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In many contexts, there is a need to construct C1 maps from a given reference

domain to a family of deformed domains. In our case, the motivation comes from the
application of the Arbitrary Lagrangian Eulerian (ALE) method and also the reduced
basis element method. In these methods, the maps are used to construct the grid-points

needed on the deformed domains, and the corresponding Jacobian of the map is used
to map vector fields from one domain to another. In order to keep the continuity of the
mapped vector fields, the Jacobian must be continuous, and thus the maps need to be
C1. In addition, the constructed grids on the deformed domains should be quality grids

in the sense that, for a given partial differential equation defined on any of the deformed
domains, the solution should be accurate. Since we are interested in a family of deformed
domains, we consider the solutions of the partial differential equation to be a family of

solutions governed by the geometry of the domains. Different mapping strategies are
discussed and compared: the transfinite interpolation proposed by Gordon and Hall,12

the pseudo-harmonic extension proposed by Gordon and Wixom,13 a new generalization
of the Gordon-Hall method (e.g., to general polygons in two dimensions), the harmonic

extension, and the mean value extension proposed by Floater.8

Keywords: ALE; regularity; reduced basis element; lifting of trace; C1 mapping; C1

extension.
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1. Extension of Boundary Values

Extension of a function over a domain based on its trace along the boundary of the

domain is a well studied problem. For a general domain Ω ∈ R
d, d = 2, 3, with f

defined on ∂Ω, a common method to find u over Ω such that u|∂Ω = f , is to solve

the Laplace problem: Find u such that

−∆u = 0 in Ω,

u = f on ∂Ω.
(1.1)

This method is often referred to as the harmonic extension, and it is very robust with

respect to different domains Ω. The extension u satisfies the maximum principle

∀ x ∈ Ω, min
∂Ω

f ≤ u(x) ≤ max
∂Ω

f. (1.2)

It also has a regularising effect, in case the boundary ∂Ω is regular enough, since

u is generally in Hs+ 1
2 (Ω) whenever f ∈ Hs(∂Ω) (except for integer values of s).

Since the harmonic extension requires the solution of a Laplace problem, several

more explicit extensions are attractive alternatives.

Gordon and coworkers introduced transfinite extension methods, also known as

blending-function methods, for rectangular domains in Ref. 4, 10, 11, 12, and for

triangular domains in Ref. 1. The extension u over Ω is found as a weighted sum of

f restricted to different parts of ∂Ω. If we let {Γi}
4
i=1 denote the different parts of

the boundary of the unit square (numbered counter-clockwise), such that Γ1 is the

left boundary and Γ4+i = Γi, the transfinite extension is defined through

u(ξ, η) = φ1(ξ, η)f(0, η) + φ2(ξ, η)f(ξ, 0)

+ φ3(ξ, η)f(1, η) + φ4(ξ, η)f(ξ, 1)

−
∑4

i=1
φi(ξ, η)φi+1(ξ, η)fi,

(1.3)

where fi is the value of f in the corner between Γi and Γi+1, and the weight functions

are defined such that φi = 1 on Γi and φi = 0 on Γi+2. The weight functions are

typically chosen to be linear and one-dimensional. The extension, u, satisfies

∀ x ∈ Ω, 3min
∂Ω

f ≤ u(x) ≤ 3max
∂Ω

f, (1.4)

and in Ref. 4 it is shown that if f = 0 at the four corners of the unit square the

factor 3 may be replaced by a factor 2.

Similarly, for a reference triangle with vertices at (0, 0), (1, 0), and (1, 1), the

extension defined through

u(ξ, η) = 1

2
[
(

1−ξ
1−η

)
f(η, η) +

(
ξ−η
1−η

)
f(1, η)

+
(

ξ−η
ξ

)
f(ξ, 0) +

(
η
ξ

)
f(ξ, ξ)

+
(

1−ξ
1−ξ+η

)
f(ξ − η, 0) +

(
η

1−ξ+η

)
f(1, 1 − ξ + η)

− (1 − ξ)f(0, 0) − (ξ − η)f(1, 0) − ηf(1, 1))],

(1.5)

satisfies the maximum principle

∀ x ∈ Ω, 2min
∂Ω

f ≤ u(x) ≤ 2max
∂Ω

f. (1.6)
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(a) Pseudo-harmonic extension on a bounded con-
vex domain, (taken from Ref. 13).

f(0, η) f(1, η)

f(1, 1)f(ξ, 1)f(0, 1)

f(1, 0)f(ξ, 0)f(0, 0)
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(b) Transfinite extension on the unit square.

Fig. 1. Boundary points of influence on an arbitrary point (ξ, η).

The factor 2 in (1.6) holds for all f , and if f = 0 at the vertices, it can be replaced

by 3/2.

For convex reference domains with piecewise differentiable boundaries, Gordon

and Wixom introduced pseudo-harmonic extension in Ref. 13. On a bounded and

convex domain Ω ⊂ R
2 the extension u is defined as

u(ξ, η) =
1

2π

∫ 2π

0

[
d2(θ)

d1(θ)+d2(θ)
f(Q1(θ))+

d1(θ)

d1(θ)+d2(θ)
f(Q2(θ))

]
dθ, (1.7)

where Q1 and Q2 are the intersections between ∂Ω and the line through the point

(ξ, η) at inclination θ, and d1 and d2 are the distances from (ξ, η) to these inter-

section points; see Figure 1(a) (taken from Ref. 13). The extension u satisfies the

maximum principle defined in (1.2). Note that on the unit disk it is shown in Ref.

13 that the extension defined in (1.7) is the solution of the Laplace problem (1.1).

At each point (ξ, η), the extension u defined in (1.7) depends on the value of f along

the entire boundary of Ω. For comparison, the extension defined through the trans-

finite extension scheme (1.3) only depends on the eight boundary points indicated

in Figure 1(b).

On convex domains found as slight deformations of the unit disk, the extension

in (1.7) is a good approximation to the solution of the Laplace problem. The only

requirement on the boundary is that it is piecewise differentiable, and thus this

method may be used on triangles, rectangles and general polygons as long as the

domains are convex. The main difficulty is in the computation of the intersection

points Q1(θ) and Q2(θ) on general domains. On special domains, e.g. a circle or a

square, these points may be found analytically; see Ref. 16.

For comparison, we show in Figure 2 how the pseudo-harmonic extension (1.7)

and the transfinite extension (1.3) extends a function f given by a parabolic profile

on each side of the square (0, 1)2. For the pseudo-harmonic extension, the maximum
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(a) Pseudo-harmonic extension.
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(b) Transfinite extension.

Fig. 2. Extension of a parabolic profile.

principle defined in (1.2) is clearly satisfied. The transfinite extension satisfies the

maximum principle defined in (1.4).

