken to find the surface points with respect to arc-
length, or chord-length; see Ref. 5.

In most cases, however, we find that a combination of the methods should be
used. In blood vessels, say, the geometric building blocks are either pipes or bifurca-
tions, with smooth, almost circular cross-sections. A combination of the traditional
transfinite extension in the axial direction of a pipe and the pseudo-harmonic ex-
tension on the cross-sections, could then produce a C! map from a reference pipe
with circular cross-sections. This is true for planar cross-sections, but as pointed
out by Verma et al. in Ref. 22, a typical way to find the cross-sections of a pipe is
to solve a thermal conduction problem and the cross-sections will be curved.

4.1. Pipes

We consider in this section deformations of a reference pipe of length L with circular
cross-sections. The deformations involve changing the diameter of the cross-sections,
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@

(a) Back view. (b) Top view. (c) Front view.

Fig. 11. Pipe with scaled cross-sections, ®;.

bending the pipe, twisting the pipe, and altering the shape of the cross-sections.
Each deformation is represented by a C'' map from the reference pipe to the resulting
deformed pipe, but also the composition of any two, or more, of these C! maps is
C'; see Ref. 20.

We let £ denote the coordinate in the axial direction of the reference pipe, and
(7, 9) the polar coordinates of each cross-section. Twisting of the pipe by an angle
O in the axial direction is then defined by

Do (&, 7,0) = (&,7,0 +OE/L), (4.1)

and we can easily compute the Jacobian determinant of the map to be Jg = 1. This
reflects the fact that the volume of the pipe is unchanged.

A volume changing deformation is found by scaling the cross-sections of the
reference pipe. Along the pipe axis we define the scaling factor R(£) as a smooth
function with respect to £&. The deformed pipe is then found through the map
D, : Q- Q,, where

D (&, 7,0) = (€,7R(€),9). (4.2)

The corresponding Jacobian is constant on each cross-section, and since the scaling
factor R(€) is smooth, the global Jacobian of @ is smooth, and its determinant in
polar coordinates is in fact J; = R(§) (implying that the volume expansion factor
in Cartesian coordinates is R2(¢)). The resulting pipe when the cross-section of the
reference pipe is the unit circle and R(£) = 1.0 4+ 0.4 cos(n€/L), £ € [0, L], is seen
in Figure 11.

In Section 3, we saw in Table 2 that the harmonic extension and the pseudo-
harmonic extension produce excellent computational grids when a circle is mapped
to a deformed ellipse with a smooth boundary. We now apply the pseudo-harmonic
extension to each cross-section of the reference pipe, and define the deformed bound-
ary of the cross-sections by R(¢, é) The map P, : Q — Q, is then

D, (¢, 7,0) = (&,7(£,7,0),0), (4.3)

where r(¢,7,6) is found by replacing f in (1.7) with R(&,6). A deformed pipe
constructed by a combination of altering the shape of the cross-sections and twisting
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(a) Back view. (b) Top view. (c¢) Front view.

Fig. 12. Elliptic deformation.

B f -

(a) Back view. (b) Top view. (c¢) Front view.

Fig. 13. Elliptic bend.

the pipe is shown in Figure 12, i.e. ® = &g o &,. Here g is defined by

S
0¢.0)=0+ 27, (4.4)
and ®, is defined by letting
R(£,0) = (1.0 — %)\/(a cos(0))2 + (bsin() + 6 cos(26))2 + %c, (4.5)

fora=1.4,b=0.7,§ = —0.2, and ¢ = 1.0. This deformation of the cross-sections is
the same that was presented in (3.6) in Cartesian coordinates for mapping the unit
circle to a deformed ellipse. Thus the Jacobian determinant in Cartesian coordinates
of each cross-section, relative to the reference pipe, is a plane in R3.

Finally, the deformation ®, is defined for any parametrized curve f(§) =
(2(&),y(&), 2(€)) for which the curvature is smaller than the radius of any of the
cross-sections defined by the above deformations. We let the axis of the pipe follow
this curve, and all cross-sections are mapped such that they are still perpendicular
to the curved axis. In Figure 13 the axis follows a 90-degrees bend in the zy-plane,
and the bending is induced after first altering the shape of the cross-sections and
twisting the pipe, i.e. ® = &, 0 Pg o P,.

In the following sections we use the deformations defined above to test the
computational quality of the resulting grids constructed by the pseudo-harmonic
extension on each cross-section.
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(a) Back view. (b) Top view. (c) Front view.

Fig. 14. Extruded profile.

(a) Back view. (b) Top view. (c) Front view.

Fig. 15. Extruded profile with 90 degree bend.

4.2. FExtruded profile

We now describe profiles with smooth variation in one direction, and cross-sections
with non-smooth boundaries. As for the pipes described above, a global C' map
from a reference profile is achieved by a planar mapping of each cross-section. We
apply both generalized transfinite extension and harmonic extension to each cross-
section, and compare the resulting global map. An extruded profile where each
cross-section has the shape of the curved pentagon in Figure 7(b) is used as the
reference profile.