In Ref. 2 a generalization of the pseudo-harmonic extension to non-convex do-

mains is given, and the scheme is seen as a particular case of a general construction

of transfinite barycentric coordinates. The same general construction also includes

Floater’s mean value coordinates,8,21 and using Figure 1(a) we may write the mean

value extension on integral form as

u(ξ, η) =

∫ 2π

0

1

d1(θ)
f(Q1(θ))dθ

/∫ 2π

0

1

d1(θ)
dθ. (1.8)

The extension u defined here also satisfies the maximum principle (1.2). It is shown

in Ref. 15 that the mean value extension is well-defined on arbitrarily shaped planar

polygons. There is also a Hermite version of the pseudo-harmonic extension available

in order to control the derivative of the extension towards the boundary.13

Extension of boundary functions can be used to generate a one-to-one and onto

map, Φ, from a reference domain Ω̂ to a closed, bounded and simply connected

domain Ω. To this end we assume that the boundary of the domain Ω is given, such

that each coordinate on the boundary may be considered as a parametric curve,

e.g. x = f(ξ(t), η(t)) and y = g(ξ(t), η(t)), defined on the boundary of the reference

domain. Corresponding values for x and y may then be found in the interior of Ω̂

by solving the Laplace problem (1.1) first for x and then for y, with f and g as

boundary values, respectively. This is a vector version of the harmonic extension,

and as long as Ω is not too distorted, the pair (x, y) over Ω̂ then represents a one-

to-one and onto map from Ω̂ to Ω. If the domain Ω is too distorted, the pair (x, y)

may produce values outside the boundary of Ω.

We note that instead of solving two separate problems for the x and y compo-

nents, an elasticity solver may be applied to solve for both components as a coupled

pair. This is more tedious than solving for the decoupled components, however, it

is generally more robust.

To avoid having to solve (1.1) twice, we may, depending on the reference domain



June 8, 2009 WSPC

Global C1 Maps on General Domains 5

Fig. 3. The unit circle mapped to a deformed ellipse using the pseudo-harmonic extension. Corre-

sponding grid-lines are also indicated.

(a) Pseudo-harmonic extension. (b) Transfinite extension.

Fig. 4. Maps of the unit square (0, 1)2 to an axisymmetric bend.

Ω̂, employ either transfinite extension (1.3), or (1.5), pseudo-harmonic extension

(1.7), or mean value extension (1.8) to find the extensions x(ξ, η) and y(ξ, η). If the

boundary of the reference domain is represented by a smooth curve, e.g. a circle,

the transfinite extension does not apply, while the harmonic extension, the pseudo-

harmonic extension, and the mean value extension work perfectly well; see Figure 3.

On the other hand, if we map the unit square (0, 1)2 to an axisymmetric bend, the

harmonic extension, the pseudo-harmonic extension, and the mean value extension

produce (x, y) values outside the boundary of the axisymmetric bend, while the

transfinite extension (1.3) produces an optimal grid; see Figure 4. (By ’optimal

grid’ we mean that a particular point distribution in the (ξ, η)-plane on (0, 1)2 is

maintained in the (r, θ)-plane on the axisymmetric bend.)

Independent of which method is used, care has to be taken on very distorted

domains to validate the resulting (x, y). This is done by making sure that the

Jacobian determinant of the map from Ω̂ to Ω is bounded away from zero. If the
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Jacobian determinant is zero, or changes sign, the grid is folding.

Domain decomposition is a convenient method for constructing grids on complex

geometries, and we next consider both the reference domain and a topologically

similar domain to be constructed as a non-overlapping union of regular, one-to-one

maps of some reference element, Λ̂, such that Ω̂ =
⋃K

k=1
Ω̂k =

⋃K
k=1

Φ̂k(Λ̂) and Ω =
⋃K

k=1
Ωk =

⋃K
k=1

Φk(Λ̂), respectively. In addition we define the Jacobians of the two

domains with respect to Λ̂ as Jk = J (Φk) and Ĵk = Ĵ (Φ̂k), and the corresponding

Jacobian determinants as Jk = J(Φk) and Ĵk = Ĵ(Φ̂k). In two dimensions the

reference element is typically a triangle or a rectangle, and we let each map of the

reference element define one subdomain (element) of the corresponding geometry.

In general, the resulting global map Φg, defined by Φg|Ωk

= Φk ◦ Φ̂−1

k , is continuous

(by construction), but only piecewise smooth. Across the subdomain interfaces the

Jacobian determinant of the global map Jg, defined by Jg|Ωk

= Jk/Ĵk, will be

discontinuous. Hence, in situations where a global C1-continuous map is desired,

say problems with moving boundaries, this is a big disadvantage. Especially in an

Arbitrary Lagrangian Eulerian (ALE) framework, the regularity of each map is

crucial; see Ref. 7, 9. Also, in the reduced basis element method17 velocity fields are

mapped between complex geometries using the Piola transformation6 to preserve

incompressibility, and a continuous global Jacobian is needed.

The solution of the Laplace problem (1.1) defined over a complex domain will

produce a global C1 map, provided all angles in the domain are smaller than π, but

again this method is time-consuming compared to the other extension schemes.

Our goal in this paper is to remove the restriction that the reference domain

in the transfinite extension method is a square or a triangle, such that a complex

curvilinear domain with more than four natural edges may be found as a global

C1 map of a possibly non-convex reference domain comprising the same number of

edges as the complex domain. Since the transfinite extension method only involves

linear combinations of predefined functions, this would accelerate the construction

of such C1 maps, in particular, if many such maps are needed.

In Section 2 we introduce the generalized transfinite extension method, and in

a series of numerical tests in Section 3, we compare this method to the harmonic

extension (1.1), the pseudo-harmonic extension (1.7), and the mean value extension

(1.8). On smooth reference domains the pseudo-harmonic extension and the mean

value extension are natural choices, but on piecewise smooth reference domains

we believe that the generalized transfinite extension method gives better compu-

tational grids, and is easier to implement. We note that on any reference domain,

the pseudo-harmonic extension scheme is rather tedious to implement,16 but if the

same reference domain will be used to compute many C1 maps this overhead may

be justified.

In Section 4, we show how the different methods may be combined in three

dimensions to produce C1 volume maps for selected geometries. Finally, in Section

5 we give some concluding remarks.
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∂φi
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= 0φi = 1

Γ̂i

∂φi
∂n

= 0 φi = 0

(a) The boundary conditions of the
weight function associated with bΓi.

∆πi = 0

Γ̂i

πi = t πi = 1

∂πi
∂n

= 0πi = 0

∂πi
∂n

= 0

(b) The boundary conditions of the
projection function associated with
bΓi; t is distributed with respect to the

normalized arc-length of bΓi.

Fig. 5. Illustration of the boundary conditions for the harmonic weight and projection functions
used in the generalized transfinite extension scheme.

2. Transfinite Extension on General Domains

If the reference domain Ω̂ has more than four edges, we can no longer use one-

dimensional weight functions like the ones presented in the transfinite extension

scheme (1.3) to define a continuous map. Domain decomposition is a convenient

method for constructing a global map from a complex reference domain to a topo-

logically similar domain, but as described above, this global map will in general not

be C1-continuous across subdomain interfaces.

In order to generalize the transfinite extension scheme to general domains with

more than four sides, we first introduce some notation. On an n-sided reference

domain, where n ≥ 4, we denote each side Γ̂i, i = 1, ..., n, and number the sides in

a counter-clockwise manner. Associated with each side is a weight function φi, and

a projection function πi, both defined over Ω̂. We also assume that the value of the

function f along Γ̂i may be determined by the parametrization ψi(t) : [0, 1] → R,

where t is the normalized arc-length of Γ̂i.

To define the weight functions, we let φi = 1 on Γ̂i, and solve the Laplace

problem

∆φi = 0 in Ω̂, (2.1)

with homogeneous Neumann boundary conditions on the two sides of Ω̂ adjacent

to Γ̂i, and homogeneous Dirichlet boundary conditions on the remaining sides; see

Figure 5(a). On the reference square these harmonic weight functions will coincide

with one-dimensional, linear weight functions, but on a general non-convex reference

domain, the weight functions will be non-affine C1 functions; see Figures 6(c) and

6(e).

In the generalized transfinite extension scheme, we also need the projection from
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(a) Weight function. (b) Projection function.

(c) Weight function. (d) Projection function.

(e) Weight function. (f) Projection function.

Fig. 6. Contour lines of the weight and projection functions associated with one side of a rectangle,

a curved pentagon, and a bifurcation.

the interior onto each side Γ̂i. On the unit square these projections are given by

the reference coordinates as (ξ, 0), (ξ, 1), (0, η), and (1, η). On a general domain we

compute the projection function πi onto the side Γ̂i by solving the Laplace problem

∆πi = 0 in Ω̂, (2.2)

with linear Dirichlet boundary condition along Γ̂i, distributed from 0 to 1 with

respect to arc-length. On the sides adjacent to Γ̂i we set πi equal to either 0 or 1,

and on the remaining sides we use homogeneous Neumann boundary conditions; see

Figure 5(b). On the unit square this procedure will reproduce the reference coordi-

nates, while on general reference domains we again get non-affine C1 functions; see
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Figures 6(d) and 6(f). In fact, we have that the solutions φi and πi of the Laplace

problems (2.1) and (2.2) with the given boundary conditions at least satisfy the

regularity condition

πi, φi ∈ H1+ π

2ω
−ǫ, (2.3)

where ω 6= π
2

is the largest angle in the domain, and ǫ is any small positive constant;

see Ref. 14. This is a consequence of the presence of corners with Dirichlet boundary

conditions on one edge, and Neumann boundary conditions on the other edge.

For problems with only Dirichlet boundary conditions, or only Neumann boundary

conditions the solution is in H1+ π

ω
−ǫ.

We now recall that the value of f along Γ̂i is expressed through ψi(t), and denote

the value of f in the corner between sides Γ̂i and Γ̂i+1 by ψi(1). Furthermore we

let Γ̂n+1 = Γ̂1, and define the generalized transfinite extension

u(ξ, η) =

n∑

i=1

[φi(ξ, η)ψi(πi(ξ, η)) − φi(ξ, η)φi+1(ξ, η)ψi(1)]. (2.4)

If f is replaced by a vector containing the boundary coordinates of an n-sided

domain Ω, the generalized transfinite extension (2.4) will provide a one-to-one C1

map from Ω̂ to Ω.

We note that in order to increase the regularity of the harmonic solutions of

(2.1) and (2.2), the n-sided reference domain should be defined such that the angle

between any two adjacent sides is π/2. Indeed, the boundary conditions on adjacent

edges are then consistent, and we get

φi ∈ H1+ π

ω
−ǫ ⊂ C1, (2.5)

for ω = π
2
. This regularity comes from the fact that the coefficients in front of the

first singularities cancel out (actually, when ω = π
2

the exponent of the Sobolev

space is 3 − ǫ, which implies almost C2 functions and certainly C2 away from the

corners).

We also note that, as for transfinite extension on the unit square, the value of

the extension u in any point (ξ, η) ∈ Ω̂ only depends on the value of f in isolated

points on the boundary of the reference domain. These 2n points are the corner

points and the projection of (ξ, η) onto each of the sides of Ω̂; see Figure 1(b).

The large benefit of using the generalized transfinite extension compared to the

harmonic extension defined in (1.1) is that all the harmonic functions are computed

only once. For each new given function f we only need to find the correspond-

ing boundary functions ψi, and perform the linear combination of the harmonic

functions in (2.4).

In the following section we study the regularity of the maps constructed with

the different extension methods mentioned in Sections 1 and 2. In particular, we are

interested in how the regularity affects the computational quality of a grid which is

defined on a reference domain and mapped to a deformed domain.
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(a) Uniform pentagon. (b) Curved pentagon. (c) Circle.

Fig. 7. The three different reference domains used in the tests.

(a) Deformed pentagon. (b) Deformed ellipse. (c) C1 boundary.

Fig. 8. The three different generic domains used in the tests.

3. Global Regularity

To investigate the regularity of the maps constructed with the different extension

methods we perform a series of numerical tests. For the harmonic extension and

the generalized transfinite extension we compare the results of these tests with

the regularity estimates (2.3) and (2.5). For the mean value extension we have not

found any regularity estimate in the literature, while the pseudo harmonic extension

behaves like the harmonic extension when the reference domain is a circle.

We use the three different reference domains in Figure 7 to construct computa-

tional grids on generic domains with similar topologies; see Figure 8. The generic

domains are constructed by defining a grid on the reference domain, and map the

grid-points through the extension methods described in Sections 1 and 2.

For the different reference domains we compare the grids constructed with the

generalized transfinite extension, the harmonic extension, the pseudo-harmonic ex-

tension, and with the mean value extension. The comparison is done by considering

the following indicators: (1) the error convergence of the solution of a Laplace prob-

lem; (2) the divergence of a divergence-free field either defined on the reference

domain and mapped to the constructed domain by the Piola transformation,6 or

defined directly on the constructed domain; and (3) the jumps in the Jacobian of the

map from the reference domain to the constructed domain. The first two properties

reflect the computational quality of the constructed grid, while the last property

indicates how close the ’realized’ map is to being C1.

To evaluate these properties we apply the spectral element method18 and de-
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compose the reference domains into several subdomains (deformed quadrilateral

elements), as described in Section 1. The discrete space is defined by

XN = {v ∈ H1, v|Ωk

◦ Φk ∈ PN (Λ̂)}, (3.1)

where PN is the space of all functions which are polynomials of degree less than or

equal to N in each spatial direction. As a basis for XN we use a nodal basis through

the tensor-product Gauss-Lobatto Legendre points on the reference element. Ac-

cording to spectral element theory18 for problems with analytic solutions, the error

in the spectral element solution should converge exponentially to the analytic solu-

tion in the H1-norm. For problems on a rectangular domain where the solution has

lower regularity, e.g. u ∈ Hσ, and constant coefficients, we have the following error

estimate for the spectral element solution uN :

‖u− uN‖H1 ≤ c inf
vN∈XN

‖u− vN‖H1 ≤ cN1−σ‖u‖Hσ , (3.2)

where N is the polynomial degree of the spectral element basis, and c is some

positive constant. This is referred to as algebraic convergence. This estimate is

polluted by extra factors19 if geometric coefficients are present in the differential

operator. We get

‖u−uN‖H1 ≤ c inf
vN∈XN

‖u−vN‖H1+ err(Φ) ≤ cN1−σ‖u‖Hσ +N−m‖Φ‖HS(m) , (3.3)

where Φ is the mapping from which the geometric factors are built, and S(m) ≥

m+ 1.

Due to the regularity statement (2.3) for the weight functions and the projection

functions used in the generalized transfinite extension, it follows that the resulting

global map Φ ∈ Hσ for σ < 1 + λ, where λ = π
2ω when ω 6= π

2
. The map may be

written as the sum of a regular part Φr ∈ H1+2λ−ǫ and a singular part Φs ∈ Hσ.

In Ref. 3 it is shown that the spectral element approximation of the singular part

is more accurate than expected from the general theory leading to (3.2). For any

u regular enough in Ω, the function ũ = u ◦ Φ is the one that is approximated by

polynomials, hence

inf
vN∈XN

‖u− vN‖H1 ≤ cN ǫ−2λ + c(Φ)N−m, (3.4)

where the limit comes from the regularity of the singular part of Φ. Note that for ω =
π
2

the improved regularity statement (2.5) gives λ = π
ω , and the convergence rate

in (3.4) is much better. The improved regularity statement also holds for problems

with only Dirichlet boundary conditions, e.g. the harmonic extension.