We use profiles where one end resembles the generic deformed pentagon in Fig-
ure 8(a), and the other end has the shape of the curved pentagon in Figure 7(b).
The cross-section of the extruded profile will change linearly from one end profile
to the other; see Figure 14. This is a completely academic profile, and since the
cross-sections are found as a linear combination of the two end profiles, it suffices to
find planar C'' maps for the two ends by either the harmonic extension or the gener-
alized transfinite extension, and then compute the rest of the planar cross-sections
as a linear combination of these.

As for the pipes defined above, the extruded profile may be composed with other
global deformations like bending (see Figure 15), or scaling of the cross-sections.

In order to compare the time spent on the two different planar C!' mapping
procedures we wish to perform independent C'' maps of each cross-section, as this
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Fig. 16. The convergence of the error in the solution of problem (4.6) when €2 is one of the deformed
pipes in Figures 11 and 12, and 2 is a straight pipe with circular cross-sections. N is the polynomial
degree of the spectral element basis functions.

is a more realistic scenario. We also assume that for a more generally deformed
profile, routines exist for finding the correct cross-sections; see e.g. Ref. 22.

4.3. Test 1: A Laplace problem

Again we consider how the regularity of a global C' map constructed with the
methods presented in Sections 1 and 2 affects the error convergence of a simple
Laplace problem. For a perfectly regular map, the error between the discrete solution
and the exact solution converges exponentially as the polynomial degree is increased.

The test problem is a simple extension of the 2 dimensional Laplace problem:
Find u € X () such that

—Au=0 in ,

e?sin(y)z  on Q. (4.6)

u

On each deformed pipe and extruded profile, we use the conjugate gradient algo-
rithm on the constructed grids to solve the test problem.

When a circular pipe is used as the reference domain, we test the error conver-
gence on pipes with radial deformation, and pipes with elliptic deformation of each
cross-section, where both deformations are subject to bending. We have only tested
the pseudo-harmonic extension, since it was very close to the harmonic extension
on circles. On a pipe we have to do boundary value extension on each cross-section,
and thus the pseudo-harmonic extension is clearly more attractive than harmonic
extension. The results for different deformed pipes are found in Figure 16, and we
see that the error converges exponentially for all deformations. This is due to the
superiority of the pseudo-harmonic extension on each planar cross-section, as was
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Fig. 17. The convergence of the error in the solution of problem (4.6) when € is an extruded profile,
as depicted in Figures 14 and 15. and  is a straight profile with a cross-section as indicated in
Figure 7(b). N is the polynomial degree of the spectral element basis functions.

seen in Table 2. We also notice that when we use a cosine function in the radial
deformation, the geometry is slightly less resolved, and the convergence is slightly
deteriorated, compared to the results from the elliptic deformation.

For the extruded profiles we use a profile with a curved pentagonal cross-section
as our reference domain; see Figure 7(b). We now compare the error convergence as-
sociated with using the generalized transfinite extension and the harmonic extension
on the profiles shown in Figures 14 and 15. The results are shown in Figure 17, and
we see that the two methods have an almost identical convergence behaviour. This
was also seen in the planar case in Table 1. The error convergence seems to start off
exponentially, but the asymptotic convergence is algebraic with convergence rate
close to 5.0.

We note here that, although the generalized transfinite extension produces the
computational grid more rapidly than the harmonic extension, the grid constructed
with the harmonic extension is more well behaved in the sense that the conjugate
gradient algorithm requires fewer iterations to reach a desired error level. This is
something that should be explored further in future work.

We believe, however, that in a realistic case the grid construction can not be
done on each cross-section separately, but rather on the whole domain at once. This
would require three Laplace solves for the harmonic extension, while the generalized
transfinite extension still only needs a linear combination of predefined functions.
The confirmation of this conjecture is left for future work.
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4.4. Test 2: The Piola transformation

We now define the divergence free velocity field,
v = (sin(y) cos(z), sin(z) cos(z), sin(z) cos(y)), (4.7

on the deformed domains, and map the field to the reference domain through the
inverse Piola transformation, = ¥~=1(v). On the reference domain we then mea-
sure the L2-norm of the divergence of the mapped field. As noted in Section 3.2 the
L2-norm of the divergence of v is preserved when mapping the field to the reference
domain through the inverse Piola transformation.

The results from the deformed pipes are presented in Figure 18(a). Again we
observe exponential convergence with respect to the polynomial degree of the un-
derlying spectral element grid.

For the extruded profiles we get the results presented in Figure 18(b). The
convergence is again algebraic, and resembles well the results achieved in the two-
dimensional case in Table 3.

4.5. Test 3: C'-continuity

Finally, we compute the jump in the Jacobian determinant of the map from a
reference domain to a deformed domain. The jump is measured as the L?-norm of
the difference in the Jacobian determinant across all subdomain interfaces (which
now are surfaces).