The first reference domain we consider is the uniform pentagon in Figure 7(a).

The length of each side is 1, and the angle between any two adjacent sides is 3π
5

. For

this reference domain the map generated by the generalized transfinite extension

according to (2.3) belongs to H1+ 5
6−ǫ, while the map generated by the harmonic

extension belongs to H1+ 5
3−ǫ. The second reference domain is the curved pentagon

in Figure 7(b). Here the arc-length of each side is 1, while the angle between two
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adjacent sides is π
2
. The maps generated by both the harmonic extension and the

generalized transfinite extension on this domain will according to (2.5) belong to

H1+2−ǫ. Both these reference domains are decomposed into five quadrilateral sub-

domains such that their respective subdomains are equal in size and shape. The

third reference domain is the circle in Figure 7(c) with radius 1. The circle is de-

composed into eight quadrilateral subdomains, with six subdomains along the outer

boundary of the circle, and two subdomains in the middle.

All three reference domains are used to construct computational grids on the

deformed pentagon in Figure 8(a), while only the circle in Figure 7(c) is used to

construct computational grids on the smooth domains in Figures 8(b) and 8(c). We

use an arc-length distribution of the boundary points on both the reference domains

and on the generic domains.

3.1. Test 1: A Laplace problem

In order to assess the computational quality of the grids found, we perform a con-

vergence analysis. We consider the following problem: Find u such that

−∆u = 0 in Ω,

u = ex sin(y) on ∂Ω,
(3.5)

where Ω is one of the generic domains in Figure 8. The analytical solution to this

problem is u = ex sin(y), and we use this as a comparison for the solutions uN

found on the constructed grids for an increasing polynomial degree of the underlying

spectral element grid.

On each subdomain the solution is represented on the reference square (−1, 1)2.

Hence, what is actually approximated is the representation of the solution on the

reference domain, i.e. ũ = u ◦Φ. If both the solution u and the map Φ are analytic

over each spectral subdomain, the error convergence is exponential. This is the case

when domain decomposition is used together with standard transfinite extension

on each subdomain. If the domain decomposition is done properly, each Φk will be

regular enough to ensure exponential convergence.

In our case we compromise this local regularity in our pursuit of global C1-

continuity, and the local maps are no longer very regular. For the generalized trans-

finite extension we presented the minimal regularity statement for the weight func-

tions and the projection functions in (2.3). The map constructed with these func-

tions will have the same regularity. In addition, the harmonic extension is found by

solving one Laplace problem for each spatial dimension on the reference domain.

When the reference domain has corners, like the uniform pentagon in Figure 7(a)

and the curved pentagon in Figure 7(b), the map constructed with the harmonic

extension satisfies the regularity statement in (2.5).

Uniform pentagon. The first domain is constructed by mapping the uniform

pentagon in Figure 7(a) to the domain depicted in Figure 8(a). According to (3.4)

with λ = π
2ω and ω = 3π

5
, the spectral element solution of problem (3.5) should
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Method Reference domain

Uniform pentagon Curved pentagon

Transfinite extension 3.7 5.0

Harmonic extension 4.3 5.0

Pseudo-harmonic extension 2.5

Mean value extension 2.5

Table 1. The convergence rate of the error in the spectral element solution of the Laplace problem

(3.5) when Ω is the domain depicted in Figure 8(a), and bΩ is either the uniform pentagon in
Figure 7(a) or the curved pentagon in Figure 7(b).

converge like N ǫ− 5
3 + c(Φ)N−m1 when the map is constructed by the generalized

transfinite extension. When the map is constructed by the harmonic extension we

have λ = π
ω , and the convergence is proportional to N ǫ− 10

3 + c(Φ)N−m2 , with

m2 > m1. We see in Table 1 that the solution of problem (3.5) on the domains

Ω = Φ(Ω̂), found using the generalized transfinite extension and the harmonic

extension, converge like N−3.7 and N−4.3, respectively.

In both these methods, the maps are built from the solutions to Laplace prob-

lems that need to be approximated by numerical methods. The exact solutions are

at least globally regular as stated in (2.3), hence they belong to C1. In the case

of using spectral elements the numerical approximation of the maps will have a

local regularity which reflects this global regularity. In addition there will be small

jumps in the first derivatives of these spectral element approximations across the

subdomain interfaces which decay algebraically with the polynomial degree. We

remark, however, that even if the exact maps were known for both methods, the

regularity of the maps would still only satisfy the regularity statement (2.3), and

the convergence of problem (3.5) would still be algebraic.

By using the spectral element method in these tests we are easily able to capture

the effect of the loss in regularity associated with the maps. A low order finite

element method has low order algebraic convergence even for regular maps, and

thus the associated convergence rate would not be a good indicator to study the

effect of the regularity of the various maps.

The solution of problem (3.5) found on the domains constructed with both the

pseudo-harmonic extension and the mean value extension give convergence of order

N−2.5; see Table 1. This indicates that the maps constructed with these methods

have lower regularity than the maps found with the harmonic extension and the

generalized transfinite extension.

Curved pentagon. We recall that in Section 2 we argued that the angle be-

tween two adjacent sides on the reference domain should be π/2. When we use λ = π
ω

and ω = π
2

in (3.4) we see that the expected convergence is N ǫ−4 + c(Φ)N−m for

both the harmonic extension and the generalized transfinite extension. When we

implement the generalized transfinite extension and the harmonic extension on the
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reference domain depicted in Figure 7(b), the error convergences like N−5.0, as

presented in Table 1. Thus, by improving the regularity of the maps, both meth-

ods have an improved convergence rate compared to the results on the uniform

pentagon. The only additional work in the implementation is the definition of the

curved sides of the reference domain to ensure right angles between adjacent sides.

The pseudo-harmonic extension and the mean value extension are not considered

on this reference domain for two reasons. First, the presentations in (1.7) and (1.8)

assume a convex reference domain, and second, their results were poor compared

to the other methods in the previous test. It is possible to implement the pseudo-

harmonic extension and the mean value extension also on non-convex domains, but

the procedure is more involved.2,15

Circle. The last reference domain we consider is the unit circle. The harmonic

extension is independent of the underlying domain, and is ideal for mapping a circle

to any smooth geometry as long as we are careful not to produce folding grids. The

pseudo-harmonic extension coincides with the harmonic extension if the reference

domain is a circle, and the mean value extension is also well-defined on this domain.

In fact, the only condition on the boundary value function is that it is piecewise

continuous, so all three methods should be able to map a reference circle to, say,

both a deformed ellipse and a deformed pentagon.

The reference circle is shown in Figure 7(c), and we use eight subdomains to

generate the spectral element grid on this domain. The number of subdomains is

chosen such that one edge of each of the outer subdomains easily maps to one

of the sides of the deformed pentagon in Figure 9(c). For the deformed ellipse in

Figure 9(a) we have no problems generating a map of the outer boundary. The

analytic expression of the map from the circle to the deformed ellipse is

(x, y) = Φ(ξ, η) = (aξ, bη − δ(ξ2 − η2)), (3.6)

where we have chosen a = 1.4, b = 0.7, and δ = 0.2, and (ξ, η) are the coordinates of

the reference circle (with (0, 0) at the center of the circle). The Jacobian determinant

of this map is linear with respect to η, J = a(b + 2δη). The regularity of the map

from the circle to the deformed ellipse in Figure 9(a) suggests that the convergence

of the Laplace problem given in (3.5) should converge exponentially on this domain.

A less regular map is achieved by imposing the expression

(x, y) = (aξ, bη − δ(ξ2 − η2)), ξ ≥ 0,

(x, y) = (aξ, bη − δ(ξ2 − η2) + (a− 0.2)2ξ2), ξ < 0.
(3.7)

This map has continuous derivatives along the boundary, but the second derivative

of y with respect to ξ is discontinuous for ξ = 0. In Figure 9(b) this general domain

with C1-continuous boundary is shown for a = 1.4, b = 0.7, and δ = 0.3.

We construct the computational grids for the deformed ellipse in Figure 9(a) by

extending the trace of the map given in (3.6). On the constructed grids we solve

the Laplace problem given in (3.5), and again compare the results with the exact

solution. The convergence of the errors for the three extension methods applicable
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(a) (b) (c)

Fig. 9. The effect of using the pseudo-harmonic extension to map a circle to (a) a deformed ellipse,

(b) a more general domain with C1 boundary, and (c) a deformed pentagon.

Method Generic domain

Deformed ellipse C1 boundary Deformed pentagon

Harmonic extension ∞ 5.0 3.0

Pseudo-harmonic extension ∞ 5.0 2.3

Mean value extension 4.5 4.6 2.3

Table 2. The convergence rate of the error in the solution of the Laplace problem (3.5) when bΩ
is the circle in Figure 7(c), and Ω is either the deformed ellipse in Figure 9(a), the more general
domain with C1 boundary in Figure 9(b), or the deformed pentagon shown in Figure 9(c).

to reference domains with smooth boundaries are shown in Table 2. We see that

while the harmonic extension and the pseudo-harmonic extension show exponen-

tial convergence, the mean value extension only shows algebraic convergence. The

reason is that the trace of the map (3.6) is analytic, and thus the exact solution

of the harmonic extension (1.1) is analytic. From spectral element theory we know

that a spectral element solution of the harmonic extension converges exponentially

towards the analytic map. The regularity of the map found with the spectral ele-

ment method then assures that ũ = u ◦ Φ is analytic, and the convergence to the

exact solution of the Laplace problem (3.5) on the deformed ellipse is exponential.

The grid constructed with the harmonic extension is in this case close to an optimal

grid, and on a circle the pseudo-harmonic extension mimics the harmonic extension.

On the other hand, the mean value extension is only shown to be exact for linear

boundary functions,15 and thus the convergence is not as good as for the other

methods on this particular geometry. We note that when the reference domain is

mapped to a standard ellipse, the x- and y-coordinates varies linearly with respect

to ξ and η, and also the mean value extension gives exponential convergence due to

exact extension of linear functions.

We next extend the trace of the map given in (3.7) to construct the computa-

tional grids for the general domain with C1-continuous boundary in Figure 9(b).
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The exact solution of the harmonic extension is in this case less regular, and the

convergence of the spectral element approximation is algebraic. The boundary data

belongs to H3−ǫ, and hence the harmonic extension belongs to H
7
2−ǫ. The corre-

sponding solution ũ then belongs to H
7
2−ǫ, and the error of the spectral element

approximation should according to (3.4) converge like N−5 + c(Φ)N−m. We see

in Table 2 that the convergence rates for the harmonic extension and the pseudo-

harmonic extension are actually approximately 5.0. The convergence rate of the

mean value extension is approximately 4.6, which is similar to the convergence rate

for this method when used to construct the deformed ellipse.

When we use the three extension methods applicable to reference domains with

smooth boundaries to map the reference circle in Figure 7(c) to the deformed pen-

tagon in Figure 9(c) we get the error convergence presented in Table 2. The con-

vergence rate of the harmonic extension is 3.0, while the convergence rates for the

two other methods are slightly lower, again consistent with the regularity of the

harmonic extension.

3.2. Test 2: The Piola transformation

Since we are interested in the mapping of vector fields from one domain to another

using the Piola transformation, we also test the constructed grids with respect to

being able to preserve the divergence of vector fields.

To this end, we define the divergence free vector field û = (sin(η), cos(ξ)) on the

reference domain. When we compute the divergence of the polynomial interpolation

of this field on the reference domain it will, measured in the L2-norm, converge

exponentially to zero with respect to the polynomial degree; see Figure 10(a).

Uniform pentagon. We first use the uniform pentagon in Figure 7(a) as our

reference domain, and map the field û to the deformed domain depicted in Fig-

ure 8(a) through the Piola transformation,6

u = Ψ(û) = Jg(û ◦ Φ−1
g )|Jg|

−1, (3.8)

where Jg is the Jacobian of the global map Φg, and Jg the corresponding Jacobian

determinant. On the deformed domain, we compute the L2-norm of the divergence of

the polynomial approximation of the transformed fields when the different C1 maps

are used. The results are shown in Figure 10(b). While both the harmonic extension

and the generalized transfinite extension preserve the exponential convergence, the

other two maps do not. The Jacobian determinant of the pseudo-harmonic extension

in fact approaches zero in some points as the polynomial degree increases, indicating

that the map is close to producing points where the grid might fold. Since the inverse

of the Jacobian determinant appears in the Piola transformation, the resulting field

u in this case is very disrupted, and we see in Figure 10(b) that the corresponding

divergence is not converging.

By defining a divergence free vector field v = (sin(y), cos(x)) on the deformed

domain directly, the divergence of the polynomial approximation of the field only

converges algebraically as the polynomial degree is increased; see Table 3.
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Fig. 10. The divergence of the polynomial approximation of bu = (sin(η), cos(ξ)) defined on the

reference domain in Figure 7(a) before and after Piola transformation to the deformed domain
depicted in Figure 8(a). N is the polynomial degree of the spectral element basis functions.

To see the reason for this, we recall the definition of the global map as Φg|Ωk

=

Φk ◦ Φ̂−1

k , where each Φk and Φ̂k is a map from Λ̂ to the respective subdomains of

Ω and Ω̂. We note that each Φ̂k is analytic. The Piola transformation on a single

subdomain may then be expressed as

uk = JkĴ
−1

k (ûk ◦ Φ−1

k ◦ Φ̂k)
Ĵk

Jk
. (3.9)

The computation of the divergence on each subdomain may be done on Λ̂ by noting
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Method Reference domain

Uniform pentagon Curved pentagon

Transfinite extension 4.7 6.0

Harmonic extension 5.0 6.0

Pseudo-harmonic extension 3.6

Mean value extension 3.6

Table 3. The convergence rate of the divergence of the polynomial approximation of v =

(sin(y), cos(x)) defined on the deformed domain in Figure 8(a) when either the uniform pentagon
in Figure 7(a), or the curved pentagon in Figure 7(b) is used as the reference domain.

that

∇ · uk = ∇̂ · J−1

k (uk ◦ Φk), (3.10)

where ∇̂ is the divergence operator with respect to the reference coordinates on Λ̂.

Thus, for a field found as u = Ψ(û) the Jacobian of the map from Λ̂ to each subdo-

main in Ω cancels against the inverse Jacobian in (3.10). The resulting expression

∇ · uk = ∇̂ · Ĵ−1

k (ûk ◦ Φ̂k)
Ĵk

Jk
, (3.11)

only depends on the Jacobian determinant Jk of the map from Λ̂ to each subdomain

of Ω. As long as each Jk is bounded away from zero, the divergence of û is preserved

through the Piola transformation. When v is defined on the deformed domain,

the maps Φk does not cancel from the computation of the divergence, and the

convergence depends on the regularity of the global map.