When the reference pipe is mapped to either of the deformed pipes described
above, using harmonic extension, or pseudo-harmonic extension on each cross-
section, the jump in the Jacobian determinant is negligible. This was seen already
in the two dimensional case in Table 6, and is probably due to the fact that for all
cross-sections, the Jacobian determinant is a plane in R3.

For the extruded profiles we get algebraic convergence of the jump in the Jaco-
bian determinant for both the harmonic extension and the generalized transfinite
extension. The convergence rate for both is 4.8, similar to the two dimensional
results in Table 5.

5. Discussion

We have in this work considered different methods for constructing global C' maps
from a general reference domain to topologically similar generic domains. The ap-
plications we have in mind are especially the ALE framework,? where the computa-
tional grid, e.g. a triangulation, on an initial domain is mapped to a new domain for
each time-step in the solution algorithm; and the reduced basis element method,”
where vector fields stored on several reference building blocks are mapped to de-
formed instantiations of the same building blocks, connected in large systems.

We have sought explicit alternatives to the common harmonic extension method
in order to construct the C'' maps efficiently, but at the same time make sure
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Fig. 18. The divergence of v = (sin(y) cos(z), sin(z) cos(x), sin(z) cos(y)) defined on either a de-
formed pipe, or an extruded profile, and mapped to their respective reference domains through
the inverse Piola transformation, ¥ = W~!(v). N is the polynomial degree of the spectral element
basis functions.

that the regularities of the constructed maps are satisfactory. On planar reference
domains with more than four sides, we have introduced a generalized transfinite
extension method and compared this with the harmonic extension. On reference
domains with smooth boundaries both the pseudo-harmonic extension introduced
by Gordon and Wixom,'® and the mean value extension introduced by Floater®,
have been considered. On their respective applicable domains, both the generalized
transfinite extension and the pseudo-harmonic extension have a larger overhead
than the harmonic extension, but once this initial work is done, the application to
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several mappings of the same initial domain is very rapid compared to the harmonic
extension. The mean value extension has very little overhead, and is very rapid on
all domains.

In order to compare the regularities of the maps we have used the spectral ele-
ment method. We know that for analytic maps, the solution of an analytic problem
with the spectral element method should converge exponentially, while for a map
with lower regularity we get algebraic convergence. In this way we have been able
to reveal the regularity of the maps. We have also compared the regularities of the
maps more directly by considering jumps in the Jacobian determinant across sub-
domain interfaces in a domain decomposition, and the accuracy of the divergence
before and after a Piola transformation of divergence free fields. Ideally, we wish
to have maps which are globally C', and still maintain the exponential conver-
gence rate associated with using a spectral element grid to solve regular problems.
Typically, the C' requirement reduces the accuracy of the solution of the partial
differential equation compared to a more conventional grid generation.

In conclusion, the generalized transfinite extension is of the same regularity as
the harmonic extension when the reference domain is prepared such that all angles
are 7/2. In the planar case, the work needed for the harmonic extension is domi-
nated by the computation of the solutions of two Laplace problems, while we in the
generalized transfinite extension have to solve 2n Laplace problems on an n-sided
reference domain. For the generalized transfinite extension however, the Laplace
problems are solved only once on the reference domain, and on each generic domain
only linear combinations of the precomputed weight functions and projection func-
tions are needed. For the harmonic extension, both Laplace problems have to be
solved on each new instantiation of the generic domain. We note that if the refer-
ence domain is symmetric, the number of weight functions and projection functions
needed is reduced. For the pentagonal reference domain, say, only one weight func-
tion and one projection function is really necessary due to rotational symmetry.

For reference domains with smooth boundaries, we have only compared the har-
monic extension, the pseudo-harmonic extension, and the mean value extension on
a circle. For the very regular map from a circle to the deformed ellipse we found
that the convergence rate of both the pseudo-harmonic extension and the harmonic
extension was exponential for the tests performed, while the mean value exten-
sion only showed algebraic convergence. For the less regular map from the circle
to the general domain with C'-continuous boundary, all three methods converged
algebraically.

Finally we have seen that on some selected three dimensional reference domains
where the cross-sections are seen as deformations of either a circle or a more general
n-sided domain, we may apply the planar maps on each cross-section. The global
regularity of the three dimensional map then has approximately the same regular-
ity as each of the planar maps used in its construction. On appropriate domains,
each extension method may also be used separately to construct maps in three
dimensions.
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Future work should deal with pseudo-harmonic extension on non-planar surfaces
with smooth boundaries. This method could then be applied to each cross-section
of a circular pipe found as the iso-surfaces of a thermal conductivity solution, as
described in Ref. 22.

Furthermore, for cross-sections with only piecewise smooth boundaries, the same
procedure yields non-planar surfaces with piecewise smooth boundaries, and the
harmonic extension and the generalized transfinite extension method should deal
with this problem also.
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