We also note that if the field v defined on the deformed domain is mapped to

the reference domain using the inverse of the Piola transformation, the L2-norm of

the divergence is preserved for all methods. In the inverse Piola transformation we

no longer divide by Jk, and when the Jacobian determinant approaches zero in the

map constructed with the pseudo-harmonic extension, the Piola transformed fields

are still smooth.

Curved pentagon. Numerical results for the mapping of the curved reference

pentagon in Figure 7(b) to the deformed pentagon in Figure 8(a) are also presented

in Table 3. Again we see that by improving the regularity of the map, the conver-

gence rates of both the harmonic extension and the generalized transfinite extension

have improved.

Circle. For the mapping of the circle to a general domain with C1-continuous

boundary, we first define û = (sin(η), cos(ξ)) on the reference circle, and map this

vector field through the Piola transformation (3.8) to the domain depicted in Fig-

ure 9(b). Both the harmonic extension, the pseudo-harmonic extension, and the

mean value extension preserve the exponential convergence after the Piola transfor-

mation, indicating that their Jacobian determinants are bounded away from zero.
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Method Generic domain

Deformed ellipse C1 boundary

Harmonic extension ∞ 6.4

Pseudo-harmonic extension ∞ 6.4

Mean value extension 6.3 6.3

Table 4. The convergence rate of the divergence of the polynomial approximation of v =
(sin(y), cos(x)), defined either on the deformed ellipse in Figure 9(a), or the general domain with
C1 boundary depicted in Figure 9(b).

Again, when the field v = (sin(y), cos(x)) is defined directly on the deformed do-

main, the convergence is algebraic; see Table 4. The corresponding results for the

deformed ellipse depicted in Figure 9(a) shows exponential convergence for the har-

monic extension and the pseudo-harmonic extension, while the mean value extension

has about the same convergence rate as for the general domain with C1-continuous

boundary.

3.3. Test 3: C
1-continuity

The third test is included to see how close the grids constructed with the different

maps indeed are to being C1 maps of the reference domain. To this end we com-

pute the Jacobian of the global map from the reference domain to the deformed

pentagon. The elements in the Jacobian should ideally be continuous across subdo-

main interfaces for the map to be C1, but we observe that the Jacobian determinant

has jumps across these interfaces.

This is due to the fact that the harmonic weight functions and the harmonic

projection functions used in the generalized transfinite extension (2.4), and also

the extension found by the harmonic extension (1.1), are approximations of exact

solutions that only satisfy the minimal regularity statement (2.3). Since the exact

solutions have limited regularity, the approximation found with the spectral element

method also converges algebraically. The derivatives of the harmonic functions thus

exhibit jumps across the subdomain interfaces of the same size as the Jacobian

determinant. These jumps are reduced when the polynomial degree of the spectral

discretization is increased, both for the Jacobian determinant and for the derivatives

of the harmonic functions. The pseudo-harmonic extension is an approximation to

the harmonic extension, and should suffer from the same effect. Our intuition indeed,

is that the pseudo-harmonic extension has the same behaviour at least at the corners

as the harmonic extension. The analysis goes far beyond the scope of the present

paper, but is certainly worth analyzing since we are not aware of any contributions

on this subject.

Uniform pentagon. First we construct the grids using the uniform pentagon

as our reference domain; see Figure 7(a). In Table 5 we see the convergence rate
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Method Reference domain

Uniform pentagon Curved pentagon

Transfinite extension 3.4 4.7

Harmonic extension 4.0 4.7

Pseudo-harmonic extension 0.8

Mean value extension 0.5

Table 5. The convergence rate of the L2-norm of the jump in the Jacobian determinant across

subdomain interfaces on the domain depicted in Figure 8(a). Either the uniform pentagon in
Figure 7(a), or the curved pentagon in Figure 7(b) is used as reference domain.

of the jump in the Jacobian determinant across the subdomain interfaces when the

polynomial degree in the spectral element basis is increased. The results are found

by taking the L2-norm of the jump in the Jacobian determinant along the interfaces

in a pentagon with 5 subdomains, i.e.,

‖[Je]‖L2 =

(
5∑

e=1

∫

bγe

[Je]
2ds

)1/2

, (3.12)

where {γ̂e}
5
e=1 are the interfaces, and [Je] is the jump in the Jacobian determinant

across each interface. We remind that the Jacobian determinant of the global map

is found as Jg =
⋃K

k=1
Jk/Ĵk (as discussed in Section 1), since Φ : Ω̂ → Ω is C1.

Again we see that the harmonic extension and the generalized transfinite exten-

sion give algebraic convergence. The results from the pseudo-harmonic extension

and the mean value extension are not that good. The convergence rates are below

one initially, and then the jump in the Jacobian for both methods seems to diverge

for large values of N . Similar results are obtained also for other domains and other

domain decompositions of the pentagon.

Curved pentagon. If we compare the results from the harmonic extension

and the generalized transfinite extension on the curved reference domain (see Fig-

ure 7(b)), we get the results seen in Table 5. Now the two methods produce almost

identical results, and they have both an improved convergence rate compared to

the results on the uniform reference pentagon. So for a little more overhead, the

generalized transfinite extension method produces the same results as the harmonic

extension. If many grids are to be constructed from the same reference shape, the

generalized transfinite extension method would be preferable, since each new grid

would require the solution of two additional Laplace problems in the harmonic

extension method. On an n-sided reference domain the generalized transfinite ex-

tension method only requires the solution of 2n-Laplace problems (or fewer for

symmetric domains), independent of the number of new grids to be constructed.

Circle. For the map from the unit circle to the deformed ellipse defined in (3.6),

we mentioned that the Jacobian is linear with respect to η. As a consequence of

this the L2-norm of the jump in the Jacobian determinant across subdomain inter-
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Method Generic domain

Deformed ellipse C1 boundary

Harmonic extension ∞ 4.6

Pseudo-harmonic extension ∞ 4.6

Mean value extension 3.9 3.9

Table 6. The convergence rate of the L2-norm of the jump in the Jacobian determinant across
subdomain interfaces on the deformed ellipse and the general domain with C1 boundary. Here the
unit circle is used as the reference domain.

faces for the map generated by harmonic extension and pseudo-harmonic extension

converges exponentially to zero; see Table 6. In contrast, the mean value extension

is not an approximation to the actual solution for non-linear boundary functions.

The resulting Jacobian determinant for the mean value extension is not linear with

respect to η, and the jump in the Jacobian determinant across subdomain interfaces

shows only algebraic convergence. When the unit circle is mapped to the general

domain with C1-continuous boundary depicted in Figure 9(b), all three methods

show algebraic convergence.

4. Volume Maps

For volumes that are topologically similar to a cube, a generalization of the tradi-

tional transfinite extension method to three dimensions is well defined. For volumes

that are topologically similar to a sphere, a generalization of the pseudo-harmonic

extension would be a natural choice. Also for three dimensional bifurcations with

rectangular cross-sections, the generalized transfinite extension applies when map-

ping a reference bifurcation to a generic bifurcation. Of course, the harmonic ex-

tension may be used in all three cases. In the case of bifurcations with rectangular

cross-sections, care must be taken to find the surface points with respect to arc-

length, or chord-length; see Ref. 5.

In most cases, however, we find that a combination of the methods should be

used. In blood vessels, say, the geometric building blocks are either pipes or bifurca-

tions, with smooth, almost circular cross-sections. A combination of the traditional

transfinite extension in the axial direction of a pipe and the pseudo-harmonic ex-

tension on the cross-sections, could then produce a C1 map from a reference pipe

with circular cross-sections. This is true for planar cross-sections, but as pointed

out by Verma et al. in Ref. 22, a typical way to find the cross-sections of a pipe is

to solve a thermal conduction problem and the cross-sections will be curved.

4.1. Pipes

We consider in this section deformations of a reference pipe of length L with circular

cross-sections. The deformations involve changing the diameter of the cross-sections,
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(a) Back view. (b) Top view. (c) Front view.

Fig. 11. Pipe with scaled cross-sections, Φs.

bending the pipe, twisting the pipe, and altering the shape of the cross-sections.

Each deformation is represented by a C1 map from the reference pipe to the resulting

deformed pipe, but also the composition of any two, or more, of these C1 maps is

C1; see Ref. 20.

We let ξ denote the coordinate in the axial direction of the reference pipe, and

(r̂, θ̂) the polar coordinates of each cross-section. Twisting of the pipe by an angle

Θ in the axial direction is then defined by

ΦΘ(ξ, r̂, θ̂) = (ξ, r̂, θ̂ + Θξ/L), (4.1)

and we can easily compute the Jacobian determinant of the map to be JΘ = 1. This

reflects the fact that the volume of the pipe is unchanged.

A volume changing deformation is found by scaling the cross-sections of the

reference pipe. Along the pipe axis we define the scaling factor R(ξ) as a smooth

function with respect to ξ. The deformed pipe is then found through the map

Φs : Ω̂ → Ωs, where

Φs(ξ, r̂, θ̂) = (ξ, r̂R(ξ), θ̂). (4.2)

The corresponding Jacobian is constant on each cross-section, and since the scaling

factor R(ξ) is smooth, the global Jacobian of Φs is smooth, and its determinant in

polar coordinates is in fact Js = R(ξ) (implying that the volume expansion factor

in Cartesian coordinates is R2(ξ)). The resulting pipe when the cross-section of the

reference pipe is the unit circle and R(ξ) = 1.0 + 0.4 cos(πξ/L), ξ ∈ [0, L], is seen

in Figure 11.

In Section 3, we saw in Table 2 that the harmonic extension and the pseudo-

harmonic extension produce excellent computational grids when a circle is mapped

to a deformed ellipse with a smooth boundary. We now apply the pseudo-harmonic

extension to each cross-section of the reference pipe, and define the deformed bound-

ary of the cross-sections by R(ξ, θ̂). The map Φa : Ω̂ → Ωa is then

Φa(ξ, r̂, θ̂) = (ξ, r(ξ, r̂, θ̂), θ̂), (4.3)

where r(ξ, r̂, θ̂) is found by replacing f in (1.7) with R(ξ, θ̂). A deformed pipe

constructed by a combination of altering the shape of the cross-sections and twisting
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(a) Back view. (b) Top view. (c) Front view.

Fig. 12. Elliptic deformation.

(a) Back view. (b) Top view. (c) Front view.

Fig. 13. Elliptic bend.

the pipe is shown in Figure 12, i.e. Φ = ΦΘ ◦ Φa. Here ΦΘ is defined by

θ(ξ, θ̂) = θ̂ +
π

3

ξ

L
, (4.4)

and Φa is defined by letting

R(ξ, θ̂) = (1.0 −
ξ

L
)

√
(a cos(θ̂))2 + (b sin(θ̂) + δ cos(2θ̂))2 +

ξ

L
c, (4.5)

for a = 1.4, b = 0.7, δ = −0.2, and c = 1.0. This deformation of the cross-sections is

the same that was presented in (3.6) in Cartesian coordinates for mapping the unit

circle to a deformed ellipse. Thus the Jacobian determinant in Cartesian coordinates

of each cross-section, relative to the reference pipe, is a plane in R
3.

Finally, the deformation Φp is defined for any parametrized curve f(ξ) =

(x(ξ), y(ξ), z(ξ)) for which the curvature is smaller than the radius of any of the

cross-sections defined by the above deformations. We let the axis of the pipe follow

this curve, and all cross-sections are mapped such that they are still perpendicular

to the curved axis. In Figure 13 the axis follows a 90-degrees bend in the xy-plane,

and the bending is induced after first altering the shape of the cross-sections and

twisting the pipe, i.e. Φ = Φp ◦ ΦΘ ◦ Φa.

In the following sections we use the deformations defined above to test the

computational quality of the resulting grids constructed by the pseudo-harmonic

extension on each cross-section.
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(a) Back view. (b) Top view. (c) Front view.

Fig. 14. Extruded profile.

(a) Back view. (b) Top view. (c) Front view.

Fig. 15. Extruded profile with 90 degree bend.

4.2. Extruded profile

We now describe profiles with smooth variation in one direction, and cross-sections

with non-smooth boundaries. As for the pipes described above, a global C1 map

from a reference profile is achieved by a planar mapping of each cross-section. We

apply both generalized transfinite extension and harmonic extension to each cross-

section, and compare the resulting global map. An extruded profile where each

cross-section has the shape of the curved pentagon in Figure 7(b) is used as the

reference profile.

We use profiles where one end resembles the generic deformed pentagon in Fig-

ure 8(a), and the other end has the shape of the curved pentagon in Figure 7(b).

The cross-section of the extruded profile will change linearly from one end profile

to the other; see Figure 14. This is a completely academic profile, and since the

cross-sections are found as a linear combination of the two end profiles, it suffices to

find planar C1 maps for the two ends by either the harmonic extension or the gener-

alized transfinite extension, and then compute the rest of the planar cross-sections

as a linear combination of these.

As for the pipes defined above, the extruded profile may be composed with other

global deformations like bending (see Figure 15), or scaling of the cross-sections.

In order to compare the time spent on the two different planar C1 mapping

procedures we wish to perform independent C1 maps of each cross-section, as this
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Fig. 16. The convergence of the error in the solution of problem (4.6) when Ω is one of the deformed
pipes in Figures 11 and 12, and bΩ is a straight pipe with circular cross-sections. N is the polynomial

degree of the spectral element basis functions.

is a more realistic scenario. We also assume that for a more generally deformed

profile, routines exist for finding the correct cross-sections; see e.g. Ref. 22.

4.3. Test 1: A Laplace problem

Again we consider how the regularity of a global C1 map constructed with the

methods presented in Sections 1 and 2 affects the error convergence of a simple

Laplace problem. For a perfectly regular map, the error between the discrete solution

and the exact solution converges exponentially as the polynomial degree is increased.

The test problem is a simple extension of the 2 dimensional Laplace problem:

Find u ∈ X(Ω) such that

−∆u = 0 in Ω,

u = ex sin(y)z on ∂Ω.
(4.6)

On each deformed pipe and extruded profile, we use the conjugate gradient algo-

rithm on the constructed grids to solve the test problem.

When a circular pipe is used as the reference domain, we test the error conver-

gence on pipes with radial deformation, and pipes with elliptic deformation of each

cross-section, where both deformations are subject to bending. We have only tested

the pseudo-harmonic extension, since it was very close to the harmonic extension

on circles. On a pipe we have to do boundary value extension on each cross-section,

and thus the pseudo-harmonic extension is clearly more attractive than harmonic

extension. The results for different deformed pipes are found in Figure 16, and we

see that the error converges exponentially for all deformations. This is due to the

superiority of the pseudo-harmonic extension on each planar cross-section, as was
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Fig. 17. The convergence of the error in the solution of problem (4.6) when Ω is an extruded profile,

as depicted in Figures 14 and 15. and bΩ is a straight profile with a cross-section as indicated in
Figure 7(b). N is the polynomial degree of the spectral element basis functions.

seen in Table 2. We also notice that when we use a cosine function in the radial

deformation, the geometry is slightly less resolved, and the convergence is slightly

deteriorated, compared to the results from the elliptic deformation.

For the extruded profiles we use a profile with a curved pentagonal cross-section

as our reference domain; see Figure 7(b). We now compare the error convergence as-

sociated with using the generalized transfinite extension and the harmonic extension

on the profiles shown in Figures 14 and 15. The results are shown in Figure 17, and

we see that the two methods have an almost identical convergence behaviour. This

was also seen in the planar case in Table 1. The error convergence seems to start off

exponentially, but the asymptotic convergence is algebraic with convergence rate

close to 5.0.

We note here that, although the generalized transfinite extension produces the

computational grid more rapidly than the harmonic extension, the grid constructed

with the harmonic extension is more well behaved in the sense that the conjugate

gradient algorithm requires fewer iterations to reach a desired error level. This is

something that should be explored further in future work.

We believe, however, that in a realistic case the grid construction can not be

done on each cross-section separately, but rather on the whole domain at once. This

would require three Laplace solves for the harmonic extension, while the generalized

transfinite extension still only needs a linear combination of predefined functions.

The confirmation of this conjecture is left for future work.
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4.4. Test 2: The Piola transformation

We now define the divergence free velocity field,

v = (sin(y) cos(z), sin(z) cos(x), sin(x) cos(y)), (4.7)

on the deformed domains, and map the field to the reference domain through the

inverse Piola transformation, v̂ = Ψ−1(v). On the reference domain we then mea-

sure the L2-norm of the divergence of the mapped field. As noted in Section 3.2 the

L2-norm of the divergence of v is preserved when mapping the field to the reference

domain through the inverse Piola transformation.

The results from the deformed pipes are presented in Figure 18(a). Again we

observe exponential convergence with respect to the polynomial degree of the un-

derlying spectral element grid.

For the extruded profiles we get the results presented in Figure 18(b). The

convergence is again algebraic, and resembles well the results achieved in the two-

dimensional case in Table 3.

4.5. Test 3: C
1-continuity

Finally, we compute the jump in the Jacobian determinant of the map from a

reference domain to a deformed domain. The jump is measured as the L2-norm of

the difference in the Jacobian determinant across all subdomain interfaces (which

now are surfaces).

When the reference pipe is mapped to either of the deformed pipes described

above, using harmonic extension, or pseudo-harmonic extension on each cross-

section, the jump in the Jacobian determinant is negligible. This was seen already

in the two dimensional case in Table 6, and is probably due to the fact that for all

cross-sections, the Jacobian determinant is a plane in R
3.

For the extruded profiles we get algebraic convergence of the jump in the Jaco-

bian determinant for both the harmonic extension and the generalized transfinite

extension. The convergence rate for both is 4.8, similar to the two dimensional

results in Table 5.

5. Discussion

We have in this work considered different methods for constructing global C1 maps

from a general reference domain to topologically similar generic domains. The ap-

plications we have in mind are especially the ALE framework,9 where the computa-

tional grid, e.g. a triangulation, on an initial domain is mapped to a new domain for

each time-step in the solution algorithm; and the reduced basis element method,17

where vector fields stored on several reference building blocks are mapped to de-

formed instantiations of the same building blocks, connected in large systems.

We have sought explicit alternatives to the common harmonic extension method

in order to construct the C1 maps efficiently, but at the same time make sure
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(a) Deformed pipe.
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(b) Extruded profile.

Fig. 18. The divergence of v = (sin(y) cos(z), sin(z) cos(x), sin(x) cos(y)) defined on either a de-
formed pipe, or an extruded profile, and mapped to their respective reference domains through
the inverse Piola transformation, bv = Ψ−1(v). N is the polynomial degree of the spectral element

basis functions.

that the regularities of the constructed maps are satisfactory. On planar reference

domains with more than four sides, we have introduced a generalized transfinite

extension method and compared this with the harmonic extension. On reference

domains with smooth boundaries both the pseudo-harmonic extension introduced

by Gordon and Wixom,13 and the mean value extension introduced by Floater8,

have been considered. On their respective applicable domains, both the generalized

transfinite extension and the pseudo-harmonic extension have a larger overhead

than the harmonic extension, but once this initial work is done, the application to
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several mappings of the same initial domain is very rapid compared to the harmonic

extension. The mean value extension has very little overhead, and is very rapid on

all domains.

In order to compare the regularities of the maps we have used the spectral ele-

ment method. We know that for analytic maps, the solution of an analytic problem

with the spectral element method should converge exponentially, while for a map

with lower regularity we get algebraic convergence. In this way we have been able

to reveal the regularity of the maps. We have also compared the regularities of the

maps more directly by considering jumps in the Jacobian determinant across sub-

domain interfaces in a domain decomposition, and the accuracy of the divergence

before and after a Piola transformation of divergence free fields. Ideally, we wish

to have maps which are globally C1, and still maintain the exponential conver-

gence rate associated with using a spectral element grid to solve regular problems.

Typically, the C1 requirement reduces the accuracy of the solution of the partial

differential equation compared to a more conventional grid generation.

In conclusion, the generalized transfinite extension is of the same regularity as

the harmonic extension when the reference domain is prepared such that all angles

are π/2. In the planar case, the work needed for the harmonic extension is domi-

nated by the computation of the solutions of two Laplace problems, while we in the

generalized transfinite extension have to solve 2n Laplace problems on an n-sided

reference domain. For the generalized transfinite extension however, the Laplace

problems are solved only once on the reference domain, and on each generic domain

only linear combinations of the precomputed weight functions and projection func-

tions are needed. For the harmonic extension, both Laplace problems have to be

solved on each new instantiation of the generic domain. We note that if the refer-

ence domain is symmetric, the number of weight functions and projection functions

needed is reduced. For the pentagonal reference domain, say, only one weight func-

tion and one projection function is really necessary due to rotational symmetry.

For reference domains with smooth boundaries, we have only compared the har-

monic extension, the pseudo-harmonic extension, and the mean value extension on

a circle. For the very regular map from a circle to the deformed ellipse we found

that the convergence rate of both the pseudo-harmonic extension and the harmonic

extension was exponential for the tests performed, while the mean value exten-

sion only showed algebraic convergence. For the less regular map from the circle

to the general domain with C1-continuous boundary, all three methods converged

algebraically.

Finally we have seen that on some selected three dimensional reference domains

where the cross-sections are seen as deformations of either a circle or a more general

n-sided domain, we may apply the planar maps on each cross-section. The global

regularity of the three dimensional map then has approximately the same regular-

ity as each of the planar maps used in its construction. On appropriate domains,

each extension method may also be used separately to construct maps in three

dimensions.
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Future work should deal with pseudo-harmonic extension on non-planar surfaces

with smooth boundaries. This method could then be applied to each cross-section

of a circular pipe found as the iso-surfaces of a thermal conductivity solution, as

described in Ref. 22.

Furthermore, for cross-sections with only piecewise smooth boundaries, the same

procedure yields non-planar surfaces with piecewise smooth boundaries, and the

harmonic extension and the generalized transfinite extension method should deal

with this problem also.
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